
POLITECNICO DI TORINO

Master degree in Computer Engineering

Master Degree Thesis

Recommending Trigger-Action
Rules for the IoT

Supervisors:
Fulvio CORNO
Luigi DE RUSSIS
Alberto MONGE ROFFARELLO

Candidate:
Alessia MANTOVANI

December 2018

Contents

1 Introduction 1
1.1 Problem definition . 2
1.2 Thesis goal . 3
1.3 Thesis structure . 3

2 Background 7
2.1 EUPont ontology . 7
2.2 Android . 9

3 Analysis 11
3.1 Research stage . 11
3.2 Android features . 13
3.3 Facebook service . 15

4 Design 17
4.1 System architecture . 17
4.2 Rule creation processes . 19
4.3 Application structure . 22

5 Implementation 25
5.1 Android application . 25

5.1.1 User interface . 25
5.1.2 Algorithm . 27
5.1.3 Data association . 32

5.2 Communication . 32
5.3 Webhook . 34

6 In-the-wild evaluation 37
6.1 Study procedure . 37
6.2 Measures . 38

iii

7 Results 39
7.1 Data discussion . 39

8 Conclusions 45
8.1 Future works . 46

A Appendix 47
A.1 User information document . 47
A.2 Initial questionnaire . 50
A.3 Final questionnaire . 52

B Tables 53
B.1 Code . 61

B.1.1 Dictionary . 61
B.1.2 EventListened . 69

Bibliography 77

iv

List of Tables

3.1 Android Actions not supported . 13
3.2 Android Actions supported . 13
3.3 Android Triggers supported . 14
3.4 Facebook Triggers supported . 15
3.5 Facebook Actions supported . 15
4.1 Local Database Tables . 23
7.1 End-user evaluation results - part 1 43
7.2 End-user evaluation results - part 2 44
B.1 Triggers first list - part 1 . 54
B.2 Triggers first list - part 2 . 55
B.3 Triggers first list - part 3 . 56
B.4 Triggers first list - part 4 . 57
B.5 Actions first list - part 1 . 58
B.6 Actions first list - part 2 . 59
B.7 Actions first list - part 3 . 60

v

List of Figures

2.1 EUPont structure . 8
4.1 General architecture . 18
4.2 Android features process . 20
4.3 Facebook service architecture . 21
4.4 Application structure . 22
5.1 Application login . 26
5.2 Application places list . 26
5.3 Application rule details . 26
5.4 Application home . 26
5.5 EventDB Room table . 29
5.6 TriggerActionDB Room table . 30
5.7 Registration/Login process . 33
7.1 Distribution total rules . 39
7.2 Distribution rules per user . 40
7.3 Distribution features: data form the evaluation 41
7.4 Distribution features: data from initial questionnaire 41
7.5 Application utility (1 = not useful, 5 = very useful) 42
A.1 Application rule details . 49
A.2 Application home . 49

vi

Chapter 1

Introduction

The Internet of Things (IoT) is the Internet extended into to the physical world.
Its function is to collect data from IoT objects and transform them into useful
information. These objects can be standard devices, such as computers, smartphones
and tablets, but also online services or any kind of non-internet-enabled physical
device and everyday objects.

Although IoT objects do most of the work without any human intervention,
people can interact with them for example to set them up, to give them instructions
or simply to access the data. For empowering users to program their IoT objects,
a promising approach has been adopted (i.e. EUD). End-User Development (EUD)
refers to activities and tools that allow end users (i.e., people who are not professional
software developers) to program computers.

One of the most used format in EUD is Trigger-Action programming paradigm.
It is a paradigm where the user must define rules by means of “if-then” constructs,
to create event-action rules. In the last years, an evolution of this area was the use
of mobile devices to support end users development activities. Although EUD in the
IoT has recently gained interest, interoperability and scalability challenges remain.
With the spread of new smart “things”, the amount of information may become too
high and cluttered [1].

Therefore the most important concepts of the just mentioned paradigm are:

• Trigger: an event that, when detected, causes the execution of an Action;

• Action: an operation that is executed as a consequence of a Trigger;

• Rule: the association of a Trigger with an Action (an example of a rule could
be: IF I go into my home, THEN turn on smartphone Wi-fi);

This thesis wants to use the EUD approach and the Trigger-Action program-
ming paradigm, adding a system of automatic recommendations instead of having

1

1 – Introduction

the user create her rule manually. For simplicity, this was done focusing on mobile
and web worlds (the IoT objects were user smartphone and an online service), al-
lowing an easiest “in-the-wild” evaluation with end users. This system involves the
development of an Android application (called “TriggerAction Rules”) which studies
end-users’ habits of using their Android devices with the aim of proposing simple
associations of events (i.e., trigger-action rules) to them. Thus they no longer have
to create these rules manually neither know the characteristic of every single object
they may encounter before creating their rules, but they have only to decide if keep
or discard the recommendation suggested to them.

1.1 Problem definition
As the popularity of the Internet of Things (IoT) is expanding, even its complexity is
growing and as a consequence, the number of possible combinations between different
devices and services is increasing exponentially. Thus, new needs emerged and rules
definition and reuse may become challenging without proper suggestions. However
existing recommendation techniques could be useful to help end users to use EUD
systems, but have not yet been consistently explored. Moreover, recommendation
technologies have mainly been studied for assisting developers instead of end users.

Nowadays, many applications which implement trigger-action programming are
being created with the aim of helping end users to manage their IoT objects (both
devices feature and online services). Thanks to application like IFTTT1, people can
define, share, and reuse trigger-action rules. However, these kind of applications al-
low users to create chains of simple conditional statements, but they do not provide
any kind of recommendation on which statement they have to associate. In this
way, users have to search manually in the triggers and actions huge list and create
one or more trigger-action rule. Users must be aware of every single object they
may encounter before creating their rules and they often do not have the necessary
knowledge to really understand all the possible implications of the selected associa-
tions. This procedure, indeed, involves that they could define several similar rules
performing the same logical operation.

The reasons just mentioned led to the development of EUPont. This ontology
can support end users in the choice of the desired objects in order to exploit their
functionality and improve the rule composition process. Thanks to EUPont it has
been possible to developing the Android application described in this thesis.

1IFTTT (if-this-then-that) is a free service that allows users to get all their apps and devices
talking to each other. Available: https://ifttt.com

2

1.2 – Thesis goal

1.2 Thesis goal
The goal of the thesis is to design, develop, and evaluate a mobile-based application
that suggests and actually executes trigger-action rules based on contextual infor-
mation and user preferences, with the aim of assisting end users in customizing their
smartphone functionalities and online services.

In this way, the user’s commitment regarding the composition of the rules can be
greatly reduced, as well as the infinite possibilities of interconnection of the features
that their IoT objects can provide to them. Therefore the process of “learning” and
the creation of rules is automated, without depriving the user of control.

In particular, this application can facilitate end users in this scenario, by recom-
mending rules according to their smartphone usage habits, which they can evaluate
and subsequently decide whether to activate them or not.

The research questions which guided this work were:

• Is it feasible to automate and assist end users in the creation of trigger-action
rules?

• Is it possible to realize a mobile-based application which can suggests Trigger-
Action Rules to the users without having users create them?

Once the application has been designed and implemented, the following aspects
concerning the measure useful to evaluate the previous questions, were considered:

• Understandability: Is the mobile application understandable enough for end
users?

• Usefulness: Does the mobile application effectively help end users in Trigger-
Action Rules creation?

1.3 Thesis structure
The initial step of this work was the research and the scouting of the main features
and events that the system should support. Subsequently, the second step was to
develop the application which supports the selected elements and finally, an evalu-
ation was proposed to a selected number of users.
More in details, the thesis is composed by eight chapters which actually reflect
the performed work: Introduction, Background, Analysis, Design, Implementation,
Testing, Results and Conclusions.

3

1 – Introduction

Background In this chapter, the main concept regarding the approach used (EUD),
the ontology by which the application is supported (EUPont) and some tools and
libraries of Android (e.g. Room Database, Data bindings), are presented in-depth
for the reader contextualization. EUPont get

while the main goal of the thesis is the creation of a mobile application, such an
app required additional information coming from either the cloud or a custom-made
server. Therefore,

Analysis This chapter, describes how the research and the scouting of the main
features and events that the system should support, have been done.
First of all, it has been defined a complete list of elements that the system will allow
to customize: smartphone features (supported Android functionalities) and online
services (e.g. Facebook, Instagram, Twitter).

Then, it has been defined which events can be considered triggers and which
actions and according to the type of the event considered, it has been done a differ-
entiation for customizing the chosen smartphone features and online services.

Design Since this mobile application can not reach the objective above mentioned
without additional information coming from either the cloud or a custom-made
server, the system follows a client-server architecture and its composition is described
in this chapter. Two examples of rule creation for Android functionality and for
Facebook service, respectively, are presented and illustrated.

Implementation This chapter describes both how the data coming from the
server are translated in the application and the implementation of the mobile appli-
cation. It describes the communication, how the algorithm works and how the part
of online service (Facebook) has been developed.

This phase of the work has been characterized by the development of an An-
droid application able to suggest and execute trigger-action rules that replicates the
operations (defined in the previous phase) commonly performed by the user on her
smartphone or online services. In particular, the application allows the user to acti-
vate a suggested rule and browse the activated rules. It uses the EUPont ontology
to save the controlled devices, trigger-action rules and contextual information;

User Evaluation In this chapter, an “in-the-wild” evaluation of the developed
application with a selected number of users, is described. Two phases have been
performed: a first evaluation has been done for revising some bugs of the application
and to correct the algorithm depending on the user feedback; in the second phase,
instead, the evaluation has been only oriented to collect data and information about
the measures of interest.

4

1.3 – Thesis structure

Results In this chapter, results obtained from the “in-the-wild” evaluation are
described and commented.

Conclusion Final description and discussion on the work done and illustration of
possible future improvements.

5

Chapter 2

Background

In this section the main concepts, systems and tools used for this work, will be
presented in-depth for the reader contextualization.

2.1 EUPont ontology

EUPont (End-User Programming Ontology) is an ontology that provides a high-
level representation for the end-user programming in the IoT. EUPont, available at
http://elite.polito.it/ontologies/eupont.owl, is an extensive ontology for a specific
use case. It has been designed for describing and supporting the execution of IoT
applications developed by end users to customize their IoT objects (i.e. IoT enti-
ties). It can serve as the base layer for end user customization solutions in the IoT,
since it defines a structured vocabulary for abstract and generic trigger-action rules
that can be automatically adapted to different contextual situations by run-time
environments [2].

The main concepts modeled by the Trigger-Action Programming are: Rule (must
have at least one Trigger and one Action), Trigger and Action (both are hierarchically
organized on the basis of their final goal, in such a way, users can define rules in
abstract terms, or they can be more specific).

Devices and services offered to the user are often complex and can offer several
capabilities. Trying to resolve this complexity, it was modeled the IoT ecosystem as
a set of IoT entities (IoTEntity) able to expose one or more services (Service). Each
service describes a capability of an IoT entity, and may have commands (Command)
to perform some actions on the related IoT entity, or notifications (Notification) to
register event listeners on the related IoT entity.

7

2 – Background

Figure 2.1. EUPont structure

The ontology is composed of four main blocks (Figure 2.1):

• Trigger-Action Programming block allows the definition of abstract and
technology/brand independent trigger-action rules. Triggers and actions are
organized in a hierarchy;

• IoT Ecosystem block models IoT devices and services as entities that can
offer one or more functionality. Each functionality may have commands to
perform some actions, or notifications to register event listeners and both of
them include the features needed to interact with the specific technology;

• Contextual Information block describes locations and users that act as
restrictions for trigger-action rules, and the contextual information of the IoT
Ecosystem. Thanks to this layer, the ontological representation provides a
strong support for executing the defined end-user rules;

• Semantic Reasoning block automatically maps the defined trigger-action
rules with devices and services in the IoT Ecosystem that allow to reproduce
the desired behaviors, by keeping into account the current context, dynami-
cally.

8

2.2 – Android

2.2 Android
The main part of this work has been the development of an Android application that
can exploit the previous concepts and systems. It was necessary to intercept events
fired by the user and collect all the information about them, in order to implement
an algorithm that can be able to provide trigger-action association according to the
analysis of the data collected. The following paragraphs will present the libraries
and tools that have been used in the application for the implementation of events
interception, local database and data bindings.

Events interception In a software architecture, publish–subscribe is a messaging
pattern where senders of messages, called publishers, do not program the messages
to be sent directly to specific receivers, called subscribers, but instead categorize
published messages into classes without knowledge of which subscribers, if any,
there may be. Similarly, subscribers express interest in one or more classes and
only receive messages that are of interest, without knowledge of which publishers, if
any, there are. Publish–subscribe is a sibling of the message queue paradigm, and is
typically one part of a larger message-oriented middleware system. Most messaging
systems support both the pub/sub and message queue models in their API, e.g.
Java Message Service (JMS). This pattern provides greater network scalability and
a more dynamic network topology, with a resulting decreased flexibility to modify
the publisher and the structure of the published data.

Android provides various classes to intercept events and all of them have been
used in this work:

• Broadcast Receiver: similar to the publish-subscribe design pattern, these
broadcasts are sent when an event of interest occurs. Applications can receive
broadcasts in two ways: manifest-declared receivers (the system launches ap-
plication when the broadcast is sent) or context-registered receivers (receive
broadcasts as long as their registering context is valid).

• Service: is an application component that can perform long-running operations
in the background, and it doesn’t provide a user interface;

• Content Observer: is a software design pattern that establishes a one-to-many
dependency between objects, anytime the state of one of the objects (the
“subject” or “observable”) changes, all of the other objects (“observers”) that
depend on it are notified;

• Sensor Listener: most Android-powered devices have built-in sensors that mea-
sure motion, orientation, and various environmental conditions, this interface
is used for receiving notifications from the SensorManager when there is new
sensor data.

9

2 – Background

Local Database The Android Room library was used for collecting all informa-
tion about the events and thanks to this data, the application is able to create a
Rule, associating a Trigger to an Action that will then be sent to the server.

The Room persistence library provides an abstraction layer over SQLite to allow
for more robust database access while harnessing the full power of SQLite. The
library helps the developer to create a cache of his application’s data on a device
that’s running his application. This cache, which serves as the application’s single
source of truth, allows users to view a consistent copy of key information within the
application, regardless of whether users have an internet connection. There are 3
major components in Room library:

• Database: Contains the database holder and serves as the main access point for
the underlying connection to the application’s persisted, relational data and
include the list of entities associated with the database within the annotation;

• Entity: Represents a table within the database;

• DAO: Contains the methods used for accessing the database.

Data bindings Regarding the user interface, it was used the Data Binding Li-
brary. It is a support library that allows to bind UI components in layouts to data
sources in the application using a declarative format rather than programmatically.
Layouts are often defined in activities with code that calls UI framework methods.
Binding components in the layout file lets remove many UI framework calls in ac-
tivities, making them simpler and easier to maintain. This can also improve the
application’s performance and help prevent memory leaks and null pointer excep-
tions.

The expression language allows to write expressions that connect variables to
the views in the layout. The Data Binding Library automatically generates the
classes required to bind the views in the layout with desired data objects. The
library provides features such as imports, variables, and includes that can be used
in layouts. These features of the library coexist seamlessly with existing layouts.
For example, the binding variables that can be used in expressions are defined inside
a data element that is a sibling of the UI layout’s root element. Both elements are
wrapped in a layout tag.

The Data Binding Library provides classes and methods to easily observe data
for changes. You don’t have to worry about refreshing the UI when the underlying
data source changes. Variables or their properties can be made observable through
this library as well as objects, fields, or collections.

10

Chapter 3

Analysis

This chapter explains how the events, which subsequently has been implemented
in the system, have been selected. First of all, a list of Android features has been
drawn up. After a careful selection of the most important and used features, a sub
list of these has been extracted.

3.1 Research stage
In this phase of the work, a list of all operations that users can perform with their
smartphones has been compiled, by making a conceptual differentiation between
trigger and action. Thus it has been searched for all the activities that can be
considered as trigger and all the operations that can be considered as action. Some
of the events found can be both triggers or actions, but others can only be triggers,
for example:

• Profile mode: this event is detected when the user changes notification profile
mode. In this case it acts as a trigger and it can be the one that causes the
execution of an action (e.g. IF I change my phone profile to Vibration, then
turn on bluetooth). But the same event (when it acts as an action) can be the
consequence of another operation (e.g. if I go to the cinema, THEN change
my phone profile to Silent).

• Time: this type of events can be only used as triggers, because they can happen
but they can not be executed: IF every day at 8, then activate Wi-fi;

This research has been performed by searching the Web (consulting IFTTT site)
for information about possible events for every feature and then these data have
been compared with those on Android official documentation. From this, a first
list has been filled (Tables from 3.6 to 3.12). These tables have four columns that

11

3 – Analysis

indicate the macro category and the category to which an event belongs (e.g. event:
enable Wi-fi, category: Wi-fi, macrocategory: Connectivity), the type of the event
(i.e. trigger or action) and optional parameters.

Some of the most important features described in the tables are:

• Battery level and device under charge or not, with battery level as parameter;

• Opening, closing, installing and uninstalling application, with application name
as a parameter;

• Enabling, disabling, connecting and disconnecting Wi-fi, bluetooth, mobile
data and airplane mode functionalities, with the name of the network/blue-
tooth device to which connecting of from which disconnecting, as a parameter;

• All events about the screen such as brightness setting, rotation, night mode,
screen lock/unlock;

• Notification profile mode, jack plugged/unplugged, audio/music play/stop;

• Image/video/photo taken;

• Alarm/timer management;

• All notification received with the contact from which it comes and the content
as parameters;

• Walking, running, moving on a vehicle and on a bicycle;

• Events repeated over time (e.g. every day at 10).

The process that the application uses to intercept operations, has to be auto-
matic. Users have not to choose a trigger and pair it with an action, the application
must do this for them. It has to detect every activity that users perform on their
devices and store information about them.

This involves that every event has to be initially considered as a trigger even if
it is not. Android application has to be able to get information about what has just
happened whenever user performs an operation. In this case the trigger is any event
occurring and the action is data storage (every information about the event is stored
in a local database). Afterward the application has to analyze the collected data
and finally it creates recommendations (if any) consistent with the just detected
event.

12

3.2 – Android features

3.2 Android features
After drawing up the list, it has been possible to start to collect information on An-
droid Broadcast Receiver, Services, Listener and Content Observer. At the end of
this refining stage, a subset of features that has been decided to implement for a first
version of the application, has been extracted. However, this subset has changed
during the development because of Android policy. Especially the actions list has
been reduced because many of them require the root permission to be programmat-
ically executed (Table 3.1 shows actions discarded).

Table 3.1. Android Actions not supported

Device Reboot
Restart
Shutdown

Power save Activate
Deactivate

Video Enable recording
Disable recording

Photo Take a photo
Take a screenshot

Audio Enable recording
Disable recording

Screen Unlock screen
Airplane mode Activate

Deactivate
Mobile data Activate

Deactivate

Table 3.2. Android Actions supported

Wifi Connect to
Disconnect from
Activate
Deactivate

Bluetooth Connect to
Disconnect from
Activate
Deactivate

Location GPS activate
Profile Normal

Vibration
Silent

Screen Lock
Brightness Set max lighting

Set min lighting
Rotation Activate

Deactivate
Contact Add

Delete
Night mode Activate

Deactivate
Application Launch

Kill

13

3 – Analysis

For example, referring to Table 3.1, both airplane mode and mobile data fea-
tures require explicit user authorization to be enabled/disabled, thus it can not be
programmatically executed because the necessary permission can only be obtained
by a system application.

Tables 3.2 and 3.3 show the sublist of triggers and actions finally supported.

Table 3.3. Android Triggers supported

Notification From contact
From app

Application App launched
App killed

Wifi Connected to
Disconnected from
Activated
Deactivated

Bluetooth Connected to
Disconnected from
Activated
Deactivated

Mobile data Activated
Deactivated

Airplane mode Activated
Deactivated

Screen Locked
Unlocked

Brightness Level increased
Level decreased

Night mode Activate
Deactivate

Rotation Activated
Deactivated

Profile Normal
Vibration
Silent

Photo-Video Photo taken
Video taken
Screenshot taken

Location GPS activated
GPS deactivated
Enter a place
Exit a place

Contact Added
Deleted

Power save mode Activated
Deactivated

Battery Plugged
Unplugged

Device Turned on
Jack Plugged

Unplugged
Activity Walking

Running
On bike
On vehicle

Time Every day at

14

3.3 – Facebook service

3.3 Facebook service
The same process just described, has been done for online services, which first were
Facebook, Instagram, Twitter, Whatsapp and Telegram. It has been decided to
focus only on the Facebook service for a first version of the application.

Services such as Instagram, Telegram and Whatsapp have been detected only
with notification managing (application name and optionally contact name have
been extracted from notification). This can be done only for messages received and
push notification.

The Facebook service has been developed differently from the previous online
services because not all available events provide a notification to the user (e.g. when
the user posts a status, any notification is received on her smartphone and on some
devices, even posting a photo does not cause any notification). For this reason Face-
book SDK has been used and its webhook has been implemented (more information
can be found in Section 5.3).

Tables 3.4 and 3.5 show the sublist of triggers and actions finally supported.

Table 3.4. Facebook Triggers supported

Facebook link posted
photo posted
video posted
status posted

Messenger message received

Table 3.5. Facebook Actions supported

Facebook post link
post photo
post video
post status

Every time the user posts something (link, photo, video, status) on her Facebook
page or she receives a private message (as shown in Table 3.4), any other action can
be executed as a consequence (according to the algorithm analysis which can be
found in Section 5.2). In the same way, whenever an event triggers a Facebook
action, the application can execute one of the operation shows in Table 3.5.

15

Chapter 4

Design

The work plan for this thesis was: designing the system, implementing and finally
testing the application; after this steps new needs emerged from users feedback, for
this reason some changes have been made and the process just described has been
repeated. The algorithm which the application uses for suggesting rules has been
revised, the code has been updated and new tests has been done.

The system follows a client-server architecture because the application which has
to be developed, needs additional information, and its composition is described in
this chapter. The main part of the project is also explained and it is described how
the system architecture is composed and how the application is structured.

4.1 System architecture
Since this mobile application cannot reach the objective above mentioned without
additional information coming from either the cloud or a custom-made server, the
system follows a client-server architecture and it is composed by: a server, a mobile
application as a client, one or more online services (e.g., Facebook), an online storage,
and a cloud messaging platform. As shown in Figure 4.1, the server, in particular,
hosts the EUPont ontology and a remote database while the mobile application is
an Android application that hosts an additional local database.

After the user performs an operation on her smartphone, the application collect
information locally and when is able to create an association between a Trigger and
an Action, asks to the user if the association has to be saved or deleted. In the first
case the application sends a request to the server and stores the information on an
online database for analysis purpose. Regarding online services, instead, the work
has been done for Facebook only1.

1As said before, for a first version of the application it has been decided to focus on one service

17

4 – Design

Figure 4.1. General architecture

Server It is responsible of managing requests coming from Android application,
and storing data collected in the database. It also host the EUPont ontology in-
terface which can support end users in the choice of the desired objects in order to
exploit their functionality and improve the rule composition process.

Client It is the Android application that host a local database in which stores all
data collected from every event occurring. When the algorithm studied for creating
a trigger-event association creates a new rule, the application sends data about this
rule to the server which stores them remotely.

Online services They can be services such as Facebook, Twitter, Instagram. In
this work in particular, has been considered Facebook only. It is supported by the

18

4.2 – Rule creation processes

server on which are managed requests sent by the callbacks provided by Facebook
SDK (i.e. Webhook).

Cloud Messaging Platform It is used for sending messages to the application.
This messages are sent by the Webhook and contain information about an event
that the user has just made on Facebook. Thanks to them, the application can
obtain this data and integrate them with all the others occurred previously on the
smartphone.

Online storage It is used only for statistical purpose. For every user, information
about rules saved/ignored/deleted are stored here and some analysis are performed.

4.2 Rule creation processes
There are two different operating mode for respectively the events associating to the
device (i.e., Android) and online services (here exemplified for Facebook, but easily
extendible to similar online services). This is because Android provides built-in tools
for detecting events on the device, while for Facebook a Webhook is necessary.

Android features The process used for managing Android features rules creation,
needs the server2 for the communication of the initial information (user credential
for registering/logging) and for the rules management (save/delete). Online storage
is used only for collecting analysis information.

Below rule creation process is described in details, according to Figure 4.1:

1. The process starts with the registration (only the first time) or login (eventu-
ally for the following times) of the user through the application. After this,
the server sends to the application a file with all data listing services and its
triggers and actions. The application processes this data and performs the
association with integer tags (more information can be found in Section 4.2).

2. Now the user can use her device and the application will register and store her
operation on the local database.

3. When the application build a new rule, it warns the user with a notification.

4. If the user decides to save the suggested rule, its data will be sent to the server
(which store them in the remote database).

2Available: https://dog.polito.it:8443/mobileEUP

19

4 – Design

5. Finally all information about rules saved/ignored/deleted are stored on the
online storage for the analysis of the final results.

Figure 4.2. Android features process

Online service This process unlike the previous, uses the server even in the com-
position of a rule including the online serivce events. It is more complex because it
includes an Application Server that can build message and send push notification to
Android Client through a Cloud Message Platform. Messages are used for passing
information to the application that stores them locally with the others previously
collected on the smartphone. After the user registered and logged in the app, she
has to connect her online service account to the app. Then the application can start
collecting information from it. In this case, Facebook service is described in details
(Figure 4.2) because is the only one considered in this study, but others services
works in the same way, for example Twitter needs a webhook too.

20

4.2 – Rule creation processes

Rule creation process for Facebook service:
1. It starts with the user that shares a post on Facebook;

2. The Webhook provided by Facebook SDK is activated and send a callback
request to the server;

3. The server will send a request to the Cloud Message Platform and it will
subscribe to a topic which is specific for every user, in this way the notifications
are personal because referred to the user ID.

4. Cloud Message Platform sends a notification to the application, this is useful
both for the rule creation process and when a Facebook trigger occurs.

5. Now the application can store Facebook operation data on the local database
(point 2 of Figure 4.2).

6. When the application build a new rule, it warns the user with a notification
(point 3 of Figure 4.2);

7. If the user decides to save the suggested rule, its data will be sent to the server
(point 4 of Figure 4.2).

8. Finally all information about rules saved/ignored/deleted are stored on the
online storage for the analysis of the final results (point 5 of Figure 4.2).

Figure 4.3. Facebook service architecture

21

4 – Design

When the user saves and activates a rule including a Facebook event:
• If the rule has a Facebook event as a trigger, then the corresponding action

will be automatically executed when the application receives the notification
from the Cloud Message Platform;

• If the rule has a Facebook operation as an action, then when the trigger
is detected, the application will share a post/video/image/link on Facebook
automatically.

4.3 Application structure
The most important element of this work is the Android application, and now its
structure will be explained.

Figure 4.4. Application structure

The application is composed by five modules, referring to Figure 4.4:
User Interface: it is the front-end interface with which the user interacts, it

allows her to insert her credentials for logging in the application, to navigate
saved rules, to save new ones and to set preferences; it is very simple because
the application largely runs in background, there are four views (login, home
for rule list visualization, details of a selected rule, and settings where users
can set preferences such as adding places to be monitored)3;

Event Interception: it is responsible for detecting users activities (trigger) on
their smartphone (more information can be found in Section 2.3)4;

3Some images can be found in Appendix A
4in Android is implemented with Broadcast Receiver, Service, Content Observer

22

4.3 – Application structure

Action Execution: it is the module which is responsible for the execution an
action.

Local Database: it is used for collecting all the information about the activities
performed by users. It is hosted on the user device and it includes the following
tables:

Table 4.1. Local Database Tables

Tables Details
EventDB timestamp, day of the year, hour of the day, eventName, param1
TriggerActionDB uid, triggerName, param1T, actionName, param1A, quantity
RuleDB uid, ruleID, ruleName, triggerActionId, attiva
ContactDB uid, name, priority

Communication: this module is characterized by HTTP Requests, exchanged
between server and client (it will be deepened in the following chapter) and it
uses a Remote Database for data storage. The application receives objects in
which are contained data that are stored in the remote database. Such data
consists of information about the user (e.g., her username and her name), the
available IoT devices and services, with the related details like the available
triggers and actions.

23

Chapter 5

Implementation

According to the general architecture described in the previous chapter, the imple-
mentation of its components can now be described in-depth: Android application
that manages operation made by the user and analyzes data collecting from these
operations, through the algorithm which is its most important part; the communi-
cation component which describes the requests exchanged between client and server;
Facebook Webhook as the implemented online service, that is managed by a Spring
Boot application Server.

The server, instead, is composed by a Spring application connected to the EU-
Pont ontology and to a remote database, but this elements were already present
before the beginning of the work for this thesis;

5.1 Android application
This application wants to automatically create trigger-action rules, analyzing infor-
mation that it collects from the use that the users make of their smartphone. It
consists of a front-end part represented by the user interface and a second back-end
part represented by the algorithm that is at the base of the application’s operation.
It underlies the application and it is responsible for the creation of the rules.

5.1.1 User interface
It allows a user to easily insert her credentials for logging in the application, to
navigate the saved rules, to save new rules and to set preferences (e.g., the places
to be monitored, Figure 5.4). It is very simple because the application largely
runs in background. There are four main views: login (FIgure 5.1), home (for rule
list visualization, shown in Figure 5.2), details for a selected rule (Figure 5.3) and
settings.

25

5 – Implementation

Figure 5.1. Application login Figure 5.2. Application places list

Figure 5.3. Application rule details Figure 5.4. Application home

26

5.1 – Android application

5.1.2 Algorithm
This algorithm is responsible for the trigger-action association and, as a consequence,
for the creation of the rules. It has been studied with the aim of being automatic,
thus the user has not to chose which trigger associates to which action. Through an
automatic evaluation of the data collected by the application, it is able to suggest a
potentially significant rule.

After a first “release” of the application, it has been given to two users that have
first tried it for a week. Thanks to their feedback, the algorithm has been slightly
revised and some parameters has been modified. Thus, the need to add some specific
feature emerged. The suggested rules were a lot but not very indicative, because the
majority of them were focused for example on the switching on and off on the screen
coupled with every other event. Furthermore it was modified the management of
location events. It was initially searched during all day another equivalent event,
once it was found, the counter was increased, then this approach has been changed
and a parameter for time interval searching has been inserted.

It is now presented the final version of the just mentioned algorithm and its
changes.

int MAX_QUANTITY_GENERAL = 4;
int MAX_QUANTITY_TIME = 2;
int MAX_QUANTITY_LOCATION = 2;
long TIME_INTERVAL_SEARCHING = 20 * 1000;
long TIME_INTERVAL_SEARCHING_LOCATION = 60 * 60 * 1000;
int CONTACT_PRIORITY = 50;

Referring to the code, this parameters have been modified:

• MAX_QUANTITY_GENERAL represents the quantity of repeated events
for generic features, beyond which the suggestions are triggered, it has been
raised from 2 to 4 because users complained about the high frequency of the
suggested rules notification;

• MAX_QUANTITY_TIME andMAX_QUANTITY_LOCATION represents
the amount of repeated events for time and location features respectively,
beyond which the suggestions are triggered, they were created because time
and location features needs a lower threshold respect to the generic ones (e.g.
if the user enter to the same place twice, this can be significant but if the user
turn on the screen twice, this is not so much relevant);

• TIME_INTERVAL_SEARCHING represents the interval in which generic
events are searched, it was greater because it has been changed its conceptual

27

5 – Implementation

meaning1;

• TIME_INTERVAL_SEARCHING_LOCATION represents the interval in which
location events are searched, it has been added after this first test stage;

• CONTACT_PRIORITY represents the quantity of events collected for the
“notification from a specific contact” feature, this parameter has been added
because the users complained about the fact that a contact rarely contacted
was treated like a frequent contacted one.

The following algorithm was used to gather information on user habits in order
to set up statistics for creating rules.

Every time the user performs an action on his device (and this action is part of the
collection of supported features2), the algorithm performs the following operations:

1. The information are stored in the EventDB3 table;

2. Some checks for filtering events that are fired twice, are made;

3. The presence of rules previously activated, are checked and if there are triggers
corresponding to the operation just performed by the user, all relative actions
are executed;

4. A research within a set time interval is performed and the algorithm checks if:

– The event just occurred is actually a trigger4

– The first event found is actually an action4

– The action found does not below to the same category5 of the trigger one

In this case it stores the trigger-action correlation, in the TriggerActionDB6

table and if the occurrences of the correlation are higher than a threshold7

(different if the event is related to time, location or all the others8), a new rule
is suggested to the user;

1More details can be found in Chapter 4
2More information can be found in Chapter 3
3Defined in the previous chapter
4This is done through the data association, see section 5.3
5All categories are reported into tables from 3.6 to 3.12 of chapter 3
6Defined in the previous chapter
7See different parameters in the previous page
8See different implementation in the code in the next pages for more details

28

5.1 – Android application

5. Upon reaching the pre-set threshold, the user is notified of the suggestion for
the new rule and depending on the utility of this rule, he can:

– Ignore it (and it will be temporarily excluded from the count of that
association occurrences)

– Save it on device (in RuleDB table) and on the server, then:
∗ Turn it on
∗ Turn it off
∗ Delete it

The application uses the EUPont ontology accessible through RESTful API, to
store rules, control devices and other contextual information for login (e.g. user-
name, password and data registration).

Figure 5.5. EventDB Room table

For example, observing Figure 5.2, when the user sets the profile tone to silent,
the algorithm watches the previous event which is “connect to eduroam”, it checks
if it belongs to different category (the trigger belongs to wifi category, while the
action belongs to profile category), in this case an association can be created in the
second table (Figure 5.3).

The previous implementation is referred to events included in Android features.
For time, location and fitness events there are different implementations of the al-
gorithm for counting events.

• Time: recurring events (e.g. Every day at 10), whenever an event is detected,
it is searched into local database if that particular event is present in previous
days in the same hour interval, if it is a new rule is created.

29

5 – Implementation

Figure 5.6. TriggerActionDB Room table

• Location: enter to/exit from a place indicated by the user, whenever an event
is detected, it is verified if in the previous time interval a location event is
present, if it is, the event detected will be the action and the location event
will be the trigger9.

• Activities (i.e. fitness in the code): walking/running/cycling/on vehicle events,
whenever an event is detected, it is searched into local database if a fitness
event is present in the previous hour10.

The following code shows how this different implementation have been developed,
the complete code can be found in Appendix A.4.2.

private void eventsAssociation() {
// controllo che sia effettivamente un’azione
String parentEventActionName = Dictionary.getActionID(getEventName());
if (!parentEventActionName.equals("")) {

// EVENTI TEMPO
// dal db elenco gli eventi che hanno lo stesso orario di quello

appena intercettato ma in giorni precedenti
if (App.getDB().getEventsFromHour(getEventName(), getParam1(),

getDay(), getHour()).size() > MAX_QUANTITY_TIME) {
EventDB timeEvent = new EventDB(System.currentTimeMillis(),

Dictionary.DICT_TIME_EVERY_DAY_AT, getHour() + "");
addTriggerActionInDB(timeEvent, this, MAX_QUANTITY_TIME);

}

9Google GeoFence API has been used for detecting the entries and exits
10Android ActivityTransition API has been used for detecting user activity

30

5.1 – Android application

// EVENTI LOCATION
// escludo gli eventi della stessa categoria
if (!parentEventActionName.split("_")[2].contains("gps")) {

// cerco informazioni sull’entrata o l’uscita da un luogo
nell’ultima ora

EventDB e = App.getDB().getOnOffEvent(Dictionary.DICT_GPS_ENTER,
Dictionary.DICT_GPS_EXIT,

getTimestamp() - TIME_INTERVAL_SEARCHING_LOCATION,
getTimestamp());

if (e != null) {
addTriggerActionInDB(e, this, MAX_QUANTITY_LOCATION);

}
}
// EVENTI FITNESS
// escludo gli eventi della stessa categoria
String split = parentEventActionName.split("_")[2];
if (!split.contains("walking") && !split.contains("running") &&

!split.contains("cycling") && !split.contains("vehicle")) {
// cerco informazioni sull’inizio o la fine di una attivita’

nell’ultima ora
associateOnOffEvents(Dictionary.DICT_FITNESS_CAMMINATA_ON,

Dictionary.DICT_FITNESS_CAMMINATA_OFF);
associateOnOffEvents(Dictionary.DICT_FITNESS_CORSA_ON,

Dictionary.DICT_FITNESS_CORSA_OFF);
associateOnOffEvents(Dictionary.DICT_FITNESS_BICICLETTA_ON,

Dictionary.DICT_FITNESS_BICICLETTA_OFF);
associateOnOffEvents(Dictionary.DICT_FITNESS_MACCHINA_ON,

Dictionary.DICT_FITNESS_MACCHINA_OFF);
}
// EVENTI FUNZIONALITA’
assignTriggersAndActions(parentEventActionName);

}
// pulisco un po’ la tabella di log, eliminando tutti gli eventi piu’

vecchi di 72 ore
App.getDB().deleteLog(getTimestamp() - TIME_INTERVAL_DELETING);

}

31

5 – Implementation

5.1.3 Data association
When a new event is detected (as described in the algorithm section) after user
interaction, it can not be known if that event is a Trigger or an Action, this dis-
tinction is applied later. For this reason, it has been necessary to create a com-
mon tag between the two types of event. Referring to the code11, for example,
DICT_BLUETOOTH_ON is related to the Trigger “if I turn bluetooth on” and to
the Action “then turn bluetooth on”.

public static final int DICT_BLUETOOTH_ON = 7;
public static final int DICT_BLUETOOTH_OFF = 8;

TRIGGERS.add(new Pair<>(DICT_BLUETOOTH_ON,
":trigger_android_bluetooth_enabled"));

TRIGGERS.add(new Pair<>(DICT_BLUETOOTH_OFF,
":trigger_android_bluetooth_disabled"));

ACTIONS.add(new Pair<>(DICT_BLUETOOTH_ON,
":action_android_bluetooth_enable"));

ACTIONS.add(new Pair<>(DICT_BLUETOOTH_OFF,
":action_android_bluetooth_disable"));

This association was performed with a series of sequential IDs, in this way every
trigger-action pair is represented by a different integer. So when the user perform
an operation on his device, the algorithm can store that event in the database and
later it will decide if that event is a trigger or an action.

After this translation, every string with trigger name from EUPont ontology is
paired to the integer tag and the same is done for the actions. As explained in
Chapter 3, not every trigger can be an action, for this reason the two lists are not
equivalent. Every time a rule is composed, first of all a research is performed in
order to confirm that the trigger is included in the corresponding triggers list and
the action is included in the corresponding actions list.

5.2 Communication
Since the server is a RESTful one, the database queries have been implemented with
simple HTTP requests to the address https://dog.polito.it:8443/mobileEUP. In the
application these request have been implemented using AsyncTask class that allows
to perform background operations and publish results on the UI thread.

11The complete list for translation is reported in Appendix A.4.1

32

5.2 – Communication

Figure 5.1 shows the sequence of requests done when the user register into the
application for the first time or when she login into it. Request 3 after register/login
return a file in JSON format which contains a list of all data about triggers and
actions that the application needs.

Once the user is logged, the application continues to run in background and the
operations in Figure 5.1 are not repeated until the user logout. Every time the user
decides to save a rule, a POST Request is sent to the server, as well as a DELETE
Request is sent when the user wants to delete a rule saved. The final Request is
necessary if the user forgets her credentials and logs in the application with others,
in this case data are bind to the device through the imei number and they are
retrieved to the user when she log in.

Figure 5.7. Registration/Login process

33

5 – Implementation

The application receives objects in which are contained data that are stored in
the remote database which has the following tables structure:

• User: it describes a user who during the registration defines username, pass-
word, name, lastName;

• IOTEntity: it describes an entity with the list of all the name of the services;

• Technology: it has a list of services for a particular device or online service
and their details;

• Service: it represents the list of Triggers and Actions for a particular technol-
ogy;

• Trigger and Action which have the same structure: the entity which belongs
to, the service which belongs to, a name, a short description for the user and
optional parameters;

• Detail: it describes the optional parameters for Triggers and Action;

• Rule: it represents the association of a Trigger with an Action.

5.3 Webhook
As it can be read from Facebook documentation “Webhooks allows you to receive
real-time HTTP notifications of changes to specific objects in the Facebook Social
Graph”. For example, a notification can be sent when a user share a photo. This
prevents from having to query the Graph API for changes to objects that may or
may not have happened.

When a Webhook is configured, an object type must be chosen and it must
be subscribed to specific fields for that object type because different objects have
different fields. Whenever there’s a change to the value of any object field that has
been subscribed to, a notification will be sent.

Apps can request approval for specific login permissions, which control the types
of data the app can access when using the Graph API. The app must be approved
for the login permission that corresponds to that type of data, and the object that
owns the data must grant your app permission to access that data (e.g., a User
allowing your app to access their feed). Although apps in development mode are
automatically approved for all login permissions, they will not receive live Webhooks
notifications unless the person who installed the app has an Admin, Developer, or
Tester role on the app.

34

5.3 – Webhook

To use Webhooks, an endpoint must be set up on a server, then add and configure
the Webhooks product in the app’s dashboard. The endpoint12 must be able to
process two types of HTTP requests: Verification Requests and Event Notifications.

Verification Requests Anytime the Webhooks product is configured in App
Dashboard, a GET request will be sent to the endpoint URL. Verification requests
include the following query string parameters, appended to the end of the endpoint
URL. Whenever the endpoint receives a verification request, it must:

• Verify that the hub.verify_token value matches the string set in the Verify
Token field when configuring the Webhooks product in App Dashboard.

• Respond with the hub.challenge value.

@RequestMapping(value = "/webhook", method = RequestMethod.GET)
public ResponseEntity<String> verifyWebhook(

@RequestParam(value = "hub.mode") String mode,
@RequestParam(value = "hub.verify_token") String verify_token,
@RequestParam(value = "hub.challenge") String challenge) {

if (mode.equalsIgnoreCase("subscribe") &&
verify_token.equalsIgnoreCase(TOKEN)) {

return new ResponseEntity<>(challenge, HttpStatus.OK);
}
return new ResponseEntity<>("Push Notification ERROR!",

HttpStatus.BAD_REQUEST);
}

Event Notifications Subscribing to specific fields on an object type, notifica-
tions will be sent as HTTP POST requests and will contain a JSON payload that
describes the change, whenever there is a change to one of these fields. The end-
point should respond to all Event Notifications with 200 OK HTTPS. In this specific
implementation, the part for Firebase Cloud Messaging is included. Id and Time
values are extracted from JSON, the former is user identification code and it is used
for the topic and the latter is the timestamp for the request identification. Then
a notification is build with these information and it is sent to Firebase which is
responsible to deliver the message to the user device through the application.

12https://dog.polito.it:8443/mobileEUP/webhook

35

5 – Implementation

@RequestMapping(value = "/webhook", method = RequestMethod.POST)
public ResponseEntity<String> sendPushNotification(

HttpServletRequest request, @RequestBody String data)
throws Exception {

String firebaseResponse;

JSONObject json_data = new
JSONObject(data).getJSONArray("entry").getJSONObject(0);

String field =
json_data.getJSONArray("changes").getJSONObject(0).getString("field");

Long time = json_data.getLong("time");
String userID = json_data.getString("id");

JSONObject body = new JSONObject();
body.put("to", TOPIC + userID);
body.put("priority", "high");

JSONObject notification = new JSONObject();
notification.put("title", field);
notification.put("body", time);

body.put("notification", notification);

HttpEntity<String> httpRequest = new HttpEntity<>(body.toString());
CompletableFuture<String> pushNotification =

androidPushNotificationsService.send(httpRequest);
CompletableFuture.allOf(pushNotification).join();
try {

firebaseResponse = pushNotification.get();
} catch (Exception e) {

e.printStackTrace();
return new ResponseEntity<>("Push Notification ERROR!",

HttpStatus.BAD_REQUEST);
}

System.out.println("GCM Notification is sent successfully: "
+ userID + " " + field);

return new ResponseEntity<>(firebaseResponse, HttpStatus.OK);
}

36

Chapter 6

In-the-wild evaluation

This section presents the end-user evaluation procedure. After fixing some bugs
and revising the application with the suggestion of a first couple of users, the real
in-the-wild evaluation began.

6.1 Study procedure
During this step, the application was given to end users and the study of its behavior
in the real world began.

The 6 participants has been recruited without any particular peculiarity, by tele-
phone contact. The only characteristic that caused the restriction of user selection
was the Android version. The application developed in this thesis supports up to
Android Nougat (version 7.1.2, API level 25), because in Android Oreo (version 8,
api level 26) important limitations on background processes have been added and
causes the killing of the just mentioned processes, if not properly managed. Since
it is based on background processes, this fact would have had a huge impact on
the evaluation. However for a correct management of this problem, the application
would have been completely rewritten according to the new specifications. For this
reason it has been decided to make a first evaluation without this improvement and
analyze the results, but reserving to decide to add it in the future.

After contacting the users, the introductory material has been sent to them: a
link to an initial questionnaire, an explanation document, the apk of the application
to be installed and, at the end of the test, the link to a final questionnaire. Both
questionnaires have been done online, through Google Forms. The protocol followed
provided that the user had to:

1. Read the document with the explanation of the scope of the application and
some general concepts (Appendix A)

37

6 – In-the-wild evaluation

2. Complete the initial questionnaire (Appendix B) where they were asked about
the functionalities which they most use, about their smartphone level usage
and some personal information

3. Install the application and keep it for about 2 weeks

4. Complete the final feedback questionnaire (Appendix C) where they were asked
to express their satisfaction about the application and optional feedback and
comments for the application improvement

Users simply have to install the application, which after a period of “study”, will
begin to suggest rules that the user will have to accept or not, depending on the
usefulness of them.

The period of “study” that the application requires, consists in storing the actions
that each user performs with her device (according to the supported features) and
put them in relation to each other two by two so that an action is consequent to
an event, also taking into account the temporal component, because the associated
events must have been performed in the same time interval, decided a priori. Once
a certain threshold (even this decided a priori) of repetitions of the same pair has
been exceeded, the user can be notified of the possibility of creating a new rule.

6.2 Measures
At the end of the test the user has been asked to fill in a questionnaire for any
feedback and the following parameters has been evaluated:

• Total number of saved/deleted/ignored rules

• Number of saved/deleted/ignored rules per user

• Description of saved/deleted/ignored rules
These parameters have been analyzed in order to evaluate the real utility of the
application, obtaining a feedback on the total distribution of the rules saved, deleted
and ignored, while for the statistics on those per user, they have been integrated with
the answers of the initial questionnaire in which you are asked to give preferences
on the most used features. In both cases it is useful to know also the definition of
these rules to understand which may be more useful and which less, therefore it is
necessary to keep track of the names of the events from which they are composed.
Data will also be collected by the final questionnaire, regarding:

• Possible problems and critical issues;

• Utility and usability of the application.

38

Chapter 7

Results

In this section the results of the work will be presented. This data have been
collected with the help of Firebase Real Time Database and Google Forms.

7.1 Data discussion
As can be seen from Figure 7.1, the general distribution of the rules has been divided
into two of the three possibilities (saved/deleted/ignored). As it is shown, no rule
has been deleted and the trend is almost equally partitioned between rules saved
and ignored. Considering Figure 7.2, where is represented the distribution of rules
per user, it can be seen that even in this graph the trend is maintained except for
two of the five users.

Figure 7.1. Distribution total rules

39

7 – Results

In the initial questionnaire was asked to the user how much she think to use
her smartphone (on a scale from 1 to 5, where 1 is rarely used and 5 is very used)
and comparing these answers with this graph, it can be observed that they are
well integrated with the previous data (e.g. user 1 has answered 2 and user 5 has
answered 4).

Figure 7.2. Distribution rules per user

Others observation have been done on the distribution of the features character-
izing the rules monitored. Generally triggers are more scattered than actions, this
can be brought back to the fact that actions list is reduced compared to triggers
one1.

In particular, considering Figure 7.3, triggers are mostly spread over wifi, gps,
application and screen functions while actions are mostly spread over music, wifi and
gps. This data are consistent with Figure 7.4, where users were asked to indicate the
features that they mostly use (in the initial questionnaire). Wifi, Gps, Application
(opening/closing application) in fact, emerge among these choices.

1More information can be found in Chapter 3

40

7.1 – Data discussion

Figure 7.3. Distribution features: data form the evaluation

Figure 7.4. Distribution features: data from initial questionnaire

41

7 – Results

In the end, observing users answer, it can be seen that this kind of application has
been rather appreciated (Figure 7.5) and they would recommend it to their friends
(83.3% yes and 16.7% no), so this study can act as a basis for further expansion of
this application.

Figure 7.5. Application utility (1 = not useful, 5 = very useful)

The real results of all this thesis work are represented by Tables 7.1 and 7.2,
where the detailed composition of every rule suggested by the application during the
evaluation, is documented. For each and every user participating to the evaluation,
the automatic trigger-action association made by the application has been stored
with the judgment that the user has given about them (i.e. saved/ignored/deleted).
Rules which have been saved from the user are highlighted to see which of them are
considered useful by users.

It can be observed that among these users:
• the type of suggested rules changes in relation to their habits, there are no

equally recurring rules for each user;

• the features which mostly recurs are Wifi one and GPS one and the rules built
with them are the most appreciated;

• screen features (both lock and unlock) have always been ignored;

• enter/exit a place features have always been saved;

• the most significant and useful rules that users saved, were:

– If I enter a place, then connect WiFi to;
– If Mobile data Disabled, then WiFi Enable;
– If I Enter a place, then Set audio profile to;

Another curious data is that although users have had the opportunity to connect
their account to Facebook (in this way they could use Facebook webhook to monitor
their activity on the social network), none of them chose to connect the profile.

42

7.1 – Data discussion

Table 7.1. End-user evaluation results - part 1
Utente Trigger Action type

1 Screen Unlocked Connect WiFi to ignored
App killed Connect WiFi to ignored

Screen Unlocked Deactivate GPS ignored
2 Device Turned on Deactivate GPS saved

Notification from app Stop Music ignored
3 Screen Unlocked Stop Music ignored

Device Turned on Deactivate GPS saved
Smartphone recharged Connect WiFi to ignored

App launched Set audio profile to saved
App killed Connect Bluetooth to saved

Screen Locked Connect WiFi to ignored
App launched Connect WiFi to ignored
App killed Bluetooth Enable ignored

4 Screen Unlocked Deactivate GPS ignored
Walking Deactivate GPS saved

Enter a place Stop Music saved
Device Turned on Deactivate GPS ignored

App killed Activate GPS saved
App killed Deactivate GPS ignored
Music On Connect WiFi to saved

GPS deactivated Music On saved
App killed Deactivate GPS saved

Notification from contact Stop Music saved
Notification from app Stop Music saved

43

7 – Results

Table 7.2. End-user evaluation results - part 2
Utente Trigger Action type

5 Enter a place Stop Music saved
Screen Unlocked Activate GPS ignored
Enter a place Connect WiFi to saved

Device Turned on Deactivate GPS ignored
Screen Unlocked Connect WiFi to ignored
Screen Unlocked Stop Music ignored

App killed WiFi Enable saved
Mobile data Disabled Connect WiFi to saved

Enter a place WiFi Enable saved
Mobile data Disabled Connect WiFi to ignored

App killed Deactivate GPS ignored
Mobile data Disabled WiFi Enable saved

Every day at Stop Music ignored
Screen Unlocked Connect WiFi to ignored
Enter a place Connect WiFi to saved
Enter a place WiFi Enable saved

Screen Unlocked WiFi Enable ignored
6 Enter a place Set audio profile to saved

App launched Connect WiFi to ignored

44

Chapter 8

Conclusions

The popularity of the Internet of Things (IoT) is expanding, even its complexity
is growing and as a consequence, the number of possible combinations between dif-
ferent devices and services is increasing exponentially. Existing recommendation
techniques could be useful to help end users without programming skills to use
EUD systems, but have not yet been consistently explored. Recently researches has
certainly studied recommendation technologies with the aim of assisting develop-
ers, but they have not deeply explored the possibility to extend their attention to
assisting end users.

With this thesis it has been possible to analyze this second approach. End users
have been involved into the “in-the-wild” evaluation of the application and they
have been part of the improvement process, because of their feedback in the final
stage of the work. It has been possible to explore which rules are largely composed,
which rules do not raise interest in the user and if the user is well disposed towards
the use of a mobile application which propose this kind of suggestion.

The final opinion was that this application would have great potential, because
it has been largely appreciated. Users were enthusiast to try it and other people
that were not participating to the study, were interested in possible future releases.

The main drawback is that since the application needs to monitor all activities
which users perform on their device, it requires many services running in the back-
ground and this causes an intense battery consumption. Moreover this was even
the main reason for which it was decided not to support Android version 8 (Oreo),
because it would be necessary to change the implementation of the services accord-
ing to the new standard of this new version, due to the fact that Android Oreo
imposes important limits to background services for resource and battery saving.
For this reason, the work has been focused on previous version and one of the possi-
ble improvements would be the optimization of this aspect and the integration with
Android latest version.

45

8 – Conclusions

8.1 Future works
Thanks to the work done with this thesis it will be possible to realize the integration
of the developed application with the RecRules recommender system (a hybrid and
semantic recommender system for EUD interfaces).

RecRules suggests trigger-action rules on the basis of their final functionality,
to help end users to discover IoT applications. The recommendation process of
RecRules united with the semantic information offered by EUPont, is used to model
trigger-action rules in terms of functionality[10]. Recommendations may be used
to suggest relevant smart “things” based on user preferences and interests and may
be useful to optimize the time and cost of using IoT in a particular situation[9],
RecRules suggest trigger-action rules that relate couple of IoT objects and this
suggestions can be provided by EUD interfaces to facilitate end users in customizing
their devices and services.

The integration with RecRules will allow to compute suggestions based on trigger-
action rules previously activated by the user (content-based information), and based
on trigger-action rules activated by other users (collaborative information).

46

Appendix A

Appendix

A.1 User information document

Grazie di aver accettato di prendere parte a questo studio. Ti chiedo gentilmente
di compilare il questionario iniziale e dopo aver provato l’applicazione compilare il
questionario finale con eventuali suggerimenti e commenti.

L’Internet of Things (IoT) è il modo in cui si chiama l’evoluzione di Internet,
che da rete di computer diventa rete di oggetti, i quali si collegano, comunicano
scambiandosi informazioni ed agiscono anche senza il controllo di un essere umano.
Oggigiorno stanno nascendo sempre più applicazioni che propongono all’utente di
gestire i propri oggetti (dispositivi e servizi IoT) tramite la creazione di “Regole” che
implicano l’accoppiamento di un Evento ed una conseguente Azione, questa Azione
è automaticamente eseguita nel momento in cui l’Evento desiderato viene rilevato
(un esempio di regola potrebbe essere: Se entro in casa -> allora accendi wifi).

L’obiettivo di questo studio è quello di valutare un sistema di raccomandazione
che suggerisca ed esegua delle Regole Evento-Azione basate sulle informazioni e le
preferenze dell’utente, con lo scopo di assisterlo, in questo modo egli non si deve più
preoccupare del sempre più complesso sistema di gestione delle funzionalità che sta
alla base della creazione di queste regole e che spesso può risultare ostico per utenti
senza alcun tipo di interesse o abilità nella programmazione, ma dovrà solamente
decidere quale delle regole suggerite gli sono più utili.

Questa applicazione in particolare, studierà e terrà traccia delle azioni compiute
dall’utente, in modo da creare delle statistiche che utilizzerà per suggerire delle
regole. Una volta raggiunta una certa soglia di ripetizioni effettuate sulla stessa
coppia evento-azione, all’utente verrà notificata la regola (Figura A.1) e verrà chiesto
se la vuole salvare (nel caso la reputi utile) oppure ignorare (nel caso non avesse
senso). Successivamente, se l’utente sceglie di salvare la regola, potrà vedere un
elenco di tutte quelle salvate in precedenza ed ancora decidere quali di queste attivare

47

A – Appendix

o disattivare (Figura A.2). Dal momento in cui le regole saranno attive, verranno
eseguite in automatico, senza che il proprietario del dispositivo debba più compiere
nessuna azione.

La prova durerà 2 settimane, come prima cosa ti sarà chiesto di acconsentire a
dei permessi, poi dovrai crearti un’utenza, quindi scegliere username, password ed
inserire nome e cognome. Dopo aver fatto ciò dovrai inserire almeno un indirizzo per
permettere all’applicazione di monitorare entrata/uscita da tale luogo. Mi racco-
mando, controlla che l’icona del servizio sia sempre attiva nella barra delle notifiche
(se hai installato qualche applicazione per il monitoraggio della batteria o dei servizi
in background, potrebbe decidere di chiudertela) e se decidi di associare il tuo profilo
Facebook, avvisami perchè devi essere abilitato/a!

Di seguito sono riportate le funzionalità supportate (che si possono trovare anche
nella sezione “informazioni” dell’applicazione):

• Trigger

o Facebook (post condiviso)
o Attività (camminata/corsa/in macchina/in bicicletta)
o Batteria (connesso/non connesso alla corrente)
o Bluetooth (on/off/connesso a/disconnesso da)
o Camera (nuovi foto/screenshot/video)
o Contatti (nuovi/aggiornati/rimossi)
o Cuffie (inserite/rimosse)
o Location (entrata/uscita)
o Gps (on/off)
o Mobile data (on/off)
o Music (on/off)
o Notifiche da contatti
o Notifiche applicazioni (Facebook/Whatsapp/Telegram/Instagram/Gmail)
o Profili audio (normale/vibrazione/silenzioso)
o Applicazioni (installata/disinstallata/aperta/chiusa)
o Blocco schermo (on/off)
o Modalità aereo (on/off)
o Rotazione schermo (on/off)
o Sms (ricevuti/inviati)

48

A.1 – User information document

o Wifi (on/off/connesso a/disconnesso da)
o Tempo (ogni giorno alle)

• Action

o Facebook (condividi post/foto/video)
o Bluetooth (on/off/connetti a/disconnetti da)
o Contatti (aggiungi/rimuovi)
o Profili audio (normale/vibrazione/silenzioso)
o Rotazione (on/off)
o Wifi (on/off/connetti a/disconnetti da)

L’applicazione chiederà di mandare una mail con il log degli eventuali errori che
causeranno dei crash.

Ecco il link al questionario iniziale: https://goo.gl/forms/mgFqDLsBS5T7spcI2

Figure A.1. Application rule details Figure A.2. Application home

49

A – Appendix

A.2 Initial questionnaire
Da compilare prima dell’instalazione dell’applicazione

1. Età:

2. Genere:

o Uomo
o Donna

3. Occupazione:

4. Grado di utilizzo del cellulare (1= lo uso molto poco, 5 = lo uso tanto):

o 1
o 2
o 3
o 4
o 5

5. Seleziona le funzionalità che usi di più:

o Facebook
o Batteria
o Bluetooth
o Camera
o Contatti
o Cuffie
o Gps
o Mobile data
o Musica
o Notifiche
o Profili audio
o Applicazioni
o Blocco schermo
o Modalità aereo

50

A.2 – Initial questionnaire

o Rotazione schermo
o Sms
o Wifi

6. Hai l’applicazione ufficiale di Facebook installata?

o Si
o No

51

A – Appendix

A.3 Final questionnaire
Da compilare una volta finita la prova dell’applicazione

1. Username (scelto nella registrazione dell’app):

2. Pensi che le funzionalità supportate si sposino con le tue abitudini di utilizzo?

o Si, per la maggiorparte
o No, molte funzionalità mancano
o No, le funzionalità supportate non mi sono utili

3. Quanto hai trovato utile questa applicazione? (1= poco, 5 = tanto):

o 1
o 2
o 3
o 4
o 5

4. Consiglieresti questa applicazione ai tuoi amici?

o Si
o No

5. Suggerimenti per altre funzionalità:

6. Altri commenti:

52

53

B – Tables

Appendix B

Tables

Table B.1. Triggers first list - part 1
Macro category Category Trigger Parameter
Battery Battery Low battery level Level

Device is unplugged -
Device is plugged in -
App consumes Level

Applications Application App installed Application name
App uninstalled Application name
App launched Application name
App killed Application name

Connectivity Wifi Connected to Name
Disconnected from Name
Activated -
Deactivated -
Scan -

Bluetooth Connected to Name
Disconnected from Name
Activated -
Deactivated -
Scan -

Mobile data App consumes Level
Activated -
Deactivated -

Airplane mode Activated -
Deactivated -

54

Table B.2. Triggers first list - part 2
Macro category Category Trigger Parameter
Display Screen Locked -

Unlocked -
Lighting Level increased -

Level decreased -
Night mode Set -

Unset -
Rotation Activated -

Deactivated -
Device wallpaper updated -

Sound Profile Set to Profile
Jack Plugged in -

Plugged off -
Audio Audio recorded -

Music in progress -
Music stopped -

Media Photo-Video Photo taken -
Screenshot taken -
Video recorded -
Image saved -

Storage Storage File Saved on device -
Low phone storage space -

Drive Document added -
Dropbox Photo added -

Document updated -
Organizer Alarm Added -

Deleted -
Timer Added -

Deleted -
Calendar Event added -

Event deleted -
Event updated -

Locations Location GPS activated -
GPS deactivated -
Enter a place Place
Exit a place Place

55

B – Tables

Table B.3. Triggers first list - part 3
Macro category Category Trigger Parameter
Transportation Move On bike -

On car -
On foot -

Activities Walking Start -
Stop -

Running Start -
Stop -

Cycling Start -
Stop -

Communication Notifications Notification app received App name
Notification contact received Contact name

Not disturb Enable -
Disable -

Social new link post hashtag
new photo post hashtag

Facebook new video post hashtag
Instagram new post -
Twitter new private message mittente, stringa

new message sent destinatario, stringa
You are tagged in a photo -
Private message contains -

Messaging New SMS -
Whatsapp SMS contains Value
Telegram New Email -

New Email Attachment -
Email contains Value
New chat message -
Chat message sent -
Chat message contains Value
New photo from a chat -
New audio from a chat -
New video from a chat -

56

Table B.4. Triggers first list - part 4
Macro category Category Trigger Parameter

Phone call Call answered -
Call rejected -
Call muted -
Call started -
Call ended -
Speakerphone activated -
Call missed -

Contacts Contacts New contact added -
Contact deleted -

Device Device Turned on -
Power save Activated -

Deactivated -
News News News available -

News matches search Value
Tomorrow’s weather report -
Current temp drops below Value
Current temp rises above Value
Current condition changes to Value
Tomorrow’s high rises above Value
Tomorrow’s low drops below Value
Tomorrow’s forecast calls for Value

Environment Ambient light Rises above Value
Drops below Value

Temperature Rises above Value
Drops below Value

Time Time Every day at Time
Every hour at Time
Every week at Time
Every month on the Time
Every year on Time

57

B – Tables

Table B.5. Actions first list - part 1
Macro category Category Action Parameter
Applications Application Launch Name

Kill Name
Notifications Not disturb Enable -

Disable -
Notification Send autonotification -

Notification from application Application name
Connectivity Wifi Enable -

Disable -
Connect to Name
Disconnect from Name

Bluetooth Enable -
Disable -
Connect to Name
Disconnect from Name

Airplane mode Enable -
Disable -

Mobile data Enable -
Disable -

Display Rotation Enable -
Disable -

Screen Lock screen -
Unlock screen -
Set lighting level Level
Set night mode -
Update wallpaper Image
Blink the notification led Color

Sound Volume Set media volume Volume
Set call volume Volume
Set ringtone volume Volume
Set alarm volume Volume

Audio profile Set to Profile

58

Table B.6. Actions first list - part 2
Macro category Category Action Parameter
Audio Audio Enable recording -

Disable recording -
Music Enable -

Disable -
Play specific song Song
Next song -
Previous song -

Photo-Video Video Enable recording -
Disable recording -

Photo Take a photo -
Take a screenshot -

Storage Storage Move app to ext storage App name
Clear Download folder -
Create Document Doc name
Append to a document Doc name, Text
Add row to a spreadsheet Doc name
Delete file Doc name
Share Doc name

Social Facebook New status Text
Upload photo Image
Upload video Video
Send private message Text, Receiver

Twitter New status Text
Upload photo Image
Hashtag Text

Instagram Upload photo Image
Upload video Video

Spotify Add track to playlist Track
Messaging Email Send email Text, Mail

Sms Send SMS Text, Number
Whatsapp Send chat message Text, App, Number
Telegram Send photo Text, App, Number

Send video Text, App, Number
Send audio Text, App, Number

59

B – Tables

Table B.7. Actions first list - part 3
Macro category Category Action Parameter
Phone call Call Answer -

Reject -
Mute the incoming call -
Start Number
End -
Block calls Number
Active speakerphone -

Organizer Alarm Enable Time
Disable Time

Timer Enable Duration
Disable Duration

Countdown Enable Duration
Disable Duration

Calendar Add a calendar event Details (Title, Time, ...)
Delete a calendar event Title

Locations GPS Activate -
Deactivate -
Get traffic information Position
Get weather forecast Position

Contacts Contact Create new contact Name, Number
Delete old contact Name

Device Device Reboot -
Restart -
Shutdown -

Power save Enable -
Disable -

Utility Note Create note Title
Append note Text, Title
Delete note Title

60

B.1 – Code

B.1 Code

B.1.1 Dictionary

public class Dictionary {

private static final Set<Pair<Integer, String>> TRIGGERS = new
HashSet<>();

private static final Set<Pair<Integer, String>> ACTIONS = new
HashSet<>();

private static final Set<Pair<Integer, String>> PROFILES = new
HashSet<>();

private static Set<Service> SERVICES = new HashSet<>();
public static Set<Technology> TECNOLOGIES = new HashSet<>();
public static Set<CustomPlace> AREA_LANDMARKS = new HashSet<>();

public static final int DICT_NOTIFICATIONS_ON = 1;
public static final int DICT_NOTIFICATIONS_OFF = 2;
public static final int DICT_NOTIFICATIONS_SEND = 3;
public static final int DICT_NOTIFICATIONS_RECEIVED_FROM_APP = 4;
public static final int DICT_NOTIFICATIONS_RECEIVED_FROM_CONTACT = 5;
public static final int DICT_BLUETOOTH_ON = 7;
public static final int DICT_BLUETOOTH_OFF = 8;
public static final int DICT_BLUETOOTH_DISCONNECTED_FROM = 9;
public static final int DICT_BLUETOOTH_CONNECTED_TO = 10;
public static final int DICT_BLUETOOTH_SCAN = 11;
public static final int DICT_TIMER_ADDED = 12;
public static final int DICT_TIMER_DELETED = 13;
public static final int DICT_TIMER_ON = 14;
public static final int DICT_TIMER_OFF = 15;
public static final int DICT_ALARM_ADDED = 16;
public static final int DICT_ALARM_DELETED = 17;
public static final int DICT_ALARM_ON = 18;
public static final int DICT_ALARM_OFF = 19;
public static final int DICT_PHOTO_TAKEN = 20;
public static final int DICT_VIDEO_TAKEN = 21;
public static final int DICT_SCREENSHOT_TAKEN = 22;
public static final int DICT_SMS_IN = 23;
public static final int DICT_SMS_OUT = 24;
public static final int DICT_SCREEN_LOCKED = 26;
public static final int DICT_SCREEN_UNLOCKED = 27;
public static final int DICT_NIGHT_MODE_ON = 28;
public static final int DICT_NIGHT_MODE_OFF = 29;

61

B – Tables

public static final int DICT_ROTATION_ON = 30;
public static final int DICT_ROTATION_OFF = 31;
public static final int DICT_WALLPAPER = 32;
public static final int DICT_SET_BRIGHTNESS = 33;
public static final int DICT_BRIGHTNESS_INCREASED = 34;
public static final int DICT_BRIGHTNESS_DECREASED = 35;
public static final int DICT_DATA_HIGH_CONSUMPTION = 36;
public static final int DICT_DATA_ON = 37;
public static final int DICT_DATA_OFF = 38;
public static final int DICT_DEVICE_ON = 39;
public static final int DICT_DEVICE_RESTART = 40;
public static final int DICT_DEVICE_REBOOT = 41;
public static final int DICT_DEVICE_SHUTDOWN = 42;
public static final int DICT_STORAGE_HIGH_CONSUMPTION = 43;
public static final int DICT_STORAGE_FILE_SAVED = 44;
public static final int DICT_STORAGE_DELETE_FILE = 45;
public static final int DICT_STORAGE_IMAGE_SAVED = 46;
public static final int DICT_STORAGE_CLEAR_DOWNLOAD = 47;
public static final int DICT_STORAGE_MOVE_APP = 48;
public static final int DICT_STORAGE_SHARE_FILE = 49;
public static final int DICT_LIGHTING_RISES = 50;
public static final int DICT_LIGHTING_DROPS = 51;
public static final int DICT_GPS_ON = 52;
public static final int DICT_GPS_OFF = 53;
public static final int DICT_GPS_EXIT = 54;
public static final int DICT_GPS_ENTER = 55;
public static final int DICT_AIRPLANE_ON = 56;
public static final int DICT_AIRPLANE_OFF = 57;
public static final int DICT_WIFI_ON = 58;
public static final int DICT_WIFI_OFF = 59;
public static final int DICT_WIFI_CONNECTED_TO = 60;
public static final int DICT_WIFI_DISCONNECTED_FROM = 61;
public static final int DICT_WIFI_SCAN = 62;
public static final int DICT_APP_INSTALLED = 63;
public static final int DICT_APP_LAUNCHED = 64;
public static final int DICT_APP_KILLED = 65;
public static final int DICT_APP_UNINSTALLED = 66;
public static final int DICT_TEMPERATURE_RISES = 67;
public static final int DICT_TEMPERATURE_DROPS = 68;
public static final int DICT_NOTIFICATIONS_PROFILE_SET = 69;
public static final int DICT_VOLUME_SET_PROFILE = 69;
public static final int DICT_VOLUME_SET_CALL = 70;
public static final int DICT_VOLUME_MUTE_PHONE = 71;

62

B.1 – Code

public static final int DICT_VOLUME_SET_RINGTONE = 72;
public static final int DICT_VOLUME_SET_MEDIA = 73;
public static final int DICT_VOLUME_SET_ALARM = 74;
public static final int DICT_BATTERY_PLUGGED = 75;
public static final int DICT_BATTERY_UNPLUGGED = 76;
public static final int DICT_BATTERY_POWER_MODE_ON = 77;
public static final int DICT_BATTERY_POWER_MODE_OFF = 78;
public static final int DICT_BATTERY_LOW = 79;
public static final int DICT_BATTERY_HIGH_CONSUMPTION = 80;
public static final int DICT_TIME_EVERY_DAY_AT = 81;
public static final int DICT_TIME_EVERY_WEEK_AT = 82;
public static final int DICT_TIME_EVERY_YEAR_AT = 83;
public static final int DICT_TIME_EVERY_MONTH_AT = 84;
public static final int DICT_SPEAKERPHONE_ON = 85;
public static final int DICT_SPEAKERPHONE_OFF = 101;
public static final int DICT_CALL_MUTED = 86;
public static final int DICT_CALL_REJECTED = 87;
public static final int DICT_CALL_ANSWERED = 88;
public static final int DICT_CALL_STARTED = 89;
public static final int DICT_CALL_ENDED = 90;
public static final int DICT_CALL_BLOCKED = 91;
public static final int DICT_CALL_MISSED = 92;
public static final int DICT_AUDIO_RECORDED = 93;
public static final int DICT_MUSIC_ON = 94;
public static final int DICT_MUSIC_OFF = 95;
public static final int DICT_JACK_ON = 96;
public static final int DICT_JACK_OFF = 97;
public static final int DICT_PREVIOUS_SONG = 98;
public static final int DICT_NEXT_SONG = 99;
public static final int DICT_PLAY_SONG = 100;
public static final int DICT_CONTACT_ADD = 110;
public static final int DICT_CONTACT_UPDATE = 111;
public static final int DICT_CONTACT_DELETE = 112;
public static final int DICT_FITNESS_CAMMINATA_ON = 113;
public static final int DICT_FITNESS_CAMMINATA_OFF = 114;
public static final int DICT_FITNESS_CORSA_ON = 115;
public static final int DICT_FITNESS_CORSA_OFF = 116;
public static final int DICT_FITNESS_BICICLETTA_ON = 117;
public static final int DICT_FITNESS_BICICLETTA_OFF = 118;
public static final int DICT_FITNESS_MACCHINA_ON = 119;
public static final int DICT_FITNESS_MACCHINA_OFF = 120;

public static final int DICT_FACEBOOK_NEW_POST = 200;

63

B – Tables

public static final int DICT_FACEBOOK_NEW_POST_LINK = 201;
public static final int DICT_FACEBOOK_NEW_POST_VIDEO = 202;
public static final int DICT_FACEBOOK_NEW_POST_PHOTO = 203;
public static final int DICT_FACEBOOK_PRIVATE_MSG_IN = 204;
public static final int DICT_FACEBOOK_PRIVATE_MSG_OUT = 205;

public static void initialize() {
triggers();
actions();
ringerMode();
places();
jsonInit();

}

public static void jsonInit() {
DeviceEntity d = App.get().readFromJson();
if (d != null) {

TECNOLOGIES.clear();
SERVICES.clear();
for (Technology tech : d.getTecnologies()) {

TECNOLOGIES.add(tech);
SERVICES.addAll(tech.getServices());

}
}

}

private static void triggers() {
TRIGGERS.clear();
TRIGGERS.add(new Pair<>(DICT_NOTIFICATIONS_RECEIVED_FROM_APP,

":trigger_android_notifications_received_from_app"));
TRIGGERS.add(new Pair<>(DICT_NOTIFICATIONS_RECEIVED_FROM_CONTACT,

":trigger_android_notifications_received_from_contact"));
TRIGGERS.add(new Pair<>(DICT_BLUETOOTH_ON,

":trigger_android_bluetooth_enabled"));
TRIGGERS.add(new Pair<>(DICT_BLUETOOTH_OFF,

":trigger_android_bluetooth_disabled"));
TRIGGERS.add(new Pair<>(DICT_BLUETOOTH_DISCONNECTED_FROM,

":trigger_android_bluetooth_disconnected_from"));
TRIGGERS.add(new Pair<>(DICT_BLUETOOTH_CONNECTED_TO,

":trigger_android_bluetooth_connected_to"));
TRIGGERS.add(new Pair<>(DICT_PHOTO_TAKEN,

":trigger_android_media_photo_taken"));

64

B.1 – Code

TRIGGERS.add(new Pair<>(DICT_VIDEO_TAKEN,
":trigger_android_media_video_taken"));

TRIGGERS.add(new Pair<>(DICT_SCREENSHOT_TAKEN,
":trigger_android_media_screenshot_taken"));

TRIGGERS.add(new Pair<>(DICT_SMS_IN,
":trigger_android_sms_received"));

TRIGGERS.add(new Pair<>(DICT_SMS_OUT,
":trigger_android_sms_sent"));

TRIGGERS.add(new Pair<>(DICT_SCREEN_LOCKED,
":trigger_android_screen_locked"));

TRIGGERS.add(new Pair<>(DICT_SCREEN_UNLOCKED,
":trigger_android_screen_unlocked"));

TRIGGERS.add(new Pair<>(DICT_NIGHT_MODE_ON,
":trigger_android_screen_night_mode_enabled"));

TRIGGERS.add(new Pair<>(DICT_NIGHT_MODE_OFF,
":trigger_android_screen_night_mode_disabled"));

TRIGGERS.add(new Pair<>(DICT_ROTATION_ON,
":trigger_android_screen_rotation_enabled"));

TRIGGERS.add(new Pair<>(DICT_ROTATION_OFF,
":trigger_android_screen_rotation_disabled"));

TRIGGERS.add(new Pair<>(DICT_BRIGHTNESS_INCREASED,
":trigger_android_screen_brightness_increased"));

TRIGGERS.add(new Pair<>(DICT_BRIGHTNESS_DECREASED,
":trigger_android_screen_brightness_decreased"));

TRIGGERS.add(new Pair<>(DICT_DATA_ON,
":trigger_android_data_enabled"));

TRIGGERS.add(new Pair<>(DICT_DATA_OFF,
":trigger_android_data_disabled"));

TRIGGERS.add(new Pair<>(DICT_DEVICE_ON,
":trigger_android_device_on"));

TRIGGERS.add(new Pair<>(DICT_GPS_ON,
":trigger_android_gps_enabled"));

TRIGGERS.add(new Pair<>(DICT_GPS_OFF,
":trigger_android_gps_disabled"));

TRIGGERS.add(new Pair<>(DICT_GPS_EXIT,
":trigger_android_gps_exit"));

TRIGGERS.add(new Pair<>(DICT_GPS_ENTER,
":trigger_android_gps_enter"));

TRIGGERS.add(new Pair<>(DICT_AIRPLANE_ON,
":trigger_android_airplane_enabled"));

TRIGGERS.add(new Pair<>(DICT_AIRPLANE_OFF,
":trigger_android_airplane_disabled"));

65

B – Tables

TRIGGERS.add(new Pair<>(DICT_WIFI_ON,
":trigger_android_wifi_enabled"));

TRIGGERS.add(new Pair<>(DICT_WIFI_OFF,
":trigger_android_wifi_disabled"));

TRIGGERS.add(new Pair<>(DICT_WIFI_CONNECTED_TO,
":trigger_android_wifi_connected_to"));

TRIGGERS.add(new Pair<>(DICT_WIFI_DISCONNECTED_FROM,
":trigger_android_wifi_disconnected_from"));

TRIGGERS.add(new Pair<>(DICT_APP_INSTALLED,
":trigger_android_app_installed"));

TRIGGERS.add(new Pair<>(DICT_APP_LAUNCHED,
":trigger_android_app_launched"));

TRIGGERS.add(new Pair<>(DICT_APP_KILLED,
":trigger_android_app_killed"));

TRIGGERS.add(new Pair<>(DICT_APP_UNINSTALLED,
":trigger_android_app_uninstalled"));

TRIGGERS.add(new Pair<>(DICT_NOTIFICATIONS_PROFILE_SET,
":trigger_android_notifications_profile_set"));

TRIGGERS.add(new Pair<>(DICT_BATTERY_PLUGGED,
":trigger_android_battery_plugged"));

TRIGGERS.add(new Pair<>(DICT_BATTERY_UNPLUGGED,
":trigger_android_battery_unplugged"));

TRIGGERS.add(new Pair<>(DICT_BATTERY_POWER_MODE_ON,
":trigger_android_battery_power_mode_enabled"));

TRIGGERS.add(new Pair<>(DICT_BATTERY_POWER_MODE_OFF,
":trigger_android_battery_power_mode_disabled"));

TRIGGERS.add(new Pair<>(DICT_BATTERY_LOW,
":trigger_android_battery_low"));

TRIGGERS.add(new Pair<>(DICT_TIME_EVERY_DAY_AT,
":trigger_android_time_every_day_at"));

TRIGGERS.add(new Pair<>(DICT_MUSIC_ON,
":trigger_android_audio_music_on"));

TRIGGERS.add(new Pair<>(DICT_MUSIC_OFF,
":trigger_android_audio_music_off"));

TRIGGERS.add(new Pair<>(DICT_JACK_ON,
":trigger_android_audio_jack_on"));

TRIGGERS.add(new Pair<>(DICT_JACK_OFF,
":trigger_android_audio_jack_off"));

TRIGGERS.add(new Pair<>(DICT_FITNESS_CAMMINATA_ON,
":trigger_android_walking"));

TRIGGERS.add(new Pair<>(DICT_FITNESS_CAMMINATA_OFF,
":trigger_android_walking"));

66

B.1 – Code

TRIGGERS.add(new Pair<>(DICT_FITNESS_CORSA_ON,
":trigger_android_running"));

TRIGGERS.add(new Pair<>(DICT_FITNESS_CORSA_OFF,
":trigger_android_running"));

TRIGGERS.add(new Pair<>(DICT_FITNESS_BICICLETTA_ON,
":trigger_android_cycling"));

TRIGGERS.add(new Pair<>(DICT_FITNESS_BICICLETTA_OFF,
":trigger_android_cycling"));

TRIGGERS.add(new Pair<>(DICT_FITNESS_MACCHINA_ON,
":trigger_android_vehicle"));

TRIGGERS.add(new Pair<>(DICT_FITNESS_MACCHINA_OFF,
":trigger_android_vehicle"));

TRIGGERS.add(new Pair<>(DICT_FACEBOOK_NEW_POST,
":trigger_facebook_new_post"));

TRIGGERS.add(new Pair<>(DICT_FACEBOOK_NEW_POST_VIDEO,
":trigger_facebook_new_video_post"));

TRIGGERS.add(new Pair<>(DICT_FACEBOOK_NEW_POST_PHOTO,
":trigger_facebook_new_photo_post"));

}

private static void actions() {
ACTIONS.clear();
ACTIONS.add(new Pair<>(DICT_BLUETOOTH_ON,

":action_android_bluetooth_enable"));
ACTIONS.add(new Pair<>(DICT_BLUETOOTH_OFF,

":action_android_bluetooth_disable"));
ACTIONS.add(new Pair<>(DICT_BLUETOOTH_DISCONNECTED_FROM,

":action_android_bluetooth_disconnect_from"));
ACTIONS.add(new Pair<>(DICT_BLUETOOTH_CONNECTED_TO,

":action_android_bluetooth_connect_to"));
ACTIONS.add(new Pair<>(DICT_NIGHT_MODE_ON,

":action_android_screen_night_mode_enable"));
ACTIONS.add(new Pair<>(DICT_NIGHT_MODE_OFF,

":action_android_screen_night_mode_disable"));
ACTIONS.add(new Pair<>(DICT_SET_BRIGHTNESS,

":action_android_screen_set_brightness"));
ACTIONS.add(new Pair<>(DICT_GPS_ON, ":action_android_gps_enable"));
ACTIONS.add(new Pair<>(DICT_WIFI_ON,

":action_android_wifi_enable"));
ACTIONS.add(new Pair<>(DICT_WIFI_OFF,

":action_android_wifi_disable"));

67

B – Tables

ACTIONS.add(new Pair<>(DICT_WIFI_CONNECTED_TO,
":action_android_wifi_connect_to"));

ACTIONS.add(new Pair<>(DICT_WIFI_DISCONNECTED_FROM,
":action_android_wifi_disconnect_from"));

ACTIONS.add(new Pair<>(DICT_VOLUME_SET_PROFILE,
":action_android_volume_set_profile"));

ACTIONS.add(new Pair<>(DICT_MUSIC_ON,
":action_android_audio_start_music"));

ACTIONS.add(new Pair<>(DICT_FACEBOOK_NEW_POST,
":action_facebook_new_staus"));

ACTIONS.add(new Pair<>(DICT_FACEBOOK_NEW_POST_PHOTO,
":action_facebook_photo_post"));

ACTIONS.add(new Pair<>(DICT_FACEBOOK_NEW_POST_VIDEO,
":action_facebook_video_post"));

}

private static void ringerMode() {
PROFILES.clear();
PROFILES.add(new Pair<>(0, "Silenzioso"));
PROFILES.add(new Pair<>(1, "Vibrazione"));
PROFILES.add(new Pair<>(2, "Normale"));

}
}

68

B.1 – Code

B.1.2 EventListened

public class EventListened extends EventDB {

// regola ignorata dall’utente
public static final int RULE_IGNORED = -100;

// regola eliminata dall’utente
public static final int RULE_ELIMINATED = -101;

// regola memorizzata dall’utente
public static final int RULE_SAVED = -102;

// quantita’ di eventi ripetuti per determinare i suggerimenti
private static final int MAX_QUANTITY_GENERAL = 4;

// quantita’ di eventi tempo ripetuti per determinare i suggerimenti
private static final int MAX_QUANTITY_TIME = 2;

// quantita’ di eventi location ripetuti per determinare i suggerimenti
private static final int MAX_QUANTITY_LOCATION = 2;

// tempo di ricerca eventi simili (20 sec)
private static final long TIME_INTERVAL_SEARCHING = 20 * 1000;

// tempo di ricerca eventi location (1 ora)
private static final long TIME_INTERVAL_SEARCHING_LOCATION = 60 * 60

* 1000;
// tempo cancellazione tabella di log (72 ore)
private static final long TIME_INTERVAL_DELETING = 72 * 60 * 60 *

1000;
private static String LAST_EVENT_NAME;
private Context context;

public EventListened(Context c, final int nome) {
super(System.currentTimeMillis(), nome, "-");
this.context = c;
newEvent();

}

public EventListened(Context c, final int nome, final String
nameDetail) {
super(System.currentTimeMillis(), nome, nameDetail);
this.context = c;
newEvent();

}

private void newEvent() {
final String this_event_name = getParam1().equals("-") ?

getEventName() + "" : getEventName() + ":" + getParam1();

69

B – Tables

if (LAST_EVENT_NAME == null ||
!LAST_EVENT_NAME.equals(this_event_name)) {
// run the sentence in a new thread
new Thread(new Runnable() {

@Override
public void run() {

// memorizzo l’ultimo evento presente nel db cosi’ da
filtrare un po’ di eventi doppi

EventDB lastEvent = App.getDB().getLastEventTime();
// controllo che l’evento precedente non sia lo stesso

di quello attuale
boolean eventDuplicate = lastEvent != null &&

lastEvent.getEventName().equals(getEventName())
&&

lastEvent.getHour().equals(getHour()) &&
lastEvent.getParam1().equals(getParam1());

if (!eventDuplicate) {
App.getDB().insert(EventListened.this);
checkActiveRules();
eventsAssociation();

}
}

}).start();
}

}

private void checkActiveRules() {
// controllo se ci sono regole attive coerenti con l’azione appena

fatta dall’utente
List<TriggerActionDB> ruleList =

App.getDB().getRuleT(getEventName());
for (TriggerActionDB ta : ruleList) {

CompleteRuleDB rule = App.getDB().getRule(ta.getUid());
if (rule != null && rule.getAttiva().equals("true")) {

if (getParam1() == null) {
// se ci sono e non hanno parametri, non sevono

ulteriori controlli
GenericAction.newInstance(ta.getActionName(),

ta.getParam1A(), context);
} else if (ta.getParam1T() != null &&

ta.getParam1T().equals(getParam1())) {
// altrimenti devo controllare se i parametri sono

uguali

70

B.1 – Code

GenericAction.newInstance(ta.getActionName(),
ta.getParam1A(), context);

}
}

}
}

private void eventsAssociation() {
// controllo che sia effettivamente un’azione
String parentEventActionName =

Dictionary.getActionID(getEventName());
if (!parentEventActionName.equals("")) {

// EVENTI TEMPO
// dal db elenco gli eventi che hanno lo stesso orario di

quello appena intercettato ma in giorni precedenti
if (App.getDB().getEventsFromHour(getEventName(), getParam1(),

getDay(), getHour()).size() > MAX_QUANTITY_TIME) {
EventDB timeEvent = new

EventDB(System.currentTimeMillis(),
Dictionary.DICT_TIME_EVERY_DAY_AT, getHour() + "");

addTriggerActionInDB(timeEvent, this, MAX_QUANTITY_TIME);
}

// EVENTI LOCATION
// escludo gli eventi della stessa categoria
if (!parentEventActionName.split("_")[2].contains("gps")) {

// cerco informazioni sull’entrata o l’uscita da un luogo
nell’ultima ora

EventDB e =
App.getDB().getOnOffEvent(Dictionary.DICT_GPS_ENTER,
Dictionary.DICT_GPS_EXIT,

getTimestamp() - TIME_INTERVAL_SEARCHING_LOCATION,
getTimestamp());

if (e != null) {
addTriggerActionInDB(e, this, MAX_QUANTITY_LOCATION);

}
}

// EVENTI FITNESS
// escludo gli eventi della stessa categoria
String split = parentEventActionName.split("_")[2];

71

B – Tables

if (!split.contains("walking") && !split.contains("running")
&& !split.contains("cycling") &&
!split.contains("vehicle")) {
// cerco informazioni sull’inizio o la fine di una

attivita’ nell’ultima ora
associateOnOffEvents(Dictionary.DICT_FITNESS_CAMMINATA_ON,

Dictionary.DICT_FITNESS_CAMMINATA_OFF);
associateOnOffEvents(Dictionary.DICT_FITNESS_CORSA_ON,

Dictionary.DICT_FITNESS_CORSA_OFF);
associateOnOffEvents(Dictionary.DICT_FITNESS_BICICLETTA_ON,

Dictionary.DICT_FITNESS_BICICLETTA_OFF);
associateOnOffEvents(Dictionary.DICT_FITNESS_MACCHINA_ON,

Dictionary.DICT_FITNESS_MACCHINA_OFF);
}

// EVENTI FUNZIONALITA’
assignTriggersAndActions(parentEventActionName);

}
// pulisco un po’ la tabella di log, eliminando tutti gli eventi

piu’ vecchi di 72 ore
App.getDB().deleteLog(getTimestamp() - TIME_INTERVAL_DELETING);

}

private void associateOnOffEvents(int on, int off) {
EventDB e = App.getDB().getOnOffEvent(on, off, getTimestamp() -

TIME_INTERVAL_SEARCHING, getTimestamp());
if (e != null && e.getEventName() == on) {

addTriggerActionInDB(e, this, MAX_QUANTITY_GENERAL);
}

}

private void assignTriggersAndActions(String actionName) {
Integer[] listName = {

getEventName(),
Dictionary.DICT_GPS_ENTER,
Dictionary.DICT_GPS_EXIT,
Dictionary.DICT_FITNESS_CAMMINATA_ON,
Dictionary.DICT_FITNESS_CAMMINATA_OFF,
Dictionary.DICT_FITNESS_CORSA_ON,
Dictionary.DICT_FITNESS_CORSA_OFF,
Dictionary.DICT_FITNESS_BICICLETTA_ON,
Dictionary.DICT_FITNESS_BICICLETTA_OFF,
Dictionary.DICT_FITNESS_MACCHINA_ON,

72

B.1 – Code

Dictionary.DICT_FITNESS_MACCHINA_OFF
};
Long time = getTimestamp();
// prendo il primo evento immediatamente precedente a quello

attualmente scatenato e che sia un trigger
for (EventDB trigger : App.getDB().getTriggerOfEvent(listName,

time - TIME_INTERVAL_SEARCHING, time)) {
// controllo che sia effettivamente un trigger
String triggerName =

Dictionary.getTriggerID(trigger.getEventName());
if (!triggerName.equals("")) {

if (filter(triggerName, actionName)) {
addTriggerActionInDB(trigger, this,

MAX_QUANTITY_GENERAL);
LAST_EVENT_NAME = actionName + (getParam1() != null ?

":" + getParam1() : "");
break;

}
}

}
}

private boolean filter(String triggerName, String actionName) {
boolean filter1 = triggerName.contains("airplane") &&

(actionName.contains("wifi") ||
actionName.contains("bluetooth") ||
actionName.contains("data"));

boolean filter2 = actionName.contains("airplane") &&
(triggerName.contains("wifi") ||

triggerName.contains("bluetooth") ||
triggerName.contains("data"));

// controllo che le associazioni non appartengano alla stessa
classe di eventi

// (per esempio: evento wifi_on -> trigger wifi_off)
boolean filter3 = triggerName.contains(actionName.split("_")[2]);
boolean filter4 = triggerName.equals("");

return !filter1 && !filter2 && !filter3 && !filter4;
}

private void addTriggerActionInDB(EventDB trigger, EventDB action,
int quantityLimit) {

73

B – Tables

TriggerActionDB ta = new TriggerActionDB(trigger.getEventName(),
action.getEventName(), trigger.getParam1(),
action.getParam1());

try {
App.getDB().insert(ta);
ta = App.getDB().getTriggerActionUID(trigger.getEventName(),

action.getEventName(), trigger.getParam1(),
action.getParam1());

} catch (Exception ex) {
// elemento gia’ inserito quindi incremento soltanto la

quantita’ dopo aver ricavato il UID
ta = App.getDB().getTriggerActionUID(trigger.getEventName(),

action.getEventName(), trigger.getParam1(),
action.getParam1());

// ma soltanto se il trigger non e’ stato gia’ attivato
if (ta.getQuantity() != RULE_SAVED && ta.getQuantity() !=

RULE_ELIMINATED) {
ta.incrementQta();
App.getDB().update(ta);

}
}
// controllo se le quantita’ superano un certo limite, oltre il

quale si puo’ suggerire una regola
if (ta != null && ta.getQuantity() > quantityLimit) {

sendNotification(ta);
}

}

private void sendNotification(TriggerActionDB ta) {
// siamo pronti a creare una nuova regola suggerita!
Intent i = new Intent(context, MainActivity.class);
i.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK |

Intent.FLAG_ACTIVITY_CLEAR_TASK);

// controllo anche che l’utente sia loggato (che abbia le
credenziali memorizzate)

if (!App.get().getSP().getString("user", "").equals("") &&
!App.get().getSP().getString("pass", "").equals("")) {

int notificationID = ta.getUid().intValue();
i.setAction(notificationID + "");
String title = Dictionary.getTriggerName(ta.getTriggerName())

+ " -> " + Dictionary.getActionName(ta.getActionName());

74

B.1 – Code

new MyNotification(context, title, i,
notificationID).sendNotification();

} else {
new MyNotification(context, "Devi effettuare il login!!!", i,

App.NOTIFICATION_LOGIN).sendNotification();
}

}
}

75

Bibliography

[1] F. Corno, L. De Russis, A. Monge Roffarello, A Semantic Web Approach to
Simplifying Trigger-Action Programming in the IoT, 2017

[2] F. Corno, L. De Russis, A. Monge Roffarello, EUPont: High Level Representa-
tion for End User Programming in the IoT, 2016

[3] F. Corno, L. De Russis, A. Monge Roffarello, RecRules: Recommending
Trigger-Action Rules for End-User Development in the IoT

[4] Firebase, www.firebase.google.com

[5] Facebook Developers, www.developers.facebook.com

[6] Facebook API Graph, www.developers.facebook.com/tools/explorer/

[7] IFTTT, www.ifttt.com

[8] Android Developers, www.developer.android.com

[9] Lina Yao, Quan Z. Sheng, Anne H.H. Ngu, Helen Ashman, and Xue Li.
2014. Exploring Recommendations in Internet of Things. In Proceedings of
the 37th International ACM SIGIR Conference on Research; Development in
Information Retrieval (SIGIR ’14). ACM, New York, NY, USA, 855–858.

[10] Fulvio Corno, Luigi De, and Alberto Monge Roffarello. 2017. A High-Level
Approach Towards End User Development in the IoT. In Proceedings of the
2016 CHI Conference Extended Abstracts on Human Factors in Computing
Systems (CHI EA ’17). ACM, New York, NY, USA, 1546–1552.

[11] B. Ur, E. McManus, M. Pak Yong Ho and M. L. LIttman, ”Practical Trigger-
Action Programming in the Smart Home,” in Proceedings of the SIGCHI

77

Bibliography

Conference of Human Factors in Computing Systems, CHI ’14, 2014.

[12] H. Lieberman, F. Paternò, M. Klann and V. Wulf, ”End-User Development:
An Emerging Paradigm”, in End User Development, 2006, pp. 1-8.

78

