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Abstract
The retina is a major sensory processing circuit for humans and as the overall ner-

vous system, it is a complex and hierarchical large network of cells consisting of different
types of neurons. These cells communicate with each other through biochemical and bio-
electrical signals that, at the circuit level, lead to the encoding of different features of
the visual inputs. To understand this process many studies based on electrophysiologi-
cal recordings have been conducted on single-cells or on a restricted pool of cells. Only
with the recent technological developments, such as the new generations of high-density
microelectrodes arrays (HD-MEA) that exploit CMOS (Complementary Metal-Oxide-
Semiconductor) technology, we have reached the capability of monitoring the light-evoked
responses of several thousands of retinal ganglion cells (RGCs) in individual retinas. In
this master thesis I aimed at advancing these experimental capabilities by contributing
in the development of a closed-loop platform for investigating cellular retinal functional
properties. Originally, it will allow to study these cellular properties by stimulating the
retina according to its internal state associated with the spontaneous electrical activity.
Indeed, even though HD-MEAs provide an accurate description of the neuronal activity,
the implementation of closed-loop platforms that can exploit their spatial-spatiotemporal
resolution remains very challenging due to the demanding computations required for han-
dling the large recorded data stream at millisecond range latencies. A recently proposed
hardware architecture that exploits the FPGA/CPU resources of a Xilinx ZedBoard Zynq-
7000 was introduced to perform data pre-processing tasks, such as signal conditioning,
filtering and spike detection, with a maximum latency of 2 ms. In this thesis, I have
extended the capabilities of this closed-loop platform, first by implementing a pseudo-
real-time algorithm that removes redundant information in the recorded spiking activity
induced by the tight spacing among adjacent electrodes of HD-MEA. This algorithm
consists in a clustering procedure that identifies spatial and temporal correlated spiking
units. In my work, this approach has been also extensively tested and validated in HD-
MEA recordings of ex vivo mouse retina. Next, I have implemented a second closed-loop
algorithm that controls visual stimuli to infer the major functional properties of retinal
ganglion cells. In detail, based on the spiking response to white and black stimuli, the
algorithm classifies the units in ON- or OFF-type retinal ganglion cells. Finally, in the
last part of my study, I evaluated a potential approach for estimating the retinal ganglion
cells receptive field size in real-time. State-of-the-art approaches allowing for an accurate
and precise estimation of the receptive fields are very time-consuming. On the contrary,
the approach that I have developed aims at minimizing the experimental time and the
amount of data required for estimating the receptive fields of retinal ganglion cells. All
in all, the interactive algorithms that I have designed, implemented and validated in this
work against experimental data provide a new suite of tools to characterize the retinal cir-
cuit and to investigate how it implements visual information processing. In perspective,
these algorithms can be extended to other experimental preparations and high-density
recording devices, such as high-density implantable probes for in vivo studies. Part of the
outcomes of this master thesis work were submitted to the IEEE-NER 2019 conferences.
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Sommario
La retina è un importante circuito di elaborazione sensoriale per gli esseri umani ed

essendo parte del sistema nervoso, è formata da una complessa e gerarchica rete di cel-
lule composta da diversi tipi di neuroni. Queste cellule comunicano tra loro attraverso
segnali biochimici e bioelettrici che portano alla codifica di diverse caratteristiche degli
input visivi. Per comprendere questo processo sono stati condotti molti studi basati su
registrazioni elettrofisiologiche di singole cellule o di un insieme ristretto di cellule. Solo
grazie ai recenti sviluppi tecnologici, come le nuove generazioni di matrici di microelet-
trodi ad alta densità (HD-MEA) che sfruttano la tecnologia CMOS (Complementary
Metal-Oxide-Semiconductor), oggi è possibile monitorare le risposte di migliaia di cel-
lule gangliari retiniche (RGC) evocate da stimoli visivi . L’obiettivo di questo lavoro
è arricchire queste capacità sperimentali contribuendo allo sviluppo di una piattaforma
a circuito chiuso per lo studio delle proprietà funzionali delle cellule retiniche attraverso
stimolazioni dipendenti dall’attività istantanea di tale circuito. Tuttavia, anche se gli HD-
MEA forniscono una descrizione accurata dell’attività neuronale, l’implementazione di pi-
attaforme a circuito chiuso in grado di sfruttare la loro alta risoluzione spazio-temporale
rimane molto impegnativa a causa dell’elevato costo computazionale richiesto per gestire
il flusso di dati in latenze al millisecondo. Recentemente è stata proposta un’architettura
hardware che sfrutta le risorse FPGA/CPU di una Xilinx ZedBoard Zynq-7000, in grado
di pre-processare i dati, come il condizionamento del segnale, il filtraggio e rilevamento
di spike, con una latenza massima di 2 ms. In questa tesi, ho esteso le capacità di
questa piattaforma a circuito chiuso, implementando un algoritmo che attraverso un pro-
cedura di clustering identifica le unità attive correlate e rimuove le informazioni ridondanti
nell’attività di spike registrata indotta dall’elevata vicinanza tra gli elettrodi adiacenti
degli HD-MEA. Sebbene sia adatto ad altre preparazioni sperimentali, questo approccio
è stato ampiamente testato e validato nelle registrazioni HD-MEA della retina ex vivo
di topo. Successivamente, ho implementato un secondo algoritmo a circuito chiuso che
controlla gli stimoli visivi per inferire le principali proprietà funzionali delle cellule gan-
gliari retiniche. In paticolare, in base alla risposta agli stimoli bianchi e neri, l’algoritmo
classifica le unità in cellule gangliari retiniche di tipo ON o OFF. Infine, nell’ultima parte
del mio studio, ho valutato un potenziale approccio per stimare le dimensioni del campo
recettivo delle cellule gangliari retiniche in tempo reale. Gli approcci allo stato dell’arte
richiedono molto tempo per una stima accurata e precisa dei campi ricettivi. Pertanto,
l’approccio che ho sviluppato mira a ridurre al minimo il tempo sperimentale e la quantità
di dati richiesti per la caratterizzazione dei campi recettivi. Gli algoritmi interattivi che
ho progettato, implementato e validato su dati sperimentali forniscono una nuova serie
di strumenti per la caratterizzazione e l’analisi, in tempo reale, dell’elaborazione delle
informazioni visive eseguite dal circuito retinico. Infine questi algoritmi possono essere
estesi ad altri preparati sperimentali e ad altri dispositivi di registrazione ad alta densità,
come ad esempio le sonde impiantabili ad alta densità per studi in vivo. Parte dei risultati
ottenuti in questa tesi di laurea sono stati inviati come contributo originale alla conferenza
IEEE-NER 2019.
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1 Introduction

The basic challenge in neuroscience is to understand how tens of billions of neurons,
which are the fundamental elements of the brain, interact with each other giving
rise to all the functions of the brain that allow us to receive sensory inputs, act,
learn and remember. The mechanism underlying the functioning of the nervous
system can be grossly described in the following way: after receiving a sensory
stimulus, a primary sensory neuron generates a signal, which is transmitted to
other neurons along the nervous system until it reaches its target effector organs
or glands. Thus, a fundamental problem in neuroscience is to understand how
neuronal activity encodes the sensory signals that are continuously received from
the external world.

To study how brain circuits process sensory information at the network level,
the retina represent a system of great interest in neuroscience because of its acces-
sibility and the possibility of investigating its input/output functions in a natural
environment, i.e., by providing natural visual stimuli [1]. The retina is a major
sensory processing circuit for humans and as such, visual disabilities due to retinal
pathologies can radically degrade the quality of life of people. In this respect, ad-
vancing in understanding its visual information processing has strong implications
for R&D on strategies for vision restoration, including retinal prosthetics and cell-
/drug-based therapies. During development, the retina grows as an anatomical
protrusion of the central nervous system (CNS). As such, it consists of a complex
network of diverse neuronal cells that are arranged in a few well-organized layers:
photoreceptors, bipolar cells, horizontal cells, amacrine cells and retinal ganglion
cells. These cells communicate with each other through biochemical and bioelec-
trical signals that, at the circuit level, lead to the encoding of different features
of the visual inputs. Differently from other brain areas, nearly all neurons in the
retina communicate through graded potentials except for the retinal ganglion cells
and a few subtypes of amacrine cells that are able to generate action potentials
[2].

While for decades the retina has been studied with electrophysiological record-
ings from single-cells or from a restricted pool of cells, recent technological ad-
vancement culminated in the unique possibility of simultaneously monitoring the
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1 – Introduction

light-evoked responses of several thousands of retinal ganglion cells (RGCs) in
individual retinas [3], [4]. This result was achieved with new generations of high-
density microelectrodes arrays (HD-MEA) that exploit CMOS (Complementary
Metal-Oxide-Semiconductor) technology to integrate several thousands of closely
spaced microelectrodes [5] in active devices with on-chip read-out circuits.

For decades neuroscientists studied the nervous system in an open-loop manner,
i.e., by analysing the output of neurons in response to a given external stimulus
independently from the state of the neuronal network. This strategy has provided
valuable insights in understanding the transient response of isolated neuronal cir-
cuits at cellular level. However, it may not not apply in physiological operating
conditions. Indeed, each neuron in the nervous system integrates the external
information with the spiking activity of thousands of other neurons that repre-
sent the state of the network. For instance, it has been proven that the retinal
processing is based on non-linear feedback controls [6],[7]. In this perspective neu-
roscientists started to design closed-loop systems that could control and eventually
exploits the instantaneous neural activity after specific stimulation to investigate
in real-time the neuronal processing of sensory information.

Closed-loop manipulations have the unique power of revealing the high non-
linearity of neuronal responses and can be used to investigate several interesting
phenomena: the neuronal homeostatic adaptation, by controlling the stimulation
current that maintain the average firing rate at a desired inter-spike-interval [8],
the neuronal and network plasticity, by correlating the spike timing between sets
of arbitrary neurons [9], the excitability of neurons, by controlling their instanta-
neous response probability [10], the network dynamic, by controlling the timing
of network bursts in cortical cultures [11], and visual processing by identifying
different visual stimulus patterns that yield the same neuronal response [12].

In the retina, closed-loop approaches can contribute to disentangle the op-
erating principles underlying visual processing. Indeed, the retina represents a
reduced and well-organized neuronal system in which retinal ganglion cells, i.e.,
the output neurons of the retina, combine and compare both in space and time
features of the stimulus from contiguous region of the visual field called receptive
fields (RFs). The RF is defined as the portion of the visual field in which a light
stimulus produces a modulation of the spiking activity upon the application of a
visual stimulus. The RF properties may change depending on a certain number of
factors that include, but are not limited to, ambient luminance and adaptation to
stimuli. Therefore a description of their characteristics is of primary and essential
importance for understanding how the visual information is encoded by the retina.

The main contribution of this work, indeed, consists in the development of
hardware embedded algorithms in a closed-loop platform for investigating cellular
retinal functional properties. These algorithms exploit the instantaneous firing of
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1 – Introduction

the retinal ganglion cells to reduce the time required for experimental investiga-
tion. The hardware platform used in this work exploits the FPGA/CPU resources
of a Xilinx ZedBoard Zynq-7000 that have been proven to handle the data stream
of HD-MEAs [13]. In particular, this platform can perform pre-processing tasks,
such as signal conditioning, filtering and spike detection, with a maximum la-
tency of 2 ms allowing to record and stimulate retinal networks according to their
spontaneous electrical activity. By exploiting these capabilities, I worked on im-
plementing novel approaches to infer cellular properties based on their dynamical
response to closed-loop controlled visual stimuli.

HD-MEAs record RGCs spiking activity from 4096 electrodes simultaneously
and thus provide an accurate description of the neuronal activity. However, this
has a price of a very demanding computational cost required to analyze the data
stream of thousands of electrodes. Consequently, the implementation of closed-
loop algorithms that can exploit the spatiotemporal resolution of HD-MEAs with a
maximum latency of a few tenths of milliseconds is still a computational challenge.

A simple strategy to reduce this computational cost concerns the number of
electrodes that has to be simoultaneously analysed. Indeed, it has been noticed
that, in retinal preparations, the spike trains recorded by adjacent electrodes in
HD-MEA systems, may include redundant information as a consequence of the
tight spacing between electrodes. Thus, I exploited the closed-loop platform for
the identification of duplicated spikes in spatially adjacent electrodes. To avoid
subsequent redundant analysis, a leader electrode (the one with the highest number
of spikes recorded) is selected among those electrode that are consistently recording
coincident spiking activities and all the remaining electrodes were discarded. To
validate this approach, I generated simulated correlated spike trains according to
a pre-determined probability of firing acting as ground-truth and then I tested the
performance of the algorithms on real dataset. For the experimental phase the
close-loop configuration is exploited in order to save time and memory estimating
the amount of data to record for achieving a stable configuration of clustered
channels.

Next, I have implemented a second closed-loop algorithm that controls visual
stimuli to infer major functional types of RGCs. In detail, based on the spiking
response to white and black stimuli, the algorithm classifies the representative
electrodes identified with the first algorithm in ON- or OFF-type RGCs responses.
These two cell-types of RGCs transiently activated by an increase (ON-type) or de-
crease (OFF-type) in light intensity, respectively. To do so, the algorithm controls
a digital light projector (DLP) to visually stimulate the retina. After projecting
each light stimulus, the algorithm counts the number of spikes for each leader
electrode and computes the difference of their firing rate during the black and the
white phase, with respect to the spontaneous activity. Then, each leader electrode
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1 – Introduction

is classified as ON if it increases the firing rate during a white flash stimulus, and
OFF vice-versa.

Finally, considering that state-of-the-art approaches are highly time-consuming
for an accurate and precise estimation of the RFs [14], [15], [16] the approach that
I tested in this work aims at minimizing the experimental time and the amount
of data required for the receptive fields characterization. This is implemented by
using a white-black curtain image stimuli whose white edge spans the RF from left
to right and vice versa the visual field.

Structure of the thesis

In the first Chapter, I report a general overview of the visual system with a par-
ticular focus on the retina and its functional properties. The principal functional
characteristics of retinal ganglion cells, as their preferential response to visual
stimulation and the concept of receptive field, are described in details.

The second Chapter reports an overview on the electrophysiology approaches
developed in neuroscience to acquire the bioelectrical activity of neuronal circuits,
and in particular of the retinal circuit, with the goal of investigating their operating
principles. In the same Chapter, I included the description of the closed-loop
hardware architecture used as a starting point of my work.

The third Chapter describes my original contribution and provides a complete
description of the implemented interactive algorithms.

The results obtained are presented in Chapter 4 and discussed in Chapter 5.
Finally, Annex I reports a technical description of the experimental techniques and
setups used in this thesis.
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2 Visual information processing in
the eye

The eye is the sensory organ dedicated to acquire and render visual cues about the
external world to an organism. To fulfil this task, the eye acts as a tunable optical
instrument that focuses visual images onto a photosensitive tissue called retina,
located in the inner-most part of the eye. Importantly, the retina is the neuronal
circuit that evolution has refined to transduce variations in light intensity into the
language of the brain, i.e. electrical neural impulses [17].

As shown in Figure 2.1, the general structure of a vertebrate eye, despite
species-specific features, consists of the following components (from the outermost
to the innermost):

• Cornea: a transparent spherical membrane that covers the front part of the
eye to let the light enter.

• Iris: a two-layer pigmented muscle tissue located behind the cornea that, as
an optical diaphragm, regulates the amount of light reaching the retina by
modifying the size of the pupil. The iris is also responsible for eye coloring.

• Pupil: an opening located in the iris centre that, similarly to the aperture
of an optical diaphragm, allow light passage. The size of the pupil, and thus
the amount of light entering in the central part of the eye, is finely controlled
by the iris.

• Eye lens: a convex lens made of transparent jelly that focus the ray lights of
an image onto the retina. Ciliary muscles hold in position the eye lens and
tune its curvature to maintain the focal point onto the retina plane.

• Sclera: a fibrous membrane that constitutes the white external posterior part
of the eye and ensures the mechanical resistance of the eye.

• Choroid: a connective tissue layer surrounding the internal eye that provides
oxygen and nutrients through rich arborizations of blood vessels.
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2 – Visual information processing in the eye

• Retina: the light-sensitive tissue of the eye. It maintains its position in the
eye thanks to the pressure of the vitreous body, a jelly fluid that fills the
eye-bulb and pushes the retina onto the internal wall of the eye protecting it
from mechanical shocks and traumas. In primates [18], in some subspecies
of fish [19] and birds [20], the retina exhibits an additional highly specialized
structure, called fovea, devoted to sharp central vision, i.e. the accurate dis-
crimination of details located in the central part of the visual field. However,
other mammalians such rats and mice lack this area and thus their central
vision resembles the peripheral vision of fovea-equipped animals.

• Optic nerve: a nerve composed of approximately one million axons that
transmit the bioelectrical activity of retinal ganglion cells, the output neurons
of the retina, to the brain.

Figure 2.1: Principal structural components of the vertebrate eye involved in the
sensory processing of visual input. Picture adapted from [17].

Consistent with its status as a part of the central nervous system, the retina
comprises a complex cellular circuitry that is described in details in the following
part.

2.1 The retina
The retina is the neuronal tissue in charge of phototransducing and pre-processing
visual stimuli: it senses variations of light, extract relevant features about the
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2 – Visual information processing in the eye

visual scene (e.g. motion detection) and encodes this information into bioelectric
signals that are then sent to the brain through the optic nerve. Despite its location,
the retina is considered part of the central nervous system (CNS) because it consists
of nerve cells originating in the developing brain.

2.1.1 A highly organized layered cellular structure
The retina consists of two principal cellular layers, namely the pigmented epithe-
lium, a thin layer in contact with the choroid, and the sensory retina, containing
all the nerve cells devoted sensory and processing, that connect the retina with
the vitreous body, see Figure 2.2.

In detail, the pigmented epithelium is organized in a single layer of densely
packed non-neuronal cells containing large amounts of black pigment, the melanin,
which absorb all the photons reaching the back of the eye. Despite its simple
structure, the pigmented epithelium has other essential functions as:

• active transport of the metabolites;

• constitution of the blood-retinal barrier;

• regeneration of photopigments of the photoreceptors;

• phagocytosis of the outer layer of photoreceptor cells.

The sensory retina, instead, is a multi-layered structure in which each layer is
populated by a specific population of nerve cells, suggesting a function-structure
relationship in retinal information processing. In detail, the retina contains six
major types of nervous cells (from the outermost part to the innermost): rods and
cones, horizontal cells, bipolar cells, amacrine cells and retinal ganglion cells whose
elongated axons give rise to the optic nerve. These cells do not merely transfer
the whole visual scene to the brain in a pixel-by-pixel fashion, but they rather
combine and integrate signals from small patches of the visual field to generate a
low-dimensional representation.

2.1.2 Structure-function relationship of retinal cellular or-
ganization

To each population of cells has been attributed a peculiar functional role in the
retinal visual processing:

Rods and cones are the photoreceptors, i.e., the light-sensitive cells of the retina
that convert light energy into electrochemical signals. In human retina, the
cones outnumber the rods in the central area of the retina called macula
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2 – Visual information processing in the eye

and allow the perception and recognition of colors during daylight vision
(photopic vision).
There are three types of cones, each of which contains a pigment sensitive
to particular wavelengths in the visible spectrum. Notably, there are only
three types of pigment with absorption peaks at 420, 530 and 560 nm, that
correspond respectively to blue, green and red light colors. Conversely, a
reciprocal rod-to-cone ratio characterizes the medium and peripheral area
of the retina. Rods have higher sensitivity to light compared to cones, and
they can sense as little as single photons. As such, rods are essential in
night vision (scotopic vision). These cells continuously release glutamate, a
neurotransmitter, except when activated by light.

Figure 2.2: Schematic representation of a vertical section of the retina showing its
organization in cellular layers. Note that the light travels through all the cellular
layers before reaching the photoreceptors. Picture adapted from [17]

Bipolar cells are neurons that synapse either with cons or rods and they can also
receive inputs from horizontal cells. They transmit the information collected
to the retinal ganglion cells directly or indirectly through the amacrine cells.

8



2 – Visual information processing in the eye

Horizontal cells are neurons which connect the photoreceptors laterally and
integrate information received from multiple cons or rods and provide in-
hibitory feedback to the photoreceptors. The principal function of these
cells is to provide adaptation to high or low light ambient luminance.

Amacrine cells are inhibitory neurons typically with very short axons. Similarly
to horizontal cells, they horizontally integrate the inputs received from bipo-
lar cells, or other amacrine cells, and transmit their output to the retinal
ganglion cells.

Retinal Ganglion Cells (RGCs) are the principal population of cells in the vi-
sual system capable of generating action potentials: they spontaneously fire
spikes at a basal firing rate when they are in a rest condition [21]. When
RGCs are excited, they increase their firing rate; instead, an inhibition re-
sults in silencing the spiking activity. They receive visual information from
the photoreceptors through bipolar and amacrine cells. RGCs can be mainly
distinguished in M-type cells (Magnae) and P-type cells (Parvae): the first
are connected to a large number of cones and rods and, for this reason, they
are able to provide information on the movement of an object or on rapid
variations in the light context. P-type cells are instead connected with fewer
receptors and provide information on the shape and color of an object. The
axons of retinal ganglion cells give rise to the optic nerve and constitute the
unique pathway of visual information transmission between the retina and
the brain.

The retina has an active role in encoding and pre-processing visual information.
In fact, the retina extracts and transmits to the brain only relevant features of
the visual field, mostly associated with local variations of light. Indeed, the visual
scene is not presented to the retina statically, but through constant and continuous
micro-movements, called saccades, that are suggested to improve visual acuity as
a consequence of the variation in light intensity induced by the spatial movement
[22].

2.2 Neurons and synapses
In vertebrates the retina and the optic nerve originate as external outgrow of the
brain during the embryonic development. The retina is therefore considered as a
part of the Central Nervous System (CNS) and, as such, contains neurons, i.e.,
the fundamental units that constitute the CNS and the Peripheral Nervous System
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2 – Visual information processing in the eye

(PNS). As shown in Figure 2.3, each neuron is a cell that consists of a main body,
the soma, and two different types of arborizations, the dendrites and the axons.

Soma contains the nucleus and the cellular organelles. It receives electrical sig-
nals from the dendrites, integrates them and eventually generate a transient
variation in the membrane potential that is transmitted through the axon.

Dendrites have the task of receiving information from other neurons and trans-
mitting it to the cell body in the form of electrical signals. The branched
arborization, which characterizes the dendrites, increases the surface area for
receiving information.

Axon is the extension of the soma of a neuron. It is usually one and generally
is wrapped in a myelin sheath, a lipid substance that protect and electri-
cally insulate nerve fibres. In between adjacent myelin sheaths, dedicated
regions called nodes of Ranvier, boost the electrical signal to cope with elec-
trical attenuation along the axon. The insulation increase the speed and
the reliability of transmission of the nerve impulse. Myelinated axons are
typically found in peripheral nerves (motor and sensory neurons), whereas
non-myelinated neurons are found in the brain and spinal cord.

Neurons are surrounded by a cell membrane that keep the extracellular envi-
ronment and the cytoplasm separated. Through membrane channels that control
the exchange of the charged molecules, the neuron is able to maintain a voltage
difference between the external solution and the intracellular one of around 60-
90 mV. The most important characteristic of a neuron is the ability to modulate
this electrical potential to generate electrical impulses named action potentials (or
spikes). Specifically, in mammalians action potentials are a fast (about 1 ms) and
large (about 100 mV) depolarization and repolarization of the cell membrane.
The action potential that propagates along the axon is transmitted to another neu-
ron or to effector organs (muscles and glands) through specialized junctions, called
synapses. The neurons that transfer the nerve impulse towards the synapse are
the presynaptic neurons, instead those that transfer it downstream of the synapses
are the postsynaptic neurons.

The axon terminal (or synaptic bouton) of the presynaptic neuron is a complex
structure containing a chemical mediator (neurotransmitter) that accumulates in
small vesicles. Once the action potential arrives at the pre-synaptic site acti-
vate the release of neurotransmitter from the synaptic bouton into the synaptic
cleft. Neurotransmitters bind to postsynaptic synaptic receptors that by tran-
siently opening ion channels modulate the membrane potential of the post-synaptic
neuron. Depending on the effect, some synapses are called excitatory because
their activation increase the membrane potential of the post-synaptic neurons.
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2 – Visual information processing in the eye

Figure 2.3: Representation of a neuron and the synaptic connection. Image
adapted from [23].

Conversely, synapses that determine a decrease of the post-synaptic membrane
potential are called inhibitory synapses.

To study how brain circuits process information at the network level, the retina
represents a system of great interest in neuroscience because of its accessibility and
the possibility of investigating its input/output functions in a natural environment,
i.e., by providing natural visual stimuli.
Differently from other brain areas, while all the nervous cells in the retina commu-
nicate through graded potential, only the retinal ganglion cells are able to generate
action potential.

Typically, the retina can be studied with extracellular recordings by flattening
the curved neuronal tissue after dissection. In this way, the RGC layer can be put
in contact with an array of recording electrodes to record the spiking activity of
RGCs and, thus, the information about the visual field transmitted through their
spike trains to downstream brain areas.
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2.3 Functional properties of retinal ganglion cells
The Retinal Ganglion Cells (RGCs) send a diverse set of parallel, highly processed
images of the world to higher visual areas in the brain [24]. Thus, the retina is not
merely a light detecting circuit, but rather a feature detector and specialized en-
coder for downstream brain areas. RGCs collect information about the visual scene
from bipolar cells and amacrine cells as chemical messages sensed by receptors on
the ganglion cell membrane. Transmembrane receptors, in turn, transform the
chemical messages into intracellular electrical signals which are integrated within
ganglion-cell dendrites and cell body, producing spike trains. Through these spike
trains the RGCs are able to communicate information about the visual scene to
downstream areas of the brain. Based on their function, i.e., their response to
visual stimuli, different cell-types of RGCs can be distinguished [4].

2.3.1 Classification and preferential responses of RGCs
According to the different features of the visual scene as color, size, direction and
speed of motion, studies in vertebrate retina [24] discovered different types of RGCs
depending on their preferential response to visual images features. Even so, signals
detected by RGCs may not have a unique interpretation. Equivalent signals might
result from an object changing brightness, changing shape, or moving. It is up to
the brain to determine the most likely interpretation of detected events and, in
the context of events detected by other RGCs, take appropriate action [25].

Even though each RGC encode slightly different features of the visual scene,
they can be classified in a few groups according to their preferential response to
visual stimulation. The simplest stimuli consist of black and white full-field flashes
and allow to classify nearly all retinal ganglion cells into three principal functional
sub-types, namely ON, OFF, ON-OFF retinal ganglion cells. In particular, the
ON-RGCs (OFF-RGCs) are excited by increments (decrements) of light intensity;
instead, the ON-OFF RGCs respond to both positive and negative changes [26]
(see Figure 2.4).

In addition, each vertebrate RGC is tuned for objects of a different size, re-
flecting in part the variable dendritic span of retinal ganglion cells. A measure for
the size selectivity in RGCs is the contrast sensitivity as the activation of retinal
ganglion cells is a function of both the difference in brightness between the light
and dark phases of the bar pattern (contrast) and the bar width (spatial) [25].

Further, some retinal ganglion cells provide information about the direction
of a moving object or scene. Directional selective (DS) RGCs respond to stimuli
moving in a preferred direction and are inhibited by stimuli moving in the opposite
direction. The preferred direction is independent of the nature of the object, which
can be either bright or dark, a simple object such as a small spot, or a complex
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object, such as a drifting grating. The first evidence for such retinal computation
was established in the rabbit retina [27].

Figure 2.4: Activity of the three different classes of retinal ganglion cells in dark-
adapted retinas evoked with spots of light. In response to their preferential stim-
ulus the activity of the RGCs increases. Adopted from [28].

2.3.2 Spatial integration of visual stimuli: Receptive Fields

Importantly, RGCs modulate their spiking activity in response to changes in light
luminance occurring within a limited portion of the visual scene, called the recep-
tive field (RF). The RF of an RGC includes all the inputs from photoreceptors
connected to that cell via bipolar cells, horizontal cells, and amacrine cells.
The RGC RFs are approximately circular, and they consist in a centre and a sur-
round region with an antagonistic behaviour: if the preferred stimulus is presented
within the RF centre, the RGC steadily increases the firing rate, whereas if the
same stimulus is presented in the RF surround the RGC reduce its firing rate.
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Figure 2.5: Prototypical responses of an ON-RGC to a light-dark curtain image
as a function of the relative position between the RF centre and the white edge of
the curtain. Depending on the overlap between the RF and the white curtain, the
ON- RGC: (A) remains at its baseline activity, (B) is depressed by the inhibitory
effect of the surround, (C) returns to its basal activity as the centre excitation
balances the surround inhibition, (D) is fully excited as the centre is maximally
exposed to the white part, and (E) stabilizes its ring to a value higher than (A)
since the centre excitation dominates over the surround inhibition. Image adapted
from [29]

Figure 2.5 shows the typical response of an ON-RGCs to a light-dark edge
image in which the white region increasingly overlaps with its RF. In configuration
(A) the overlap between the white area and the RF is zero and it is firing at its
basal level of activity as it does not experience any change in light luminance (red
dashed line). In configuration (B), the white region overlaps only with the RF
surround and thus the RGC firing rate decreases with respect to (A) due to the
inhibitory effect of the RF surround. In configuration (C), the preferred stimulus
partially overlaps with the RF centre, and the excitatory contribution of the RF
centre balance the inhibitory response of the RF surround. In configuration (D),
the white curtain covers the RF centre entirely; consequently, the RGC mean
firing rate steadily increase towards its maximum value. Finally, in configuration
(E), the white stimulus covers the RF completely and the firing rate decreases
with respect to (D) because of the additional inhibitory contribution of the RF
surround. Note that in configuration (E) the firing rate is still higher than the
basal value (A) because the excitatory contribution of the RF centre dominates
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over the inhibitory contribution of the RF surround. Finally, the RGCs can also be
classified according to the kinetics of their RF response, as transient or sustained.
Transient RGCs respond to the stimulus with a brief activity just after a stimulus
is presented to the retina; instead in sustained RGCs the response is a continuous
ring for all the duration of the stimulus [30].

Therefore, according to what was said before, the classification of functional
RGC-types and the estimation of their RF size are essential parameters for inves-
tigating the information processing performed by the retinal circuit.

Methods for Receptive Field estimation

The aim of the receptive fields estimation is to understand the relationship between
the extent and position of an object appearing in the visual scene in modulating
the RGCs spiking train response.

The most common model used to study RGCs RF is the difference of Gaussians
(DOG) (Figure 2.6) in which the RF has a shape of two 2D Gaussians [31]. This
model assumes that the RGC response is the result of the combination of the center
and the surround that, as explained in Section 2.3, respond to contrast stimuli.
The model described is easily fit from any of the RF measurements described in
the following lines.

All the methods that will be described in this Section rely on a single assump-
tion derived from an oversimplified view of the retinal processing: the RF is not
changing over time or in different luminance conditions. However, several adapta-
tion phenomena to light stimuli occur in the retina, thus confirming that its visual
information processing dynamically change and optimize its performance in any
given condition[32]. Therefore, for the measurement of the RFs it is also essential
to consider the stimulation time required to obtain the relevant information. Thus,
the stimulation time interval represents a compromise between experimental needs
and estimation accuracy.

The advantage and disadvantage of the principal types of visual stimuli adopted
for the estimation of RFs are the following:

• Sparse noise: spots of light are presented to the retina in random loca-
tions(Figure 2.7A). With this method, the RF is defined as the region in
which the spot elicits a response [33]. The main advantage of this method is
the straightforward interpretation of the RF that allow the identification of
the RGCs preferential response (ON, OFF or ON-OFF). A disadvantage of
this method is the necessity of many repetitions of visual stimulation, and
thus long-lasting experimental phases, to obtain a robust RF quantification
and information about the kinetics of the response; on top of this, it also
require to consider each cell at a time. Finally, this RF estimation depends
on the size and intensity of the spots used for visual stimulation.
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Figure 2.6: The DOG model for RF analysis. (a) The spatial sensitivity of the
center and surround mechanism both have a Gaussian profile. (b) The neural
response is the result of the linear summation of the two independent mechanisms,
the center and the surround (c)

• Spots of variable sizes: this method is an improvement of the previous
one as in this case a spot of light is presented in the same position for dif-
ferent diameters (Figure 2.7B) centred with the position of each cell. The
smallest size of the spot that elicits the maximum response is considered as
the dimension of the RF center [34]. Similarly to the sparse noise methodol-
ogy, also this method relies on a brute-force approach consisting of showing
a plethora of stimuli. Further, this procedure implicitly forces the shape of
the RFs to equal the one used as probing stimulus (usually a circular spot)
and thus can provide hints only on RF size.

• Drifting gratings: differently from the other two methods, the estimation
of the RF is based on sinusoidal drifting gratings (Figure 2.7C). After the
quantification of a retinal ganglion cell sensitivity in responding to gratings
of different spatial frequency, the RF extension is estimated by computing
the inverse Fourier transform of the spatial sensitivity from the frequency
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to the spatial domain [35]. Given that the stimuli used are spatially invari-
ant, i.e. repeat along the movement direction of the grating, this method
allows quantifying RFs of several different RGCs simultaneously with a few
parallelizable and rapid computations. Thus, this approach is particularly
suitable for large-scale multi-electrode array recordings. Another advantage
of the drifting gratings method is that the stimulation can be repeated sev-
eral times in a few tenths of seconds, leading to an effective description of
each RGCs response. By presenting gratings moving in different orientations,
it is possible to refine the RF estimation and further characterize the orien-
tation and direction selectivity properties of the RGCs. Nevertheless, this
method assumes implicitly that the retina encodes static images and moving
objects in a similar fashion. Instead, a disadvantage that affects this and the
previous methods is that the estimation of the center size depends on the
strength of the surround suppression: if the surround suppression is strong,
the center size will be underestimated, instead if the surround suppression is
weak the size of the center will be overestimated.

• Spatio-temporal white noise: this approach is the state-of-the art method-
ology for the estimation of RFs, especially if concurrently associated to a
spike-triggered-averaging (STA) analysis method [14]. A sequences of im-
ages consisting in a checker-board with randomly distributed white and black
pixels (Figure 2.7D) is presented to the retina to elicit RGCs responses in-
duced by the different arrangement of black and white pixels from one frame
to the following. Next, by averaging those stimuli that evoked a response
can be estimated the size of the receptive field. The spatio-temporal white
noise stimuli with the STA analysis has some limitations. The major one is
that is not possible to identify the polarity of the RGCs (ON, OFF or ON-
OFF) or come up with kinetic information, besides is necessary to consider
that the checker size for a robust RGC response depend on the activation
strength of its RF center and surround. Instead the main advantage of this
method is that it avoids adaptation to strong or prolonged stimuli and, thus,
is well suited to simultaneous measurements from multiple neurons. How-
ever, it provide the most accurate description of RF extent at the price of a
long-lasting experiment.

• Filter back-projection: single bars are flashed to the retina in different po-
sitions and with different orientations (Figure 2.7E). After a back projection
filtering, a signal processing technique widely used in computerized tomogra-
phy, is applied to the recording data. Starting from a one-dimensional view
of the data, the filter back-projection construct a two-dimensional image [15]:
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after each stimulus the data recorded are used to build a map for the RF rel-
ative to the position and orientation of the bar. The different maps obtained
are then averaged in order to reveal the ridge of increased activity that is the
region of the RF. This approach allows the differentiation between ON and
OFF RGCs and, for long stimulation periods, it is also possible to extract
kinetic information of RGCs, analyse many RGCs simultaneously and, since
the stimulus consists in elongated bars, extract information about orienta-
tion selectivity. The principal disadvantage of this approach is the projection
and reconstruction artifacts.

• Natural stimuli: naturalistic images (Figure 2.7F) are also used to study
the response of RGCs to more physiological stimuli. In this case, linear
analysis methods, like STA, would not provide satisfying results as a conse-
quence of spatial correlation embedded in natural images. Indeed, one of the
assumptions of the linear method is the zero correlation between the stimuli
[16]. Consequently, although more physiological, this approach further in-
crease the complexity of the problem but, if carefully used, can lead to the
identification of possible non-linear interactions between neurons.

Method ON-OFF
separable

Spatial
resolution

Kinetics
information Parallelizable Fast

stimulation

Sparse noise ++ − ++ −− ++

Spots of variable
sizes ++ −− ++ −− ++

Drifting
gratings −− − + + ++

Spatio-temporal
white noise ++ ++ + + −−

Filter
back-projection + − ++ + −

Natural stimuli −− − + ++ −−

Table 2.1: Qualitative summary of the pros (+) and cons (−) of the available
approaches for receptive field estimation.

The following Chapter reports an overview on the electrophysiology approaches
developed in neuroscience to record the bioelectrical activity of neuronal circuits,
and in particular retinal circuits, with the goal of investigating their operating
principles.
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Figure 2.7: Visual stimuli used for RF estimation. Image adapted from [36]
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3 Electrophysiology: the study of
neuronal biolectrical activity

Electrophysiology in neuroscience aims at studying the electrical properties of the
central and peripheral nervous system. During the last decades, the technological
progress promoted the development of increasingly sophisticated and accurate de-
vices and methods to monitor and investigate the bioelectrical activity of single
neurons or complex networks in living organisms, in vivo, or isolated from their
normal biological context, in vitro.

The major advantage of in vivo studies lies into the possibility to analyse
neuronal dynamics truly reflecting the physiology of an intact neuronal circuits in
living beings. For this this reason, in vivo studies are believed to provide conclusive
hints on the nature, mechanism or function of the phenomena under investigation.
Nevertheless, the interpretation of results obtained in vivo should be carefully
evaluated because of a number of factors (for example the inter-animal variability
and the intrinsic spontaneous activity), that are inherited by the complexity of
the system and are out of the experimentalist control, can lead to misleading
conclusions.

Conversely, in vitro studies use simplified isolated models of the neuronal net-
work or brain circuit physiology to focus the analysis on a neuronal preparation
growing from sketch in a controlled environment and completely isolated from the
living organism. Although in vitro experiments represent a good starting point
for the analysis of a specific neuronal target, they require to perform an essential
validation step to ensure that the in vitro neuronal networks mimic the salient
biochemical and electrophysiological features of the original system.

In between the two mentioned approaches there is the experimentation per-
formed on a tissue dissected from a living being in a controlled environment out-
side the organism. By performing experiments on a genuine tissue in a controlled
environment, this type of neuronal preparation is a compromise between in vitro
and in vivo studies. However, maintaining the viability of tissue and failure in
replicating in vivo physiology due to isolation (e.g., lack of inputs) represent two
major disadvantages.
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Method Pros Cons

in vivo - Study neuronal dynamics in
living organism

- Invasive
- Complex biological variation

ex vivo - Easily accessible
- Intact physiological circuit

- Difficulties in maintaining viability
of the dissected tissue
- Failure in replicating in vivo
physiology due to isolation

in vitro
- Simple set-up
- Reproducible
- Non-invasive

- Need of essential validation step
- Not able to accurately predict the
conditions inside a living organism

Table 3.1: Advantages and disadvantages of the three principal approaches in
electrophysiological investigations.

The next Section reports an overview of the main methods for recording neu-
ronal bioelectrical activity with their pros and cons. Next, the pre-processing flow
of data analysis is described in detail, with a particular focus on the redundant
information acquired by high-resolution multi-electrode arrays. Indeed, redun-
dant information can be either useful, as in refining spike-sorting procedures, or
harmful, as in providing real-time closed-loop feedbacks. Finally, the section ends
with an overview of closed-loop approaches used to highlight their importance in
modern neuroscience.

3.1 Monitoring the bioelectrical activity of neu-
ronal tissue

The bioelectrical signals generated by neurons can be monitored through direct
or indirect methods. Indirect measurements track second-order effects of neu-
ronal communication and consequently provide a coarse quantification of the ac-
tivity of many neurons. For example, the functional magnetic resonance imaging
(fMRI) does not record neuronal activity directly but provides a measurement
of the changes in blood flow and oxygen consumption [37]. Neuroimaging tech-
niques, such as electroencephalography (EEG), magnetoencephalography (MEG)
and positron emission tomography (PET) provide low-resolution images of large
brain areas and thus are useful in expanding the knowledge derived from the study
focused on single neurons at the brain scale by providing snapshots of the entire
brain in action. Each pixel in the neuroimaging snapshot, the voxel, represents the
average activity of at least 80,000 neurons and 4.5 million synapses. Consequently,
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an image of fMRI is unsuitable for identifying and dissecting the micro-circuits in-
volved in a particular task. Likewise, the EEG appears to be a weak technique
to investigate the operating principles underlying neuronal computation as it pro-
vides an averaged, low-frequency filtered, measure of the electrical activity of over
100,000 neurons limited to the most superficial neuronal layers.

3.1.1 Single neuron measurements
Although neuroimaging techniques are useful for their non-invasiveness and for the
possibility to observe the activity of extended neuronal networks, the monitoring
of second-order effect of the spiking activity, in general, result in a poor temporal
resolution compared to the brain dynamics. Indeed, information processing in the
brain is a highly dynamic process occurring on a milliseconds timescale. Thus, to
investigate fast-changing dynamics in single neurons, methods based on electrodes
are currently the best candidates.

The function of single neurons is often explored by direct measurements of the
intracellular voltage changes, with respect to time, across the membrane during
action potentials (Figure 3.2). The most traditional intracellular technique used
to study a single cell is the patch clamp [38]. It consists in placing on the cellular
membrane a thin and hollow capillary electrode (Figure 3.1A) with a diameter of
about one micrometer.

Figure 3.1: Representation of the patch clamp technique. Image adapted from [39]

By applying a slight suction in the hollow capillary, the cell membrane is
"sucked" slightly inside the electrode (Figure 3.1B). This creates a "seal" that iso-
lates the analysed portion by the rest of the cell membrane. A further negative
pressure determines the break of the cellular membrane (Figure 3.1C) allowing
direct contact between the electrode and the intracellular environment. Therefore,
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this technique allow to fully record the biolectrical activity generated by the target
neuron including spiking activity and sub-threshold oscillations.

The patch clamp also has some drawbacks: first, its invasiveness as the micro-
electrode damage the cell upon perforation, second, the limited amount of neurons
that can be simultaneously recorded, due to the bulky instrumentation required.
On the other hand, the activity of single-neurons can be explored through extra-
cellular recordings using metal electrodes located in the extracellular environment
close to the neuron. In this case two different signals can be observed:

• Extracellular Action potentials (EAP): are very fast signals occurring
when the membrane potential of a specific axon location rapidly rises and
falls. Physiologically, APs frequency can reach up to 200 - 300 Hz and
the signals are usually very well localized in space as shown in Figure 3.2A
(middle).

• Local field potentials (LFP): signal generated by the electric current pro-
duced by a group of dendritic synapses within a small volume of nervous
tissue. The voltage is produced by the sum of the synaptic current flow-
ing through the local extracellular space. The LFP are signals mostly slower
than the APs and present typically low frequencies (0.1 - 100 Hz). Differently
from APs, the LFPs are very spatially broad signals.

Extracellular recordings are used specifically to detect whether or not an ac-
tion potential (spike) has occurred in a specific timestamp, with no particular
consideration to the waveform in case of the single neuron recordings, because
spike waveforms recorded by extracellular recording devices vary in shape and
amplitude between neurons due to morphological and electrical features of each
neuron and position of the recording electrode. Instead for multiple recordings the
waveform is needed in order to perform the spike sorting (see Section 3.1.3).

The big advantage of the extracellular recording is the possibility to monitor the
neurons activity for days or months without inflicting any mechanical damage to
the neuron membrane. But this characteristic affects the signal amplitude because
compared with that of the intracellular recording, the extracellular one is lower
(see the different scales in Figure 3.2B). Moreover with the extracellular recordings
the sub-threshold events can not be observed.

While the intracellular recording is an essential tool for investigating synaptic
communication between pairs of neurons, the latter deficiency prevent from the
investigation of information processing in a dense cellular network, such as a neu-
ronal culture, in which each cell contact, through the synapses, hundreds of other
cells.
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Figure 3.2: Signals for simultaneous extracellular and intracellular recordings from
CA1 pyramidal cells. (A) Top: wideband extracellular trace. Middle: high-pass
filtered extracellular trace. Bottom: intracellular trace showing action potentials.
(B) Simple waveform of a spike recorded extracellularly and intracellularly. Note
the different amplitude scale of the signals. Adapted from [40]

3.1.2 From single neurons to networks
As for single-neuron measurements also neural networks can be studied with elec-
trodes, in particular the progress of microtechnology has allowed the development
of Micro-Electrode Arrays (MEAs), i.e. devices that provide an extracellular elec-
trophysiological measure of neuronal networks activity through high temporal res-
olution recordings over multiple electrodes simultaneously [41], [42].

MEAs development starts in the 1970s and progressed with the advances in
microelectronics and microfabrication processes with the aim of simultaneously
acquiring millisecond temporal resolution voltage traces of the electrical activity
of the largest number of neurons possible.

The first devices realized were passive electrode arrays, embedded in glass or
silicon substrates and became commercially available in 90s [43]. In detail, each mi-
croelectrode on the array is passively connected through metal wiring (Figure 3.3A)
to an off-chip electronic circuit that performs signal conditioning, multiplexing and
analog-to-digital conversion. The broad use of these devices originates from their
simple, yet powerful, design that allows the simultaneous recording of a few tenths
of electrodes in various neuronal preparations, including neuronal cultures [44] and
ex-vivo tissue [45]. However, the physical space consumed in electrode wirings to
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INTRACELLULAR RECORDINGS EXTRACELLULAR RECORDINGS
Sharp and patch electrodes Substrate-integrated MEAs
Individual neurons: how they transmit
electrical information, communicate
and compute subthreashold
synaptic inputs

Neuronal networks: possibility to monitor
long-term electrophysiological correlates
of plasticity and learning

Limited duration of recording sessions
(mechanical and biophysical
instabilities)

Days/months without inflicting
mechanical damage to the neuron
membrane

Current signals from which it is
possible to obtain action potential
(∆V ~100 mV)

Voltage signals in the range 0.01 mV –
1 mV

Very good electrical coupling with the
cell that results in a low noise recording High noise level: ~10 µV

Direct measure: no distortion of the
readout over time

Electrical signals are largely
attenuated and temporally filtered

Table 3.2: Comparison between extracellular and intracellular recordings.

off-chip electronics preclude the scaling up of the number of electrodes because
of the limited area available on-chip. To improve passive electrode arrays, MEAs
developments focused on three principal directions:

spatial extent: increase the number of neurons observed by incrementing the
number of electrodes to track the activity of entire neuronal networks;

noise reduction: closing the distance between the sensing electrode and the am-
plifier contributes to the overall noise reduction because the coupling among
adjacent metal lines is reduced and the external noise sources picked up by
long metal lines acting as antennas are reduced;

spatial density: incrementing the density of electrodes to match the neuronal
density, possibly providing a one to one electrode-neuron mapping or sub-
cellular details.

The technological solution introduced to tackle these issues was the integra-
tion of electronic circuits (e.g. amplifiers, ADC converters) right below the plane
of electrodes [5]. Performing most of the pre-processing operations directly on-chip
made possible to significantly scale-up both the electrode density and the spatial
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sampling extent with an acceptable level of noise. This active design of elec-
trodes paved the way to the next-generation MEAs that consists of miniaturized
implantable recording arrays that satisfy the constraints of chronic behavioural
studies [46].

Figure 3.3: Examples and concepts of passive and active electrode arrays. (A) In
passive MEAs, electrodes are individually wired to an external signal amplifier.
These devices are realized using MEMs or NEMs micro-/nano-structuring pro-
cesses. (B) Active MEAs integrate the electronics on-chip multiplexing the signal
through contact pads [47]. These new generation of monolithic devices are realized
using CMOS technology.

In detail, to realize large and dense matrix composed of several thousands
of electrodes, active circuits have been implemented exploiting standard comple-
mentary metal oxide semiconductor (CMOS) technologies [47], [48]. The CMOS
technology allows realizing active electrode-pixels that integrate into a few square
micrometers the neural-electronic interface, i.e. the electrode and, just underneath
each electrode site, the signal conditioning circuits, i.e. the amplifiers. Additional
amplification stages, time-division multiplexing and high-speed addressing circuits
are provided on-chip to fully exploit the limited electrode wiring of passive arrays
(Figure 3.3). Instead of outputting a passive electrical shortcut, these devices
transmit an already digitized and multiplexed signal, allowing to design MEAs
consisting of thousands of closely spaced microelectrodes. With these devices, the
bioelectrical activity of extended brain tissues can be monitored and investigated
through extracellular recordings. The first platform based on CMOS technology
for extracellular recordings [5] has 4096 recording sites arranged in a 64x64 matrix.
This device is described in details in Annex I. Besides the technological challenge
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to further increase the spatial sampling, the development of computational tools
that can handle, manage and make sense of high-density MEA (HD-MEA) record-
ings remain still a challenge due to the huge computational cost required for the
analysis of thousands of simultaneously recorded units.

Another approach for the monitoring of the activity of neural networks is repre-
sented by the calcium imaging technique [49]. Among ion species, the intracellular
concentration of calcium ions (Ca2+) plays a relevant role in establishing the mem-
brane potential of the neurons. Thanks to fluorescent molecules that bind Ca2+,
it is possible to see the activity of single neurons as an increase and decrease of the
fluorescent signal. In contrast to the patch clamp technique, with calcium imaging,
it is possible to simultaneously analyse the activity of thousands of single-neurons.
However, the time-course of calcium signals (100 ms) is two orders of magnitudes
slower than the spike generation (1 ms) and thus, calcium imaging is not sensitive
neither to single spikes nor sub-threshold activity, due to signal to a low signal-to-
noise ratio. Nevertheless, the great advantage of the calcium imaging, is that it can
be used in vivo on awake and living animals, allowing to correlate the activation
(or the inhibition) of a brain region with the behavior that follows.

3.1.3 Identification of single units in extracellular record-
ings

Opposite to patch clamp or intracellular recordings where one electrode is sensing
the activity of one neuron because it is placed in direct contact with the neu-
ron, in extracellular recordings, the electrodes are equally spatially distributed
in the extracellular environment. Each extracellular electrode might be sensitive
to different neurons located in its surrounding area, hence is essential to asso-
ciate each spike detected to the originating neuron. Although action potential, or
spikes, are ascribable to all or none digital phenomena, each neuron gives rise to a
slightly different time-course of the electrical signal depending on its size or shape.
Further, the recorded waveform is susceptible to modulations due to the relative
distance between the neuron and the electrode and the conductive properties of
the electrode-neuron interface. Conventional algorithms take advantage of this
heterogeneity to identify single-neuron spiking activity by grouping together sim-
ilar action potentials. This is often achieved by comparing the spike amplitude,
or more accurately, by considering the whole waveform through data-reduction
techniques as the principal component analysis or the Wavelet transform.

The process of assigning each action potential to the originating neuron is called
spike sorting and is schematically represented in Figure 3.4. The ultimate goal in
improving spike sorting techniques is to implement a fully automatic procedure
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Figure 3.4: Schematic pipeline for spike sorting. Starting from the recorded raw
data, the signal is bandpass filtered to ease the spike detection phase, usually
based on an amplitude threshold. After spike detection, the relevant features of
the spike (waveform, position, etc..) are extracted, for a dimensionality reduction
step. Finally, a clustering algorithm based on the reduced information associate
each spike to a single unit. Adapted from [50]

capable of accurately discriminating the contribution of single neurons in a signal
consisting of superimposed spiking activity of several units. As shown in Figure 3.4,
the spike sorting pipeline and consist of the following main steps:

• bandpass filtering of the raw signal. The filtering step is needed to increment
the signal-to-noise ratio and consequently lower false-positive spike detection
rates. Typically hardware acquisition systems include a first analog causal
infinite impulse response (IIR) bandpass filter (e.g. 300 Hz to 3400 Hz [13])
due to their easy implementation. For a more accurate signal filtering is
necessary a finite impulse response (FIR) filter that avoids a signal distortion
keeping the shape of the spike unchanged. In order to simplify the next steps,
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a second more restrictive digital bandpass filtering is applied by software.

• detection of spikes in the filtered signal. The spike waveform has a biphasic
deflection, hence, the spike detection is usually based on a threshold crossing
approach paired with acceptance criteria as the presence of a biphasic wave-
form [51]. The threshold value depends on the noise level that is estimated
in a time interval that does not contain spikes to prevent from the detection
of waveforms whose amplitude is similar to the noise level. Because spikes
are sharp and transient variations of the extracellular potential, the thresh-
old is often based on the standard deviation of the filtered acquired signal.
However an estimation based on the median absolute deviation of the filtered
signal has been proven to provide more robust quantifications [50].

• data reduction to identify relevant features of the spike waveforms. Although
computational demanding, the extraction of relevant features simplifies and
speed up the subsequent clustering step by reducing the dimensionality of the
problem. The most widely used approach is the principal component analysis
(PCA) that provide a new reference system that maximizes the variance of
the data along its dimensions. In the new reference, only a few components
are retained for further analysis significantly reducing the dimensionality of
data. Other methods include the independent component analysis (ICA)
[52] or the wavelet decomposition [53].

• clustering algorithm to discriminate single spiking units. With the advent
of the high-resolution recordings, the spike sorting requires a high computa-
tional cost due to the iteration of the mentioned procedure over thousands of
electrodes. However, in high-density recordings, the clustering step of spike
sorting algorithms can take advantage of the redundant information recorded
by neighbouring channels to further refine the classification. The latter in-
tuition was implemented on HD-MEAs recordings following two main ways:
creating spike templates and sorting through a template matching proce-
dure or reducing the dimensionality of the data and applying fast clustering
methods. The clustering algorithms are usually affected by the following
issues:

– in extracellular recordings the shape and the amplitude of the spikes
may change during bursting;

– synchronous and spatially-clustered events produces overlapped wave-
forms;

– electrodes are subjected to relative movements between the neuron and
the electrode position;
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– duplicated spikes over neighbouring channels lead to misclassification;

– the number of recorded neurons is a priori unknown.

Many spike sorting methods exploit Gaussian Mixture Models (GMMs) for
the fitting and regularization of the data [54], and Bayesian classifiers for the
subsequent clustering step [55]. However, these two methods do not perform well
in case of large-scale recordings because of their demanding computational cost.

All the spike sorting techniques described are adapted for recordings obtained
with traditional MEAs as they rely only on the information provided by a single
electrode voltage trace. However, in high-density recordings, the same unit can be
detected from different neighbouring channels, and thus, spatial redundancy can
be exploited for spike sorting. In particular, in [56] is presented an automated spike
sorting method for large-scale recordings that exploit this redundancy to estimate
the spatial locations of spikes in the space. The combination of the estimated
spike position and the features of spike waveforms determine an efficient and low-
dimensional representation for clustering the detected spikes. It has to be noted
that spike sorting approaches require the acquisition of several hundreds of seconds
of spiking activity to accurately discriminate between different units and are too
computationally demanding to run in real-time.

In real-time applications, it is not trivial to exploit the redundant information
acquired by adjacent electrodes given the hardware constraints but it rather leads
to waste of computational resources in analysing duplicate spike trains, as no spike
sorting is performed. As a consequence, to speed up the on-board analysis and
fully leverage the limited amount of hardware resources, it is necessary to detect
and clean spike trains from duplicate spiking activities.

A robust approach for duplicate spikes removal would consider only the largest
amplitude spikes recorded within a fixed radius, thus blanking all the waveforms
acquired in adjacent electrodes with a smaller peak-to-peak amplitude. This ap-
proach is suitable for the separation of near-synchronous spikes which occurs in
a given spatial area of the MEA. However this method requires to analyse the
entire waveform. Indeed, small temporal jittering, spatial decay of the signal and
different noise levels should be carefully taken into account.

All these task are highly time and memory consuming for real time applications,
consequently, an alternative approach for the removal of the duplicate spikes is
to perform the identification of the same event after the spike detection and to
consider only the timestamps of the spikes. In this way the waveform of the spike
is not anymore taken into consideration.

In the following part, the principles of the real-time applications for closed-loop
architectures are described with a focus on their utility in modern neuroscience.
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3.2 Investigating the input/output properties of
neural networks

The central nervous system (CNS) of humans and animals has to face daily with
an uninterrupted and rapidly changing stream of sensory information. Moreover
most of the neural networks of the sensory organs are perturbed by the external
environment through mechanical, optical or electrical stimulations.

In order to understand the relationship between the input (stimulation) and the
output (spikes) of the nervous system, neuroscientists have developed sophisticated
open-loop approaches to perturb single neurons or neural networks and analyse
their behavioural response to the external stimulations. These strategies consists in
the application of a stimulation that does not change in response to any continuous
measurement of the level of neural activity that is generated.

Open-loop strategies can work well for systems for which the model of the
response is known and the disturbances are measured. However, since the neuronal
computation consists of the integration of thousands of synaptic signals on the
dendrites into a spiking pattern in the axon, the responses of individual neurons
to ongoing input are highly variable. Nevertheless developing a suitable simplified
model of the system of interest as an open-loop system is often a first step. However
the fully characterization of the neuronal input–output relationships is practically
intractable due to the non-linearity of the system and the cumulative effect of
neural processes spanning a wide range of time-scales.

In this perspective the research in neuroscience became involved in the develop-
ment of closed-loop systems that exploits the real-time investigation of the neural
activity after specific stimulation.

3.3 Closing the loop: real-time interaction with
neuronal networks

The nervous system is based on feedback/closed-loop controls ranging from ion
channels regulation to neuronal networks. Thus, brain signals reflect controlling
behaviour of the brain as a result of the integration of the received information
from sensory organs. Recent innovations in analog electronics, real-time computing
and digital signal processing allow the analysis of the brain system in closed-loop
architectures, thus stimulating the neurons according to their current state. In
Figure 3.5 is shown a typical configuration of a closed-loop system.
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Figure 3.5: Schematic representation of a close-loop approach in neuroscience:
according to the neural activity recorded, a processing unit will extract in real-
time the most important features of the signal in order to take the decision for the
next stimulation.

3.3.1 Closed-loop architectures in brain machine interfaces

The closed-loop approach is widely used in brain-computer interfaces (BCI) [57].
A typical BCI system allows an electronic (e.g. computer) or electromechanical
device (e.g. a mechanized wheelchair) to be controlled by voluntary modulation of
the user’s cerebral activity. It is, therefore, necessary to have a device dedicated to
acquire the brain activity in real-time and a device that basing on the information
acquired, give rise to a pre-defined operation (e.g. provide a physical feedback).

Closed-loop architectures are also used in neuroprosthetics to mimic the pro-
cessing of sensory information and restore lost functions trough bidirectional inter-
faces between the brain and an external device (e.g. a robotic arm or an augmented
reality visor). This kind of bi-directional communication of a machine with brain
tissue allows us to study in detail the coding and decoding of information process-
ing performed by neurons in complex neural networks.

A pioneering example of this methodology was achieved by interfacing a mobile
robot, as an external effector, with primary neuron cultures grown on microelec-
trode arrays. A closed-loop system between the neuronal network and the robot
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[58] was established by a two-way pathway of communication: the proximity sen-
sors of the robot provide information on obstacles to the neuronal culture through
a localized electrical stimulation; on the other hand, the monitoring of the activity
of the neuronal culture via conventional MEAs control the movements of the robot.
By moving the robot through the obstacles of an arena this closed loop system
allows to study how the neuronal network learns to avoid collisions as a result
of the induced functional and structural synaptic plasticity. Indeed, for different
training tests, the electrical stimulations determined by the robot proximity sen-
sors progressively modified the communication pathways in the neuronal cultures
and eventually lead to long-term changes in the network connectivity. Remark-
ably, the resulting network was shown to improve the motor behaviour of the robot
indicating that the activity of simple and isolated neuronal networks is capable of
learning a relatively complex task if stimulated appropriately.

Taking advantage of the real-time processing of a large stream of neural data
acquired with state-of-the-art microelectronics fabrication, as microprocessors and
field-programmable gate arrays (FPGAs), neuroscientists have developed more
sophisticated approaches for the closed-loop experiments such as motor BCIs, as-
sistive devices, neuromodulatory systems, and other devices with an interface into
a subject’s nervous system.

Although closed-loop systems have been demonstrated experimentally there are
significant limits on our ability to understand the brain activity, and consequently
develop control policies for the feedback control. In addition, the majority of the
neuroprosthetic systems have been developed using animal models and this require
an appropriate method to move these systems in human subjects.
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This section reports in detail the steps required for the extraction of relevant infor-
mation from the spike trains recorded with the HD-MEAs. As reported in Section
3.1.3, these spike trains may include redundant information as a consequence of
the tight spacing between electrodes. Thus, identifying the similarities between
spike trains of neighbouring channels at the single frame resolution is essential to
avoid biases and duplicate results in the subsequent analysis. After the detection
of clusters of Spatially Correlated Electrodes (SCE) with a cross-correlation func-
tion, the algorithm selects the representative channel (the one with the highest
number of spikes recorded) and exclude the remaining from the subsequent anal-
ysis. Subsequently, the identified units are classified, according to their response
to a stimulation protocol based on black and white flashes, in ON or OFF RGCs.

To validate the proposed approach, I fist implemented an algorithm that gener-
ates synthetic spike trains according to a pre-determined probability of firing. Sub-
sequently, in experimental sessions, the retinal spontaneous activity was collected
by stimulating the photoreceptors with an isoluminant gray full-field stimulus (0.11
cd/m2), which represent a steady state basal condition in retinal experiments.

Finally, an algorithm for the RF estimation based on a white-black curtain
image whose white edge spans the RF from left to right and vice versa the visual
field has been tested.

For simplicity, all the results presented here were obtained by running the
algorithms in a closed-loop fashion on already acquired data, i.e., in off-line con-
figuration. The results were further cross-checked by a parallel MATLAB imple-
mentation of the same analytical tools.

Acquisition and stimulation device
All the algorithms were implemented and tested in MATLAB for fast prototyping
and then translated in C for real application use on the Zedboard, which is the
hardware platform for closed-loop investigation used in this work. This device
consists of an acquisition and processing platform for closed-loop experiments:
the main core is a Xilinx Zynq device with two ARM cores and an FPGA-based
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processing platform [13]. This system allows to exploit the potentials of large-scale
recording obtained with commercially available CMOS-based MEAs featuring 4096
electrodes [47] and an external optical stimulator. This system process the stream
of data to provide the timings of the retinal ganglion cells spiking activity within
a maximum latency of 1.86 ms and its detailed description is reported in Annex
A.

4.1 Detection of sub-millisecond correlated spik-
ing activities

The cross correlation of two simultaneously recorded spike trains sp1 and sp2
quantify their overlap as a function of an offset added to one of the two time
series and can be visualized in a correlogram.

Computing the cross-correlation requires, in general, a binned signal. Thus,
usually, this measure is applied to the mean firing rates, i.e. average number of
spikes occurring in a binned time-interval of the recording, to identify neurons
whose spiking activity is similar over the time-scale induced by the given bin size.

Here, by reducing the bin size to the minimum, I used the very same method
to measure how similar are two spike trains at the single frame resolution. How-
ever, binning thousands of spike trains of long-lasting experiments at single frame
resolution is not a feasible task for a real-time application.

However, for all or none signals as the spike trains, it is possible to compute
the correlogram by quantifying all the possible pairwise differences between the
timestamps of the two spike trains, see Figure 4.1. Next, the cross-correlation is
quantified by histogramming these pairwise timing differences. In the correlogram
the zero bin indicates how often the two cells fired at the same time, and the
positive/negative values represent the various time intervals that one cell fired
before/after the other cell. Although this approach is more suitable for our needs
it still lead to a quadratic increase in the computational cost as a function of the
number of spikes and provide more information than the one required in this work.

Thus, following the previous algorithm, I implemented a lightweight cross-
correlation function, reported in Listing 4.1, that is able to detect sub-millisecond
correlated spike-trains for closed-loop implementation. The smart implementation
proposed, indeed, requires a maximum number of operations that depends only on
the number of spikes, rather than the number of bins, and that is bounded by the
sum of the number of spikes in each of the two spike trains. To further decrease the
overall execution time of the algorithm the analysis is performed only on Active
Channels (AE), i.e. channels that are recording more than 0.5 spikes/second.
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Figure 4.1: Example of the correlogram construction. (A), (B) Two spike trains
each with 4 spikes. (C) Position of all the positive and negative time differences
between the two spike trains. (D) Histogram of (C), which is the conventional
correlogram with bin size of 100 ms. Adapted from [59].

Considering two spike trains sp1, sp2 with respectively N1 and N2 number of
spikes, I introduced a similarity index S, which quantifies in a 0-1 scale how much
a spike train is contained into another one, as follows:

S(sp1, sp2) =
qN1,N2

i,j δtol(sp1,i, sp2,j)
min(N1, N2) (4.1)

where δtol is an indicator function defined as:

37



4 – Data processing

δtol(sp1,i, sp2,j) =
I

1, |sp1,i, sp2,j| ≤ 0
0, |sp1,i, sp2,j| > 0 (4.2)

the parameter tol accounts for small jittering in the detection of the spiking
activity among different channels and in this work it corresponded to the sampling
time-period of the whole-array (0.14 ms).

S is calculated between each AE and each of its corresponding eight neigh-
bouring active electrodes (nAE). Instead, for the channels located at the border
of the HD-MEA, the similarity index is set to zero. All the values are stored in a
4096x8 similarity matrix for the subsequent clustering procedure.

Listing 4.1: Cross-correlation algorithm
1 for each AE
2 {
3 for each nAE
4 {
5 while i < N1 & j < N2
6 {
7 if (|sp1(i) − sp2(j)| < tol)
8 {
9 count ++ % count is the number of coincident spikes

10 i ++
11 j ++
12 }
13 else
14 {
15 if (sp1(i) > sp2(j)) { j ++ }
16 else { i ++ }
17 }
18 }
19 if (N1 < N2) { min = N1 }
20 else { min = N2 }
21 return count/min
22 }
23 }
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4.2 Clustering of redundant spiking activity
As reported in Section 3.1.3, in HD-MEAs neighbouring channels can record the
activity of the same neuron. To merge together the electrodes that are record-
ing the same information I identified clusters of electrodes that jointly exhibited
high correlation values. The clusters were formed by electrodes that fulfilled the
following criteria:

Global similarity: defines the electrodes whose similarity index exceeds 40%.
The other channels were discarded as shown in Figure 4.2A.

Gth : Sch1,ch2 > 0.4 (4.3)

This threshold prevent from merging weakly correlated electrodes and pro-
vide a quick selection criterion of potential candidate electrodes.

Local similarity: is calculated by the following equation:

LTch = S̄ + k · σS (4.4)

where S̄ and σS are respectively the mean value and the standard deviation
of the similarity indexes in each row of the similarity matrix, i.e. for each
channel, and k is a parameter that defines the restrictiveness of the clustering.
Here is set to 1.

Two electrodes A and B were clustered together if their similarity index SA,B

exceeded both the local thresholds LTA and LTB (Figure 4.2B). This step aims
at removing electrode pairs, which, although being similar, can be assigned to a
more relevant cluster.

Next, if A was already a member of a cluster, then B was assigned to its
cluster (similarly with B). Non-clustered electrodes were considered as a single
cluster. Finally, to assign a unique label to all electrode members of a cluster,
for each cluster is defined a leader electrode (LE) as the electrode having with
the highest firing rate Figure 4.2D. The results were stored in a 4096x1 array,
initialized at a non-significant value, were only in correspondence of the LEs and
the single clusters of AEs the value was set at the index of each channel.
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Figure 4.2: Clustering step. (A) HD-MEA active electrodes (black) highlighting
the effective coupling of an exemplary retina. Quantification of similarity between
electrode A and its neighbouring electrodes (nAE) reveals two electrodes exceeding
the threshold of 0.4 (red boxes). (B) Mean plus standard deviation of the nAEs
similarity defines the local threshold (LT) for clustering (blue and green shaded
region for A and B respectively). (C) Exemplary spike trains of two clustered
electrodes with coincident spikes marked in red. The highest firing member of the
cluster is selected as leader electrode (LE) and cluster members are removed (D).

Closing the loop: stopping criterion for clustering

By exploiting the close-loop configuration, the similarity matrix and the LEs were
updated incrementally every 20 seconds of recording. In this way is possible to
save time and memory estimating the amount of data needed in order to achieve
a stable configuration of clustered channels.
For each iteration, the algorithm computes the incremental variation between the
current and the previous cluster as:

δswitch(k) =
q

i δ(idi(k), idi(k − 1))
N

× 100 (4.5)
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where δ is the Kronecker delta function, idi(k) is the label assigned by the
clustering procedure to the i-th electrode at the k-th iteration and N is the number
of AEs. The clustering algorithm automatically stops once the variation between
three successive interactions is below 0.5%, i.e., mismatch of less than 10 electrodes
in the worst-case scenario.

4.3 Generation of simulated spiking activity
To test the performances of the cross-correlation function in retrieving and iden-
tifying sets of spatially correlated adjacent electrodes (SCE), I implemented the
following method for generating simulated spiking activities in which correlations
among adjacent electrodes has been artificially imposed.

For each of the 4096 channels, a train of spikes has been sampled according to
a probability of observing a spike in a time interval of one second, pspike, that is
comparable to the physiological firing rate of a retinal ganglion cell of about 0.5
spikes/second. Then, I created a set of 10 template SCE configurations mimicking
the possible spatial organizations of electrodes exhibiting coincident spiking activ-
ities that are likely to occur in real experiments, see Figure 4.3. Next, in a random
set of candidate electrodes, I imposed correlations in spiking activity between the
candidate electrode and its neighbours according to one of the template shapes.
The correlations were induced by using two functions that add or remove spikes
between pairs of electrodes respectively, according to two following probabilities:

• padd: the probability to add a spike in the two spike trains in the same frame
position;

• premove: the probability to remove a non-correlated spike, i.e. a spike occur-
ring in only one of the two spike trains.

To explore the parameter space, the reconstruction of SCE has been iteratively
tested on each possible pair of padd, premove and k, the parameter that defines the
local threshold described in the previous paragraph, see Eq. 4.4. The parameters
padd and premove ranged between 0 and 1 with steps of 0.2 instead k ranged between
0.4 and 1.2 with steps of 0.2.

To quantify the goodness in retrieving the imposed correlations, for each tested
condition, the algorithm automatically computed the accuracy, an index that quan-
tify whether the reconstructed SCE actually correspond to the imposed one or not,
that is defined as follows:

accuracy = TP

Ntot

(4.6)
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Figure 4.3: 10 sample configuration of simulated correlation between neighbouring
channels. The red cross indicates the candidate electrode to correlate with its
neighbours.

where TP is the number of correct configuration reconstructed and Ntot is the
total number of the configuration of correlations imposed.

4.4 Preferential response of the identified units
The next step of the algorithm is the classification of the identified units according
their preferential response to white and black full-field flashes. The closed-loop
algorithm automatically starts a visual stimulation protocol designed for assigning
the previously identified leader electrodes to an ON or OFF RGCs sub-type.

The stimulation protocol consists white and black full-field flashes at maximum
contrast (0-0.22 cd/m2) and after each period of stimulation the spiking activity
of each unit identified in the previous step is analysed. To do so, the i-th LE that
presents an increase (decrease) in the firing activity with respect to the previously
recorded basal spiking activity in response to a white (black) flash is classified Ci
as "1"("0"):

Ci =
I

1, MFRi,w > MFRi,g ∧MFRi,b < MFRi,g

0, MFRi,w < MFRi,g ∧MFRi,b > MFRi,g
(4.7)

where MFRi,w, MFRi,b and MFRi,g are respectively the mean firing rate of
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the i-th electrode in response to a white, black and gray isoluminant (basal) visual
stimulus. The implementation of the mentioned criterion is reported in Listing 4.2.

Stopping criterion for ON/OFF classification

To refine the classification of ON and OFF units, the algorithm iteratively projects
additional white and black stimulation cycles, up to a maximum of NUM_STIM
flashes (Listing 4.2), and updates the LEs classification according to the overall
spike responses collected up to the current step. This process iterates until the
number of LEs transitions occurring between the previous and the current classi-
fication, defined as:

δswitch(k) =
q

i |Ci(k)− Ci(k − 1)|
N

× 100 (4.8)

constantly remains below 3% for at least three consecutive iterations. Then,
the last cell-type classification is considered as the most reliable.

Listing 4.2: Close-loop algorithm for RGCs classification
1 while (stim < NUM_STIM & flag = 0)
2 {
3 C1 = C2 % save previous configuration
4 for each identified unit
5 {
6 if (MFR_b < MFR_g && MFR_w > MFR_g)
7 {
8 C1(i) = 1
9 }
10 if (MFR_b > MFR_g && MFR_w < MFR_g)
11 {
12 C1(i) = 0
13 }
14 switch = |C1(i)−C2(i)|
15 if (switch != 0) { counter++ }
16 }
17 if (counter <= 3) { flag = 1 }
18 }
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4.5 Estimation of RGCs RF
The final step consists in the estimation of the RF of each unit identified previ-
ously. To do so the size of single-channel receptive field (cRF) is estimated taking
inspiration from the paradigm presented in Figure 2.5. A white-black curtain im-
age whose white edge spans the RF from left to right and vice-versa induce a
modulation in the firing activity of retinal ganglion cells that is a function of the
overlap between the preferred stimulus and the cRF size. The left (right, respec-
tively) curtain stimuli (LCs, RCs respectively) is defined as the sequence of images
in which the leading edge of the curtain is moving towards left (right, respectively).
A proxy of cRF centre size is estimated by detecting the images that maximize
the mean firing rate (MFR) for both the LC and RC protocols.

Figure 4.4: Four representative left curtain stimuli (LCs). Every 300ms the curtain
steps of about 4um enlarging from left to right.

To optimize the execution time of the protocol, the cRF estimation was paral-
lelized by dividing the full-field stimulus in a grid of 16 areas (i.e. sub-blocks). In
each block, the curtain light-stimulation protocol consists in a white curtain that
spatially shifts by about 1/5 of the electrode size ( 4µm) towards left for LCs, and
right for RCs respectively. This gave rise to 83 images (Figure 4.4) projected for
300 ms/image, according to the physiological response of the retina, and resulting
in a total stimulation time of 50s per channel. Here the closed-loop algorithm is
used with the aim to speed up the characterization process: the algorithm auto-
matically stops the projection of the curtain when the maximum peak of the MFR
is found. At this point, the algorithm reverses the stimulation protocol to detect
the second peak. In this way, the centre of the RF is estimated by compensating
the intrinsic response delay of the RGC to the stimulus.

The algorithm performs the following operation independently for each block:

1. It quantifies the mean firing rate (MFR), i.e. the normalized number of
spikes in response to each image with respect to the time-interval of the
stimulus presentation. The MFR is computed for a bin size corresponding
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to the 300ms duration of each stimulus. Therefore, it generates 83 different
values of MFR for each electrode.

2. It smoothes the MFR obtained by applying a moving average over 5 images.

3. It computes the cRF radius as the half-difference between the positions of
the white edge associated with the peaks of the firing rate occurring in the
left and right curtain protocols.

So far, this method was preliminary experimentally tested only in the open loop
configuration. In these experiments, the curtain spans each of the 83 positions from
left to right and vice-versa.
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5 Results

In this chapter I present the ground-truth validation of the detection of coincident
spiking activities in simulated spike trains. I evaluated the accuracy in finding
the correlation configurations between neighboring channels artificially imposed in
the simulated dataset. Following the validation results, I tuned the parameters of
the method for the experimental dataset and I quantified the reduction in data
processing resulting from the filtering of duplicated spiking activities. Further,
I evaluated the processing time required by the algorithm running on the ARM
processor in the closed-loop configuration to confirm that this implemented method
does not determine a significant increase of the experiment duration. Next, I
classified the units identified in the data reduction step and, to validate the method,
I analyzed the stability of the ON/OFF classification in subsequent iterations.
Similarly to the data reduction step, I also investigated the average execution time
of the algorithm and the average time required for the convergence onto a stable
classification. Finally, I exploited the information acquired in the previous steps to
implement a procedure to estimate in real-time the extent of receptive fields using
the curtain stimulus, see Section 4.5. Here, I report preliminary results about the
performances of the mapping of the receptive fields by comparing the receptive field
sizes found with the state-of-the-art approach, namely Spike Triggered Average
(STA). Although the code has been already implemented on the zed-board, this
analysis was performed off-line, i.e. by loading the spike trains saved from previous
experimental session recordings, for a fast exploratory analysis.

5.1 Data reduction
Adjacent electrodes in the HD-MEA grid are quite often recording sub-millisecond
correlated spiking activities. As shown in Figure 5.1, each active electrode of
the MEA shares more than 40% of spikes with at least one electrode in its 3x3
surrounding block region. Thus, the spike trains of neighbouring channels recorded
with the HD-MEA exhibit sub-millisecond correlated spiking activities, suggesting
that these electrodes are sensing the same source as a result of the tight spacing
among nearby electrodes.
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Figure 5.1: Map of the 64x64 electrodes MEA where each pixel is color coded
according to the maximum similarity value in a 3x3 surrounding block of electrode.
Nearly all recording electrodes exhibit highly correlated spiking activity with at
least an adjacent electrode.

Consequently, a simple yet powerful strategy to reduce the complexity of the
subsequent analysis is to detect such sub-millisecond correlated channels to reduce
the number of electrode to be analysed. Therefore I implemented a clustering
algorithm, which identifies only one leader channel for each cluster and, before
applying it to real data, I tested its performances on artificially generated spike
trains.

5.1.1 Validation on simulated spike trains
The analysis on simulated spike trains was carried out in order to test the cross-
correlation function implemented and, importantly, to find the most suitable value
of the thresholding parameter k. As expected, for increasing values of padd and
premove the accuracy in retrieving the correct configuration of correlated channels
from the spike trains steadily increases up to its maximum value accuracy = 1,
meaning a perfect reconstruction, obtained for padd = 1 and premove = 1.
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Figure 5.2: Accuracy of the algorithm in the reconstruction of the spatial corre-
lations imposed within neighbouring channels for different values of padd, premove

and k in simulated dataset.

Indeed, for such values of the parameters, the two spike trains associated with
the imposed configuration are exactly identical, i.e. all the spikes of a given spike
train were added to the others and the non-correlated spikes were removed. In
this condition, the analysis reveals that spike trains that by chance are correlated
have a negligible effect on the retrieval of the correct configuration.

The clustering algorithm identifies correlated spike trains for low values of
k ≤ 0.8. A low local threshold, indeed, would also merge together those spike
trains with a few spikes in common. However, even for high values of k ≥ 1.0 the
accuracy is nearly equal to 1 indicating that also with a high local threshold the
algorithm groups the channels that exhibit similar spike trains.
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Given this results, the value of k was set to 1 in the analysis of real data as a
compromise between correctly identifying the coincident spike trains and excluding
those, which although being similar, can be assigned to a more relevant cluster.

5.1.2 Performance on experimental datasets
After the validation of the cross-correlation function and the clustering algorithm,
I added a closed-loop policy to stop the execution of these algorithms in order to
minimize the time and the data required for the identification of the coincident
spiking electrodes. To find an appropriate stopping criterion, I run the analysis in
an open-loop configuration, i.e. on 300 s of spontaneous spiking activity (5 retina),
to keep track of the changes after any given time-point.

Figure 5.3: Map of clustered electrodes: adjacent electrodes that has been clus-
tered together because exhibiting sub-millisecond correlated spiking activity are
represented with the same color.

An illustrative example of the clusters detected by considering the entire ex-
periment (300 s of spontaneous activity) is shown in Figure 5.3. In this represen-
tation, adjacent channels that exhibit coincident spiking activities are depicted in
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the same colour. Hence, the dimensionality of large-scale recordings can be re-
duced by clustering adjacent active electrodes that exhibit correlated spike trains
and by considering for further analysis only the leader electrodes, i.e. the ones
with the highest spiking activity of each identified clusters.

0 50 100 150 200 250 300
Time (s)

0

5

10

15

20

25

30

35

40

45

Pe
rc

en
ta

ge
 (%

)

Percentage of channels clustered together

Figure 5.4: Mean percentage of electrodes clustered together with respect to the
total number of active electrodes. The shades area represents the standard error.

To test the stability of the algorithm and to find the experimental recording
time required to achieve a stable configuration of clustered channels I quantified the
number of leader electrodes detected at each iteration (Figure 5.4) and the number
of differences between two consecutive iterations of the clustering algorithm. In
this way, I could evaluate whether providing more information to the clustering
algorithm, i.e. by adding a 20 s time-interval of recorded spiking activity, would
significantly change or not the previous cluster arrangement. Within the first
20 seconds of recording the number of leader electrodes decrease significantly,
indicating that the algorithm detects several groups of electrodes exhibiting similar
spiking activity. After 120 s, the leader electrode arrangement reaches a stable
configuration determining an average reduction of the active electrodes of ∼30%
respect to the initial number of AEs.

The closed-loop policy results in an average stopping time of 120 s. Afterwards,
the arrangement of the clusters remained substantially stable, with an average
mismatch along the subsequent time intervals of 1.5 ± 0.4% (Figure 5.5, green).

Importantly, by occupying the CPU for 22.9 ± 1.5 ms per second of neuronal
recording, this algorithms provides a quick identification of redundant information,
reducing the large amount of data acquired for the following analysis.
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Figure 5.5: Percentage of clustering variation after each 20 s of recording (blue).
Percentual variation of the clusters after the stopping criterion is met (green).

5.2 RGCs classification
After the identification of the leader electrodes in the previous algorithm, they
were classified in ON or OFF RGCs according to their preferential response to
white or black full-field flashes.

The mean firing rate (MFR) of two representatives RGCs in response to black
and white flashes is depicted in Figure 5.6: ON RGCs sharply increases their MFR
during increase in light intensity, as during the white flash, and vice-versa the OFF
RGCs increase their MFR as a consequence of a decrease in light intensity, e.g. a
black flash.

To classify each leader electrode according to these two behaviours, the closed-
loop algorithm implemented here, first stimulate the retina with a white and black
flashes and based on the spike count balance between the white and black phase
assign each LE to the appropriate sub-type, see Section 4.4. To increase the
accuracy of classification, the algorithm continuously iterate these two steps and
requires a stopping criteria.

To stop the execution of the classification algorithm I quantified the changes in
the classification between consecutive iteration of visual stimulation. The number
of LEs switching from ON to OFF and vice versa in consecutive iterations steadily
decrease after a few cycles of stimulations, see Figure 5.7, and converges after
only 7.25 ± 3 steps. Moreover, further stimulation following the convergence
point, would not significantly change the ON-OFF classification as the number of
mismatches remains bounded by the convergence-threshold.
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Figure 5.6: Representative response of an ON and OFF RGC to black and white
flashes as detected by the implemented algorithm. Below the cells responses is
reported the corresponding projected flash stimulus.
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Figure 5.7: Mean percentage of switching electrodes with respect to the total active
electrodes for each stimulation phase. The shades area represents the standard
error.

In this way, by taking advantage of the closed-loop hardware, the algorithm
tailor the number of stimulation cycle in order to acquire enough information for
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classifying the leader electrode identified preventing from wasting of experimental
time.

5.3 Estimation of RF RGCs
Finally after the identification and the classification of the leader electrodes, I
implemented a heuristic strategy to estimate their receptive field size by exploiting
the spatio-temporal response dynamic of RGCs to a curtain stimulus described in
Section 4.5.

As shown in Figure 5.11, the response of an illustrative ON RGC to a sliding
curtain stimulus is characterized by a single peak for each direction of movement.
Thus, the RF can be adequately estimated by considering the half-difference be-
tween the positions of the white edge (x-axis) associated with the two peaks.

To test the goodness of this method, I compared the cRFs estimation with the
one obtained using the Spike Triggered Average (STA), for both ON and OFF
RGCs, see Figure 5.9 and Figure 5.10. In this representation, an ideal cRF esti-
mation would result in the alignment of points along the diagonal (dashed red line
in Figure 5.9A and Figure 5.10A). However, a linear regression (orange line) shows
that the current implementation of this approach has several limitations and re-
quires further optimizations. This is further confirmed by the error quantification
between the STA and our estimation, as shown in Figure 5.8.

Figure 5.8: Distribution of the RF radius estimation error between STA and the
curtain protocols for ON and OFF RGCs.
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Figure 5.9: Comparison between the radius of the receptive field estimated with
STA and with the curtain stimulus for the ON units population. (A) Represen-
tation of the distribution of the radius estimation between the two approaches.
(B) Pie chart of the radius of the RF estimated with an error with respect to the
ground-truth lower than 50% (data distributed between the two green dashed lines
in (A)). (C) Pie chart of the population outside the region delimited by the two
green dashed lines in (A).

Considering only the RGC whose estimation differed from less than 50% from
ground-truth data (green dashed lines in Figure 5.9A and Figure 5.10A, for ON
and OFF cells respectively), I visually inspected their response behaviour to the
curtain stimulus to investigate whether, in such a restricted case, the physiological
principle underlying the estimation algorithm used holds true. To disentangle
different behaviours I classified the RGCs in three major classes (Figure 5.9B and
Figure 5.10B):

good response cells characterized by a spiking response in line with what we
expect (blue);

low firing rate cells exhibiting a small number of spikes, i.e. lower than 30 spikes
during the whole recording (orange);

no response cells that even showing a well defined spiking activity are not re-
capitulating the features of the expected response for this type of stimuli
(grey).

For both the ON and OFF populations the most of RGC responses (47% ON,
55% OFF) were characterized by the two peaks, providing a proof of concept that
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Figure 5.10: Comparison between the radius of the receptive field estimated with
STA and with the curtain stimulus for the OFF units population. (A) Represen-
tation of the distribution of the radius estimation between the two approaches.
(B) Pie chart of the radius of the RF estimated with an error with respect to the
ground-truth lower than 50% (data distributed between the two green dashed lines
in (A)). (C) Pie chart of the population outside the region delimited by the two
green dashed lines in (A).

the proposed algorithm is a promising strategy for receptive field estimation. How-
ever the remaining 53% ON and 45% OFF represent two cases of false positive
estimation. In the 29% ON and 18% OFF the radius of the RF was well estimated
even though the firing rate of the cells was not enough for a correct character-
ization of the cells activity. These cells show a weak spiking activity during all
the recoding with some peaks of 5/6 spikes, thus the algorithm computes the RF
radius considering these peaks although they are not characterizing the RF center.
Instead in the 24% ON and 27% OFF the cells do not exhibit a modulation of their
activity according to the visual stimulus but the radius was correctly estimated.
They exhibit a high and continuous spiking activity and for the computation of
the RF center size the algorithm considers the fist peak founded in each direction
of the stimulus achieving a right, but theoretically incorrect, RF estimation.

Representative examples of the three cells behaviours described are reported
in Figure 5.11.

On the other hand, regarding the RGCs that significantly differed from the
ground-truth estimation (outside the green dashed lines) I found, upon visual
inspection, five distinguishable principal behaviours, see Figure 5.9C and Fig-
ure 5.10C:

56



5 – Results

Figure 5.11: Representative response of three retinal ganglion cells to the sliding
curtain stimulus identified for the classification in the three classes Good response,
Low firing rate and No response.

low firing rate with a poor spiking activity, i.e. lower than 30 spikes during all
the recording (blue);

good response, wrong estimation that responded adequately and in-line with
their expected physiology to the stimulus but the method used for the esti-
mation of the size of the RF is not adequate (orange);

multiple peak with multiple peaks in their response (grey);

single peak with a single peak of response, i.e. the firing rate peak was found in
only direction of the curtain stimulus (yellow);

no response which include the RGCs whose response was not clearly satisfying
any of the mentioned criteria (light blue).

Representative examples of the three cells behaviours described are reported
in Figure 5.12. In this cases the 18% ON and 31% OFF the low firing rate of the
cells leads to the wrong estimation of the RF radius. Here the limit regards the
curtain stimulus implemented that is not able to evoke a strong firing of the cells
thus the algorithm for the calculation of the RF radius fails.

An interesting case is represented by the 34% ON and 16% OFF in which the
estimation of the RF size fails due to the algorithm implemented: the cells present
a behaviour in accordance to the model of their response to a curtain stimulus, but
the RF radius estimated as the half-difference between the position of the leading-
edge of the two peaks is incorrect. The visual investigation that I have performed
lead to the conclusion that most of the cells included in this class are those that
are on the right or left edge of the HD-MEA, indeed as can be seen in Figure 5.12,

57



5 – Results

they are characterized by two peaks at the very beginning of the projection of the
stimulus. Here the radius is estimated as big as the entire HD-MEA.

Another important case is the third class where are included the cells (17% ON
and 23% OFF) which present a behaviour characterized by multiple peaks. These
multiple peaks could represent the maximum response of different cells, since the
same channel can sense different, very close units.

The 9% ON and 11% OFF of the all population is represented by the cells
which response present a single peak in one of the two directions of the curtain
stimulus. In this class are probably included also some units located on the border
of the HD-MEA thus in one direction of the stimulus they present the characteristic
peak of the theoretical model but during the inversion of the stimulus they are not
responding as expected.

Finally, in the last class were included all the cells (22% ON and 19% OFF)
whose behaviour is characterized by a constant tonic firing rate, thus the algorithm
was not able to identify the peaks for a correct estimation of the RF size.

Figure 5.12: Representative response of five retinal ganglion cells to the sliding
curtain stimulus identified for the classification in the five classes Low firing rate,
Good response, wrong estimation, Multiple peak, Single peak and No response.

As quantified above, the accuracy of the current approach is still inadequate
for the experimental needs and this algorithms needs further optimizations. Some

58



5 – Results

intrinsic characteristics of the units, as a continuous and high firing rate or op-
positely the low number of spikes elicited by the stimulus, lead to a incorrect
estimation of the RF. Instead when the cells exhibit a high firing rate and the
expected response characterized by the two peaks, one for each direction of the
stimulus, even for a very low number of cells, the algorithm presented here was
able to correctly estimate the size of the receptive field center. Thus, this approach
is promising, but it requires following studies considering, for instance, different
strategies of visual stimulation compared to the simple one explored in this work.
Possible directions to explore in future work are discussed in Section 6.1.
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6 Conclusion

Visual perception is the ability to interpret the surrounding environment using
the light in the visible spectrum reflected by the objects. The first stage of this
process takes place in the retina, where photoreceptors encode and convey visual
information to retinal interneurons and finally to retinal ganglion cells (RGCs),
i.e., the output neurons of the retina, for further processing. As a consequence
of this pre-processing, the RGCs are tuned to particular visual features, such as
motion in a particular direction, oriented lines, or colour contrast and transmit to
the brain only features of the visual scene, rather than a discretized pixel-like image
as a standard camera does. Indeed, how the retina, and in particular the different
types of RGCs, encodes the information of the visual images is still unclear.

Therefore, in this Master’s Thesis, I worked on developing original analytical
tools that can be implemented in real-time hardware to investigate, describe and
characterize some of these functional properties expressed by retinal ganglion cells.
As the overall nervous system, feedbacks and closed-loop controls from retinal neu-
rons modulate the RGCs spiking activity. Consequently, an appropriate method
to approach and understand the retinal output is to implement closed-loop exper-
iments, i.e., to provide visual stimuli based on the instantaneous spiking activity
of the retinal ganglion cells. To do so, I carried on my studies at the Italian In-
stitute of Technology (IIT) to exploit a closed-loop platform in combination with
high-density recordings developed in the NetS3 Lab. This platform exploits the
FPGA/CPU resources of a Xilinx ZedBoard Zynq-7000 and perform pre-processing
tasks, such as signal conditioning, filtering and spike detection, with a maximum
latency of 2 ms. Thanks to this platform it is possible to handle the large stream
of data generated by the new generations of high-density microelectrodes arrays
(HD-MEA) based on CMOS (Complementary Metal-Oxide-Semiconductor) tech-
nology, which integrate active on-chip read-out circuits to record the extracellular
potential of several thousands of closely spaced microelectrodes.

To provide dedicated tools for investigating retinal function, I had to face a
computational challenge to fulfil the closed-loop time and memory constraints that
lead me to optimize how the data are acquired. Indeed, the tight spacing among
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adjacent electrodes of HD-MEAs result in the duplicate detection of the same
retinal ganglion cell in multiple neighbouring electrodes. Therefore, to reduce the
computational load of subsequent analysis, I implemented an on-board pseudo-
real-time algorithm that provide an effective downsampling of the array to remove
those electrodes that are exhibiting coincident spiking activities. To this aim, I
optimized a cross-correlation function to detect pairs of electrode sharing spikes
at sub-millisecond resolution in pseudo-real time (about 22.9 ± 1.5 ms per second
of neural recording) and I devised a simple, yet powerful, clustering procedure to
group multiple correlated electrodes.

To validate the implemented algorithm, I proved, through simulations of the
RGCs spiking activity, that if I impose a certain spatial configuration of correlated
channels on a random set electrodes, the clustering algorithm is able to dectect
and reconstruct its spatial organization. Thanks to the results obtained in silico,
I found an optimal set of parameters and, with these settings, I applied the algo-
rithm on HD-MEA recordings of retinal ganglion cells spiking activity of ex vivo
mouse retina. By identifying and removing duplicate spikes recorded by adjacent
electrodes of HD-MEA, I found that the filtering procedure significantly reduced
by ∼30% the computational cost required for closed-loop investigations. Given the
closed-loop capability of the platform, I also implemented a closed-loop policy to
stop the execution of this algorithm when the data acquired are enough to achieve
a stable downsampling of the electrode matrix. With this policy, the algorithm
stops within 120 s and provide a substantially stable downsampling configuration
of the electrode matrix with an average mismatch in the subsequent time intervals
of 1.5±0.4%.

Next, I have implemented a second closed-loop algorithm that controls visual
stimuli to infer major functional types of retinal ganglion cells. In detail, based
on the spiking response to white and black stimuli, the algorithm classifies the
leader electrodes (identified with the first algorithm) in ON- or OFF-type retinal
ganglion cell’s responses. A closed-loop policy ensures that enough information
is acquired by iterating the white/black cycle of visual stimulation. Even if the
computational time dedicate to this task is reasonably short (117.3 ± 30.9 ms to
analyse the results for each iteration), the overall time spent on this task, ≤10s,
is mainly ascrivable to the retinal physiology. Indeed, I found that the algorithm
requires 7.25±3 iterations of visual stimulations to characterize the preferential
response of RGCs.

In the third part of my study, I evaluated a potential approach for estimat-
ing the retinal ganglion cells receptive field size in real-time and in closed-loop.
State-of-the-art approaches are highly time-consuming for an accurate and precise
estimation of the receptive fields. Indeed, they require a rather long visual stimu-
lation, consisting of a large number of stimuli, that prevent from performing many
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other experimental phases because of a limited retinal viability after dissection. In
addition, since neurons process information on a few millisecond time-scale, one
could be interested in tracking receptive field size changes over time.

Therefore, the approach that I have developed, based on receptive field phys-
iological properties, aims at minimizing the experimental time and the amount
of data required for the receptive fields characterization. In a preliminary explo-
ration, we have found that even though the approach was promising, it resulted in
acceptable estimations only for a ∼15% of retinal ganglion cells, which response
was characterized by a high firing rate and the two peaks expected. I diagnosed
that the poor performances are mainly imputable to the stimulation protocol that
was not able to evoke sufficiently reliable responses in RGCs, i.e. the cells present
a low firing rate to the stimulus or exhibit a high and continuous spiking activity.
In these cases the approach used for the estimation of the radius of receptive field
as the half-difference between the position of the leading-edge of the two peaks
leads to an incorrect value due to the intrinsic activity of the cells. Therefore, this
current implementation fails for the cells on the borders of the HD-MEA indeed
in this case the radius is estimated as almost all the dimension of the HD-MEA.
Thus the described algorithms can be improved for a more extended classification
of RGCs and for a better estimation of their receptive fields. Possible directions for
future studies aimed at improving the performances of this closed-loop algorithm
are discussed in the next section.

6.1 Discussion
In this work the large amount of data acquired with HD-MEAs has been treated
as an issue proposing an algorithm for the data reduction. This because in real-
time applications these redundant information leads to waste of computational
resources in analyzing duplicate spike trains. Thus, given the low time required
for the processing time of the algorithm is suitable for real-time applications. A
further improvement is to clean the discarded channels from coincident spikes
to unveil the probable spiking activity of new units. However, in a real-time
application this approach can lead to some waste of time because, is necessary to
assess for each spike its membership to a spiking unit. Coincident spikes detected
in the discarded channels can also be exploited for estimating the position of the
retinal ganglion cell and consequently to implement a position based spike sorter,
possibly in real-time.

The first implementation of the algorithm for the classification of the RGCs is
very basic and easy. It is estimated that there are over 30 different RGC types
in the mammalian retina [60] each one represent a specific information about the
visual scene and encode it through spike trains. For example, just the ON-type
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cells can be classified in more than 10 subtypes according to their response kinet-
ics, their selectivity in the direction or orientation of a moving objects [60].
The classification of the RGCs can be refined using different stimuli, such as bars
moving in cardinal directions, the preferential response of the RGCs to other fea-
tures, such as direction selectivity, can be probed.

The current implementation of the closed-loop algorithm for the receptive fields
estimation prevent from correctly identifying the RF size in a large number of
RGCs. This can be due to the low rate of evocated spikes or to issues due to
multiple response peeks. Possible solutions can take into consideration the use of
different stimuli or different analysis for the mapping of the RF. Given the high
number of cells that exhibit the low number of spikes elicited by this kind of stim-
ulus, first it could be applied several times and average the responses of each cell
in order to verify the model of response explained in Section 2.3.
If the curtain stimulus continues to be unsuitable for the purpose, it can be sub-
stituted with full-field moving bars of different spatial frequencies cycling at 1 Hz
in different directions. Previous work showed that with this type of stimuli we
can estimate with fairly good accuracy the RF centre size. In this framework, a
closed-loop policy would result in a reduction of the stimuli required for the cRF
estimation convergence, avoiding unnecessary iterations of the protocol. The time
saved could be used to rotate the bar motion direction to provide a more accurate
estimate of the RFs ellipsoidal shape. Moreover, with this approach, the RF of
nearly all channels can be quantified simultaneously thanks to the few computa-
tions and small memory storage required.
Further development for RF estimation algorithms can include a total paralleliza-
tion for all the RGCs identified in order to reduce more and more the execution
time of the algorithm.

Finally, it has to be noted that together with recently developed implantable
CMOS-probes for in-vivo high-resolution recordings [61], similar approaches might
be applied in the future works to other brain circuits to infer their structure-
function organization or to develop bioelectric therapeutic devices.
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Annex I Experimental setup

This Section contains detailed information on the hardware that I used as a starting
point for this work. Additionally, I report the experimental procedure used by my
colleagues of the NetS3 laboratory (Fondazione Istituto Italiano di Tecnologia) to
gather the spiking activity from ex-vivo retina for a self-consistent thesis.

Acquisition unit
RGCs bioelectrical activity was acquired using ARENA BioChips (3Brain AG,
Wädenswil, Switzerland), which are HD-MEAs based on the Active Pixel Sensor
concept, see Figure 1B. This platform can simultaneously record from 4096 square
electrodes of 21x21µm2 size arranged in a 64x64 grid of 42µm pitch, resulting in a
total active area of 2.67×2.67mm2. From each of the 4096 electrodes, this device
samples the extracellular potential at a frame rate of 7.022 kHz.

Figure Annex I.1: APS-MEA CMOS chip. (A) Representation of the signal am-
plification chain and of the electrode readout. (B) BioChip from 3Brain.

The metal electrodes are made of aluminum-alloy and post-processed with
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noble metals, e.g. gold or platinum, to increase the electrode sensitivity. The active
circuitry of the electrodes is insulated from the extracellular environment with a
silicon oxide and silicon nitride layer, which fully coat the sensing area of the device
except for the electrode areas. Since the BioChip is based on the APS concept, the
signal is locally adapted from high impedance (electrode-side) to low impedance
(wiring-side) to avoid the induction of coupling noise from electrical wiring before
amplification thanks to in-pixel amplifiers, 40dB gain, placed underneath each
electrode (Figure 1A). On-chip multiplexing and addressing circuits prevent from
individually wiring each electrode off-chip. Indeed, even though the number of
simultaneously recorded electrodes easily exceed a few thousands of elements, with
this strategy the number of wiring outputs remains bound to a few tenths of
outgoing connections.

CMOS devices are also photosensitive, photo-generated charges can give rise
to different DC drifting that can saturate in-pixel amplifiers. To overcome this
issue, the BioChips in-pixel circuit integrates a calibration process that consists of
an auto-zeroing circuit. This system allows a dynamic calibration of the electrode
DC voltage to prevent amplifiers from saturation. To do so, the calibrated DC
voltage is subtracted from the electrode signal before the first amplification stage.
This process allows adapting the circuit performance to different experimental
conditions. In particular, under light stimulation conditions, as this work requires,
the light-induced amplifier saturation can be further mitigated by using higher
calibration frequencies to keep the DC input signal as close as possible to the
working point of the amplifier.

A reservoir chamber, limited by a glass ring, enclose the active sensing area
of the chip in order to maintain viable neuronal tissue as neuronal cultures or
ex-vivo brain circuits either under cell culture media or perfused media during the
experiment.

The contact pads of the BioChip allow a stable connection between the BioChip
and the BioCAM X. The latter is a platform allowing the acquisition from all
the 4096 recording sites of the CMOS-MEA planar device with sub-millisecond
resolution. The BioCAM X performs analog to digital conversion of the signal,
with a resolution of 12 bit, which is continuously sent to the real-time processing
unit and to an offline processing unit through through a Camera Link connection.

On the offline processing unit the acquired data are visualized with the software
BrainWave X (from 3Brain, AG). In Figure 2 shows a screenshot of the software
during a typical experiment: the MEA Viewer is in a one to one connection with
the electrodes in the MEA grid and each of its pixels is color-coded according to
variations in the extracellular potentials recorded by the electrode located in the
same position of the MEA grid.
The data are stored in HDF5 hierarchical data format and are easily accessible
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from the numerical computing environment MATLAB for offline data analysis.

Figure Annex I.2: BrainWave software visualization.

Processing unit
The main characteristic of this system is the ability to exploit parallel processing
in order to achieve high performance and low latency. The Xilinx Zynq is based on
the integration of the software programmability of an ARM-based processor with
the hardware reconfigurability of a Field Programmable Gate Array (FPGA). This
unit consists of three major components shown in Figure 3:

• programmable logic and hard-wired blocks;

• Zynq processing system;

• DDR memory.

The first component is programmed to de-serialize the data received from the
acquisition unit through the Camera Link interface and subsequently the raw data
are filtered and processed in order to detect the neural spikes.
The filtering process is implemented by a band-pass FIR filters with cut-off fre-
quencies placed at 300 Hz and 3400 Hz. The system integrates 32 FIR blocks to
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permit the filtering of 4096 input channels, divided into groups of 128 channels for
each block in order to minimize the resources usage.

The spike detection step is based on an amplitude threshold that is estimated
according to the standard deviation of the filtered signal for each extracellular
trace. To take into account modulations of noise amplitudes independently occur-
ring in multiple signals, the threshold is dynamically adapted to the current noise
level of the signal. Finally, the filtered signal and the detected spike are stored in
the DDR memory.

Figure Annex I.3: Schematic block diagram of the Zynq-based Real-time Pro-
cessing unit consisting of three major parts: Programmable Logic and Hardwired
Blocks, a Zynq Processing System and, a DDR Memory.

The Zynq processing system integrates the dual-core ARMCortex-A9 processor
sharing a 512 MB DDR memory. The first core is dedicated to a Linux-based
operating system that provides a user interface and network connectivity for system
initialization, a programmable logic for clock configuration and management, and
a toolbox for setting the bare-metal core management/communication tasks.

The second core has real-time access to the DDR memory where the times-
tamps of the detected spikes are stored. This bare-metal core is used to run the
decisional as well as closed-loop algorithms, described with general programming
languages as C.

Optical stimulation
Concerning the optical stimulation to evoke visual responses in the retina, addi-
tional hardware blocks for streaming a video output to a High-Definition Multi-
media Interface (HDMI) has been implemented on the programmable logic. These
blocks periodically read from a dedicated section of the DDR memory, and, with
a refresh rate of 60 Hz, stream one image consisting of 684x608 pixels with 24-bit
RGB depth, through the HDMI port to a Digital Light Projector (LightCrafter,
Texas Instruments Inc., USA). To change the image and thus the stimulus, the
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ARM processor updates the DDR memory section with new values according to
the visual stimulation algorithm.

Ex-vivo retina preparation
Ethical statement All the experiments on ex-vivo retina were performed in
accordance with the guidelines established by the European Community Council
(Directive 2010/63/EU of 22 September 2010). All procedures involving experi-
mental animals were approved by the institutional IIT Ethic Committee and by
the Italian Ministry of Health and Animal Care (Authorization number 110/2014-
PR, December 19, 2014).

Figure Annex I.4: Mouse retina displaced on the HD-MEA. Retinal ganglion cell
activity is colour coded.

Retina dissection Five six weeks old C57BL/6 male mice were dark-adapted
for twelve hours and subsequently anesthetized with CO2 and sacrificed by cervi-
cal dislocation. Similarly as in [4], upon eyeballs enucleation, cornea, crystalline,
sclera and vitreous were accurately removed to isolate the retinal tissue. Next, the
retina was placed onto a CMOS-MEA with the retinal ganglion cell (RGC) layer in
contact with the electrodes, leaving the photoreceptor layer exposed. Prior to the
retinal placement, devices were pre-conditioned by filling their reservoir with Neu-
robasal for two hours at 37°. A polyester filter (Sterlitech Corp., Kent, WA, USA)
and a circular anchor were then placed onto the photoreceptor layer to hold in
place the retina. To ensure retinal vitality throughout the experiments, a constant
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flow of media (AMES media - Sigma - Merck KGaA, Darmstadt, Germany) sup-
plemented with 1.9g/L of sodium bicarbonate equilibrated with carboxigen (95%
O2 and 5% CO2) was perfused into the well by using a peristaltic pump (∼1 ml
/min).
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