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1 

I N T R O D U C T I O N  

The main objective of this thesis is finding a method to evaluate the stiffness of the clamped part analysing the 

result of simulations with finite elements. With the data provided by the samples, an equation is then 

extrapolated which describes the resilience of the clamped part. 

To reach the final result, simulations have been executed on the program “Abaqus CAE”, and the data obtained 

are analysed with the MatLab tool “Curve Fitting”  . 

In this thesis only metric bolt and threads with ISO standard dimensions are considered, at which a part in the 

first chapter is dedicated. Also in this chapter, the theory regarding the torque used to tighten the bolted 

connection and the calculation of the resilience of both the bolt and the clamped part is exposed. Always 

referencing to the German normative VDI. 

The second chapter introduces the program ABAQUS/CAE  in detail,  and shows the procedure to construct 

the models samples of the bolted connections. 

The last chapter explains the model used to calculate the overall stiffness of the clamped part and illustrates the 

integration of the equation on the data. 

The study is made only in the field of elastic deformation of the material, this hypothesis is a big simplification 

but, aside of this, it covers the main part of cases of bolted connections since generally they are meant to be 

assembled and disassembled, with the presence of plastic deformation this would be not possible. 
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C h a p t e r  I  

THEORY OF BOLTED JOINTS 

 

1.1. Generality of threaded connections 

 

A bolted joint is a detachable connection between two or more parts by means of one or more bolts. It is 
intended to transmit forces and moments between the joined parts in a clearly defined position relative to one 
another. Bolt generates the load that closes the parts together, the bolt should be designed to withstand the 
working loads. Transverse actions must be contrasted by friction, in many bolt connections and screw must 
not work in shear loading. 

 

 
 
 
 
A helicoidal thread used in screws or bolts is characterized by a helicoidal ridge wrapped around a cylinder. A 
sketch with the terminology of a screw threads is shown in Figure 1. 
 
The pitch is the axial distance between two crest and the pitch diameter is the diameter at which each pitch is 
equally divided between the mating male and female threads Figure 2. 
 
The inclination of the helix is the angle formed between a tangent to the helix with a perpendicular plane in 
respect to the axis of the bolt as shown in equation (1). 
 

Fig. 1.  Bolt geometry  
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(1) 

(2) 

𝛼 = atan⁡
𝑝

𝜋𝑑
 

 
 
Generally this angle is lower than the friction angle of 6°-7°. The major diameter takes the name of nominal 
diameter; for every nominal diameter, exists only one gross thread and a small number of fine threads for 
special purpose. 
 
 

 
 
 
Figure 2 shows the thread coupling between screw and nut whose dimensional parameters are expressed in 
function of the pitch showed in the equation below (2). 
 
 
 

 
 

Fig. 2.  Threat parameters  
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1.2. Introduction of clamping 

 

 

 
 
The definition of a screw is an externally threaded headed fastener (the recessed drive socket in a setscrew is 
considered a head), which is tightened by applying torque to the head, causing it to be threaded into the material 
it will hold. 
 
On the other hand, a bolt is an externally threaded headed fastener which is used in conjunction with a nut. 
Studs have a drive slot in one end to facilitate installing the stud, i.e. studs are not completely thread. In this 
study we focus on bolt threaded connection. 
 

 

Fig. 3.  Types of connections 

Fig. 4.  clamping of the bolt 
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The clamping force produces tension in the bolt and that causes compression in the members that are 
shortened.  
 
In figure 4, blue line is presented as the position of the bolt head and the nut first contacting with parts, at this 
moment bolt head and the nut just touched the two end surfaces of the clamped parts with zero load. Red line 
is presented as the position without load, if the parts to be clamped were not present, the inner head-to-nut 
distance would decrease of an amount “i” (interference). Green line is presented as the final equilibrium 
position reached by the nut, in this case the bolt head is obviously fixed, meanwhile, the clamped parts are 
compressed. 
 
The bolt and the clamped part could be considered as a simple mechanical spring model, the sketch is shown 
as Figure 5. 
 

 
 
 
As shown in figure 6, bolt and part are displacing under load, fs and fp are measured from an initial position 
without clamping load; for the bolt this is the bolt head to nut face distance in the tightened configuration but 
with the parts removed; for the parts it is the position of the part with no load. 
The resultant force on the bolt section, at the ends and through the length, is tensile Fs. The resultant force on 
the parts, at the ends and through the length, is a compress force Fp. 
Due to Fs=Fp, at assembly they are called Fm. 

 
 
 

Fig. 5.  Spring model 

Fig. 6.  Clamping diagram 
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(6) 

(7) 

1.3. Mechanical analysis of clamping 

 

In order to compute the clamping torque, firstly, the bolted connection could be considered as a trapezoidal 
part sliding on edge of a wedged part, the trapezoid represents the part and the wedge the nut, showed in the 
figure 7. 
 

 

▪ 𝐹𝑠⁡is the tensile assembly force in the bolt shaft 
 

▪ (3)   𝑡𝑎𝑛𝜑′ =
𝑡𝑎𝑛𝜑

𝑐𝑜𝑠𝛽
 is the fictious  thread  coefficient friction angle incremented taking into account the 

thread angle 𝛽 
 

▪ 𝛼𝑚 is the helix angle ⁡𝛼𝑚 = atan⁡
𝑝

𝜋𝑑
  (4) 

 

▪ S is  the circumferential component 𝑆 = 𝐹𝑠⁡ ∗ tan⁡(𝜑
′ + ⁡𝛼𝑚)    (5) 

 

The clamping torque 𝑀𝑡 is composed of 2 contributes (6):  

𝑀𝑡 = 𝑀1 +𝑀2 

Where torque due to the friction between the bolt’s thread and nut’s thread (7): 

𝑀1 =
𝐹𝑠
2
∗ 𝑑𝑚 ∗ tan⁡(𝛼𝑚 + 𝜑′) 

 

Fig. 7.  Trapezoidal model 
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(8) 

(9) 

(10) 

(11) 

Friction moment between the head of the bolt and the clamped part 

𝑀2 =
𝐹𝑠
2
∗ 𝑑𝑡 ∗ tan⁡𝜑𝑠 

Substituting (7) and (8) into the equation (6), (8) is obtained. 

 

We can approximate: 

 

Substituting the equation (10) in equation (9) we obtain the final equation (11): 

 

 

In order to verify statically the resistance of the bolt,  given clamping torque 𝑀𝑡 the bolt body see an axial load 

𝐹𝑠 and a torque 𝑀1 since 𝑀2 regard only the zone under the head bolt and doesn’t have effects in the shank. 

To calculate the stresses we will refer to the minor section of the bolt with diameter 𝑑3. 

Fig. 8.  Bolt dimensions 
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(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

The resistant area is: 

𝐴3 =
𝜋𝑑3

2

4
 

The minimum polar resistant module is: 
 

𝑊𝑝 =
𝜋𝑑3

2

16
 

 
 
The axial stress will be so: 
 

 
 
While the torsion stress: 
 

 
 
The Von Mises equivalent stress is then calculated in (16): 
 

 

Now the quotient  
𝜏

𝜎𝑎
 is called k: 
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(18) 

(19) 

(20) 

Substituting the equation (13) into the equation (12) we obtain (18): 
 
 

 
  
For the purpose of utilizing the bolt to the greatest possible extent, the nominal stress of the bolt at assembly 

is 90% of minimum guarantee 2.0pR  

 
 

 
 
 
 
 
1.4. Joint resilience 

 

The bolt consists of a number of individual elements which can be considered cylindrical bodies of length 𝑙𝑖 
and cross section 𝐴𝑖 , having resilience (20): 
 

𝛿𝑖 =
𝑙𝑖
𝐸𝐴𝑖

 

 

The cylindrical elements are arranged in series, the total elastic resilience 𝛿𝑠 is the sum of all resiliences within 
the clamp length 

 
 

Fig. 9. Subdivision of the bolt in elements  
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Stresses in the clamped part affect a volume which widens moving away from the bolt head or nut. Calculation 
of part resilience is done on a “substitution” cone (Fig.10) having the same resilience, where:      
                                                         

• 𝐷𝐴 is the part diameter; 

• 𝑑𝑤 is the contact bearing surface of the head of the bolt; 

• 𝑙𝑘 is the length of the clamped part; 

• 𝑑ℎ is the hole diameter; 

• 𝐷𝐴
′ the maximum diameter of the cone of resilience; 

 
 

 
 
  
The equation of resilience vary depending on the type of connection. For a simple symmetric bolted joint with 
a nut like the one of (Fig. 11). 
 

Fig. 11. Example of bolted joint 

Fig. 10. Substitution cone  
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(21) 

(22) 

If 𝐷𝐴 > 𝐷𝐴,𝐺𝑟 : 

 
 

 

If 𝑑𝑤 < 𝐷𝐴 < 𝐷𝐴,𝐺𝑟 : 

 
 
 
 

 
 
 
 
In the case of tapped thread joint, to simplify the calculation of the plate resilience, the top cone and the bottom 
truncated cone are replaced by one substitution deformation cone of the same resilience, which can be followed 
by a sleeve. 
 
 

 

If 𝐷𝐴 > 𝐷𝐴,𝐺𝑟: 

Fig. 12. Example of taped threadt joint 
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(23) 

(24) 

 
 

 
 
 

If 𝑑𝑤 < 𝐷𝐴 < 𝐷𝐴,𝐺𝑟 : 

 
 

𝛿𝑝 =
1

𝜋𝐸𝑝
∗ {

1

𝑑ℎ𝑡𝑎𝑛𝜑
ln⁡(⁡

(𝑑𝑤 + 𝑑ℎ)(𝐷𝐴 − 𝑑ℎ)

(𝑑𝑤−)(𝐷𝐴 + 𝑑ℎ)
+

4

𝐷𝐴
2 − 𝑑ℎ

2 [⁡𝑙𝑘 −
(𝐷𝐴 − 𝑑𝑤)

2𝑡𝑎𝑛𝜑
]} 
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C h a p t e r  I I  

ABAQUS/CAE SIMULATION 

 

2.1.        Introduction of finite elements and Abaqus/CAE 

 

The finite element analysis applies to each body that can be divided in a large number of elements of defined 
shape, every element then is considered as a field of integration of homogenic characteristics. 
 
The principal characteristic of the finite elements method is to discretise creating a grid (called mesh) composed 
by elements of definite shape, on every elements the solution of the problem is assumed to be expressed by 
the linear combination of function called “base function” or “shape function”. 
 
Nowadays there is a large variety of F.E.M analysis software, every software share the same 3 steps analysis: 
 

• The pre-processing where the finite elements model is built 

• The processing : resolution of the finite elements problem model 

• The post-processing where the solution is presented 
 
Some of the more common commercial model are: Femap, Ansys and Abaqus. 
 
 
Abaqus can analyse complex structural mechanics system, in particular it is able to solve very large and complex 
problems and simulate highly nonlinear problems. We will utilise it for our analysis. 
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2.2.          The model of bolted connection 

 

In this thesis, we analyse a tapped thread bolted connection as the one in (Fig. 13). 

 

 

 

The profile of the bolted connection is assumed to be a symmetrical shape, therefore in this case we create a 

2-dimensional axisymmetric model.  In order to apply the load we separate the bolt into two parts: bolt head 

and shank.  

 

Fig. 13: example of tapped thread joint 

Fig. 14: assembly of the  
                 bolted joint 

Fig. 15: assembly of the  bolted joint  
                 in module mesh 
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(25) 

(26) 

Selecting steel with class of resistance 8.8 as the material of the bolt we can insert elastic characteristic (Young 

modulus and coefficient of Poisson). 

Reference point RP1 is constrained to the lower nodes of the head of the bolt while point RP2 is constrained 

to the upper nodes of the shank of the bolt (Fig. 15) , then we can tie RP1 to RP2 by using the command 

“Wire” in order to consider the deformability of the shank that we deleted. 

The module “Constraints” allows to regard the shank between RP1 and RP2 as a spring with an elastic 

coefficient equal to the stiffness of the bolt shank (25): 

𝑘 =
𝐸𝐴

𝑙
 

Then a compressive load is applied on RP1 and RP2 to simulate the force due to the assembly preload    

 

We define the type of interaction between the surfaces, we select “tangential behaviour” and we define a friction 

coefficient in interaction properties of 0,12 as recommended  on VDI in steel to steel contact in bolted joints. 

The zones that interacts are underlined in red. 

 Fig. 16: interactions in the model 
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Then the boundary conditions are defined as in figure 17: 
 

 
 
 
 
 
We define the boundary condition “encastre” U1=U3=U2=UR1=UR2=0  on the right side of the nut, in 
order to represent the stiffness contribution of the material not displayed in the model, in which is created the 
threaded hole. 
 
We select for the screw, on the revolution axis, U1=U3=UR2=0 which allows to the screw to translate only 
along the y axis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 17: boundary conditions on the model 
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(27) 

C h a p t e r  I I I  

ANALYSIS OF RESULTS 

 

3.1.        Equation of stiffness 

 

Is not enough to take  the ∆𝑌 between two nodes and the total force that go through the screw 𝐹𝑠,𝑙𝑖𝑚 and 

calculate the stiffness (27):  

𝐾 =
𝐹𝑠,𝑙𝑖𝑚
∆𝑌

 

 

This procedure is not  scientific, because implicates to know already the stiffness, calculated with other theories 

or by experiments, and taking it as a reference to select the most representative couple of nodes, as made in 

precedent studies on this argument. 

 
Fig. 18: f.e.m result for one of the models 
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In (Fig. 19) it is possible to see in red the surfaces where the clamped part is in contact respectively with the 

nut and the bolt head. 

The model adopted consist in taking these two red surfaces and delete all the material between them. 

The two surfaces are considered as a thin sheet of metal at which are attached springs. From the upper surface 

we take only the part in contact with the head of the bolt because that is what effectively see the bolt and what 

interest to us. 

 

 

 

 

Fig. 19: surfaces in contact 
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(28) 

 

 

In this way it can be possible to simulate the support of the material that we have eliminated, but in a more 

coherent way with the end result of an equivalent spring. (Fig. 20) 

There is one spring for every node of the mesh of the two surfaces. 

The stiffness of every spring is calculated as the vertical  force on the node i 𝐹𝑖 divided by the vertical absolute 

displacement of the node 𝑈𝑖 (28): 

 

𝐾𝑖 =
𝐹𝑖
𝑈2𝑖

 

 

 
 
 
 
 
 
 

Fig. 20: spring model 
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In Abaqus mode “visualization” we choose, with the command “select path”,  the nodes that correspond to 

the two surfaces seen in Figure 18 and the vertical stress 𝜎𝑦𝑖 and strain 𝑈𝑦𝑖 of the node are sent to an excel 

sheet. 

 

 
 
 

 
 
 
 
 

Fig. 21: nodes selected for the analysis 
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(29) 

(30) 

The force on each single node is calculated (29): 
 
 

𝐹𝑖 = 𝜎𝑦𝑖 ∗ 𝐴𝑖 
 
 

where 𝐴𝑖  (figure 20) are the ring delimited by two nodes on the surfaces (30) (distance between nodes= 0.1 
mm since that is the mesh increment)  
 

𝐴𝑖 = 2⁡𝜋⁡𝑟⁡0.1⁡ 
 
 
These surfaces in Figure 21 are seen as a simple segment since we analyse the model as an axisymmetric 2D. 
Figure 22 is a saw from top plane. 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 22: Areas between the nodes upper surface of the part in contact with the 
hexagonal head of the bolt 
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A 𝐾𝑒𝑞⁡𝑠𝑢𝑝 and a 𝐾𝑒𝑞⁡𝑖𝑛𝑓 are calculated simply summing  respectively the upper and lower springs. 

 
 
 

Keq sup 

1630594 

 
 

d σi Ui r Ai Fi Ki 

0 -633,057 -0,01596 5 3,141593 -1988,81 124643 

0,099856 -563,339 -0,01591 5,1 3,204425 -1805,18 113441 

0,199463 -416,413 -0,01574 5,2 3,267256 -1360,53 86430,38 

0,299096 -315,517 -0,0155 5,3 3,330088 -1050,7 67772,85 

0,398696 -269,773 -0,01535 5,4 3,39292 -915,32 59624,43 

0,498315 -235,025 -0,01515 5,5 3,455752 -812,189 53603,33 

0,59792 -211,249 -0,01501 5,6 3,518584 -743,297 49504,08 

0,697531 -193,561 -0,01484 5,7 3,581416 -693,224 46699,23 

0,797143 -180,287 -0,01472 5,8 3,644247 -657,012 44630,74 

0,896751 -169,643 -0,01457 5,9 3,707079 -628,879 43152,06 

0,996364 -161,527 -0,01446 6 3,769911 -608,941 42113,4 

1,095973 -154,741 -0,01433 6,1 3,832743 -593,082 41385,88 

1,195586 -149,537 -0,01422 6,2 3,895575 -582,534 40956,6 

1,295195 -145,183 -0,01411 6,3 3,958407 -574,693 40732,99 

1,394808 -141,882 -0,01401 6,4 4,021239 -570,54 40733,81 

1,494416 -139,215 -0,0139 6,5 4,08407 -568,564 40893,91 

1,594029 -137,358 -0,0138 6,6 4,146902 -569,61 41261,18 

1,693635 -136,017 -0,01371 6,7 4,209734 -572,597 41763,32 

1,793248 -135,447 -0,01361 6,8 4,272566 -578,705 42506,08 

1,892853 -135,361 -0,01353 6,9 4,335398 -586,845 43383,33 

1,992465 -136,159 -0,01343 7 4,39823 -598,861 44585,23 

2,092067 -137,637 -0,01335 7,1 4,461062 -614,008 45993,61 

2,191678 -140,258 -0,01325 7,2 4,523893 -634,512 47879,19 

2,291275 -144,452 -0,01318 7,3 4,586725 -662,563 50284,49 

2,390885 -150,673 -0,01307 7,4 4,649557 -700,564 53598,41 

2,490473 -160,739 -0,013 7,5 4,712389 -757,463 58257,46 

2,590082 -180,367 -0,01288 7,6 4,775221 -861,29 66893,16 

2,689653 -220,383 -0,01282 7,7 4,838053 -1066,23 83185,13 

2,789286 -191,817 -0,01259 7,8 4,900885 -940,074 74686,13 

Fig. 23: calculation of Keq sup for a model 
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The two springs in Figure 24 can be seen as in series since they see the same force on their ends  maintaining 
the frame in equilibrium, the system can be simplified into the one of Figure 25. 
 

 
 
 
 

Fig. 24: upper and lower equivalent springs 

Fig. 25: final model 
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(31) 

(32) 

A 𝐾𝑡𝑜𝑡𝑒𝑞 is calculated (31): 

 
 
 

𝐾𝑡𝑜𝑡𝑒𝑞 =
𝐾𝑒𝑞⁡𝑠𝑢𝑝⁡ ∗ 𝐾𝑒𝑞⁡𝑖𝑛𝑓

𝐾𝑒𝑞⁡𝑠𝑢𝑝⁡ + 𝐾𝑒𝑞⁡𝑖𝑛𝑓
 

 
 
 
 

The sum of all the vertical forces on the nodes  𝐹𝑡𝑜𝑡 = ∑𝐹𝑖 will be less than the vertical force inside the screw 

𝐹𝑠,𝑙𝑖𝑚 seen in equation 20,  this is because of the horizontal components along X S11 which are equilibrated 

by tangential stress inside the clamped part (Figure 26). 
 
 
 
 

 
 
 
 
In the calculation exposed until now we have only considered vertical stresses without taking into account the 

components along X and Z, the 𝐾𝑡𝑜𝑡𝑒𝑞 needs to be incremented in order to utilise it with the 𝐹𝑠,𝑙𝑖𝑚 (32)   

 
 
 

𝐾𝑡𝑜𝑡⁡𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =
𝐹𝑠,𝑙𝑖𝑚
𝐹𝑡𝑜𝑡

𝐾𝑡𝑜𝑡𝑒𝑞 

 
 
 

Fig. 26. Radial and tangential stress inside the part  
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(33) 

Then the resilience of the part is calculated (33): 
 
 

𝛿𝑝 =
1

𝐾𝑡𝑜𝑡⁡𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
 

 
 
 
 

The theory says that the resilience depend on the quotients  
𝐿𝑘

𝑑ℎ
  (where 𝐿𝑘⁡is the thickness of the piece and 𝑑ℎ 

is the diameter of the hole in it equal to the class of the bolt) and  
𝐷𝐴

𝑑𝑤
  (where 𝐷𝐴 is the diameter of the piece 

and 𝑑𝑤 the diameter of the bearing surface of the head of the bolt) 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 27: dimensions of the bolted joint 
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The analysis has been done on 144 models of bolted joint with:  
 

• quotients   
𝐿𝑘

𝑑ℎ
  ranging from 1 to 12 and  

𝐷𝐴

𝑑𝑤
  from 0,8 to 3,2  

•  bolts from M8 to M14 
 
 
The results of the simulation on Abaqus are quite similar to the ones calculated utilising the German normative 
VDI Richtlinien . 
 
 

 
 
 

 
 
 
 
 
 
 
 
  
 
 

Fig. 28: values of resilience of the simulation 

Fig. 29: values of resilience calculated utilising VDI   Richtlinien 
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Calculating the % difference we can see that the resilience calculated on Abaqus/CAE differ considerably from 

the VDI ones only for low values of  
𝐿𝑘

𝑑ℎ
  and  

𝐷𝐴

𝑑𝑤
  : 

 
 

 
 
 
 
 
Now, in order to obtain the equation of resilience of the piece the Matlab tool “curve fitting” is used for the 
simulation: 
 
 
 

 
 

 

Fig. 30: % difference model-VDI 

Fig. 31: Matlab curve fit interface 
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(34) 

We first fit  the equation of resilience on the data of the M8 clamped connections(Figure 31). 
 

We call X the values of the quotient   
𝐷𝐴

𝑑𝑤
   ,Y the values of   

𝐿𝑘

𝑑ℎ
  and  Z the corresponding values of resilience. 

 
Using the fitting mode “custom equation“ we find, after many attempts, an equation that  fit our data pretty 
well (34) 
 
 

𝛿𝑝 = 10−8 ∗ (⁡⁡37,62 ∗

𝐿𝑘
𝑑ℎ

(
𝐷𝐴
𝑑𝑤

)5
+ 21,42 ∗

𝐿𝑘
𝑑ℎ
𝐷𝐴
𝑑𝑤

+ 10,35 ∗

𝐷𝐴
𝑑𝑤
𝐿𝑘
𝑑ℎ

⁡⁡) 

 

 
 

This equation gives a good approximation of the data since its 𝑅2=0,9984 (𝑅2⁡is a statistic that will give some 

information about the goodness of fit of a model. An 𝑅2⁡of 1 indicates that the regression predictions perfectly 
fit the data) , while a polynomial approximation with X of grade 5 and Y of grade 5 gives only 0,9981. 
 
 
The table below shows the %error between the results of the equation and the values calculated in 
Abaqus/CAE: 
 
 
 

 
 
 
 
 
  

Fig. 32: %Error between the values of resilience of the simulation and the ones of 
the equation 



 

 30 

Now we set the coefficient of   

𝐿𝑘
𝑑ℎ

(
𝐷𝐴
𝑑𝑤

)5
  as a variable “a” and we fit the equation on the simulations with bolt 

diameter  M10-M12-M14 
 

• M10 : 𝑅2=0,9758 ,a=2.193e-07 

• M12: 𝑅2=0,9911 ,a=  1.957e-07 

• M14: 𝑅2=0,985 ,a=1.875e-07 
 

 
 
 
 

 
 
 
 

Fig. 33: Equation fitted on the resiliences of M10 

Fig. 34: Equation fitted on the resiliences of M12 
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Now it is possible to express the coefficient “a” as a function of the bearing surface diameter of the bolts 𝑑𝑤. 

In the toolbox “curve fit” we set coefficient “a” as Y and 𝑑𝑤⁡as X (Fig. 36): 
 
 

The dimensions of 𝑑𝑤 for the bolts taken in consideration are: 
 

• M8 : 𝑑𝑤=11.68mm 

• M10 :⁡𝑑𝑤=15.6mm 

• M12 :⁡𝑑𝑤=17.4mm 

• M14 :⁡𝑑𝑤=20.5mm 
 

Fig. 35: Equation fitted on the resiliences of M14 
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(35) 

(36) 

(37) 

 

 
An handy equation that well fit the data is (35):   
 
 

𝑎 = 10−5 ∗ (⁡
475,1 ∗ 103

𝑑𝑤
2 + 1,523 ∗ 𝑑𝑤

2⁡) 

 

 

Which has an 𝑅2=0.9838 index of  a good approximation of our data. 
 
 
 
The final equation is:  
 
 

 

𝛿𝑝 = 10−8 ∗ (⁡⁡𝑎 ∗

𝐿𝑘
𝑑ℎ

(
𝐷𝐴
𝑑𝑤

)5
+ 21,42 ∗

𝐿𝑘
𝑑ℎ
𝐷𝐴
𝑑𝑤

+ 10,35 ∗

𝐷𝐴
𝑑𝑤
𝐿𝑘
𝑑ℎ

⁡⁡) 

 
 

 
With:  
 
 

𝑎 = 10−5 ∗ (⁡
475,1 ∗ 103

𝑑𝑤
2 + 1,523 ∗ 𝑑𝑤

2⁡) 

 
 

Fig. 36: curve fitting on values of “a” 
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C h a p t e r  I V  

CONCLUSIONS AND FUTURE STUDIES 

The major goal of this thesis has been the discover of a method capable of associate a 1D linear stiffness to an 

object that has complex deformation sum of bending, compression and radial strain. 

The study has been focused only on tapered thread joints with a not so wide range of dimensions due to the 

time-consuming procedure of creating models on Abaqus/CAE.  

A solution to this problem could be made automatizing  the process of creating 3D models . Utilising an 

existing macro for  Catia you can record the procedure to create a specified part like a spring or a bearing and 

then simply writing new dimensions in a VBA interface the part with new parameters is automatically created 

following the recording.Then  the models created and meshed on Catia are simulated in Abaqus/CAE utilising 

the Abaqus-Catia Associative interface. 

 The procedure explained would reduce drastically the time utilized to create the models and would allow to 

have an equation that fit well every dimension adopted in practice. 
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The Association of German Engineers (VDI) (2003). The guideline VDI 2230-Part 1 “Systematic calculation of high duty bolted joints-Joints with 

one cylindrical Bolt”. 
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