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Abstract 

Proteins are complex molecules that play many fundamental roles in human body and their 

conformational structure is strictly related to their function. Sometimes proteins fail to adopt its 

functional conformational state, thus leading to pathological conditions, generally identified as 

protein misfolding diseases. The largest group of misfolding diseases is associated with the 

conversion of specific peptides or proteins from their soluble functional states ultimately into highly 

organized insoluble fibrillar aggregates.  

Alzheimer’s disease (AD) is the most common and fatal neurodegenerative disorder directly 

associated with the deposition of such aggregates, particularly amyloid beta (𝐴𝛽) aggregates, in the 

brain of patients. Two variants of 𝐴𝛽 peptides exist in human: 𝐴𝛽40 and 𝐴𝛽42. The former is the most 

abundant in the plaques and assumes a U-shaped structure only, while the latter is the most toxic, 

forms aggregates more rapidly and assumes a S-shaped structure. It has been recently demonstrated 

in literature that the S-shaped 𝐴𝛽42 specie is more stable and compact.   

Moreover, mutations in the 𝐴𝛽 peptide alter the toxicity, oligomerization pathways and rate of fibril 

formation and can be grouped in pathogenic mutations and synthetic mutations.  

However, the precise mechanism of amyloid aggregation remains unclear. Computational Molecular 

Modelling may help to clarify mechanisms behind aggregation and oligomerization of 𝐴𝛽. The 

present study focuses on conformational stability of two different models of S-shaped wild-type 

(WT), G33L and G37L mutants of amyloid 𝐴𝛽11−42.  

Overall, computational results here presented highlight an enhanced stability for the WT when 

compared to mutant types of amyloid 𝐴𝛽11−42, suggesting that specific aminoacidic substitution 

may affect 𝐴𝛽42 aggregation propensity.  
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Estratto 

Le proteine sono delle molecole complesse che svolgono diverse funzioni fondamentali 

nell’organismo e la struttura terziaria che assumono è strettamente correlata alla loro funzione. A 

volte, le proteine ripiegano in maniera scorretta causando l’insorgere di condizioni patologiche 

generalmente denominate patologie da errato ripiegamento proteico. La maggior parte di queste 

malattie è associata alla conversione di determinati peptidi o proteine solubili in aggregati fibrillari 

insolubili altamente organizzati. 

La malattia di Alzheimer è il disturbo neurodegenerativo associato alla deposizione di tali aggregati 

più diffuso ed invalidante, ed in particolare è causato dall’aggregazione di beta-amiloidi (𝐴𝛽) nel 

cervello dei pazienti. Esistono due varianti di 𝐴𝛽, nell’uomo: 𝐴𝛽40 e 𝐴𝛽42. La prima è la più 

abbondante nelle placche e assume solo una forma ad U, mentre la seconda è la più tossica, forma 

aggregati più rapidamente e può assumere sia forma ad U che forma ad S. Di recente, è stato 

dimostrato che il peptide 𝐴𝛽42 con forma ad S è più stabile e compatto.  

Inoltre, mutazioni nel peptide 𝐴𝛽 alterano la tossicità, la via di oligomerizzazione e il tasso di 

formazione di fibrille e possono essere raggruppate in mutazioni patogeniche e mutazioni sintetiche. 

Ad ogni modo, risulta ancora mancante una chiara e completa descrizione del meccanismo di 

aggregazione di amiloidi. La modellazione molecolare potrebbe aiutare a chiarire i meccanismi 

dietro i processi di aggregazione e oligomerizzazione di 𝐴𝛽. Questo lavoro si concentra sulla stabilità 

conformazionale di due diversi modelli di 𝐴𝛽11−42 della specie wild-type (WT) e dei mutanti G33L e 

G37L. 

Complessivamente, i risultati computazionali qui riportati evidenziano una maggiore stabilità della 

specie WT rispetto alle due specie mutate, suggerendo che specifiche mutazioni amminoacidiche 

possono influenzare la tendenza all’aggregazione dell’𝐴𝛽42. 
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1. Introduction 

The present chapter is devoted to a general introduction of the present Master Thesis work, 

elucidating aims and objectives.  

The assembly of peptides into fibrillar aggregates is one of the major event in a broad range of 

human diseases. In general, changes of pH, temperature or ionic strength1,2  may lead almost any 

protein and peptide to aggregate. Many of these form amyloid-like fibrils.  

Although the cause of Alzheimer’s disease (AD) is not really well understood, compelling evidence 

indicates that deposition of such amyloid aggregates is the central event in the disease 

pathogenesis.  

Understanding the precise mechanism behind the protein aggregation is essential for the 

development of novel pharmaceutical approaches, but still unclear.  

The aim of the present work is to investigate two S-shaped models of 𝐴𝛽42 and the effects of specific 

aminoacidic substitutions on 𝐴𝛽42. Computational molecular methods allow to shed light on the 

molecular reasons responsible for the conformational stability of polymorphs. 

The work presented is divided into chapters, briefly summarized below: 

Chapter 1 is the present introductory part. 

Chapter 2 provides a general view of Material and Methods applied in the present work. The first 

section introduces computational molecular modeling for investigating biological mechanisms. The 

second section presents the “Molecular Mechanics” approach, with an overview on physical basis 

behind molecular modelling. In section 2.3, Molecular Dynamics (MD) is presented, with a brief 

reference to statistical ensembles and implementation schemes. The following paragraph (2.4) is 

devoted to a general description of dimensionality reduction techniques, such as Principal 

Component Analysis (PCA) and Functional Mode Analysis (FMA).  

Chapter 3 provides an insight into conformational dynamics and structural stability of two different 

S-shaped models of 𝐴𝛽11−42. MD results show that both models assume stable arrangements, 

especially 2MXU, probably due to the higher β-strand content. Functional Mode Analysis (FMA) 

highlighted 2MXU and 5KK3 are subjected to a torsion and a bending mode, respectively. 

Chapter 4 yields a detailed conformational study of G33L and G37L mutants of two S-shaped models 

of 𝐴𝛽11−42. Computational results emphasize that the wild types (WTs) are characterized by higher 
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stability, when compared to mutant types. Mutations cause an increased flexibility of the central 

core and C-terminal region, a marked loss of β-strand content in those regions and a noticeable 

distortion of the structure. FMA clearly revealed a prevalent torsional mode, especially in the 2MXU 

model and a tendency to open from the lateral chain of G33L in the 5KK3 model.  



8 
 

2. Materials and Methods 

2.1 Computational Modelling of Biomolecular Systems 

Molecular Modelling includes a set of theoretical and computational techniques that provides 

insight into molecular systems at atomic level by solving the equations of quantum and classical 

physics. It is used to represent, simulate and analyse the properties and the behaviour of molecules 

and complex molecular structures (e.g., proteins, nucleic acids, polymers). To date, Molecular 

Modelling is rapidly growing, supported by the increasing computer capacity. However, molecular 

systems, and in particular biological systems, consist of huge number of molecules. Thus, estimating 

thermodynamic or kinetic properties of these systems still represents a challenge. Molecular 

Dynamics (MD) is a powerful tool for understanding molecular mechanisms of protein folding or 

unfolding, docking of molecules, transport of drugs, multiscale modelling, cellular membranes and 

much more.  

The most detailed analysis of a biological system starts at the quantum level, by solving the 

Schrodinger equation (known as an ab initio calculation)3. However, Schrödinger equations can be 

solved only for simple systems.  

At the molecular level, Molecular Mechanics (MM) allows to model molecular systems with 

thousands of atoms: the result of MD is a trajectory that specifies how position and velocity of 

particles vary with time3.  

In the next sections, MM and MD will be discussed in detail.  

2.2 Molecular Mechanics 

Molecular Mechanics methods use Newtonian mechanics to model molecular systems with 

thousands of atoms interacting through a potential energy function. A molecular force field (FF) is a 

set of equations that allows to estimate the potential energy of the system as a function of the 

atoms’ position. According to the Born-Oppenheimer approximation4, the Molecular Mechanics 

method treats atoms as spheres whose mass depends on the elements and treats bonds as springs 

whose stiffness depends on the elements bonded together. 

2.2.1 Potential Energy Function 

The energy of a molecule in its ground electronic state can be considered as a function of the nuclear 

coordinates only. Any changes in the system (e.g., the torsion of an angle, the displacement of an 

atom) cause the variations on a multidimensional ‘surface’ called energy surface. The potential 
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energy surface for a molecular system of N atoms in a given conformation is the sum of four energy 

contributions: 

 𝑉 = 𝑉𝑏𝑜𝑛𝑑𝑒𝑑 + 𝑉𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 (1) 

 

Where the two terms are given by the following equation: 

 𝑉𝑏𝑜𝑛𝑑𝑒𝑑 = 𝑉𝑏𝑜𝑛𝑑𝑠 + 𝑉𝑎𝑛𝑔𝑙𝑒𝑠 + 𝑉𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠 (2) 

 𝑉𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 = 𝑉𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑉𝑉𝑎𝑛 𝑑𝑒𝑟 𝑊𝑎𝑎𝑙𝑠 (3) 

2.2.2 Treatment of Bond and Non-Bond interactions 

The central core of the MM method is the definition of a potential energy function. As the atoms 

are treated as spheres and bonds are treated as springs, the potential energy function can be 

described as5:  

𝑉(𝑟1, 𝑟2, … , 𝑟𝑁)

= ∑
1

2
𝑏𝑜𝑛𝑑𝑠

𝑘𝑙[𝑙 − 𝑙0]2 + ∑
1

2
𝑎𝑛𝑔𝑙𝑒𝑠

𝑘𝜃[𝜃 − 𝜃0]2

+ ∑ 𝑘𝜑[1 + cos(𝑛𝜑 − 𝛿)]

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+ 4𝜀𝑖,𝑗 [(
𝜎𝑖,𝑗

12

𝑟𝑖,𝑗
) − (

𝜎𝑖,𝑗
6

𝑟𝑖,𝑗
)] +

𝑄𝑖𝑄𝑗

4𝜋𝜀0𝑟𝑖,𝑗
 

(4) 

 

In Eq.4, the first term describes the interactions between bonded atoms, modelled with a harmonic 

potential, where 𝑘𝑙  is the force constant, 𝑙0 is the reference bond length and l is the bond length; 

The second term of the equation 2 encompasses the angle among three atoms covalently bound 

together and the potential energy is expressed as follow, where 𝑘𝜃 is the stiffness, 𝜃0 is the 

equilibrium angle and θ is the bond angle; 

Last term in Eq.2 describes the dihedral bond interactions, that usually includes a torsional potential 

describing bond rotates: 𝑘𝜑 is the energetic barrier related to the angle deformation, δ is the phase 

that determines the minimum position for the torsional angle and n is the multiplicity. 

Non-bond interactions are usually modelled as functions inversely proportional to the distance 

between two atoms and includes two components: Van der Waals forces and Electrostatic 

interactions. 
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The Van der Waals interactions are relatively weak when compared to covalent bonds, but strongly 

affect properties of organic compounds, such as their solubility. Once atoms are close enough, their 

electronic clouds overlap and they will repel each other with repulsive forces. The Lennard-Jones 

equation6 is often used to represent the Van der Waals potential: 

 𝑉𝐿𝑒𝑛𝑛𝑎𝑟𝑑−𝐽𝑜𝑛𝑒𝑠 = 4𝜀𝑖,𝑗 [(
𝜎𝑖,𝑗

12

𝑟𝑖,𝑗
) − (

𝜎𝑖,𝑗
6

𝑟𝑖,𝑗
)] (5) 

The first term in Eq.5 describes the repulsion forces; the second term represents the attraction 

energy. 𝜎𝑖,𝑗 and 𝜀𝑖,𝑗 represent the collision diameter and the depth of the potential well, 

respectively.  

The electrostatic interactions are defined as long-range interactions, because the energy decrease 

with the distance and can be described by using the Coulomb’s law: 

 𝑉𝑒 =
𝑄𝑖𝑄𝑗

4𝜋𝜀0𝑟𝑖,𝑗
 (6) 

The number of non-bond parameters increase as the square of the number of atoms in the system, 

therefore the computational cost required is very high. In order to decrease such computational 

expense, the Ewald summations is applied. The Ewald summation replace the interaction energies 

summation in real space with an equivalent summation in Fourier space and it is employed in the 

long-range interactions’ calculation. 

2.2.3 Periodic Boundary Conditions 

The treatment of boundaries effects is a crucial issue in simulations, since boundary effects strongly 

influence the properties of the whole system. The Periodic Boundary Conditions (PBC)(Figure 1) 

allows to perform simulations with smaller number of particles. All the atoms are put in a box, 

usually filled with implicit or explicit models of water, surrounded by copies of itself. The presence 

of Periodic Boundary Conditions causes imprecisions, but still less severe than the error resulting 

from artificial boundary with vacuum.  

Each particle in the box interacts with any other particles in adjacent boxes, which are repeated 

infinitely. Applying a Lennard Jones cut-off distance leads to neglectable errors, since it decreases 

very rapidly; On the other hands, the long-range interaction may require more accurate methods, 

with a view to avoid discontinuities in the potential energy calculation: Particle Mesh Ewalds7, 
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Multipole Cells8 and Reaction Field9 are some methods proposed to overcome these kinds of 

problems. 

 

Figure 1: Scheme of periodic boundary conditions (PBC); the central box is filled with water and repeated infinitely. 

 

2.2.4 Potential Energy Minimization 

The Potential Energy function is a very complex multidimensional function: in an N-atoms system it 

is defined by 3N Cartesian coordinates and 3N-6 internal coordinates (bonds, angles and torsional 

angles). There are a very large number of stationary points on the energy surface (Figure 2), where 

the forces on all the atoms are equal to zero and the first derivative of the energy with respect to 

the Cartesian or internal coordinates is zero. Minimum points correspond to stable structures. Any 

changes from the minimum configuration is characterized by higher energy. The energy 

minimization is able to reduce the potential energy of the system and two different methods are 

employed for locating stationary points: derivative and non-derivative methods. First order 

derivative methods change atom coordinates moving to lower energies and the starting point for 

each interaction is the molecular configuration obtained from the previous one (Steepest Descent10, 

Conjugate Gradient11). Second order derivative methods provide information about the curvature 

of the function and calculate the inverse Hessian matrix of second derivatives (Newton-Raphson12, 

L-BFGS13). These methods may be computationally demanding and can also require a significant 

amount of storage. 
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Figure 2: Potential Energy Surface3 (PES), it is a multi-dimensional surface. It is characterized by locally and globally 
minima. 

 

2.3 Molecular Dynamics 

Molecular Dynamics (MD) is a computational approach that can predict the movement of large 

proteins in solutions in form of a trajectory, as a function of the time and allows to calculate average 

properties of a system by solving the Newton’s equations of motion.  

2.3.1 Statistical Ensemble 

There are two types of macroscopic properties in a chemical system: static equilibrium properties 

(e.g., radial distribution function, averaged potential energy) and non-equilibrium properties (e.g., 

diffusion processes, dynamics of phase changes).  

To compute such properties Boltzmann and Gibbs introduced the concept of statistical ensemble: 

“an ensemble is a collection of all possible systems which have different microscopic states but have 

an identical macroscopic or thermodynamic state”14. There are different ensembles: 

• The Micro-Canonical Ensemble (NVE), it corresponds to an isolated system and it is 

characterized by a fixed volume, energy and number of atoms;  

• The Canonical Ensemble (NVT), it corresponds to a closed system and it is characterized by 

a fixed volume, temperature and number of atoms; 

• The Grand Canonical Ensemble (μVT), it corresponds to an open system and it is 

characterized by a fixed volume, temperature and chemical potential; 
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• The Isobaric-Ensemble (NPT), it is characterized by a fixed pressure, temperature and 

number of atoms. 

The ensemble average of a property is calculated as follow: 

 〈𝐴〉𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 = ∬ 𝑑p𝑁𝑑r𝑁𝐴(p𝑁, r𝑁)𝜌(p𝑁, r𝑁) (7) 

Where r is the atomic positions, p is the momenta, 𝐴(p𝑁, r𝑁) is the property of interest and 

ρ(p𝑁, r𝑁) is the probability density function. More in deep, the probability density function is given 

by: 

 

𝜌(p𝑁 , r𝑁) =
1

𝑄
exp [−𝐻(p𝑁, r𝑁)/𝑘𝑏𝑇] (8) 

In the equation above, 𝑘𝑏 is the Boltzmann factor, T is the temperature and H is the Hamiltonian. Q 

is the partition function, expressed by: 

 𝑄 = ∬ 𝑑p𝑁𝑑r𝑁𝑒𝑥𝑝[−𝐻((p𝑁, r𝑁)/𝑘𝑏𝑇] (9) 

The partition function is a sum of Boltzmann factor over all microstates of the system and it relates 

microscopic thermodynamic variables to macroscopic properties. 

However, the integral is generally extremely difficult to calculate because it is necessary to calculate 

all possible states of the system. According to the ergodic hypothesis, over long periods of time, the 

time average of the property is equal to the ensemble average of the same property and the time 

average can be computed as follow: 

 〈𝐴〉𝑡𝑖𝑚𝑒 = 𝑙𝑖𝑚
𝜏→∞

1

𝜏
∫ 𝐴(p𝑁(𝑡), r𝑁(𝑡))𝑑𝑡 ≃

1

𝑀
∑ 𝐴(p𝑁, r𝑁)

𝑀

𝑡=1

𝜏

𝑡=0

 (10) 

In Eq.10, t is the simulation time, M is the time steps in the simulation and 𝐴(p𝑁, r𝑁) is the 

instantaneous of A. 

2.3.2 Molecular Dynamics Implementation Scheme 

Molecular Dynamics calculates the dynamics of the system by sampling microstates in a specific 

ensemble. It is a deterministic method, that means the state of the system at any time step can be 

predicted from its previous state. The central idea in MD method is solving Newton’s equation of 
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motion for a set of atoms which interact via potential energy function, known as force field. 

According to the Newton’s second law, the acceleration for each atom is: 

 𝑎 = −
1

𝑚

𝑑𝑉

𝑑𝑟
 (11) 

As the potential energy is a complex function of the atomic position, this equation cannot be solved 

analytically, but must be solved numerically. There are different integration methods, for example 

the Verlet algorithm15, the Leap-frog algorithm16, the Velocity Verlet17 and many more.  

The flow chart in Figure 3 describes the MD: the initial structure is provided as input data, usually 

extracted from experimental data (e.g., Protein Data Bank). Starting from the input, the potential 

energy is calculated; Afterwards, the algorithm continues with the calculation of the forces 𝐹𝑖, by 

deriving the potential energy function; Then, the integration method calculates a new set of atomic 

positions 𝑟𝑖 and velocities 𝑣𝑖  and the cycle goes on for the number of steps required until the 

equilibrium is reached. Lastly, the output trajectory is defined, and the macroscopic thermodynamic 

properties can be calculated as time averages. 
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Figure 3: MD flow-chart: starting from the initial positions and velocities provided as input, the potential interaction is 
calculated; the algorithm goes on with the calculation of forces and, through integration methods, new positions and 
velocities are generated; the cycle continues for a certain number of steps, until the equilibrium is reached. 

 

2.4 Dimensionality Reduction Techniques 

Conformational structure of protein is strictly related to its function. However, proteins are not 

static molecules, but populate ensembles of conformations, in order to find the most stable one. 

For this reason, high-dimensional data-sets are produced by MD simulations, but just a few of them 

are important. Principal Component Analysis (PCA)18 and Functional Mode Analysis (FMA)19 are two 

efficient technique usually employed for reducing the degrees of freedom and simplify the analysis 

of protein dynamics. 
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2.4.1 Principal Component Analysis 

Principal Component Analysis (PCA) is a statistical procedure that can be used to reduce a large set 

of variables into a small set of linearly uncorrelated variables, called principal components. This 

technique is based on the covariance matrix, which is diagonalized and the eigenvectors are ordered 

according to descending eigenvalues (𝜎𝑖
2). The motion of the protein is quantified as Mean Square 

Fluctuations (MSF) is the sum of 3N contributions from different PCS: 

 〈(𝑥 − 〈𝑥〉2〉 = ∑ 𝑣𝑎𝑟(𝑝𝑗) = ∑ 𝜎𝑖
2

3𝑁

𝑖=1

3𝑁

𝑗=1
 (12) 

Where 𝑝𝑗 is the projection of the motion along the 𝑗𝑡ℎ.  

Generally, a large part of the fluctuations of the system can be described in terms of only few 

principal components20. However, in some cases, a functionally relevant mode is not identical to a 

PCA mode because it is distributed over a number of PCA modes. Therefore, Functional Mode 

Analysis was recently developed. 

2.4.2 Functional Mode Analysis 

Functional Mode Analysis (FMA)19 is a technique that allows to identify collective motion of a 

system, that is maximally correlated to a quantity of interest, such as the radius of gyration, the 

number of hydrogen bonds or any quantity that is important for the dynamics of the proteins. The 

central idea of FMA19 is the research of a vector a that is maximally correlated to the change in the 

functional quantity 𝑓𝑖. The collective vector Maximally Correlated Motion (MCM), if f is linearly 

correlated with the first n principal components (PC), is obtained as: 

 
𝑀𝐶𝑀 = 𝛼𝑖𝑃𝐶𝑖 

(13) 

𝛼𝑖 is obtained by maximizing the Pearson correlation coefficient (R): 

 𝑅 =
𝑐𝑜𝑣(𝑓, 𝑀𝐶𝑀)

𝜎𝑓𝜎𝑀𝐶𝑀
 (14) 

Where 𝑐𝑜𝑣(𝑓, 𝑀𝐶𝑀) and σ represent covariance and standard deviation, respectively. 
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The maximization of R with large basis set may induce overfitting, therefore cross-validation is 

fundamental. An approach is to divide simulations into frames for model building and frames for 

cross-validation19.  
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3. Conformational Polymorphism of S-Shaped Amyloid Beta Fibrils 

Abstract 

A broad range of human diseases is characterized by the deposition and aggregation of proteins. 

For example, neurodegenerative diseases like Parkinson’s Disease, Amyotrophic Lateral Sclerosis 

and Alzheimer’s Disease.  Alzheimer’s disease (AD) is the most common presenile 

neurodegenerative disease, characterized by the deposition and aggregation of amyloid-beta (Aβ). 

Two principal variants of Aβ exist in humans: Aβ40, that is most abundant, and Aβ42, that is the 

most toxic. Fibrils of Aβ40 can only assume a U-shaped conformation while Aβ42 can also arrange 

as S-shaped. Interestingly, the S-shaped is most compact and stable. Solid-State NMR analysis 

revealed several structures for the S-shaped Aβ42 fibrils. In this study, Molecular Dynamics (MD) 

simulations were carried out for characterizing and comparing the conformational dynamics and 

structural stability of two different S-shaped Aβ42 fibril structures. The outcome of this work shows 

the importance of different arrangements for the conformational dynamics in physiological 

environment, that may affect the aggregation propensity. 

3.1 Introduction 

The transition of native proteins to a partially unfolded and aggregated state is implicated in several 

human illnesses. The aggregation of peptides is usually promoted by changes in temperature, pH,  

salt concentration and many more21. Such peptides are able to aggregate into highly ordered fibrils 

and fibers22, generally known as amyloid fibrils or plaques. Amyloid β is the major constituent of 

fibrils deposited in the brain of patients with Alzheimer’s disease (AD). Two variants of Aβ peptides, 

which derive from the transmembrane amyloid precursor protein (APP) via endoproteolytic 

cleavage by β- and γ- secretase22, exist in human: Aβ40 and Aβ42. Aβ40 is most abundant (90%) in 

the brain23, but Aβ42 tends to aggregate more rapidly24 and represent a more toxic specie. On the 

basis of solid-state NMR restraints, different structural models of Aβ40 and Aβ42 fibrils have been 

proposed25–32, since fibrils are characterized by polymorphism33. In detail, Aβ40 can adopt only a U-

shaped structure34 characterized by β-strands (Y10-D23, A30-G38), connected by a bend (G25-

G29)35 and stabilized by interchain hydrogen bonds and salt-bridges (D23-K28). The Aβ42 can 

arrange also in a S-shaped structure34. Recent studies36 demonstrated that the S-shaped Aβ42 is the 

most stable and compact specie. The S-shaped Aβ42 species consist of three β-strands: β1 strand is 

made of residues V12-V18, β2 strand of residues V24-G33 and β3 strand of residues V36-V40, 
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connected by coil and turn regions and stabilized by intermolecular hydrogen bonds and salt-

bridges. Different hypotheses have been formulated in order to explain why the S-shaped structure 

is unstable in Aβ40 species: Xiao et al32 proposed that the S-arrangements in Aβ42 is stabilized by 

the salt bridge between K28 and A42, absent in Aβ40. Recently, it has been proposed that its stability 

depends on hydrophobic contacts between I41 and A4234. Amyloid fibrils have been studied in a 

huge number of both experimental and computational works, given the intimate relationship 

between conformational structure and disease onset. Computational approaches can be a powerful 

tool able to yield an insight into molecular level and provide detailed studies of molecular 

mechanisms, especially for relatively simple systems like short peptides37. Within this chapter, the 

conformational dynamics and stability of two different models of S-shaped Aβ11−42 peptides have 

been investigated by performing Molecular Dynamics (MD) simulations.  

3.3 Materials and Methods 

3.3.1 Models 

Two different 9-mer models of S-shaped Aβ11−42 specie were studied: one extracted from PDB ID: 

2MXU38 and one from PDB ID: 5KK339 (Figure 4). 

 

Figure 4:The two different models studied: A) 2MXU32 B) 5KK331 

 

The models were solvated in an 8 nm cubic box and neutralized by counterions. Each system 

consisted of about 50,000 particles. 

3.3.2 Simulation Setups  

The CHARMM36 force field40 was used to define protein topologies and the TIP3P41 model was used 

for the explicit solvent. GROMACS 5.1.442 version was employed for simulations. Steepest descent 

algorithm10 was utilized to minimize the system. Then, a 50 ps simulation in NVT ensemble was 
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conducted, by applying the V-rescale algorithm43 to keep temperature at 300 K and time constant 

of 0.1 ps. In order to increase the statistic, five replicas for each Aβ11−42 model were generated. We 

ran a 50 ps simulation in NPT ensemble for each replica. Berendsen44 and V-rescale43 coupling 

methods were used as pressure and temperature coupling. Finally, we performed an MD simulation 

of 100 ns duration. Nose-Hoover45 and Parrinello-Rahman44 were used as temperature and pressure 

coupling; The LINCS algorithm46 was used to constrain the length of h-bonds. Periodic boundary 

conditions were applied in all three dimensions, the PME algorithm47 was employed to calculate 

electrostatic interactions and Van der Waals were defined within a cut-off of 1.0 nm. Trajectories 

were extracted every 50 ps of simulation and the Visual Molecular Dynamics (VMD) package was 

employed to display the simulated systems. The secondary structures were obtained by using 

STRIDE web server, by pulling out the first and the last frame of the MD trajectory of each model. 

3.3.3 Order Parameter and Functional Mode Analisys (FMA) 

With the aim of estimating the structural stability of the models and therefore the alignment among 

protein chains, an order parameter was calculated as below:  

 𝑜𝑟𝑑𝑃 =
1

𝑁
∑

〈𝑣𝑟 , 𝑥〉

‖𝑣𝑟‖ · ‖𝑥‖
=

1

𝑁
∑ cos 𝛼

42

𝑟=11

42

𝑟=11

 (15) 

 

Figure 5: Schematic representation for the calculation of order parameter value. The order parameter is equal to 1 in a 
completely aligned fibril (A) and lower than 1 in a distorted fiber (B). 
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Where 𝑣𝑟 is the vector joining 𝐶𝛼-atom of each residue r of chain A with the corresponding 𝐶𝛼-atom 

of the same residue of chain I and x is the fibril axis. If ordP assumes values close to 1, the chains 

maintain an alignment to the initial structure; if the values of ordP are lower than 1, the overall 

structural order decreases. The above mentioned order parameter have been recently used with 

success in a computational study48. The functional mode analysis (FMA) was performed to reduce 

the functionality of the system. This technique detects a single collective motion that is maximally 

correlated with a quantity of interest49, that is the order parameter. Assuming the order parameter 

is a linear function of the Principal components (PC), the Maximally Correlated vector is obtained by 

maximizing the Pearson correlation coefficient49. In FMA, data-set is divided into a subset of frames 

for model building and a subset for cross-validation.  

3.4 Results 

The conformational stability of each molecular system was analyzed by computing the Root Mean 

Square Deviation (RMSD) (Figure 4), showing that convergence is reached in the last 20 ns for all 

MD replicas. In particular, RMSD swings around 0,4-0,5 nm.  

Each computational data here reported is thus calculated as a time average over the last 20 ns of all 

trajectories, unless otherwise specified. 

 



22 
 

 

Figure 6: RMSD from the minimized structure, calculated on each simulation of the two models: A) 2MXU, B) 5KK3 

showed reached convergence for all configurations. 

 

The protein fluctuations were evaluated by Root Mean Square Fluctuation (RMSF) analysis (Figure 

7) and shows how N-terminal tail is the most flexible region in both models (2MXU and 5KK3) 

because of the solvent exposure. It is worth mentioning that the 5KK3 model shows an increased 

value of RMSF in the region E11-K16 if compared with 2MXU model. In the central core of both 

models, the fluctuation values are low, except for residues E22 and D23 and almost identical. A 

remarkable difference is located at residue M35, that is much higher in 5KK3 (RMSFM35[2MXU] =

 0,085 ± 0,009 nm; RMSFM35[5KK3] = 0,125 ± 0,006 nm). The C-terminal region is quit rigid, 

since RMSF is lower than 0,1 nm. 
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Figure 7: RMSF of structures as a function of residue and relative standard deviation, for the two models, calculated as 
the average over the last 20 ns of MD trajectory for each simulation. 

 

The previously highlighted differences in fluctuation values of the N-terminal region can be 

explained analyzing the secondary structure probability of the models, displayed in Figure 8. 

Although rigid β-strands and flexible coils are the most predominant secondary structures in both 

models, several differences are located along chains. The structures differ in the region V12-H14 

and G33-V36. Particularly, β-strand content of 5KK3 (20%) in V12-H14 region is deeply lower when 

compared to that of 2MXU (95%) and it is well known β-strands stabilize peptides, give strength and 

stability to the structure50.  

 

 

Figure 8: Probability of secondary structure averaged on the chains for the two models: A)2MXU and B)5KK3. The 
upper row in each panel shows the initial configuration and the lower panel shows the final configuration. The 
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secondary structures were obtained by pulling out the first and the last frame of each simulation, by using STRIDE web 
server. 

 

The tendency of each protein residue of exposing itself to the solvent is evaluated by Solvent 

Accessible Surface Area (SASA)51 per residue (Figure 9). The N-terminal is the most solvent exposed 

region in both model, but the values in 5KK3 are higher than 2MXU. This evidence is in agreement 

with previously reported RMSF (Figure 7) and secondary structure probability (Figure 8). In the 

central core, it is noticeable that whereas residues M35 is more exposed to the solvent in the 5KK3 

model with respect to 2MXU (SASAM35[2MXU] =  0,19 ± 0,04 nm2;  SASAM35[5KK3] = 0,88 ±

0,13  nm2), residue V36 exhibits an opposite behavior (SASAV36[2MXU] =  0,70 ±

0,10 nm2;  SASAV36[5KK3] = 0,17 ± 0,05  nm2). 

 

 

Figure 9: Solvent Accessible Surface Area per residue and relative standard deviation, calculated as the average over the 
last 20 ns of MD trajectory for each simulation. 

 

Figure 10.A displays the total SASA for the two models and 5KK3 (SASA[5KK3] =  136,22 ±

4,08 nm2) is slightly higher than that of 2MXU (SASA[2MXU] =  128,34 ± 3,00nm2). This result 

suggests that 2MXU reaches a more compact arrangement. 

The same conclusions can be drawn by plotting the inter-chain contact area (Figure 10.B). It is 

interesting to note that the lateral chains are the most unstable because more surface is exposed 

to the solvent. The overall contact area between adjacent chains is higher in 2MXU than 5KK3, 

highlighting the ability of 2MXU model to maximize the inter-chain contacts. 
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Figure 10: A) Total Solvent Accessible Surface Area and relative standard deviation, B) Contact area between adjacent 
chains. Both metrics was calculated as an average over the last 20 ns of each simulation. 

 

With the aim of elucidating large-scale and low-frequency modes associated to the MD trajectory, 

Principal Component Analysis (PCA) was performed. The amplitude of the eigenvalues corresponds 

to the variance of the protein motion, usually quantified as mean square fluctuations, along their 

relative eigenvectors yields by PCA. The sum of the first 5 eigenvalues in the 5KK3 (6,37 nm2) are 

significantly higher than those of 2MXU (3,96 nm2), confirming that the former seems to be less 

stable. 

 

Figure 11: Eigenvalues and relative amplitudes.  

 

Order Parameter and Functional Mode Analysis 

The expected values and corresponding standard deviations of order parameter are displayed in 

Figure 12. Both models show a sharp distribution, peaked at 0,985 and 0,989, for 2MXU and 5KK3, 

respectively (σ2MXU = 1,57e−3, σ5KK3 = 2,62e−3) indicating that the ordered structure is 

maintained, and chains remain aligned.  
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Figure 12: Expected value and corresponding standard deviation of probability of the order parameter, calculated over 
the last 20 ns of trajectories. 

 

The Functional Mode Analysis is able to detect a single collective motion that is maximally correlated 

to a quantity of interest. In the case here studied, the quantity of interest is the order parameter as 

a function of the time. 

The models were validated by predicting the quantity of interest with a Pearson correlation 

coefficient higher than 0,90 in 2MXU and 0,80 in 5KK3 (Figure 13). 

Observing the initial and the final frames (Figure 14) extracted from trajectories along ewMCM 

vector clearly show 2MXU and 5KK3 models are subjected to a torsional mode. 
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Figure 13: A) and C) Order parameter (black) along the five MD trajectories of 2MXU and 5KK3, respectively. The model 
in the building set (red) and in the validation set (green). B) and D) show the scatter plot of the cross validation set. 
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Figure 14: A) B) and C) D) show the conformational changes of 2MXU (left) and 5KK3 (right). Snapshots are obtained 
from ewMCM trajectories. 

 

3.5 Discussion 

Proteins are complex molecules that play many fundamental roles in human body and their 

conformational structure is strictly related to their function. Sometimes, peptides misfold or 

proteins fail to adopt, or remain in, its functional conformational state and thus pathological 

conditions arise. These pathological conditions are generally referred to as protein misfolding (or 

protein conformational) diseases. 

The largest group of misfolding diseases is associated with the conversion of specific peptides or 

proteins from their soluble functional states ultimately into highly organized fibrillar aggregates. 

These structures are generally described as amyloid fibrils or plaques. Alzheimer’s Disease is an 

example, which is characterized by cerebral deposits of amyloid-β peptides. 

Two types of Aβ exist in the brain of patients with AD, the most abundant Aβ40 and the more toxic 

Aβ42. The difference between the two variants of peptide is the presence of two additional residues 

in Aβ42: I41 and A42. It has also been proposed34,38 that these two residues play a key role in the 

stabilization of S-shaped conformation of Aβ42, that is unstable in the Aβ40 variant. A 

conformational study revealed the S-shaped structure of Aβ42 is the most stable variant36 and that 

is why we focused on two different arrangements of such structure.  

Despite the models here investigated share a S-shaped motif and the same peptide sequences, 

significant differences in the morphology and structure have been denotated. Particularly, the two 
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models differ in the starting secondary structure (β2MXU = 52%, β5KK3 = 45%) and in β-strands 

sequences31,32.  

The changes in metrics here evaluated are in line with changes in the secondary structure (Figure 

8). In detail, the higher beta-sheet content in the N-terminal makes 2MXU less flexible than 5KK3 in 

that region. On the other hands, β-strands reduction, associated with the increased solvent 

exposure (Figure 10.A), can explain the high fluctuation of region H14-K16 of 2MXU. It is important 

to note that such evidences are confirmed by literature, since it has been widely demonstrated that 

β-strands give stability and strength to proteins50,52 and protein structure and solvent exposure are 

closely related51 . Another meaningful change in fluctuations is located at residue M35. In 5KK3 

arrangement, this residue is involved in a turn motif and, consequently, has a higher surface exposed 

to the solvent.  

These findings suggest that the 2MXU globally assumes a more stable and compact conformation, 

as also showed by the total SASA values and by the contact area between adjacent chains (Figure 

10) that highlight the ability of 2MXU to maximize the inter-chain contacts. This hypothesis seems 

being confirmed by the PCA analysis. The amplitude of the eigenvalue, representing the variance of 

the protein motion along the corresponding eigenvector53 indicates that 5KK3 is subjected to a 

bigger deformation. However, despite various differences in the metrics here computed, the order 

parameter applied shows the alignment between chains and the structural stability of the models 

are substantially maintained. 

In summary, both arrangements are quite stable in water and preserve the S-shape and chains 

remain aligned (Figure 12). Nevertheless, a partially destabilization can be noted, especially in 5KK3 

model, in terms of secondary structures and fluctuations.  

Based on our data, the importance of different arrangements on the conformational stability and 

dynamics behavior in physiological environment of S-shaped Aβ11−42 has been showed. In this 

scenario, this work can be very relevant to shed the light behind mechanisms of aggregation and 

oligomerization of different amyloid-β species. 

3.6 Conclusions 

The aggregation of amyloid-β peptides plays a key role in the onset of Alzheimer’s disease and Aβ42 

is the most toxic specie. In this chapter, two different models of the S-shaped Aβ42 peptide were 

analyzed. Their conformational stability and dynamic behavior were evaluated employing MD 

simulations and correlated to the fluctuation of an order parameter, early reported in literature36. 
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Our findings showed that both models maintain an ordered structure, in spite of meaningful 

changes in the secondary structure, although 2MXU seems to be able to assume a more stable and 

compact arrangements.  

The next chapter will provide a detailed study about the impact of specific aminoacidic mutations 

on the two different models. 
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4. Impact of Specific Aminoacidic Substitutions on Amyloid Beta Aggregation 

Propensity 

Abstract 

The aggregation of amyloid-beta 42 (Aβ42) peptides is associated with the pathogenesis of 

Alzheimer’s Disease. Within the hydrophobic core of the Aβ sequence, there is a repeated GxxxG 

involving essential for assuring stability and promoting the process of fibril formation, called glycine 

zipper. Mutations in this motif lead to a completely different oligomerization pathway and rate of 

fibril formation. In this work, we have tested two variants containing substitutions in the glycine 

zipper. We found that G37L and G33L, mostly, undergo remarkable changes in the conformational 

stability, confirming that the disruption of glycine zipper can reduce the aggregation propensity of 

Aβ42. If confirmed with further investigations, this hypothesis could pave the way for developing 

new Aβ inhibitors. 

4.1 Introduction 

Alzheimer’s disease (AD) is the most common presenile neurodegenerative disease. The patient 

with AD has short-term memory loss, mood swings, problems with the language. Three main 

hypotheses have been proposed about the AD etiology54 : Tau hypothesis55, Cholinergic 

hypothesis55 and Amyloid cascade hypothesis56. Amyloid hypothesis is the most widely accepted 

and supported hypothesis. Amyloid β derives from the transmembrane amyloid precursor protein 

(APP), via endoproteolytic cleavage by β- and γ- secretase22.  

The proteolytic cleavage of APP produces Aβ peptides of different amino acid length. Senile plaques 

are primarily composed of Aβ40, the most abundant, and Aβ42, the most toxic23,24,57,58.  

The exact structural knowledge of the fibril is essential for a complete understanding of the 

mechanism of fibril formation. For this purpose, several experimental and computational studies 

have been focused to gain insights into the structure of Aβ42
59,60,69,61–68. 

Recently, six residues were identified to be essential for the formation of Aβ42 fibrils: H14, E22, D23, 

G33, G37 and G3865. Mutations of such residues modify the physico-chemistry and alter the toxicity 

of peptides.  

Computational studies, especially when associated with experimental evidences, have 

demonstrated to be helpful for investigating how the above-mentioned mutations affect 
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mechanisms of aggregation, oligomerization pathways and rate of fibril formation, as reported in 

the following. 

Mutations of residues E22 and D23 lead to rare familial variants of AD, as Arctic (E22G), Italian 

(E22K), Dutch (E22Q), Osaka (E22Δ) and Iowa (D23N). It has been proposed that these mutations 

reduce the local charges and produce more toxic oligomers65. In particular, Italian E22K induces helix 

formation in the region 20-24 and this alteration leads to faster peptide aggregation59. The Osaka 

mutant lacks the glutamate at position 22 and this deletion leads to rapid fibril formation in solution. 

Studies on this mutant reveal it is even more stable than the WT and exhibits a rigid structure. The 

formation of a SB between E3 and K28 may explain the structural stability of mutant than the WT60–

62. The Iowa mutation changes the backbone structure: a negatively charged aspartic acid residue is 

replaced with a neutral asparagine residue and the HB between residue 23 and the surrounding 

residues is disrupted64. Region A21-G29 is extremely flexible and the mutation increase the β-strand 

content of Aβ40 at the CHC and the C-terminal and it suggests important consequences on its dock-

and-lock mechanism when it binds fibril edge63. D23N fibrils can form both parallel and antiparallel 

structures61,70. Both conformations are highly flexible at the ends and in the loop regions of the 

protein strands, and much less so in the β-strand region. On the other hand, the C-terminal-to-C-

terminal interactions are more stable in the parallel conformation and it may be the responsible for 

the observed increased stability. Moreover, in the parallel conformation of the WT-dimer, K28 

becomes more flexible and the SB with D23 contribute to the stability62. 

Besides, Hsu et al65 hypothesized that H14 stabilizes the turn motif in region V12-Q15 and its effect 

also depends to the direction to which the side-chain points. 

Three of the six key residues include glycine. Experimental studies demonstrated that glycine 

stabilizes the packing of β-sheets in the formation of amyloid fibrils67. This evidence can explain the 

importance of G33, G37 and G38 in aggregation process. G33 and G37 residue are also involved in 

a GxxxG motif, called glycine zipper68. This motif includes four glycine residues within the 

hydrophobic region (G25, G29, G33 and G37) and this motif facilitates the conversion of α-helices 

and random coils to β-sheet and thus promote the fibril formation67,69,71. Investigations of peptides 

with specific substitutions can provide insight into the mechanisms of aggregation and 

oligomerization. In Aβ40 specie, the substitution of G33 and G37 with leucine destabilized the fibril 

structure by disrupting the glycine-zipper packing interface68,69,72. In vivo and in vitro studies69,73,74 

showed a reduced aggregation propensity in Aβ42 by G33 and G37 to alanine, isoleucine or leucine 

substitutions. A computational analysis69 illustrated that conformational changes of Aβ42 are 
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induced by increased hydrophobicity. The effect of hydrophobicity on peptide aggregation has been 

previously demonstrated by Chiti et ai75. However, the precise mechanism of destabilization and 

how G-to-L substitutions interfere with structural stability remain still unclear. Therefore, a detailed 

investigation of the conformational dynamics of two glycine-to-leucine substitutions was carried 

out: G33L and G37L. Our MD results suggest that both mutations, in particular G33L mutation, 

dramatically reduces the stability of Aβ11−42. 

4.2 Material and Methods 

4.2.1 Models 

Fibrils are characterized by polymorphism and different structures of the same species have been 

proposed based on solid-state NMR restraints25–32. Two different 9-mer models of S-shaped 

Aβ11−42 specie were studied: one extracted from PDB ID: 2MXU38 and one from PDB ID: 5KK339 for 

comparing the impact of aminoacidic mutations on different structures. G33L and G37L mutants 

were obtained by using CHIMERA76 mutation tool, from the corresponding wild-type specie of 2MXU 

and 5KK3. All the models here investigated are shown in Figure 15, highlighting also the mutated 

residues. All the models were solvated in an 8 nm cubic box and neutralized by counterions. Each 

system consisted of about 50,000 particles. 
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Figure 15: The six different models studied, the Wild-type specie (A), G33L mutant (B) and G37L mutant (C) of the 
2MXU32 model; The Wild-type specie (D), G33L mutant (E) and G37L mutant (F) of the 5KK331 model. All the mutants 

were obtained by using CHIMERA76. 

 

4.2.2 Simulations Setups 

The CHARMM36 force field40 was used to define protein topologies and the TIP3P 41 model was used 

for the explicit solvent. GROMACS 5.1.442 version was employed for simulations. Steepest descent 



35 
 

algorithm10 was utilized to minimize the system. Then, a 50 ps simulation in NVT ensemble was 

conducted, by applying the V-rescale algorithm43 to keep temperature at 300 K and time constant 

of 0.1 ps. In order to increase the statistic, five replicas for each Aβ11−42 model were generated. We 

ran a 50 ps simulation in NPT ensemble for each replica. Berendsen44 and V-rescale43 coupling 

methods were used as pressure and temperature coupling. Finally, we performed an MD simulation 

of 100 ns duration. Nose-Hoover45 and Parrinello-Rahman44 were used as temperature and pressure 

coupling; The LINCS algorithm46 was used to constrain the length of h-bonds, the PME algorithm47 

to the calculation of electrostatic interactions and Van der Waals were defined within a cut-off of 

1.0 nm. Periodic boundary conditions were applied in all three dimensions. Trajectories were 

extracted every 50 ps of simulation and the Visual Molecular Dynamics (VMD) package was 

employed to display the simulated systems. The secondary structures were obtained by using 

STRIDE web server, by pulling out the first and the last frame of the MD trajectory of each model. 

4.2.3 Order Parameter and Functional Mode Analisys (FMA) 

With the aim of estimating the structural stability of the models and therefore the alignment among 

protein chains, an order parameter was defined and calculated as below:  

 𝑜𝑟𝑑𝑃 =
1

𝑁
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Figure 16: Schematic representation for the calculation of order parameter value. The order parameter is equal to 1 in 
a completely aligned fibril (A) and lower than 1 in a distorted fiber (B). 
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Where 𝑣𝑟 is the vector joining 𝐶𝛼-atom of each residue r of chain A with the corresponding 𝐶𝛼-atom 

of the same residue of chain I and x is the fibril axis. If ordP assumes values close to 1, the chains 

maintain an alignment to the initial structure; if the values of ordP are lower than 1, the overall 

structural order decreases. The above mentioned order parameter have been recently used with 

success in a computational study48. The functional mode analysis (FMA) was performed to reduce 

the functionality of the system. This technique detects a single collective motion that is maximally 

correlated with a quantity of interest49, that is the order parameter. Assuming the order parameter 

is a linear function of the Principal components (PC), the Maximally Correlated vector is obtained by 

maximizing the Pearson correlation coefficient49. In FMA, data-set is divided into a subset of frames 

for model building and a subset for cross-validation.  

4.3 Results 

The conformational stability of each molecular system was analyzed by computing the Root Mean 

Square Deviation (RMSD)(Figure 17) showing that convergence is reached in the last 20 ns for all 

MD replicas. In particular, RMSD swings around 0,4 and 0,5 nm in all simulations, except for one of 

the five replicas of G37L mutant in the 2MXU model,  where RMSD reaches 0,7 nm. 

Each computational data here reported is thus calculated as a time average over the last 20 ns of all 

trajectories, unless otherwise specified. 
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Figure 17: On the left, RMSD calculated on each simulation for G33L (A) and G37L (B) of 2MXU model; On the right, 
RMSD calculated on each simulation for G33L (C) and G37L (D) of 5KK3 model. 

 

The protein fluctuations were evaluated by Root Mean Square Fluctuation (RMSF) analysis. In the 

2MXU model, both mutations lead to an overall increase in fluctuation values (Figure 18), indicating 

the destabilization of the fibril conformation in presence of protein mutations. In detail, G33L 

mutation strongly affects the flexibility of the central core and C-terminal region, unlike the G37L 

substitution, that affects the C-terminal region only. In particular, E22-K28 region of G33L mutant is 
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much more unstable than the WT specie. It is also worth mentioning the differences located at the 

mutated sites: 

RMSF33[WT] =  0,060 ± 0,008 nm; RMSF33[G33L] = 0,108 ± 0,020 nm; 

RMSF37[WT] =  0,075 ± 0,006 nm; RMSF37[G37L] = 0,145 ± 0,022 nm 

 

Figure 18: RMSF of WT and the two mutants in the 2MXU model, calculated over the last 20ns of each simulation and 
averaged on the nine chains. 

 

The effects of G33L and G37L mutations on 5KK3 model are less severe, as shown in Figure 19. The 

N-terminal region flexibility is almost identical in all the three species. Differences are mainly located 

along the central core and C-terminal of WT and G33L. In detail, the flexibility of the chain slightly 
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increase between residues S26-K28 (RMSF28[WT] =  0,096 ± 0,015 nm; RMSF28[G33L] =

0,170 ± 0,034 nm).  

On the other hands, G37L does not lead to meaningful variations in RMSF, except for the mutated 

site (RMSF37[G37L] = 0,117 ± 0,017 nm,  RMSF37[WT] = 0,073 ± 0,010 nm). 

 

 

Figure 19: RMSF of WT and the two mutants in the 5KK3 model, calculated over the last 20ns of each simulation and 

averaged on the nine chains. 

 

As widely demonstrated in scientific literature50,52, the secondary structure is responsible for the 

conformational stability of proteins. For this purpose, the secondary structures probability was 

calculated.  Figure 20 shows a marked loss of β-strand content for both G33L (A) and G37L (B), in 

the 2MXU model. Globally, the β-content dramatically reduces in G33L (from 64% to 39%). The β-

strand content loss is a little less severe in G37L but still considerable (from 57% to 45%). In detail, 

the central core (V24-S26) and C-terminal region (V36-V40) of both mutants are subjected to the 

biggest reduction of secondary structure. This evidence is in line with changes in fluctuations and it 

is probably the main factor that affects the stability of such structures. 
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Figure 20: Probability of secondary structure averaged on the chains for the two mutants in the 2MXU model: A) G33L 
and B) G37L. The first row in each panel shows the initial configuration and the second panel shows the final 
configuration. 

 

The same trend can be shown in Figure 21, showing the secondary structure probability in the 

mutant types of 5KK3. Destabilization of the secondary structure is noticeable in the central core of 

both mutants. In region V24-A30 of G33L mutant the β-strand content deeply decreases from 94% 

to 37%. The same evidence, but less severe (from 94% to 59%) can be noticed from G37L. In G37L, 

more remarkable differences are located around the mutated site. In particular, the region 

comprising residues G38, V39 and V40 almost totally loses its β-strand content. 

Interestingly, the G-to-L substitution at position 33 also affects the C-terminal. This result can explain 

the increased flexibility of that region displayed in Figure 19.   
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Figure 21: Probability of secondary structure averaged on the chains for the two mutants in the 5KK3 model: A) G33L 
and B) G37L. The first row in each panel shows the initial configuration and the second panel shows the final 

configuration. 

 

The total and per residue Solvent Accessible Surface Area (SASA) were calculated as a measure of 

the tendency of structures to reach a stable and compact arrangement. The SASA value per residue 

of the 2MXU model is displayed in Figure 22. It shows a global increased tendency for exposing 

residues to solvent, due to the substitution, as noticeable for residues E22, D23, K28 and in the 

mutated site of G37L. These results support the changes in RMSF (Figure 18) and secondary 

structure (Figure 20). 

 

 

Figure 22: Solvent Accessible Surface Area per residue of wild type and G33L and G37L, in the 2MXU model, calculated 
as an average over the last 20 ns of each simulation. 
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The 5KK3 mutant types do not show the same enhanced tendency to expose residues E22 and D23 

to solvent. However, also in this case, G33L and G37L mutations affect the solvent exposure profile 

of the fibril. In detail, differences in residue K28 (SASAWT = 0,638 ± 0,125 nm2 and SASAG33L =

1,091 ± 0,197 nm2) and G37 (SASAWT = 0,279 ± 0,057 nm2 and SASAG37L = 0,696 ±

0,150 nm2) are worth to be mentioned (Figure 23).   

 

Figure 23: Solvent Accessible Surface Area per residue of wild type and G33L and G37L mutants, in the 5KK3 model, 
calculated as an average over the last 20 ns of each simulation. 

 

The hydrophobic Solvent Accessible Surface Area (blue column in Figure 24) slightly increases in all 

the mutated species. This is an expected result, considering that the glycine substitution with 

leucine increases the hydrophobicity77. The mutants also increase the total exposed surface, 

suggesting less stable and compact arrangements. In a greater detail, the protein Solvent Accessible 

Surface Area in case of G33L mutation (SASA2MXU = 145,06 ± 4,23 nm2 and SASA5KK3 =

148,01 ± 5,75 nm2) is higher than G37L (SASA2MXU = 140,55 ± 1,99 nm2 and SASA5KK3 =

136,32 ± 4,93 nm2) and WT (SASA2MXU = 128,35 ± 3,11 nm2 and SASA5KK3 = 136,22 ±

4,08  nm2) in both 2MXU and 5KK3 molecular system. 
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Figure 24: Solvent Accessible Surface Area for WT, G33L and G37L for 2MXU model (A) and 5KK3 (B), calculated as an 
average over the last 20 ns of each simulation. 

 

In order to highlight the low frequency mode of motion corresponding to the highest amplitude, 

Principal Component Analysis was performed. The amplitude of eigenvalues corresponds to the 

variance of the protein motion, usually quantified as mean square fluctuations, along their relative 

eigenvectors yields by PCA. By observing Figure 25, it is clear the presence of a prevalent PC mode 

in G33L mutants of the two models (the amplitude of the first eigenvalue is 12,42 nm2 in the 2MXU 

model, 10,12 nm2 in the 5KK3 model). The same can be said for G37L mutant of 2MXU model. Here, 

the amplitude of the first eigenvalue is 4,38 nm2, still much higher when compared to WT 

(2,28 nm2). The previously mentioned results demonstrate how mutations strongly affects the 

conformational dynamics of investigated models when compared to WT. 

 

Figure 25: Eigenvalues and relative amplitudes.  
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With the aim of analyzing the structural stability of the proteins, the order parameter defined in Eq. 

17 was calculated. The order parameter (ordP) gives a measure of the alignment among protein 

chains. If ordP assumes values close to 1, the chains maintain an alignment to the initial structure. 

On the contrary, if the values of ordP are lower than 1, the overall structural order decreases. The 

value of the order parameter (Figure 26) emphasizes the effects of G-to-L substitutions on structural 

stability. It is evident that G33L (ordP2MXU = 0,902, σ2MXU = 2,82e−2 and ordP5KK3 = 0,928,

σ5KK3 = 1,70e−2 ) strongly destabilizes the ordered structure of WTs (ordP2MXU = 0,984,

σ2MXU = 1,57e−3 and ordP5KK3 = 0,989, σ5KK3 = 2,62e−3). The impact of G37L is also relevant in 

the 2MXU model (ordP2MXU = 0,961, σ2MXU = 1,07e−2), unlike the 5KK3 one (ordP5KK3 = 0,981,

σ5KK3 = 2,82e−2).  

 

 

Figure 26: Expected value and corresponding standard deviation of the order parameter, calculated over the last 20 ns 
of trajectories. The panel A) shows the three species of 2MXU model, the panel B) shows the three species of 5KK3. 

 

With the aim of highlighting the per-residue alignment along the fibril structure, the order 

parameter is computed as a function of the residue index (Figure 27). Overall, N-terminal is the most 

disordered region in all the six structures evaluated. Besides, the central core including D23-S26 of 

both G33L mutant types are subjected to a notable distortion. In particular, the order parameter 
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swings around 0,90-0,91 in the 2MXU model and 0,94-0,95 in the 5KK3 model (Figure 27). The same 

evidence is noticed in the C-terminal regions (ordP2MXU ≃ 0,8, ; ordP5KK3 ≃ 0,85). On the other 

hands, the effect of G37L substitution is less remarkable. In fact, the order parameter along the 

chain is almost identical when compared to WT and close to 1, especially in 5KK3 model. All these 

results are consistent with fluctuations (Figure 18 and Figure 19) and changes in the secondary 

structure (Figure 20 and Figure 21), confirming that the most flexible regions assumes a more 

disordered arrangement. 

 

Figure 27: Order parameter as a function of the residue index in the 2MXU model (A) and 5KK3 model (B). 

 

Lastly, a Functional Mode Analysis (FMA) on the order parameter as a function of the time was 

performed, in order to detect a single collective mode maximally correlated to fluctuations in such 

parameter. The models were validated by predicting the quantity of interest with a Pearson 

correlation coefficient higher than 0,80. The initial and final frames extracted from trajectories along 

ewMCM vectors clearly shows all the investigated structures are subjected to a torsional mode, in 
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particular the mutant types of 2MXU (Figure 28) and 5KK3 models. G33L mutation in 5KK3 model 

(Figure 29, panel A) and B)) is characterized by a tendency to open from the lateral chain.  

 

Figure 28: A) B) and C) D) show the conformational changes of G33L (left) and G37L (right) in the 2MXU model. 
Snapshots are obtained from ewMCM trajectories. 

 

Figure 29: A) B) and C) D) show the conformational changes of G33L (left) and G37L (right) in the 5KK3 model. 
Snapshots are obtained from ewMCM trajectories. 
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4.4 Discussion 

Protein aggregation is implicated into a broad range of human illnesses. Alzheimer’s Disease, for 

example, is characterized by aggregates of two types amyloid-beta peptides in the brain of patients: 

Aβ40 and Aβ42. The precise mechanisms of aggregation remain unclear, but six residues were 

identified to be essential for the formation of such aggregates: H14, E22, D23, G33, G37 and G3865. 

Two of the six residue proposed, G33 and G37, are involved in a GxxxG motif called glycine zipper68. 

Because it has been shown that the GxxxG motif has a key role in the fibril formation67,69,71, 

investigations of peptides with specific aminoacidic substitutions may help to clarify mechanisms 

behind aggregation and oligomerization of Aβ. For this purpose, two glycine-to-leucine substitutions 

on two different models of Aβ42 (2MXU and 5KK3) have been investigated: G33L and G37L. Leucine 

and not alanine was used to replace glycine, because AxxxG motif and GxxxA are implicated in 

protein-protein interactions78, as previously proposed by Hung et al.73 In this scenario, this work is 

aimed to be complementary to the evidences proposed by Harmeier et ai.69, Hung et al.73 and by 

Fonte et ai.74. 

The mutant types were seen to undergo remarkable changes in the conformational stability. These 

evidences substantially confirm the key role of the glycine zipper in the mechanism of fibril 

formation. The overall RMSF in the 2MXU model (Figure 18) is sharply higher than that of the WT. 

Unlike the G33L, that also causes an enhanced flexibility of the central hydrophobic core, the G37L 

only affects the C-terminal region. It is interesting to note that changes in RMSF are in line with 

changes in the secondary structure (Figure 20 and Figure 21), since a marked loss of β-strand content 

is clearly visible in the most flexible regions.  This evidence is in accordance with results shown by 

Perczel et al., which demonstrated that β-strands stabilize and give strength to peptides50.  

It is worth highlighting that the Solvent Accessible Surface Area per Residue plot, displayed in Figure 

22 and Figure 23, shows a notable enhanced tendency of exposing residue K28 in both 2MXU and 

5KK3 models (in the latter, this tendency is mainly noticeable in G33L mutant type). As reported 

from solid-state NMR, residue K28 of S-shaped structure of Aβ42 is involved in an intramolecular 

salt bridge (SB) with residue A42 that stabilizes the triple β-motif79. This finding suggests that the 

increased solvent exposure of residue K28 can lead to the disruption of K28-A42 and destabilize the 

structure of the folded protein80.  

Moreover, changes in the exposed hydrophobic surface (Figure 24) are substantially supported by 

literature because, according to the scale of Kyte and Doolittle77, the substitution of a glycine to a 

leucine increases the hydrophobicity by 0,15. The total SASA represents another significant 
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contribution to the reduced stability of mutant types51. The value of SASA is related to the tendency 

of a protein to reach a stable and compact arrangements and, in our cases decrease as follow, for 

both model: G33L>G37L>WT.  

This hypothesis is confirmed by the distribution of probability of the order parameter (Figure 26), 

that shows the same tendency. To be specific, G33L causes a distortion in the N- and C-terminal and 

in the central hydrophobic core. On the other hands, G37L affects the N- and C- terminal region of 

the 2MXU model, mostly. Unlike G33L, the effect of such mutation is less notable in the central core.  

It is interesting to note that the misalignment among residues of chain A and the corresponding 

residues of chain I is in line with the tendency of residues for exposing themselves to the solvent 

and with changes in the secondary structure.  

The above-mentioned instability of the mutant types with respect to the WTs is also confirmed by 

the Functional Mode Analysis performed on the order parameter. Specifically, the MD trajectories 

filtered on ewMCM clearly highlight the presence of a torsional mode in both G33L mutants and in 

the G37L mutant of the 2MXU model. Contrarily, G37L tends to maintain a more compact 

arrangement, even though a torsional mode is still present. 

To summarize, our data confirm the importance of residues 33 and 37 for formation of Aβ42 fibrils, 

since the substitutions here investigated notably affect the conformational dynamics and structural 

stability of the peptides. In particular, G33 of the central glycine zipper has been proposed to be 

essential for assuring stability and promoting the process of fibril formation. It has been 

proposed69,73 that the aggregation of Aβ42 is alleviated by enhancing the hydrophobicity at position 

G33 with G-to-A or G-to-I substitution. We also find that G37L mutant type of the 2MXU model 

appears less stable. These evidences, combined with the studies early mentioned69,73,74, confirm 

that the disruption of the glycine zipper can reduce the aggregation propensity of Aβ42.  

Therefore, additional computational studies might yield a more detailed insight into the effects of 

mutations in such region.  

On the basis of our data, further investigations might consider this key region as a binding site for 

inhibitors drugs aimed at reducing the stability of the Aβ fibrils. 

4.5 Conclusions 

In this chapter, two different glycine-to-leucine substitutions at position 33 and 37 were analyzed 

and compared in two models of Aβ11−42. Molecular Dynamics simulation in explicit solvent were 

performed to study their dynamic behavior in physiological environment and how mutations affect 
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the aggregation tendency of Aβ42. MD clearly showed that the disruption of the glycine zipper, 

induced by specific aminoacidic substitutions, causes conformational changes and leads to an 

enhanced instability of the structure. The results are line with earlier experimental and 

computational studies69,73,74, indicating that binding glycine zipper might be helpful for developing 

new Aβ inhibitors.  
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