
POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Informatica (Computer
Engineering)

Master Thesis in Computer Engineering

Enterprise Service Bus
A business study case

Supervisor
prof. Maurizio Morisio

Candidate
Nunzio D’Agostino

Company Supervisor
Intesa Sanpaolo Group Services

dott. Ezio Gribaudo

Academic Year 2017 – 2018

Contents

List of Figures 5

1 Intesa Sanpaolo: company presentation 8
1.1 History . 8

1.1.1 Banca Intesa . 8
1.1.2 Sanpaolo IMI . 9

1.2 Company profile . 9
1.3 ICT in Intesa Sanpaolo . 9

2 Definitions 11
2.1 Enterprise Architecture . 11
2.2 Service . 12
2.3 Service Oriented Architecture . 12
2.4 Enterprise Service Bus . 12

3 Withdrawal service: orchestration on Mainframe 15
3.1 Description of withdrawal service . 15
3.2 Mainframe . 15
3.3 Orchestration elements . 17

3.3.1 Business Component . 17
3.3.2 Business Service . 17
3.3.3 ISP Connector . 18
3.3.4 ISP Middleware . 18
3.3.5 IBM MQ . 19

3.4 Logical architecture of withdrawal service on Mainframe 20

4 Withdrawal service: orchestration on Service Oriented Architecture 23
4.1 Customer Centric Architecture: Service Oriented Architecture in Intesa San-

paolo . 23
4.1.1 Principles . 24
4.1.2 Layers . 24
4.1.3 IBM Integration Bus . 25
4.1.4 Process Engine . 28
4.1.5 Rule Engine . 29
4.1.6 Service Catalog . 30

3

4.1.7 Customer Data . 32
4.1.8 Product Hub . 32

4.2 Description of withdrawal service transformation 33
4.2.1 Description of new withdrawal service 34
4.2.2 Development of Composite Service as a flow on IIB toolkit 37

4.3 Re-usability on ESB: cardless withdrawal service 43
4.3.1 Description of cardless withdrawal service 43
4.3.2 Integration and implementation . 43

5 Evaluation of withdrawal service transformation 47
5.1 Requirements . 47

5.1.1 Functional Requirements . 47
5.1.2 Non-Functional Requirements . 48

5.2 KPI . 48
5.2.1 Reuse rate . 48
5.2.2 Performance Times . 50
5.2.3 Scalability . 52
5.2.4 Time distribution in elapsed time in ESB orchestration 53
5.2.5 Final KPI considerations . 53

6 Future evolution of Intesa Sanpaolo ICT: New Digital Architecture 55
6.1 Objectives . 55
6.2 Logical model and main components . 56
6.3 Microservice centrality . 57

6.3.1 What is a microservice . 57
6.3.2 When and how to use microservices 58
6.3.3 Microservices in Intesa Sanpaolo . 59

Bibliography 63

4

List of Figures

1.1 Intesa Sanpaolo Logo . 8
1.2 Banca Intesa Logo . 9
1.3 Sanpaolo Imi Logo . 9
3.1 The IBM Z mainframe. 16
3.2 Service request and service response through ISP Middleware and ISP Con-

nector. 18
3.3 Description schema of basic MQ mechanism. 19
3.4 Flow chart of first "simulation" part of withdrawal operation 21
3.5 Flow chart of "dispostive" part of withdrawal operation 22
4.1 Logical model of Customer Centric Architecture 25
4.2 IIB Web User Interface screenshot. 26
4.3 IIB Console screenshot for admistration purpose. 27
4.4 IIB Console screenshot for admistration purpose. 27
4.5 Example of a rule in ODM. 29
4.6 ODM rule can be developed also in a graphical way, which allows to con-

catenate more simple rules in order to create a new more complex rule. . . 30
4.7 Lifecycle of and endpoint in Service Catalog. 31
4.8 Logical schema of orchestration on Mainframe (AS-IS scenario) 36
4.9 Logical schema of orchestration on ESB (TO-BE scenario) 36
4.10 A message flow example. 37
4.11 IIB project tree used for withdrawal service development 39
4.12 Development pattern for Interface flow . 41
4.13 Sample pattern for Implementation flow 42
4.14 Development of Implementation flow . 42
4.15 Architectural schema of cardless withdrawal. 44
4.16 Use case schema of cardless withdrawal. 45
5.1 Reusability graph of old components in new withdrawal service. 50
5.2 Schema of ESB orchestration environment used in performance test. 51
5.3 Schema of Mainframe orchestration environment used in performance test. 51
5.4 Withdrawal implementation flow . 53
5.5 Average Elapsed Time distribution in ESB orchestrated withdrawal flow. . 54
6.1 New Digital Architecture logical model . 56
6.2 Microservices influence many aspects of an information system 58
6.3 Front-end in a single component scenario. 59
6.4 Front-end in each microservice scenario. 60

5

6.5 Full microservice scenario. 60

6

Abstract

Today every company of any size needs more or less complex information systems in order
to be able to manage all its daily activities and to develop strategies for the future. The
centrality of information systems in companies has grown in recent decades in parallel with
technological innovation: the same technology, in fact, has "climbed" the different levels of
the Robert Anthony’s pyramid1.

The aim of this thesis is to analyze how it is possible to integrate a legacy information
system that has undergone multiple stratifications and customizations over the years with
a service-oriented architecture that is compatible with all features characterizing the most
recent information systems.

In the first part of the work, after a brief presentation of Intesa Sanpaolo information
system, we will illustrate the different orchestration paradigms and related architectures.
Starting from orchestrations that currently can be defined as legacy, such as those that
occur on the Mainframe platform, we will illustrate the more recent service-oriented archi-
tecture and its implementations.

In the second part of the work we will analyze a particular banking service, the with-
drawal service, to show the implementation differences between an orchestration on the
Mainframe compared to that realized on a service-oriented architecture.

The last part of the thesis is devoted to the comparison between the different implemen-
tations of the withdrawal service on the two architectures. Functional and non-functional
requirements, KPIs and use cases will be analyzed to evaluate the effects that the trans-
formation has had on the service.

Finally, we will illustrate how it is possible to continue to integrate innovative technolo-
gies with legacy systems that allow the creation of core services of the bank. Particular
attention will be placed on microservices.

1The Anthony triangle (also Anthony’s triangle or pyramid) is an organizational model. The triangle
takes a hierarchical view of management structure, with many operational decisions at the bottom, some
tactical decisions in the middle and few but important strategic decisions at the top of the triangle.
The higher in the triangle an item is, the more scope it covers and less precise it becomes. As items
move down they become more detailed and apply more precisely. In the past, computer science was
used in the company to speed up manual operations, so it was mainly at the base of Anthony’s pyramid
(operation level). With the passing of the years, however, we have assisted to a climb of technological
innovation towards the top of the organizational pyramid of companies, what Anthony defines as a
strategic level. Just thinking the important developments in big data or machine learning technologies
and how these technologies are changing the managerial approach in companies all over the world.

7

Chapter 1

Intesa Sanpaolo: company
presentation

1.1 History

Figure 1.1. Intesa Sanpaolo Logo

Intesa Sanpaolo is the banking group which was formed in January 1, 2007 by the merger
of two leading Italian banking groups, Banca Intesa and Sanpaolo IMI. The merger brought
together two major Italian banks with shared values so as to increase their opportunities
for growth, enhance service for retail customers, significantly support the development of
businesses and make an important contribution to the country’s growth. The first steps
toward the merger process were taken on August 26, 2006, when the Boards of Directors
of the two banks approved the guidelines for a merger plan. The plan was then agreed by
the Boards on October 12 and ratified by the Extraordinary Shareholders’ Meetings of the
two banks on December 1 of the same year.

1.1.1 Banca Intesa
Banca Intesa was formed in 1998 from the merger of Cariplo and Banco Ambrosiano Veneto.
In 1999, Banca Commerciale Italiana (BCI) joined the Intesa Group. With the subsequent
merger of BCI into Banca Intesa (May 2001), the group took the name IntesaBci. In
December 2002 the Shareholders’ Meeting resolved the change of the company name to
Banca Intesa, effective as of January 1, 2003.

8

1.2 – Company profile

Figure 1.2. Banca Intesa Logo

1.1.2 Sanpaolo IMI

Figure 1.3. Sanpaolo Imi Logo

Sanpaolo IMI was formed in 1998 from the merger of Istituto Bancario San Paolo di
Torino and IMI (Istituto Mobiliare Italiano). These two banks were highly complementary:
Istituto Bancario San Paolo di Torino was specialised in retail lending, IMI, a public entity
founded in 1931 to support the reconstruction of the national industrial system, was a
leading business and investment bank.

1.2 Company profile
Intesa Sanpaolo is among the top banking groups in the euro zone, with a market capitalisa-
tion of 38.5 billion euro. Intesa Sanpaolo is the leader in Italy in all business areas (retail,
corporate, and wealth management). The Group offers its services to 11.9 million cus-
tomers through a network of over 4,500 branches well distributed throughout the country
with market shares no lower than 12Intesa Sanpaolo has a strategic international pres-
ence, with approximately 1,100 branches and 7.5 million customers, including subsidiaries
operating in commercial banking in 12 countries in Central Eastern Europe and Middle
Eastern and North African areas, and an international network of specialists in support of
corporate customers across 25 countries, in particular in the Middle East and North Africa
and in those areas where Italian companies are most active, such as the United States,
Brazil, Russia, India and China.

1.3 ICT in Intesa Sanpaolo
Direzione Sistemi Informativi is the beating heart of Intesa Sanpaolo’s ICT.

DSI is in charge of:

9

1 – Intesa Sanpaolo: company presentation

• Defining of ICT Group strategy and verifying its implementation

• Defining Group’s technological standards

• Governing and overseeing IT and telecommunications

• Designing, implementing and managing applications and technological infrastructures

• Offering IT services through Service Management structures and controlling service
levels provided

• Analyzing technological trends

• Planning procurement of IT goods and services

• Monitoring suppliers activities to guarantee compliance with Service Level Agreement

The ICT activities, which are part of the information systems management (DSI), are
strongly structured and organized according to precise codified processes, a necessary choice
due to the great complexity and importance of the managed services. The DSI is organized
in two lines: application development group and infrastructure services group.

In particular, the application development group has the task of managing the
entire service life cycle of applications, from realization to production delivery, until main-
tenance. Among DSI goals there are the definition of the technologies, configurations and
standards, and the management of capacity planning according to the services provided.

The application is developed already divided into main components, such as the Web
part and the back end, after which it is taken in charge by the infrastructure services
group, which have the competence of activation and must ensure reliability, scalability
and redundancy of the service.

In the last year DSI has become increasingly important in the bank as the digitalization
and the innovation are becoming more and more lively.

Intesa Sanpaolo’s innovation is both an instrument for the Group’s Business Units to
foster incremental innovation of products and services that help the bank to be increasingly
competitive and close to its customers both in a medium-long perspective term, a means to
develop new business models for the Bank and its customers in the various industries: from
the sharing economy to the new Insurtech models, from the infomediation as a revenue
resource to the development of big data, artificial intelligence and healthcare, all what
could represent new revenue areas for Intesa Sanpaolo in the prospective horizon of the
next 5-10 years.

10

Chapter 2

Definitions

From the 19th edition of KPMG’s IOC Survey 2017, which involved over 4,500 CIOs and
IT managers from 86 different countries, it emerged that 89% of the companies interviewed
increased their IT investments to adapt to the sudden changes in the markets in which
operate.[3]

It seems clear that more and more is invested in technology as this aspect is considered
one of the few factors that can make it stand out on the market. Information systems have
become a strategic asset for companies and the choice of a technological architecture can
be a determining factor for success.

One of the most known architecture which enables to fast changes is Service Oriented
Architecture implemented by an Enterprise Service Bus.

In this chapter there are some useful definitions of terms which will be recurrent in the
thesis.

2.1 Enterprise Architecture
Enterprise architecture (EA) is a comprehensive operational framework that explores all
of an organizations functional areas while defining how technology benefits and serves the
organization’s overall mission. The technological aspect of EA defines the hardware, oper-
ating systems, programming and networking solutions a business employs and how those
may be used to achieve its current and future objectives.

EA includes the following components: mission, stakeholders and customers, processes,
applications and infrastructure, networks, and data.

EA facilitates improvement of processes in the following ways:

• Discovering business processes that require change

• Efficiently and continuously managing change via clearly defined documentation

• Developing and implementing enterprise-wide procedures

• Encouraging effective enterprise-wide communication, which, in theory leads to better
decisions.

11

2 – Definitions

2.2 Service
A service[2]:

• Is a logical representation of a repeatable business activity that has a specified out-
come (e.g., check customer credit, provide weather data, consolidate drilling reports)

• Is self-contained

• May be composed of other services

• Is a “black box” to consumers of the service

2.3 Service Oriented Architecture
Open Group definition of Service-Oriented Architecture (SOA) describes it as an architec-
tural style that supports service-orientation.

Service-orientation is a way of thinking in terms of services and service-based develop-
ment and the outcomes of services[2].

A Service Oriented Architecture supports, by integrating them, business processes as
a set of services interoperable. It represents, on one side, an important solution based on
standards to ensure interoperability between software programs independently from lan-
guages and operating systems, on the other, tends to fill the gap between processes and
the activities carried out by the company and ICT tools that support them.

Main principles of Service Oriented Architecture are:

• Service-based: business functionality is made available in the form of ‘services’, which
can be fairly granular. Each service provides a business function that is independent
of other services.

• Platform-independent: SOA services can be on any platform that supports the service
transport and interface requirements.

• Implementation-independent: services are designed to be independent from their own
implementation, minimizing the impact of change management if the implementation
changes. In a coupled system, an implementation change (e.g. a change in a back-
end data type) would require a change to the interface and therefore the connecting
systems.

• Single contact point: a single service registry/catalogue allows to locate each service
deployed on the architecture and provides correct parameters to invoke it.

2.4 Enterprise Service Bus
"Enterprise Service Bus" term was introduced in the field of computer science at the be-
ginning of the 2000s.

12

2.4 – Enterprise Service Bus

An Enterprise Service Bus (ESB) is an integrated platform that provides fundamental
interaction and communication services for complex software applications via an event
driven and standards-based messaging engine, or bus, built with middleware infrastructure
product technologies. The ESB platform is geared toward isolating the link between a
service and transport channel and is used to fulfill service-oriented architecture (SOA)
requirements.

Main characteristics of an ESB are:

• Standardization of communication languages

• Integration of different systems and different applications

• Transport, transformation, routing, enhancement of messages

• Service orchestration enabling Service Oriented Architectures

Using an ESB in an Enterprise Service Architecture means that the applications that
form it will communicate with each other via the bus. This has the advantage of reducing
the number of point-to-point connections needed to make the applications communicate
with each other. This facilitates the analysis of software changes that are simpler and
clearer.

Finally, an Enterprise Service Bus implements a communication system between hetero-
geneous software that interacts with each other in a Service Oriented Architecture removing
interdependencies between applications.

13

14

Chapter 3

Withdrawal service:
orchestration on Mainframe

In this chapter will be analyzed the AS-IS architecture describing a very common bank
service like withdrawal. It will be described Mainframe and the orchestration which is
implemented on it by using two fundamental objects of Intesa Sanpaolo IT: Business Service
and Business Component.

3.1 Description of withdrawal service
The withdrawal operation allows cash withdrawal at bank office from the customer’s bank
account or from savings account. The operation requires:

• Form: verbal request at the counter or filling a debit form.

• Check: own check or check made out to the customer himself. Check data capture
is done by a scanner; in case the device is not installed or active, the operator must
enter check identification data manually.

• "Third Party Withdrawal": for this mode it is necessary that the presenter has a letter
for Disposition that authorizes him to withdraw funds from the current account.

• Simple Credit: this function is triggered "silently" by another application called
CRESP; for this withdrawal method it is necessary the current account has a Credit
Simple platfond on the specific account for the operating branch.

3.2 Mainframe
A Mainframe computer is a computer system specialized in high workload of centralized
data elaboration. Mainframes are often used in large data centers by structured compa-
nies and governative organizations, where exist high levels of processing performances and

15

3 – Withdrawal service: orchestration on Mainframe

Figure 3.1. The IBM Z mainframe.

[?]

massive input/output volumes. In these types of organizations the use of mainframe sys-
tems are consequence of their needs of high availability and of central government of the
infrastructure.

Modern mainframes can run multiple different instances of operating systems at the
same time. This technique of virtual machines allows applications to run as if they were
on physically distinct computers. In this role, a single mainframe can replace higher-
functioning hardware services available to conventional servers.

Nowdays mainframes, notably the IBM zSeries, System z9 and System z10 servers, offer
two levels of virtualization: logical partitions (LPARs, via the PR/SM facility) and virtual
machines (via the z/VM operating system). Many mainframe customers run two machines:
one in their primary data center, and one in their backup data center—fully active, partially
active, or on standby—in case there is a catastrophe affecting the first building. Test,
development, training, and production workload for applications and databases can run on
a single machine, except for extremely large demands where the capacity of one machine
might be limiting. Such a two-mainframe installation can support continuous business
service, avoiding both planned and unplanned outages.

Mainframes are designed to handle very high volume input and output (I/O) and em-
phasize throughput computing. Since the late-1950s, mainframe designs have included sub-
sidiary hardware (called channels or peripheral processors) which manage the I/O devices,
leaving the CPU free to deal only with high-speed memory. It is common in mainframe
shops to deal with massive databases and files. Gigabyte to terabyte-size record files are

16

3.3 – Orchestration elements

not unusual. Compared to a typical PC, mainframes commonly have hundreds to thou-
sands of times as much data storage online, and can access it reasonably quickly. Other
server families also offload I/O processing and emphasize throughput computing.

Mainframe return on investment (ROI), like any other computing platform, is depen-
dent on its ability to scale, support mixed workloads, reduce labor costs, deliver uninter-
rupted service for critical business applications, and several other risk-adjusted cost factors.
Companies develops on Mainframe their core services and make them available to many
"consumers" who could need to use the same service at the same time: one need only think,
for example, how many flights of the same airline are booked in a second or the amount of
bank transactions which every minute are completed.

3.3 Orchestration elements
Mainframe technical characteristics make it a good candidate to implement a service ori-
ented architecture. For this reason Intesa Sanpaolo, when the number of applications
accessible to the end customer has rapidly increased, has invested in an infrastructure that
implements the principles of SOA, still keeping the product centrality. More specifically,
a group of services could be orchestrated only inside the same product silos. As first
approach, the development team creates different services, called Business Components,
which are orchestrated by more complex procedures written in COBOL, called Business
Services.

3.3.1 Business Component
Business component can be defined as an elementary operation in which it is not necessary
take care of transactionality, because it is assigned to business service logic. It allows to
execute operations interfacing with mainframe resources (files, database connections, etc.)
through a CICS (Customer Information Control System). If we imagine a more familiar
C program, we can associate a business component with a C function called by a "parent"
main.

3.3.2 Business Service
Continuing the analogy with C program, business service can be defined as the main()
function which cares about transactionality of entire operation during business compo-
nents orchestration. A problem in a single business component brings to rollback the
entire business service. The "Business Service" application architecture in Intesa Sanpaolo
can be consider a particular declination of the Service Oriented architecture (SOA) because
it implements the orchestration of different legacy applications on Mainframe. However,
we can not yet define the business service as real service because the business components
are not yet atomic and contain code customization according to calling channel. Busi-
ness service uses two distinct custom software, the ISP connector and ISP Middleware,
developed since 2000 which allow respectively to invoke a business service and to track its
activity. In this architecture the "consumer" component of the service it is a distributed
application, while the "provider" component is a Mainframe application.

17

3 – Withdrawal service: orchestration on Mainframe

3.3.3 ISP Connector

Requests from the consumer are brokered through the "Connector". The Connector trans-
forms the native data received from the application into a structured message and deals
with addressing it through the network of channels to the Mainframe environment, which
must provide the requested service. It receives the answer and returns it to the calling
application in a readable format.

Figure 3.2. Service request and service response through ISP Middleware and ISP Connector.

3.3.4 ISP Middleware

The ISP Middleware is a Mainframe software infrastructure in charge of receiving all call
requests directed to Business Service, interfacing applications that expose the service (the
providers). The middleware tracks incoming and outgoing messages on a specific message
infrastructure; verifies the user’s authorization to perform the service; and finally manages
the consistency of updates made by the different components of the Business Service (Busi-
ness Component). The main model of communication with Business Services is "Request
- Reply" approach by MQ messages.

18

3.3 – Orchestration elements

3.3.5 IBM MQ
The huge amount of "request - reply" traffic among the different Business Services and
Business Components is managed by a product, called IBM MQ1.

IBM MQ allows to enable a correct dialogue between different applications through a
mechanism similar to that of a common "messaging app", like Whatsapp or Messenger.

Sending a message from a point A to the point B can be performed by contacting a
server which route the message on the correct destination. The message ends up in a sort
of mailing box (the queue) and is available to be read as soon as the receiver is ready.

Figure 3.3. Description schema of basic MQ mechanism.

In other words if an application A needs to send a message to an application B, it has
to communicate with a Queue Manager which is in charge of guarantee:

• delivery of the message to the correct recipient;

• message is not lost;

• message is not altered;

and provide a number of ancillary functions, such as receipt management return, distribu-
tion lists, publish and subscribe, etc.

Each application uses the services of one or more queue managers, that, in order to
deliver messages to all recipients, must communicate with each other through a network
of "connections",which are called "channels".

IBM MQ, as described above, is a product particularly suitable to an asynchronous
communication but in Intesa Sanpaolo, exploiting its synergy with Mainframe environment

1MQ stays for Messaging and Queuing

19

3 – Withdrawal service: orchestration on Mainframe

and led by the necessity to do not lose messages, it has become a fundamental part of the
"synchronous" dialogue among applications.

In addition to the request-Reply communication pattern (which in the case of transport
via MQ is not a true synchronous dialogue), two other real asynchronous patterns are used:
Fire & Forget and Notifications.

3.4 Logical architecture of withdrawal service on Main-
frame

At the logical level, the withdrawal service could be divided in two main phases which
involve several components:

• "Sportello" application

• Customer Identity Business Service

• Withdrawal Business Service

• Check Service on Mainframe (only if user wants to use check for his withdrawal)

• Accounts Service on Mainframe

• Saving Accounts Service on Mainframe

At the beginning of every withdrawal operation a user requires to a cashier to make the
operation by a form or by a check. The cashier logs in "Sportello" application and starts
to insert all data required by application.

Orchestration of withdrawal service on mainframe is managed at two different layers.
Top layer orchestration is at front-end, by application "Sportello". "Sportello" applica-
tion, in fact, after receiving all data entered by cashier orchestrate two different Business
Services: Customer Identity Business Service and Withdrawal one.

In a first phase, through Customer Identity Business Service invocation, a first part of
several checks takes place on account holder identity, account balance, privacy preferences,
joint signature, IBAN existence, paperless preference, etc. In addition to these checks, it
is mandatory, according to Italian financial laws, to verify whether the customer has filled
the GIANOS survey: an unfilled survey or a lack of this important document forces exit
by a terminal error. 2

After GIANOS check and according to the request type (form or check), it is done a
simulation of the withdrawal, calling the Withdrawal Business Service in simulation mode.
The simulation has in charge of obtaining other information about customer, his account
and to verify if the operation could be successfully executed or not. In this phase another
part of several checks takes place thanks to the Business Service which has in charge of

2 GIANOS stays for "Generatore di Indici di Anomalia per Operazioni Sospette" (in English could be
traslated with "Anomaly Index Generator for Suspicious Transactions") is an IT procedure for selecting
potentially suspicious transactions spread among Italian banks. It was carried out by an inter-bank
working group coordinated by ABI with the support of legal, IT, organizational and statistical experts.

20

3.4 – Logical architecture of withdrawal service on Mainframe

orchestrating several business components, including those belonging to Accounts Service,
Check Service and Saving Accounts Service.

These Services correspond to different areas of Bank’s Mainframe infrastructure, they
can be considered "Service Silos" because each service is separated from other ones and
contains all resources which needs (Databases, Memory Areas, etc.).

As can be seen in the flow chart of figure 3.4, whole logical core of the withdrawal
service is written in main business service which has in charge of guaranteeing the transac-
tionality and of interfacing with all "smaller" business components. In other words, behind
Withdrawal Business Service there is a huge COBOL coded procedure which orchestrate
all necessary Business Component in a transactional way.

Figure 3.4. Flow chart of first "simulation" part of withdrawal operation

At the end of the simulation phase, if it is positive, takes place the second one, the
dispositive phase. In this phase "Sportello" application receives simultation outcome
and obtains also data about charges according to simulated operation.

Finally, it invokes the same Withdrawal Business Service by but in dispositive mode
this time.

All checks and orchestrations are re-executed because some information retrieved in the
simulation phase could be no longer valid (i.e. account balance) and then Business Service
returns a "Withdrawal Result Tag".

This tag contains information about:

• Account Balance after operation

• Possible alerts

• Data for accounting printing

21

3 – Withdrawal service: orchestration on Mainframe

Last step consists in signature verification: it is necessary to check if the account has a
joint signatures or not and to save the signature of withdrawal receipt.

In the past, when in branches there were not yet digital tablets, this step required an
other Business Service invocation but now, with a complete digitalization of branches no
invocations are necessary because the signature is registered by tablet and the check of
joint signatures can be performed by first Customer Identity Business Service.

Figure 3.5. Flow chart of "dispostive" part of withdrawal operation

22

Chapter 4

Withdrawal service:
orchestration on Service
Oriented Architecture

During analysis of the withdrawal service orchestrated on Mainframe, it was possible to
see how this service was declined on a legacy infrastructure and how a service-oriented
architecture was only partially implemented inside business services. It can be said that it
is a system architecture based on vertical legacy silos that include data, business logic and
(sometimes) front-end, determining:

• High effort to implement new business functionalities

• Data fragmentation, with higher complexity to have a 360° view of the customer

• Access channels with limited homogeneity

Within the bank it was necessary to rethink all the most used applications in a new
perspective that would allow the reuse of the components used, a greater speed in the
development of new services and a centralized view of the customer information. Also the
Withdrawal Service it was re-engineered on the new customer centric architecture, which
implements all principles of a Service Oriented Architecture.

4.1 Customer Centric Architecture: Service Oriented
Architecture in Intesa Sanpaolo

In an overall market context in which technology evolves at a speed never observed before
and where consumer habits are in continuous and rapid transformation, to meet the new
challenges it is necessary to create a digital strategy integrated with the business strategy.

Led by these reasons, Intesa Sanpaolo has created a platform enabling the objectives
of the Business Plan, creating an architectural model oriented to fast and full changes,
designed on the customer. The value from which the project starts is Customer Cen-
tricity. That is the recognition of the strategic nature that the individual person, current

23

4 – Withdrawal service: orchestration on Service Oriented Architecture

or potential customer, covers for the bank in terms of quality of the provided and delivered
services (e.g. best next product, real time marketing, time to market). In this way, Intesa
Sanpaolo has created a platform which embodies a Service Oriented Architecture.

4.1.1 Principles
The architecture is based on four principles:

• Agility: adoption of agile solutions able to allow the integration of new custom com-
ponents or products, simply, quickly and governed. The solution ensures continuity
both in the innovation process and in the guarantee of regulatory adjustments, in a
simple and effective way.

• Always on: continuous availability to offer also extended products today supplied
only during work hours. Use of products and services in real time mode on the various
customer contact channels.

• Services Hub: creation of a "service of services" ready to provide functionality to
the group and outside the group. The range of services offered extends to banks and
foreign branches.

• Customer Centricity: complete view of the customer both retail and corporate, in
a centralized, univocal and updated manner.

4.1.2 Layers
The structure of this architecture is on three levels called layers:

• "Presentation Layer" is in charge of presenting applications on the various "chan-
nels" (Branch office, contact unit, Internet banking, Mobile, Video, ATM, SMS, ...)
adapting to the peculiarities of both devices and users. Channels represent the access
layer to the Bank’s services, where both customers and employees access in traditional
or innovative ways (mobile, social ...).

• "Agility Layer" contains the central business logic (visibility data, process engine,
orchestration services, centralized management commercial products), for the real-
ization of business services and processes. Inside the Agility Layer the Enterprise
Service Bus, implemented by IBM Integration Bus, is fundamental; it allows in fact
the design, execution, and monitoring of end-to-end processes, and permits flexibility
in creating new products and in reviewing existing ones. Processes are implemented
in the agility layer of long-term business, provided with status. This "key" layer in-
cludes also a "Rule engine" which allows to enable changes in real time and a product
for managing long-term business processes (i.e. a procedure to take out a mortage).

• "Core Banking Layer" is an important element in the new architecture and repre-
sents the revision of the government systems of the Bank in order to ensure consistency
and timeliness in providing information for vertical supply chains of the individual
stakeholders. It is the engine of the individual elementary application services. It
is the "lockbox of data" of the bank (Register, Accounts, Cards ...). This layer is

24

4.1 – Customer Centric Architecture: Service Oriented Architecture in Intesa Sanpaolo

mainly formed by old Business Services and Business Components, but they have
been transformed and adapted to interface with new orchestrated services.

Figure 4.1. Logical model of Customer Centric Architecture

4.1.3 IBM Integration Bus
IBM Integration Bus represents the beating heart of Agility Layer. It is an Enterprise
Service Bus supplying a communication channel between applications and services in a
service-oriented architecture. IBM’s Integration Bus is also known with its old name as
Websphere Message Broker and it belongs to WebSphere product family. It allows business
information to flow between disparate applications across multiple hardware and software
platforms. In other words, IBM Integration Bus allows to connect applications together,
regardless of the message formats or protocols that they support.

Main characteristics

IBM Integration Bus routes, transforms, and enriches messages from one location to any
other location:

• The product supports a wide range of protocols: WebSphere MQ, JMS 1.1 and 2.0,
HTTP and HTTPS, web services (SOAP and REST), File, Enterprise Information
Systems (including SAP and Siebel), and TCP/IP.

25

4 – Withdrawal service: orchestration on Service Oriented Architecture

• It supports a broad range of data formats: binary formats (C and COBOL), XML,
and industry standards (including SWIFT, EDI, and HIPAA). You can also define
your own data formats.

• It supports many operations, including routing, transforming, filtering, enriching,
monitoring, distribution, collection, correlation, and detection.

IIB Tools

IBM Integration Bus consists of the following components:

• IBM Integration Toolkit is an Eclipse-based tool that developers use to construct
message flows and transformation artifacts using editors to work with specific types
of resources. Context-sensitive help is available to developers throughout the Toolkit
and various wizards provide quick-start capability on certain tasks. Application de-
velopers work in separate instances of the Toolkit to develop resources associated
with message flows. The Toolkit connects to one or more integration nodes (formerly
known as brokers) to which the message flows are deployed.

Figure 4.2. IIB Web User Interface screenshot.

• IBM Integration Bus web user interface (UI) enables System Administrators to view
and manage integration node resources through an HTTP client without any addi-
tional management software. It connects to a single port on an integration node,
provides a view of all deployed integration solutions, and gives System Administra-
tors access to important operational features such as the built-in data record and
replay tool, and statistics and accounting data for deployed message flows. (The web
UI supersedes the Eclipse-based Explorer from earlier versions).

• IBM Integration Console is a more powerful user interface for System Administrators
who can interact with the Integration Bus by command line. This console consists in
a IBM customized shell different for each operating system on which the Integration
Bus is installed on.

26

4.1 – Customer Centric Architecture: Service Oriented Architecture in Intesa Sanpaolo

Figure 4.3. IIB Console screenshot for admistration purpose.

Main components

Figure 4.4. IIB Console screenshot for admistration purpose.

Working on IBM Integration Bus requires knowing some key elements:

• Message Flow
Message flow describes the application from a logical point of view and defines the
path that data must follow within the integration node. The message flow requires a
message model that defines the structure and properties of data passing through.

• Integration Server Each Integration Server is a different process in the IIB machine

27

4 – Withdrawal service: orchestration on Service Oriented Architecture

that handles services by thread. The integration node allows to isolate message flows
in distinct integration servers by ensuring that they run in separate address spaces,
or as unique processes.
Each integration server is started as a separate operating system process, providing
an isolated runtime environment for a set of deployed message flows. Within an
integration server, the assigned message flows run in different thread pools. You can
specify the size of the thread pool (that is, the number of threads) that are assigned
for each message flow by specifying the number of additional instances of each message
flow.

• Integration Node
An integration node is a set of execution processes that hosts one or more message
flows to route, transform, and enrich in flight messages. It checks integration servers
are running according to the operations specified by their respective messages flows.
Several integration nodes can operate on different operating systems so that it is
possible provide protection against failure and separate business flows on different
architectures. For example, you might have one integration node that handles all
your financial applications, and another that handles other business processes.
Application programs connect to and send messages to the integration node, and
receive messages from the integration node. The integration node routes each message
by using the rules that you have defined in message flows and message model schema
files, and transforms the data into the structure required by the receiving application.

4.1.4 Process Engine
The Process Engine is just the component in which long-term business processes are
designed and executed.

The Process Engine is therefore the owner of the process and invokes related services and
the front-end applications, to allow end-to-end processes implementation and management,
using rules to add flexibility.

The Business Process Manager (BPM) is a workflow engine made available by the
Agility Layer in Intesa Sanpaolo, which allows definition and execution of long-lasting
business processes (DLD or long running).

A "DLD stream" implements a business process, that is a state-provided functional-
ity that typically includes human interactions. The DLD flow consists of several tasks,
even if separated over time and guided by external events, each of which can aggregate
the execution of multiple DLD services or sub-flows according to the process’s own logic.
The DLD flow is exposed by this component of the Agility Layer and has the following
characteristics:

• Status: the concept of status is directly referred to the so-called "state machines".
In a context of "workflow management" it is however possible to define a logical and
"behavioral" state machine, but in general in the BPM it is preferred to say that a
"state" is always linked to one or more "business entities", entities whose status is
defined by specific enhancements of the expected attributes (properties). Usually the

28

4.1 – Customer Centric Architecture: Service Oriented Architecture in Intesa Sanpaolo

status of one or more business entities is changed in the transition from one "activity"
to another in the process.

A DLD stream is provided with status indicating performed tasks, those waiting to
be executed and those in progress. A set of business attributes (for example order
status) that characterize the DLD flow in every single instant can be registered. Status
and attribute management is delegated entirely to the Process Engine; • Access to
databases: a DLD stream has no direct access to any application database but only
to the state database for state management; • Census: a DLD flow must be recorded
in the Service Catalog; • Call for sub-flow: a DLD stream can call DLD sub-flows
as part of its execution; • Life cycle, orchestration and Rule Engine: a DLD
flow comes from a startup task. It accepts and processes external events, coming
both from human interactions and from signals originating from other processes or
systems.

Each event is processed according to the defined orchestration logic, which may in-
clude logic of services or sub-processes, also conditional, and variations of the DLD flow
attributes. As in the case of composite services, the decision rules that drive the business
orchestration must be delegated to the Rule Engine component.

The DLD flow must be limited to the orchestration of the business logic realized through
the services but it must not contain within it the implementation logic of the service itself.
This increases the modularity of the system, the transparency and the reuse of components.

4.1.5 Rule Engine
In addition to BPM, the process management involves also the Rule Engine: engine
dedicated to the definition and execution of the business rules, in order to guarantee their
modularity.

This component allows: outsource the rules from processes and services and centralize
execution and governance of themselves. In this way, for example, a new law on cash
withdrawal limit doesn’t requires changing in the code of service but only an update on
the correct record in the Rule Engine.

Figure 4.5. Example of a rule in ODM.

29

4 – Withdrawal service: orchestration on Service Oriented Architecture

The use of the Rule Engine implies that the business rules of the service must be
registered and implemented on the rules engine and made decoupled by the code; this
guides services towards a logic of modularity and composition. IBM ODM (Operational
Decision Manager) is the tool used to perform the Rule Engine functions. Main benefits
of using ODM are:

• Identification: the transposition of an algorithm made up of if-then-else constructs
in order to give it a precise functional connotation and to identify it with a name and
a description;

• Isolation: the use of rules makes it possible to aggregate and isolate business logic
from other application functionalities (for example, to distinguish rules from orches-
trations). The isolation of the rules allows also the execution of unit-tests in a context
independent from that of the application. The rules are collected and classified in the
ODM catalog;

• Reuse: the cataloging of the rules makes it easier to reuse by different services;

• Readability: the ability to express the rules in a language and a business dictionary
makes them understandable even to non-technical figures. Readability also translates
into greater ease of maintenance and modification by developers;

Figure 4.6. ODM rule can be developed also in a graphical way, which allows to concate-
nate more simple rules in order to create a new more complex rule.

The Rule Engine in the context of the Agility Layer is invoked by the orchestrator
(IIB) and the Workflow Engine (BPM), which use it to elaborate business rules both at
the services and the processes level. The ODM offers developers, in a native way, the
possibility of implementing a simple system of business rules based on a business language
(Business Activity Language) or on a series of decision tables (Decision Table) that allow
to specify the criteria of evaluation of a certain policy or business rule.

4.1.6 Service Catalog
The service government represents a challenge for the control of a Service Oriented Archi-
tecture. It is necessary a focus point on which all architectural components find information

30

4.1 – Customer Centric Architecture: Service Oriented Architecture in Intesa Sanpaolo

about services that must be orchestrated. In Intesa Sanpaolo architecture exits a Services
Catalog, currently implemented with the WSRR product (Websphere Service Registry and
Repository).

The Service Catalog is used:

• in Run phase to address calls;

• in Development phase as a census and a government tool to facilitate the re-usability
of services.

In other words, when an IIB flow needs to invoke a service, it can use an endpoint
lookup node to dynamically retrieve the endpoint of that specific service. At run time the
IIB flow can retrieve the correct endpoint without any configuration inside the code and
even if a service endpoint changes, it is necessary only update it in WSRR, and the new
endpoint is automatically retrieved by the IIB flow.

Figure 4.7. Lifecycle of and endpoint in Service Catalog.

Types of services

The catalog is the only repository of services. The following categories are available:

• Host Services: include the following sub-categories: Business Component, Host
Atomic Services, Generalized Routines;

• Host Composite Services:include the following sub-categories: Business Service,
MPE Services;

• Open Services:include the following subcategories: Open Atomic Services , Open
Generic Services (’SGOPEN’), REG (’ODM Rule’), WS IIB Services for Parallelism;

• Open Composite Services: include the following sub-categories: IIB Modular
Services.

31

4 – Withdrawal service: orchestration on Service Oriented Architecture

4.1.7 Customer Data
The application solutions before Customer Centric Architecture are mainly based on the
concept of product. Each legacy silos manages within it "valuable" data relating to the
relationship that customer has with the bank. Making available for an access channel, this
information in ’real time’ mode, accessed using a single point of contact, constitutes an
important value and a factor of speed in the construction of new initiatives.

Moving from product-centric to customer-centric architecture has represented a chal-
lenge that the construction of the Customer Data component has accepted with the objec-
tive of offering an aggregate and complete representation of the Bank’s information assets
regarding customer, retail, corporate for channels that request it.

Customer Data offers a complete view of the centralized and univocal customer, to
be used as a source of interrogation for information or for commercial proposals (real time
marketing).

The main purpose is to free the application teams from the need to have to census and
analyze all the services of legacy data silos that provide customer information.

The responsibility of the data is the exclusive responsibility of the relative data silos
(Customer Identity, Accounts, etc.), not of the Customer Data. The Customer Data can
only be queried read-only, any data modification operations must be carried out directly
through the data silos.

The Customer Data service can be queried in two ways:

• Query from the Presentation Layer via the Connection Manager

• Query by orchestration IIB

The construction strategy of the component has foreseen the realization a layer of
«virtualization» of information through one appropriately developed modular application.

Designing services to access information more efficiently, combined with cache solutions
for greater volatility information, allows to achieve greater efficiency and savings.

The next step of the solution is the integration with the data lake, under construction on
the Big Data project, which will permit to obtain an increasingly more complete customer
profile.

4.1.8 Product Hub
Product Hub integrates in a single layer the creation and configuration logic of a com-
mercial product. Its main task is centralizing the sales logic of the individual legacy silos
and managing the product configuration rules to ensure its governance through the Hub
modules. The product / commercial component entity comes conceived as the sum of the
different views and dimensions, federated and integrated with each other.

The Product Hub is the component that integrates in a single point logic of creation
and configuration of a commercial product.

Its task is to centralize the sales logic of individual legacy silos of data and manage
product configuration rules to ensure its governance through its own forms. It is divided
into two branches: Centralized Products Catalog and Conditions & Pricing.

Centralized Single Products Catalog aims to centralizing in one single point:

32

4.2 – Description of withdrawal service transformation

• logic of creating and configuring a commercial product

• information (commercial and technical) of products

• rules for the sale of products.

Conditions & Pricing, instead, has the task of centralizing the pricing logic of the
products in a single point. Each condition and price evaluation required by the Conditions
& Pricing starts from the premise that the product has already been previously registered
in the Single Centralized Product Catalog.

4.2 Description of withdrawal service transformation
Within the Agility Layer is described the new way of interfacing back-end functions by
changing the vision of information system, considered no longer composed of individual
applications but aggregation of services and components that collaborate and cooperate
with each other to provide clear, simple functional solutions focused on the customer.

The services provided by new Enterprise Service Bus can be categorized into two main
groupings:

• Core system: contains all the "elementary" services of the product, in jargon the
parties, mainly related to the data to be managed and to the basic function to be
supplied to the business. This group is strongly bound with Mainframe Business
Components

• Modular Apps: contains all the business processes implemented by the information
system, the result of the composition of the elementary core systems components on
business or compliance rules.

An important difference between the two service groups is the frequency of change
required, very low on the first group, very high on the second.

The new Custom Centric Architecture, based on this subdivision, aims to create a
modeling of business services, on specific platforms, that maximize the speed of change
and then aim to address the goal of "Agility".

To do this on the ESB are implemented and orchestrated:

• "Core services" called also "Atomic Services". They are the equivalent of Business
Component on previous Mainframe based Architecture

• "Modular services" or "Composable Services" for fully automatic processes, made to
orchestrate calls to atomic services in a stream

• "Long-term flows" for business processes with asynchronous human beings interactions
which last for a long time, i.e. Mortage request procedure.

• Business rules which is a model of rules that drive the execution of a process according
to the context in which it comes delivered.

The orchestration logic define the order of execution of the operational blocks and may
also include business rules specifications of the requested operation, security, channel and
rules deriving from legal regulations.

33

4 – Withdrawal service: orchestration on Service Oriented Architecture

4.2.1 Description of new withdrawal service
In the third chapter it has been described how withdrawal service is developed and how
it works on Mainframe architecture. The main attention point could be found in the
role of Business Services which are in charge of orchestrating several Elementary Business
Component and of guaranteeing the transactionality of each withdrawal operation. To do
this, the service orchestration is split on different infrastructural layer (a part at application
layer, the other one is performed by business services on Mainframe) and each one is
in charge of invoke several services which belongs to heterogeneous areas of information
system.

Introducing the Custom Centric Architecture, which embodies the Service Oriented
Architecure principles in their entirety, it has become natural to rethink the withdrawal
service in a new service oriented way. The transformation of the withdrawal service can
be divided in three main operations:

• Business Components evolves in Atomic Services

• Orchestration only on Agility Layer

• Business Rules available only through Rule Engine

Business Components evolves in Atomic Services

Transformation of Business Components in Atomic Services was necessary to enable a
complete orchestration on the Enterprise Service Bus. In the Business Components, in
fact, are implemented particular customization which allows the correct dialogue with other
important parts in Mainframe environment, as well as ISP Connector or ISP Middleware.
Each Business Component required a specific invocation which cannot permit a real "service
orientation" of mainframe orchestration layer. For these reasons, it was necessary re-
engineer the business components according to the service oriented approach, creating new
atomic services, which, for definition, have to be independent from any other service in the
system.

The goal is to optimize the re-usability of atomic services which are made or modi-
fied very frequently. In other words, they should not coexist more versions of the same
functionality, which, on the contrary, should be atomic and unique within the information
system. Is appropriate for the customer to perform the same operation, for example a
payment, in the same way even if he uses different possible connection channels (Internet,
phone banking, ATMs, etc).

MPE

The "MPE" (Mainframe Performance Enhancer) component is born in response to the re-
quirement to orchestrate the entire end-to-end service path on a single tool. Indeed, in
cases where this orchestration involves more than two atomic services exposed by main-
frame, to avoid that at every request of an atomic service is performed by a departmental1

1The term "departmental" in Intesa Sanpaolo IT infrastructure indicates every IT object (server,
connection, layer, etc) which is not on Mainframe architecture.

34

4.2 – Description of withdrawal service transformation

connection to the mainframe, with consequent degradation of performance, becomes nec-
essary to demand the execution of atomic services on mainframe to mainframe itself. The
Mainframe Performance Enhancer is therefore characterized by:

• An integrated mainframe services development environment of the IIB toolkit, which
ensures the design of the modular service with end-to-end visibility and a complete
integration in ISP audit system;

• A LUW 2 management at the moment which are called multiple atomic dispositive
services on Mainframe: these they must be able to be committed and rolled back
together;

• Efficient performance management (response time e.g.) and consumption.

The code generated by MPE is a set of COBOL functions which call atomic services
involved in the execution of simple logic and formatting data in input to services. It
concentrates the execution of atomic mainframe services in a single point, ensuring through
the ISP-Middleware the participation in the same LUW. In the current solution, Business
Service ensured the transationality at the level of all CICS resources involved. In fact, the
channel interacts only once with the Mainframe for the recall of the BS (this also induces
to optimize Mainframe consumption). In the new architecture instead the orchestration is
in a single point and the service on Agility Layer is used by all channels.

Orchestration only on Agility Layer

After transformation of Business Components in Atomic Services, all that remains is to
orchestrated them on a single homogeneous layer, the Agility Layer. At this layer belongs
the IBM Integration Bus, the Enterprise Service Bus adopted by Intesa Sanpaolo, which is
in charge of orchestrating the several Atomic Services, like previously was done by Business
Service with Business Components.

First of all, it was necessary analyze the whole withdrawal Business Service creating a
flow chart with all business component invocations. From this analysis emerges:

• A small part of orchestration is made also by "Sportello" front-end application which
invokes an entire Business Service to obtain all customer data.

• The biggest part of orchestration is made by a single Business Service which interacts
with a lot of services, according to type of withdrawal request (by check or by form),
belonging to different areas of mainframe. Mainframe architecture, in fact, is based on
vertical legacy silos that include data, business logic and front-end for each "banking
product" (i.e. Account, Loans, Credit Cards, etc.)

• Withdrawal operation, how described in the third chapter, consists in a double in-
vocation to the same business service, once in simulation mode, once in dispositive
mode. In this scenario it is very important guarantee a low latency of each atomic
service and a correct transactionality.

2(Logical Unit of Work)

35

4 – Withdrawal service: orchestration on Service Oriented Architecture

Figure 4.8. Logical schema of orchestration on Mainframe (AS-IS scenario)

• Some business rules are hard coded in COBOL procedure of several Business Com-
ponents, making them not so flexible.

Figure 4.9. Logical schema of orchestration on ESB (TO-BE scenario)

Starting from these considerations, it was created a new flow chart in which emerges:

• The whole orchestration is now concentrated in a unique layer, the Agility Layer.
The withdrawal service can be defined as a message flow on a dedicated Integration
Server. Orchestration at front-end layer is not more required even if the invocation of

36

4.2 – Description of withdrawal service transformation

Customer Identity Business Service is already used because its redesign in service ori-
ented mode does not bring any advantage in terms of functionality and optimization.
It could be considered as a service which returns Customer Identity information.

• Invocation of Atomic Services now does not require to know where these services are
deployed. In new flow chart are positioned in a single area because they are exposed
by a MPE, which has in charge of invoke Atomic Services on Mainframe and retrieve
their responses to the requesting nodes.

• All business rules are now deployed in the Rule Engine and no more hard coded rules
are necessary inside Atomic Services code.

Business Rules available through Rule Engine

Withdrawal service involves different business rules which could be changed by new business
organization or by new financial laws. On the mainframe architecture every business rule
was written in a series of if-then-else statement implemented in COBOL code of each
business component. A simple changement of a rule triggered an expensive and hard work
by development teams, besides an high probability of error during changing management.

With the Rule Engine, each business rule is written once and every module which uses
it can found it in the same place. In this way, if the rule must be updated, no changes can
be deployed on applications which are using it.

4.2.2 Development of Composite Service as a flow on IIB toolkit

Figure 4.10. A message flow example.

Starting from the flow chart which represents the new orchestration of withdrawal ser-
vice, it has been created a Composite Service using the visual Eclipse-based editor, called
IIB Toolkit.

37

4 – Withdrawal service: orchestration on Service Oriented Architecture

The native language with which the Composite Services must be developed is ESQL3;
you can also use the Java language but this choice is not encouraged in developing teams
because Java code is not so efficient in IIB node which are designed for ESQL code. The
two main steps for the development of a service are the definition of the interface and its
implementation.

Interfaces are a fundamental component in the creation of a service; they can be
displayed in SOAP or REST format for synchronous services and in MQ for asynchronous
services.

For the development of a Composite Service within the IIB Toolkit, patterns are
provided.

The use of these patterns is mandatory and should not be considered as modifiable
templates, as they already provide standard handling of calls, tracing and errors.

The creation of a composite service involves the subdivision into two subflows, one of
interface and one of implementation:

• the interface flow includes the implementation sub-flow specifying the type of exposure
that the service must have (Web Service SOAP, MQ).

• the implementation flow is technically a IIB sub-flow containing the orchestration
logic provided by the end-to-end service.

Interface flow and implementation flow are available under an unique IIB project tree
which collects in a single point all resources involved in the service development.

Inside the project tree there is:

• "ACRO0_CS_SERVICEID" application contains the message flows representing the
composite service

– "ACRO0": Application Acronym4;
– "SERVICEID": service ID belonging to the acronym;
– the "IMPL_SERVICEID" subflow contains the orchestration of the services;
– subflows under the "ServiceCall" package contain the management logic of calls

to atomic services or rules;
– among the referenced projects there is the "IXP_SHARED_LIB" infrastructure

library for the use of infrastructural nodes, it allows tracing, auditing and error
management in a unified way for all Intesa Sanpaolo IT;

– among the included projects there is the application library that contains the
data structures (Message Model).

• Static Lib "ACRO0_MM_SERVICEID" will contain all data structures of the com-
posite service

3Extended Structured Query Language (ESQL) is a programming language defined by IBM Integra-
tion Bus to define and manipulate data within a message flow.

4In Intesa Sanpaolo IT infrastructure an acronym represent a service identifier and all its software
and hardware components are related to it.

38

4.2 – Description of withdrawal service transformation

Figure 4.11. IIB project tree used for withdrawal service development

– WSDL5 and XSD6 of interface;

– XSD of implementation and of the individual atomic services (XSD and DFDL7).

5The Web Services Description Language is an XML-based interface definition language that is used
for describing the functionality offered by a web service.

6XSD (XML Schema Definition), a recommendation of the World Wide Web Consortium (W3C),
specifies how to formally describe the elements in an Extensible Markup Language (XML) document.

7Data Format Description Language published as an Open Grid Forum Proposed Recommendation
in January 2011, is a modeling language for describing general text and binary data in a standard way.

39

4 – Withdrawal service: orchestration on Service Oriented Architecture

Developing Interface Flow

The development of Interface mode is led by relative pattern in which the main modules
(’nodes’) are the following:

• SOAP Input
Description: standard IIB node for displaying a stream as a Web Service. Type: node
with wizard configuration.

• QoSP_SOAP: (’Quality of Service Provider’)
Description: Infrastructure library for exception handling, which returns any excep-
tions to the client in the Soap Fault structure. In the case of an exception, an Alert
message is generated to the Maya application (MBRK0). Type: infrastructure node
not customizable (does not have parameters to customize).

• MapSoapToImpl:
Description: node of type compute that hooks the interface to the implementation.
This node must be implemented to map SOAP input data to the internal format of
the implementation sub-flow.

• <IMPL_IYBWSPREL2>:
Description: service implementation subflow.

• MapImplToSoap:
Description: node of type compute that enhances the SOAP response by setting all
the fields. The node does not require parameters to be set. This node must be
implemented to map the output data of the implementation sub-flow in the SOAP
format of the interface.

• SOAP Reply:
Description: standard node for closing a Web Service flow;

• AddErrorHandling:
Description: allows you optionally to add a custom error handling after standard
management by the ’QoSP_SOAP’ node.

Developing Implementation Flow

Implementation flow contains the orchestration logic provided by the end-to-end service
and, like Interface flow, can be developed by a pattern.

The calls described are linkable to each other by connecting the terminal node with
the initial node of the segment of interest. In addition, calls are ’clonable’ by copy-paste
operation. It is also possible to introduce conditional orchestration logics (for example:
if, loop constructs, etc.) using standard IIB nodes that do not modify the message (for
example: nodes like Database, Filter and RouteToLabel).

The following guidelines must also be taken into consideration during the design phase:

40

4.2 – Description of withdrawal service transformation

Figure 4.12. Development pattern for Interface flow

• All I / O paths must be in a static library

• Each application can contain multiple streams

• Each application can contain multiple static libraries and can refer to multiple exter-
nal libraries.

There is currently no hierarchy of the IIB that maps the concept of ’acronym’. In other
words, it is not possible to create a set of IIB flows that includes all the services of an
acronym. It is instead possible to create multiple Integration Servers belonging to the
same acronym, logically linking them according to the following naming convention:

• <ACRONYM>_EG01;

• <ACRONYM>_EG02;

• etc.

The sample pattern provides the possibility of making three distinct calls:

• the call made to an atomic Web Service Soap service;

• the call to the atomic service HOST through the Channel & Container protocol of
the CICS node;

• the query to the ODM rule through a REST call

The implementation flow of withdrawal service, which appears as IMPL_IYBWSPREL2
node in interface flow, is formed by:

• An INPUT NODE which receives the input message

41

4 – Withdrawal service: orchestration on Service Oriented Architecture

Figure 4.13. Sample pattern for Implementation flow

Figure 4.14. Development of Implementation flow

• A Database Node with label CALCULATE AGE which calculate if customer has 18
years or not

• A Database Node with label CHECK MOD SPESE which calculate the amount of
charges for the operation

• A CICS Node with label CICS_IY4TPRELIQ which perform a CICS call to atomic
services for simulating withdrawal operation

• A CICS Node with label CICS_IY4TPRELDP which perform a CICS call to atomic
services for dispose withdrawal operation

• A Compute Node with label CHECK_MOD_SPESE

42

4.3 – Re-usability on ESB: cardless withdrawal service

• A ODM Node to perform a query toward ODM in order to obtain correct threshold
for current withdrawal operation

• A Compute Node with label ComposeResponse which allows to compose the entire
SOAP message that is retrieved to calling service

• An Output Node which retrieve message previously composed by ComposeResponse
node.

4.3 Re-usability on ESB: cardless withdrawal service
One of the most important aspect of customer centric architecture is the modularity: a
service, for its definition, is "a logical representation of a repeatable business activity that
has a specified outcome". In other words, once a service implements a function which is
repeatable, it can be invoked by a lot of other components without any problem.

Starting from this principle, in Intesa Sanpaolo it was developed a new cardless with-
drawal service that reuse many components of standard withdrawal with great savings in
terms of time to market, development agility and costs.

4.3.1 Description of cardless withdrawal service
The goal is to allow ATM withdrawals without using chip card. To do this, it was decided
to use the user’s mobile phone and the App of the bank installed on it as the primary
vehicle for the withdrawal. The whole phase of authentication and inquiry with host takes
place through the mobile APP, at the ATM layer remains the physical management phase,
that is the only cash dispensing for the withdrawal.

Prerequisite is the signing of a digital identity contract and the "Your bank" App in-
stalled on the customer’s mobile phone.

4.3.2 Integration and implementation
To perform a cardless withdrawal, customer has to:

1. Press the function key on ATM to trigger the QR code generation function that will
be shown below on the screen.

2. Frame the QR code with his smartphone and wait a few seconds: the app after
capturing the QR code image through its back-end calls the QR code verification
services exposed by the ATM back-end. Then user has to confirm with fingerprint or
with his PIN.

3. Choose the account on which to charge the sum and the withdrawal amount, check
that the information entered is correct and confirm to withdraw. After QR code ver-
ification the Mobile App through its back-end makes the call to IIB that orchestrates
the atomic service which locks the requested amount on the user’s account. Once the
block result is received, IIB invokes the operation confirmation service exposed by
the ATM back-end to complete the ATM withdrawal operation.

43

4 – Withdrawal service: orchestration on Service Oriented Architecture

Figure 4.15. Architectural schema of cardless withdrawal.

Cardless withdrawal service is the concrete example of a widespread integration on
Intesa Sanpaolo information system. In this single service cooperate back-end services
(like Internet banking and ATM), CICS transactions on Mainframe coordinated by MPE
for guaranteeing transactionality and IIB flows.

The development of this service required less time of other services because its logic
core is entirely written in a IIB flow which re-use atomic services previously transformed
for standard withdrawal service.

44

4.3 – Re-usability on ESB: cardless withdrawal service

Figure 4.16. Use case schema of cardless withdrawal.

45

46

Chapter 5

Evaluation of withdrawal
service transformation

5.1 Requirements
Before each transformation or project it is necessary to identify the functional and non-
function requirements. In the following paragraphs there are requirements which led to
withdrawal service transformation from Mainframe to Enterprise Service Bus orchestration.

5.1.1 Functional Requirements
Among function requirements of withdrawal service:

• The withdrawal operation allows cash withdrawal at bank office from the customer’s
bank account or from savings account. The operation can be performed in four
different ways:

– by a form

– by a check

– "Third Party Withdrawal"

– Simple Credit

• Withdrawal application must be used by bank employees with specific security and
authorization profile.

• Customer who wants do a withdrawal must have previously filled a GIANOS survey
otherwise operation cannot be executed.

• Withdrawal service needs to interact with different bank services like Customer Iden-
tity Service, Check Service, Saving Account Service, Account Service.

47

5 – Evaluation of withdrawal service transformation

5.1.2 Non-Functional Requirements
• Performance: Response Time of front-end application, which include also network

response time, must be lower than 3 secs for each page loading.

• Availability: Withdrawal service must be available during branches worktime. Some
branches are opened also on Saturdays.

• Modularity: new service must use modular services which allows to reuse them by
other new services.

• Interoperability: must be used standard protocols of exposure of the services despite
of technical reference platforms.

• Simplicity: must be used common templates for development and test because they
allow to concentrate development only on the service and not on the infrastructure
aspects

• Standard: must be adopted a common development standard which increases the
knowledge and management of the entire ESB architecture.

5.2 KPI

5.2.1 Reuse rate
As first approach to evaluate impact caused by transformation of withdrawal service, it
has been analyzed reuse rate of the old components in the Customer Centric Architecture.

By convection, the orchestration of the service on the Mainframe through Business
Services and Business Components will be considered as AS-IS scenario, while the TO-BE
scenario will be the one that sees the service orchestrated by the ESB.

AS IS TO BE DELTA
COMPONENT Reused New Deleted

Business Service 1 0 - 1 -1
Business Component 26 10 - 4 -16
Programs/Routines 0 0 - 0 0
Atomic Services - - 9 - 0
Rules - - 1 - 0
IIB flows - - 1 - 0
MPE - - 2 - 0
Total 27 10 13 5

Table 5.1. Old and new objects involved in To-Be Scenario

First of all, as shown in table 5.1 we proceed to count the components belonging to the
two scenarios. For each component in the TO-BE scenario, it will be indicated how many
of the old components have been reused and how many have been removed. Reading the

48

5.2 – KPI

column "DELTA" it is immediately visible that many of the old components have been
removed from the new implementation of the service because more components have been
incorporated into a single Atomic Service or in a single ODM Rule. In general 17 old
components, which appears in delta column have been transformed in 13 new components.

In the lower part of table 5.1 you can see how many new components have been imple-
mented in the new scenario. Consider that these new objects replace the deleted objects
(not necessarily in a one-to-one relationship): for example, the withdrawal service business
service has been replaced by a IIB flow. Starting from this component census it is possi-
ble to calculate a first approximation of the percentage of reuse of objects in the TO-BE
scenario.

• Total number of involved objects in TO BE architecture: 23

• Total number of new objects: 13

• Total number of old objects: 10

• Total number of deleted objects: 5

• Percentage of re-utilization: 43,48%

This first percentage can not be defined as reliable since it has been hypothesized that each
reused component has the same weight as a new component.

Amount of objects in to be scenario
Reused New Deleted

Complexity Low Medium High Low Medium High Low Medium High
Business Service - - - - - - - - 1
Business Component 2 4 4 - - - - - 4
Programs/Routines - - - - - - - - -
Atomic Services - - - 4 4 1 - - -
Rules - - - - - 1 - - -
IIB flows - - - - - 2 - - -
MPE - - - - - 1 - - -
Weighted Total 2 8 12 12 36 98 - - 5

Table 5.2. Weighted components in To-Be scenario

To obtain a more truthful KPI, it was decided to create a weight table (Table 5.3) in
which to each object is assigned a different weight based on the technology implemented
and its complexity.

Thanks to the weight table it is possible to recalculate the weight of each component of
the TO-BE scenario obtaining in Table 5.3 an overview of the impact of the re-use of old
components on the new architecture. It is natural to associate the components belonging
to the new architecture with a higher weight because these objects meet many more re-
quirements than those discussed in the previous paragraph. Finally, a new percentage of
the re-use rate of the old components is obtained, compared with the use of the new ones.

49

5 – Evaluation of withdrawal service transformation

It appears evident from the graph in figure 5.1 that the reuse of the old components is
very limited and has been applied only for business components that are not very relevant
within the withdrawal service flow.

Weights of objects in to be scenario
Reused New Deleted

Complexity Low Medium High Low Medium High Low Medium High
Business Service 2 4 6 - - - 1 1 1
Business Component 1 2 3 - - - 1 1 1
Programs/Routines 1 2 3 - - - 1 1 1
Atomic Services 3 9 20 3 9 20 1 1 1
Rules 1 2 3 1 2 3 1 1 1
IIB flows 10 15 25 10 15 25 1 1 1
MPE - - - 10 25 15 - - -

Table 5.3. Weights table

Figure 5.1. Reusability graph of old components in new withdrawal service.

5.2.2 Performance Times
To perform an assessment of the performance caused by the transformation of the with-
drawal service, several tests were conducted in a dedicated environment.

These tests and the relative measurements were carried out on architectures that are
more similar to those used in production.

It should be noted, in fact, that in the Customer Centric Architecture scenario (fig-
ure 5.2) the security layers were considered both towards the outside and between the
departmental environment and the mainframe environment. Similarly, the impact of the
ISP Connector and communication through MQ was considered in the scenario on the
Mainframe (figure 5.3).

The performance test involved the execution of 5000 withdrawals in the Customer Cen-
tric Architecture environment and the same input was entered as a load of Business Services

50

5.2 – KPI

Figure 5.2. Schema of ESB orchestration environment used in performance test.

Figure 5.3. Schema of Mainframe orchestration environment used in performance test.

on the old system.
Subsequently, various measurements were made and in particular were taken into con-

sideration:

• CICS Response time in the orchestration by IIB flow compared with that in the
orchestration on the Mainframe

• CICS CPU times for the execution of a transaction of the old architecture against
the new one.

• Communication times introduced in the new architecture between the ESB and the
Mainframe: in fact ESB is attested on a different network than the Mainframe’s one.

Unfortunately for reasons of confidentiality it is not possible to report the absolute
values of the measurements but we can state that:

51

5 – Evaluation of withdrawal service transformation

• CICS Response times of the orchestration (considering the two invocations: one of
simulation and one in dispositive mode) in the new architecture are greater than those
on mainframe of about 20%.

The call of the withdrawal service entirely done on the mainframe environment owes
its speed to the fact that all elaboration is managed by a single point, that is on
the mainframe and, although many business components must be orchestrated by a
business service, it does not need to go out on the network as well as with the ESB,
which is installed on a different network than the mainframe’s one.

• CICS CPU times for the execution of a new architecture transaction are lower than
those on the old infrastructure of around 11%. This result can be justified by the
fact that in the Customer Centric Architecture, the dispositive functions were divided
from the simulation to manage the functional flexibility of the process, thanks also
for MPE business components aggregations. In this way it is performed a better
and more efficient CICS call which does not needs to invoke each single business
component but, exploiting MPE features, groups them in a single call. In the old
Business Service they were managed by the same multi-functional transaction.

• Communication time for calls to Mainframe from the ESB between different networks
is approximately 60-70 ms per request. In this way in new architecture it is introduced
a latency that does not exist in old environment.

5.2.3 Scalability

The scalability test involved performing multiple tests in an Independent-Test environment
by varying the number of threads that enter workloads on the new system with the ESB.

Using as a reference the number of withdrawals actually made by customers in the
peak hour, this test was carried out loading the system with an ever increasing number of
requests.

In the first instance, a number of requests equal to those recorded during the ordi-
nary operating hours has been entered into the system, thus obtaining an estimate of the
systems’ basic response time.

Subsequently, a number of requests equal to the peak requests was entered. In this step
the response time had an insignificant increase that did not differ so much from the base
response time.

A first increase in response times was recorded when the number of requests entered
into the system was equal to one and a half times those of the peak time. In this case there
was an increase of about 20% of the response time compared to the base one.

The response times then recorded a linear growth trend according to the number of
requests.

The breakpoint, in which the response times began to be double or triple with respect
to the base response time, was reached when loaded operations were equal to 3 times the
number of operations in the peak time.

52

5.2 – KPI

5.2.4 Time distribution in elapsed time in ESB orchestration
Another important KPI for the evaluation of the process of transformation of withdrawal
service is the time distribution in elapsed time in ESB orchestration.

Figure 5.4. Withdrawal implementation flow

The execution times of the IIB flows have the following elapsed time distribution:

• Over 80% of the time is used to wait for the response from the MPE/CICS transac-
tions and in particular for the IY4D (dispositive) transaction

• 2-4% for requests to ODM services, where over 70% of the time is charged to IP
communication between servers

• Less than 7% of the time is to perform the choreography logic on IIB

5.2.5 Final KPI considerations
At the end of all these tests it is possible to obtain a fairly clear picture of the effects that the
transformation of the withdrawal service has brought. In general, there has been a slight
increase in some service response times due to the more complex technological infrastruc-
ture on which the new Customer Centric Architecture is based, compensated however by
a more efficient management of CICS calls and by a lower application complexity. In a
large company, like Intesa Sanpaolo, introducing a more complex technological architec-
ture, made up of many more layers that need to connect to each other, always entails
greater efforts in terms of both economic resources and technical skills.

The question that arises, therefore, is: "Why do I invest in a new orchestration with
ESB when the mainframe is still able to provide the same service with comparable response
times and with an architecture that requires less infrastructural layers?"

The first is an economic driver: the mainframe is not like ordinary computers, which
companies pay and then use. The cost of running a mainframe depends on how much
storage space is needed (let’s not forget that the application DBs also reside on the main-
frame) and how much processing it does. In other words, users pay both for capacity and

53

5 – Evaluation of withdrawal service transformation

Figure 5.5. Average Elapsed Time distribution in ESB orchestrated withdrawal flow.

for consumption when using a mainframe. The unit of measure that allows programmers
and system administrators to determine the performance of a mainframe is the MIPS that
stands for Milions of Instructions Per Second.

It is clear that the transformation of a service totally developed on Mainframe in a
service developed on open infrastructure that recalls the mainframe only for a part of the
functionalities allows the company considerable savings, considering that it is a service
widely used by customers.

The second driver, more important than the first one in some respects, is that this
transformation of the service enabled a much faster and more efficient development pat-
tern. The creation of Atomic Services to replace several Business Components has made
these services available to new functionalities, allowing faster development and fewer er-
rors. In this way, when developing an atomic function, it is made available to application
development groups "functional blocks" ready to use that can be handled as a black box.

54

Chapter 6

Future evolution of Intesa
Sanpaolo ICT: New Digital
Architecture

In previous chapters we have seen how it was possible to transform the information system
of Intesa Sanpaolo by integrating core services on legacy technologies with new services
through the use of ESB.

The next step for the bank to keep on this continuous integration will be to the Custom
call into question Centricity Architecture to allow a new integration with the latest devel-
opment patterns, such as those oriented to microservices. To do this was born the New
Digital Architecture, which is still focused on customer centricity but keeping in mind that
customer can interact with bank in a more and more pervasive way.

6.1 Objectives
New Digital Architecture’s targets are:

• Enable the evolution of new digital channels to ensure a uniform user experience on
all "touch points" and facilitate the rapid introduction of new products

• Ensure "Always On" by limiting the use of batches in favor of synchronous logic and
exploiting the opportunities made available by Cloud solutions

• Reverse the growth trend of infrastructure consumption (mainframe, open and stor-
age) induced by the customer-centric evolution of digital channels (i.e. Mobile and
advanced ATMs)

• Ensure the quality, consistency and coherence of data between systems, respecting
standards of security, privacy and compliance

• Improve software quality through the adoption of new development and delivery tech-
niques (i.e. DevOps) together with automation and simplification of management and
operational processes

55

6 – Future evolution of Intesa Sanpaolo ICT: New Digital Architecture

6.2 Logical model and main components
The Logical model of New Digital Architecture in Intesa Sanpaolo is the obvious example
of a continuous integration of a information system. Legacy technologies and the most
recent IT patterns come together in an unique information system which is tailor-made on
the needs of the bank. Inside this model it is possible to recognize five macro cluster which

Figure 6.1. New Digital Architecture logical model

represent fundamental elements of information system:

• Front-end is the first user approach to the system: so it is important to guarantee
consistent and natively omnichannel user experience also through different touch-
points. It does not manage business, process and product logic and does not include
replicas of business data.
Web applications are implemented with a single framework and with a single ap-
plication architecture while mobile and tablet ones will be implemented, based on
functionality, as a native or hybrid App.
At this layer are necessary omnidevice solutions which use "unique APIs" (no business
data, no business logic) which allows to communicate with external ecosystem made

56

6.3 – Microservice centrality

by partners, third-part applications and IT objects.

• Service Oriented Architecture, which belongs to previous Customer Centric Ar-
chitecture, finds in this new architecture the right place for accelerating information
system transformation.
In facts the decoupling layer for the orchestration of complex transactional logic and
long-running processes allows to maximize the flexibility and reuse in development of
new applications.
If in Customer Centric Architecture Web Services can be considered one of the most
used methods of service invocation, now New Digital Architecture is focused on API
as a paradigm to access or provide services, both internal and partner ecosystem.

• Banking Layer has two souls: the first is the traditional one made by Core Banking
which is the layer that provides the resources (i.e. data) on which to apply the
business logic, the second one is the Copy Banking and its Data Storage of replicated
data (Near Real Time or Batch) oriented to inquiry access, synthesis systems and
new digital services.
In other words at this layer there are transactional bi-modal systems that, depending
on the context, dynamically invoke the Core or the Copy Banking.
On the Core Banking, Mainframe disposition operations expect invocation of CICS
transactions orchestrated via ESB on Agility, while for informative operations there
will be a transformation into microservices. Nevertheless microservice transformation
is applicable to the whole architecture, evaluating the case studies.

• Data Layer/Data Consumer with its Data Ingestion and Streaming component
allows to replicate and exchange data in order to avoid direct communication between
applications and the redundancy of the master data. The introduction of a Dataflow
system will make bank’s data architecture open, known and reusable thanks to stan-
dardization and centralization of management and data exchange between systems.
This infrastructure enables massive data processing (batch re-platforming) through a
gradual transition from a batch logic to an event logic that enables updates almost
in real time.

• Infrastructure will able to manage the service and microservices life cycle and their
horizontal scalability thanks to the management of "Cloud-native" solutions imple-
mented by Platform as a Service and Infrastructure as a Service solutions.

6.3 Microservice centrality

6.3.1 What is a microservice
Microservices are a software development technique in which a single application is seen
as a suite of small services, each running in its independent process and communicating
with lightweight protocols, often an HTTP resource API. One of the main benefit of use

57

6 – Future evolution of Intesa Sanpaolo ICT: New Digital Architecture

Figure 6.2. Microservices influence many aspects of an information system

microservices is that they improve modularity. This makes the application easier to un-
derstand, develop, deploy and scale respective services. Microservices-based architectures
enable continuous delivery and deployment.

The most interesting characteristics of microservices include:

• Componentization: the ability to replace parts of a system independently from the
others.

• Organization around business capabilities instead of around technology.

• Decentralized data management with one database for each service instead of one
database for a whole company.

• Infrastructure automation with continuous delivery being mandatory.

• Independence brings benefits on many aspects about the life cycle of the software.

6.3.2 When and how to use microservices
Microservices are characterized by agility and scalability advantages, unreachable for any
other paradigm, so consider adopting for applications that have extreme requirements in
these areas. All IT actors are developing frameworks and platforms that helps in adoption
of the microservices architecture.

Creating a complete microservice infrastructure requires composition and integration
of a number of supporting tools to create what Gartner calls the “outer architecture.” It

58

6.3 – Microservice centrality

delivers the platform capabilities needed to help microservices work together to deliver
flexible development and deployment.

For this reason, if do not appear agility and scalability requirements for an application,
it is not convenient adopt microservices.

There are other ways to increase agility. Focus on development and deployment agility of
larger components before attempting to do it for a swarm of dynamically evolving microser-
vices. Most organizations will find microservices too complex, expensive and disruptive to
deliver a return on the investment required.

Meanwhile, organizations can derive tremendous value from the mini-services model,
which advocates a more pragmatic, coarse-grained services approach with relaxed archi-
tectural constraints.

6.3.3 Microservices in Intesa Sanpaolo
The use on microservices in Intesa Sanpaolo can be displayed in three different scenarios,
each one specific for particular application requirements.

• Front-end in a single component - Applicable in contexts where continuity in the
user experience is required

Figure 6.3. Front-end in a single component scenario.

Main characteristics:

– Functional decomposition applied to the business logic
– Consumer-oriented reuse / exposure of REST services
– Horizontal scalability
– DB is not included for functional and technological limits.

• Front-end in each microservice - Applicable in contexts of modular applications
Main characteristics:

– Functional decomposition applied to an entire functionality
– Consumer-oriented reuse / functionality exposure
– Coupling between front-end and business logic
– DB is not included for functional and technological limits.

59

6 – Future evolution of Intesa Sanpaolo ICT: New Digital Architecture

Figure 6.4. Front-end in each microservice scenario.

Figure 6.5. Full microservice scenario.

• Full microservice - Applicable in contexts where it is possible to isolate the data
model and include the database in the microservice
Main characteristics:

– Suitable for new isolated features to be developed on the Open world
– Independent
– Individually scalable
– Limited portability for large applications

60

Conclusions

In this thesis, it was shown how a complex information system like that of a large company,
such as Intesa Sanpaolo, can continue to integrate with increasingly more current and
complex technologies. In the last few years, as already stated in the first pages of this
work, it becomes more and more important for companies to be able to offer services to
customers as sensitive to their needs, and this inevitably goes through the use of the latest
technologies.

Therefore, the approach Intesa Sanpaolo has adopted to update its infrastructure,
strongly focused on legacy solutions (Mainframe), has been shown. It is unthinkable in
this context that an entire infrastructure is abandoned to make room for a new technology,
for this reason, the only viable approach remains that of continuous systems integration.

The ESB can therefore be considered the keystone that allows a "mainframe-oriented"
information system to evolve towards a real service-oriented architecture that does not
exclude the legacy component, but that instead manages to exploit it at its best (think
about the improvement of the CICS CPU time analyzed in chapter 5) alongside the more
advanced products. Integration through ESB has allowed to realize also a new development
framework able to simplify the work of the application groups, enabling them to realize
advanced services, such as the cardless withdrawal illustrated in chapter 4, exploiting the
modularity of the components and the independence of services.

All these advantages, listed so far, have costs not only in economic terms. As illustrated
in the last part of chapter 5, the new Customer Centric Architecture has involved a greater
complexity of the infrastructure that has seen involved: the ESB, the Rule Engine, the
Service Catalog, the MPE, etc. : all components that were not present in Intesa Sanpaolo’s
Enterprise Architecture and therefore need not only to communicate with each other in
order to work but they also need people able to manage and maintain them: this affects
management costs and systems response times that need more resources to guarantee SLAs
typical of the system information system of a systemic bank such as Intesa Sanpaolo.

Naturally, the system integration process can not be considered concluded with the
introduction of the ESB, but we must continue in this direction by developing increasingly
scalable and reliable solutions. A valid help in this area can come from architecture oriented
to microservices and containerizable infrastructures.

61

62

Bibliography

[1] Anthony, R. N. , Planning and Control: a Framework for Analysis, Cambridge MA,
Harvard University Press, 1965.

[2] Douglas K. Barry, https://www.service-architecture.com/articles/
web-services/service-oriented_architecture_soa_definition.html , 2018.

[3] KPMG, https://home.kpmg.com/it/it/home/insights/2017/07/
KPMG-CIO-Survey-2017.html, 2017

[4] VV. AA., Enterprise Service Bus, https://www.techopedia.com/definition/
24746/enterprise-architecture-ea, 2018

[5] Intesa Sanpaolo, History, https://www.group.intesasanpaolo.com/scriptIsir0/
si09/chi_siamo/eng_storia.jsp#/chi_siamo/eng_storia.jsp, 2018

[6] IBM, IBM MQ (già IBM WebSphere MQ), https://www.ibm.com/support/
knowledgecenter/it/SSFKSJ/com.ibm.mq.helphome.doc/product_welcome_wmq.
htm, 2018

[7] IBM, IBM Integration Bus introduction, Message flow nodes, https:
//www.ibm.com/support/knowledgecenter/en/SSMKHH_10.0.0/com.ibm.etools.
mft.doc/ac12640_.htm, 2018

[8] Mike Ebbers, John Kettner, Wayne O’Brien, Bill Ogden, Introduction to the New
Mainframe z/OS Basics, IBM RedBooks, 2011

[9] Barbara Calderazzo, Enterprise Service Bus: tutto quello che devi sapere, https://
www.interlogica.it/insight/enterprise-service-bus-cos-e-benefici/, 2018

[10] VV. AA., Microservices, https://en.wikipedia.org/wiki/Microservices, 2018

All product names, trademarks and registered trademarks are property of their respec-
tive owners. All company, product and service names used in this thesis are for identifica-
tion purposes only.

63

https://www.service-architecture.com/articles/web-services/service-oriented_architecture_soa_definition.html
https://www.service-architecture.com/articles/web-services/service-oriented_architecture_soa_definition.html
https://home.kpmg.com/it/it/home/insights/2017/07/KPMG-CIO-Survey-2017.html
https://home.kpmg.com/it/it/home/insights/2017/07/KPMG-CIO-Survey-2017.html
https://www.techopedia.com/definition/24746/enterprise-architecture-ea
https://www.techopedia.com/definition/24746/enterprise-architecture-ea
https://www.group.intesasanpaolo.com/scriptIsir0/si09/chi_siamo/eng_storia.jsp#/chi_siamo/eng_storia.jsp
https://www.group.intesasanpaolo.com/scriptIsir0/si09/chi_siamo/eng_storia.jsp#/chi_siamo/eng_storia.jsp
https://www.ibm.com/support/knowledgecenter/it/SSFKSJ/com.ibm.mq.helphome.doc/product_welcome_wmq.htm
https://www.ibm.com/support/knowledgecenter/it/SSFKSJ/com.ibm.mq.helphome.doc/product_welcome_wmq.htm
https://www.ibm.com/support/knowledgecenter/it/SSFKSJ/com.ibm.mq.helphome.doc/product_welcome_wmq.htm
https://www.ibm.com/support/knowledgecenter/en/SSMKHH_10.0.0/com.ibm.etools.mft.doc/ac12640_.htm
https://www.ibm.com/support/knowledgecenter/en/SSMKHH_10.0.0/com.ibm.etools.mft.doc/ac12640_.htm
https://www.ibm.com/support/knowledgecenter/en/SSMKHH_10.0.0/com.ibm.etools.mft.doc/ac12640_.htm
https://www.interlogica.it/insight/enterprise-service-bus-cos-e-benefici/
https://www.interlogica.it/insight/enterprise-service-bus-cos-e-benefici/
https://en.wikipedia.org/wiki/Microservices

64

Ringraziamenti

I miei ringraziamenti vanno:
A mia madre, a mio padre, a mio fratello, al loro supporto morale e materiale, alle

loro chiamate nei momenti più bui e più luminosi, alla distanza fisica che è cresciuta tanto
quanto il senso di appartenza ad una vera Famiglia. A voi posso solo dire grazie.

Alle zie, agli zii, a quelli di sangue e a quelli acquisiti, a chi è qui oggi, a chi non
può esserci, a chi è sempre con me. A voi che mi avete insegnato l’umiltà, il coraggio,
l’intraprendenza, la caparbietà.

A mia nonna Mafalda, al suo eterno preoccuparsi per il mio benessere, alle sue attenzioni
che resteranno sempre impresse nei miei ricordi. A tutti i miei nonni che nell’eternità del
tempo sono sicuro hanno assistito e assisteranno ad ogni attimo della mia vita.

Alla grande famiglia allargata in Intesa Sanpaolo ed in particolare a Ezio, a Federica,
a Liliana, a Michela, a Manuel, a Nicola, ai colleghi del gruppo Data Communication
e a tutto il gruppo del "Supporto Open". A voi che mi ha insegnato tantissimo e mi
insegnerete ancora tanto. Alla "Progettazione DB" che mi ha "adottato" negli ultimi mesi.
A tutti voi che avete contrubuito in tanti modi a questo lavoro di tesi con la conoscenza,
con l’entusiasmo, con l’incoraggiamento.

Al professore Maurizio Morisio, per avvermi accompagnato in questo lavoro finale del
mio percorso accademico.

Ad Armando e a Claudio, i compagni di questa avventura qui a Torino che ci ha regalato
momenti gioiosi e quelli in cui ognuno ha avuto bisogno dell’altro, alla grande tribù del
Sangiovannino capitanata dal mitico Don Natale che mi ha accolto quando ero solo un
ragazzino spaesato, a Michele e a Leonardo, portatori autentici dell’Irpinia più vera anche
lontano da casa. Un grande grazie a Gianluigi per esserci, anche stavolta.

A tutti quelli che ho dimenticato, per pura distrazione sappiatelo, a chiunque anche
incosapevolmente mi ha donato qualcosa permettendomi di essere ciò che sono.

65

	List of Figures
	Intesa Sanpaolo: company presentation
	History
	Banca Intesa
	Sanpaolo IMI

	Company profile
	ICT in Intesa Sanpaolo

	Definitions
	Enterprise Architecture
	Service
	Service Oriented Architecture
	Enterprise Service Bus

	Withdrawal service: orchestration on Mainframe
	Description of withdrawal service
	Mainframe
	Orchestration elements
	Business Component
	Business Service
	ISP Connector
	ISP Middleware
	IBM MQ

	Logical architecture of withdrawal service on Mainframe

	Withdrawal service: orchestration on Service Oriented Architecture
	Customer Centric Architecture: Service Oriented Architecture in Intesa Sanpaolo
	Principles
	Layers
	IBM Integration Bus
	Process Engine
	Rule Engine
	Service Catalog
	Customer Data
	Product Hub

	Description of withdrawal service transformation
	Description of new withdrawal service
	Development of Composite Service as a flow on IIB toolkit

	Re-usability on ESB: cardless withdrawal service
	Description of cardless withdrawal service
	Integration and implementation

	Evaluation of withdrawal service transformation
	Requirements
	Functional Requirements
	Non-Functional Requirements

	KPI
	Reuse rate
	Performance Times
	Scalability
	Time distribution in elapsed time in ESB orchestration
	Final KPI considerations

	Future evolution of Intesa Sanpaolo ICT: New Digital Architecture
	Objectives
	Logical model and main components
	Microservice centrality
	What is a microservice
	When and how to use microservices
	Microservices in Intesa Sanpaolo

	Bibliography

