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Summary

This thesis analyze the problem of a penny-shaped hydraulic fracture; the hydraulic
fracturing process consists of tensile cracks driven by high-pressure fluid injection
in a permeable medium. The Newtonian incompressible fluid is injected with a
constant flow rate in the rock where there are pre-existing compressive stresses.

The problem is defined by a physico-mathematical model, that allows to describe
the propagation regimes using different scalings. In every propagation time, the
system is described by exact equations, but, during the evolution from one vertex
solution to another, it is used a numerical algorithm. Dontsov demonstrated the
validity of his approximate solution, so, using it, it is possible to obtain as a result
all that is necessary to describe the fracture design as a function of the time.
The semi-analytical solution of fluid-driven fracture propagation has been applied
on two geothermal case study: EAC1 and EAC2 are two wellbore site in a high-
temperature geothermal reservoir, the Acoculco caldera, in Mexico.

The simulation focuses the attention on the rock and fluid’s parameters and how
they influence the dimension of the fracture radius. Indeed, the system parame-
ters change with the depth, as the temperature changes, so it is possible to deduce
what is the optimal depth to be excavated. This result is obtained not only valuing
where the biggest fracture radius is in a given instant time, but studying the system
efficiency trend over the depth and over the time, as well.

The results of the two wellbores are different: concerning the EAC2 well, the bigger
fracture radius corresponds to the higher efficiency at one instant time; instead, in
the EAC1 well the bigger fracture radius is not where the efficiency is higher and
it depends on the evolution of the system parameters defined as a function of the
depth. From the simulation it can be confirmed that the best choice is not to dig
where the fracture radius is bigger, but it is necessary to evaluate efficiency at the
same depth, as well.
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Chapter 1

Introduction

1.1 Preamble
Hydraulic fractures are tensile cracks that are driven by high-pressure fluid injec-
tion. They propagate in solid media subjected to pre-existing compressive stresses [4].
This technique is mainly used in the petroleum industry to enhance the recovery
of oil and gas from underground hydrocarbon reservoirs and in the geothermal in-
dustry to enhanced permeability and enable fluid circulation. [16].

The procedure, consists of injecting a viscous fluid into a well under high pressure
to initiate and propagate a fracture, as shown in Figure 1.1. Actually hydraulic
fracturing involves multiple processes, such us:

• fracture growth,

• fluid flow in the fracture itself and in the rock,

• proppant transport,

• rock deformation.

To be able to design a treatment, it is necessary to predicto the opening and the
size of the fracture as well as the pressure of the fracturing fluid, as a function of
the properties of the rock and the fluid. The man-made fracture extends into the
reservoir rock typically about 50 m to 300 m from the wellbore [11].
Hydraulic fractures can propagate vertically, due to the nature of the in situ stress,
or horizontally, under ideal situations [11]. The necessary steps to the hydraulic
fracturing process are:

1. a well is drilled into a reservoir rock;

2. a fluid is injected into the well;

1



1 – Introduction

Figure 1.1: Schematic of an hydraulic fracturing treatment.

3. when the fracture is wide enough, due to the pad that reduces the frictionsl
losses in the wellbore, the solid particles are added to the fracturing fluid to
increase the fluid viscosity;

4. the injected fluid are removed from the well, while the proppant is left inside
the fracture;

5. the resulting low viscosity fluids travel through the fracture to the well and up
to the surface;

6. the propped fracture is finally a high-permeability channel for the fluid trans-
portation.

The polymer content of the fracturing fluid is partly intended to impede the loss
of fluid. The phenomenon is envisioned as continuous built-up of a thin layer of
packed propping agents with chemical additives, filter cake, which manifests ever
increasing resistance to flow through the fracture face. Indeed, the fluid loss is one
of the most important problem in hydraulic fracturing: the rate of fluid infiltration
into the rock impact on the success of a fracturing treatment [11].

1.2 Motivation and background
There is a significant number of possible fracture geometry because of the several
possible combinations of the parameters involved. The Kristianovich-Geertsma-de
Klerk (KGD) radial model and the Perkins-Kern-Nordgren (PKN) model are two
examples of idealized models and they are useful to study the process: they are
2D hydraulic fracturing model and the second one is considered and they let it be
possible to analyze the influence of the various problem parameters.

2



1.3 – Objectives and organization

The system, defined by integral and non linear differential equations, is very com-
plex. The respective mathematical formulation has been applyed on two different
case study: the stimulation scenario of EAC1 and EAC2 wells that are located in
the Acoculco caldera, which has a diameter of 18 km and lies within an older and
wider caldera, the Tulancingo caldera [13].

Knowing the temperature profile and all the process parameters, it has been pos-
sible to obtain results about the fracture design. These informations are relevant
because they allow to know how system’s geometry change when one or some of
the parameters change. This means that it was possible to know how the fracture
radius change with the increasing of the time and what is the efficiency’s trend in
each depth.

1.3 Objectives and organization
The main objective of the research is to employ existing analytical solutions of fluid-
driven fracture propagation to study the stimulation response in high-temperature
geothermal reservoir. Each of the propagation regimes corresponds to the dom-
inance of one of the fluid storage mechanism and one of the energy dissipation
mechanism. Indeed regarding the fluid storage mechanism, it can happen that ei-
ther the fluid stores inside the fracture or leaks into the surrounding medium.
Asymptotic cases has been used to check the accuracy of the numerical solution,
that has been applied to study which is the optimal depth to reach drilling.
The structure of the thesis is as follows.
A physico-mathematical model of our problem is formulated in Chapter 2. In Chap-
ter 3, different scalings for the corresponding predominant propagation regimes are
discussed. It has been possible to demonstrate that the dimensionless time and η
parameters are the only terms which dimensionless form of the governing equations
depend on. Chapter 4 presents the approximate solutions and their validation,
comparing them with the vertex solutions at different time instants. The applica-
tion of the numerical algorithm on the two geothermal case study and the results
obtained are shown in Chapter 5. Finally the numerical results are discussed with
the main conclusions of the research in Chapter 6.
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Chapter 2

Theory model

I consider here the theory of fluid driven crack-propagation in porous media as
developed in [16]. The theory model considers a penny-shaped hydraulic fracture,
where a pressurized incompressible Newtonian fluid propagates in a permeable,
linear elastic medium. The fracture propagates quasi-statically and perpendicular
to a uniform far-field stress σ0, i.e. along the x direction, perpendicularly to the
fracture surface; furthermore the fracture growth is governed by mode I of linear
elastic fracture mechanics (LEFM), [16].

As seen from Figure 2.1, the radius of the wellbore is negligible compared to the
radius of the fracture and it is possible to hypothesize that there is just one single
planar hydraulically induced fracture: the one of which study opening w(r, t) and
radius R(t) will be studied.

Furthermore the geometry and loading conditions can be assumed to be an ellipse–
detailed information on the peculiarities of the shape is not available [1].

2.1 Problem formulation
The parameters needed to characterize the rock, assumed to be linear, elastic and
homogeneous, are: Young’s modulus, E, Poisson’s ratio, ν, fracture toughness, KIc

and leak-off coefficient, CL.

The fluid with a dynamic viscosity µ is injected at the center of the fracture at
constant volumetric rate Q0.
Several assumptions are introduced to simplify this problem:

1. the fluid is injected from a point source;

2. the fluid front coincides with the crack front: the lag between the fracture tip
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2 – Theory model

Figure 2.1: Penny-shaped hydraulic fracture.

and the fluid front is very small compared to the fracture radius. This means
that the solution does not depend on the far-field stress.

3. the fracture propagates continuously in mobile equilibrium;

4. the fluid flow follows lubrication theory;

5. the effect of gravity is neglected.

The formulation of the problem is based on elasticity and lubrication theories, on
fracture propagation criterion from LEFM and on boundary conditions applied at
the inlet and at the tip of the fracture.

2.2 Governing equations
The fluid continuity equation:

∂w

∂t
+ 1
r

∂

∂r
(rq) + 2CL√

t− t0(r)
= Q0δ(r), (2.1)

where q is the fluid flow in the radial direction, w is the fracture width, t is the
time and t0(r) is the time instant at which the fracture front was located at point
r, that indicates the radial coordinate.
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2.2 – Governing equations

Elasticity equation: the pressure p(r, t) of the fluid inside the fracture is

p(r, t) = −E
′

R

∫ 1

0
M(ρ, s)∂w

∂s
ds, (2.2)

where ρ = r/R is the ratio between the radial coordinate and the fracture radius,
E ′ = E/(1− ν2) is the plane strain modulus and the kernelM is given by [3]

M(ρ, s) = 1
2π


1
ρ
K
(
s2

ρ2

)
+ ρ

s2−ρ2E
(
s2

ρ2

)
ρ > s

s
s2−ρ2E

(
ρ2

s2

)
ρ ≤ s,

(2.3)

with K(·) and E(·) are the complete elliptic integrals of the firs and second kind
respectively.

Poiseuille Equation: the fluid flow is given by

q = − w3

12µ
∂p

∂r
. (2.4)

Fluid volume balance: all the fluid volume injected in the fracture is equal to the
sum of the volume of the crack and the fluid lost into the rock at any time instant

1
2π

∫ t

0
Q0 dt =

∫ R

0
rw dr +

∫ t

0

∫ R(τ)

0
r

2CL√
t− t0(r)

drdτ. (2.5)

Fracture propagation criterion: the mode I stress intensity factor KI is equal to the
material toughness KIc and this is always true thanks to the assumption that it is
considered a system with no lag.
For a penny-shaped fracture

KI = 2√
πR

∫ R

0

p(r, t)√
R2 − r2

r dr. (2.6)

The fracture opening in the vicinity of the crack tip follows

w ' 8√
2π

KI

E ′
√
R− r, 1− r

R
� 1. (2.7)

Imposing the condition according to which KI = KIc, the fracture is always prop-
agating and energy is dissipated continuously in the creation of the new fracture
surfaces in the solid material [11]. Indeed if the stress intensity factor at the tip is
lower than the fracture toughness, the fracture is stable, otherwise the fracture is
unstable and starts to propagate [18]. Furthermore, it is necessary to hypothesize
that the stress intensity factor at a crack tip does not increase with a crack length.

7



2 – Theory model

2.3 Boundary and initial conditions
2.3.1 Boundary conditions
The fracture tip is characterized by zero fracture opening, i.e.

w = 0, r = R, (2.8)

which amounts to a Neumann boundary condition [14], and no flow

q = 0, r = R. (2.9)

Combining 2.4 and 2.9 leads to

w3∂p

∂r
= 0. (2.10)

Since fluid is injected from a punctual source, injection of fluid in the wellbore is
idealized as it is from the center of the fracture. The source can be expressed as

2π lim
r→0

rq = Q0, (2.11)

near the source q ' 1/r and, combining it with 2.4, it follows that at the source
p ' − ln r.

2.3.2 Initial conditions
Functions w(r, t), p(r, t) and R(t) can be determined using the set of the equations
described in Chapter 2.2, with 0 ≤ r ≤ R(t) and t ≥ t0, starting from known values
of these quantities at an initial time t0.

Considering the assumptions according to which the fluid is injected form a point
source and it reaches the tip of the crack, the influence of the initial conditions has
vanished for the particular solution [16].

2.4 Conclusions
Governing equations, combined to the boundary conditions, are used to find the
equations of the system that describe all the parameter on which the attention will
be focused: fluid pressure, fracture radius and wellbore opening.
Indeed the conditions described in Equations 2.8 and 2.9 provide the necessary
information to find the solution of the system.

8



Chapter 3

Dimensionless problem
formulation

I report here the solution originally proposed by [16]. For practicality the five
parameters that describe the physics of the problem are written as follow[16]

µ′ = 12µ, K ′ = 8√
2π
KIc, C ′ = 2CL, (3.1)

that for simplicity are defined as viscosity, toughness and leak-off coefficients, re-
spectively.
Eight dimensionless evolution parameters, depending monotonically on time t, that
can be defined as P , are used to describe fracture opening (w), net pressure (p)
and the crack radius (R) as

w(r, t) = ε(t)L(t)Ω(ρ,P(t)), (3.2)

p(r, t) = ε(t)E ′Π(ρ,P(t)), (3.3)

R(t) = L(t)γ(P(t)), (3.4)

where ε is a small dimensionless number, L is a length scale respectively of the same
order of magnitude as the fracture radius R; Ω(ρ,P(t)), Π(ρ,P(t)) and γ(P(t)) are
the dimensionless crack opening, net pressure and fracture radius,respectively; ex-
plicit forms of the parameters ε(t), L(t) and P are summarized in Table 3.2 for
different scaling.

Four primary asymptotic regimes of hydraulic fracture propagation can be iden-
tified, in which one of the two dissipative mechanism and one of the two fluid
storage components vanish [5]:

9



3 – Dimensionless problem formulation

• storage viscosity M ;

• storage toughness K;

• leak-off viscosity M̃ ;

• leak-off toughness K̃.

M and M̃ solutions have negligible toughness; instead in K and K̃ solutions the
effect of the fluid viscosity is negligible. M̃ and K̃ have in common the fact that
the fluid leaks into the formation; conversely the fluid is stored in the fracture in
M and K solutions.

3.1 Vertex solutions

3.1.1 Zero toughness asymptotic solution
Now, M vertex solution is considered, where leak-off and toughness are both neg-
ligible. This solution is described by the M vertex scaling where the following
expressions apply [16]

Ωm0 =
[√

70
3 C1 + 4

√
5

9 C2(13ρ− 6)
]

(1− ρ)2/3 +B
[ 8
π

(1− ρ)1/2 − 8
π
ρ arccos ρ

]
,

(3.5)

Πm0 = A1

[
ω1 −

2
3(1− ρ)1/3

]
−B

(
ln ρ2 + 1

)
, (3.6)

γm0 ' 0.6976, (3.7)

where A1 ' 0.3581, C1 ' 0.6848,C2 ' 0.07098, B ' 0.09269 and ω1 ' 2.479.

The Figures 3.1a and 3.1b show crack opening, Ωm0, and net pressure, Πm0, in
viscosity-dominated regime as a function of the distance from the center of the
fracture.

It is possible to notice from Equation 3.6 and looking at the Figure 3.1b that when
ρ → 0, Πm0 → ∞ and when ρ → 1, Πm0 → −∞; that means that, for what
concerns pressure, near the wellbore and near the tip, the M solution does not give
precise results.

10



3.1 – Vertex solutions
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Figure 3.1: Crack opening and net pressure in the viscosity dominated regime.

3.1.2 Large toughness asymptotic solution
As it has been done for the M vertex solution, I will report the K vertex scaling
for the toughness-dominated regime. The system of equations can be written as

Ωk0 =
( 3

8π

)1/5
(1− ρ2)1/2, (3.8)

Πk0 = π

8

(
π

12

)1/5
' 0.3004, (3.9)
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3 – Dimensionless problem formulation

γk0 =
(

3
π
√

2

)2/5

' 0.8546. (3.10)

The crack opening, Ωk0, in the toughness-dominated regime as a function of the
distance from the center of the fracture is shown in Figure 3.2. The dimensionless
pressure, unlike the previous case, is constant with the increasing of the radial
coordinate.
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Figure 3.2: Crack opening in the toughness dominated regime.

3.1.3 Zero toughness–leak-off asymptotic solution
The M̃ vertex solution describes the fracture propagating in a permeable medium
with zero toughness, where the following expressions are valid

γm̃0 =
√

2
π
, (3.11)

Ωm̃0 = γm̃0

(
D1(1− ρ2)2/3 +D2

(√
1− ρ2 − ρ arccos ρ

))
− γm̃0D3

(√
1− ρ2

∫ 1

0
2F1

(3
8 ,1; 3

2; (1− ρ)2s2 + ρ2
)
ds− 4

√
1− ρ2

)
,

(3.12)

Πm̃0 = D4
[
4− (1− ρ2)−3/8

]
−D5[3(2ρ2 − 1)− 1] +D6

[
log

(
2
ρ

)
− 1

]
, (3.13)
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3.1 – Vertex solutions

where D1 = 0.1146, D2 = 0.3571, D3 = 0.6611, D4 = 0.2596, D5 = 0.0169,
D6 = 0.1403 and 2F1(·) is the Gauss’ hypergeometric function.
As it was done before, the trend of the crack opening and fluid pressure in the
M̃ -vertex solution over ρ are shown in Figure 3.3a and 3.3b.
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(b)

Figure 3.3: Crack opening and net pressure in the viscosity–leak-off dominated
regime.

The dimensionless pressure over the radial coordinate tends to infinite as ρ tends
to zero; indeed it tends to minus infinite when ρ tends to one.
As observed in Paragraph 3.1.1, it is not possible to estimate the exact result of

13



3 – Dimensionless problem formulation

the dimensionless pressure when ρ = 0 and ρ = 1.

3.1.4 Large toughness–leak-off asymptotic solution
The case of a radial hydraulic fracture propagating in a permeable medium char-
acterized by large toughness describes the K̃ vertex solution, where the following
expression are valid

γk̃0 =
√

2
π
, (3.14)

Πk̃0 = π3/2

215/4 , (3.15)

Ωk̃0 = 1
21/4π1/2

√
1− ρ2. (3.16)

Figure 3.4 shows how the crack opening in the K̃-vertex solution evolves along the
dimensionless radius ρ; instead the dimensionless pressure is constant against ρ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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0.1

0.15

0.2

0.25

0.3

Figure 3.4: Crack opening in the toughness–leak-off dominated regime.

3.2 Time-based scaling
It is necessary to introduce the dimensionless times, which are summarized in
Table 3.1, before describing the evolutions against the radial coordinate as time
changes and as a function of the time itself.

All the evolution parameters, summarized in the Table 3.2, are useful to describe
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3.2 – Time-based scaling

Transition Time scales Dimensionless time τ

MK tmk =
(
µ′5E′13Q3

0
K′18

)1/2
τmk = t/tmk

KK̃ tkk̃ =
(
K′8Q2

0
E′8C′10

)1/3
τkk̃ = t/tkk̃

MM̃ tmm̃ =
(
µ′4Q6

0
E′4C′18

)1/7
τmm̃ = t/tmm̃

M̃K̃ tm̃k̃ = µ′4E′12C′2Q2
0

K′16 τm̃k̃ = t/tm̃k̃

Table 3.1: Dimensionless times equations.

each vertex solution; Km, Km̃, Mk, Mk̃, Sm̃, Sk̃ and Cm, Ck have a meaning of a
toughness, of a viscosity, of a storage or of a leak-off, respectively [11].

Scaling ε L P

M
(
µ′

E′t

)1/3 (
E′Q3

0t
4

µ′

)1/9
Km = K ′

(
t2

µ′5Q3
0E

′13

)1/18
Cm = C ′

(
E′4t7

µ′4Q3
0

)1/18

K
(

K′6

E′6Q0t

)1/5 (
E′Q0t
K′

)2/5
Mk = µ′

(
Q3

0E
′13

K′18t2

)1/5
Ck = C ′

(
E′8t3

K′8Q3
0

)1/10

M̃
(
µ′4C′6

E′4Q2
0t

3

)1/16 (
Q2

0t

C′2

)1/4
Km̃ = K ′

(
t

E′12µ′4C′2Q2
0

)1/16
Sm̃ =

(
µ′4Q6

0
E′4C′18t7

)1/16

K̃
(
K′8C′2

E′8Q2
0t

)1/8 (
Q2

0t

C′2

)1/4
Mk̃ = µ′

(
E′12C′2Q2

0
K′16t

)1/4
Sk̃ =

(
K′8Q2

0
E′8C′10t3

)1/8

Table 3.2: Evolution parameters equations

The relationship between scalings can be analyzed in Figure 3.5 with the rectan-
gular parametric space MKK̃M̃ ; each vertex corresponds to a primary regime of
the fracture propagation, that evolves with time t according to a power law [11].
A penny-shaped fracture starts its propagation from one of the four vertex solution
and the trajectory that it will follow with the increasing of the time depends on
the parameter φ that is defined as

φ =
√
tmk
tmm̃

= E ′11/2µ′3/2C ′2Q
1/2
0

K ′7
(3.17)

The limit cases are

1. φ� 0, formally φ = 0;
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3 – Dimensionless problem formulation

2. φ� 0, formally φ→∞;

Figure 3.5: Rectangular phase diagram MKK̃M̃ .

If the penny-shaped fracture starts its propagation from one of these two limit
cases or close to them, then the crack propagation has always two possibilities of
evolving; that depends either on the fluid (µ′) or on the medium (K ′, C ′). If, e.g.,
the fracture falls in the case 1, the crack propagation can evolve along the storage-
edge or along the toughness edge. Such possibility, will ultimately depend on both
the C ′ value, if the medium is impermeable or not, and on the µ′ value, if the fluid
is inviscid or not [11].
Since the φ parameter is proportional to viscosity µ′ and inversely proportional to
toughness K ′, it is easy to understand that as φ decreases, the trajectory follows
the K-vertex and as φ increases, the trajectory follows the M̃ -vertex.

3.2.1 Relationships between scalings
Each equation that describes the net pressure, the width of the fracture and the
dimensionless radius (3.5)-(3.10) can be rewritten describing their evolution over
the time (Table 3.3).

The evolution along the MK-edge of the crack radius γ (Figure 3.6a), the fracture
opening Ω (Figure 3.6b) and the net pressure Π (Figure 3.6c) over the dimensionless
time (τ = τmk) starts from the viscosity-storage dominated regime and reaches the
storage-toughness dominated regime.

Considering the problem of fluid-driven radial fracture propagating in a permeable
medium with zero toughness but with a relevant Carter’s leak-off coefficient, the
fracture will evolve along the MM̃ -edge.
In this case the relationships between the new scaling and the M and M̃ scaling
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3.3 – Conclusions

M K

γmk γm0τ
4/9 γk0τ

2/5

Πmk Πm0(ρ)τ 1/3 Πk0τ
−1/5

Ωmk Ωm0(ρ)τ 1/9 Ωk0τ
1/5

Table 3.3: Πmk, Ωmk and γmk depending on τ along MK-edge

are summarized in Table 3.4.

M M̃

γmm̃ γm0τ
4/9 γm̃0τ

1/4

Πmm̃ Πm0(ρ)τ 1/3 Πm̃0τ
−3/16

Ωmm̃ Ωm0(ρ)τ 1/9 Ωm̃0(ρ)τ 1/16

Table 3.4: Πmm̃, Ωmm̃ and γmm̃ depending on τ along MM̃ -edge

As done for MK-edge, the evolution of the fracture parameters at the injection
point over the dimensionless time τmm̃ is showed in Figure 3.7.

As expected, fracture radius, wellbore opening and fluid pressure evolve from the
M - to the M̃ -vertex solution with the increasing of the time.

3.3 Conclusions
Regarding the MK-edge solution, the problem considered regards a penny-shaped
hydraulic fracture propagating in an impermeable medium: Carter’s leak-off is null
or in any case negligible. Since C ′ ≈ 0, it is easy to deduce from Table 3.2 that the
fracture propagation can evolve proportionally to a power of time itself: τ 1/9 and
τ−2/5.
As Madyarova demonstrates [11], in the limiting case of null Carter’s leak off, the
evolution of the fracture from M to K vertex solution is completely controlled by
the tip asymptote.
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Figure 3.6: Crack opening, net pressure and fracture radius over the dimensionless
time. Π is calculated in ρ = 0.5 and Ω is calculated at the first node.

Figure 3.6 illustrates that the solutions for γ, Ω and Π start form the viscosity-
storage dominated regime and reaches the storage-toughness dominated regime, as
it is expected, passing trough a mixed-regime, where the solution depends on both
the viscosity and the toughness.

Considering the case of a radial fracture propagating in a permeable medium char-
acterized by negligible toughness but not negligible leak-off, the fracture propagates
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Figure 3.7: Crack opening, net pressure and fracture radius over the dimensionless
time. Π is calculated in ρ = 0.5 and Ω is calculated at the first node.

along the MM̃ -edge. In this case the evolution of the parameter over the time fol-
lows τ 7/18 and τ−7/16.
As it is shown in Figures 3.7, the radius, the width and the pressure at the node
near the inlet pass from the M -vertex solution to the M̃ -vertex solution with the
increasing of the dimensionless time (Figure 3.5).

Vertex solutions are useful to estimate the structure of the fracture at one instant
of time in terms of fracture radius and wellbore width, as shown in Figure 3.8; the
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3 – Dimensionless problem formulation

height (H) is chosen equal to the 20% of the fracture radius.

Figure 3.8: Design fracture after 1 second.

Figure 3.5 is helpful to know a priori what is the evolution of the system’s variables
with the increasing of time, based on the knowledge of all of the parameters that
describe the system.
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Chapter 4

Approximate solution for a
penny shaped hydro-fracture

The solution reported in this chapter follows the previous work of Dontsov [5],
where the author defines the approximation for the fracture width as

w(r, t) =
(
R + r

2R

)λ
wa(R− r), (4.1)

where wa is the tip asymptotic solution, that depends either on material parameters
and on the distance from a point inside the fracture to the tip (s = R− r) as well,
and λ is a parameter that will be defined in Paragraph 4.2.
The tip region is defined as (R − r)/R � 1 and here, as it is shown in [14], the
governing equations are identical to the equations for the problem of a semi-infinite
fluid driven fracture which is propagating at a constant velocity in zero-lag con-
ditions. Indeed close to the tip of a shaped fracture with a smooth front, the
governing equations reduce to those for a semi-infinite hydraulic fracture propagat-
ing at a constant velocity.
Since wa(s) is proportional to αδ̄, where δ̄ is a slowly varying function, and using
the ρ term introduced in Chapter 2.2, Equation 4.1 can be reduced to

w(r, t) =
(1 + ρ

2

)λ
(1− ρ)δ̄ wa. (4.2)

It is assumed that R(t) is proportional to tα, where alpha is a slowly varying
function and it can assume the value of 1/4, 2/5 or 4/9, as shown in Table 3.2
depending on which vertex-solution is considered. Considering the global fluid
balance (Equation 2.5) and equation 4.2 leads to

wa(R)21+δ̄
[
B0

(1
2;λ+ 2, δ̄ + 1

)
−B0

(1
2;λ+ 1, δ̄ + 2

)]
+2C ′t1/2αB

(
2α, 3

2

)
= Q0t

2πR2 ,

(4.3)
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4 – Approximate solution for a penny shaped hydro-fracture

where the beta function follows

B0(x; a, b) =
∫ 1

x
ta−1(1− t)b−1 dt = B(a, b)−B(x; a, b), (4.4)

and B(x; a, b) is the incomplete beta function.
Regarding the fluid pressure, replacing the Equation 4.1 in 2.2, it can be written
as

p = E ′wa
R
F(λ, δ̄, ρ), F(λ, δ̄, ρ) = 1

21+λπ

∫ 1

0

∂M(ρ, s)
∂s

(1 + s)λ(1− s)δ̄ ds, (4.5)

where the kernel M(ρ, s) is defined in Equation 2.3 and the function F(λ, δ̄, ρ) can
be evaluated numerically.
It is important to introduce the efficiency defined as the ratio between the volume
of the fluid that remains within the fracture and the total volume of the injected
fluid [5] and it can be calculated as

η(t) = 22+δ̄πR2wa(R)
Q0t

[
B0

(1
2;λ+ 2, δ̄ + 1

)
− [B0

(1
2;λ+ 1, δ̄ + 2

)]
. (4.6)

It depends on the fracture radius, the opening at the tip, the flow rate and on the
terms λ and δ̂ that are in the B function as well.

4.1 Solution in scaled varibles
As shown in [6] and [7], the fracture width, the fluid pressure and the efficiency can
be expressed using the following scaled terms

ŝ = µ′αR3

tE ′w3
a

= gδ(K̂, Ĉ), K̂ = K ′R1/2

E ′wa
, Ĉ = 2C ′t1/2

α1/2wa
, (4.7)

that, associated with

t∗ = K ′12E ′−10

µ′2(2C ′)6 , R∗ = K ′10E ′−8

µ′2(2C ′)4 , w∗a = K ′6E ′−5

µ′(2C ′)2 , Q∗0 = 2πK ′14E ′−11

µ′3(2C ′)4 , p∗ = µ′(2C ′)2

K ′4E ′−4 ,

(4.8)
can be used to convert the solution to the unscaled form:

t̂ = t

t∗
, R̂ = R

R∗
, ŵa = wa

w∗a
, Q̂0 = Q0

Q∗0
, p̂ = p

p∗
, (4.9)

where
ŵa = Ĉ2ŝ

22φ′1/2
, φ′ = µ′3E ′13C ′4Q0

K ′14 , (4.10)
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4.2 – Numerical algorithm

p̂(ρ, t̂) = ŵa(t̂)
R̂(t)

F(λ, δ̄, ρ), (4.11)

ŵ =
(1 + ρ

2

)λ
(1− ρ)δ̄ŵa(t̂), (4.12)

and, comparing the relation that defines φ′ (Equation 4.10) with Equation 3.17, it
is easy to deduce that φ′ = φ2.
As regard the efficiency, it can be rewritten using the scaled form as follow

η(t̂) = 1−
Ĉα3/2B

(
2α, 3

2

)
B(K̂, Ĉ, α)

, (4.13)

where
B(K̂, Ĉ, α) = αQ̂0K̂

14

Ĉ4ŝ3
. (4.14)

The radius of the fracture is defined as
R = γL, (4.15)

where

γ = R̂

24φ′
, L =

(
Q3

0E
′t4mk
µ′

)1/9

. (4.16)

4.2 Numerical algorithm
Using the Equations 4.7, 4.8 and 4.14 htat define ŝ, t̂ and B respectively, it is
possible to obtain the system of equationsα1/2Ĉ3gδ(K̂, Ĉ)− t̂1/2K̂6 = 0

t̂3/2K̂4B(K̂, Ĉ, α)− α5/2Q̂0Ĉ
5 = 0.

(4.17)

The system is solved using Newton–Raphson method and the initial value of α is
equal to 4/9, than the correct value is found iterively using

α = ∂log(R̂)
∂log(t̂)

. (4.18)

Since K̂, Ĉ and α are not unknowns anymore, it is possible to find λ using the
following interpolation procedure:

λ(K̂, Ĉ, α) = λm(1− K̂4)η0 + λm̃(1− K̂4)(1− η0) + λk̃K̂
4(1− η0), (4.19)

where η0 is the approximation for the efficiency (Equation 4.6) for which λ = 0.5,
and, using a comparison between the approximate solution and the vertex solution,
Dontsov [5] defines λm = 0.487, λk = λk̃ = 0.55 and λm̃ = 0.397.
Interpolating as in Equation 4.19 guarantees the correct value of λ in the four
vertices and a good approximation elsewhere; this will be verified in Paragraph 4.3.
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4 – Approximate solution for a penny shaped hydro-fracture

4.3 Time-based scaling
Using the dimensionless time (Table 3.1) and the leak-off parameter, defined in
the equations below, the map in Figure 4.1 is constructed to determine the regime
of propagation or the possible time evolution paths; it indicates the areas of ap-
plicability of the limiting solutions. The boundaries of each transition have been

Figure 4.1: Variation of the approximate solution versus dimensionless time and
the leak-off parameter.

calculated numerically and summarized in the Table 4.1.

Edge τ at the beginning of the transition τ at the end of the trasition

M −K τmk ' 4.54 · 10−2 τmk ' 2.59 · 106

M − M̃ τmm̃ ' 7.41 · 10−6 τmm̃ ' 7.20 · 102

K − K̃ τkk̃ ' 5.96 · 10−8 τkk̃ ' 4.81 · 102

M̃ − K̃ τm̃m̃ ' 4.18 τm̃m̃ ' 2.01

Table 4.1: Value of the dimensionless time along each edge.

It is possible to check the accuracy of the approximate solutions comparing it with
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4.3 – Time-based scaling

the vertex solution analyzed above.
As it is shown in Figure 4.2, analyzing the dimensionless fracture radius, wellbore
width and fluid pressure, the approximate solution evolves from the M - to the K-
vertex solution, because the leak-off parameter is constant and it is negligible.
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100 102 104 106

100

101

(b)

10-2 100 102 104 106
10-3

10-2

10-1

100

101

(c)

Figure 4.2: Comparing approximate solution withM - and K-vertex solution of the
crack opening, net pressure and fracture radius over the dimensionless time. Π is
calculated in ρ = 0.5 and Ω is calculated at the first node.

In the same way, using a constant leak-off parameter not negligible anymore, Fig-
ure 4.3 compares the approximate and the numerical solution calculated along the
MM̃ edge.

The Figure 4.4 shows the error between the vertex solutions and the analytical ones
along both in MK edge and the MM̃ edge, that is calculated as

Error =

√√√√√
∣∣∣∣∣∣
[
Xappr −Xnum

Xappr

]2
∣∣∣∣∣∣, (4.20)

where X is either the fracture radius, the wellbore width or the pressure and sub-
scripts “Appr” and “Num” indicate the approximation and numerical solution,
respectively. The maximum value of the error is reached from the dimensionless
pressure along the MM̃ edge and it is equal to 0.3632; the pressure is less accurate
because the elasticity integral, used to calculate it, is very sensitive to the fracture
width profile. However, this is the proof that the interpolation procedure for λ is
sufficiently accurate [5].
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Figure 4.3: Comparing approximate solution withM - and M̃ -vertex solution of the
crack opening, net pressure and fracture radius over the dimensionless time. Π is
calculated in ρ = 0.5 and Ω is calculated at the first node.

4.3.1 Comparison with numerical solution

It is possible to verify that the approximate solution studied by Dontsov evolves
along ρ from one vertex solution to another with increasing dimensionless time,
keeping the leak-off parameter constant.
In Figures 4.5a and 4.5b, all the system’s parameters have been chosen in order to
obtain φ′ = 10−20; this guarantees, as shown in Figure 4.5c, that the approximate
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10-2 100 102 104 106

10-1

Figure 4.4: Interpolation of the error’s results in logarithmic scale between numer-
ical and approximate solution.

solution evolves from theM - to the K-vertex solution when the dimensionless time
goes from 102 to 107.

Figures 4.6a and 4.6b show the transition from the M - to the M̃ - vertex solution,
considering φ′ = 104 and the dimensionless time between 10−5 and 103.
These graphics allow to verify the approximate solution and its evolution from the
zero toughness to the zero toughness–leak-off asymptotic solution.

Figure 4.5c and 4.6c are included to show what is the path that the approximate
solution should follow in a given time frame.

It is now possible to study the evolution of the efficiency η for both the MK
transition and MM̃ transition. In Figures 4.7a it is possible to notice, referring to
the data used in Figure 5.4, that the efficiency does not decrease a lot: it starts
from the M vertex with an efficiency ideally equal to 1 and it reaches the value of
99% when it arrives to the K vertex solution.
Concerning Figure 4.7b, the difference with the efficiency in the MK transition,
is the evident reduction in the MM̃ ; indeed at the end of the viscosity regime the
efficiency is 98% and, going towards the viscosity regime, its value reaches 2%.
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Figure 4.5: Comparing approximate solutions in different instant times, with vertex
solutions of the crack opening over the dimensionless radius. Width and pressure are
normalized by the M -vertex solution calculated in ρ = 0 and ρ = 0.5, respectively.

4.4 Conclusions

The M and K-vertex asymptotes were included to demonstrate that the numerical
solution starts from the viscosity-storage dominated regime and reaches the storage-
toughness dominated regime with the increasing of the time, as it is expected and
the approximate solution can follw for both Ω and Π the time increasing.
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Figure 4.6: Comparing approximate solutions in different instant times, with vertex
solutions of the crack opening over the dimensionless radius. Width and pressure are
normalized by the M -vertex solution calculated in ρ = 0 and ρ = 0.5, respectively.

The M and M̃ -vertex solutions have been plotted to show that the numerical so-
lution evolves from the viscosity-storage dominated regime to the viscosity-leak-off
dominated regime and the approximate solution evolves following the way high-
lighted in Figure 4.6c, as expected. It is possible to notice that all the transitions
from one asymptote to another are very smooth.

Fracture width variations are accurate, indeed the logarithmic error (Figure 4.4) is

29



4 – Approximate solution for a penny shaped hydro-fracture

(a) (b)

Figure 4.7: Efficiency over the dimensionless time in MK and in MM̃ edge.

the lower, whereas the fluid pressure estimations are farther away from the vertex
solutions the closer they are to the tip; Dontsov suggest that it should not be used
to evaluate pressure for ρ ≥ 0.8.
Certainly the approximate solution, together with the map in Figure 4.1, can be
used to estimate the fracture radius and for a rapid fracture design calculation;
instead imposing the height of the fracture equal to 0.2 times the fracture radius,
in Figure 4.8 it is possible to notice the difference between the numerical and the
approximate solution in the structure of the fracture after 1 second.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.3
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Figure 4.8: Fracture design comparing numerical and approximate solution after
t = 1s.
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The map in Figure 4.1 allows to know which vertex solution best describes fracture
design and fluid pressure at any time.
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Chapter 5

Application to geothermal
case study

The Acoculco geothermal zone is located in a volcanic complex in the trans-mexican
volcanic belt, Mexico. Two exploring wellbores were drilled in the ’80s: EAC1 and
EAC2, shown in Figure 5.1, after [13]. This site is characterized as a possible site
for a Hot Dry Rock (HDR) project because of the high temperature originating
from the heat source related to a volcano-tectonic processes and because of the low
permeability of the host rocks.

The Dontsov’s analytical solution of hydro-fracture has been applied on these case
studies, calculating the radius of the fracture in each depth and the corresponding
energy and efficiency to estimate which is the optimal depth for hydraulic fracturing.

5.1 Numerical model
The idealized stratigraphy is built after the work of Pulido et al. [15] and Calcagno
et al. [2].
We have considered stimulation scenarios for the two existing wellbores, EAC1 and
EAC2 and exclusively between 1 and 3 km depth. The model parameters were ob-
tained experimentally from tests performed at outcrop of the Skarns and Marbles
from Acoculco (B. Lpillier and J. Kummerow, personal communication). Values
are indicated in Tables 5.1 and 5.2 and in Figure 5.2.

The wellhead temperature is 50°C and the geothermal gradient is 0.13° C/m and
0.11° C/m for, respectively, EAC1 and EAC2 (Figure 5.3). The hydrostatic pres-
sure is computed taking into account density variation of water with temperature
and pressure. The properties of water such as density, specific heat, viscosity are
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Figure 5.1: Location of the Acoculco geothermal zone [13].

Lithology Depth, Permeability, Young’s modulus, Poisson’s ratio Porosity

m 1/m2 Pa

Volcanites 0 −790 1 · 10−17 4 · 1010 0.2 0.02

Skarn −790 −1200 2.2 · 10−16 5.76 · 1010 0.1 0.05

Marble −1200 −1300 1.21 · 10−18 5.2 · 1010 0.3 0.025

Skarn −1300 −1650 2.25 · 10−16 5.76 · 1010 0.1 0.05

Granite −1650 −3000 1 · 10−19 7 · 1010 0.25 0.02

Table 5.1: EAC1 model parameters.

computed with the external library freesteam (http://freesteam.sourceforge.
net/), which is based on the IAPWS-97 standard for the thermodynamic proper-
ties of water and steam.
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5.1 – Numerical model

Lithology Depth, Permeability, Young’s modulus, Poisson’s ratio Porosity

m 1/m2 Pa

Volcanites 0 −450 1 · 10−17 4 · 1010 0.2 0.02

Skarn −450 −1750 2.25 · 10−16 5.76 · 1010 0.1 0.05

Granite −1750 −3000 1 · 10−19 7 · 1010 0.25 0.02

Table 5.2: EAC2 model parameters.

Figures ?? and ?? show the cross-section used for modelling the two wellbores with
the respective materials for each depth.

Concerning the Carter’s leak-off coefficient, it has been calculated as [9] (Ap-
pendix A)

CL = ∆p
√
kϕct
µπ

, (5.1)

where k is the permeability, ϕ the porosity and ct is the total compressibility that
has been approximate as

ct ' c1, (5.2)

where c1 is the isothermal fluid compressibility; ∆p is the pressure drop calculated
as the difference between pc and p0 that are defined asp(0, t) = pc, t > 0

p(∞,0) = p0, x ≥ 0.
(5.3)

Indeed, considering an infinite homogeneous and isotropic porous medium, it is
located at the positive part of x axis, instead the interface between the medium
and the fracture is located at x = 0. pc on the interface keeps constant since time
t = 0 and p0 is the fluid pressure within the medium everywhere.
The pressure depends on the leak-off coefficient and the Carter’s leak-off coefficient
depends on the pressure itself; for this reason it was necessary to iterate with the
Newton–Raphson method using a Carter’s leak off coefficient equal to 1·10−6m/s1/2

as initial value and it was necessary to set 1 · 107 Pa as maximum value of ∆p; the
obtained results are shown in Figure 5.5.
In order to take into account the thermal effects of temperature on the fracturing
behaviour of rocks, this study includes a temperature-dependent law of toughness.
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The model is empirical and it is based on fracture mechanics experiments on granite
and gabbro available in the literature [12]. We have compiled the values of fracture
toughness with temperature KI (T ), and normalized it to the value of toughness at
ambient temperature

K̂I (T ) = KI (T )
KI (T = 20◦C) (5.4)

Interpolating the experimental data, we found the best empirical relation that
approximates the evolution of fracture toughness with temperature is given by

K̂I (T ) = a1 + a2T

1 + a3T + a4T 2 (5.5)

with coefficients a1 = 9.50 × 10−1, a2 = 1.86 × 10−3, a3 = −9.20 × 10−4 and
a4 = 1.57× 10−5 calibrated based on the experiments on gabbro and granite [12].
Figure 5.6 shows how the K̂ term evolves with increasing temperature, comparing
experimental and interpolated results.

5.2 Results

5.2.1 Fracture radius

Following the Equation 4.15, it is possible to calculate the fracture radius in each
depth, considering a flow rate equal to 0.08m3/s at time t = 7200s. Figure 5.7
shows the results regarding both wells EAC1 and EAC2.

It is evident how the Carter’s leak-off influences the fracture radius trend: the two
quantities are inversely proportional. This behaviour is confirmed by the leak-off
definition: loss of fracturing fluid into the permeable rock.

5.2.2 Efficiency

Knowing the fracture radius and the Equation 4.13, it is possible to calculate the
efficiency of the system in one specific instant time and it is shown in Figure 5.8.
Therefore, the efficiency’s results obtained for each well show the inverse propor-
tionality between the energy and the Carter’s leak-off; this is exactly what was
expected from the Equation 4.13, precisely because the efficiency and the square of
the fracture radius turned out to be directly proportional.
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5.3 Influence of the rock and fluid’s parameters
on the radius

It is possible to study how the rock and fluid’s parameters influence the fracture
radius and system’s efficiency.

5.3.1 Flow rate
In general, the lower the injection rate, the longer time it takes to induce frac-
tures [8]. Three different cases were considered:

Case 1 : Q0 = 0.08m3/s at t = 7200s,
Case 2 : Q0 = 0.04m3/s at t = 14400s,
Case 3 : Q0 = 0.16m3/s at t = 3600s.

Three different time instants have been chosen for each flow rate so that the product
Q0

ρ0
ρ
t, where ρ0 is the density of the fluid when the depth is null, ρ is the density

that varies with the depth and t is the time, remains constant.

Figure 5.9 show exactly what the theory suggests: even if the mass remains con-
stant, it has a big influence on the fracture radius. The injection flow rate does
not interests the Carter’s leak off directly, but the results match with the theory
according to which the lower the flow, the more infiltration will be.

5.3.2 Toughness
When the leak-off is negligible, the higher the fracture toughness of the rock, the
smaller the fractures at any given time [17]. In this case, it is evident that it is not
possible to approximate the leak-off as negligible, but as seen in Equation 5.1, it
influences the Carter’s leak-off just because the ∆p depends directly on the tough-
ness (Equation 4.5).
Two different trend of the KI are considered in Figure 5.10:

Case 1 : KI follows temperature-dependent values of the toughness, as in Fig-
ure 5.2c,
Case 2 : KI is defined as a constant values of toughness at ambient temperature.

The difference between the toughness in Case 1 and Case 2 is negligible and, since
the influence on the CL is very low, the predicted fracture radius in both cases and
in both wellbores does not change significantly (Figure 5.11).
It is possible to state that the influence of the temperature-dependent toughness on
the radius is very low. For this case, it would be safe to assume constant toughness.
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5.3.3 Carter’s leak-off
It is evident from Equation 5.1 that the Carter’s leak-off, the square of compress-
ibility, of permeability and of porosity are directly proportional; these three fluid’s
parameters have been changed to study first of all the influence that they have on
the leak-off and secondly how the increase and the decrease of the CL affects the
fracture radius. The three other cases considered in this section are:
Case 1 : k(d, t), ϕ(d, t) and ct(d, t) follow their real trends, as in Figure 5.2b and in
Tables ?? and ??;
Case 2 : ct = 4.43 · 10−10Pa, k(d, t) and ϕ(d, t) follow their real trends as in Ta-
bles ?? and ??;
Case 3 : k = k(d, t) · 10−2Pa, ct(d, t) and ϕ(d, t) follow their real trends as in Fig-
ure 5.2b and in Tables ?? and ??, respectively;
Case 4 : ϕ = 1 ·10−2Pa, ct(d, t) and k(d, t) follow their real trends as in Figure 5.2b
and in Tables ?? and ??, respectively.

As said before, what is expected is that if one of these three parameters increase,
the CL also increases (Figure 5.12), and this means that the fracture radius should
decrease, which is in line with the results obtained, shown in Figure 5.13.

5.3.4 Viscosity
The fluid dissipation becomes increases with the fluid viscosity; instead when a
low-viscosity flow is used, the fluid infiltrates into the medium easily.
In Figure 5.14, the real case (Case 1 ) is compared with another one where the
viscosity is constant and set equal to 8 · 10−4 (Case 2).

As expected, when the viscosity increases, the fracture radius increases because
of the lower leak-off. Furthermore it is demonstrated in Appendix A that high
viscosity fracturing fluid results in local fluid-loss velocity.

38



5.3 – Influence of the rock and fluid’s parameters on the radius

0 0.5 1 1.5 2 2.5
10-7

-3000

-2500

-2000

-1500

-1000

-500

0

0 0.5 1 1.5
10-7

-3000

-2500

-2000

-1500

-1000

-500

0

(a)

0 2 4 6
10-4

-3000

-2500

-2000

-1500

-1000

-500

0

0 2 4 6
10-4

-3000

-2500

-2000

-1500

-1000

-500

0

(b)

1 2 3 4
106

-3000

-2500

-2000

-1500

-1000

-500

0

1 2 3 4
106

-3000

-2500

-2000

-1500

-1000

-500

0

(c)

Figure 5.2: Compressibility, viscosity ant toughness trend as a function of the depth
for both wellbore EAC1 and EAC2.
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Figure 5.3: Temperature trend as a function of the depth for both wellbore EAC1
and EAC2.

Figure 5.4: The main cross-section for EAC1 and EAC2 wellbores.
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Figure 5.5: Carter’s leak-off trend as a function of the depth for both wellbore
EAC1 and EAC2.
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Figure 5.6: K̂ trend as a function of the temperature.
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Figure 5.7: Fracture radius trend as a function of the depth for both wellbore EAC1
and EAC2 at time t = 7200s.
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Figure 5.8: Efficiency trend as a function of the depth for both wellbore EAC1 and
EAC2 at time t = 7200s.
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Figure 5.9: Fracture radius trend for both wellbore EAC1 and EAC2 at different
instant times and different flow rate. Blue line - Q0 = 0.08m3/s at t = 7200s, red
line - Q0 = 0.04m3/s at t = 14400s, yellow line - Q0 = 0.16m3/s at t = 3600s.
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Figure 5.10: KI as a function of the depth in the two different considered cases for
both wellbore EAC1 and EAC2.
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Figure 5.11: Fracture radius trend as a function of the depth for both wellbore
EAC1 and EAC2 at different time t = 7200s.
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Figure 5.12: Carter’s leak-off coefficient trend for both wellbore EAC1 and EAC2
with different flow rate. Blue line - Q0 = 0.08m3/s, red line - Q0 = 0.04m3/s,
yellow line - Q0 = 0.16m3/s.
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Figure 5.13: Fracture radius trend for both wellbore EAC1 and EAC2 at different
instant times and different flow rate. Blue line - Q0 = 0.08m3/s at t = 7200s, red
line - Q0 = 0.04m3/s at t = 14400s, yellow line - Q0 = 0.16m3/s at t = 3600s.
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Figure 5.14: Viscosity trend for both wellbore EAC1 and EAC2 at different instant
times and different flow rate.
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Chapter 6

Conclusions

The first objective of this research is to analyze the propagation regimes of a penny-
shaped hydraulic fracture; the asymptotic solutions have been constructed because
they constitute benchmarks which have been used by Dontsov to validate his nu-
merical algorithm, regarding the fracture radius, the fluid pressure and the fracture
width. This allows to apply this method to simulate what should be the most real-
istic behavior of the hydraulic fracturing in the two specific wells: EAC1 and EAC2.

After having analyzed what is the influence of the rock and of the fluid’s parameters
on the fracture radius and on the efficiency, it is important to focus on the optimal
depth.
The probable optimal depth of simulation is found considering the efficiency’s value
and the fracture radius’ value, as well.
The results that show the depth in which the fracture radius is bigger (Figure 5.7),
are summarized in Table 6.1 are commented below:

• in EAC1, fracture radius value reaches the maximum value at the end of the
considered depth;

• in EAC2, the maximum radius’ value is reached not at the lower depth that
means at the higher reached temperature, so as it happens in the EAC1 well-
bore.

Concerning the efficiency, from Figure 5.8, the results obtained in the same con-
ditions are summarized in Table 6.2.

In the EAC1 is clear that the efficiency is very low compared to the EAC2 well’s
efficiency. However, from the Figure 5.7 it is possible to locate the second bigger
fracture radius (335 m) at −16970 m, where the efficiency is 40%; this means that
even if the fracture radius is lower than the other one at −3000 m of the 2%, the
efficiency turns out to be higher that the efficiency at the lower depth of ten times.
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EAC1 EAC2

Depth, m −3000 −1787.9

Fracture Radius, m 342.69 345

Table 6.1: Maximum values of the fracture radius and the corresponding depth for
both wellbore EAC1 and EAC2.

EAC1 EAC2

Depth, m −3000 −1787.9

Efficiency 4% 40%

Table 6.2: Efficiency’s values at the depths where the fracture radius is maximum
for both wellbores EAC1 and EAC2.

The best depth where it is possible to obtain the maximum efficiency is in corre-
spondence of the depth where the fracture radius is also the maximum; indeed it is
important to consider the cost to dig deeper wells.

The evolution of the fracture radius and of the efficiency over the time at −1697 m
and −1787.9 m, for both wells EAC1 and EAC2, are shown in Figure 6.1a and 6.1b
respectively.

As expected, the fracture radius increases and the efficiency decreases and the
higher is the time, the lower is the velocity with which the radius and the efficiency
increases and decreases, respectively.

Using again the map introduced in Figure 4.1, it is simple to see the way fol-
lowed by evolution parameter over the time; considering the evolution in a point
of the depth that corresponds to −1697 m and −1787.9 m for EAC1 and EAC2,
respectively, means having one constant value of the φ per well as a function of the
time, so the path of the system follows a straight line. The evolution of the global
solution for both cases is driven entirely by the simultaneous decrease of the tip
velocity and increase of the crack length as time proceeds. These two combined ef-
fects cause a progressive shift of the main source of energy dissipation from viscous
flow at small time to fracture energy at large time. This transition is effected by a
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Figure 6.1: Fracture radius and efficiency trend over the time for both wellbores
EAC1 and EAC2.

change of the dominant asymptote at the fracture scale, from M -vertex solution at
small time to K- asymptote at large time [4].

It is interesting to compare the efficiency trend over the time when the depth
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is −3000 m, Figure 6.2.
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Figure 6.2: Efficiency trend over the time for both wellbores EAC1 at 3000 m
depth.

The efficiency trend at 3000 m depth is smaller than 495÷ 711% compared to the
efficiency trend at 1697 m (Figure ??). This conclusion confirms what said before:
the optimal depth to be excavated is not in the deepest point of the well, but it is
about 1300 m above.
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Appendix A

Carter’s leak off

The carter leak-off coefficient includes three effects that may act simultaneously [10]:

1. viscosity and relative permeability effect of fracturing fluid;

2. reservoir-fluid viscosity-compressibility effects;

3. wall-building effects.

The fluid in the porous medium is treated as 1D model based on the following
equation [9]

∂p

∂t
= K

∂2p

∂x2 , x > 0, t > 0, (A.1)

where K is the conductivity defined as

K = k0

µρ0ct
, (A.2)

and where k0 and ρ0 are constant permeability and density at the reference state.
Initial and boundary conditions are expressed by 5.3 and, applying them to the A.1,
the analytical solution is obtained:

p(x, t) = (pc − p0)erfc
(

x

2
√
Kt

)
+ p0, (A.3)

where
erfc(z) = 1− erf(z), erf(z) = 2√

pi

∫ z

0
e−η

2
dη. (A.4)

The function erf(z) is known as error function and these conditions are valid:

• erf(0) = 0

• erf(∞) = 1
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From the analytical solution, it is possible to obtain the leak-off velocity with this
procedure

∂p

∂x
= −∆p 2√

π

∂

∂x

∫ x

2
√

Kt

0
e−λ

2
dλ

= −∆p 2√
π
e−x

2 1
2
√
Kt

.

(A.5)

Introducing now the Darcy law in tensor form,

vi = 1
µ

(kijp,j), p,j = ∂p

∂xj
(A.6)

where i, j are the coordinate components x, y and z;
knowing the Einstein summation convention that implies what follows

kij ∗
∂p

∂xj
= ki1 ∗

∂p

∂x1
+ ki2

∂p

∂x2
+ ki3 ∗

∂p

∂x3
. (A.7)

Substituting Equation A.5 into Equation A.6, for 1D fluid in homogeneous and
isotropic porous medium, the fluid velocity is

v = −k
f

6.1∂p
∂x

= k

µ

e−x
2∆p

√
πKt

.

(A.8)

Finally, the leak-off velocity in hydraulic fracturing is defined as the fluid velocity
when the x coordinate is null, i.e.

vL = k

µ

∆p√
πKt

. (A.9)

The vL term measures how fast the fluid inside a fracture leaks to the surrounding
porous medium.
Here the Carter’s leak-off coefficient is defined as

CL = k∆p
µ
√
πK

, (A.10)

and, using the Equation A.2, so as

CL = ∆p
√
kϕct
µπ

. (A.11)
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