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Summary 

The present report is the description of the 6-month internship at the IBM Almaden research center. The 
research that has been conducted is related to the sensor project, which started after the company has been 
assigned to optimize the performance of the gas sensor with respect to those which already exist on the 
market. A scientific goal like this one demands primarily the investigation and the understanding of the 
commercial sensors that already exist on the market. However, the deeper understanding of the commercial 
sensors inspired the sensor group to design a board made of commercial sensors that could operate as an 
electronic nose. Subsequently, the second goal of the company involves the selection of the most suitable 
commercial sensors after evaluating their performance for the design of that board.  For this reason the 
current report is related to 1. the description of the experimental set-up that has been used in order to examine 
a series of commercial sensors 2. their respective experimental results 3. the description of an automatic 
process that has been established with a programming language for what concerns a faster data analysis of 
the commercial sensors and 4. the introduction of machine learning approaches, since a cognitive part usually 
accompanies the electronic noses for the determination of unknown inputs in terms of the nature of the gas 
and its respective concentration.   

 
Ce rapport est la description du stage de six mois au centre de recherche IBM Almaden. Les études qui ont été 
conduites sont liés au « sensor project », qui a commencé après que l’entreprise ait été assigné à l’optimisation 
des performances de capteurs de gaz par rapport à ceux présent sur le marché. Un effort de recherche comme 
celui-ci repose essentiellement sur une investigation et une compréhension des capteurs commerciaux 
existant sur le marché. Cependant, une compréhension profonde des capteurs commerciaux ont inspiré le « 
sensor group » à confectionner une plaque composée de capteurs commerciaux qui agit comme un nez 
électronique. Le second but impliques la sélection des capteurs les plus approprié après avoir évalué leurs 
performances. Pour cette raison, ce rapport correspond en 1. La description du dispositif expérimental qui a 
été utilisé pour examiner une série de capteurs commerciaux. En 2. Les résultats expérimentaux de ces 
derniers seront présentés. Le 3. est la description du processus automatique qui a été établi utilisant un 
langage de programmation pour ce qui concerne une analyse plus rapide des capteurs commerciaux. Enfin en 
4. sera introduit une approche de Machine Learning, car une partie cognitive accompagne le nez électronique 
pour la détermination des entrées inconnues en termes de nature de gaz et de concentration. 

 
Il presente report è la descrizione dell'internship semestrale svoltosi presso il centro di Ricerca Almaden - 
IBM. La Ricerca condotta è inerente il progetto di un sensore, con lo scopo di ottimizzare le prestazioni di 
sensori di gas, rispetto ai già esistenti nel mercato. Il primo obiettivo scientifico richiesto riguarda 
l'investigazione e lo studio del funzionamento dei sensori di gas già esistenti nel mercato. Tuttavia, uno studio 
più approfondito dei sensori commerciali ha permesso al gruppo di sviluppare un innovativo naso elettronico. 
Il secondo obiettivo riguarda la scelta dei più inerenti sensori, dopo aver valutato le loro prestazioni. Per queste 
motivazioni, il presente report è inerente: 1. la descrizione del set-up sperimentale che è stato utilizzato, al fine 
di esaminare una serie di sensori commerciali 2. le misure sperimentali relative 3. la descrizione di un processo 
automatico che ha permesso di stabilire, tramite linguaggio di programmazione, una più veloce analisi dei dati, 
nell'ambito dei sensori commerciali 4. l'introduzione dell'approccio "machine learning" , dal momento che una 
parte del processo cognitivo di solito accompagna i nasi elettronici per la determinazione di input sconosciuti, 
in termini della natura del gas presente e delle sua rispettiva concentrazione. 
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1.1 INTRODUCTION 

The work of the present thesis has been conducted in IBM Almaden Research Center, where I 
worked as a student research assistant, for a period of six months (~ February to August 2017).  
 
Metal Oxide-based gas sensing is a mature technology that has been investigated for the past 
several decades, the first commercial devices dating back to the 1960s. To date, this technology 
enables a wide range of sensing applications in diverse fields such as industrial chemical safety, 
environmental monitoring, quality control, airport security, and healthcare. However, the 
fundamental principles of operation of Metal Oxide materials are not yet totally understood by 
the scientific community and further improvements in sensor performances appears to be 
possible. This realization, in combination with the tremendous opportunities presented by the 
blooming of the Internet of Things paradigm, provide the drive to develop material-wise 
optimized sensors that detect gases on a real-time basis with the support of machine learning 
techniques.  
 
Over the course of the past few years, IBM Almaden has focused its attention on the field of gas 
sensing in order to bring to the market a new generation of sensors and gas sensing solutions. 
In the frame of  this scientific aim a series of parallel investigations has been going on 
concerning topics such as:  1) characterization, reverse engineering and understanding of 
existing commercial sensors 2) characterization of home-made sensors in order to achieve a 
sensitivity-stability trade-off by optimizing the materials and the fabrication conditions 3) 
construction of a board whose purpose is the gas and concentration discrimination due to 
careful selection of commercial sensors mounted on the very same board and 4) machine 
learning and data analysis to support the cognitive part of the above mentioned  projects.  
  
The present report relates to the last three of these topics, i.e characterization of commercial 
sensors followed by the data analysis of the results in order to select the suitable sensors for 
the construction of the respective board.  Early steps on the machine learning side have also 
been realized.  
 
In Figure 1 one can appreciate the implementation of the project on a timescale.  It can be 
deducted that for the completion of the project a number of technical skills was mandatory to 
be acquired and were related to the following: performing electrical measurements, python 
programming language and octave programming language. Specifically, during the first period 
of the internship, effort and time was consumed mainly in performing measurements, obtaining 
data and also software skills that were necessary for the subsequent analysis of the respective 
data. 
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The electrical characterization was performed for eighteen commercial gas sensors, the 
average price of which is $12.70 (total cost: $228.60), using the following instrumentation: 1. 
Owlstone OFC flow controller, OHG humidity generator, OVG-4 callibration gas generator (total 
cost: $1600) and 2. Vice Metronics model 230-15a-RD (total cost: $748). Two extra mass flow 
controllers were also necessary for the completion of the experimental set-up and 
specifiacally, the GM50A/GM51A mass flow controllers by MKS Instruments (total cost: $400). 
Given the fact that the boards on which the commercial sensors were mounted in order to 
perform the electrical measurements (chapter 3.1) and the chamber, were manufactured in 
house, the respective cost is not to be evaluated. Therefore, the total cost of the project is 
appreciated to be $2.976.  
 

 
 

Figure 1 : Timescale of project implementation 

 
 

1.2 IBM ALMADEN CALIFORNIA 

The present work has been conducted in IBM Research – Almaden, which is positioned in Silicon 
Valley, in San Jose, California and is one of IBM’s twelve worldwide research labs that contribute 
to the research and development department of IBM.  The company itself holds a series of 
admirable rankings on the Forbes list such as: #75 in Sales , #25 in Profit,  #245 in Assets,  
#44 in Market value , #13 World's Most Valuable Brands (1), while the recent annual revenues 
of the company can be appreciated in Figure 2. 

The Almaden Center focuses its attention on 1) Science and Technology, including fundamental 
science, nanotechnology, spin physics and photoresists 2) Cognitive Solutions & Foundations 
such as content management, human-computer interaction, text analytics, services-oriented 
architectures and healthcare informatics 3) Accelerated Discovery for Industry Solutions 
focusing on large scale, people and information-intensive challenges and 4) Global Storage 
Systems from storage and file systems to server software and systems management (2).  
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The content of this thesis falls in the first category of Science and Technology and most 
specifically it is included in the sensor project of the company, which is increasingly gaining 
more and more interest. The research group –of which the author of this thesis was ultimately 
considered to be a member for the given time of her thesis completion - that has been working 
on the specific project, was realizing weekly meetings in order to present the latest progress, 
challenges of the work, and to brainstorm for the future direction of the project. 
 
Subsequently, the well–structured environment and well-organized schedules constitute 
excellent features for any intern that has the opportunity to pursue her thesis in this company, 
since they constitute a tremendous starting point for career which complies with appropriate 
procedures.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Annual Revenue of IBM in U.S. dollars (2) 

1.3 BIBLIOGRAPHY  

(1). Retrieved from https://www.research.ibm.com/labs/almaden/ 

(2). Retrieved from https://www.forbes.com/companies/ibm/ 

 

2.1 THEORETICAL PART 

The electronic nose resulted from the initial idea to manufacture a device that mimics the 
olfactory system for smells (1). Even though the specific device concept was proposed over 
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twenty years ago, the ambitious goal has not yet been reached (2). Amongst the main challenges 
that this field faces are sensitivity, specificity and stability of the individual sensors. In addition, 
while the electronic nose can be designed for detection of a certain range of gases of interest, 
those gases are often part of a complex background that acts as interference. Environmental 
and device conditions such as the partial oxygen pressure at the surface, the local surface 
temperature may also act as interfering factors. In other words, it can be understood that 
there is a need for more sensitive, stable sensors and for pattern recognition approaches in 
order to achieve the determination of the gas input. 
 
An electronic nose comprises an array of different partially-specific sensors. One of the efforts 
put by IBM’s sensor-research-group is related to the assembly of a Metal-oxide-sensors (MOS 
sensors) array. Specifically, the electrical measurements and the data analysis that have been 
conducted in the frame of this project aim to the selection of the four more suitable MOS 
sensors for the construction of a meaningful MOS array.  For this reason, in this chapter the 
following parts are intended to be covered: the principles of operation of the electronic nose, 
its future trends, understanding the physics behind the operation of individual MOS sensors, 
and some state of the art data analysis and classification approaches.  
 
 

2.1.1 Electronic nose: applications, challenges and future trend 
 

 Electronic noses rely on arrays of sensors. As far as conventional sensors are concerned, 
specificity and reversibility constitute an important trade-off one needs to deal with. Specificity 
refers to the ability of a sensor to discriminate between the analyte of interest and 
interferences-gases.  Reversibility is related to the successful adsorption of the gas molecules 
from the sensing film when the gas is gone. Therefore, their trade-off is the result of the fact 
that since a strong specificity demands strong binding between the gas molecules and the film, 
it becomes more difficult for them to adsorb on a later step. When it comes to the human 
olfactory system, the corresponding smell receptors have a short lifetime (a few weeks), in 
order to retain specificity and reversibility (3). However, such short lifetime is prohibitive 
technologically and financially speaking.  In that sense, instead of replacing the sensors – which 
would be the equivalent of the birth of a new human smell receptor, efforts have been noted in 
order to tune and improve the specificity of the MOS sensors with alternative ways.  
 
The tuning of the specificity has been attempted by 1) using different sensing materials of the 
MOS sensor, 2) using dopants in the sensing film itself, 3) realizing different morphologies 
(amorphous or crystalline) of the film, 4) printing different shapes for electrodes and  5) trying  
different operating temperatures (See chapter 2.1.2 for better understanding) (4).  Approaches 
2-5 are more straightforward, since they are related to nanotechnology fabrication and design 
steps that are well established in the field. The realization of different sensing films however 
may also follow more exotic approaches. For example, there have been reports claiming that 
imprinted molecules receptors, DNA, or even whole cells may increase the sensor sensitivity 
and specificity (5-8). 
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In addition to fabrication-related solutions, sensitivity and selectivity may also be tuned in ways 
that correspond to sample pretreatment solutions. The idea lies in the fact that by applying 
suitable filters, the background gases will be filtered out and as a result that will reduce their 
interference effect and hence will increase selectivity and sensitivity. This solution doesn’t 
provide only beneficial effects though, since the extra filters increase the complexity, the cost 
and the physical dimensions of the device (9).   
 
As previously mentioned, several factors may deteriorate the performance of the MOS sensors 
such as the background gases, the partial oxygen pressure at the surface, the local surface 
temperature, the fluctuations of humidity and the instability of the sensors (specifically the 
drift of the baseline which is going to be mentioned in chapter 2.1.2). The effects that occur 
from all those factors result in fluctuations of the output signal of the sensors and since their 
intensity vary in an unpredicted way it becomes difficult and sometimes even impossible to 
include respective corrections when it comes to the calibration of the sensors. The solution to 
problems like that may lie to the construction of adaptive neural networks that can process the 
input data in an appropriate way and classify the gases with high accuracy regardless of such 
interferences. The explanation of the neural network will take place in chapter 2.1.4. 
 
Other strategies consist in combing different types of sensors, each one of which could still 
undergo the above mentioned fabrication modifications. Surface or bulk acoustic or wave (SAW, 
BAW) sensors, metal oxide field effect transistors (MOSFETs), or conducting polymer (CP) 
sensors are suitable candidates to be integrated in the same array.  
 
At this point it should be remarked however that solutions of this type (combining sensors) puts 
at risk the quality of the output signal, since the noise of the signal and the dimension of the 
respective array constitute an additional trade-off, when it comes to designing an electronic 
nose (10). Based on the latter, it becomes obvious that accurate selection of the sensors 
comprising an array plays a crucial role: the number of sensors should be the minimum number 
of sensors needed in order to retrieve valuable information at the output, without unnecessarily 
increasing the physical dimensions, nor the noise, of the device. The latter challenge has been 
confronted by selecting sensors based on a specific application (the kind of gases the nose is 
intended to sense) and by relying on knowledge of existing analytical data, in order to choose 
the best combination of sensors that provides the maximum sensitivity to gases of interest as 
well as a set of linearly independent outputs. 
 
The different kind of sensors that are mentioned above do constitute a more classical 
electronic nose. Mobility spectrometers-based sensors and flash chromatographs-based 
sensors are less conventional ways to detect and determine the sample-gas. As it will be 
discussed in the following chapter, the more classical sensor-based electronic nose gives an 
output based on input features, which are related to the electrical signals that the gas produces 
after reacting with the sensing film of the sensor.  The less conventional electronic noses do 
rely on features, which are related to the time-of-flight, retention time or mass ratios of the 
gas components. This generation of electronic noses is not necessarily more suitable or of 
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better performance when compared to the traditional electronic noses. The choice of the most 
suitable kind of electronic nose seems to be related on the application itself (11-14).  
 
Based on the above mentioned remark, it can be understood that it is indeed meaningful that 
the present thesis focuses on the research of the more classical sensor-based electronic nose. 
It seems that there is still room of improvement even when it comes to more conventional 
technologies and there is also a series of interesting applications that such a device can cover. 
Such applications may be: 1) monitoring of air quality in residential environments and space, 2) 
checking of foodstuff spoilage, 3) disease diagnosis, 4) even the replacement of the human nose 
eventually (15).   With the research going on it is predicted that the price of an electronic nose 
will be $1 by 2020, given that most electronic noses are currently priced from $20.000 to 
$100.000 (16).  
 

2.1.2 Metal oxide sensors: principal of operation 
 
In Figure 3 one can observe a simple schematic of a MOS sensor, in order to comprehend its 
principle of operation easier.  Specifically, the sensor is constituted by an electrode (most often 
an interdigitated one), imprinted on an insulating substrate (most often SiO2), on top of which 
the sensing film is deposited (the thicknesses range from 10 to 300mm for thick and 6-1,000nm 
for thin films) and by an integrated heater: a resistive material that heats the sensing film 
through the Joule effect, after the application of appropriate voltage. The common range of 
operational temperatures is 200-500 °C. 
 
 
 
 
 
 
 
 
 
 
 
 
 

The sensing film has the property of changing its conductance after the chemical reaction with 
an appropriate gas sample in a way that is proportional to the concentration of the gas.    

The MOS sensors belong to two classes: n-type (sensing film: zinc oxide, tin dioxide, titanium 
dioxide or iron (III) oxide) and p-type (sensing film: nickel oxide, cobalt oxide). The former 
corresponds to sensing films whose surface reacts with the oxygen in the air, resulting in 
trapping any free electrons of the surface or the grain boundaries of the sensing film. Since 
the number of the free carriers decreases, depleted regions are created – which means 
formation of potential barriers between the grains that prohibit the mobility of any carriers- 
and hence the resistance increases in the respective regions. In presence of reducing gases 
(H2, CH4, CO, C2H5 or H2S) that react with the trapped oxygen of the surface, the resistance 

 
Figure 3: Schematic of MOS sensor and its basic reaction (17) 
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drops because the electrons are released back and are free to flow between the grain 
boundaries. On the other hand, the p-type class corresponds to sensors whose resistivity 
decreases after the reaction of the oxygen with the so called oxidizing gases (O2, NO2, and Cl2). 
This is because in that case the gases deplete the electron depleted regions furthermore and 
hence they produce holes that flow between the grain boundaries. The above mentioned 
reactions of the n-type sensors are presented by the following formulas (1) and (2), where R 
represents the reducing gas: 

1

2
𝑂2 + 𝑒− →  𝑂 −    (1) 

 
𝑅 + 𝑂 − →  𝑅𝑂 + 𝑒   (2) 

 

At this point it becomes understood that the sensing film is basically a variable resistor, whose 
resistance is being measured through the electrodes on which that film has been deposited and 
its corresponding values are basically the electrical outputs of the sensor.  The output signal 
that corresponds to the resistance of the film in the absence of any gas is called baseline (Rair), 
while the one that corresponds to the resistance of the film in the presence of the analyte 
(Rgas) is the response of the sensor. The sensitivity of oxide gas sensors may be expressed in 
several ways. The equations (3) and (4) are the ones that have been used to express the 
sensitivity of the sensors that have been measured in the frame of the present thesis and as it 
is shown below they are basically the two sides of the same coin (18).  
 
  

𝑆  =
Rair − Rgas

Rair
   →  (3)  

  
 

𝑆  = 1 −
Rgas

Rair
= 1 −

1

𝑆∗ 
   , 𝑆∗ =  

Rair

Rgas
   (4) 

  
The sensitivity is a function of the baseline value (Rair), which does not remain stable over a 
long period of time, resulting in problems of consistency and accuracy when it comes to 
labelling a known input (i.e given concentration of known gas) to a certain feature (i.e 
sensitivity). It is therefore this drift of the baseline that causes the so called instability of the 
sensors. Other factors such as: 1) film thickness 2) doping in the film, 3) grain size, 4) 
operational temperature of the film also need to be optimized when designing a sensor in order 
to achieve higher values of sensitivities (19). 
  
 

2.1.3 Electronic nose: principles of operation 

The electronic nose was first developed with the aim to mimic the human olfaction system. For 
this reason, the description of its principles of operation will be realized with references to the 
olfaction system in order to simplify the concepts when necessary. In Figure 4 such an analogy 
is illustrated and the reader can refer to it for purposes of comprehension.   
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The electronic nose consists of a sample delivery system, an array of sensors - which 
constitutes the mechanism for the chemical detection of an odor -  and a mechanism for pattern 
recognition, such as a neural network (19, 20, 21). The array of sensors play the role of the 
receptors in the human nose, while the pattern recognition mechanism plays the role of the 
cognitive process that takes place in the human brain. 
 

 

Figure 4: Analogy between the electronic nose and the human olfactory system (18) 

 
In order for the human brain to conclude that the smell of coffee corresponds to coffee, it is 
mandatory that the smell is already known. In other words due to experience, the brain has 
already stored the special characteristics of the smell and has linked them to a specific object 
(i.e coffee). Every time that the same characteristics are experienced the brain is capable of 
recalling that object. It becomes clear that in the case of an artificial brain in order to match a 
pattern – i.e electrical output of a specific gas of certain concentration – it is needed that the 
pattern is known beforehand. This is achieved by “feeding” the artificial brain with the 
appropriate characteristics (those corresponding characteristics are called features in the 
field of machine learning) that the electronic nose is supposed to correspond to specific gases 
and concentrations. While the human brain is capable of determining the special characteristics 
of a smell by itself, in the case of the artificial brain the features are carefully extracted during 
the data analysis of the electrical outputs of the sensors. Such a feature might be for example 
the sensitivity that a certain sensor presents after it has chemically reacted with a certain gas 
of certain concentration.   
 

After the brain has processed the signal of the smell/gas and has determined the features, it 
compares them to features of which the brain is already aware of. In the human brain this 
comparison is realized by the neurons. Similarly, in the case of the artificial brain the artificial 
intelligence that performs the classification of the gas is called neural network. By the end of 
this process, both brains provide with an answer. In the case of the artificial brain, the result 
will answer to the question: which gas and of what concentration did the sensors-array sense?  
 
The part that concludes the description of the device is the delivery system. Depending on the 
application, there are different ways that can deliver the gas to the detection system of the 
electronic nose. A common system, where a volatile specimen is sampled consists of a tube 
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that collects the air with the help of a pump so that the air flows in the sensor chamber where 
the sensors array resides. In cases where the specimen is solid the system is modified to 
directly inject the specimen in the sensor chamber (22).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.1.4 Data process and pattern recognition of complex systems 

As it was explained above, the artificial neural network is the way to go in order for an electronic 
nose to be able to detect and identify experimental samples. In order for the electronic nose to 
‘’learn’’ how to classify the gases appropriately, a learning environment is established and a 
training algorithm is applied.   
 
In Figure 6 one can see the representation of a neural network. Since this is a computational 
platform that mimics the human neural network, each node of the network is called neuron. The 
learning and training algorithm resemble the process during which the knowledge is acquired 
and which is supposed to be stored. The storage is realized through the connections between  
 
 
the neurons. One can imagine that the knowledge is stored through the communication of one 
neuron with its successive neuron and so on and so forth. It can be understood that this 
information which is exchanged between successive neurons is of major importance, and it is 
basically the amplitude of this connection, which is known as synaptic weight in the field of 
machine learning (24). 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5 presents the 
simplified schematic of 
an electronic nose and 
the respective parts 
that have been analyzed 
in this chapter.  
 

Figure 5: Schematic representation of electronic nose (23) 

 

The known data – or else 
labeled data – are fed in the 
network as inputs. The 
labeled data get classified 
by the network but since 
their correct output is 
known the network can 
adjust its classification 
hypothesis by evaluating the 
error of its prior 
classification attempt. 
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classification attempt. The network will use the same hypothesis for unknown data and hence 
it will be able to classify them correctly.  In more detail, it is the modification of the weights 
that takes place by the application of the labeled data and their final values which minimize the 
difference between the desired output and the real output of the network. Ultimately those 
values formulate the classification hypothesis. The property of the neural networks to classify 
correctly unknown data is called generalization (26). 

In Figure 7 the mathematical model described above is illustrated. The values x1, x2... xn 
represent the input examples (in our case gases of specific concentrations accompanied with 
their related features). Each xi is then multiplied with the respective weight wi of each neuron 
(wi resembles the synapse of the neuron in the human brain). The next step is the summation 
of the respective xi*wi multiplications (summation junction), which later on gets “filtered” by a 
transformer (that transformer is called activation function and in most cases it is a sigmoid 
function) in order to produce the final output. The final output gives basically the classification 
result and corresponds to a finite value (27). Till this point the input signal of the network has 
been propagating forwards (from the input till the final output). Since the signal reaches the 
output, the error is generated and starts to propagate backward in the network, modifying the 
weights. This process repeats itself up to the point that the error is minimized. The minimization 
of the error is achieved most commonly by the so-called gradient descent method (28).   
 
At this point it makes sense to also mention that in most cases the input data of the neural 
network are data that have been undergone a process called PCA (Principal Component 
Analysis). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PCA is a statistical procedure that uses an orthogonal transformation in order to convert 
possibly correlated variables into linearly uncorrelated variables 
 
In the field of machine learning, each feature represents a dimension and hence one can end 
up dealing with a multi-dimensional hyperspace. Even if the features are not correlated, PCA 

Figure 6: Architecture of a two-layer neural network (25) 

 
Figure 7: Architecture of a two-layer neural network (25) 

 

Figure 8: PCA: 2d to 1d transformation (30) 
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can be then applied for reasons of visualization, which means that PCA can be applied to reduce 
the original space up to a three dimensional space.  
 
In Figure 8 the general concept of PCA is shown. It can be shown that by solving the eigenvalue 
problem, the directions of maximum variance of the original data is found. Those directions 
correspond to vectors on which the same data are then projected and hence minimizing the 
space, ending up with new data that are the linear combinations of the original ones (29). 
 
In the same Figure 8,  x1 and x2 correspond to two different features, the blue dots correspond 
to the original data, u1 is the vector of the maximum variance of the data on which the blue dots 
are projected and their projections correspond to the orange dots. The orange dots are the 
new data and are plotted on a one dimensional space. 
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3.1 EXPERIMENTAL PART 

 3.1.1 Description of the experimental setup 

In this part of the thesis the experimental setup will be described, the core of which are the 
instruments presented in Figure 9. The Owlstone instrument is depicted in Figure 9a, which 
hosts one single oven for an acetone permeation tube and the VICI instrument is depicted in 
Figure 9b which hosts two ovens, for a toluene and a benzene permeation tube respectively. 
The former’s temperature is set at 40 oC and the latter’s temperatures are set at 60 oC and 
50 oC, while the respective boiling temperatures are: 56 oC for acetone, 111 oC for toluene and 
80 oC for benzene. 

 

 

 

 

 

 

 

 

 

 

α. 

 

 

b. 

 Figure 9: a. Owlostone permeation instrument b. ViCi permeation instrument 
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The tubes in the oven are being heated at a constant temperature, which is always lower than 
the boiling temperature of the liquid material contained in the tubes. In that way, the material 
in the tube is in a dynamical phase of equilibrium between its gas and liquid phase. Over time, 
the liquid evaporates and permeates through the walls of the tube at a constant rate (R), which 
depends on the temperature of the oven 

With the help of those two instruments: acetone, toluene and benzene are driven along a line, 
where the gases can be furthermore diluted by another analyte before they reach the chamber 
in which a sensor board is located. Each instrument is characterized by a different internal set-
up, and hence the final concentration of the gas inside the chamber is calculated with different 
equations. In Figure 10, one can appreciate the schematic of the internal set-up of each 
instrument.  

As it can be observed in Figure 10a, Owlstone has an internal exhaust system, which means that 
the user defines the total flow of the acetone (F) and also the flow (out of the total flow), which 
is going to be led to the exhaust (Fexhaust). The sensor board will sense therefore the remaining 
flow (Fin) which gets diluted by dry air (Fdilution2, corresponds to Dry air 2 in the schematic) 
before it reaches the chamber. This description can be mathematically expressed in terms of 
flows and concentrations (C), as in equation 5. 

 

 

 

  

  

 

 

 

 

 

𝐶 =  
𝑅

𝐹𝑖𝑛+𝐹𝑒𝑥ℎ𝑎𝑢𝑠𝑡 
∗

𝐹𝑖𝑛

𝐹𝑖𝑛+𝐹𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛2 
     (5) 

In comparison to the Owlstone, the VICI gives to the user the ability to determine the flow of 
either toluene or benzene but there is no internal exhaust. On top of that, there is an internal 
dry air dilution (Fdilution), whose flow can be determined by the user. Because of the fact that 
this specific set-up does not provide a wide range of different concentrations for the purposes 
of the experiment, the set-up was upgraded by adding an external mass flow controller.  The 
mass flow controller practically plays the role of an exhaust. In other words, while the user 
determines the Fin+Fexhaust at the input of the Owlstone instrument, in the case of the VICI she 
just determines the Fin at the input of the upgraded VICI instrument. The mathematical equation 

 

 

 

α. 

 

b. 

 Figure 10: a.Internal schematic of Owlostone b.Internal schematic of Owlostone ViCi  
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6 describes the effect of the set-up on the total concentration of gas that the sensor board 
ultimately senses.   

 

𝐶 =  
𝑅

𝐹𝑖𝑛 
∗

𝐹𝑖𝑛−𝐹𝑒𝑥ℎ𝑎𝑢𝑠𝑡

𝐹𝑖𝑛−𝐹𝑒𝑥ℎ𝑎𝑢𝑠𝑡+𝐹𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛+𝐹𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛2
 
     (6) 

The two instruments cross-meet before the chamber and user-controlled valves are used to 
let in either the gas flow coming from the Owlostone or the gas flow coming from the VICI. In 
Figure 11a one can observe the controller with which the respective valves of the dilution and 
of the instruments can be set at either on (flow goes in) or off mode (flow goes to exhaust) and 
in Figure 11b the chamber is shown.  

In the chamber box there is the possibility to place boards on which six sensors can be mounted 
and hence measure the response of all six sensors simultaneously for a certain concentration 
of gas flowing into the chamber. Such boards can be shown in Figure 12. 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

be heated.  In Figure 13, the schematic of the electronic circuit for the read-out and the heating 
is shown. 

The six sensors, and specifically their respective sensing films, play the role of a resistance, 
the value of which is approximately given by the manufacturer for sensors operating under 
specific set of conditions (operating temperature, humidity, ambient temperature, presence of 
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b. 

 
Figure 11: a. Valve controller b. Chamber of sensor boards  

 

 

Figure 12: Three different sensor boards that normally get 

hosted by the chamber   

 

In order to evaluate the 
response of each sensor at the 
presence of a certain gas, it is 
mandatory to monitor the 
changes of their respective 
resistances. On top of that, as it 
has been mentioned in the 
previous chapter, it is 
mandatory for each sensor to 
be 
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gases). It should be noted that the uncertainty on the specified resistance values for a given 
sensor is always very significant, sometimes exceeding 50%. Therefore, each sensor requires 
individual evaluation to assess its properties. Rsensor_1, Rsensor_2… Rsensor_6 do represent 
the six sensing films of the sensors.  For each sensor one load resistance in connected in 
series: Rload_1, Rload_2… Rload_6, while a voltage drop of 1.8V is applied across every pair of 
sensor resistance-load resistance. The value of the load resistance is known by the user. 
Specifically, the load resistor is an adjustable resistor, the value of which is adjusted by the 
user in order to decrease the noise of the measurement. In Figure 14, one can see the six 
adjustable resistors mounted on an external board which is connected in series to the chamber. 

From the circuit of Figure 13, six outputs are obtained and their read out is graphically 
illustrated on the screen of a computer at real time. The voltage output of each single sensor 
resistance-load resistance pair is being measured across the load, as it can be seen in Figure 
15. The Figure 15 is basically a typical voltage divider circuit, for which the output voltage is 
given by the equation 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑉𝑜𝑢𝑡 =  𝑉𝑖𝑛
𝑅𝑙𝑜𝑎𝑑_𝑖

𝑅𝑙𝑜𝑎𝑑_𝑖+ 𝑅𝑠𝑒𝑛𝑠𝑜𝑟_𝑖
  , i = 1,2, ...6   (7) 

 

Figure 13: Schematic of the electronic circuit for the read-out and the heating of the sensor board 

 

 

Figure 14: The six adjustable load resistors of the 

circuit are in the red circle 

 

 

Figure 15: Output voltage for every sensor 

resistance-load resistance pair 
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The equation 7 has been used to convert the obtained voltage data into resistance values, since 
the resistance values are widely used in the bibliography when evaluating sensitivities and the 
performance of sensors. Since the Vout is the measured value and both Vin and Rload_i are 
known parameters, the resistance of the sensing film can be calculated.  In order to establish 
automatic voltage – resistance conversions, a script in python has been written by the author 
of the present thesis. The relevant scripts can be found in Appendix A.   

It is worth mentioning, that the value of the adjustable resistance is of great importance while 
conducting the measurement, which can be understood while paying attention at the circuit of 
Figure 15. For a given Rsensor_i value, the higher the Rload_i the higher will be the drop on the 
load and hence the output voltage. However, the Vin is restricted to 1.8V by the supply voltage 
of the circuit. That means that in case the adjustable resistance is adjusted in such a way that 
the output is close to 1.8V in dry air conditions, when the gas (acetone/benzene/toluene) is 
purged in the chamber, the resistance of the sensor will decrease (the voltage drop across the 
Rsensor_i will decrease), and hence the drop voltage across the load will increase even more. 
The latter increase of the output voltage however is restricted as already said and that 
suggests that there is risk of degrading the read-out resolution.  

In Figure 16 the power supply of the experimental set-up is shown. As long as the supply 
provides a voltage of 8V or above, a voltage regulator which is depicted in the circuit schematic 
of Figure 13, gives always an output of 5V in order to protect the circuit, while the extra 
capacitors before and after the voltage regulator provide stability to the circuit. Those 5V are 
applied to the six integrated heater resistors of each sensor, which are connected in parallel. 
It is because of this voltage drop across the Rheater_i that the sensing film of each sensor get 
heated through the Joule effect. 

 

 

 

 

 

 

applied across each Rsensor_i – Rload_i pair, as it has already been mentioned. 

At this point it should be pointed that it is not the operational temperature that it is typically 
disclosed by the manufacturer but the voltage to be applied at the sensor’s heater.  This is 
particularly relevant in the context of one experiment that took place in the framework of this 
thesis that will be introduced in the following chapters. 

3.1.2 Description of the experiments 

 

Figure 16: Power supply of the experimental 

setup  

 

In parallel to the heaters, two Zener diodes 
and a resistance are connected in such a way 
that the drop voltage across the resistance is 
2.6V (= 5V – 2.4V based on the schematic of 
Figure 13) and is applied at the input of a BJT 
transistor. Since, the intrinsic drop of voltage 
between the base and the emitter is always 
0.6V and the voltage drop across the Zener is 
2.4V, based on the schematic of Figure 13, a 
voltage of 1.8V (2.4V – 0.6V = 1..8V) is always 
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The measurements from which the data where obtained for the first part of the thesis, were 
conducted by the author and with the help of the experimental set up described in the previous 
chapter.  Two boards were tested on which six different sensors were mounted. Subsequently, 
twelve different sensors have undergone different experimental procedures in total. Table 1 
contains the names of all the sensors per board.  

Those 12 sensors were exposed to the three gases – acetone, toluene and benzene – of different 
concentrations. The concentrations were calculated by the author of this thesis with the help 
of the equations 5, 6. The permeation rate (R), which is included in the equations 5 and 6, was 
calculated for each gas in the following way: each tube was filled with the suitable analyte and 
its weight was measured before inserting it in the oven. For a period of time the tubes were 
taken out of the oven in order to record the new weights. The rate of the weight loss was 
calculated from the slope of the weight data points over time, after applying a linear fit and it 
was then converted into a rate of mol loss over time, by using the molecular weight of the 
analyte.  In Figure 17 an example is given for such a conversion for the case of benzene.  

Table 1 

              BOARD I BOARD  II 

Sensor 1 TGS2602 1330 

Sensor 2 TGS2611 2330 

Sensor 3 TGS2620 10330 

Sensor 4 MQ138 ASMCVP2 

Sensor 5 MQ137 TGS8100 

Sensor 6 TGS2600 5914 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 17: Experimental weight data points and making use of its known molecular 

weight 
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One series of experiments consisted in recording the voltages (which were afterwards 
converted in resistances: Appendix A) for different concentrations of each gas (acetone, 
toluene and benzene). The concentrations of interest were the following: 150, 200, 500, 1000, 
1250, 1500, 2000, 3100, 3600, 4380, 4380 and 5700 ppb. The aim of this experiment was the 
extraction of sensitivity vs concentration graphs. Such graphs provide valuable information, in 
order to evaluate whether the same sensor gives a different response (in terms of sensitivity) 
for the same concentration of each gas. In other words, if one sensor responds differently for 
each gas then for an unknown input (input refers to some gas of some concentration) it is 
possible to make a conclusion about the nature of the gas (determine whether it is acetone, 
benzene or toluene in our case) and its respective concentration. Practically, since the 
response of the sensors is pretty similar, the ultimate goal of such an experiment is to 
determine which four sensors out of the twelve provide the most distinctive responses when 
compared to each other so as to combine them on the same board in order to make such 
conclusions about the nature and the concentration of the purging gas. This series is named: 
‘’Sensitivity series’’ and the measurements were realized by the following this pattern: 1. 
purging dry air in the chamber, 2. purging gas of concentration x1 in the chamber, 3. purging 
dry air in the chamber 4. purging gas of concentration x2 in the chamber, 5. purging dry air in 
the chamber and so on and so forth. The x1, x2 values represent the concentration values of 
interest that have already been mentioned, while the gas is either acetone or benzene or 
toluene.  

However, since the instability of the sensors is a big issue (see chapter 1) two other series of 
experiments were realized in order to reassure that the obtained results of their response is 
fairly stable over the course of a period of time. For this reason, a second series of experiments 
consisted in recording the response of the sensors for the same concentration of a gas 
repeatedly, over a short period of time (hours). This series is named: “Reproducibility series”, 
and all the responses were recorded one after the other following this pattern: 1. purging dry 
air in the chamber: 2. purging gas of concentration x1 in the chamber, 3. purging dry air in the 
chamber, 4. purging gas of  concentration  x1 in the chamber and so on and so forth.  

A third series called: “Sensitivity over time series” was carried out and is similar to the 
“Reproducibility series” with the difference that the responses were recorder after long delays 
(usually several days) instead of after a couple of hours . The pattern of this experiment can 
be described as following: Day #1: 1. purging dry air in the chamber, 2. purging gas of 
concentration x1 in the chamber.  Day #2: 1. purging dry air in the chamber, 2. purging gas of 
concentration x1 in the chamber.  Day #3: 1. purging dry air in the chamber, 2. purging gas of 
concentration x1 in the chamber and so on and so forth. The “Reproducibility series” are ideal 
in order to observe whether the same sensor gives different responses in a very short period 
of time, where the environment is theoretically maintained constant. Any differences in the 
response in such short period of time are not desirable and hence the sensor is considered to 
be not ideal and hence not a suitable candidate for the final selection of the four-sensors board 
that has been mentioned in this chapter. On top of that, the experimentalist may observe certain 
fluctuations which are more related to the system of the experimental set-up (f.e slight 
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humidity, temperature, pressure variations) than to the sensor itself. The “Sensitivity over time 
series” gives a more general idea of the performance of the sensor, since the experimentalist 
can keep track of the sensitivity of the sensor and how it might be affected by the drift of the 
baseline (corresponds to the Rsensor_i when only dry air is purging and no gas is present) 
over time. An ideal sensor is expected to have minimal drift of its baseline, which is the figure 
of merit when talking about stability issues.   

 

At this point a further clarification should be made since it might seem ambiguous the fact that 
a commercial sensor, which is already on the market, might show bad performance in the 
“Reproducibility series”.  The first reason behind this fact is that the conditions under which 
the sensors are operating are not the ones that are recommended by the manufacturers. 
Specifically, all datasheets accompanying commercial sensors give sensitivity values under 
humidity conditions. However, the experiments that have been carried out during the present 
thesis were focused on dry air conditions (low relative humidity) only, as it was thought that 
this would allow for better control of the working environment and, consequently, enable to gain 
a clearer understanding of the sensors behavior.  The second reason is that the majority of the 
sensors are described as sensors for: cigarette smoke, cooking odors, gaseous air 
contaminants or VOC detection. In other words, there is no specific reference for detection of 
certain gases, which means that acetone, toluene and benzene may either not be suitable 
targets for specific sensors or may be even poisonous (i.e., causing irreversible adsorption at 
the sensor surface). The third reason is that the average concentration for which the sensitivity 
is calculated in the datasheets of the commercial sensors is 1000ppm (=1000.000ppb), while 
the concentration for which the sensitivity was calculated in “Reproducibility series” is just 
1000ppb because this level of concentration is more relevant for most of the applications 
targeted by the team.   

All the above mentioned series have in common the fact that during the experiments the 
temperature (the voltage of the power supply) has been always stable. This mode of operation 
is named: “Single Temperature Operation (STO)”. Another mode of operation has also been 
applied for one single sensor, where the temperature of the heater is not the same over the 
course of an experiment but the concentration of the purging gas is the same. The name of this 
mode is: “Temperature Controlled Operation (TCO)”. The author of the present thesis did not 
take part in collecting TCO data but carried out the data analysis and developed the machine 
learning model. For this reason, only the working principles of the experiment will be described 
-and not the experimental details in an inclusive way – in order to lay down the foundations for 
the machine learning part that will be presented in the next chapter.  

In Figure 18 one can appreciate the principal of the TCO. Since, as it has been mentioned already, 
the temperature of the heater is not known, but the optimal voltage applied to the heater is 
known by the manufacturer, the changes of the temperature correspond to voltage changes. 
Specifically, in Figure 18 the term 100% corresponds to the value of voltage that is 
recommended by the manufacturer, the term 50% corresponds to a value of voltage that is 
50% lower with respect to the recommended voltage etc. The absolute value of the operational 
temperature might not be known, but is not of significant interest either.  
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During the TCO the sensor is heated at a certain temperature for a couple of minutes in order 
to reassure that the system has achieved a steady state of operation. On a later step the 
temperature drops and it remains at this new temperature for the same period of time to 
restore a new steady state. This process is repeated multiple times 

While the voltage (temperature) of the sensor is following the pattern depicted in Figure 18, dry 
air is purging in the chamber and the baseline is being recorded (Rair). After the completion of 
the run, the sensor follows once more the very same pattern of voltage, while a gas of certain 
concentration is purging in the chamber (Rgas). The ratio of Rgas/Rair is a figure of sensitivity 
(S*, see equation 4) for the sensor.  

 

 

 

 

 

 

 

 

 

 

Similar measurements have been realized by other researchers and it has been shown in the 
recent bibliography of the field that the sensors tend to present specific response patterns 
every time the temperature drops and before it reaches again a new thermal steady state, even 
though the gas has been present all the time (1) in the environment. An example of this 
description is presented in Figure 19. It can be understood that from the perspective of machine 
learning, such phenomenon gives the opportunity to obtain more features for one single sensor 
and increase the accuracy of the prediction for what concerns the nature and the 
concentration of the gas when dealing with unknown inputs.  

 

 

 

 

 

 
Figure 18:  Example of the principal of operation of TCO 

 

 

Figure 19:  Example of a sensor’s 

response when heated at 

different temperatures. The last 

graph represents the change in 

temperature of the heater, while 

the first two graphs represent its 

response at the presence of 

benzene and ethanol. As it can 

be observed, the sensitivity of the 

sensor increases dramatically 

after the temperature drops and 

the response tends to saturate 

back to its initial value when 

approaching a new steady state. 

 

TCO MODE 
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 3.1.3 Experimental results of the commercial sensors 

In this chapter the experimental data of the commercial sensors will be presented, which were 
obtained in the way that it was described in the chapter above. It is reminded that the following 
experimental data correspond to STO mode. In Figure 20, one can observe the data that 
correspond to the ‘’Sensitivity series’’, after they have been converted in values of Rsensor_i, 
using the script of Appendix A. The data that have been selected to be shown among the existing 
ones correspond to the gas toluene for board I and acetone for board II. However, Table 2 
summarizes all the measurements that have been conducted concerning board I and board II.   

Table 2 

 

One can notice that the data of Figure 20a and 20b are divided in different regions by green 
lines. Each region corresponds to a dry-air purging followed by a gas purging of some specific 
concentration. By zooming in every region and extracting the Rgas and Rair values, the 
sensitivity can be calculated for every region (i.e for every given concentration of gas). In 
Figure 21 the reader can appreciate a region that has have been selected and the corresponding 
values of Rgas and Rair. The sensitivities have been calculated using the equation 3.  

After extracting the sensitivities for all sensors, gases and concentrations the data were put 
together in order to obtain meaningful plots in order to extract conclusions about the sensors’ 
performance. The sensitivity has been similarly extracted from the data obtained from the 
remaining experimental series: “Reproducibility series’’ and “Sensitivity over time series”.   

              BOARD I        BOARD  II 
Sensitivity 
series 
 
 

 

  

Reproducibility 
series 
 
 

 

  

Sensitivity 
over time 
series 
 
 

 

  

Acetone           Toluene          Benzene Acetone           Toluene          Benzene 

Acetone           Toluene          Benzene 

Acetone           Toluene          Benzene 

Acetone           Toluene          Benzene 

Acetone           Toluene          Benzene 

250 -             150 -                 250 - 

1500ppb        2000ppb          5700ppb 

 

 

 

250 -             150 -                 250 - 

1500ppb        2000ppb          1500ppb 

 

 

 

250ppb          250ppb           250 ppb 

1000ppb         1000ppb         1000ppb 

2000ppb       2000ppb         2000ppb 

 

 

 

1000ppb          1000ppb         1000ppb 

 

 

 
1000ppb          1000ppb         1000ppb 

 

 

 

1000ppb          1000ppb         1000ppb 
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In Figure 22, the results of the “Sensitivity over time” are shown for the following cases: sensor 
TGS2602 of board I, sensor TGS2600 of board I, TGS2600 of board I, sensor MQ137 of board I 
and sensor 5914 of board II. The “y” axis of the plots presents the values of sensitivity 
corresponding to the response of 1000ppb of acetone, toluene and benzene, while the “x” axis 

 
     a. 

Figure 20. Rsensor_i vs time for a. board I and toluene gas under conditions of different concentration 

and b. board II and acetone gas under conditions of different concentration 

 

 

 
     b. 

1    2    3       4       5     6     7     8        9    10    11 

 

1. D.A  250sccm 
2. Toluene 250ppb  
3. D.A  250sccm 
4. Toluene 500ppb  
5. D.A  250sccm 
6. Toluene 1000ppb 
7. D.A  250sccm 
8. Toluene 1250ppb 
9. D.A  250sccm 
10. Toluene 2000ppb 
11. D.A  250sccm 
12. Toluene 1500ppb 
13. D.A  250sccm 
14. Toluene 500ppb 
15. D.A  250sccm 
16. Toluene 250ppb 
17. D.A  250sccm 
18. Toluene 150ppb 
19. D.A  250sccm 

1. D.A  250sccm 
2. Acetone 250ppb  
3. D.A  250sccm 
4. Acetone  500ppb  
5. D.A  250sccm 
6. Acetone 1000ppb 
7. D.A  250sccm 
8. Acetone 1250ppb 
9. D.A  250sccm 
10. Acetone 1500ppb 
11. D.A  250sccm 

Figure 21. Zoom-in in region 16 of 

Figure 20a for sensors TGS2611 and 

TGS2600. The corresponding values 

of Rgas and Rair are pointed out, as 

well the equation with which the 

respective sensitivities have been 

calculated. 
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corresponds to the day on which the specific measurement has been performed in order to 
evaluate how the values of sensitivity evolve in time. It has to be noted that the first and forth 
sensors seem to have an exceptional behavior in terms of stability. The second and the third 
sensors seem to be less stable, especially because of some discrepancy in the case of toluene 
and benzene for day 1 and day 2. However, due to the fact that this discrepancy has exactly the 
same trend for both MQ137 and TGS2600, it is assumed that it is mostly attributed to systematic 
fluctuations. This assumption is supported by the fact that both sensors belong to the same 
board and hence the measurement has been taken simultaneity and whatever the fluctuations 
of the environment should affect all sensors. The TGS2602 seems to be unaffected by the same 
fluctuations but it also seems to be the most stable of all twelve sensors, which could justify its 
robust performance. The four sensors that have been selected to be presented are the ones 
with the best stability among all twelve sensors that have been measured. It can be understood 
that these four sensors serve as good candidates for the desirable four sensor board so far, 
in terms of stability.  

  

  
 

 

However, it is not only the stability that is of great importance when it comes to sensor 
selection. As it has already been mentioned it is also important to evaluate whether the sensors 
show discriminant sensitivities for the same concentration of different gases. For this purpose 
the sensitivity over concentration for all gases are presented in Figure 23. The graphs that 
have been selected to be shown are the ones that correspond to the same sensors previously 
shown on Figure 22. Based on Figure 23 it becomes obvious the sensor TGS2602 and 5914 show 
sensitivities which are discriminant for same concentration of different gases for the case of 

Figure 22. Sensitivity vs #day for a. TGS2602, board I b. TGS2600, board I c. MQ137, board I d. 5914, 

board II 

 

a.   b. 

 

 

 

 

c.                                                        d. 
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higher concentrations. Nevertheless, sensor 5914 presents a smaller but still detectable 
discrimination even for lower concentrations. Sensors MQ137 and TGS2600 show some 
discrepancy for the case of benzene, which might be attributed to the same systematic 
fluctuations.  It is interesting to notice that these last two sensors can discriminate between 
acetone and toluene even better than TGS2602, at lower concentrations. This is a case, where 
if all those sensors are put on the same board one can complement the other ( : TGS2602 and 
5914 offer information about benzene, while TGS2600 and MQ137 discriminate toluene and 
acetone of low concentrations since the former sensors  fail to do so). 

 
 

  
 

 

By looking at the data points of Figure 23, it can be understood that some kind of fitting can be 
implemented in order to estimate and ultimately predict the values of sensitivity for 
concentrations that have not been measured experimentally in the lab.  In Figure 24 one can 
appreciate the fitting of the data from the “Sensitivity series” merged with the data collected 
from the “Reproducibility series”.  For what concerns the “Reproducibility series” the data 
correspond to multiple points of sensitivities that have been extracted for concentrations of 
250ppb, 1000ppb and 2000ppb (for each gas) for board I and for concentrations of 1000ppb 
(for each gas) for board II. The Figures ai (i=1,2,3) correspond to sensor TGS2602, the Figures 
bi  to TGS2600, the Figures ci. to MQ137, and the Figures di to 5914, where  i=1 corresponds to 
acetone,  i=2  corresponds to toluene and i=3 corresponds to benzene. On each Figure the 
equation of the each trendline is shown. The blue curves correspond to the fitted data from the 

Figure 23. Sensitivity vs concentration for a. TGS2602, board I b. TGS2600, board I c. MQ137, board I d. 

5914, board II 

 

c.                                                              d. 

 

 

 

a.                                                               b. 
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“Sensitivity Series” (RC plot/data, i.e Range of Concentration), while the orange curves 
correspond to the fitted data from the “Reproducibility Series” (R plot/data, i.e Reproduciblity). 

For the case of acetone, and specifically for sensor TGS2602, even though both RC and R plots 
follow a linear trendline their respective intercept is pretty different, mainly attributed to the 
decrease in sensitivity of 1000pb concentration of acetone. It is worth noting that the R curves 
for this sensor show a lower sensitivity at 1000ppb of acetone than at 250 ppb. Since there has 
been a long time in between the R data of 1000ppb and the R data of 250ppb, those differences 
may be attributed to system effects (humidity, pressure fluctuations, drift etc). For sensors 
TGS2600 and MQ137 the slope of the trendline is almost the same for both RC and R plots. The 
difference in the intercept may be attributed to the drift effect. This means that the sensor 
interacts with acetone somewhat reliably and certainly suggests that a calibration is needed 
during the operation of the sensors to counteract the drift. For sensor 5419 there are R data 
only for 1000ppb. However, it is worth mentioning, that the reproducibility for the case of 
acetone is excellent even after an extended period of time.   

For toluene, sensor TGS2602 seems to have a logarithmic trendline when it comes to RC plots. 
In the case of the R data the datafit has been realized in a logarithmic trendline of R2 = 0.7434 
(R2: coefficient of determination, is a measure of the goodness of the fit) in order to match the 
trendline of the RC data. However, when the linear fitting was applied for the same R data, a 
higher R2  of 0.9405 was given, which means that the linear fit is more appropriate. The change 
of the trendline might be due to the smaller number of R data compared to the RC data though.  
Sensor MQ137 presents a similar linear regressive characteristic for both RC and R plots. The 
slight difference in the slope is possibly introduced by the expansion of range of the RC data, 
while the difference in the intercept may have been introduced by the drift effect as already 
mentioned. Sensor TGS2600 presents a R2 of 0.9934 for the RC polynomial trendline. However, 
when a linear fit was attempted for the RC data the R2 was equal to 0.9561, which is still high 
enough and it is assumed that since the vast majority of the previous trendlines gives a linear 
trend, a linear fit is probably the right trendline to be chosen.  Sensor 5914 presents a linear 
fit when it comes to the RC data but the R data do not much the fit, as they did in the case of 
acetone. Since the baseline drift did not affect the reproducibility of acetone it would be 
contradictory to assume that it affected the reproducibility of toluene, at least for this specific 
sensor. It can be deducted though that sensor 5914 is much more accurate and suitable for 
sensing acetone rather than toluene. 

Similarly to toluene, the sensor 5914 seems to be also poorly suitable for the detection of 

benzene for the same reasons. In addition, the sensors TGS2602, TGSMQ137, and MQ137 show 

the exact behavior when comparing their respective RC and R trendlines. Specifically, one can 

observe a gradient shift, and an outlying behavior especially of the 1000pb R data.  
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c1.                                                              d1. 
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a2.                                                        b2. 
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3.1.4 Conclusions for commercial sensors  

As it has been mentioned, all commercial sensors that exist on the market are not really labeled 
for the detection of specific gases. That means that the sensors used might be either unsuitable 
for acetone, toluene and benzene or those gases might even be poisonous for them. Based on 
the above results, it seems that sensor 5914 is a suitable sensor for what concerns the 
detection of acetone. The behavior of 5914 puts into question whether the effect of the drift is 
responsible for non-reproducible sensitivity values over an extensive period of time and rises 
the suspicions of whether the rest of the sensors are suitable enough for those specific gases. 
Nevertheless, by acquiring more R data in the future it might even be possible to obtain a trend 
of the respective shifts of the sensors as a function of time in order to impose corrections in 
the predictions. Under those conditions, as it has been shown, this specific set of sensors can 
operate in a complementary way, since TGS2602 and 5914 may give more accurate sensitivity 
response in the case of benzene over a wide range of concentrations in contrast to TGS2600 
and MQ137 that fail to do so but can discriminate toluene and acetone in low concentrations in 
contrast to TGS2602 and 5914 that fail.  

 

 

3.2 Cognitive Part 

3.2.1 Automatic data analysis of commercial sensors  

For the extraction of all the sensitivities, which have been obtained during the experiments that 
have been presented so far, a manual process was used. In other words, the author of the 
thesis would determine visually every peak in the graphs of Rsensor vs time after plotting the 
data with the help of a scientific graphing and data analysis software. In this case the software 
that has been used was Origin. After the visual detection of each peak, the Rgas and Rair values 
have been determined on the graph and their values were recorded and fed as input to the 
python script of Appendix A for the extraction of the sensitivities. Because of the long time 

Figure 24. Fitting of Sensitivity vs concentration points and of their respective”reproducibility” points. Figures 

ai. correspond to  TGS2602, Figures bi. to TGS2600, Figures ci. to MQ137, Figures di. to 5914, where for i=1 the 

results correspond to acetone, for i=2 the results correspond to toluene, and for i=3 the results correspond to 

benzene 

 

c3.                                                        d3. 

 

 

 



33 | P a g e  

 

consumption of this process, an automatic determination of peaks and sensitivities was 
attempted. The script is written in Octave programming language and is included in Appendix B 
and C. Specifically the Appendix B includes the script that corresponds to the preprocess of the 
Rsensor data in order for them to be more “manageable” on the later steps of the process and 
Appendix C includes the actual determination of the peaks and the calculation of the sensitivity 
(process). 

In Figure 25 the evolution of the Rsensor data is depicted during the preprocess of Appendix B. 
Plot number 1 of Figure 25a presents the data of Rsensor as they have been obtained from the 
experimental measurement, plotted on Octave.  Even though the experimental setup provides 
voltage values that are afterwards converted into resistance values, the Rsensor values are 
going to be referred as raw data from now for sake of brevity. Plot number 2 in the same Figure 
shows the same raw data centered around zero and Plot number 3  presents the same data 
after they have undergone the so called ‘’feature scaling’, in order to smooth out the effect of 
excess noise and the evident baseline drift. In data processing, the last step is also known as 
data normalization and is generally performed during the data preprocessing step (2). 

Specifically, the feature scaling consists in: 1. subtracting the mean value of the baseline from 
the raw data points 2. creating a new vector (i.e column of new points) with the squared values 
of the obtained data from the step before, 3. calculating the moving average of the new vector 
for every ten points and diving it by ten and by the variance of the baseline (variance is the 
expectation of the squared deviation of a random variable from its mean : V(x) = E[(x-μ)2] (3)).  

On a later step the derivative of every 200 points of plot number 3 was calculated and is shown 
in Figure 25b. The same data points have been lotted again in Figure 25c on top of the raw data 
that have been centered around zero. It becomes evident that the peaks of the derivative 
correspond to the raw data whose slope is the greatest and this means that the first peak 
corresponds to sensing, the second peak to recovery, the third to sensing and so on and so 
forth. In other words the peaks of an odd index correspond to sensing and the peaks of an even 
index correspond to recovery.   
 

  a.                                                               b. 

 

 

 

https://en.wikipedia.org/wiki/Data_processing
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Deviation_(statistics)
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Mean
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Appendix C contains the script regarding the second step of the process, which includes the 
determination of the position of the peaks and the calculation of the sensitivity. For the 
determination of the peaks the following concept has been followed: A window of two hundred 
points capacity was sliding along all the data of the plot in Figure 25b and during each slide the 
respective area was calculated with a triangular approach. The results are plotted in Figure 
25d and as it becomes obvious the maxima correspond to the positions of the peaks of the plot 
of Figure 25b. After identifying the position of the peaks, and keeping under consideration that 
odd index corresponds to sensing and an even index corresponds to recovery, the following 
concept was followed: a certain range of data before a peak of an odd index corresponds to 
values of the baseline (Rair) and a certain range of data before a peak of an even index 
correspond to values of the sensing (Rgas). By applying the equation 3 for every odd-even pair, 
the corresponding sensitivity can be calculated. In Table 3 the values of sensitivity are 
presented in the case of benzene for sensor TGS2602 as they have been calculated both 
manually and automatically. The discrepancy is due to the human error that was involved during 
the manual calculation but the discrepancy especially at the higher concentrations is also due 
to the short stabilized regions (baseline regions) that were obtained during the measurement 
that did not provide good Rgas values. However, the script seems to correspond fine and such 
problems can be eliminated by making the process of obtaining experimental data also 
automatic with long enough baseline regions.  

                                                                    Table 3 

Conceentration       
(ppb)              

250 700 3100 3600 4380 5700 

Manual 
approach 

0,033153 
 

0.073971 0,09995 0,111948 0.141388 0.173431 

Automatic 
approach 

0.031945    0.070714    0.100003    0.109309    0.108264    0.134902 

 

3.2.2 Machine learning for Temperature Controlled Operation (TCO) board 

Figure 25. α. presents 1. the raw data , 2. The raw data centered around zero, 3. the raw data after feature 

scaling, b. presents the derivative of plot 3, c. presents the derivative of plot 3 on top of plot 2 , d. presents 

the  calculation of area of every 200 points of the data of plot in  figure b 

 

c.                                                                d.                                                               
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As it has already been mentioned the machine learning part is related to the experimental 
results obtained from the TCO mode.  In Figure 26, one can appreciate some of the experimental 
data, as they have been delivered by the experimentalists in order for the author of the present 
thesis to work on the cognitive part of the project. It can be seen that the temperature (voltage 
ratio) follows a square waveform, where the voltage ratio drops from 100% to 30%, then again 
from 100% drops to 40%, then it drops to 50%, 60% and finally to 70%.  The Rsensor values 
change when the temperature drops both in the case of just dry air and in the case of gas flow. 
In Figure 26 the gas corresponds to acetone of 250ppb.  Each drop of temperature corresponds 
to an example. In the machine learning field the example “carries” the features that train the 
network. In our case, as it can be seen in Figure 26, there are five examples to train the network 
in order to recognize the case of acetone. In addition to those, four examples have been 
obtained for the case of benzene and five more examples for the case of toluene. 

In other words, six different sets of experimental data have been delivered in total by the 
experimentalists:  the variations of Rsensor due to the same pattern of voltage alternations 
presented in Figure 26, while 1. acetone of 250ppb is flowing, 2 and its respective dry air 
response, 3. while toluene of 250ppb is flowing, 4. and its respective dry air response, 5. while 
benzene of 250ppb is flowing and 6. Its respective dry air response. It’s worth mentioning that 
there three different dry air responses and not just one, because every dry air measurement 
was obtained right before the gas measurement in order to obtain pair of measurements (1-2, 
3-4, 5-6) whose drift is not that different from each other.  

The goal of this part of the thesis is to find the best model that a neural network can provide in 
order to classify correctly unknown gas inputs. The neural network that was used for the 
purposes of this thesis, was scripted in python language and was not created by the author of 
the thesis. Nevertheless, the preprocess of the data that were fed to the network, the 
optimization of the model and the validation was carried out by the author. The PCA algorithm 
that has also been used, was also scripted and implemented by the author.  
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In order to feed meaningful data to the neural network, a preprocess is always mandatory and 
is included in Appendix D. The concept of the preprocess that was followed was the following: 1. 
The point of every temperature drop was determined. 2. A certain number of Rgas and Rair 
data points were selected, that would correspond a bit before and a bit after each temperature 
drop. In that way the examples per gas were determined. 3. Each example was segmented in 
seven different regions (such segmentation can be appreciated in Figure 27 for the first 
example of acetone 250ppb). 4. The area of each segmented region was calculated and hence 
all areas per region of example constituted the features of each example.  5.  All features were 
normalized, using the feature scaling technique already described, where the mean value of all 
features per example was used for the scaling.  6. All fourteen examples (five for acetone, five 
for benzene and four for toluene) and their corresponding features (seven features) were 
loaded in a common matrix with their respective labelling. This matrix is presented in Table 4.  

The labeling serves the purpose of comparing the outputs of the neural network with the 
expected outputs. In Table 4 the expected outputs are presented per example. For instance, it 
can be noted that the column named “label Ace” equals 250 (in accordance to 250ppb) only for 
the very first five examples whose corresponding features are indeed the calculated areas of 
the seven regions in which all five data windows (data around the point of the temperature 
drop) have been divided. 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. The variations of Rsensor for TGS8100 in a steady state operational mode 

(temperature follows a square waveform), while a constant flow of dry air is purging (black 

curve) and on a second step acetone of 250ppb (red curve) 

 

 

 

 

Figure 27. Segmentation of the first example of acetone 250ppb in seven regions, the area of which 

correspond to its respective features 



37 | P a g e  

 

 

 

The last step before feeding the data into the neural network corresponds to the shuffling of 
the rows of the matrix, which is depicted in Table 4, and its splitting into three different data 
sets that the neural network will use in order to extract the best model of classification. 
Specifically, 60% percent of data (examples with corresponding features and labels) was 
transferred in one file that was used for the training purposes of the network, 20% of the data 
was transferred in one file that was used for validation purposes, and the last 20% of the data 
was transferred in one file that was used for the actual testing of the model. 

The two first data sets are used during the training of the neural network, where the first set 
is used to adjust the weights and the second set is used for minimizing overfitting problems, 
since the validation set plays the role of the internal “unknown inputs’’ of the neural network 
and by comparing the respective accuracies of the training and validation set the neural 
network will realize when to stop the training (3).  

Several models have been tried out in order to conclude which  model gives the most accurate 
classification, and the one that has been finally selected is the one of the following architecture 
characteristics : learning rate: 0.008, momentum: 0.9, Loss function: 0.0, Hidden Units: 11, and 
regularization parameter (Lambda): 0.3. The different models that have been tried considered 
variations of the above mentioned parameters. 

 In practice, the results can be appreciated by plotting the real labels (the ones shown in Table 
4) and the ones derived from the neural network. A plot like that is depicted in Figure 28, where 
the blue points are the real labels/concentrations of the examples and the red points are the 

 Feature 
1 

Feature  
2 

Feature 
 3 

Feature  
4 

Feature 
 5 

Feature 
6 

Feature  
7 

Label 
Ace 

Label 
Ben 

Label  
Tol 

Example  
1 

0.0119 20.60 0.5086 12.217 11.134 11.006 0.8177 250 0 0 

Example 
2 

0.0823 0.445 0.8986 0.7782 0.4912 0.4449 0.3528 250 0 0 

Example 
3 

0.0897 16.65 0.2334 0.5532 0.4381 0.4101 0.3481 250 0 0 

Example 
4 

0.0673 0.246 0.2402 0.4729 0.4577 0.3921 0.2459 250 0 0 

Example 
5 

0.0696     0.324 0.5209 0.2639 0.3089 0.2250 0.0395 250 0 0 

Example 
6 

   12.433 0.313 15.954 0.7106 0.8340 0.8601 0.8240 0 250 0  

Example 
7 

    13.544 13.14 0.8677 13.478 13.593 13.298 13.521 0 250 0 

Example 
8 

12.785 12.88 13.436 15.437 14.979 15.249 15.021 0 250 0  

Example 
9 

0.9048 10.43 11.848 13.181 13.178 13.137 12.806 0 250 0 

Example 
10 

0.6894 10.04 10.903 12.196 11.853 11.351 10.395 0 250 0 

Example 
11 

11.576 0.129 13.515 10.887 10.928 11.232 12.731 0 0 250 

Example 
12 

14.279 0.110 11.462 0.9019 10.768 10.462 11.921 0 0 250 

Example 
13 

12.779 0.007 0.6750 0.4756 0.6257 0.6718 0.8331 0 0 250 

Example 
14 

12.860 0.011 0.5071 0.3836 0.5894 0.7495 0.8959 0 0 250 

Table 4 
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classified labels/concentrations of the best model of the neural network. It can be observed 
that the network never failed to misclassify a gas for another gas but it did give some off values 
for the case of acetone and benzene. This error though can be justified, since the datasets that 
have been used are extremely small. However, the results suggest that this model is a good 
starting point and it provides plenty of room for improvement as soon as more data are fed 
into the network. 

The chapter of the cognitive part closes with a PCA application. This suggests an extra step of 
implementation before feeding the data to the neural network. The normalized features 
provided a new set of features after a function (function sigma) was applied to them in order 
to reconstruct them in pairs of eigenvalues and eigenvectors, where the first represent the 
direction of variance and the second the variance of the examples. A script was written by the 
author of the thesis to determine the number of eigenvectors whose respective eigenvalues 
have variance greater than 99.5%, in order to maintain the important information and hence 
keep the most important features which can serve the purposes of the classification. It has 
been found that only three features were mandatory.  

After the PCA was completed, the new three features were fed to the neural network for which 
the same initial values as the ones used for the case of the “best model” mentioned above, were 
used. In Figure 29 the plot of expected vs derived labels was plotted after PCA was performed. 
As expected, there is a dramatic increase of the error because of the limited number of initial 
data. In general, when the initial data are few, when PCA is applied it puts into risk eliminating 
features, which are actually beneficial for the classification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Expected vs derived labels from the best model obtained by the neural 

network with no PCA 
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3.2.3 Conclusions for cognitive part 

The cognitive part of this master thesis was divided into two parts. The first one was related to 
the automatic determination of the response of commercial sensors in “Single Temperature 
Operation” from the experimental data, and calculation of their respective sensitivities. The 
script was tested and it seemed to provide with pretty accurate results. The discrepancy of 
some results between the manual and the automatic approach was attributed to human error 
and mainly to the fact that that the high concentrations curves did not reach full stabilization 
of their baseline. The solution to this problem, as it has been mentioned, might be automatic 
overnight prolonged experiments to ensure the stabilization of the signal. 

The second part was related to the machine learning implementation of the “Temperature 
Controlled Operation” mode. Even though the results were not satisfying enough, it has to be 
pointed out that this step constitutes a good starting point, since it was the first attempt of 
combining a cognitive part to the sensor project. From the cognitive part perspective a great 
number of data is mandatory to be obtained before establishing a robust classification model, 
while from the experimental perspective a series of further investigation is ought to be done in 
order to determine which patterns of temperature variation are the optimal in terms of high 
Rsensor response.   

 

Figure 29. Expected vs derived labels from the best model obtained by the neural network 

with PCA 
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Appendix A 

Python script for voltage-resistance conversions 

print(' !!! IF the suply is not 1.8V, change the code! !!!! Better 

use the average code before this one  !!! ') 

# open the file you want to modify 

file_name = input('Give the name of the txt file you want to modify 

with no extention') 

RL1,RL2,RL3,RL4,RL5,RL6 = input('Give the values of load resistances 

in order').split() 

RL =[RL1,RL2,RL3,RL4,RL5,RL6 ] 

file_name_2= file_name + '.txt' 

file_open = open(file_name_2, 'r') 

time_list, V1_list, V2_list, V3_list, V4_list,V5_list,V6_list = ([] 

for i in range(7)) 

A=[time_list, V1_list, V2_list, V3_list, V4_list,V5_list,V6_list] 

for line in file_open: 

 line_of_strings = line.split() 

 for x in range(7): 

https://en.wikipedia.org/wiki/Feature_scaling
https://stackoverflow.com/questions/2976452


41 | P a g e  

 

  B=line_of_strings[x] 

  A[x].append(B) 

time_list, V1_list, V2_list, V3_list, V4_list,V5_list,V6_list=[A[i] 

for i in range(7)] 

# Convert the list from strings to floating numbers 

  L=[V1_list,V2_list,V3_list,V4_list,V5_list,V6_list] 

K=[] 

for y in L: 

 y = [float(i) for i in y] 

 K.append(y) 

 V1_list_float, V2_list_float, V3_list_float, V4_list_float, 

V5_list_float, V6_list_float = [K[i] for i in range(6)] 

# Transformation for every value of list   

M = [V1_list_float, V2_list_float, V3_list_float, V4_list_float, 

V5_list_float, V6_list_float] 

N = [] 

for j in range(6): 

  M[j] = ['%.8f' %((float(RL[j]))*(1.8/(i/1000)-1))  for i in M[j]] 

  N.append(M[j]) 

 R1_list, R2_list,R3_list,R4_list,R5_list,R6_list= [N[x] for x in 

range(6)] 

# Make list ready for copying to a file 

x=file_name + '_resistances.txt' 

file = open(x, "w") 

for value in range(len(time_list)):  

 file.write(str(time_list[value]) + " " + str(R1_list[value]) + " " + 

str(R2_list[value])+ " " + str(R3_list[value])+ " " + 

str(R4_list[value])+ " " + str(R5_list[value])+ " " + 

str(R6_list[value])+"\n") 

file.close 

 

 

Appendix B 

Octave script for preprocess of Rsensor values in Single Temperature mode 

function[maxima]=asimina2(thresh) 

close all; 

%clear all; 

dat = dlmread('benzene_average_resistances.txt'); 

 

% initialize constants 
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num = 2; %from 2-7. 

stPt = 1; 

endPt = 1390; 

amp = 0.07 ; 

height = 8000 ; % the distance between raw-data's baseline and 0(0,0)  

n_grad = 200 ; % the number of points for which the gradient is 

calculated 

step = 100 ; % the step with which I choose to reduce data of gy 

add_step = 10; %the step in the window of each the peak detection is 

taking place 

height_range = 0.3 ; % its the precentage in the range of which two 

neighboring peaks are con 

peak_height_threshold = 200; % all maxima found should be higher than 

a threshold or else the max corresponds to noise 

 

 

%%Format like Ng ML course  

 

%%%%% ---- Preprocessing ---- %%%%% 

 

%Visualize data, first column is the time point and the others are 

data 

%points in elements of resistance. Sensitivity = [R1-R2]/R1 

 

 

dat_holder = dat(:,num); %num changes by sensor insert accurate 

sensor number 

dat_baseline = dat_holder(stPt:endPt); %fill in with values according 

to gas, visualization and Asimina. 

dat_var = var(dat_baseline); 

mean(dat_baseline); 

dat_centered = dat_holder - mean(dat_baseline); %Basically you center 

the graph arround zero 

   

N = 10; %reduce_points size we've chosen. 

dat_proc = (dat_centered.*dat_centered); 

% moving average  

gy=zeros(1,length(dat_proc)-N+1); 

for i =1:N 

gy = gy + dat_proc(i:end-N+i)'; 

end 

gy=gy/(N*dat_var); %feature scaling  

R = (gy>thresh);   % the figure of merit for concerns the smoothing 

of the graph 

datb = dat .- height; 

grad_gy2=zeros(length(gy),1); 

for i=n_grad:length(gy);  

grad_gy2(i-n_grad+1)=(gy(i)-gy(i-n_grad+1)/n_grad)  ; % gradient of 

processed between every n_grad points 

end; 

 

Appendix C 

Octave script for determination of peaks and sensitivity 

clear all; 

close all; 

 

load('autom.mat'); 

n = 200; %window size 
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%datbpr is the derivative of the original response curve of VOC's 

exposure 

%to sensor.  

rm = 0; 

limit=500; %ending point for calculation of baseline average; 

bias= 100; %number of points to adjust the real pea position to the 

predicted one 

diff =30;  % diff = point(i+1) - point(i), where both points are 

points of the baseline if the diff is small enough 

 

datbpr =datbpr(1:end-500);%take out the noise by cutting off last 

hundred pts 

% stem(datrp) 

 

figure; 

plot(datbpr, 'k*') 

 

 

bias = 100; 

datbpr=datbpr(1:length(datbpr)-rm); 

 

for i=1:length(datbpr)-n ; 

     datfnd=abs(datbpr(i:i+n-1)); %flooring it is no good 

     datr(i)=abs(0.5*n*max(datfnd));   

end 

  

figure; 

plot(datr,'k*'); 

 

datrp =datr; 

 

base=datrp(1); 

 

mrk = 0; 

j = 1; 

 

%this code works well in detecting peaks of the values for triangle 

method 

 

for i = 2:length(datrp) 

    hld = datrp(i); 

    if(hld == datrp(i-1)) 

        mrk = mrk+1; 

        if(mrk == n-1)&& (hld > base*2) %multiplying the baselne by 2 

improves threshold 

            val(j) = i; %i-n+1 

            j = j+1; 

        end 

    else mrk = 0; 

    end 

end 

     

numpeak= length(val)/2; 

 

 

%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 

  

  

% determing the value of baseline  

 

baseline_sum=0; 
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for i =1:1:length(val)/2   % val(i) is the index for the ith peak in 

%the datb !!!!! I check the baseline before peak=1,3,5,...11 

window = datb(val(2*i-1)-limit-bias:1:val(2*i-1)- bias);   % I choose 

a window of #limit# points before   peak=1,3,5,...11    

a=1; % variable that breaks the for loop in case elseif is valid       

  

 

  for j = 1:length(window) ; 

  i 

  j 

  hld = window(j) 

  hld1=window(1) 

  %window(j+1) 

  %x= hld - hld1 

   x= hld -  hld1 

   abs(x) 

  if (abs(x) < diff) && a==1 

  baseline_sum = baseline_sum + window(j) 

   if (j==length(window)-1);  % calculate the average of baseline 

ONLY after the sum is complete for all j 

   baseline_average(i) = baseline_sum/(length(window)) 

   baseline_sum=0; 

   endif  

  else  

  baseline_average(i)= baseline_average(i-1) 

  baseline_sum=0; 

  a=0; 

  endif 

  end; 

sens(i)= ((baseline_average(i) - datb(val(i*2)))/baseline_average(i)) 

 end 

 

Appendix D 

Octave script for preprocess of Rsensor values in Steady State Operational Mode 

clear all; 

close all; 

tempdat =dlmread('acetone_250_ppb_square_waveform_100%.txt'); 

time_samp = 1000; 

step_samp = 10; 

time_air = tempdat(:,1);   % time 

time_ace = tempdat(:,4);   % NO NEED TO BE USED % time is the same 

rest_air = tempdat(:,2);   % R of air 

rest_ace = tempdat(:,5);   % R of acetone 

volt_air = tempdat(:,3);   % V% of air 

volt_ace = tempdat(:,6);   % NO NEED TO BE USED % V% is the same  

total_points =400; 
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points_bf_peak = total_points*0.25          % The number of points 

taken after the Temperature drop 

points_aft_peak =total_points*0.75;       % The number of points 

taken before the Temperature drop 

%tair_sec = time_air/time_samp; 

%tace_sec = time_ace/time_samp; 

figure 

plot(time_air, rest_air, 'r*'); 

hold on 

plot(time_air, rest_ace, 'k*'); 

rest_ratio = rest_air./rest_ace;   % Rair/Rgas equivance of Ggas/Gair 

on the paper  

 

figure  

plot(time_air, rest_ratio, 'b*'); 

figure 

plot(time_air, volt_ace, 'g'); 

 

 

rec = 1; 

for i =1: length(volt_ace)-1; 

 volt_ace(i+1); 

 volt_ace(i); 

 volt_ace(i+1)-volt_ace(i); 

 if (volt_ace(i+1)-volt_ace(i) <=0); 

 split_volt_examples(i,rec) = (volt_ace(i)); 

 split_rest_air_examples(i,rec)= (rest_air(i)); 

 split_rest_ace_examples(i,rec)= (rest_ace(i)); 

 split_rest_ratio_examples(i,rec)= (rest_ratio(i)); 

 else 

 rec = rec +1;  

 end 

 end 

figure 

plot(split_volt_examples(:,1), 'g'); 

hold on 

plot(split_rest_ace_examples(:,1).*1e-6, 'k'); 
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figure 

plot(split_volt_examples(:,1), 'g'); 

hold on 

plot(split_rest_ratio_examples(:,1), 'r*'); 

disp('The number of examples correspond to Resistance jumps  because 

Temperature decreased from Tmax till Tmin. The number such examples 

is:') 

disp(columns(split_volt_examples)-1) 

for j =1:columns(split_volt_examples)-1; 

 for i =1: length(split_volt_examples)-1; 

   if  (split_volt_examples(i+1,j)-split_volt_examples(i,j) <0) ; 

       if  (split_volt_examples(i+1,j) != 0); 

 window_volt_per_example(:,j) =  split_volt_examples(i-

points_bf_peak:i+points_aft_peak,j); 

 window_rest_air_per_example(:,j) = split_rest_air_examples(i-

points_bf_peak:i+points_aft_peak,j); 

 window_rest_ace_per_example(:,j) = split_rest_ace_examples(i-

points_bf_peak:i+points_aft_peak,j); 

 window_rest_ratio_per_example(:,j) = split_rest_ratio_examples(i-

points_bf_peak:i+points_aft_peak,j); 

 end   

 end 

  end 

 end 

figure 

plot(window_volt_per_example(:,1), 'g'); 

hold on 

plot(window_rest_air_per_example(:,1).*1e-6, 'k*'); 

points_bf_peak 

length_after_peak = (length(window_volt_per_example)- points_bf_peak) 

percentage1       =  round(length_after_peak*0.083) 

sec_div           =  points_bf_peak + percentage1                         

%the first division includes the 25%  of the points after the Temp 

drop 

third_div         =  sec_div   + percentage1                              

%the second division includes another 25%  of the points after the 

first division 

percentage2       =  round(length_after_peak*0.167) 

fort_div          =  third_div + percentage2  

fif_div           =  fort_div + percentage2  



47 | P a g e  

 

six_div           =  fif_div   + percentage2  

 

for i=1:columns(split_volt_examples)-1; 

x=window_volt_per_example(:,i); 

y=window_rest_air_per_example(:,i); 

z=window_rest_ace_per_example(:,i); 

w=window_rest_ratio_per_example(:,i);  

  %first division                   %only the points before the peak 

(# of point is 100) 

divx1(:,i)=x(1:points_bf_peak); 

divy1(:,i)=y(1:points_bf_peak); 

divz1(:,i)=z(1:points_bf_peak); 

divw1(:,i)=w(1:points_bf_peak); 

  %second division                  (# of point is 25) 

 divx2(:,i)=x(points_bf_peak+1:sec_div ); 

divy2(:,i)=y(points_bf_peak+1:sec_div ); 

divz2(:,i)=z(points_bf_peak+1:sec_div ); 

divw2(:,i)=w(points_bf_peak+1:sec_div ); 

   %third division                   (# of point is 25)                               

divx3(:,i)=x(sec_div+1:third_div ); 

divy3(:,i)=y(sec_div+1:third_div ); 

divz3(:,i)=z(sec_div+1:third_div ); 

divw3(:,i)=w(sec_div+1:third_div );                                       

    %fourth division                  (# of point is 50)                                         

divx4(:,i)=x(third_div+1 : fort_div  ); 

divy4(:,i)=y(third_div+1 : fort_div  ); 

divz4(:,i)=z(third_div+1 : fort_div  ); 

divw4(:,i)=w(third_div+1 : fort_div  ); 

     %fifth division                    (# of point is 50)                               

divx5(:,i)=x(fort_div+1:fif_div ); 

divy5(:,i)=y(fort_div+1:fif_div ); 

divz5(:,i)=z(fort_div+1:fif_div ); 

divw5(:,i)=w(fort_div+1:fif_div ); 

    %sixth division                     (# of point is 50)                                   

divx6(:,i)=x(fif_div + 1:six_div); 

divy6(:,i)=y(fif_div + 1:six_div); 
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divz6(:,i)=z(fif_div + 1:six_div); 

divw6(:,i)=w(fif_div + 1:six_div); 

  %seventh division                (# of point is all the rest)                   

divx7(:,i)=x(six_div+1:end); 

divy7(:,i)=y(six_div+1:end); 

divz7(:,i)=z(six_div+1:end); 

divw7(:,i)=w(six_div+1:end); 

end 

a=length(divx1) 

b=length(divx2)   

c=length(divx3) 

d=length(divx4) 

e=length(divx5) 

f=length(divx6) 

g=length(divx7) 

deltax = [a,b,c,d,e,f,g]    %contains the lenghts of all features 

j =0; 

for i = 1: length(deltax) 

  start = j+1; 

  stop = j+deltax(i); 

%  sum(window_rest_ratio_per_example((j+1):(j+deltax(i),:)) 

feat(i,:) 

=sum(window_rest_ratio_per_example(start:stop,:))*deltax(i); 

j = stop; 

end 

feat_acetone= feat'; %preserve the way we represent training examples 

num_rows=size((feat_acetone),1) 

lab_acetone= zeros(3,num_rows)' 

lab_acetone(:,1)=250 


