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Summary

The present work deals with some classical phenomena observed in the field of wave
propagation in periodic structures, namely the ability to act as band filters and to
trigger preferential directions of propagation for specific frequencies.

After a brief presentation of the theoretical backgrounds, a numerical and ex-
perimental characterization of the phononic features is provided. The former have
been carried out by means of a finite element model of both the structure and the
elementary unit, the element repeated periodically. This is done because, thanks to
the application of periodic boundary conditions derived from the Bloch’s theorem,
it is possible to analyze the behavior on an infinite lattice taking into account only
this unit.

The object of the full scale simulations and experimental test has been designed
in order to improve the phononic process sought, facing also issues related to the
additive manufacture employed to realize the specimen.

Good agreement has been found between the theoretical prediction and the
numerical and experimental characterization, especially in the case of band gap
behavior.
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Chapter 1

Introduction

1.1 Terminology
A periodic structure is, by definition, a repetition of an elementary unit along
one or more directions. The elementary unit itself may belong to either a mono-
dimensional or a multi-dimensional domain. Due to the affinity with solid state
physics, briefly explained later, it is common to refer to periodic structures as
lattices and to elementary units as unit cells. Moreover, structures affecting elastic
wave propagation by means of the periodicity of their arrangement are also called
phononic crystals, in analogy with photonic ones. In a more general fashion, it is
possible to refer to these structures as metamaterials, with the meaning of finely
tailored assembles achieving unique mechanical properties without any require in
terms of periodicity: it just underlines the oddity of these structures. If the waves
taken into account are elastic ones, it is common to call such structures acoustic
metamaterials. It is worth to notice a certain arbitrariness about these definitions
in literature.

There are several possible choices for the elementary unit and different ones can
lead to different complexity and calculation times, although results are, as expected,
the same. Figure 1.1 shows three different possibilities with increasing complexity for
a regular hexagonal lattice. Later it will be clarified how the periodicity directions
are affected by this choice.

1.2 Relevance
Periodic structures play a key role thanks to their capability to exhibit peculiar
properties: it is indeed possible to obtain such abilities that cannot be found in
natural materials and cannot be observed except from a global standpoint, since
they concern only the whole structure. It is easy to find examples of periodic
structures in nature: honeycombs, for instance, as well as the arrangement of
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1 – Introduction

Figure 1.1: Different choices for the unit cell in a regular hexagonal lattice. Actually
the two more complex possibilities should have their external boundaries half thick.

atoms in crystals, see Figure 1.2. The above-mentioned implications in solid-state
physics would deserve an in-depth analysis that will not be carried out in this work;
anyway, this branch of condensed matter physics attempts to relate the periodic
characteristics of crystals to their macroscopic properties, mostly conductivities.
Moreover, many definitions are borrowed from solid state physics: a phonon is the
quantuum mechanical analogous of a vibrational mode since it describes a possible
state of excitation of a lattice of interacting particles. The analogy with photons
is strong since they both can be interpreted as energy packets with particle-like
behavior although solid state physics classifies their nature in two different classes.
In the same class of phonons, fermions, are electrons.

Static applications most benefit from the high strength compared to the low
global density of these structures: so are mostly made buildings, bridges, and in
the aerospace engineering field they are widely used for crucial weight issues. Also
weaved textures could be considered periodic arrangements and it is easy to have
a sense of the strengthening achieved, as in paper boxes. Although industry still
lacks of applications of periodic structures for dynamic purposes, here lies the
main appeal for research. Indeed, during the last few decades, a growing amount
of works has focused on the acoustic capabilities of phononic crystals. The next
section will shortly summarize these studies, focusing on works about acoustic waves
propagating in structure with a two dimensional periodicity.
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1.3 – State of the art

(a) ©Benjah-bmm27 (b) ©Benjah-bmm27

Figure 1.2: (a) Crystal structure of sodium chloride; purple and green spheres
represent Na+ cations and Cl− anions, respectively. — (b) Unit cell of the lattice.

1.3 State of the art

First studies in the field of periodic structures date back to the works of Newton
and Lord Kelvin [12] about mechanical spring-mass chains. During the Twenty-th
century Rayleigh [23] and especially Brillouin [2] reintroduced the argument: the
latter, indeed, revamped the field working on a variety of problems regarding one-,
two- or three-dimensional lattices and being the first to take serious advantage of the
Bloch-Floquet’s principle. This allows studying the behavior of an infinite periodic
structure taking into account a single unit cell and it is definitely the foundation of
following works. Later, solid-state physics made a great use of these tools due to
the role of electronic structure in defining the properties of crystals, while most of
the earlier applications in mechanics put the attention on multi-phase compound
materials with inclusions periodically arranged into a matrix.

In the past few decades, several works investigated the features of phononic
crystals starting from their band-stop capability. For this topic, very noteworthy is
the work of Phani et al. [21] who proposed an interesting comparison between four
classes of lattices: triangular, square, hexagonal and Kagomé; they also suggested a
strategy for FEM approaches. In a similar way, Gonella and Ruzzene [9] considered
the anisotropic behavior of an hexagonal re-entrant lattice which, as a further
matter, shows a negative Poisson’s ratio. The phenomenon behind this is the
Bragg-scattering: the impedance mismatch encountered by a wave propagating in
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1 – Introduction

a lattice-like materials leads to destructive inferences; the wavelengths involved in
these stop-bands and the spatial periodicity of the structure are comparable.

Liu et al. [15] proposed a first analysis of a locally resonant phononic crystal
studying a plate with solid ball coated with silicone rubber and embedded in
an epoxy matrix: they obtained low frequencies band gaps (350 ÷ 2000Hz) that
would have required huge structures for the activation of the Bragg scattering.
This metamaterial was able to stop waves with wavelengths much larger than the
characteristic length of resonators, a phenomenon observed with light scattering
in gas. They explained how, at resonant frequencies, the energy is trapped by
resonator units which thus prevent waves from propagating; moreover, they noticed
how these mechanisms require a certain density of resonator cells in the matrix
while do not need any periodicity. The same concept has been then investigated
on stubbed plates, as the one proposed in this work: Oudich et al. [19] studied the
band gap opening in an aluminum thin plate with a two-dimensional arrangement
of silicone rubber stubs. Stubbed plate-like phononic crystals have been widely
analyzed also for cloaking [5], acoustic rainbow trapping and waveguiding. About
the latter two, it is interesting the solution suggested by Celli and Gonella [3]
who showed these features by means of a Lego® plate with telescopic resonators.
Thanks to these, they have been able to further understand the role of disorder
in stubbed plates as they realized a broadband rainbow trap, whose width was
enhanced by disorder. They also showed a sub-wavelength waveguide featuring
up-shifted resonators instead of an empty path, achieving a better localization of
the energy. This happens because the resonators re-transmit the energy to the
medium by in-phase waves that interfere constructively with the incoming ones, if
the frequency of the excitation is slightly lower than the resonance of the resonators;
for this reason the guide become more suitable for energy confinement. Pennec et
al. [20] studied periodicity at smaller scale, thus with higher frequency effects, and
showed the relation between the geometric and mechanical parameters –such as the
height of stubs, their diameter, their distance or the material they are made of– and
the band gap position and width. An interesting application is the one proposed
by Colombi et al. [6], who succeeded in stopping Rayleigh surface seismic waves
employing a tree forest.

Among the above-mentioned unique properties of metamaterials, it is worth to
mention the ability to exhibit double-negative effective properties, as theoretically
demonstrated by Li and Chan [13]. They considered soft rubber balls dispersed
in water obtaining a Poynting vector in opposite direction with the wave vector.
This showed up in a simultaneously negative effective bulk modulus and density,
which means that the medium expands upon compression and moves to the left
when pushed to the right, respectively. This is an acoustic analogue of Veselago’s
medium [28] in electromagnetism. In addition, when both the effective bulk modulus
and the density are negative, the medium can also exhibit negative refraction. A
good example for solid media is the work by Zhu et al. [29] in which it is numerically
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and experimentally demonstrated the possibility to trigger negative refraction at a
deep-subwavelength scale by means of a chiral micro-structure. Like in the previous
work, this is allowed by a single structure and two different kind of resonances,
namely translational and rotational ones, in the ultrasonic range.

Another topic of great interest is the non-linear propagation in periodic structures,
started with the first works of Nesterenko [18] about granular chains of identical
spheres: a simple model that helps to face the complexity of problem in which is
often hard to correlate the abundant amount of parameters to the acoustic properties.
Although the source of non-linearity can be manifold, the most investigated one is
that coming from the stiffness, and in such granular chains it comes out from the
Hertz model of contact, thus with a nearest-neighbor interaction. More recently,
Sanchez et al. [24] studied the propagation of nonlinear compressional waves in a
one-dimensional granular chain excited at one end by an harmonic force, applying a
Fermi-Pasta-Ulam-Tsingou lattice model [7] with quadratic non-linearity (α-FPUT
model). Implementing a successive approximation method they analytically showed
the generation of second harmonic modes due to a forcing effect of the non-linear
interaction. The result is an energy exchange between the two harmonics that
is periodic in space. They also illustrated that in the case of evanescent second
harmonic, i.e. when the fundamental frequency is greater than half the cutoff, this
can not be neglected in the solution at any distance from the forced end. On the
same lines, non-linear waveguides featuring internal resonators have been take into
account as in the very recent work from Jiao and Gonella [10], which provided
a definitive experimental demonstration of intermodal tunneling, i.e. the energy
supply to higher frequency modes different in nature from the fundamental one,
thanks to second harmonic generation. Indeed, it has been observed the activation of
second harmonic axial mechanisms concerning the resonators despite the excitation
was out-of-plane at low frequency. Previously they also provided analytical and
numerical analysis of the case in [11].

Topology studies are the ones that most borrow from quantuum mechanics
investigations: the pursue is to emulate quantuum effects designing a dynamic
matrix, and thus a lattice, with characteristics analogue to the Hamiltonian matrix
of the Schrödinger’s equation. Albeit the classical mechanical formulation of the
equations of motion and the description of a quantuum mechanical lattice problem
through the Schrödinger’s equation differ both for the interpretation of the unknown
and for the nature of the problem, the existence of topologically protected edge
states is related only to the properties of these matrices and can be detected from
an analysis of the band structure. In this way it has been possible to observe
reflection-free unidirectional propagation along the edge of the domain with good
stability against imperfections [16, 17, 25]. Here the elastic version of the quantuum
spin Hall effect (QSHE) is taken into account since two counter-propagating waves
are generated along the border and they differ for their spin degree of freedom.
Other applications refer to the quantuum valley Hall effect (QVHE) giving birth to
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1 – Introduction

topologically protected boundaries modes by means of the space-inverse symmetry
breaking along the out-of-plane direction instead of the time reversal symmetry
breaking as the former case. This is practically realized designing an edge with
respect to which the lattice shows chirality properties [14].

1.4 Motivation
The aim of this study is to account for mechanisms involved in widely investigated
phononic processes without a definitive clarification. Indeed, as told in previous
sections, phononic properties of locally resonant stubbed plates can be manifold but
there is still a lack of connection between the dynamic properties of the resonators
and the behavior of the crystal. Since modal analysis of stand alone resonators do
not match completely the properties to wave propagation, the goal is to understand
what is the resonator, meaning which portion of the unit cell takes part in the
storage of energy and how this is constrained by the surrounding crystal.

Furthermore, additive manufacturing capabilities call for an attempt to study
wave propagation features as it could allow to test complex structures that could not
be realized by standard production. It would not have been possible to manufacture
the plate tested in this work without this tool and, on the author’s knowledge, no
other plates of this kind have been realized without attaching together different parts.
However, the process still presents some issues that will be discussed later. Also,
the dynamics characteristics of composite material of the kind employed in PolyJet
manufacture have been inspected although results obtained are not promising.

1.5 Statement of work
This thesis explores some basic phononic capabilities of an additively manufactured
stubbed plate using a three-dimensional FEM model. The study of the lattice
properties has been carried out applying Bloch’s condition to a single unit cell. Both
propagation and stationary case are taken into account and the results obtained have
been verified by numerical simulations and experimental test. A Polytec® PSV-400
3D scanning laser Doppler vibrometer has been employed for the experimental
characterization, which allows to measure the three components of the velocities
without interacting, at least mechanically, with the specimen. The procedure to
set up the measure will be illustrated in the specific section. The specimen has
been manufactured by the Earl E. Bakken Medical Device Center of the University
of Minnesota by means of a Stratasys® J750 Polyjet 3D printer. After several
attempts, both numerical and experimental, the final design of the unit cell exhibits
a mallet-like resonator made of a thin stem connecting the plate to a bulky head.
The plate, instead, is made of a square arrangement of seven-by-seven unit cells
surrounded by a portion of plain plate. The damping effect of the material employed
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has been found to be relevant, leading to a relatively small specimen in order to
have good imaging quality. Figure 1.3 shows an illustration of the unit cell.

Figure 1.3: Unit cell representation.

The work is organized in four chapters as follows: in the first one a brief
introduction to the field of acoustic wave propagation in phononic crystals is given;
in the second one the theoretical backgrounds are presented with a special focus to
the Bloch’s theorem, which is the most powerful tool of the analysis; in the third
chapter the numerical and experimental results are summed up and compared. Here
the phononic characteristics are illustrated with the selected design as an example,
together with a description of the experimental setup and the design process is
provided. Eventually, in the last chapter, conclusions to the work and some author’s
notes are given.
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Chapter 2

Phononic crystal
characterization

In a general case, to study properties concerning wave propagation in structures
one should take into account the information coming from the whole domain.
Nevertheless, when a structure is made of a periodic repetition of identical cells, all
the information are included into a single unit. This is true when one refer to infinite
periodic arrangements, where there is not any information about boundaries to
consider. The most straight-forward way to conduct the analysis of such structures
looking only at one unit cell is the application of the Bloch’s theorem, which
employs some clever boundary conditions to input the periodicity information. All
the following explanations will be given taking into account the unit cell described
above, which features a two-dimensional periodicity in a square arrangement.

A note regarding notation: in the next developments, bold lower case letters
indicate vectors, bold capital letters indicate matrices and the italic capital letters
reference frames. When the latter appear as superscript of the vectors it states in
which reference frame that vector is considered.

2.1 Geometry

In order to create a mathematical model of the lattice, a set of reference frames will
be used; the considerations, however, would hold for any choice of reference frame.
The first reference frame introduced is a cartesian one with his axes belonging to
the lattice plane and defined by the basis I = (ı̂1, ı̂2), where the hat indicates unit
lengths. Here, it is possible to define two direct lattice vectors which connect any
point in the unit cell with its equivalent in the nearest neighbor cells, as illustrated
in Fig. 2.1. Thus, the length of the two vectors is linked to the dimension of the
unit cell and to the particular arrangement. Referring to the cartesian reference
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2 – Phononic crystal characterization

e1

e2

Figure 2.1: Direct lattice vectors on a top view of the unit cell.

frame, the direct lattice vectors of a square lattice are defined

eI1 = (a, 0)T

eI2 = (0, a)T.
(2.1)

In this way, any cell of the lattice can be identified by means of an integer couple
(n1, n2) that indicates how many vectors (e1, e2) build the path from the reference
unit cell. Thus, with respect to the cartesian reference frame, it is possible to write
the lattice relation

ρP (n1, n2) = rP + n1e1 + n2e2 (2.2)

where ρP (n1, n2) is the position of the generic point belonging to the (n1, n2) cell
while rP is the position of the equivalent point in the reference unit cell. The couple
(n1, n2) is expressed in the direct lattice basis E = (e1, e2) that contains the spatial
periodicity of the domain.

At this point, a third reference frame can be considered: the reciprocal lattice
basis is defined by the vectors B = (b1, b2) that are given by

bi · ej = δij (2.3)

in which δij is Kronecker’s delta. It follows that b1 will be perpendicular to e2 and
b2 to e1. In cartesian coordinates, the reciprocal lattice vectors can be expressed as:

bI1 =
31

a
, 0
4T

bI2 =
3

0,
1
a

4T
.

(2.4)

10



2.2 – Bloch analysis

2.2 Bloch analysis
In order to describe the wave propagation characteristics in a structure describable
as seen before, it is usually employed the Bloch’s theorem, whose development
is shown in the followings starting from the equation of a wave propagating in
the lattice. The displacement field w(rP , t) in the reference unit cell, as the wave
propagates with frequency ω and wave vector k = 2π

λ
, follows the equation

w(rP , t) = wP0e(iωt−k·rP ) (2.5)
where wP0 is the amplitude of the response. The wave vector k can be expressed in
the direct lattice space by

k = k1e1 + k2e2 (2.6)
in which ki = δi + iÔi are complex numbers whose real part δi is a measure of the
amplitude attenuation from a cell to another and, as in this work, is typically set to
0, while the imaginary part Ôi describes the phase change over a unit cell and hence
it is called phase constant.

Bloch’s theorem, seen in this circumstance, states that the displacement at a
generic lattice position ρP , can be evaluated with respect to the equivalent point
in the reference unit cell. This can be demonstrated substituting equation (2.2)
into (2.5) written for the generic position ρP

w(ρP , t) = wP0e(iωt−k·ρP ) = wP0e[iωt−k·(rP +n1e1+n2e2)] =
= w(rP , t)e−k·(n1e1+n2e2) (2.7)

According to equation (2.3), one can express the wave vector in the reciprocal
lattice space so that equation (2.6) holds:

k = ξ1b1 + ξ2b2. (2.8)
Finally, substituting equation (2.8) into (2.7) it can be written:

w(ρP , t) = w(rP , t)e−(n1ξ1+n2ξ2). (2.9)
Here it is clear that the displacement of the generic point ρP is described starting

from the displacement of the correspondent point in the reference frame multiplied
by a term representing a spatial phase shift between cells.

About the direct lattice it has been said that it contains the information about the
spatial periodicity of the structure. In the reciprocal lattice, instead, it is described
the periodicity of the relation between frequency and wavenumber, namely the
dispersion relation ω = ω(k); it is thanks to this periodicity that the infinite lattice
can be fully characterized taking into account only one unit cell. The domain that,
in the reciprocal basis, contains a single period of this relation and it is centered in
the origin is called first Brillouin zone and, since it is common that the Brillouin
zone shows a certain degree of axial symmetry, it is possible to refer to the irreducible
Brillouin zone, obtained reducing all the symmetries. The topic will be resumed
along with results in order to provide a graphical explanation through them.

11



2 – Phononic crystal characterization

2.3 Finite Element model
So far it has been demonstrated that the unit cell and its reciprocal counterpart,
the Brillouin zone, contain all the information needed to characterize the lattice.
This section will show how this characterization is done employing the Finite
Element Method. Specifically, in this work has been exploited a three-dimensional
discretization by means of eight-nodes isoparametric hexahedron element with three
degree of freedom for each node. In order to obtain such mesh it has been used the
free software Gmsh [8] which produced the result in Figure 2.2.

Figure 2.2: Unit cell structured mesh with eight-nodes hexaedron elements.

Once mass matrix [M]n×n and stiffness matrix [K]n×n have been built, the
next step is to apply Bloch’s boundary conditions and thus define the periodicity.
Indeed, Bloch’s conditions relate some boundaries nodes with their opposite along
periodicity directions. In the end, this is a reduction allowed by the information
of equation (2.9). In the present case, 2D Bloch’s conditions have been applied
following the scheme illustrated in Figure 2.3 at each layer of nodes the plate is
made of.

Labels in Figure 2.3 denote the position of nodes around the boundary: in order
to simplify the implementation of Bloch’s relations it is now worth to rearrange
the generalized coordinates {u}n×1, and thus the rows of the mass and stiffness
matrices, grouping degrees of freedom by their position as

{u} = {uL,uLB,uB,uI ,uR,uLT ,uRT ,uRB,uT}T (2.10)

12
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LB

RTLT

RBB

T

RL

Figure 2.3: Scheme of the application of Bloch’s boundary conditions. With a
three-dimensional FEM structured mesh this scheme is repeated at each layer of
nodes belonging to the plate thickness. Blue labels are meant for the whole edges
without corners.

in which uI refers to all the internal nodes. Now, remembering (2.2), vectors in
Figure 2.3 could be described setting values of either one or zero for the couple
(n1, n2), and in the same way equation (2.9) becomes, as an example, uT = uBeiξ2 .
According to this, one can assume a reduced vector of generalized coordinates
{ur}m×1 containing only the first four groups of (2.10): internal one and those from
which vectors in Figure 2.2 start. The way groups are sorted in (2.10) becomes clear
writing the matrix correlating {u} and {ur} as follows:

{u} = W (ξ1, ξ2){ur} (2.11)


uL
uLB
uB
uI
uR
uLT
uRT
uRB
uT



=



[I]nL×nL
[0]nL×nLB

[0]nL×nB
[0]nL×nI

[0]nLB×nL
[I]nLB×nLB

[0]nLB×nB
[0]nLB×nI

[0]nB×nL
[0]nB×nLB

[I]nB×nB
[0]nB×nI

[0]nI×nL
[0]nI×nLB

[0]nI×nB
[I]nI×nI

[Ie−ξ1 ]nR×nL
[0]nR×nLB

[0]nR×nB
[0]nR×nI

[0]nLT×nL
[Ie−ξ2 ]nLT×nLB

[0]nLT×nB
[0]nLT×nI

[0]nRT×nL
[Ie−(ξ1+ξ2)]nRT×nLB

[0]nRT×nB
[0]nRT×nI

[0]nRB×nL
[Ie−ξ1 ]nRB×nLB

[0]nRB×nB
[0]nRB×nI

[0]nT×nL
[0]nT×nLB

[Ie−ξ2 ]nT×nB
[0]nT×nI




uL
uLB
uB
uI

 .

Then, the equation of motion

(K− ω2M){u} = {0} (2.12)

can be written
W H(K− ω2M)W {ur} = {0}. (2.13)
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which has been also pre-multiplied by the hermitian of W , namely its complex
conjugate. If now one defines two reduced mass and stiffness matrices [Mr]m×m and
[Kr]m×m as

Mr = W HMW

Kr = W HKW ,
(2.14)

the harmonic equation of (2.12) becomes

(Kr − ω2Mr){ur} = {0}. (2.15)

Since W is a function of the wavevector in the reciprocal basis, it is possible to
solve an eigenvalue problem for each couple (ξ1, ξ2):

(Kr − ω2Mr){Ψr} = {0}. (2.16)

The eigenvalues derived from equation (2.16) for each wavevector are put together
to build the dispersion surfaces, which will be the topic of the next section since
it is worth to first illustrate the implications of this procedure. It is common to
say that, when the reduction of equation (2.11) is employed, periodic boundary
conditions have been applied, meaning that the information of the infinite and
periodic lattice have been added to the model; this is true although the way this
happens is actually indirect. Indeed, the reduction constrains some of the edges to
displace in the same way of their opposite edge, but with a phase shift given by the
ratio between the periodicity and the wavelength. Thus, as the wavelength varies,
the phase shift does the same. What it is imposed in this way is the consistency of
displacements of opposite edges with a wave traveling across the unit cell, although
no spatial periodicity has been explicitly assigned. This information is contained
in the imposed wave itself: indeed, the condition expressed by the reduction can
be true only if a plane wave travels undisturbed and this happens in the lattice
when no reflection or scattering occur. Thus, the wave is traveling into a medium
whose properties never change and, of course, that never ends. In this way, both
the lack of boundaries and the periodicity are added to the model. Furthermore,
this explains how a tool usually employed for stationary applications as the modal
analysis can provide information about transient phenomena like wave propagation.
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2.4 Results from unit cell analysis

2.4.1 Dispersion surfaces
Thanks to the application of Bloch’s conditions to the unit cell, the phononic
characterization of an infinite lattice has been reduced to the solution of an eigenvalue
problem for each point of the (ξ1, ξ2) domain. Since this solution will be periodic
in this domain, it is enough to take the (ξ1, ξ2) couples belonging to the first
Brillouin zone. As in any dynamic problem, eigenvectors represent mode shapes
and eigenvalues the square of frequencies, but unlike vibration steady state cases,
in which these are resonance frequencies, for wave propagation they represent the
frequencies of modes whose wavenumber is k = ξ1b1 +ξ2b2. All the surfaces ω(ξ1, ξ2)
obtained related to each mode are called dispersion surfaces or phase constant
surfaces. Figure 2.4 shows the first eight for the studied geometry.

Figure 2.4: Lower eight dispersion surfaces in the first Brillouin zone.

All the features and properties regarding phononic processes are somehow depicted
by these surfaces or by other plots of them, like the iso-frequency contours or the
band diagrams, that will be illustrated later. Indeed, the shape of these surfaces
affects velocity properties in different directions and at different frequencies, as these
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only depend on relations between frequency and wavenumber. Also band gaps can
be detected from the analysis of these results, seeking for frequencies not involved
by any mode.

Considering the whole set of modes, or at least a generous amount, it would
be possible to see how this modes tend to group at some frequency bands rather
than others, allowing to define a density of modes through which several material
properties are described. For phononic applications, solid state physics addresses this
density of modes, or better density of states, as a measure of thermal conductivity
and this is reasonable since temperature is a description of vibrating particles. If,
instead, these surfaces represent the eigenstates of the Hamiltonian in Schrödinger’s
equation for quantuum mechanics, the density of states describes the available
energy levels of electronic orbitals in crystals and the positions of these bands
with respect to the Fermi Level distinguishes conductors (metals) from insulators.
Looking at these surfaces with the idea of available energy states can lead to a
deeper understanding also of acoustic applications. However, none of these concepts
will be investigated in this work as the attention will be focused only on the lower
surfaces.

It can be already noticed looking at the (ξ1, ξ2) axes in Figure 2.4 that the limits
of the first Brillouin zone are −π and π: indeed, matrix W in (2.11) has a period
of 2π in the reciprocal lattice and this information is carried in the eigenvalue
problem in (2.16). It is easy to get a graphical proof of this periodicity looking at
the iso-frequency contours, which are representations of dispersion surfaces by level
curves. Figure 2.5 shows the contours of the first surface for the chosen unit cell,
for wavevectors going from −3π to 3π along both directions. Due to the square
arrangement, reciprocal lattice vectors and direct lattice ones are both parallel to
the directions given by the cartesian reference frame. This allows these plots to have
an immediate physical meaning, while for different kinds of arrangements it would
be necessary to transform the surfaces from the reciprocal basis to the direct one.
In Figure 2.5 also the first Brillioun Zone and its irreducible portion are represented;
the latter can be obtained with a graphical construction that Brillouin explains in its
book starting from the former. For a square lattice, the coordinates of the vertices
of the shown irreducible Brillouin zone are O(0,0), A(0, π), B(π, π), although it
has to be understood that all the irreducible portions contain the information to
describe the whole infinite lattice and they are as many as the double of the number
of symmetry axes. The vertices of this area are said to be high-symmetry point and
they are called critical points. Their denomination its not fixed and, in fact, both in
solid state physics and in crystallography they are called Γ, M and K respectively.

2.4.2 Band structure
Despite a lack of a rigorous demonstration, it has been always seen that maxima
and minima of the dispersion surfaces lie on the contour of the irreducible Brillouin
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Figure 2.5: Contour plot of the first dispersion surface for the considered geometry
showing the periodicity of the dispersion relation.

zone, so that for certain analysis, as for a band gap characterization, it is possible to
define a coordinate s varying only along this contour. The plot of a set of dispersion
surfaces along this domain is called band diagram or band structure, and it is the
most straight-forward representation of the results from Bloch analysis. Figure 2.6
shows the band structure for the studied unit cell, in which the first eight modes
are represented.

To really understand this plot it is necessary to fully understand the meaning of
the s coordinate on the abscissa: in fact, one should think to a set of vector starting
from the origin O and pointing at the position individuated by s; these are indeed
wavevectors spanning the irreducible Brillouin zone contour. For this reason, in
the OA section the growing of s means an increasing of the wavevector modulus
while its direction stays parallel to one of the reciprocal lattice vector; in the AB
section the wavevector experience a very little change in modulus while its direction
rotate from one boundary of the irreducible Brillouin zone to the other; eventually,
the wavevector reduce staying parallel to the BO segment. As the s coordinate
approach the point O wavelengths grow since the wavevectors tend to zero. Some
of the modes present a long-wavelength limit, meaning that their frequency tends
to zero together with the wavenumber; these modes are called acoustic while the
other ones are indicated as optical.

According to what has been said above, the lack of modes in the frequency
range 4,5÷ 5kHz in Figure 2.6 testifies to the presence of a full band gap, meaning
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Figure 2.6: Band structure with the first seven modes for the considered geometry.

that the transmission is prevented for any kind of wave. Since each branch is a
one-dimensional portion of a dispersion surface, each of them corresponds to a mode.
Nevertheless, mode shapes are derived for each value of s, so that the mode can
manifest with different mode shapes along the branch. Indeed, mode shapes are
affected by the wavenubmer since they show how the unit cell behaves when invested
by different wavelengths. Thus, once the excitation is given, only modes compatible
with that excitation should be taken into account; in this way selective band gaps
can be defined, meaning frequency ranges at which only certain waves are forbidden.

Before showing the mode shapes of the structure, it is worth to add a clarification:
once obtained, modes are sorted in ascending order so that the n-th surface is actually
the set of all the n-th eigenvalue calculated for each wavevector. Nevertheless, modes
can change their relative order meaning that, if for some wavelengths a mode has a
frequency lower than another, the opposite can happen for different wavelengths.
This is detectable because some branches abruptly deviate just before crossing other
ones. This is usually called veering and it does not have a physical meaning, it is
just the effect of a misplacement of the modes, but must me known when looking
to the surfaces to derive properties. The highest branch in Figure 2.6, for example,
has two sharp corners out of which the slope of the surface drastically changes:
they are two different modes whose eigenvalues happen to be the eight for different
wavevectors.
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2.4.3 Mode shapes

Figure 2.7 shows the first eight mode shapes evaluated at the critical point A: the
wavevector is as long as the edge of the of the unit cell, namely the periodicity of
the structure, and is directed along the ξ2 axis, which is parallel to the y-axis. This
means that the objects of the study are the ways the unit cell can store energy when
waves of different nature, but with the same wavelength, are transmitted. Due to
the different nature of the waves, meaning different mode shapes, some of them
require more energy to be activated and this results in higher frequencies.

The first mode shape in Figure 2.7(a) belongs to an acoustic mode involving
mostly the pillar and its first bending mode in the Y-Z plane; this oscillation is
coherent with the propagation of the wave along the y-axis. The second mode in
Figure 2.7(b) is of the same nature of the first but the bending of the pillar happens
in the X-Z plane perpendicular to the wave: for this reason it requires an higher
energy and lives at a frequency slightly higher than the first mode. Von Mises
stresses represented by colors give a proof of these assumptions: in the first case
most of the stresses are concentrated at the base of the stem along the y direction
since all motion are in this direction. In the latter case the motion of the pillar is
perpendicular to the wave and stresses in the plate distribute at the four corners.
The third mode in Figure 2.7(c), likewise the former two, involves only the pillar
which is twisted with a correspondent growing of the head diameter. Despite this
exists, it is very hard to excite such a peculiar motion and no further discussions
will be done about this. The fourth mode, depicted in Figure 2.7(d), is the first
involving a consistent bending of the underlying plate. It is compatible with an
out-of-plane wave along the y-axis. The stresses are greater in the plate as the pillar
does not experience any bending, stretching or torsion and so does not participate to
the energy storage. Since the prescribed excitation in our test will be out-of-plane,
this existence of this mode and its characteristics will be leading parameters in the
next analysis. The fifth and the sixth modes in Figure 2.7(e) and 2.7(f) could be
seen as the second bending mode of the pillar. For both of them stresses are highly
concentrated at the top fillet, just beneath the head: the difference, similarly to
the case of the first and the second modes, is given by the enhancing effect of the
wave when the bending happens in the Y-Z plane, parallel to the wavevector. The
motion of the plate, indeed, decrease the energy needed to obtain that bending.
The seventh mode in Figure 2.7(g) prescribes great displacements to the plate,
again compatible with an out-of-plane excitation carried by a wave lying on the
y-axis. The relative bending between the stem and both the head and the plate
is considerable and leads to the hypothesis that the role of the plate is crucial to
the point that the correspondent mode involving motion in the X-Z plane can not
be energized but at very high frequencies. Eventually, in Figure 2.7(h) the eighth
mode is illustrated. It is again compatible with an out-of-plane mode along the y
direction and looks similar to the fourh mode in Figure 2.7(d), although here the
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energy is mostly exploited in the stretching and compression of the stem, while the
head plays a secondary role. Figure 2.7(d) and 2.7(h) also highlight how the wave
taken into account has a wavelength the double of the cell edge, as in both cases
the plate bends following an half-wave shape.
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(a) 346 Hz (b) 382 Hz (c) 1114 Hz

(d) 3393 Hz (e) 3809 Hz (f) 4338 Hz

(g) 11448 Hz (h) 18573 Hz

Figure 2.7: Lowest eight mode shapes evaluated in the critical point A with Von
Mises stresses represented by colors and normalized against the maximum on the
surface. Captions display the frequency of each mode.
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2.4.4 Velocities
While the presence, or lack thereof, of dispersion surfaces in certain frequency ranges
addresses for band gap behavior, information about velocities can be derived from
the shape of surfaces. To model wave propagation, two different velocities are
usually employed, both depending only on the relation between frequency ω and
wavevector k. The phase velocity

cp = ω

|k|
k̂ (2.17)

relates the wavelength to the time in which a point of constant phase, as a crest,
takes to cover it. Since it is simply the ratio between the frequency and the modulus
of the wave number, a quick outlook of the directionality is given by iso-frequency
contours of the dispersion surfaces. In this case, indeed, the numerator will be
constant and the phase velocity will be greater for points closer to the origin, and
vice-versa; for an isotropic media these contours would be circular. In periodic
structures, the axial-symmetry of the arrangement usually plays a role in determining
these properties. To deliver some clarifying examples, iso-frequency contours of the
first eight surfaces are shown in Figure 2.8.

Veering, namely the switch of position of two modes when their frequencies
approach, should be taken into account when looking at these plots: the fourth
mode, for instance, shows a flat low frequency region which actually belongs to the
third mode: this becomes clear looking at the fourth branch of the band structure
in Figure 2.6, in the intervals close to the origin O. In the same way, the seventh
mode has a steep region close to the origin of the reciprocal lattice space which
correspond to an axial mode, differently from the one depicted in Figure 2.7(g). In
Figure 2.8, to avoid misunderstandings and wrong conclusions, areas corresponding
to modes different from the main modes of the surfaces has been cut. Through a
painstaking manipulation of results it would have been possible to reconstruct the
original physical surfaces.

The first dispersion surface in Figure 2.7(a) provides a good example of frequency
dependent directionality: albeit looking only at these contours is not sufficient to
determine this property, the change of their shape is an initial trace of it. The
second-last contour showed has a squarish shape that should lead to anisotropic
propagation for that frequency: likewise what explained above, since the same
frequency, i.e. the contour level, is divided by wavevectors of different lengths,
as the contour different from a circle, phase velocity will not be equal in all the
directions. The second surface of Figure 2.7(b) present some strongly anisotropic
features although the frequency range spanned by those contours is extremely narrow
(368÷ 381 Hz). The third surface in Figure 2.7(c) describes a completely flat mode,
as depicted by Figure 2.6; further examination will be carried on this mode when
group velocity will be presented. Contours of the fourth surface in Figure 2.7(d) are
mostly circular but the higher two, which are not closed lines, at least looking at a
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(a) First surface (b) Second surface (c) Third surface

(d) Fourth surface (e) Fifth surface (f) Sixth surface

(g) Seventh surface (h) Eighth surface

Figure 2.8: Iso-frequency contours plots of first eight dispersion surfaces in the
first Brillouin zone. Effects of veering on these representations have been canceled
cutting areas related to modes different from main ones. Color scales span each
surface interval.

single Brillouin zone. All the remaining surfaces show strongly anisotropic shapes:
some of them also reveal a concavity that changes along different directions, like
in Figure 2.7(e). This characteristic plays an important role for the derivation of
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group velocities.
Group velocity is defined as the gradient of dispersion relation

cIg = ∇(ω(kI)) =
A

∂ω(kE)
∂k1

,
∂ω(kE)

∂k2

B
=
A

∂ω(kB)
∂ξ1

,
∂ω(kB)

∂ξ2

B
, (2.18)

in which the equivalence between all the basis is due to the proportional relations
connecting them: as the surfaces enlarge, axes do the same and vice-versa so that
the derivative doesn’t change. The same can not be said about phase velocity,
since frequencies values are not different among basis. Group velocity plays a more
relevant role than phase velocity because it contains information about the energy
propagation. Its physical meaning, indeed, is the velocity of propagation of the
envelope of a wave packet, also referred as burst, obtained exciting in a narrow
frequency band. Figure 2.9 provides an example of a wave packet and its envelope,
the orange dashed line.

Figure 2.9: Example of a wave packet.

Comparing equation (2.17) and equation (2.18) it is clear that if the frequency
was a linear function of the wavevector, group velocity and phase velocity would
be the same and they would not change for different frequencies. This is what
happens, in general, at the long-wavelength limit and in non-dispersive media, whose
dispersion surfaces for two-dimensional structures are semi-cones. The band diagram
of Figure 2.6 allows both to evaluate this derivative along one dimension at a time
and to compare it to the line connecting the origin and the selected point, whose
slope represents phase velocity. In the OA section, acoustic modes evaluated at very
low wavevectors are non-dispersive. When the wavevector grows, branches fold and
the difference between the two velocities grows as well: both diminish as an effect
of folding although group velocity in more sensitive to this. When branches become
flat, group velocity is null and the propagation of that mode is forbidden. Since it
has been said that also real wavevectors prevent waves from propagating, it should
be reminded that, in the case of null group velocity, energy keeps its mechanical
nature being only confined.
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Iso-frequency contours become even more relevant in the evaluation of group
velocity: since this is the gradient of dispersion surfaces, its direction will always
be perpendicular to these contours. Once the gradient for each contour point has
been evaluated, the collection of all the gradient vectors moved to the origin of the
reference frame allows to visualize the group velocity in each direction. Therefore, if
a contour shows a change of its concavity, like the second-last contour of Figure 2.8(f),
group velocity plot will display lobes in its shape. As said before, group velocity
directionality is much more relevant than phase velocity one since the energy of the
wave packet travel with its envelope.

Figure 2.10 contains group and phase velocities plots for the first, the fourth and
the sixth modes. Phase velocity plots are presented on the left column while group
velocity plots on the right one. For each mode three frequencies have been chosen
and it is possible to read them in contours legend. These modes have been chosen
as they deliver different examples worth to examine in depth.

The three contours showed for the first mode are all characterized by outward-
directed arrows, which represent the expected behavior of dispersion relations moving
away from the origin. The two lower contours are circular and the arrows on each
of them are of the same length. Therefore, both their group velocities and their
phase velocities keep a round shape, meaning that those frequencies propagate with
isotropic patterns. The outermost contour, which is also higher in frequency and
belongs to the folded portion of the first mode, has a squarish outline and the
gradients are not equal everywhere. As it has been said above, phase velocity is
affected only by the shape of the contour in a way that outer points will have a
smaller velocity; Figure 2.10(a) confirms this as his yellow set of points promote the
directions along which the third contour is closer to the origin. Imaging to make all
the gradient arrows start from the origin, one would obtain the group velocity plot
on the right column marking the tips of arrows. As the higher frequency gradients
are not equal in modulus, the group velocity shows directionality although velocities
are way smaller than the lower frequency ones. As clarified in the caption, arrows
are scaled to avoid superimposition so their length is consistent within a contour
but it is not between different contours.

Similar considerations could be made for the fourth mode depicted on the second
row. Again, lower frequencies propagate without showing particular any preferred
direction. In this case the third contour not only lacks of a round shape, but it
does not exist at all along some directions. The most direct effect is on the phase
velocity which, likewise the contours, is almost constant along each direction it exist.
At the extremity of this contour branches, the concavity slightly changes so that
the gradients are not all radial. This variation is enough to generate lobes like the
ones of Figure 2.10(f). The numerical simulation of propagation transient will be
carried out only to show the directionality of this frequency and will not be object
of experimental test.

Eventually, the sixth mode has been chosen for the shape of its middle contour,
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whose strong change of concavity along different directions provides a more clear
example of what has been said for the former mode about group velocity. The
difference between principal directions and diagonals increase as the frequency grows,
so that the squarish features of the lower mode are enhanced. For this reason the
blue group velocity plot in Figure 2.10(i) modifies up to show lobes like the red plot
does. However, these are short, wide lobes that encompasses almost all directions.
Likewise the first mode, velocities at higher frequencies become very small. Phase
velocity plots show once again how this property is affected by contours shapes.

2.5 Summary
Due to the length of the chapter, this section provides a brief summary of the
encompassed topics. At first it has been presented how the lattice is described
introducing, along with the cartesian reference frame, the direct lattice basis and
the reciprocal lattice one. Thereafter, fundamental tools for Bloch’s analysis have
been demonstrated and periodic boundary conditions have been applied to a three-
dimensional finite element model of the unit cell. Such conditions take into account
the wavevector to evaluate the phase shift across the unit cell. Therefore, the
solution of a reduced eigenvalue problem can be found for each value of the the
wavevector. The relation between the frequencies, found as eigenvalues, and the
wavevector, is shown to be periodic in the reciprocal lattice basis. Later, it has been
explained how focusing only on the contour of this reduced portion of the reciprocal
lattice space it is possible to build the band structure of the lattice. The properties
of this representation have been clarified together with the illustration of the mode
shapes that it describes. At last, phase and group velocities have been defined and
qualitatively derived from the iso-frequency contour plots presented in the same
section.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.10: Phase velocities (a, d, g), iso-frequency contours equipped with gradient
arrows (b, e, h) and group velocities (c, f, i) for the first, the fourth and the sixth
modes, respectively. Contour legends are expressed in Hz and apply for each row.
Gradient arrows are scaled to prevent superimposition.
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Chapter 3

Finite dimensions lattice

As aforementioned, the predictions given in the previous section could not have been
derived without looking at the behavior of the lattice effectively excited. Indeed,
the knowledge gained about band gaps and the characterization of their nature have
been results of mostly full scale analysis. Here lies the first, main, and inevitable
source of discrepancy with Bloch analysis since there is no possibility nor real
meaning to either observe or simulate an infinite lattice. Hence, the study is pointed
to finite dimensions lattices whose agreement with theoretical results depends on
how well the periodicity is replicated. This means that even small structures can
mimic infinite repetitions although common magnitudes for velocities do not permit
to observe wave propagation in the very little time before waves reach edges.

In this section all the results from both numerical and experimental test will be
provided and compared, as they will be shown to agree with the unit cell analysis
and eventually to match each other. At first, steady state analysis will be provided as
experiments have been carried out only for this application; at the end of the chapter,
instead, only numerical simulations will be shown to validate those properties that
can only be taken into account with transient analysis, like velocities.

Before presenting the results, an outline of the design process is given in the next
sections, regarding first the unit cell and then the whole specimen. Also, a brief
description of the experimental setup will be given.

3.1 Design
The introduction of this work ends with the sketch of the unit cell in Figure 1.3
although no information have been given about the design process. The purpose of
this section is to provide an idea of the issues that have been encountered, related
to the manufacture process and the phonoinc performance of the specimen. As the
former implies the design of the specimen over the unit cell, some pictures of earlier
plates are given in this chapter to unfold the manufacture issues, although more
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information about their arrangement are provided in the next section.
The cornerstone of the design has been the choice of a stubbed plate as object

of the study. This kind of structures has been widely analyzed for locally reso-
nant phononic crystal applications, finding its main feature in the continuity of
the substrate: the plate, indeed, can be considered as an homogeneous medium,
differently from the case of in-plane resonators. Furthermore, most of the works
available at this time [1, 4, 19, 30] make use of specimens which are assemblies of
different parts: in this work additive manufacturing allowed to test homogeneous
single-pieces specimens. This leads to a more consistent mathematical model since it
is hard to analytically predict the behavior of junctions, especially for such sensitive
phenomena.

3.1.1 Phononic characteristics
Once the nature of the crystal has been chosen, some first attempts have been made
starting from a primitive geometry, depicted in Figure 3.1, to understand which
parameters influenced phononic processes. The feedback of this study are the results
presented in the previous chapter, especially band structures and mode shapes. In
other words, the aim has been to design the band structure itself improving the
awareness of the relations between geometric and phononic parameters. Similar
analysis have been carried on in [20, 22].

20
210

∅2

Figure 3.1: First attempt design of the unit cell.

At the beginning, the result sought looking at the band structure has been a
sign of band gap that did not came out: all the lower branches in the band diagram
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intersected each other so that no frequency band was left free. At that time, there
was not a full consciousness of the meaning of each branch and of the relations
between geometric parameters and phononic features, so that several attempts
have been made to build this knowledge. In the past, it has been observed how,
selecting the maximum frequency of each mode, these corresponded to the resonance
frequencies of the same modes when a modal analysis was carried on the resonator
alone. Therefore the onset of any possible band gap will correspond to one of
these maxima. Given this, one should know which branch to take into account to
adjust the geometry in order to place the resonance frequency at the desired level.
Naturally one can not modify a single mode without affecting all the others, so
the process is always carried out by attempts and band gaps signs are those that
suggest which branch should be analyzed.

First possibilities to open band gaps has been found lowering the resonance
frequencies of both the plate and the pillar. The former has been seen to be
more sensitive to its width, namely the periodicity, than to its thickness, although
since additive manufacturing does not allow to have big specimens, it has been
chosen to keep this value to a = 10mm in order to ensure space for a minimal
repetition. Clearly, being able to act only on the plate thickness to lower the
resonance frequencies, this has been diminished.

The design of the pillar has been the most challenging and important phase of
the work. Despite the plate played a fundamental role in determining the order of
magnitude of the eigenvalues, the shape of the pillar allows to tailor at a smaller
scale the band structure. Looking at the resonator as a clamped beam, which is
not but works for a first approximation, the opportunities to lower down the first
resonance frequencies lie either in a longer pillar or in its weakening: both ideas
aim to a stiffness reduction. Applying both the solutions, we obtained a full band
gap with the geometry illustrated in Figure 3.2, whose band diagram is depicted in
Figure 3.3(a).

The two main characteristics of this design are the very thin plate and the hollow
pillar. The latter, in particular, has been thought as a way to decrease the stiffness
without decreasing the mass. Figure 3.3(a) shows a full band gap in the frequency
range 8,5÷ 10,5kHz: in this region there is no way for the unit cell to store energy,
whatever the excitation is. The reason behind the attribute full to the band gap
lies in this. The shaded orange region, instead, represents a modal band gap, a
frequency region in which the capability of the unit cell to store energy depends on
the excitation: if this is compatible with the mode shapes of the present branches,
transmission is allowed.

There can be no certainty about the excitation decomposition through modes
operated by the structure. Thus, numerical steady-state simulation of finite dimen-
sions lattices are carried out to understand the response to the prescribed excitation
and the results of this analysis are presented in the next chapter. Since it has been
chosen to study the flexural behavior of the plate, out-of-plane excitation has been
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26
0,
510

∅6

∅4

Figure 3.2: First unit cell employed for experimental tests.

,
(a) Geometry: Figure 3.2

,
(b) Geometry: Figure 3.5

Figure 3.3: Band diagrams of the first two unit cell manufactured. The orange
opaque band highlights a full band gap while the transparent bands a modal band
gap. Stressed branches are the reference for flexural behavior.

investigated. In this way it has been understood how the third mode is the one
to take into account when such an excitation is given. Therefore the onset of the
modal band gap is identified by the maximum of the third branch.
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The band gap of Figure 3.3(a) is very clear as his lower modes can be easily
detected and it match the similar case proposed in [22]. Thus, this has been the
first design to be manufactured and tested. Unfortunately, the very little thickness
of the plate and the limited toughness of PolyJet materials led to the break of
the specimen, first with a small crack due to the detaching of the shaker stinger,
and eventually split in half during an attempt to stretch the plate, as shown in
Figure 3.4.

Figure 3.4: First specimen manufactured broken in two pieces. The vertical linear
crack has been the effect of a stretching attempt, while the missing part has been
removed to carry out some test on a plain plate.

To improve the strength of next specimens it has become necessary to increase
the thickness up to one millimeter, although this forced to start from scratches the
design of the pillar: indeed, an important role in the global stiffness for flexural
excitation is played by the portion of the plate between the edge and the pillar, see
Figure 2.7(d) at page 21, but the hollow geometry reduce this portion increasing
stiffness and resonance frequencies.

In order to keep both a sufficient mass and enough plain plate for the reasons
just unfolded, the mallet-like design in Figure 3.5 has been brought out. The big
head increases the inertia for either flexural and axial behavior of the pillar and the
same effects are given by the slender stem. The two band structures depicted in
Figure 3.3 present a stressed branch describing the mode associated with a flexural
behavior. Looking at Figure 3.3(b) one should consider veering effects and follow the
steep slopes out of the stressed region. Despite the completely different design, the
two branches look similar and their maxima are both close to 5kHz, indicating that
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the modification of the pillar compensated the thickness increase. Other branches,
instead, albeit looking similar, appear at significantly different frequencies: it is the
case of the flat mode just beneath the full band gap in Figure 3.3(a) that is positioned
at very low frequencies in Figure 3.3(b). This is of the kind of Figure 2.7(c) at
page 21, which represents a torsion of the pillar, so hard to energize to be of no
interest. It is also worth notice that the band gap width of Figure 3.3(b) is much
smaller than the previous design. The goodness of this property depends on the
application; for the example that will be shown in the next chapter, a more narrow
gap eases the identification of its limits. Of course, for filtering purposes the wider
gap would be more effective.

10
2

110

∅8

∅1

Figure 3.5: Second unit cell manufactured showing the mallet-like design.

3.1.2 Manufacturing aspects
At this point the desired phononic properties have been found and next updates
concern manufacturing aspects. The design of Figure 3.3(b) requires the use of
supports for the printing process. First specimens have been obtained employing
standard support material that is removed mechanically; due to the great slenderness
of the the resonators those broke at any attempt to clean the plate. Figure 3.6(a)
shows the result of an attempt to remove supports carried out with a water jet.

Realized this, fillets have been added to the design to try to strengthen the
structure and the supports material has been changed to a dissoluble one, the SUP-
706. An example of a specimen before supports removal is shown in Figure 3.6(b).
It should be reminded that the availability of this feature for additive manufacturing
is achieved thanks to the state of the art machines of the Earl E. Bakken Medical
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Device Center.

(a)

(b)

(c)

Figure 3.6: (a) Specimen employing mechanical removable supports with detached
pillars due to a failed cleaning attempt made by means of a water jet. (b) Printed
specimen before and after (c) dissolvable supports removal. Supports material is
the white one surrounding pillars. The reference geometry is the one depicted in
Figure 3.5.

The advantage of dissolvable supports is twofold: it prevents the operator from
applying forces to the structure to remove supports and it allows to design complex
geometries that require use of supports in zones that can not be reached manually.
Once the printing has been done, parts have been soaked in a water bath containing
2w% sodium hydroxide and 1w% sodium metasilicate. This basic blend quickly
dissolve supports for parts of bigger dimensions which do not present such small
features. In this case the bath time is around one hour. For the geometry represented
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in Figure 3.5, due the minuteness of the details, the bath has been dilute and the
soak carried on for two days. Comprehensibly, the expertise of the center does not
encounter such detailed geometries, thus some attempts had to be made. Indeed,
the first specimen manufactured with dissolvable supports, the one in Figure 3.6(b),
has been shown to be sensitive to the soak time, which has been overestimated with
a resulting weakening of the stems of the pillars culminated in their bend under
the relatively heavy heads. An attempt to straighten resonators has given partial
results visible in Figure 3.6(c).

Despite the addition of small fillets, such delicate pillars have come off the plate
just being touched, jeopardizing the whole process. Nevertheless the phononic
properties have not been particularly affected by this, so some perliminary test have
been carried out with the specimen and suggested that smaller plates could have
been more advisable due to the intrinsic damping of the material.

3.1.3 Final design
All the information collected during the design process led to the geometry presented
in Figure 3.7, where the stem has a doubled diameter with respect to the one in
Figure 3.5. When the diameter of a beam with circular section is doubled, its
bending resistance grows eight times due to the existing cubic relation between these
properties. The increased stiffness has been compensated with a bigger, heavier
head, whose height is four times the former, although their diameters are the same.
Of course, the aim of this operation is to keep the frequencies involved in phononic
processes as low as possible. Eventually, also the radius of the fillets has been
increased to two millimeters to ensure an adequate toughness, and this has shown
to affect very little the dynamic behavior, namely the band structure.

Figure 3.8 shows the band diagram of the unit cell, already provided in Figure 2.6,
although here the excitation has been chosen so it is possible to highlight the modal
band gap for flexural waves. The maximum frequency of the band gap lies around
12kHz making hard to detect experimentally the recovery of transmission. The
reasons behind this difficulty should be seek both in the laboratory equipment
and in the material performances: about the former, it is reminded that the
experimental setup will be presented in the next chapter, although it is possible to
anticipate the presence of the shaker and its limitation for high frequency. The latter,
instead, represents something foreseen and actually answer one of the questions
that motivated this work. Vero® material, sort of a PLA, has been shown to work
with acceptable performances for low frequencies, providing a moderate damping;
nevertheless, when the frequency approaches the order of 10kHz the quality of the
transmission decreases tremendously. In next chapter the damping influence has
been modeled with a proportional damping method, although its characterization
stopped at a qualitative level and would deserve a dedicated study; despite the drop
of transmission at higher frequencies, additive manufacturing allowed the realization
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Figure 3.7: Definitive unit cell draw.

Figure 3.8: Band structure of the definitive geometry with highlighted band gaps.

of specimens whose terrific complexity would have been an impossible achievement
with conventional technologies.

3.1.4 The specimen
Likewise the unit cell, the whole structure had to be thought facing limitations
imposed by both performances and manufacturing; some pictures of first attempts
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have already been presented as the reciprocal influence between the designs of the
whole structure and the single cell has been proven to be significant.

Two main arrangements has been taken into account and the first is the one
proposed in the previous section, made of a square area populated by resonator,
surrounded by a portion of plain plate. The pillar area is constituted by a 15x15
matrix of resonators showing a 5x5 hole in the middle, where hole indicates a lack
of pillars, as the plate beneath is present. A schematic top view of the geometry is
given in the left image in Figure 3.9.

230

110

Figure 3.9: Schemes of the two kind of specimens. The first, larger one shows
a square matrix of 15x15 resonators with a 5x5 hole in the middle. The smaller
specimen is the definitive one and its full matrix of resonators is 7x7.

The idea behind this arrangement has been to create a fence between two portion
of plain plate in order to show how waves of certain frequencies are not allow
either to enter, if the excitation is provided in the outermost portion, nor to escape,
in the opposite case. After earlier test with the plates shown in Figure 3.4 and
Figure 3.6, it has become clear that the internal damping provided by the composite
material would have not allowed much energy to be transferred to areas far from the
excitation point. If the aim is to show how waves are stopped by resonators, the lack
of these should ensure a sufficient transmission so to have a greater contrast. Also,
the convenience of the arrangement has been re-thought since the excitation has
been provided always from the outer portion during early test. Thus, the presence
of the plain area in the middle of the plate had no real reason to exist.
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Mainly for these two reasons, when the geometry of Figure 3.7 has been employed,
the plate has been modified to the smaller one in Figure 3.9, whose matrix of
resonators is full and its reduced dimensions let the energy acceptably reach opposite
areas.

As anticipated, the increased toughness of the last specimen permitted an easier
manufacturing that encountered no troubles. Some pictures of the specimen are
shown in Figure 3.10.

(a) (b)

(c)

Figure 3.10: (a) and (b) views of the specimen. (c) Cleaning middle stage.
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3.2 Numerical steady state simulation
Above, it has been said that the understanding of the mode shapes triggered by any
excitation could not be fulfilled without a numerical simulation of the case, thus
selecting both the excitation and the frequency. To do so it is not necessary to have
a final design of the specimen, as the object described by the band structure is an
infinite lattice. Nevertheless, it is convenient to carry out numerical simulations
of the experimental test to understand what to expect. This section will show
the result of this investigation after a brief presentation of the dynamic FE model
considered.

It should be underlined right away that, despite the band diagram describes
wave propagation, the proposed simulations refer to steady state analysis. The link
between the transient analysis of a propagating wave and the steady state case has
not been fully clarified yet. It can be certainly said that after the wave interacts
with the domain borders it is reflected and it is summed to the incoming wave.
Eventually, all the components are summed and the resulting displacement field is
that given by Equation (3.2). Nevertheless, Bloch analysis does not contemplate
any of this mechanisms and the ways in which the characteristics of the infinite
lattice affect the finite structure should be better investigated.

3.2.1 FE model of the specimen
As for the unit cell, a three-dimensional finite element model employing eight-nodes
hexaedra elements has been assembled to analyze the dynamic behavior of the plate.
The mesh that has been used is depicted in Figure 3.11.

Figure 3.11: Mesh of the specimen.
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The assembly of mass and stiffness matrices followed the same procedure used
for the unit cell, although the dimensions of the problem are clearly different.
Moreover, in the unit cell analysis, the solution of the eigenvalue problem lacks of
any consideration about damping, while the most critical issue of the employed
material has shown to be this. For this reason, the FE model of the finite structure
has been refined by means of proportional damping, which best fit experimental
results when its parameters are of the order of 10−6.

It is worth to notice that, despite pillars are meshed in a different fashion with
respect to the unit cell model, the amount of nodes employed to describe them is
of the same order. Nevertheless, the computational time needed to perform the
two analysis is comparable, as the solution of eigenvalue problems of the kind of
Equation (2.16) is known to be strongly time-consuming.

Once matrices are obtained, employing mechanical properties indicated in [27],
it is possible to write the equation of harmonic damped motion

(K− ω2M + iωC)x0 = f . (3.1)

Grouping the dynamic matrix so that (K − ω2M + iωC) = Kdyn(ω) and pre-
multiplying by its inverse, the displacement field is obtained:

x0 = K−1
dynf . (3.2)

This procedure describes the typical solution of a steady state vibration prob-
lem. Indeed, the assumptions of harmonic, synchronous response have been made.
Equation (3.2) is solved for each value of ω in order to collect the data to build
frequency-dependent transfer functions for each point of the specimen. The excita-
tion is applied to all the three nodes in the thickness of a point of the surrounding
plain plate. Only out-of-plane excitation has been prescribed.

The boundary conditions applied to model, showed in Figure 3.12, are derived
from the experimental setup in which a clamp held the plate from the bottom while
the excitation was prescribed at the top.

3.2.2 Results
The first interesting result is the frequency response function of a node of the
plate belonging to the pillar forest. This allows to qualitatively characterize some
branches in the band structure and to validate the assumptions made about the
involvement of the modes. Being a vibration case, some points, especially those
in particular positions as the center, could represent nodes in the deformed shape
at each frequency, thus being misleading in the evaluation of a band gap. For this
reason it is more safe to look at the average of some FRFs and in the present case
the average has been evaluated on a big portion of the pillar area. This, albeit does
not technically qualifies as a frequency response function, delivers an idea of the
transmission in the zone.
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Figure 3.12: Scheme of the constraints and the excited point. The shaded area is
the one over which the transmission is evaluated.

In Figure 3.13 the plot of the transmission, which in this case is evaluated as
a displacements ratio has been attached to the band structure to allow an easier
comparison between them. It has to be said that the limit of one tenth represented
by the orange line in the transmission plot is absolutely arbitrary, meaning that
there is no formal rule to distinguish transmission bands from band gaps. Thus, the
lowering of one order of magnitude is just a reasonable guess.

Figure 3.13: Band structure and transmission up to 8kHz. In the latter, the orange
line indicates a transmission of one tenth.

The band structure predicts the onset of the band gap to be around 4100Hz while
the average of the transmission becomes lower than one tenth at 3600Hz, which
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can be indicated as a cut-off frequency. The steady state simulation of the finite
lattice seems to agree with Bloch analysis, upholding the idea that the stressed
branch of the band diagram is the one describing the main mechanism triggered by
out-of-plane excitation at this frequency range.

Albeit the difference between these two frequencies can be due to the choice of
the threshold in the transmission plot, it can be useful to investigate other possible
cause. As first it should be mentioned damping, as the band structure does not
contain this information while the transmission can be indeed lowered by an high
damping. Moreover, also modes of the whole specimen could affect transmission
and even the two peaks in the band gap range could be due to this. Eventually,
mechanical properties provided in [27], and especially the elastic modulus, are given
in the form of wide ranges because of the manufacturing dispersion and this analysis
is carried out considering the average values. Thus, a more refined mechanical
characterization could lead to an even better agreement.

Another way to check Bloch analysis predictions is to plot another transmission
which is also function of the output point through the whole plate, and thus
obtaining a two-dimensional color map describing the middle plane of the plate at
each frequency. For this reason, it is necessary to select some particular frequency
values to better analyze the phenomenon, and in Figure 3.14 results are shown from
2kHz to 5kHz with 1kHZ steps. As a side note, despite it is possible to elaborate
results to obtain the behavior of the middle plane, it would be better to prevent the
issue making sure that the mesh present that layer.

Figure 3.14(a) shows the transmission for a frequency at which more than one
branch exist in the band structure and, among these, there is the one that has
been individuated as a reference for flexural behavior. Indeed, energy can enter
the pillar forest and be of the same order of magnitude of the energy outside the
forest. This image also clarifies the importance of evaluating the transmission in
different points of the pillar area as the presence of either nodes or very compliant
points can be misleading when the frequency response function is plotted. Similar
considerations can be made for Figure 3.14(b) in which the approach to the band
gap seems to prevent the energy to easily penetrate the pillar area although energy
is still clearly present in it. Also, despite transmission near the top edge is higher
than the one in the forest, on both the left and the right side it is lower to the point
to be comparable to the inner one.

When the focus moves to higher frequencies the lack of transmission in the central
square becomes unequivocal for most of the area, as it is shown in both Figure 3.14(c)
and Figure 3.14(d). The former belongs to a frequency region predicted to allow
transmission by Bloch analysis while, from this steady state test, one would expect
to see clear signs of band gap. Indeed, since the transmission plot presented in
Figure 3.13 and these plots are two different ways to represent the same results, they
agree to each other. The reason why the energy is localized only along the edge close
to the excitation is not clear and, as it has been said about the average transmission
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(a) 2000Hz (b) 3000Hz

(c) 4000Hz (d) 5000Hz

Figure 3.14: Color representation of the transmission, evaluated as out-of-plane
displacements ratio, in the middle plane of the plate at four different frequencies.
White squares show the boundaries of the lattice. Orange dots are the excitation
points.

in the pillar area, this could be due to particular modes of the structure itself.
Eventually, last image depicts a full band gap region: energy is clearly localized
outside the central square and even in the further zones of the plate the transmission
is quite significant.

The observation of Figure 3.14 allows to unfold two more interesting ideas. The
first comes from a comparison of these maps with the scheme in Figure 3.12 that
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shows how the constraint at the bottom does not reach the pillar forest so that a
portion of plain plate exist between these two. Thus, one could wonder why the
transmission is always prevented in that area, even at 2kHz for which the whole
plate is energized. To answer this it is important to keep in mind the physical origin
of this results, namely the steady state interplay between direct and reflected waves.
Thus, the above-mentioned region allows waves to flow through it, but with the
condition that these fit there. This means that longer, low-frequency, waves can
not find enough space to enter that zone and the end of the transient does not
change this condition. It can be shown that for frequencies above 8kHz that zone
can indeed store energy.

The second idea to explore is also related to one of the main questions behind
this work: the mechanisms involved when band gap feature shows up. Looking
at Figure 3.14(c) and Figure 3.14(d) it is possible to notice that some energy is
transmitted trough the first row of pillars. This is caused by the action of the
resonators themselves that involve the plate beneath them when they are activated.
This clarifies that in the occurrence of band gap, the energy is trapped by the pillars
moving together with the plate beneath them. For this reason there can not be a
full agreement between the onset of the band gap predicted by Bloch analysis and
the equivalent mode extracted through a modal analysis carried out considering
the resonator alone clamped at the bottom. In Figure 3.14(d) this happens not
only on the edge of the forest facing the excitation point and the phenomenon looks
localized where higher transmission is available, all around the pillar area.

Figure 3.15 shows the three-dimensional rendering of the cases in Figure 3.14.
Geometries follows the actual deflected shape while colors highlight the transmission
obtained again as a displacements ratio, although here all the three components
are taken into account through the modulus. Moreover, damping leads to different
phase delays across the structure and the deflected shapes take this into account
since not all the points are at the maximum of their motion. Instead, the color map
depicting the transmission do not consider this comparing only the amplitude of
the oscillations. Somewhere, thus, colors could highlight spot looking very little
compliant, but this should not confuse the reader.

Figure 3.15(a) show a distribution of the energy not uniform but however spread
among all the plate and the resonators. Some of the latter are greatly compliant and
some other less, probably due to the wavelength involved, and the same can be said
for the plate beneath. In Figure 3.15(b) the behavior of the plate is almost the same
as the former, although the lower overall transmission is evident. Figure 3.15(b) is
helpful to the concerns expressed above, namely the understanding on the behavior
of the first rows of pillars. Despite Figure 3.14(c) presents a light sign of transmission
in the upper part of the forest area, in Figure 3.15(c) resonators located there trap
an important amount of energy without the participation of their bases. This is a
key feature as the energy can travel from a cell to another only through the plate.
The motion of compliant pillar mostly results in a tilting of the head of the pillar.
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Eventually, in Figure 3.15(d) the resonators involved are those along the three edges
of the forest that do not face the constraint. Their motion is very little compared
to the previous case while the plain plate is able to store more energy. Here it can
be stated easily that the frequency belongs to a band gap.

Looking at the last two images just described, another consideration can be done.
The idea of a strong activation of the resonators in the neighborhood of the onset
of the band gap, due to the presence of a resonance of the stand-alone pillar, could
be supported by the comments made about Figure 3.15(c). Nevertheless, increasing
the frequency of the excitation, the filter characteristic of the lattice remains while
the energy trap at the hand of resonators ceases. Hence, the idea of a level of energy
that the lattice can not elaborate seems to suit better these results and thus no
comparison with dynamic absorbers case can be made, despite the stationariness of
the analysis. Moreover, it should be reminded that dynamic absorbers only allow to
place anti-resonances at specific frequencies, and they can not prevent motion for
such wide bands as in the present case.

46



3.2 – Numerical steady state simulation

(a) 2000Hz

(b) 3000Hz

(c) 4000Hz

(d) 5000Hz

Figure 3.15: Color representation of the transmission, evaluated as total displace-
ments ratio. Exaggerated deflections are represented taking into account the phase.
Orange points locate the excitation.
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3.3 Experimental test
The characteristics of numerical simulation illustrated in the previous section, like
the nature and position of constraints and force, has been defined starting from the
experimental setup employed. Thus, what is expected from experimental results is
to support the numerical simulations and show the same mechanisms, keeping in
mind the limits of experimental test with respect to simulations. Nevertheless, it
should be said that the level of completeness achieved by means of the available
tools is great, especially considering the very little effort needed to obtain them
thanks to the laser vibrometers.

Furthermore, it is worth to remind that test have not been carried out at the
end of the design process with the only purpose of validate numerical simulations,
but instead they led to modifications of the geometry playing as crucial a role as
the manufacturing aspects.

After a brief presentation of the setup and the tools employed, results will be
provided in a comparative fashion with the numerical case, while the nature of the
mechanisms involved has been already unfolded in the previous section.

3.3.1 Setup and measurement
All the experiments here presented have been carried out in the Imaging Lab
of the Civil, Environmental and Geo- Engineering Department of the University
of Minnesota. Figure 3.16 presents some pictures of the laboratory and of the
specimen in measurement setup. In the specific, Figure 3.16(a) allows to see how
the out-of-plane excitation has been provided by the shaker through the stinger.
In Figure 3.16(b) the plain side of the plate is shown and an unfocused laser
beam is visible on it; this face has been covered with reflective tape to increase
the performances of the lasers, as will be soon explained. Figure 3.16(c) delivers
an overall view of the measurement station, with the lasers on their tripods on
foreground and the PC on the right. The latter is an assembly of the five blue units
in the rack: starting from the bottom the three boards that control a laser head
each, the junction box that collects signals from all the laser controllers and, on
the top, the actual PC. Eventually, in Figure 3.16(d) a front view of the lasers is
given and before the central one the camera can be seen. This allows to visualize
the specimen on the screen and to guide the lasers through it.

In Figure 3.16(c) the screen shows the Polytec software for the acquisition. Two
preliminary alignments are required: a 2D alignment that makes the system under-
stand the dimensions of the specimen, and a more time-consuming 3D alignment by
means of which the position and the orientation of the measured surface is detected.
Once the alignment is done, measurement point are selected. Eventually, since the
same software generates the signal and send it to the amplifier placed before the
shaker, also this selection is made.
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(a) (b)

(c)

(d)

Figure 3.16: Experimental setup.
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The operating principle behind the measurements of these sensors, as explained
in [26], involves an interferometric measure called laser Doppler vibrometry: when
the beam reaches the measured surface is scattered back with a slight shift in
frequency, which is proportional to the velocity of the scanned point. When the
scattered laser is caught by the sensor, and to improve this the reflective tape is
applied, its signal is superimposed to a reference one obtained by splitting the
original beam. The resulting intensity is what is detected and manipulated to obtain
velocities. Eventually, a Bragg cell adds a phase shift that allows to understand the
direction of the motion.

3.3.2 Results and comparison
When a steady state analysis is required over a range of frequencies, two kind of
signal provide better performances: a white noise and a periodic chirp. While the
former contains every frequency in the range at any time instant, the latter increases
its frequency with time to span the entire band. After some attempts, the periodic
chirp has shown to be more suitable for the test, especially since measures has been
repeated tenfold to get an average and thus lowering the noise in the signal. This
leads to a remarkable growing in the time required to complete the analysis and
periodic chirp is able to trigger the acquisition more quickly.

Likewise for the numerical analysis, the first result to check is the transmission
from the excitation point to the pillar area of the plate. Again, similarly to that
case, the area taken into account to evaluate the function is the one under all the
pillars but the outermosts. In Figure 3.17 the experimental transmission is plotted
with the band structure, in the same fashion of Figure 3.13. Here the drop of
transmission occurs at frequencies slightly lower than 4kHz and it is even more clear
than in the numerical case.

Figure 3.18 shows the comparison between the numerical and the experimental
transmissions. The first attention should be paid to the frequency at which the
transmission drop occurs. This has been predicted to be in the neighborhood of
4kHz by both the Bloch analysis and the numerical simulations. The experimental
result confirm this prediction as it cross the chosen threshold of one tenth around
3600Hz.

This comparison has been also the reference in the tuning of the proportional
damping parameters employed in the numerical simulations. The chosen parameters,
at the end, have been both equal to 1 ∗ 10−6 although also values of 2 ∗ 10−6 or
3∗10−6 fit the experimental curve. The reason why these values have been discarded,
albeit they were even more consistent than the chosen one before and after the
cut-off, with lower peaks, is that it could not be found a greater agreement between
the transmission drops. In those cases, even if the transmission at low frequencies
was always overestimated, the transition to the stop band was less steep, with lower
initial frequency.
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Figure 3.17: Band structure and experimental transmission up to 8kHz. In the
latter, the orange line indicates a transmission of one tenth.

Figure 3.18: Comparison between numerical and experimental tranmission.

In Figure 3.19 the same transmission maps showed in Figure 3.14 are proposed
for the experimental results. The lower frequencies depicted in Figure 3.19(a) and
Figure 3.19(b) present a decent energy spread. Despite most of the activation is
in the neighborhood of the excitation point, the amount of energy that enter the
resonator area is definitely comparable with that stored in the surrounding plain
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plate. As the frequency raises, transmission drops and very little energy enter the
pillar forest. This is the case of Figure 3.19(c) and Figure 3.19(d): despite the area
beneath the resonators has shown to be little energized even at lower frequencies,
here the energy reach most of the sitting plate, especially in the last case, and it
can be seen a significant difference between the the inner and the outer portion of
the plate.

When these plots are compared with the numerical equivalents, as done in

(a) 2000Hz (b) 3000Hz

(c) 4000Hz (d) 5000Hz

Figure 3.19: Color representation of the transmission, evaluated as out-of-plane
velocities ratio, in the middle plane of the plate at four different frequencies. White
squares show the boundaries of the lattice. Orange dots are the excitation points.
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Figure 3.20, a good agreement is found. It is evident that the energy able to be
transmitted is less in the experimental case, suggesting an underestimated damping,
although several similarities can be highlighted. Before doing this, however, it
is convenient to underline the different dimensions of the two set of plots: the
experimental maps are smaller because the measured points in the experiment could
not be placed at the very edges of the structure since the different laser beams could
fail to catch it. So the interpolation of these results involve a smaller portion of the
whole plate. For example, while the numerical maps show the uncompliant region
interested by the clamp, the experimental plots lack of that zone.

Focusing on the two frequencies in the stop band, it is interesting to notice how
the behavior of the external plate is well predicted by the numerical simulations. In
Figure 3.20(c) the energy surrounding the forest displaces with two big chunks at
the two sides and the experimental result even displays a better transmission. In
Figure 3.20(d), instead, transmission is localized in few spots correctly predicted by
the numerical model. The damping here is clearly higher in the experimental case
although, at the bottom of the plate energy is able to enter the space between the
clamp and the pillars, while the numerical simulation lacks of this prediction.
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(a) 2000Hz

(b) 3000Hz

(c) 4000Hz

(d) 5000Hz

Figure 3.20: Comparison between numerical (right column) and experimental (left
column) transmission.
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3.4 Numerical transient simulation
Being the specimen obtained through additive manufacturing, its properties have
been the sum of manifold aspects. For the concerns of this work, the most con-
ditioning characteristics have been the dimensions and the damping. When the
propagation of an acoustic wave has to be observed, there should be enough time for
the wave to fully develop before any reflection from the boundaries occurs. What is
usually done to achieve this ability is to use greater specimen. Unfortunately, so
far it is still not possible to manufacture big parts with this kind of printer, and
even the maximum dimension allowed, about 50cm, would not be sufficient to allow
the measure. Furthermore, even supposing to be able to manufacture such a big
structure, the high damping emerged from the experimental test, see Figure 3.20,
would not allow the wave to travel for so long.

Despite this, it is of course possible to carry out numerical simulations with lower,
or absent thereof, damping and this is what this section is about. Particularly, it will
be presented the simulation of an out-of-plane wave showing directionality, relying
on the results of Figure 2.10, page 27. There, Figure 2.10(f) showed a pronounced
directionality when the frequency approach the maximum of that mode.

In order to satisfy to the best the requirements told above for the analysis of the
transient, a square lattice of 32x32 cells has been considered. After a remarkably
time-consuming assembly of the mass and stiffness matrices, an interative time
integration has been operated by means of the Newmark implicit method. A burst
of the kind of Figure 2.9, page 24, has been generated as input signal with a central
frequency of 3600Hz, notwithstanding this has shown to be the cut-off frequency for
the finite dimensions lattice. Indeed, the present simulation has been carried out
for the undamped case only for the reasons just explained. Moreover, directionality
is a feature that is often observed at the highermost frequencies of modes, where
surfaces fold due to the periodicity and dispersion relations cease to be cone-shaped.
The excitation is provided at the center of the plate and displacement, velocity and
acceleration fields are obtained at each time instant.

In order to visualize the main paths for phase propagation, the best way is to
plot displacements, since following a peak means following a constant phase value
in the wave. This is done in the left column of Figure 3.21, on which the spatial
distribution of phase velocity showed in Figure 2.10(d) is depicted.

When the attention moves to group velocity, highlighting preferential patterns
it is not as straightforward as for the phase velocity. In the backgrounds chapter
it has been said that group velocity is that at which energy travels, as both these
quantities are related to the envelope of the wave packet. Since there is not a
direct way to plot the envelope of the wave packet, what is done is to rely on field
properties that are able to catch the particular mechanisms. Thus, when the object
of the study is in-plane behavior it is usually considered the divergence of the field
being it able to capture the small displacements involved in this case. On the other
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hand, when flexural mechanisms are analyzed, the best option is to look at the curl
of the field, since it is more affected by deflected shapes of this kind. This is what
is shown in the right column of Figure 3.21, where also the group velocity plot of
Figure 2.10(f) is depicted.

The first selected time instant of Figure 3.21(a) has been picked at an intermediate
stage of the excitation. At this point the wave packet is not completely formed yet.
The outermost peak of the displacement field is still pretty close to the excitation
point although it should be said that the fast, small in-plane components, which
can be seen lowering the threshold of the colormap, already reached the edges. This
gives an idea of the dimensions of the specimen required to get rid of any scattering
during the measurement. On the right, group velocity patterns are already visible
despite the early stage, and they clearly distribute along the predicted directions,
namely the bisectors of each quadrant.

In Figure 3.21(b) the time instant in which the excitation ceases is represented.
From this moment on, the plate is free to move and the energy of the system is
constant. The displacement field maintains a mostly circular profile: even though
the yellow area depicting a peak presents some light corners along the vertical
and the horizontal directions, the inner blue area seems to promote the diagonal
patterns. The conclusion is that none of this light traces is enough to address for
directional behavior. On the contrary, the curl still shows different characteristics
between diagonal and main directions. Remembering that this is just a qualitative
descriptor, some channel-like activation is visible at the corner of the plate, albeit,
closer to the excitation, main direction looks to be more energized.

The time interval between the second and the third time instants considered,
with the latter showed in Figure 3.21(c), is half the duration of the burst. Here the
reflection of boundaries can not be neglected anymore as the wave front completely
invested them. The phase is still propagating without directionality as crests still
distribute in a circular fashion. The energy, instead, increases its concentration
along diagonal directions, again with channel-like activation. The cross-shaped
pattern is now definitely clear, supporting the prediction made looking at group
velocity plots.
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3.4 – Numerical transient simulation

(a)

(b)

(c)

Figure 3.21: Out-of-plane displacement with superimposed phase velocity (left
column) and curl of the displacement field with superimposed group velocity (right
column). The central column shows the excitation up to the considered time instant
with orange dots representing time steps.
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Chapter 4

Conclusions

The present work has been thought to analyze some classical phononic features of
periodic structures by means of innovative tools and techniques, able to unfold some
of the less understood mechanisms involved. In particular, the case of locally resonant
phononic crystal has been taken into account and both numerical simulations and
experimental test have been carried out. The main feature sought has been the
filtering capabilities of these structures in their band gap.

Without any doubt, the most important tool for the modeling of the lattice is
Bloch analysis, which allows to study the behavior of an infinite lattice analyzing
an elementary unit only. This is realized through the application of some clever
boundary conditions that enrich the model with the information about the infinite
repetition. The structure to which these conditions are applied is modeled by means
of a full three-dimensional finite element model employing hexaedra elements. This
represents one of the innovations mentioned since such plates are commonly described
using plate elements, although in that way it could not be possible to describe
complex resonators that extend out of the plate plane. After the application of
periodic boundary conditions, dispersion relations are derived solving an eigenvalue
problem for any value of the wave vector. The novelty brought by the full three-
dimensional model has been the appearance of several modes related no more to
the plate but only to the resonators. Indeed, the solution of an eigenvalue problem
returns a modal characterization involving the whole structure and can not neglect
modes whose mode shapes are localized in the resonator. Thus, a more careful sight
is required for the interpretation of results, as those that could appear as full band
gaps in two-dimensional models can become modal band gaps within the full model.

Once the lattice has been characterized, the design process of a finite lattice
has started in order to find a suitable geometry. This design encompassed several
aspects which represented some of the other new techniques employed. Indeed, it
has been chosen to test additive manufactured specimen and thus the first important
constraint has been given from this. Additive manufacturing allow the realization of
very complex geometries that would have been terrifically expensive, when possible,
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4 – Conclusions

if produced with classical techniques. Nevertheless, the technology available in
the field can not get rid of the significant limitations about dimensions, which are
usually confined to some centimeters. Moreover, for delicate structures like the one
presented in this work, the use of mechanically removable supports have shown
to be unemployable since there has been no chance to clean the specimen without
irremediably breaking it.

Unfortunately, additive manufacturing also indirectly led to even more restrictive
constraints given, this time, by the employed material: after first test it already
shown an high internal damping that has not allowed to use specimens of appropriate
dimensions and thus to analyze the propagation transient. For this reason, only
steady state test have been carried out experimentally, although these found very
good agreement with numerical results.

Furthermore, the numerical steady state simulation has given the opportunity
to visualize three-dimensional renderings of the structure which have represented a
definitive step forward with respect to the classical two-dimensional representation of
the activation of the plate. The possibility to look at the whole structure permitted
to observe the action of the resonators and their activation, highlighting how, in full
band gap regions, they loose their capability of storing energy. Also, in the same
way it has been possible to evaluate the penetration of the energy in the lattice that
has shown to be very little for full band gaps frequencies.

Despite the complete path followed by this work, starting from the unit cell
analysis to the experimental validation, some aspects have been kept out of the work
despite they would deserve a deeper investigation. At first, it should be mentioned
that even though steady state results found a good agreement with Bloch analysis,
the latter only describes propagation and the connection between the two has not
been clarified yet. What is understood so far, on the author’s knowledge, is that
even the steady state problem can be seen as a wave propagation one, and the
inversion of the dynamic stiffness matrix is only a more convenient tool to get to
the result. Moreover, being able to numerically obtain the behavior of resonators,
it would be worth to try to get it experimentally, although, even employing laser
vibrometers, the measure can be hard due to the great amount of hidden spots due
to the close repetition of cells.

Eventually, on the author’s opinion, this technology can be a powerful tool
in the control of vibrations in any kind of structures, and thus it begs for some
applications. So far, damping materials are the solutions in such cases, also because
they transform the energy of the vibration into heat without redirecting it into the
structure, and this is usually something pursued.
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