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We think too much and feel too little.
More than machinery, we need humanity;

more than cleverness, we need kindness and gentleness.
Without these qualities, life will be violent and all will

be lost.

Charlie Chaplin
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Chapter 1

Introduction

In 1997 IBM supercomputer defeated the world chess champion but it won playing an
unequal weapons game. In a single second the computer could evaluate almost 200
million possible moves while his human rival could take into consideration 3 moves
per second at most. Even today computers can not really compete with human
brain especially in fields such as hearing, vision, pattern recognition and learning
[3]. After all, nature took millions of years to solve problems which traditional engi-
neering approaches struggle to solve and this is why scientists and engineers started
to look at biological systems trying to emulate or even surpass their performances.
For that reason, from the late 1980s a huge number of researches and studies has
focused on imitation of neuro-biological architectures present in the nervous system,
leading to the development of the concept of Neuromorphic engineering. Neuro-
morphic Engineering is an interdisciplinary field of study that involves biologists
and physicians as well as mathematicians and engineers and whose main focus is
to design analog, digital, mixed-mode analog/digital VLSI, and software systems
that implement models of neural systems [43]. In order to accomplish this, it is first
required to explore phenomena and theories that explain the process you want to
model: neuromorphic algorithms generally lead to the elaboration of computational
models that among others more practical applications, provide important insight
into various mechanism in the brain.

One of the mechanisms that most characterizes human brain is the so-called
selective attention. Selective attention is the process of reacting selectively to certain
stimuli, when several occur simultaneously and it characterizes each of our senses.
It is a passive and instinctive phenomena different from mental concentration in
which personal will is involved. Evolution has made it possible because the brain
must deal with a large amount of sensory input at each moment of our existence
and it must decode them in real time without having enough resources to process all
the information with the same degree of detail. In general human attention occurs
after a quick scan of all the stimuli coming through our five senses from the external
environment and then guides the sense in question towards the most salient stimulus.
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1 – Introduction

The mechanism of attention allows us to be physiological functional and efficient in
everyday life. For that reason understanding and being able to predict how and
where human attention is focused are important research topics in neuromorphic
engineering.

A sensory path that carries a great amount of information is sight: it has been
estimated up to 100Mbps carried by each optic nerve [28]. Light enters in human eyes
through the pupil and it is converged onto the retina by the cornea and the crystalline
lens. The retina is placed in the back wall of the eye and its receptors detect light
energy and transduce the action potentials that travel along the optic nerve. The
fovea, center of the retina, has the highest resolution in the eye and processing
the entire visual field with its level of detail would require greater computational
resources than the ones available. Visual selective attention has been described in
1979 by Shulman [31] et al. with the similarity of the spotlight in a dark room:
looking at a particular area can be seen as directing a spotlight (the fovea) to a
particular zone of a dark room. Today it is known that this explanation refers to
what is called overt attention, which occurs every time the observer shifts his/her
gaze (focuses his/her attention) to a different area of the scene that he or she is
looking at. Overt attention differs from covert attention that occurs when an area
of the scene attracts our attention without looking directly at it (as when your name
is listed in a series of written words). In any case it is believed that these two types
of visual attention are not independent: it is not possible to direct visual attention
in a particular area of the scene, looking elsewhere. Factors that drive human visual
selective attention attention can mainly be divided in two categories [8].

• Bottom-up factors that only depend on the scene the observer is looking at
and are the results of the fact that some stimuli are visually more stimulant
then the others and attract attention involuntary [27];

• Top-down factors that are controlled by the organism itself and its internal
state [27].

Even if first computational models that tried to copy human visual selective at-
tention mechanism date back to the 1980s, until few years ago they mainly were
theoretical studies. Only in the last 15 years computational power allowed to look
at more practical applications for these models. Despite this short history, compu-
tational models for visual attention are so many that listing them all is hard as well
as not very useful for the purposes of our work. All of them have the final purpose of
predicting which are the most salient areas of a scene given as input to the algorithm
as a picture that represents the scene itself. General structure is repeated almost
unchanged in the most famous models and follows psychological theories as Feature
Integration Theory (FIT), despite this overall similarity, a strong dependence on the
choice of parameters causes small changes in computer code to originate different
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models with different performances. The first common output of every computa-
tional models is a saliency map. The concept of saliency map is born in 1985 [19]
and refers to a two-dimensional map where pixels values are proportional to how
much the corresponding area attracts observer’s visual attention. A turning point
for the state of the art can be considered the work published by Russel et al.. As
far as we know, it is the first example of a computational model biologically plau-
sible that does not describe the visual attention as a process guided exclusively by
the image features but also by the organization of the image in perceptual objects
that are recognized without requiring to have access to all their possible features
[28]: the so called proto-objects. The initial decomposition of the input image in
a series of channels link to elementary features such as intensity, color opponency
and orientation is left unchanged from most of the previous models but biological
concepts of Border Ownership Cells and Grouping cells are introduced.

This current study proposes a new computational model of proto-object based vi-
sual attention completely developed in MATLAB 2017b environment. Its backbone
is the same as the one suggested by Russel et al. but it aims to add a new channel
(disparity channel) carrying depth perception information. Despite the large number
of models of visual salience already mentioned, it is surprising how studies are largely
focused on a two-dimensional representation of reality, primary features are gener-
ally chosen without taking into consideration that we live in a three-dimensional
world and that relative arrangement of objects in space could drive our attention.
One organizing principle that humans employ is to structure the world in parallel
planes or surfaces. Each plane is associated with a particular distance from the ob-
server. First experiments conducted on maquaque monkeys at the Brain Institute of
the Johns Hopkins University seem to confirm the theory that the mechanism oper-
ated by the grouping cells can also be adapted to a three-dimensional analysis, this
makes proto-object model valid for spatial analysis. If little research has been done
on three-dimensional models of feature based saliency three-dimensional models of
proto-object saliency are a almost new field of study. Differently from a previous
work that assumed that a depth map is pre-computed, this model only assumes
stereoscopic information as input. Two views of the same scene are given to the
algorithm, they are identical except for the fact that the same image point is hori-
zontally shifted between the two views, the shift entity is inversely proportional to
the distance of that specific point from the observer. This reproduces what happens
in humans between left and right eye. The model is built on the assumption that
the pop-out effect characterize depth human perception as well as it happens with
other elementary features: depth discontinuity attracts human attention more then
regions lying at the same distance from the observer. A complete computational
model usually has as final output a series of image regions that tries to reproduce
human saccades and starts with the most salient area of the saliency map. Anyway
our study ends with the saliency map obtained by the combination of two different
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maps.

1. Two-dimensional saliency map that is obtain from one of the two view
given as inputs and includes contributes of intensity, color opponency and
orientation channels.

2. Three-dimensional saliency map that is obtain from both views given as
inputs and includes contribute of disparity channel.

The algorithm works by searching for disparities between the two stereo images but
disparity values change with changing in images resolution, making model automati-
zation difficult. For that reason the disparity channel has been first tested by using
artificially created images where disparity values were known. Resulting saliency
maps show the ability of recognizing depth discontinuities (associated with dispar-
ity values rarer than others), regardless their position and frequency with which
they occur. In order to test any improvements made by introducing disparity chan-
nel in the computational model of proto-object based saliency a dataset with both
stereoscopic views and a valid ground truth (i.e.fixation density map estimated us-
ing an eye-tracker) is needed. Only one dataset composed by 18 couples of images,
was available online. Even if all the three metrics used to evaluate the model show
better or at least equal ability of predicting a saliency map that is as much as pos-
sible similar to the map provided as ground truth, the paucity of datasets does not
permit to these results to reach statistic significance. Once a new series of datasets
will have been made, the model aims to automate the choice of disparity values to
look for. It will follow the working method of far, near and tuned-zero cells of the
visual cortex that respectively respond to disparity in planes further away from the
fixation plane, closer than the fixation plane and on the fixation plane.

Dealing with a large number of data that has to be collected and analyzed is not
an exclusive problem of the human brain: as widely known it affects many modern
technical systems. Computer vision systems are asked to deal with a number of
pixel values that can reach a few millions per frame and so computational cost is
generally very high and task becomes particularly difficult if real time application is
needed such as in cognitive systems and mobile robotics. If we think about a robot
that is able to autonomously drive a car having a limit amount of resources and
facing an unknown environment, the ability to prioritize inputs coming from the
outside is of fundamental importance for the reduction of the computational cost
and complexity. Moreover, with the massive and domestic use of both computers
and Internet, predicting how and where visual attention is directed when stimulated
by an image on a screen, could revolutionize the advertising graphics. Furthermore,
psychology of colors applied to the brand as well as the choice of particular fonts
for communication or Gestalt psychology [21] are notions already widely diffused in
this field.
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Chapter 2

Background

Thinking about how the brain works, human beings receive a long series of mul-
tisensory inputs, such as what is seen, touched or heard, in a completely indirect
way. All these sensations are experienced without thinking: the brain uses much
less power to function than a current microchip. As already anticipated in chapter 1
this is possible thank to a brain function that allows to instinctively select only some
of all the environmental stimuli. This mechanism is called selective attention and it
is typical of every human sense, including the sight that is the focus of this study.
In order to understand and imitate visual selective attention biologist, doctors and
engineers are working together to elaborate a computational model of visual saliency
that is both functional and biological plausible. Looking for the definition of the
word "saliency" (or "salience") in the dictionary it is described as "the quality of
being particularly noticeable or important". In fact, the purpose of the computa-
tional models just mentioned is precisely that of predicting and simulating how and
where visual attention is directed. In this sense, the recent development of the state
of the art has led to the emergence of a new class of neuromorphic algorithms for
the simulation of visual selective attention. Starting from studies on biology, physi-
ology and human psychology these models look at visual saliency as an object based
process instead of a feature based one (see section 2.3 for further information) and
a sufficiently in-depth knowledge of the mechanism at the two-dimensional level has
moved the focus of researches to computational models of visual saliency that look
to the three-dimensional space.

2.1 Human Visual Attention

Human beings are constantly bombarded by a large amount of sensory stimuli in-
cluding the ones coming from the retina, fundamental component of human vision
system whose cells transform light energy in electric potential. Therefore, also the
visual system is subjected to the mechanism of attention operated by the brain,
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2 – Background

which in this case has the specific name of visual selective attention. Visual selective
attention is set when competition between stimuli coming from the visual field is
solved in favor of one or few elements that are elected as carriers of more relevant or
more noticeable information [6]. Attention determines the order in which an image
or a scene is investigated. Even though our overall visual memory is considerably
long and good, the reaction to small changes in the visual field, including an im-
age on a screen, is poor. This statement is supported by experiments on change
blindness conducted since the nineteenth century. If the image is complex, only the
general sense is retained and at each moment only a small part is analyzed while
the rest is ignored. This part is often, but not always, the region you are looking
at. Background and small details are generally ignored. Anyway thank to selective
attention people automatically elect salient regions (points of main interest) in their
surrounding and explore scene by rapidly change their focus.

There is not only one specific area of the brain involved in attention process: one
of the most relevant outcome of neuro-physiology on selective visual attention is that
there is not an unique area of the brain that drives attention mechanism. Neurons
correlated to visual search appear to be spread in all brain areas link to visual
processing. Rather, this mechanism involves a network of anatomical areas. What
is known for sure is that information travels in a parallel way: different features are
processed by different zones of the visual cortex. The exact processing of information
within the visual paths is not known yet but studies in this field are proceeding.
Most common belief is that there are three main pathways: color, shape and motion
which is also responsible for depth processing. Anyway lateral connections between
different areas of the visual system show that pathways are not completely separated.

From the entrance of the light stimulus trough the retina, back wall of the eye,
up to the higher brain areas where the signal is interpreted, the region of each
anatomical area is projected on the subsequent area as if the two were superimposed.
The signal travels along the optic nerve whose fibers not always are neatly collected
but each time they arrive in a new anatomic area of the brain recompose to always
end in an equally orderly manner. In order to elaborate a computational model that
simulates the mechanism of visual attention is fundamental to have at least a brief
knowledge of the human visual system and pathways [11].

2.1.1 Human Visual System

External sensory organ of the visual system is the eye. It collects light from the
external environment and through light receives information. Light enters through
the pupil and its intensity is regulated by a diaphragm whose name is iris and thank
to a series of lens, light signal is focused on the retina to form the image. For an
overall view of human eye structure and the relative position of its main components,
refer to the figure 2.1.
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The Retina and the Optic Chiasm

The retina transforms light inputs into electric signals that are sent to the brain by
the optic nerve so it is not a peripheral structure but part of the central nervous
system. At brain level signals are first elaborated and then interpreted. The retina
is situated in the back of the eye and is sensitive to the light thank to the over 100
million photoreceptor cells, rods and cones [11].

Figure 2.1: Illustration of human eye structure: black bold writings refer to its main
anatomic components name; black segments indicate the position of each component [34].

Rods, photoreceptor cells in the retina are:

• more numerous;

• more sensitive to light: suitable for night vision;

• not sensitive to color.

Cones are less sensitive to light than rods so they are suitable for daytime vision,
they provide color sensitivity and among them there are three different types of color
reception.

• S-cones or Short-wavelength cones: maximum absorption at wavelengths
between 400nm and 500nm (blue portion of the visible spectrum);

• M-cones or Middle-wavelength cones: sensitive to wavelengths between
500nm and 600nm (green portion of the visible spectrum);

• L-cones or Long-wavelength cones: sensitive to wavelengths greater than
600nm (red portion of the visible spectrum).

7



2 – Background

In the central part of the retina there is a small pit with a circular shape and about
1.5mm in diameter: the fovea. Here there is the maximum concentration of the
cones (but only those that allow the vision of red and green), while the rods are
completely absent. The fovea is the region with the maximum visual sharpness.
Because of the distribution of photoreceptor cells, we see only the small region
currently fixed in a high resolution, the whole surrounding is representing with a
very law precision. In order to amplify the total area perceived at high resolution,
light stimuli from different areas of the visual field, arrive at the fovea subsequently.
This is mainly possible thank to eye movements. Inter-neurons bring information
from photoreceptor cells to ganglion cells that operating on the chromatic inputs
determine color and luminance opponency [11]. Defining the receptive field of a
sensory neuron as a small area in the sensory space (e.g., the body surface, or the
visual field) in which stimulus modifies neuron firing, ganglion cells in the retina has
a circular receptive field separated in two concentric areas: center (internal area) and
surround (external area). There are two types of ganglion cells.

• On-center ganglion cells: massive reaction (number of action potentials per
second) for a light stimulus located in the center of their receptive field and
inhibition caused by a light stimulus located in the surrounding area, suitable
to well see a bright region on a dark background;

• Off-center ganglion cells: massive reaction (number of action potentials
per second) for a light stimulus located in the surround of their receptive field
and inhibition caused by a light stimulus located in the central area, suitable
to well see a dark region on a bright background.

These two types of ganglion cell are equally present in the retina. In figure 2.2 the
mechanism of on-center cells and off-center cells reaction to two opposite stimuli
(bright center and bright surround), is briefly summarized.Some of this cells are also
sensitive to color contrasts: blue-yellow and red-green.This receptive field organiza-
tion can be computationally modeled by a difference of gaussian filters (this concept
is further debated in chapter 3). After passing through the retina the visual infor-
mation, driven by the optic nerve (continuation of the ganglion cell axons), runs
to the optic chiasm. In this area of the brain a partial crossing between the nerve
fibers, takes place. From there two pathways go to each brain hemisphere (figure
2.4):

Cortical or Retino-geniculate pathway that passes through the Lateral Genic-
ulate Nucleus (LGN) arrives to the primary visual cortex (V1), at the back of
the brain and carries 90% of the global visual information.

Subcortical or Collicular pathway that does not cross the primary visual cortex
(V1) but passes through the Superior Colliculus (SC).
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Figure 2.2: Briefly overview of ganglion cells reaction to different stimuli in their receptive
field: flashlights and light beams indicate the illuminated area og the receptive fields
(yellow areas).(a) The bright zone of the receptive field is the central area: on-center cells
are stimulated while off-center cells are inhibited. (b) The bright zone of the receptive field
is the surrounding area: on-center cells are inhibited wile off.Figure adapted from [20].

Cortical or Retino-geniculate Pathway

Lateral Geniculate Nucleus is composed by six cellular laminae and its cells have
a receptive field with the same shape as the one of the retinal ganglion cells but
larger and with a stronger surround [11] [10]. From Lateral Geniculate Nucleus the
visual information is directly transmitted to the primary visual cortex (V1) that is
the access way to the brain and the most investigated area in visual system. In V1
there are three different types of cells.

• Simple cells: orientation sensitive;

• Complex cells: take inputs from the simple cells, larger receptive field than
the simple cells, sensitive to moving lines or edges;

• Hypercomplex cells: take inputs from complex cells, capable to detective
lines of a particular length or line that end in a specific area.

Up to the primary visual cortex the processing stream is called primary visual path-
way.As information travels along the two paths, it crosses more and more specialized
cell populations able to elaborate the numerous outputs coming from the previous
cells.
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Subcortical or Collicular Pathway

Visual inputs from the retina can directly arrive in the Superior Colliculus (SC)
structure. The SC is located in mammalian midbrain (figure 2.3): its superficial
layers (sSC) receive visual signals while the deeper layers (dSC) are active in the
eye movement orientation. In sSC neurons do not show any particular predisposi-
tions for stimuli linked to specific features, some of them show to motion without
any preference on directions. After the SC signals arrive in the pulvinar (Pulv.),
relief of the posterior end of the diencephalon (figure 2.3) that whose neurons are
similar to the ones in sSC. From the pulvinar area the subcortical pathway reach
the Frontal Eye Field (FEF) that is a region in the frontal cortex with a robust eye
movement related activity [1].The FEF sends signal back to the deeper layers of
the Superior Colliculus which communicates directly with the brain-stem (situated
between hindbrain and the mylencephalon, see figure 2.3). Eyes move, under the
command of the brain-stem.

(a) Telencephalon (b) Diencephalon (c) Midbrain

(d) Hindbrain (e) Mylencephalon

Figure 2.3: Subdivision and organization of the human brain: visual pathways groups
of cells are located in different areas of the brain (a) Telencephalon area highlighted in
red. (b) Diencephalon area (where Pulv. is located) highlighted in red. (c) Midbrain
area (where SC is located) highlighted in red (d) Hindbrain area highlighted in red. (e)
Mylencephalon area highlighted in red.

10



2 – Background

Extrastriate Cortex

From the primary visual cortex information is sent to higher brain areas globally
called extrastriate cortex, in order to differentiate them from the primary visual
cortex that has a striated architecture. Optic signals travel in the extrastriate cortex
following two different pathways (figure 2.4):

"What" Pathway or Ventral Stream that is the color and form pathway. It
goes through all the different areas listed below, reaching the Infero-teporal
cortex where objects recognition takes place (it carries the "what" informa-
tion). Signals cross brain regions in the following order:

1. V2;

2. V3;

3. V4;

4. Infero-temporal cortex (IT).

"Where" Pathway or Dorsal Stream that is the motion and depth pathway (it
carries the "where" information, processed by the Poster-Parietal cortex). It
goes through all the different areas listed below, according to the following
order: order:

1. V2;

2. V3;

3. V5 or Middle Temporal area (MT);

4. Parieto-Occipital area (PO);

5. Poster-Parietal cortex (PP).

Visual pathways have been described starting from the eye and proceeding up to the
higher regions of the brain involved visual stimuli interpretation, but it reality the
overall mechanism is bidirectional: top-down connections go from the higher areas
to the LGN. Also different pathways are not so strictly separated as well: lateral
connections make V4 ("What" pathway) and MT ("Where" pathway) communicate.
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Figure 2.4: Visual pathways overview: continuous arrows mark primary visual pathways
(up to V1), green arrows follow the Cortical Pathway, red arrow follows the Subcortical
Pathway ; dotted arrows mark the Extrastriate Pathways (higher than V1), purple arrow
follows the "What" pathway, black arrow follows the "Where" pathway (sSC and dSC:
superficial and deeper Superior Colliculus, LGN: Lateral Geniculate Nucleus, PO: Parieto-
Occipital Cortex, PP: Parieto-Parietal Cortex,Pulv.: Pulvinar, FEF: Frontal Eye Field,
IT: Infero-Temporal Area, V1-MT: from Primary Visual Cortex up to Middle Temporal
cortex ).

2.1.2 Neurobiological Correlates of Visual Attention

As anticipated in previous section, how and which brain areas are specifically in-
volved in various steps of visual selective attention is still an open biomedical research
question. One of the most important conclusions was the understanding that almost
all the areas involved in visual processing take part in this mechanism. In order to
simplify the search for an answer to this open question in the field of research on
perception, some studies divided attention process into three consecutive steps or
functions [24]:

1. orienting attention;

2. target detection;

3. alertness.
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First function involves three brain areas: the Parieto-Parietal cortex (PP), the Su-
perior Colliculus in the midbrain and the pulvinar in the diencephalon (see figure
2.3 and 2.4 for reference). The Parieto-Parietal cortex takes care of diverting atten-
tion from the previous focus location (inhibition of return), the Superior Colliculus
moves the attention to a new location and the pulvinar reads data regarding the new
attention location. This combination of systems is addressed as posterior attention
system. What is called by Posner and Peterson in their work anterior attentional
system deals with target detection function [24] and they support that the brain
frontal areas are involved in this task. Finally high priority signals alertness de-
pends on brain activities in the midbrain zone (see figure 2.3). Eye movements is
guided by Superior Colliculus and Frontal Eye Field (figure 2.4). Later studies have
also focused on understanding which areas of the brain are stimulated by top-down
rather than bottom-up factors (see section 2.1.3) and it has once again emerged that
there is no single area involved but a network of areas. This network includes areas
of the brain that are verified to present activities in visual search tasks.

2.1.3 Bottom-up vs Top-down Attention

The mechanism of visual attention as well as that of simple perception is driven
essentially by two processes and the related factors.

• Bottom-up process and factors: attention is guided by the emerging char-
acteristics of sensory information.

• Top-down process and factors: attention is underpinned by intentional
and conscious processes.

Some studies following this distinction, divide attention itself in two type: Bottom-
up and Top-down attention. Bottom-up factors are derived exclusively from the
visual perceptual scene. In this sense when we refer to "salient" areas, we generally
refer to areas of the scene and / or of the image we are looking at, which in an
entirely involuntary way attract our attention. This involuntary process starts from
the sensory organ (generally called the "lower" level of the entire system involved in
the attention mechanism), eye in visual system, and proceeds up to the brain areas
where signal interpretation takes place ("higher" level of the system). This overall
path that goes from the bottom to higher levels, gives the name (bottom-up) to the
whole process. Common examples are a high-contrast area against a background
or uniqueness of a specific region within the scene. A bottom up factor can not be
voluntary neglected, this effect is called attentional capture and it is a very important
effect that can save our life if an emergency bell starts ringing capturing our attention
or a fire stars burning [10]. On the other hand top-down attention refers to a
process that starts from cognitive factors as preknowledge, context, expectation and
current goals [11]. This mechanism is sometimes distinguished from its bottom-up
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antagonist because it is described voluntary rather than automatic. In my opinion
this statement, although partially true, can be misleading. In fact, unless we are
asked to look for a figure, a color or something specific within the scene in front
of our eyes (in other word we are asked to perform a specific task), even top-down
attention is not a mechanism that depends strictly on our will. For example, if we
are hungry in a room where something edible is present, we will give visual attention
to food, but this, although guided by our brain, does not really depend on our active
will.Visual search is the best known and investigated aspect of top-down attention.
We experience it every time we have to look for a friend in a crowd. Bottom-up
process has been more studied than the top-down one and even the model shown in
this study is focused on bottom-up attention, this is due to the fact that data (such
as image features) driven process are easier to control than cognitive factors (such
as knowledge and expectations) [10].

2.1.4 Visual Search and Pop-out Effect

Visual search is an experimental paradigm consisting of presenting a set of objects in
the middle of which, in half of the tests, a target object appears. The observer task
is to report whether the target is present or absent. In a variant of this paradigm,
the target is always present but instead of having a single defining attribute, it
assumes one of two possible in each single test. In this case, the task of the subject
is to report which attribute of the target has been presented. Visual search can
be briefly summarized as the search for a target object (having a specific required
feature) positioned between a series of distractors (objects that do not have the
specific feature that the subject is asked to find). The efficiency of visual search is
measured from:

Reaction Time (RT) needed to find the target among a certain number of dis-
tractors, amount of time in between the presentation of a stimulus and the
issue of an answer;

Accuracy (AC) that is linked to the error rate achieved in completing the exper-
iment.

Efficiency can be estimated from the slop of the curve that represents the reaction
time of any single search, depending on the dimension of the set on which visual
search is operated. Obviously, since the target is generally only one object, enlarg-
ing or reducing the set means increasing or decreasing the number of distractors,
therefore making the search respectively more difficult or more easy.However, visual
search experiment (until research is still possible) a physiologically healthy reaction
time does not exceed 2000ms. In figure 2.5 two examples of visual search exper-
iment are shown. If the target differs from the distractors, only because a single
feature (figure 2.5 (a)), visual search becomes a feature search, if it differs for more
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than one feature (figure 2.5 (b)) it is called conjunction search and is less efficient.
Feature search occurs and in parallel across the visual field while conjunction search
occurs serially and requires attention [27]. When the target is well defined by a
single characteristic, ex. a red bar between blue bars, the "pop-out" effect occurs
(figure 2.5(a)). If this happens TR does not vary with the increase in the number
of distractors. Efficient visual searches are often linked to this phenomenon. Com-
mon sense suggests that the more an object is similar to the background, the more
difficult it is to identify it through the process of selective visual attention (unless
particularly relevant top-down factors take place). For that reason, computational
models that aim to find salient zones in any scene (or image), must evaluate how
much for each elementary features of the image, visual search can be approximated
to the "pop-out" effect.

(a) Feature search (b) Conjunction search (c) The continuum search slopes

Figure 2.5: (a) Feature search: the target (red bar) differs from the distractors (blue bars)
by one feature (pop-out effect). (b) Conjunction search: the target (red vertical bar)
differs from the distractors by two conjunct features. (c) Reaction time of a visual search
experiment in a function af the set size, curve slop indicates the efficiency (figure adapted
from [10]).

Reaction time does not give exhaustive information about the search process
itself. Measuring accuracy and seeing how it varies changing the stimulus onset
asynchrony is another way to evaluate search efficiency. stimulus onset asynchrony
(SOA) is the time in between two stimulus, considering the first one as the actual
search stimulus and the second as the mask that terminates the search. If the search
is easy, short SOAs do not preclude an efficient experiment success, more difficult
searches require longer SOAs.

An important field of study concerns the so-called search asymmetries. It is now
well established that looking for an objective target A in the midst of distractors
B is not always equal to the search for target B between distractors A. In fact if
between configuration A and configuration B, one is the canonical situation (most
common) then it will be easier finding an object that distinguishes itself for a rare
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peculiarity rather than finding an one with a common aspect among distractors
with a peculiar appearance. Searching for a tilt bar (rare situation) among strictly
vertical bars (common configuration) is harder than the inverse search this is also
due to the fact that detecting the presence of a characteristic is easier than detecting
its absence (figure 2.6). Furthermore due to the retina configuration and the central
position of the fovea, the highest resolution area of the retina (see section 2.1.1),
makes target at peripheral locations more difficult to detect so both reaction time
and errors increase with targets distance from the center [10] (eccentricity effect).

Figure 2.6: Example of different configuration for a visual search task: left image shows
the situation of an uncommon target among common configuration distractors; in right
image the situation is the opposite: common object is the target to find among peculiar
distractors. The observer should experience more easy the visual search in the left panel.

2.2 Human Depth Perception
As already mentioned in subsection 2.1.1 visual signal elaboration starts when light
coming from the external environment, is focused on the retina from the lens system
of the human eye. At the retina level a two-dimensional image is created. However,
common experience suggests that the perception we have through the visual system
is three-dimensional as the external word itself. Perceiving depth as well as the
ability to see the world in three dimensions means being able to evaluate external
objects distances. In order to reconstruct three-dimensional aspects of the environ-
ment, visual system uses a series of depth cues: information from the surrounding.
Depth cues include monocular and binocular depth cues.

• Monocular depth cues: perceivable using just one eye;

• Binocular depth cues: perceivable only using both right and left eye.
Binocular cues contribute to have a more accurate view of the three-dimensional
space while the monocular ones are rather artifices thanks to which our visual sys-
tem allows us to perceive depth even using only one single eye. This results from the
elaboration that our mind makes of data recorded by visual organs and their links
with previous sensory experiences and acquired cognition memory. A list accompa-
nied by a brief description can help to understand this statement, the usefulness of
depth cues and the difference between the two classes.
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Monocular Depth Cues

The information coming from each of the two eyes is sufficient to have a depth and
distance estimate. The best way to understand how the brain is able to give us
depth perception without using two eyes and stereo-vision (see subsection 2.2.1) is
to take a look at what are the monocular cues and their mechanisms. The different
molecular cues are listed below [39].

• Motion parallax: most used by some animals rather than by humans (e.g.
some species of birds). Generally when an observer moves can obtain informa-
tion about external objects distance by observing their relative motion against
a fixed background: closer objects zoom by slower than the more distant ones.
This is clearly perceived while traveling by car: pedestrians (close to the car
itself) appear to move really fast while threes (that generally are distant from
the road) seem to move slowly.

• Depth from motion: if an external object is moving toward the observe, its
distance as well as its motion is estimated observing how its size changes. This
happens because retinal projection of the observed external object expands
while it moves.

• Kinetic depth effect: when a three-dimensional object is in front a source of
light and its shadows is reflected on a screen and we see it from the other side
of the screen we see it as a two-dimensional shape but once it rotates visual
system has the necessary information to perceive its third dimensions.

• Perspective: lines that run parallel seem converging in the distance allowing
us understand, in a more or less detail way, the relative distance of two part
of an object or of features in a landscape. This is clearly visible when we look
at a long road that goes straight in front of us and that seems becomes more
narrow as long as it goes off in the distance.

• Relative size: only knowing two objects have the same size and without
having any additional information (such as the effective size) realizing that one
appears bigger that the other let the observer comprehend that it is closer.

• Familiar size: the fact that visual angle projected onto the retina decreases
with the distance, combined with previous knowledge of the dimensions of
a particular object, let the observer determine the absolute distance of that
particular object.

• Absolute size: even if there is only one object in the scene and its size
is unknown, a smaller object seems more distant than a bigger one that is
presented at the same location.
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• Aerial perspective: due to the presence of atmosphere that causes light
scattering, objects at a great distance have lower luminance contrast and lower
color saturation so they appear blurry.

• Accommodation: for distances up to 2meters when we try to focus on a
far away objects some intraocular muscles stretch the eye lens changing focal
length. The signal of muscles moving in sent to the visual cortex that use it
to evaluate depth/distance.

• Occulation: when near surfaces overlap far ones observer perceive them as
closer. This cue leads to a nearness "ranking" .

• Curvilinear perspective: the fact that at outer extremes of the visual field
parallel lines curve, is usually eliminated both in pictures and in paintings but
it really makes the observer feel like he or she is in a three-dimensional space.

• Texture gradient: this monocular cue is one of the most experienced in
everyday life. To explain it, it is enough to make the example of a flowers field:
when seen closely the individual components are clearly visible while when
viewed from a distance the individual flowers are no longer distinguishable
and rather the field looks like a single mantle (or spotted homogeneously if
there are flowers of several colors), fine details are visible from closely.

• Lighting and shading: how light falls on object helps our brain to under-
stand how far from the light source the object is and to determine its shape.

• Defocus blur: depth focus of the human eye is limited so blurring of distance
objects helps the brain to estimate distance and depth even if all the other
cues are not available.

• Elevation: if the object is visible together with the horizon we perceive it
closer to us if it is farther from the horizon or farther from us if it is closer
to the horizon. Moreover, if the object is near the horizon and it moves up
(in a position higher than the horizon) or down (in a position lower than the
horizon) it seems to move closer to the observer who is looking at it.

When the two eyes do not work together for the visualization of the same image,
depth perception is limited and less precise but visual field is bigger. In fact monoc-
ular visual fields of the two eyes partially overlap in the binocular area. However,
a healthy human being is able not only to exploit all monocular cues and combine
them to estimate distances and three-dimensional space, but also to integrate them
with binocular vision for greater precision in depth transmission. So few but more
precise binocular cues allow humans to better perceive depth and third dimension.
Visual acuity of the binocular vision is much greater than the monocular one, it
could reach more than double and up to about 240% as maximum value.
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Binocular Cues

Human eyes are about 6cm away one from the other and this makes their visual
fields overlap, giving rise to some retinal correspondences that lead to the fusion
of the two relative projections. When an observer is looking at a generic object,
ocular axes converge in a point called fixation point. An image from every point of
the object we are looking at, is projected on the retinas in a couple of points (one
for each eye) called retinal points. A point located in the right part of the visual
binocular field, has its projected image on the part of the right retina close to the
nose and on the part of the left retina close to the temple. It is perceived as one
single point located at the right. For that reason, at this first step of the visual
pathway, observer already has information about object position in the visual field.
The image that originates in the two eyes is perceive as one because for each eye, in
the retina, there is a point having the same spatial value of an other point located
in the contra-lateral eye retina. These points in both retinas, coupled by common
visual direction, are called retinal correspondent points and are fundamental for the
fusion mechanism [2]. This mechanism is composed by the following two types of
fusion.

• Sensory fusion: psychological cerebral process that allows the unification of
two similar images, of a fixed object, that originate at retinal corespondent
points.

• Motor fusion: it contributes to keep the images at the fovea location thank to
the alignment of the ocular axes (extrinsic musculature).

Corespondent points are not symmetric, they are coupled only by the fusion mech-
anism. All the objects that, at a certain time, are focused on the retina are all at
the same distance from the retina itself and are all located on a imaginary curve
called horopter (figure 2.7), all the points close to this curve (in front or behind)
compose the Panum’s area. This area is narrower near the fixation point and wider
the more it goes towards the periphery. Obviously right eye sees more the right side
of an object situated in the Panum’s area while the left eye sees more the left side,
so the images are not identical and neither have symmetric locations on the retinas.
The stereopsis results from this small disparity between left and right view of the
same object located in the Panum’s area. Outside the Panum’s area object-point
is seen double because its image originates in the retinas in two areas that are not
corespondent. Positioning the two index fingers in front of the eyes, one behind
the other at a certain distance, is an easy way to demonstrate it. If we focus on
the closest, the farthest appears double but if we focus on the farthest the closest
appears double.
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Figure 2.7: Horopter variation following fixation distance and Panum’s area.

For what concern binocular cues, there are three of them that provide depth
information while looking using two eyes. These cues are the following.

• Stereopsis: allowed by frontal separate locations of the eyes that causes they
to have different points of view. Therefore, at any moment, there are two
different retinal images of the same object available. Among other differences,
a lateral displacement exists between the representations of a scene from the
two views (left and right). From the comparison between these two images it
is possible to obtain a very accurate depth perception. This concept is better
explained in next section 2.2.1.

• Convergence: the two eyes located in different positions have to converge in
order to look at the same location. This causes stretching of the extra-ocular
muscles, kinesthetic signal helps in perceiving depth and/or distance. This
cue is valid for distances up to 10m.

• Shadow stereopsis: even if there is not actual stereoscopic parallax disparity
between the two retinal images, a difference in the shading can cause the two
images to be perceived equally as two stereoscopic images. This helps in depth
perception.

Considering both monocular and binocular cues only accomodation, convergence
and familiar size can give information about the absolute distance of an object, all
the other cues are relative.

2.2.1 Stereopsis

Stereopsis means the three-dimensional vision that originates from the simultane-
ously stimulation of retinal horizontally different elements in Panum’s area (figure
2.7). The minimal differences between the retinal images of objects placed in differ-
ent planes in the Panum’s area are used to capture the stereoscopic depth. Vertical
disparity from the two retinal images does not cause any stereoscopic effect. This is
the most complex expression of binocular cooperation and it is fundamental in order
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to allow the subject to interact with the external environment. Distance and angu-
lation with which object is fixated (for distances up to 30m [2]), are not perfectly
equal: in normal physiological conditions the image originated from object fixation
is projected in the fovea thanks to the convergence movements. Due to the fact
that the distance between the two eyes is 6cm every object farther or closer than
the fixation point projects its image at a certain distance from the fovea; nearest
objects project their images on farther points of the retinas along horizontal direc-
tion and vice versa (figure 2.8). The distance between the fixation point image and
other point image is called retinal disparity ; visual system is able to evaluate this
disparity and so give a sense of greater or less depth to the objects in the visual
field.Stereoscopic perception seems to start suddenly when we are in between 3 and
4 months old, before in women than in men.

Figure 2.8: Retinal projection of the images from the fixation point, a closest point and a
farther point [22].

Neurophysiology of retinal Disparity

Binocular neurons has been found both in primary visual cortex (V1 ) and in ex-
trastriate visual cortex (especially in V2 ), these cells encode the degree of disparity
between information coming from the two eyes. Some of these neurons respond se-
lectively when the retinal disparity is caused by objects located in the Panum’s area
in a position closer to the observer than the fixation point, while others respond
when the retinal disparity is caused by objects in the Panum’s area in a position
farther to the observer than the fixation point. Other binocular cells respond instead
when objects in the visual field are at the same distance of the fixation point, but
moved along the horizontal plane [22]. These three different types of binocular cells
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are respectively called near cells, far cells and tuned zero cells [38] (figure 2.9 and
figure 2.12).

Figure 2.9: Schematic explanatory representation of the neurophysiological mechanism of
retinal disparity interpretation operated by binocular neurons.

2.2.2 Space Organization in Parallel Planes

The fixation mechanism can be defined as the maintaining of the visual gaze on a
specific point in space. When the ocular axes converge in a specific point this is
called fixation point. As anticipated in section 2.2, this point lies on a plane parallel
to the coronal plane of the head (figure 2.10) and that in three-dimensional space
corresponds to the plane in which the two eyes are focused. Visual research experi-
ments conducted on primates at the Mind and Brain Institute of the Johns Hopkins
University (Baltimore, MD, USA), have shown that the mechanism of stereopsis
in living beings endowed with binocular vision, including human beings, works by
dividing the Panum’s area of fusion into a series of planes parallel to the fixation
plane located closer or farther to the individual himself, respectively (in front or
behind the fixation plane). Even previous studies had already shown that one or-
ganizing principle which humans employ to understand how objects are related to
each other and to themselves in space, is to structure the world in planes/ surfaces
[12] [46]. Searching for a target within a plane of coplanar elements is efficient, see
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Figure 2.10: Position and orientation of the coronal plane of the head [14].

section 2.1.4 for information about visual search ad relative efficiency notion, while
it is inefficient if the search can not be constrained to a surface (examples of dif-
ferent visual search tasks shown in figure 2.11 experimental data available in [46]).
Furthermore, attention spreads across elements in a plane.

(a) Easy Visual Search (b) Difficult Visual Search

Figure 2.11: (a) Efficient Visual Search in the middle vertical plane: all the elements in
the middle plane, including the target are coplanar with respect the search surface . (b)
Inefficient Visual Search in the middle vertical plane: target slated more backward than
the search surface [46].

For all these reasons the Panum’s area should be redefined more as a part of
the three-dimensional space, assuming therefore that this is a volume rather than
an area. For the sake of simplicity, consider that this Panum’s volume has the
appearance of a parallelepiped having two of the lateral faces parallel to the fixing
plane. These faces delimit the entire volume so that all the visual field between them
is in the binocular fusion zone. The left and right retinal images from all the points
included in this volume are seen as single. Three-dimensional scene (where fusion
between the two retinal projections takes place) can be decomposed in a series of
parallel planes as visible in figure 2.12.
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Figure 2.12: Disparity from planes of different depths: Far binocular cells respond to
disparities on planes 1 and 2. Near binocular cells respond to disparities on planes -1 and
-2. Tuned zero cells respond to disparities on plane 0 (fixation plane) [38].

This subdivision of the three-dimensional space has fundamental importance for
the development of the computational model described in the chapter 3. Assuming
that between the two stereoscopic representations of the same point, only its location
changes, its position in the three dimensional space can be determined from the
evaluation of the difference between the position in the left and the right view.
The displacement is proportional to a specific value of retinal disparity. As visible
in figure 2.8 and in figure 2.12 a bigger retinal disparity value , considered along
the horizontal direction, indicates a point that is situated on a plane (figure 2.12)
closer to the observer than the fixation plane. Bigger retinal disparities indicate
smaller distances from the observer, while smaller retinal disparities indicate bigger
distances from the observer. If the disparity between the locations of the same point
in the two stereo views is determined completely by the value of a horizontal shift,
this can be considered as an equivalent of the retinal disparity. In this situation all
the points lying on the same surface in figure 2.12 are associated to a specific value
of the horizontal shift existing between the position of the same point in the two
stereoscopic views.

2.3 Computational Models of Visual Attention

In the last three decades, with greater focus in the last 10 years, computer vision
techniques development and growth of interest in robotics, have caused that even the
engineers began to deepen the study of mechanisms able to select the most relevant
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information within the large amount of visual data. A more technical-engineering
approach has been combined with previous physicians and biologists studies. This
led to the construction of new computational models of visual attention less focused
on the understanding of human perception, having the purpose of improving existing
vision systems. Most of the algorithms inspired buy human visual system designed
with an engineering objective, have a similar structure adapted from psychological
theories akin Feature Integration Theory (see section 2.3.2) or Object Based Atten-
tion (see section 2.3.3), but present different ways to implement the details [11] [10].
The general structure of a computational visual attention model includes some basic
steps that are repeated more or less in all the algorithms:

1. image or image sequences given as input;

2. several features are computed in parallel;

3. features conspicuities are fused in saliency map;

4. the maxima in the saliency map are investigated by the focus of attention
(FOA) in order of decreasing saliency.

While bottom-up saliency is a combination from different feature channels extracted
from the image itself the top-dpwn cues may influence the processing at different
level (see section 2.1.3 for further). For a general overview of this structural structure
see figure 2.13. Including all the types of top-down information in the algorithms is
not possible so only a few have been simulated in some of the existing models: the
most abstract ones, such as emotions and motivations, as far as we know have not
been integrated in any models yet. The input image, generally can be artificially
created but a good model should be able to work with natural scenes as well. From

Figure 2.13: General structure of most visual attention models, the two outputs are indi-
cated with red rectangular (figure adapted from [10] and [11]).

the focus of attention is possible to rebuilt human eye movements, both the saliency
map and the focused regions can be seen as output of a computational model of
visual attention.

The study described in this work considers as final output the so called saliency
map (see section 2.3.1 for further information), all the evaluation metrics utilized
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to show and evaluate algorithm performances compare this saliency map with a
ground truth map (fixation density map estimated using an eye-tracker). For that
reason this work does not present any deep explanation about the investigation step
conducted by FOAs.

2.3.1 Saliency Map

Looking for the definition of visual saliency, it is found that the most used description
and, in my opinion, the most explanatory for this mechanism, was provided in 2007
by Laurent Itti and is shown below in its original version.

"Visual saliency is the distinct subjective perceptual quality which makes some
items in the world stand out from their neighbors and immediately grab our atten-
tion."

This definition is valid to explain saliency (or salience) mechanism for each of the
five senses and has been widely discussed in previous sections, now it is necessary to
provide a method for estimating it at computational model level. For that reason
the saliency map is always the first output given by all the computational model of
attention developed in the last 15 years. The saliency map is a two-dimensional map
of scalar values that integrates information from the single feature maps elaborated
in parallel. It gives a description of salient region locations in the visual field and its
most active regions indicate the position towards which attention will be turned [27].
The salience map, intended as the output of a visual salience modeling algorithm, is
an image composed of pixels whose numerical value is proportional to the salience of
the pixels themselves. If the image represents a realistic scene, the latter, hopefully,
will attract the attention of the viewer respecting, more or less faithfully, what
indicated by the map. Figure 2.14 shows an example of saliency maps evaluated
from a generic algorithm, whose type and functioning do not interest us for the
moment, starting from both and artificially created image and an image representing
a realistic scene. Figure 2.14 has the only purpose of showing as a saliency map looks
like.

The saliency map is feature-agnostic [1] so a highly salient point could have
been caused by a red dot among all green dots or by a vertical oriented bar among
all horizontal oriented bar. Even if the saliency map is a good way to predict
eye movement is still not clear if there is a biological correspondence to this map in
visual pathways. Studying conducted on BOLD (blood oxygenation level dependent)
signal [1], whose variations depend on the increase in blood flow in areas populated
by nerve cells involved in the activated function, have been trying to find which area
of the brain may compute a sort of saliency map.
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(a) Artificial image (b) Saliency map

(c) Realistic scene image (d) Saliency map

Figure 2.14: Examples of saliency map: (a) Artificial Image: the salient object is expected
to be the red bar (pop-out effect) (b) Saliency map relative to the Artificial Image: pixels
numerical value (therefore their relative saliency) grows going from blue to red, red zones
are the most salient ones (c) Realistic scene image: image representing a car on a city
street (d) Saliency map relative to the realistic image:pixels numerical value (therefore
their relative saliency) grows going from blue to red, red zones are the most salient ones.

The map can be seen ad a retinotopic map that is the orderly and punctual
projection of the retina on the higher encefalic centers (found in mice, primates and
men). Visible word is systematically mapped from the retina up to the higher levels
of visual pathways (see section 2.1.1), regions of each area of the brain involved are
projected into the following one as if the were overlapping, following proportions due
to the different dimensions of the body districts involved. In the retina the map is
precise and well-order while in the visual cortex it is partially distorted because here
the fovea is represented by a bigger neurons poulation. An important demonstration
of this theory based on overlapping map, is the fact that if some area of the visual
cortex get damaged, the individual shows local blindness as if the correspondent part
of the retina had been damaged. Different roles of different areas in visual pathways
computed different kind of maps: subcortical pathway seems more involved in the
computation of feature-specific maps, both led by top-down and bottom-up stimuli
while cortical pathway may compute feature-independent maps, both led by top-
down and bottom-up factors (figure 2.15).
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Figure 2.15: Cortical (green arrows) pathway and subcortical (red arrows) pathway for
saliency computation proposed by [1] (LGN: Lateral Geniculate Nucleus, V1-V4: visual
cortex, sSC: superficial Superior Colliculus, FEF: Frontal Eye Field, dSC: deeper Superior
Colliculus).

2.3.2 Feature Integration Theory

In 1980 Treisman and Gelade [35] were able to explain the mechanisms of feature
search, conjunction search and the differences between them, introducing a theory
of visual attention (section 2.1.4 and figure 2.5) based on the early, automatic and in
parallel perception of the features that characterize objects in the visual field. Fea-
ture search takes place when a target differs from the distractors, in the scene, only
because of one single feature (pop-out effect), while in conjunction search the target
is defined by a combination of more than one features. This theory is called Feature
Integration Theory (FIT) and is one of the most influence theory by which many
computational models of visual attention have been inspired. Feature Integration
Theory states that the first steps of visual analysis are controlled by receptors that
respond selectively to some features of the image (visual scene), each feature would
be mapped in a different area of the brain. Therefore, in contrast with Gestalt psy-
chology [21] (better explain in sections 2.3.3), here the single parts of an object (its
features such as color, orientation and intensity) in the visual scene, are perceived
before the whole entire object, be able to see the object required focused attention
that should be a subsequent step to the first preattentive step [40] [27].

Models based on FIT are basically divided in two steps (figure 2.16) that takes
place in the following specific order.

1. Preattentive Stage: features of the scene are analyzed separately while
observer is still not aware of the object (parallel search).

2. Focused Attention Stage: features are combined to perceive entire objects
(search is performed serially).

The experiments conducted by Treisman and Gelade [35] showed that if a target
object is characterized by a unique feature (feature search) it is rapidly identified,
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but if it is defined by a combination of non-unique features (conjunction search)
then focused attention is required to bind them into a single object and the search
must be performed serially. Color, orientation and intensity are good feature for
feauture search.

Figure 2.16: Stages of Feature Integration Theory. Reproduced from [40].

One of the most influential saliency model based on FIT is the one proposed by
Itti, Koch and Niebuhr in 1998 [15], which in turn is inspired by the formalization
of the FIT proposed by Koch and Ulmann [18] already in 1985 [27].

Itti, Koch and Niebur Saliency Model

Itti et al. model [15] is a derivation of Koch and Ullman model proposed in 1985
without being implemented based and inspired by Feature Integration Theory. To
Koch and Ullman model, we own the structure that is still nowadays the skeleton
of most of the visual attention models, summarized at the beginning of the current
section. The model proposed by Itti et at. is one of the first that uses Image
Pyramids in order to guarantee scale invariance to the entire algorithm. Figure 2.17
shows an overview of the model, the following list is a short description of the main
steps of the model visible in figure 2.17 as well.

1. Input image given to the algorithm: generic image is supposed to be
given as the input of the algorithm.

2. Input image decomposed in feature channel: following the Feature In-
tegration Theory input image is decomposed in three feature channels: color,
intensity and orientation. Individual channels are created by working on the
input image (e.g. filtering) or by performing specific operations on the indi-
vidual layers of the RGB image.

3. Image pyramids: each image of the individual channel is filtered by low-pass
filter and sub-sampled in order to create 8 levels Gaussian Pyramids [44];

4. Center-surround mechanism: using images at different scale the model
mimics the retinal receptive fields 2.2 (found in some LGN and V1 cells as
well).

5. Normalization: it is important to guarantee that important conspicuities of
the individual feature maps have the right influence in the calculation of the
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final saliency map. All the feature maps are normalize within a range of value
and are weighted proportionally to the difference between the maximum value
of the map and the average value of the local maxima (previously found), In
this way eventually pop-out effects can result in the global Saliency Map.

6. Across scale addition: in order to sum up together all the contributions,
feature map pyramids (all the algorithm works with image pyramids since the
first step, to guarantee scale invariance) have to be scale to a common level.

7. Global Saliency Map: the global Saliency Map is calculated as the average
of the three different feature maps.

8. Winner Take All and Inhibition of Return: this last step to select the
focus of attention was very innovative and inspiring for all the models to come
but, as anticipated, our study is limited to evaluate the models observing the
first output so the Saliency Map.

Figure 2.17: Overview of the Itti, Koch and Niebur feature based saliency algorithm.
Reproduced from [15].

This model uses biologically plausible computational mechanisms and is able to
perform human feature search (good response to the pop-out effect [15]) and predict
human eye fixation better than chance [23]. It is still of fundamental importance
and inspiration for the newest algorithms for visual salience. In the newest models
of visual attention, normalization techniques as well as features number, choice
and extraction have been changed but they still incorporate the concept of feature
contrast and uniqueness as Knoch and Ullman proposed in 1985.
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2.3.3 Object Based Visual Attention

At the same time as the birth and development of Feature Integration Theory,
around the second half of the twentieth century, the first scientific publications on
different object-based attention theories appear. These theories are all based on
the idea that objects in the visual field are the units on which visual attention
mechanism operates. According to this hypothesis, in a preattentive stage, visual
scene is segmented into perceptual units (or objects) and then focal attention consists
in a more detailed analysis of particular objects. The preattentive stage is a parallel
process between several different objects while focal attention stage is serial because
it is not possible to see too many objects at the same time. Such units (or object)
can be seen as the product of perceptive grouping laws formulated within the Gestalt
psychology [21] (figure 2.18).

Figure 2.18: Stages of Object Based Visual Attention theory.

In contrast to feature integration theory and feature based attention, Gestalt
psychology theory states that the whole of an object is perceived before its individual
features [27] [21]. Since its birth it have developed surveys on learning, memory,
thought and social psychology. Its founder idea is that the whole is different from
the sum of the individual parts, so it is not correct dividing human experience
into its elementary components. Instead, it is necessary to consider the whole as a
super-ordinate phenomenon with respect to the sum of its components. Referring
to visual perception in particular, the ability to perceive an object must be search
in an organization headed by the nervous system instead of an image in the retina
[41].

Gestalt Psychology

According to Gestalt psychology visual scene is divided into:

Figure that grabs attention.

Ground that is the background, where the figure sits.

An object can exist both as a figure and as ground but not at the same time, as it
is clear from the example of the Rubin’s vase illustration (figure 2.19): the figure
can be seen as a white vase on a black background as well as two black human faces
looking each other on a white background, but never both.
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Figure 2.19: Rubin’s vase illustration.

Besides figure-ground organization Gestalt psychologists have demonstrated that
visual perception is based on other organizational trends that cause human percep-
tion to group together different items in the visual scene. These organizational
trends are experimented in every-day life and are the fundamental hypothesis to
start thinking about real word as a composition of perceptual objects. In fact hu-
man beings seem to be able to add together several elements unconsciously and
divide the scene into macro organizational structures. The principles proposed by
Gestalt psychology at the foundation of this hypothesis are listed below.

• Proximity: objects that are close one to the others, are seen as an unique
one while elements that are distant from each other are not collected together.

• Similarity: tendency to gather similar elements.

• Continuity: elements perceived as parts of a coherent and continue ensemble.

• Closure: if the object is incomplete but the shape that is present is enough
the whole shape can be perceived.

• Common fate: if the objects are moving the ones with a coherent movement
are grouped together.

• Simmetry: objects tend to be perceived as as symmetrical shapes formed
around their center.
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Figure 2.20 illustrates shows some examples to better understand these concepts.

(a) Proximity (b) Similarity

(c) Continuity (d) Closure

(e) Common fate (f) Symmetry

Figure 2.20: Gestalt principles of grouping: (a) Proximity: the image is perceived as 4
narrow columns rather than 3 wider columns (b) Similarity: we tent to see this figure as
black lines and two white lines (c) Continuity: two lines crossed to form an x are perceived
as opposed to two colored angles, so continuity is stronger than color similarity (d) in the
image two triangles are seen even if one is perceived only by the presence of its corners
(e) Common fate: arrows indicate the movement of each black circle in the image and the
one which are moving in a common circle shape tent to be group together (f) Symmetry:
objects are perceived as 2 symmetrical shapes.

Integrated Competition Hypothesis

The Integrated Competition Hypothesis is an object-based attention theory elab-
orated by Dessimone and Duncan in 1984 [9]. Starting from some experimental
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results, they showed that, for a generic observer, reporting two proprieties of the
same object is not more difficult than reporting only one single propriety, while re-
porting two features of two different objects in less effective than reporting one single
object feature. They deduced that focal attention mechanism is oriented towards
an object seen as a whole, between different objects there is a real competition to
grab focal attention. If attention is focused on a particular feature of an object, it
will enhance the processing of all the features of the object.

Sun and Fisher [32] [33] have developed a visual attention model based on this
theory. They used the concept of competition between different units in the visual
scene but replacing object-centered attention mechanism with a grouping-centered
attention mechanism using the principles of Gestalt psychology [9]. A grouping
involves one or more objects, features related to the object(s) and its or their loca-
tion(s) and, as it is in the Integrated Competition Hypothesis, if a grouping grabs
focal attention everything that composes it becomes important. Although based on
biologically motivated theories it uses machine vision techniques: main algorithm
input is given as a so called foaveated image obtained from the elaboration of an
image collected using a retina-like sensor. Therefore the model does not provides
insight into biologically mechanism which have the task of organizing the perception
of a visual scene [33].

2.4 Coherence Theory and Proto-Objects

Coherence theory is an alternative hypothesis for object based attention and since
it includes the definition of proto-object, fundamental concept for the understanding
of the visual attention model described in the following chapter, it was decided
to reserve for its description an entire section, separating its explanation from the
others included in the generic subsection concerning visual attention object-based
model. As many of the other theories of visual attention coherence theory include
the two main stages: preattentive stage and focal attention stage. In addition to the
explanation of what happens in these stages, to fully understand the core of this
theory it is important to describe what happens as soon as focal attention is released
(figure 2.21). The perception of the scene is described as a dynamic mechanism:
visual field is normally composed by volatile structures that are stabilized by focused
attention in order to make the perception of possible changes in the structures.
These preattentive structures are called proto-objects and have been first described
by Rensink in 2000 [26] as one of the fundamental concepts of coherence theory
elaborated by Renskin himself. This study was born from the need to explain how it
is possible to grasp even only a few changes occurring in the visual field, excluding
that the human brain has enough memory and capacity to include somewhere, a
stable and detailed representation of the stable and detail world around us. The
answer to this can be found into what it means to be attend, coherence theory
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states that attention mechanism is largely concerns with coherence. Scene perception
occurs through the succession of three steps (figure 2.21).

1. Preattentive Stage: volatile, low-level proto-objects are formed in parallel
across all the visual field. A proto-object is a preattentive dynamic structure
that can be complex in shape but have limited spatial and temporal coherence,
it is said to be volatile because it is updated if the retina receives a new
stimulus.

2. Focused Attention Stage: a small number of proto-objects are stabilized
as they acquire a higher level of coherence over time and space. This happens
because through focused attention some proto-objects are selected and "held".
Due to acquired coherence in time, if a new stimulus occurs now in the location
of a stable object this is interpreted as change of the existing structure rather
than the appearance of a new one.

3. Focused Attention Release: when attention is released from stable objects,
they dissolve back into dynamic proto-object representation and there is not
or little effect of having been attended.

According to this a change in the visual scene is perceived only if it occurs where
and when attention is focused. Due to the small number of items that can be
attended at a specific time, the probability that a change in the scene is not seen by
a generic observer is very high: change blindness occurs if any changes involve only
unattended items.

Figure 2.21: Stages of Coherence theory.

Preattentive stage or Low-level Vision

In coherence theory a proto-objec is both the highest-level output of low level vision
and the lowest-level operand of attentional process that are included in high level
vision. Low-level vision includes all the preattentive stage process and can be divided
in three main phases that consecutively increase the level of details perceived by the
observer.

1. Transduction stage: photoreceptor occurs, pixels level proprieties and min-
imal interactions are perceived. Colors and intensity can be seen and used to
group areas together but no kind of complex image structure is visible.
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2. Primary processing stage: linear filtering measures simple image propri-
eties as edges. At this stage nervous system can operate some easy kind of
inhibition or excitation mechanism to make more complex groupings within
the images.

3. Secondary processing stage: rapid non linear and local interpretation of
the scene permits to first perceive proto-object structures.

All the three stages include operation that are carried out in parallel but while in
the first two measurements are "quick and clean", meaning that they are simple but
precise (only few errors generally occur), in the last stage interpretations are "quick
and dirty" so they may not always be correct. At the end of low-level perception
(preattentive stage), proto-object are accessible to be attended by focused attention.
Proto-objects are volatile structures and so have limited coherence both in time and
in space: they are either overwritten by new stimuli or else fade away in a few
hundred milliseconds [26].

Focused Attention or High-level Vision

Focused Attention must give to the structures in the visual scene the degree of
coherence needed to link them into stable larger-scale objects that are continuous in
time. This is fundamental in order to make the observer able to see changes: if a new
stimulus occurs now it is interpreted as a transformation of the existing structures
rather than the formation of a completely new one. Therefore if a proto-object is
attended it enters in a so called coherence field, becoming a stable objects. Focused
Attention can be involved with the representation of only one object at the time
and operates according to the following steps.

1. Proto-object attended: only one at the time.

2. Link established between proto-object and the nexus: a single struc-
ture called nexus is the means through which focused attention interacts with
lower-level structure. The nexus contains information about the attended
object (e.g. size, shape, overall color...), inside the nexus proprieties are com-
puted and briefly stored.

3. Two-way transmission of information: information travels through the
link from the proto-objects to the nexus, carrying descriptions of selected
proprieties and from the nexus to the proto-objects providing them stability.

When a continuous flow is established between the nexus and the proto-objects the
originated circuit is called coherence field
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Focused Attention release and aftereffect

As already said only one item at the time can be attended by focused attention
so if attention is shifted towards an other object the coherence field can not be
maintained. When this happens the items that were being attended before the
attention moved return to their original volatile proto-objects status but a short-term
memory of them rests. A more in-depth explanation of what happens at the memory
level is not necessary for the purpose of writing the dissertation and understanding
the work done. For this reason we simply say that in reality more than short-
term memory we should talk about visual short-term memory. For an object, being
assisted is both necessary and sufficient to be in the visual short-term memory, so
it does not seem to exist any differences between the focused attention and memory
mechanisms, some studies argue instead that the memory of the previous attended
objects in is lost completely. In figure 2.22 the main steps of the coherence theory
of vision are summarized.

Figure 2.22: Schematic of main coherence theory process. Low-level vision composed by
three main stages: (a) the transduction stage where photoreceptor operates, (b) the pri-
mary processing stage, where linear filters measure image proprieties and (c) the secondary
stage of rapid and non linear interpretation that has as outputs the proto-objects that are
the only structures from the low-level perception accessible to focused attention. A set of
3 proto-objects corresponding to objects parts create a coherence field (all the blue parts
of the image), (d) are the bidirectional links between proto-objects and the nexus. Figure
reported and adapted from [26].
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Walther and Koch Model

For the first model of visual attention that uses proto-objects notion, we must wait
the early two thousand, when Walther and Koch [37] use it to analyze possible im-
provements in the mechanism, inspired by human biology, of objects recognition.
The structure on the visual attention computational model is left unchanged from
the one proposed by Itti et al. in 1998 [15] (see section 2.3.2). More than a proto-
objects based model of attention, it can be seen as a model inspired by the Feature
Integration Theory which, after having elaborated the Saliency Map, uses an Inhibi-
tion Of Return based on the proto-object notion. In fact, a part from little changes
from the model proposed in 1998 (e.g. the way to build the image pyramid) the
model is kept the same up to the the Winner Take All mechanism that permits
to find the Focus Of Attention. In the search of the Focus of Attention, for each
most activated point in the Saliency Map, the algorithm looks for the single fea-
ture map that most contributed to the activation of that specific point. In winning
feature map the shape of the proto-object at the most activated location, is calcu-
lated spreading the activation following a contiguous 4-connected neighborhood of
above threshold activity. The model just described shows that salience based on the
concept of proto-objects can improve the performance of a recognition algorithm
inspired by biological mechanisms. However it does not explain how proto-objects
perception changes the model based on feature integration theory and, moreover,
the way it uses the single feature maps to define the shape of a proto-object does
not have a real response in human biology.

2.4.1 Border Ownership

Gestalt psychologists were the first to understand that to perceptual organize the
scene an observer should summarily understand what is foreground and what is
background solving the problem of occlusion between objects. The borders are
the separation between different items in the scene so I can well seen only if these
border are correctly assigned to the objects. Rubin vase in figure 2.19 is an example
of a picture artificially created in a way that the whole scene changes, maintaining
a meaning and global coherence, following the way borders are assigned to items
[30]. The unstable perception of this particular image with its own specific time
to change from one to the other interpretation, shows that in the brain there is a
neural substrate involved in the interpretation of the visual scene. We generally
refer to the figure ground organization as the capability we have to distinguish
figures from the background and, in a more complex scene, this translates with
the ability of discerning many different levels of occlusion in the three-dimensional
scene. Perceptual organization of the scene can be explained through the concept
of border-ownership with which we mean the assignment of a boundary to one of
the two parts that it separates. Neurons that are activated when a generic border
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is identified in the scene have been found in extrastriate cortex, particularly in V2,
and more important, it has been discovered that their firing rates change if the
side where the figure that owns that specific border changes. In figure 2.23 are
reported experimental results that show how the firing rate of a specific border
ownership cell in monkey decreases or increases changing the position of the item
located in the visual field. Summing up, each time that in the scene there is a line
dividing a generic figure in two sides, the receptive field of a border ownership cell
is recreated (see section 2.1.1 for the definition of receptive field), than a border
ownership cell responds differently depending on which side of the receptive field
contains the figure (figure 2.23). Border ownership signal coding in human brain

(a) RF of a BO cell (b) Response of a BO cell

Figure 2.23: Border Ownership (BO) cell response. (a) Generic receptive field (RF) of a
BO cell: an edge divides a generic figure in two parts (the green one and the blue one )
and the one that owns the border can be in both sides, depending on its position the firing
rate of the Border Ownership neuron changes. (b) Response of a BO cell in monkey V2.
Rows A and B show the stimuli and the RF of the B0 cell (black ellipse) . Bar graph shows
mean neuron firing rate, neuron has a preference for the left side (higher firing rate when
the square is on the left side of the RF)

has been studied during the last 10 years without reaching a unique common model.
All the models are supported by neural theory of information transport at neural
level and apparently they seem to be equally valid [30], but for our purpose to build a
proto-object based saliency model the most suitable seems to be the feedback model.
Moreover, the model described in this work is an extension of the model proposed by
Russel et al. in 2014 [28] so, as the previous model, it is based on an algorithm that
reproduces the feedback model as faithfully as possible to human biology. Visual
research experiments on macaques have shown that border-ownership signals can
appear even after only 20ms from the occurrence of the stimulus and this speed
is too fast for being explained with the lateral propagation through primary visual
cortex [27]. Despite many of the studies mentioned above have recorded the neuronal
activity in the macaques V2 cortex, it is important to remark that the presence
of Border Ownerhip cells was also found in humans both through psychophysical
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studies and border-ownership-selective BOLD signal recording [30].

2.4.2 Grouping Mechanism and Craft et. al Model

Craft et al. in 2007 [7] were the first that purposed an alternative to the lateral prop-
agation for border ownership signals supposing that border ownership cells have a
close and intense exchange of information with grouping cells populations. The
grouping cells are situated at higher levels of visual cortex and communicate with
border ownership neuron through withe matter projections that can permit to have
such a high speed communication. Every time an object is present on the scene
for each contour line two types of border ownership cells are activated and com-
pete for the ownership of the given border, this cells are connected with appropriate
Grouping Cells which therefore are activated and play a fundamental role in the
competition between the Border Ownerhip cells. Grouping Cells integrate informa-
tion about the contour and through a feedback mechanism enhance activity of the
Border Ownership cells which code for the figure: feedforward synapses from Border
Ownership cells excite Grouping Cells while feedback connections facilitate Border
Ownership cells activity (see figure 2.24 for the grouping cells mechanism). Each
grouping cell targets many neurons at the lower level (all the Border Ownership
cells that are consistent with the same object in the scene) so those neurons show
an increase in synchrony when the common Grouping Cell is activated. In reality
we always refer to a population of Grouping cells better than a single Grouping cell.
The model of visual attention proposed by Craft et al. [7] proposed the concept of
grouping cells as the way the brain has to integrate object features into tentative
proto-objects without needing to recognize the object [28] and using the principle
from Gestalt theory, in particular continuity, closure and proximity (figure 2.20).
The model aims to perform specific cases of figure-ground segregation. Figure 2.25
shows the how grouping cells model integrates perfectly within the Gestalt theory
and how this latter, vice versa, finds a biological confirmation in the grouping cells
model.

The algorithm describes in the next chapter, which is the central question of this
dissertation, is an extension of the attention model proposed by Russell et al. [28]
which in turn is strongly inspired by the 2007 Craft model [7].

2.5 Visual Attention Models in three-dimensional
space: an overview

All the models mentioned from the beginning look at the surrounding world through
images from which features are extracted to analyze the visual scene trying to sim-
ulate human visual perception mechanism in the most plausible biological way. The
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Figure 2.24: Schematic of Grouping cell mechanism. All the ellipses show the Receptive
Fields of Border Ownership cells and the arrows indicate the relative preferred side, with
respect to the present border. Presence of the dotted line object increase the firing rate of
all the blue cells over the gray and the red ones because their receptive fields are consistent
with the dashed line object so they receive feedback facilitation from the relative grouping
cell while whit the solid black line object gray and blue cells receive no (or less feedback)
because they are not consistent with the present object, this time red cells receive feedback.

Figure 2.25: Coherence theory and grouping cells model. Each step that, according to
coherence theory, leads from the presentation of the visual stimulus (visual scene) to fo-
cus attention, finds confirmation in the steps of the grouping mechanism and vice versa.
Adapted from [27].

fact that none of the models taken as examples takes into account any binocular cues
or, more simply, a generic depth information reflects the disproportion that exists,
considering the current state of the art, between the number of computational mod-
els of "two-dimensional" visual salience and the number of models that consider
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how the human visual attention is distributed in three-dimensional space. More
than this, due to the relatively recent development of the proto-object concept, very
few models fuse grouping mechanism and depth perception. In any case until now
grouping mechanism concepts have been used to carry out a sort of figure ground
organization in the three-dimensional space. Many three-dimensional models have
tried to introduce information to a given two-dimensional model without modifying
its supporting structure as it has already been observed that in reality depth infor-
mation, although influential, drive less visual attention than features such as color
or brightness. For this reason, generally, instead of using new resources, we try to
adapt the already existing models, that is exactly what our model does. A problem
with the three dimensional models is the difficulty to create a dataset that includes
binocular cues. As explained in section 2.2 binocular cues are fundamental for hu-
man depth perception so generally a dataset for the evaluation of three-dimensional
saliency model has to deal with stereo vision and disparities between the two views,
that makes it difficult to create. Following the approach used to include depth
perception, three-dimensional visual saliency models can be divided in three main
categories [13]:

• Depth-weighting models;

• Depth-saliency models;

• Stereo-vision models.

The first two types of models require as input the image that represents the real
scene and the corresponding depth map, while the last one gets information about
depth directly from the two stereoscopic view of the same scene.

Depth Map

The depth map associated to a specific image of a scene is also an image where the
pixel intensity is related to the proximity from the observer of the corresponding
point in the real scene. They can be computed directly by the instrumentation (e.g.
Kinect) or through stereoscopic analysis. If the first method is strictly linked to the
availability of the necessary instrumentation, the second requires the development
of algorithms that are not always easy, especially if a certain level of calculation
precision is required.

Depth-weighting models

This category of three-dimensional saliency model requires both a two-dimensional
image and depth map as inputs. The output saliency map is calculated following a
generic two-dimensional model and once it is elaborated is weighted through a mul-
tiplication, using the depth map values. These models follow the basic assumption
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that objects closer to the observer are more ecologically relevant than those which
are more distant. In this way the computational cost does not increase and the
existing two dimensional models are easy to adapt but you may not detect areas
whose salience may depend only on features related to the depth of the scene.

Depth-saliency models

The Depth-saliency models as the Depth-weighting ones require depth map as input
but differently from previous models this time the map is used to extract additional
information in order to create a saliency map from the only depth features. This
mean that the model has the two following intermediate outputs.

• A two-dimensional saliency map: elaborated from the ordinary features
(e.g. color opponency, intensity, orientation of the objects...) extracted from a
generic RGB image. It does not take in consideration the scene development
in the third dimension.

• A depth saliency map: includes only information from depth features ex-
tracted from the depth map given as inputs.

These two intermediate outputs are then combined generally through an addition
weighed by multiplicative factors. All these operations introduce a real change to
the original model increasing the total computational cost and the model requires
the additional input of the depth map.

Stereo-vision Models

This models replicate the most efficient solution of human being and, in particular,
his visual system, to extract information about the distance of the objects in a
scene, making a kind of comparison between the projection of the right retina and
that of the left retina, of the same scene. Depth maps are not required as inputs
but both the stereoscopic views are needed. Generally these models have a higher
computational cost than the other two but somehow are considered more biologically
plausible.

Among all the models we must focus on a model proposed by Hu et al. [13]
whose structure is very similar to the one proposed in this dissertation. They added
a parallel channel to the same proto-object based visual attention model for which
we implemented the extension to include depth information. This channel takes
as inputs a depth map and elaborates its own saliency map. The global structure
is left unchanged as the two-dimensional algorithm that, meanwhile, elaborates its
saliency map, once the two saliency maps are obtained they are combined together.
This model shows little but statistically significant improvements introduced to the
"only" two-dimensional proto-object based saliency model, by adding figure ground
organization in three-dimensional space.
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Starting from these improvement we decided to work in the same direction but
including the concepts of stereo-vision in order to free the model from the need of a
pre-computed depth map.

2.6 Aim of the Study
In 2014, the publication of a work [28] done at the Department of Electrical and Com-
puter Engineering of the Johns Hopkins School University, about the development
of a biologically plausible model of proto-object based visual saliency, establishes an
important turning point for open questions on visual attention theories based on the
perceptive organization of the scene in structures that can drive focused attention.
Using basic computation mechanisms with known biological correlates, the model
and its promising performances make us firmly believe that the growing belief that
attention is a based object is more than founded.

Therefore our study is born with the purpose to extend this proto-object based
saliency model in order to increase its performance. In particular we aim to add
to the model the contribution of depth information, following the rules of human
perception. Our work is not the first to attempt to extend the model in this direction
but, for the fist time, instead of using a pre-computed depth map as in previous works
[13], the model uses stereopsis directly following notions we have from human neural
system.

Two views of the same scene, from left and right retina are given as input to
the algorithm. They are identical except that the retinal location of the same image
point is shifted between the left and the right view, the value of this shift is inversely
proportional to the distance of that point from the observer.

We build the current model starting from two fundamental assumptions.

1. Grouping cells mechanism is activated to enhance the activity of
Binocular Neurons: the fact that Grouping mechanism interests the orga-
nization of the visual scene in three-dimensional space has been observed in
previous studies [25] [13], the way with which this happens is still matter of
study. We consider that the activity of border ownership cells and related
grouping cells population, takes place within a specific depth plane (consider-
ing frontoparallel planes parallel to the head coronal one). This means that
grouping mechanism starts only once binocular neurons have dived the scene
in parallel planes.

2. Pop-out mechanism is also related to the distribution of objects in
the three-dimensional visual scene: we built the current model starting
from the assumption that, as it is with other features such as orientation and
intensity, discontinuity of depth attracts human attention more than regions
of a scene that have constant depth.
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As far as we know in literature there is no model that has already tried to study the
influence of depth discontinuity in the visual scene, trying to predict how these can
change the focus of human visual attention. On the contrary some, albeit not many,
models have tried to use the concept of proto-object and the grouping algorithm to
distinguish the foreground from the background and recognize an extended object
in three-dimensional space. What this study proposes, on the other hand, is closely
linked to depth discontinuities search. Assuming that from one stereo view to the
other, pixels representing the same object have all undergone the same horizontal
displacement or otherwise include within a narrow range, the algorithm works by
looking for objects interested by "uncommon" displacements (disparities). These
objects are hypothetically lying on a plane of depth in which few or no other objects
are present. This condition is assumed to give rise to the pop-out effect making
those objects more salient than others. The extension of the proposed original
algorithm is developed through the addition of a new feature channel that assumes
as input a couple of stereoscopic images, with the purpose to see how the evaluated
final saliency map changes if we include the search for perceptual objects in three-
dimensional space. Once the algorithm has been written, first of all it is necessary
to make sure that the introduced feature channel is able to do what it was thought
of: finding depth discontinuities. Only after having verified this we can proceed to
see what happens by adding this new information to the search most salient areas
in natural scenes.
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Chapter 3

Methods

The previous chapters were extremely important to introduce what is the core of
our study. Pretending to build or only to understand a computational model for
human visual saliency without having even only few and basic notions about human
visual system, both about anatomy and physiology, is not possible especially if we
are interested in elaborating algorithms that are as much as possible biologically
plausible. Remembering that the factors which drive visual attention can mainly
be divided in two categories, bottom-up factors specific for the present scene, in-
dependent from the internal organism state, and top-down factors that involve the
internal state of the organism at that specific time, the top-down factors are not
considered in the present algorithm due to the difficulty to predict, measure and
quantify them.

In order to contextualize the present work it is also important to know which are
the major theories from which the computational models of visual attention draw
inspiration. In particular, the model we approach to describe is an object-based one
(see chapter 2 for more detail information) so it refers to both psychophysical and
neurophysiological studies which show that attention depend on the scene organi-
zation into perceptual objects as well as image features. According to Rensink’s
coherence theory, the perception of these perceptual objects is generated when an
observer is looking at a proto-object (see section 2.4), a dynamic structure which ex-
ists as a stable object only when it is attended while normally, when is not attended,
exists in an indefinite state where it returns as soon as attention is released.

As already mentioned in the first two chapters, the state of the art of visual
attention computational models, despite their study began only at the end of the
last century, is really rich in algorithm examples. Many of these follow the structure
proposed by Itti et al. in 1998 [15] (shown in figure 2.17) but they all differ one from
each other for details or for the addition of information to be taken into account. The
model described here, as well, draw inspiration from the Itti et al. main structure
but adding the biological concepts of Border Ownership Cells and Grouping Cells as
in Craft er al. model [7]. The basic structure, described in the next three sections,
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is left unchanged from the one described in the study proposed by Russel et al. [28],
the whole model was conceived and realized entirely in the department of Electrical
and Computer Engineering at Johns Hopkins University in Baltimore, Maryland,
United States of America. This model includes a new Grouping Mechanism, inspired
by Redskin’s therory [26] and Craft et al. Model [7] in a main framework similar to
the one proposed by Itti et al. in 1998, showed in figure 2.17 and that, as already
said, is still the most influential of all the saliency models. The information from the
input images is separated in feature channels and Grouping mechanism is applied
separately to each one of them. In fact studies have demonstrated that Border
Ownership Cells are able to recognized and assign an edge to the correct figure even
if contours are defined exclusively by a characteristic of the image: an object can
be perceived only from color or brightness variation with respect to its surroundings
[13] [25].

Recent researches have demonstrated that Border Ownership cells can work with
stereoscopic edges when monocular cues are missing and parallel studies based on ex-
perimental results, as already mentioned in section 2.2.2, showed that human visual
research, and so that human visual saliency, is strongly influenced by the distribu-
tion of the objects among depth planes, that are parallel to the head coronal one (see
previous chapter for further information). Based on this and on the knowledge of the
existence of specific neurons for the coding of binocular disparities (section 2.2.1),
next chapter describes an extension of the proto-object based saliency model to the
third dimension, using models neurally inspired disparity units. This extension is
conducted by introducing a fourth channel: the Disparity Channel. The disparity
channel is build from the assumption that, as it is with other image features such
as orientation, intensity etc, discontinuity of depth attracts human attention more
than regions of a scene that have a constant depth, and that disparities between two
stereoscopic views can be used to estimate such discontinuity. The model includes
three main steps, two conducted in parallel and the final one done after the others.

1. Evaluation of a proto-object saliency map in two-dimensional space:
two dimensional saliency map gives as output.

2. Evaluation of the Disparity Channel contribution: disparity saliency
map gives as output.

3. Linear combination of the two saliency maps: three-dimensional saliency
map gives as output.

Due to the fact that the algorithm works with stereopsis principles a stereo im-
ages couple is required as input, one of the two views is used to evaluate the two-
dimensional saliency map following the Russeal et al. mechanism while both of them
are required to evaluate the disparity saliency.
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Our work focus on elaborating a correct way to give disparity information to
the grouping algorithm so that it can be apply following human biology. Figure
3.1 briefly summarizes the steps of the whole algorithm, better explanation on the
new disparity channel are given in the next sections and the "image pyramid" step
indicates that, in order to provide scale invariance to the proto-objects search, the
image is down-sampling several times consecutively so as to create the pyramid. The
model was implemented using MATLAB2017b (Mathwork, Natick, MA,USA).

Figure 3.1: Overview of the stereo-vision model of proto-object based saliency. Color,
intensity and orientation channels are identical to the model from Russel et al., see figure
5 of [28]. These three channels are used to evaluate the two-dimensional saliency map.

3.1 Two-dimensional Proto-Object based Saliency:
Russel et al. model

As already mentioned this work would have not existed without previous study
conducted in 2012 by Alexander Russel and his team [28] [27] on proto-object based
saliency. Whit that in mind it is really important to have an overview of its base
structure, it should also be considered the fact that much of this structure repeats
itself identical in the elaboration of the information from the Disparity Channel that
is the real core of this work.

The algorithm is composed by two main mechanisms.

• Grouping mechanism: permits to find proto-objects location and spatial
scale within the input image, saliency information are provided through the
organization of the scene into figure and ground (find possible preattentive
structures).

• Main framework: global structure of the algorithm (similar to the one pro-
posed bt Itti et al. [15] see figure 2.17 and section 2.3.2 for a general view)
where the grouping algorithm is placed, it permits to distinguish objects with
unique characteristic in the scene from the ones that are common.
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Model fundamental steps are shown in figure 3.2 and briefly summarized below.

1. Input Image given to the algorithm: RGB image is given as input, it can
both be an artificially one, created with the only purpose to test the model or
an image representing a more natural scene.

2. Information divided in feature channels: different information, regarding
different features of the image/scene ( intensity, color opponency and orienta-
tion ), are extracted from the input image.

3. Creation of image pyramids: this step is important to guarantee scale-
invariance to all the following steps. Pyramid is created for all the feature
channels and it let the following search for proto-objects to be done in different
scales.

4. Grouping mecanism: this step is well explain in the next section. It is
repeated for each level of the pyramid of each feature channels.

5. Normalization and Pyramid levels merging: this two steps are collected
together because, depending on the different channels, some normalization
may be needed before the merging of the pyramid levels to a common scale.
At the end of this step for each channel have been evaluated a saliency map
related to the single feature.

6. Normalization of Proto-Objects conspicuty maps: the single feature
saliency maps are summed together.

The information from the input image is first of all divided in feature channels, in the
final version of the model that came out in 2014 [28] the input image is decomposed
in three channels:

Intensity Channel takes into account the sensitivity of the rods (photoreceptors
of the retina) to the brightness;

Color Opponency Channel take into account the sensitivity of the cones (pho-
toreceptors of the retina) to the different wavelengths in the visual spectrum;

Orientation Channel takes into account the sensitivity of he primary visual cor-
tex cells to the different orientations in the scene.
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Figure 3.2: Main framework of the proto-object based saliency model proposed by Russel
et al. Image reported from [28].

Image pyramid

After having extracted single feature inputs (see section 3.1.2) images are down
sampled subsequently in steps of

√
2 using a Bicubic Interpolation. The number of

pyramid levels can be chosen separately each time the algorithm runs, in the previous
model we are discussing about, the pyramid spans 7 levels, for our simulations the
number is settled to 10.

Each kth level of the pyramid required two consecutive steps to be created.

1. Image Filtering: image from the (k−1)th level is filtered using a convolution
kernel composed by piecewise cubic polynomials (cubic kernel, figure 3.3 a).
So the output pixel value is a weighted average of pixels in the nearest 4-by-4
neighborhood. The convolution kernel k(x) in defined as follow:
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k(x) =


(a+ 2) |x|3 − (a+ 3) |x|2 + 1; if x ≤ 1

a |x|3 − 5 |x|2 + 8 |x| − 4a; if 1 < x < 2

0; if Otherwise

2. Real Subsampling: the number of the pixels that compose the filtered image
from (k − 1)th is reduced by a factor of 1√

2
.

Figure 3.3 shows the Image Pyramid creation steps.

Level 0:
Original mage

Level 1:
1/√2 resolution

Level 2:
 1/2 resolution

Level 3 
1/(2√2) resolution

Figure 3.3: Representation of an image pyramid with 5 level. In the case of our model the
blur is done through a bicubic kernel and the subsampling is done by steps of

√
2 as shown

in the image, adapted from [44].

From this point until the end of the chapter the superscript k indicates that we
are working with the kth level of the image pyramid. Once the pyramid is created
for each feature channel the Grouping Algorithm is run on each one of them. Next
section is entirely dedicated to the description of the groping mechanism as proposed
in the proto-object model under analysis [28].

3.1.1 Feed forward Model of Grouping

As already mentioned this part of the algorithm integrates the notion of Border
Ownership Cells (BO cells) and Grouping Cells (G cells) following the model pro-
posed by Craft et al. [7]. Each one of the following steps is repeated for each level of
the image pyramid in each one of the feature channels, the mechanism does not have
recurrent connects and all the steps that include a correlation represent neurons ef-
fect for a specific receptive field. This receptive field is described by the convolution
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kernel used for the correlation under analysis. The main parts of the algorithm are
shown in figure 3.4.

Figure 3.4: Overview of the feed forward grouping mechanism on a generic feature channel,
created from figure 5 in [28].

Grouping algorithm fundamental steps are listed below.

1. Half-wave rectification: grouping mechanism receives input images in the
range of [−1,1], negatives pixel values are present when, within a specific fea-
ture channel an opponency operation is done (e.g. color opponency channel).
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Therefore considering β(x, y) the image pyramid and βk(x, y) the kth level of
the pyramid the operations done are the following:

k(x) =

{
βk(x, y) = 0; if βk(x, y) < 0

βk(x, y) = βk(x, y); if βk(x, y) > 0

2. Edges detector: object edges are extracted using two-dimensional Gabor
filters that simulate the responses of simple and complex cells of primary visual
cortex.

Simple and complex cells are supposed to respond to a range of edges orienta-
tion. Calling θ the angle indicating a specific edges orientation, in this Russel
et al. [28] use the following range of angles: θ ∈ {0, π/4, π/2, 3π/4}.

• Simple Cells Responses (Ske,θ, S
k
o,θ):

Single cell are suppose to have a receptive field similar to the kernel used
for a Gabor Filtering that is composed by a harmonic function with a
Gaussian envelope. Two types of simple cells are distinguished, depend-
ing on whether their receptive field is represented by a harmonic with an
even or an odd trend.

Ske,θ(x, y) = βk(x, y) ∗ ge,θ(x, y)

Sko,θ(x, y) = βk(x, y) ∗ go,θ(x, y)

Where ∗ denotes a correlation operation, βk(x, y) is the image at the kth
level of the pyramid and the two kernels are the following.

ge,θ(x, y) = e
x′2+γ2+y′2

2σ2 cos(ωx′)

go,θ(x, y) = e
x′2+γ2+y′2

2σ2 sin(ωx′)

Even and odd Gabor filters with different orientations are shown in pic-
ture 3.5, relative parameters and the expression in table 3.1.

γ σ ω

0.8 2.24 1.57
Table 3.1: Gabor filter parameters.

x′ and y′ are the coordinates in the rotated reference frame. Their ex-
pressions are the following.
x′ = x cos(θ) + y sin(θ) and y′ = −x cos(θ) + y cos(θ).
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Figure 3.5: Even and odd Gabor filters. Reported from [27].

• Complex Cells Responses (Ck
θ ):

Complex cell’s response at angle θ is calculated from a simple cell response
pair as follow.

Ck
θ(x, y) =

√
Ske,θ(x, y)2 + Sko,θ(x, y)2

3. Center Surround Analysis: center surround mechanism is used to under-
stand if and edge in the scene correspond to an object. Concerning a relation
to the human biology, this type of information has been found in the retina, lat-
eral geniculate nucleus and primary visual cortex. Following knowledge from
biology and in particular notions on retinal Ganglion Cells receptive field (fig-
ure 2.2) the model proposes to filter images, from each level of the pyramid
and for all the feature channels, using a pair of kernels that reproduces re-
spectively the ON-center and the OFF-center receptive field. They both have
circular shape divided in two antagonist concentric regions: the central one
and the peripheral one (figure 2.2). The ON-center receptive field can identify
a light object on a dark background while the OFF-center receptive can iden-
tify a dark object on a light background. The activity of the neurons in visual
pathways that have these specific types of receptive field is computationally
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simulated by the following two correlations.

CSkD(x, y) = βk(x, y) ∗ csoff (x, y)

CSkL(x, y) = βk(x, y) ∗ cson(x, y)

where CSkD(x, y) and CSkL(x, y) are respectively the OFF-center and the ON-
center pyramid, the two kernels are built using a difference of Gaussians as
follows (examples in figure 3.6).

cson(x, y) =
1

2πσ2
i

e
−x

2+y2

2σ2
i − 1

2πσ2
o

e−
x2+y2

2σ2o

csoff (x, y) = − 1

2πσ2
i

e
−x

2+y2

2σ2
i +

1

2πσ2
o

e−
x2+y2

2σ2o

In the previous two expressions σi and σo are the standard deviations of the
inner and the outer Gaussian. Before proceeding, a normalization is carried
out on the pyramids CSkL and CSkD in order to promote the activity of maps
with few items and to suppress the activity of maps with distractors. The
normalization process is repeated identical on the final single feature saliency
map and it is explained in section 3.2.6.

4. Antagonist pair of Border Ownership: Complex Cells activity and Cen-
ter Sourround mechanism modulate each other in order to recreate Border
Ownership cells activity. As we know from section 2.4.2 Border Ownership
cells work in antagonistic pairs: for the same edge there are two populations
of Border Ownership that are activated by the presence of the object in one of
the two sides of the contrast edge. For example for an horizontal edge one of
the two Border Ownership cells from and antagonistic pair is activated if the
object is located above the border while the other is activated if the object
is located under the line. Once the border is identified by the complex cells,
center surround mechanism add information about the object itself, looking
for a light object on a dark background (Bk

θ,L) or the opposite situation (Bk
θ,O).

Border Ownership activity for a light object on a dark background is evaluated
as it follows.

Bkθ,L = Ck
θx

(
1 +

∑
j≤k

1

2j
νθ+π ∗ CSjL − wopp

∑
j≤k

1

2j
νθ ∗ CSjD

)

At the same way Border Ownership activity for a dark object on a light back-
ground is defined as it follows.

Bkθ,D = Ck
θx

(
1 +

∑
j≤k

1

2j
νθ+π ∗ CSjD − wopp

∑
j≤k

1

2j
νθ ∗ CSjL

)
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(a) On-center operator: 2D representation (b) On-center operator: 1D representation

(c) Off-center operator: 2D representation (d) Off-center operator: 1D representation

Figure 3.6: Center Surround operator. All the four figures have been created using MAT-
LAB2017b and have only an illustrative purpose.

Where:

• νθ is the annular kernel that links Center Surround activity with the
information of the object edges. It is generated using Von Mises distri-
bution and normalized in the range [0−1]; In order to produce the desire
annular receptive field eight individual kernels are evaluated for eight dif-
ferent angles θ and then combined. To well position kernels in the image
their expression depends on the zero crossing ; radius value of the center
surround receptive field (figure 3.7).

• wopp is the synaptic weight of the inhibitory signal from the Center Sur-
round pyramid with the opposite polarity.

• 2−j is a factor used to normalize νθ to have constant influence across
spatial scale.

57



3 – Methods

Figure 3.7: Annular kernel used to map the Center Surround cells activity to the Border
Ownership cells, each kernel is generated from Von Mises distribution at a specific angle.
In figure are reported kernels at 0, π/2, π, 3π/2 and is indicated the zero crossing radius
(R0) of the Centre Surround receptive fields. Figure reported from figure 4 in [28].

The two Border Ownership responses are then combined together as follow.

Bkθ(x, y) = Bkθ,L(x, y) + Bkθ.D(x, y)

For each pixel we have a response for all the angles evaluated for the circular
integration along Von Minses distribution inspired annular receptive field (νθ)
(figure 3.7), for each angle θ the two group of border ownership cells coding for
opposite sides (θ and θ + π) compete. Therefore for each pixel situation can
be summarized as in figure 3.8. The winning border for each pixel is selected
to be θ̂ if:

θ̂ = argmaxθ
(
Bkθ(x, y)− Bkθ+π(x, y)

)

Figure 3.8: Border Ownership cells activity at each pixel. The magnitude of the activity
is proportional to arrow length. Reported from figure 4 in [28].

5. Grouping Cell Responses: similar to what happens in the previous step
now are the Grouping cell responses to be evaluated through a circular inte-
gration on annular receptive field considering, for each winner orientation of

58



3 – Methods

Borner Ownership cells, the inhibition from the Border Ownership cell coding
for the opposite direction. Grouping cell activity is defined as follow.

Gk(x, y) =
∑
θ

δ
(
Bkθ(x, y), B̂k

)
x
[
Bkθ(x, y)− wxBkθ+π(x, y)

]
∗ νθ(x, y)

where

δ
(
Bkθ(x, y), B̂k

)
=

{
1; if Bkθ = B̂k,with B̂ = winning cell
0; if Otherwise

The Grouping pyramid is the output of the grouping mechanism that now have to
be normalized, merged in one unique level and finally the outputs from single feature
channel have to be summed up together.

3.1.2 Global Structure of the Algorithm

The feed forward grouping algorithm is included in a big structure that is based on
the one proposed by Itti et al. at the time when the first computational models of
visual saliency came out. As preliminary step, from the input RGB Image informa-
tion about single image features are extracted. This step is accomplished in order to
see if any pop-out effect can make an area, or an object in the image, more quickly
accessible to the visual attention.

At the end of the grouping mechanism a normalization operation is added in
order to promoting groping activity of maps with few proto-object and suppressing
the one with multiple proto-objects.

Feature Channels Extraction

The features chosen for the analysis are 3 but the total number of channels is 9
because two of them include more then one channel. The image is first of all divided
in three color channels that come from the three matrix that compose the RGB
image given as input: r, g, b. These channels are not directly used in the algorithm
but are needed to extract 4 of the 9 total channels. Below are listed and briefly
explained the main steps to extract the inputs for the single channels starting from
the input RGB image.

1. Color channels Extraction: blue (b), red (r) and green (g) channels sepa-
rated from the RGB image;

2. Intensity channel Generation: I = r+g+b
3

, this intensity Image is than
given to the grouping algorithm;
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3. Color channels Normalization: each pixel intensity value in r, g, b smaller
than the 10% of the maximum intensity value of the image are settled to zero.
This can be done without altering algorithm performances because at very low
luminance variations are not perceived;

4. Broadly tuned color channels Extraction: red → R = r − g+b
2
, blue →

B = b− g+r
2
, green→ G = g − r+b

2
, yellow → Y = g+r

2
− |r−g|

2
− b;

5. Half wave Rectification: all the negative values in R, G, B and Y are settle
to zero;

6. Color opponency channels Generation: RG = R − G, GR = G − R,
BY = B − Y , Y B = Y − B, these signals are then given to the grouping
algorithm;

7. Orientation channels Generation: the four orientation channels Oα with
α ∈ 0, π/4, π/2, π are created using I as input for the grouping mechanism
and replacing the center surround mechanism with even Gabor filters with α
orientations. The spatial frequency is chosen so that the width of the central
lobe of the filters matches the zero crossing of the center surround original
mechanism. The result of that is a center surround mechanism modulated by
the orientation of the proto-objects. The specific Gabor filters are:

cson(x, y) = e−
x′2+γ2+y′2

2σ2 cos(ω′x′)

csoff (x, y) = −e−
x′2+γ2+y′2

2σ2 cos(ω′x′)

where: x′ = xcos(α) + ysin(α) and y′ = ycos(α) − xsin(α) These operations
are repeated changing α angle so 4 different channels are generated, all the
result images are given to the grouping algorithm as input.

3.1.3 Normalization Step

At the end of the groping algorithm we have proto-objects conspicuities maps for all
the channels. Every grouping pyramid has to be collapse to one single level. Each
level is normalized and then a cross scale addition is accomplished. Following ex-
pressions show how conspicuity maps (Ī, C̄, Ō) are generated, operator N2 indicates
the normalization process, while ⊕ indicates the cross scale addition achieved col-
lapsing pyramid levels to a common scale. The scale to which collapse the pyramids
is generally choose close to the middle scale. Russel et al. chose the eighth level to
evaluate the model. For the each feature channel, conspicuity map is calculated as
follow:
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Conspicuity maps are then normalized again and linearly combined to form the
proto-object based saliency map:

S =
1

3

(
N2

(
Ī
)

+N2

(
C̄
)

+N2

(
Ō
))

(3.2)

Once the fundamental structure of the model has been studied and understood,
we approach the description of the extension made to the algorithm. The next
sections describe how we decided to include information on depth discontinuity, the
heart of the work was to understand how to provide information to the grouping
mechanism so that it could recognize objects located on the same stereoscopic plane
(figure 2.12).

3.2 Disparity Channel
The basic structure of the algorithm proposed by Russel et al. [28] and described in
the previous section of this chapter have been left unchanged but a new channel is
added to include three dimensional information. We refer to this channel as Disparity
Channel and this section is entirely dedicated ti its description. The model, as the
one proposed by Russel et. al, is implemented using MATLAB (Mathwork, Natik,
MA, USA). As all the other channels in the model, the Disparity Channel receives
an input, two RGB stereo images of the same scene, and extracts information to
give to the grouping algorithm. In this first version of the model an other input is
also required. The following list gives a generic introduction of the inputs that the
Disparity channel requires and the next two sections are dedicated to their more
detail explanation.

Inputs required by the new channel are the following.

• A couple of stereo images: the stereo images have to be rectified.

• A set of expected values of stereoscopic disparities: disparity values are
provided as numerical values indicating the horizontal displacement between
the position of two corresponding points in the two stereo images. The value
is given in terms of number of pixels along the horizontal line and its sign is
an indication of the verse of the shift.
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From the input images, taking advantage of information about the range of
disparities, a series of steps is made in order to create the right images on which the
grouping algorithm can act so that this can be functional in order to search depth
discontinuities in the proposed visual scene. These steps are listed and summarily
described below.

1. Contrast Evaluation: the two stereo images are divided in square blocks,
for each block the Root Mean Square contrast is calculated and compared to a
threshold values, if Root Mean Square contrast of both stereo images, is below
the threshold that block is considered a low contrast zone and is excluded from
saliency computation.

2. Cost Function Calculation: at each pixel for each disparity value the core-
spondent Sum Of Absolute Difference is evaluated between the two stereo-
images (see section 3.2.4). This step is repeated for each image pixel and at
each disparity values in the chosen set. When at the current disparity there
is a good match between the two stereo images the result of the cost function
is low, while it is high if there is no match between the pixels from the two
images and at the current disparity.

3. Maps Normalizaiton: after the previous step, for each disparity value, is
created a map that have the same dimensions of the input images and where
pixels values are the results of the Cost Function Calculation. In these maps
items situated at the current disparity have low pixels intensity values then
a series of normalization operations are carried out to reverse the trend: we
want good matches between the stereo images to be marked by high values in
the correspondent area of the maps.

4. Disparity Opponency Evaluation: each maps (one at each disparity) is
now subtracted from all the other maps.

The scheme in figure 3.9 shows the steps required to get the right information to
give to the grouping algorithm.
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Figure 3.9: Overview of the Disparity Channel Algorithm: from the inputs to the start of
the grouping mechanism.
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3.2.1 Input Images

Is it critically important that the two stereo images given to the Disparity Channel
are rectified.

Image Rectification

The rectification of an image can be interpreted as a prospective correction, it is
a transformation process generally used to project more images on a common two-
dimensional surface. It is also used to correct single images to a standard coordinate
system (eg: a rectangular, Cartesian coordinate system). In figure 3.10 it is shown
how different possible perspectives can memorize visual information about the same
object and then, after a rectification process, the two "points of view" have the same
projections system. This permits more accurate comparison analysis [5].

Figure 3.10: Image Rectification. (1) Two stereo images before rectification and relative
search space. (2) Same two stereo images after rectification and relative search space, the
images now have the same projection system. Reported from [42].

A rectification system is often included in the camera used to shoot stereo images
but sometimes manual rectification may be required and it can be implemented
following widely documented algorithms. MATLAB has some functions that can
rectify images by providing some parameters of the camera used.

Our algorithm works under the hypothesis that the two stereo images that are
provided as inputs, have been already rectified in order to simplify the search of
matching points, required for establishing the correct disparity between the positions
of a specific point in the two different views. In fact the algorithm uses Binocular
disparity between the two stereo images to estimate the distance of a specific area or
object in the scene from the observer. This means that it looks for the displacement
of a specific point between the two stereo images and if the images are rectified,
the vertical coordinates of corresponding points are identical so the search for cor-
respondences can be carried out exclusively along horizontal lines. At the contrary
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if the images were not rectified, the search for two corresponding points should be
carried out along two dimensions. This would greatly complicate the algorithm and
increase the computational cost as well as reduce execution speed. We choose not
to implement a rectification mechanism in the algorithm itself because any of them
requires to know specific parameters of the camera such as the location of the cam-
era in the 3-D scene (extrinsic parameters), the optical center and focal length of
the camera (intrisic parameters) and the lens distortion. These parameters are all
needed to find a projective transformation with which rectify the images. Referring
to epipolar geometry, that explains the rules to link the three-dimensional world to
the two-dimensional representation in stereo vision, in two rectified stereo images
the base line is parallel to the image planes and epipolar lines are not defined. For
the scheme and the definition of epipolar geometry in the case of non rectified and
rectified stereo images look at figure 3.11. One of the easiest way to shoot two rec-

(a) Not rectified stereo images

(b) Rectified stereo images

Figure 3.11: Epipolar Geometry: scheme and definition. (a) When the stereo images are
not rectified the line that links the cameras center (base line) intersects the two image
planes so epipolar lines can be defined. (b) When the stereo images are rectified the base
line is parallel to the image planes so epipolar lines can not be defined.

tified stereo images, even if it is the less precise, it is to use a normal camera and
and move it horizontally between the two image shots.

For what concerns analogies with the human biology, our eyes are two cameras
that are with good approximation, located on the same horizontal axis. Anyway
images from the eyes have to be projected in the in the retina that has a convex
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shape and so they are distorted. In reality any mechanism similar to the rectification
process is known to happen in human vision system but what we know is that only
horizontal position shifts, between the view from left eye and the one from right eye,
is the only considered to elaborate depth perception from stereopsis (for more detail
information see section 2.2.1).

3.2.2 Disparity Values and Direction

As anticipated, a part from the two stereo images, the algorithm required an other
input: a set of disparities expected to be found between the two stereo images. These
values are given as a vector of integers that indicates the entity, expressed in pixels
number, of the horizontal shift of the same point between the two stereo images. If
we consider a certain pixel in the left image from a stereo pair, and we look for the
correspondent one (the one that represents the same point of the visual scene) in the
right image, the horizontal shift between these two correspondent point can both be
positive (to the right) and negative (to the right). For the correct interpretation of
the disparity values and their verses it is necessary to know which of the two views
is taken as reference. If the algorithm must look for two matching points between
the two stereo views, given the disparity values and their verses, the displacement
absolute value does not change if the search is made from the right image to the
or from the left image to the right image , but the verse (sign) of the disparities
changes.Knowing a priori the range of disparities between two stereo images is not
easy. In general this depends on the size and resolution of the images, the way
in which the two cameras are positioned to take the two stereo images and the
distortion introduced by the cameras themselves. Cameras with low distortion and
in a perfectly parallel alignment take stereo rectified images where disparity values
have all the same sign.

This first version of the algorithm do not include an automatic evaluation of
the disparity values and for that reason a set of probable disparity values has to
be provided as an input. This can be easily done if the images are artificially
created so that the disparity values are chosen at the moment of the image creation
creation (see section 4.1). For what concern testing the algorithm with natural
scenes images as inputs, it is, for now, necessary to find or create a dataset that
includes, as well as a series of pairs of rectified stereo images, also the relative vector
of the horizontal disparities associated. Looking at datasets available online [16] it is
possible to understand that a first general rule to choose the disparity range is that
the maximum disparity is general less then one tenth of the image width itself. The
idea is to contribute to the creation of a final computational stereo vision model that
will be able to automatically chose the range and subsets of disparities to evaluate.
It will follow the limit imposed by the resolution and the working method of far,
near and tuned zero cells of the visual cortex that respectively respond to disparities
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in planes further away from the fixation plane, closer than the fixation plane and on
the fixation plane. These planes are all included in the Panum’s area (see section
2.2.1 for further information about stereopsis and human biology). From this point
we will use the expressions disparity and horizontal shift without any difference, to
indicate one of these numeric values provided as inputs.

Now each pixel of the image has to be assigned to the correct value of disparity
within the chosen range. For that reason a specific Cost Function (see section 3.2.4)
is utilized. This function works looking for similar areas in the two stereo views but
all the areas of the images where no features occur (i.e. uniform background) will
perfectly match even if they are not placed in correspondent positions in the two
stereo images, making the search less robust. Furthermore these areas are generally
not considered a salient area. For that reason, we choose a priori to exclude low
contrast areas. In the next section the way we used to evaluate the contrast is
explained.

3.2.3 Contrast Evaluation

Low contrast zones are not considered salient areas and, as will be more clearer after
the next section, letting these zones be included in the next steps would make the
following results unreliable. Furthermore, excluding low-contrast areas reduces the
total computational cost. To decide whenever an area of the visual scene is a low
contrast areas or not the algorithm proceeds following these steps:

1. Images Divided in blocks: for two pixels situated at the same position in
the two stereo images, one in the right view and one in the left view, a square
block centered in the pixels themselves is considered.

2. Root Mean Square Contrast Calculation: for each couple of pixels, in
the respective blocks, the Root Mean Square Contrast (RMS) is calculated as
follow.

RMSconstrast =

√√√√ 1

MN

N−1∑
i=0

N−1∑
j=0

(Iij − Iav)
2 (3.3)

where:

• Iij is the ith jth element of the block with size MxN ;
• Iav is the average intensity of all the pixel values in the image.

3. Comparison to a threshold value: the value of RMScontrast (RMSC) of
each block is compared to a threshold value.

4. Final Decision: depending on the result of the comparison two decisions can
be made:
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• RMSC of both stereo images < Threshold→ block = low contrast zone:
the whole block is excluded from the following steps;

• RMSC of both stereo images > Threshold→ block /= low contrast zone:
the whole block is included in the following steps.

3.2.4 Cost Function and Sum of Absolute Differences Map

The next steps of the algorithm included in the Disparity channel evaluation are
the real core of the channel itself. The ultimate goal is to prepare the right inputs
for the grouping mechanism, fully described in section 3.1.1. We want to make this
mechanism to operate on specific depth planes (see figure 2.12 for reference). Items
lying on a common depth plane are characterized by similar values of horizontal
shift (disparity) between right and left view. Therefore to simulate the Gestalt
Principles (section 2.3.3 and [21] for reference) of continuity and proximity (figure
2.20) to identify the presence of a proto-objects structure in a specific depth plane,
grouping mechanism has to get as inputs images that recreate single depth planes.
A depth plane is associated with a specific value of horizontal shift so we have to
divide the scene grouping together all the areas characterized by the same values
of this shift. The horizontal shifts that are possible to find between the two view
are given, in term of pixels numbers, as input, so the algorithm works calculating
the result of a specific cost function which indicates, for each value of disparity, the
goodness of the matching between two areas: one considered in the right view of
the stereoscopic pair and the other in the left view. The cost function is the Sum
of Absolute Distances (SAD) that is a measure of similarity between image blocks
widely used in stereo matching problems. The Sum of Absolute Distaces (SAD)
between two image blocks with the same dimensions is calculated as follow:

1. difference between each corresponding pair of pixels: one for each block →
new difference block with the same size (Difference);

2. calculation of the absolute value of the whole difference block (Absolute);

3. pixel values within the absolute difference block are adding together (Sum).

The more the two blocks are similar, the more the result of the Sum of Absolute
Differences is low.

For what concerns the Disparity channel algorithm these three operations (SAD)
are of critically important for the creation of maps that we call SAD maps whose
basic steps are listed below. The correct processing of these maps is essential for the
success of the simulations that the entire model complete. SAD maps generation
process steps are the following, remember that all of these have to be repeated for
each disparity (horizontal shift) value given as input:
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1. a disparity (horizontal shift) value is picked from the set;

2. a pixel in one of the two stereo images (suppose the left one) is selected to be
the center of a squared block in the current view;

3. in the other image (right view) the pixel located in the same horizontal line,
as the chosen pixel in the other view (left view), but shifted by the value
indicated by the current disparity, becomes the center of a squared block in
the right view → the two blocks respectively in the left and in the right view
have to be of the same size;

4. Sum of Absolute Difference is evaluated between the two image blocks;

5. a SAD map for the current disparity is created setting the map pixel, in the
position corresponding to the one that the pixel under analysis has in the
original image (left view), to the value of the Sum of Absolute Differences just
calculated.

These steps have to be repeated for each pixels of the images, excluding those
belonging to a low contrast area, and for each disparity in the set. Figure 3.12
shows how the value is assigned to a pixel in a SAD map for a specific disparity
value. In the next small subsections the following information are given:

• SAD map definition;

• low-contrast areas management;

• maps preparation for the next steps of the algorithm.

SAD Map

The map we called SAD map in reality is an image that has the same dimensions of
the two stereo images given as inputs and where each pixel value corresponds to the
Sum of Absolute Differences result for that specific pixel for one specific disparity.
Therefore at the end we have as many SAD maps as the disparity number in the
set. Each pixel in a SAD map can have a value that goes from 0 to a maximum
values that varies with the image scale and the dimensions of the blocks used to
calculate the Sum of Absolute Differences. Given a disparity value of the input set
and assuming not to have developed an alternative algorithm for managing low-
contrast areas, pixel values in the map give the following information depending on
their value.

• High pixel value in the map: indicates that the two blocks from the two
stereo images do not have a good match at the current disparity;
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(a) Stereo Images

(b) Example of SAD numeric calculation

Figure 3.12: Sum of Absolute Differences: (a) Given a certain disparity value, for each
pixel of one of the stereo images (Left Image here) a squared block is considered (red
contours), in the other stereo image (Right Image here) the pixel taken as the center of a
block of the same size (dashed light blue contours), is situated in the position moved by
the disparity under analysis, along the horizontal line, from the one of the pixel in the Left
Image;(b) Sum of absolute values of the differences between the right and the left block.

• Low pixel value in the map: a value equal or close to zero indicates that
one of the two situations listed below occurred.

1. the two blocks from the two stereo images have a good match at the
current disparity;

2. the two blocks individuate a low contrast zone. These two cases have to
be distinguished and for that reason since the beginning the low contrast
areas have a different treatment.

Low contrast areas management

At the end of the contrast evaluation process (section 3.2.3) the algorithm already
has the information about low contrast zones locations. There fore before starting
the calculation of each SAD map, the pixel values at the low contrast area are preset
to a value of -1 in the map. So we know that the values of the SAD map can be
interpreted as follow:

• High pixel value in the map: indicates that the two blocks from the two
stereo images do not have a good match at the current disparity;
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• Low pixel value in the map (zero or close to zero): indicates that
the two blocks from the two stereo images have a good match at the current
disparity;

• Pixel value equal to -1: the two blocks individuate a low contrast zone.

In this way, data interpretation problems are avoided because they try to exclude
ambiguous situations.

Normalization and Cosine Operator

To facilitate next steps we want to mark a good match, at a specific disparity with
a high value in its location on the SAD map. For that purpose, values of the map
are:

1. normalized between -1 and 1 → SADnorm;

2. replaced according to the following operation: SADmap = cos (90 ∗ SADnorm).

Now for each disparity of the chosen set we have a map where:

• Null pixel values: indicate a low-contrast zone or a zone that is not located
at the current disparity;

• Low pixel values (close to zero): indicate a zone that is not located at the
current disparity but that is closer than the ones characterized by null values;

• Pixel values equal or close to 1: indicate a zone that is located at the
current disparity.

Example case: from input images to the final SAD map

In order to better understand the operation of the disparity channel algorithm,an
example case is studied, from the input images to the SADmap obtained after the
cosine operator. The steps are shown in figure 3.13 and the following explains what
the individual panels in figure 3.13 represent.

1. Input Stereo Images: first raw in figure 3.13 shows left view and right view
given to the algorithm as inputs. The couple of stereo images is composed
by 2 images of 7 gaussian blobs of random dots on an uniform background.
Between two correspondent blobs (one in the left and one in the right view) a
known horizontal shift has been applied.

For example in the case in the figure:

• 3 blobs at the left of the scene are at disparity +5: shifted of 5 pixels to
the right from the left to the right view;
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• 3 blobs at the right of the scene are at disparity -5: shifted of 5 pixels to
the left from the left to the right view ;

• 1 blob in the middle of the scene is at disparity 0: it has not been shifted,
same position in the left and in the right view.

2. SADmap after Normalization: the second row in figure 3.13 shows the three
SAD maps evaluated for one of the three values of horizontal shift (−5, 0,+5)
and after the normalization in the range [-1 − 1]. In these SADmaps blobs at
the current disparity have null pixel values (green in figure 3.13), low contrast
zones (the whole background) is settled to -1 (blue in figure 3.13) and blobs
that are not at the current disparity show highest SAD values (from yellow
to red pixels in figure 3.13).

3. SADmap after cosine operation: the third row in figure 3.13 shows the three
SAD maps obtained after the cosine operation. In these SADmaps blobs at the
current disparity have pixel values equal to 1 (red in figure 3.13), low contrast
zones have null pixel values (blue in figure 3.13) and blobs that are not at the
current disparity show lowest SAD values 3.13).

After the cosine operation a sort af opponency between all the disparities is recreated
following the scheme of Color Opponency channel in Russel et. al model [28], this
is the last step before letting the Grouping algorithmrun.

3.2.5 Disparity Opponency

The last step before giving depth information to the grouping algorithm, aims to
recreate the different depth planes corresponding to different values of disparity.
We want to simulate Grouping Cells activity on each depth planes in order to see if
recognizing proto-object structures at different distances from the observer and use
them to search for depth discontinuities in the scene somehow modify and hopefully
improve the prediction of fixation points compared to the two-dimensional one. The
grouping algorithm is able to recognized objects if the pixels intensity representing
them, make it possible to use the Gestalt psychology principles of proximity and
continuity ([21] and figure 2.20 for references). For simplicity, for each disparity,
and so for the respective depth plane as well, we chose to represent with the highest
pixel values only the area located at the current disparity (depth) so that they can
be recognized as perceptual object structures. To be sure that map given as input
to the grouping algorithm shows the highest values only in areas located at the
current disparity, each SADMap is subtracted from all the other, akin to the Color
Opponency Channel in Russel et al. model [28]. For example, if there are 3 disparity
values (disparity -5, disparity 0, disparity +5), as in figure 3.14, we fist evaluate 3
SADMaps (one for each disparity, first row in figure 3.14) and subtractions yeld 6
new map:

72



3 – Methods

(a) SAD−5 (b) SAD0 (c) SAD5

(d) SAD5 − SAD0 (e) SAD0 − SAD5 (f) SAD−5 − SAD5

(g) SAD−5 − SAD0 (h) SAD0 − SAD−5 (i) SAD5 − SAD−5

Figure 3.14: Disparity Opponency. Results from the disparity opponency subtractions after
the half wave rectification. All the 6 opponency maps (second and third row) are obtained
starting from a couple of artificially created stereo images where the set of disparity is
−5, 0, 5. First row (white pixels have the highest intensity values): (a) SADmap after
cosine operation at disparity −5, (b) SADmap after cosine operation at disparity 0, (b)
SADmap after cosine operation at disparity −5. Second and third rows show the results of
the subtractions, after the half wave rectification: these maps are all given to the grouping
algorithm as inputs. For each disparity there are two new maps representing the respective
depth plane.
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Map5,0 = SAD5 − SAD0;Map0,5 = SAD0 − SAD5;

Map−5,5 = SAD−5 − SAD5;Map5,−5 = SAD5 − SAD−5;

Map−5,0 = SAD−5 − SAD0;Map0,−5 = SAD0 − SAD−5;

In general with a set of N disparities the Opponency Maps to give to the grouping
algorithm are

(N) ∗ (N − 1) (3.4)

We already know from the description of the grouping mechanism (see figure 3.4
and section 3.1.1) that the actual inputs for the real core of the grouping algorithm
are given by the result of the half-wave rectification of the maps resulting from the
opponency subtractions (figure 3.14 shows the results of the opponency differences
after the half-wave rectification).

The following two sections describe the steps that are performed by the model
after the groping mechanism has been applied: first the conspicuity from the Dispar-
ity Channel has to be elaborated from the resulting grouping pyramid and then it
has to be fused with the map resulting from the two-dimensional model (composed
by intensity, color opponency and orientation channels which are fully described in
section 3.1).

3.2.6 Normalization and Merge of Pyramid Levels

At the end of the grouping algorithm, for what concern the Disparity Channel results
we have an images pyramid for each Opponency map. In order to obtain a single
conspicuity map (D̄) to add to the one coming from the other two-dimensional
channels the pyramids must be normalized level by level and merged to a common
scale that generally is closed to the middle level of the original image pyramid.
The normalization steps are the same used for the Orientation Channel and briefly
shown in equation 3.1. So for the Disparity Channel we have:

D̄ =
∑

OpponencyMaps

N2

(
⊕k=maxlevelk=minlevelN2

(
Dk
SingleMap

))
(3.5)

Where the N2 operator indicate a series of operation the are left uncharged from
the Itti et al. model dated 1998 [15]. Each level is normalized by following the steps
listed below.

1. Maps normalization in a fixed range: suppose that the chosen range has
minimum value equal to 0 and maximum equal to M ([0......M ]).

2. Threshold setting: threshold = min(range) + max(range)−min(range)
10

.

74



3 – Methods

3. Local Maxima Search: considering the original map, excluding the first
and last rows of pixels and the first and last columns of pixels as reference see
figure 3.15.

Figure 3.15: Image blocks for normalization process. The square with continuous black
contours is the entire image; the square with dashed black contours is the reference block in
which pixels are chosen, their value is compared to the corresponding (a the same location)
pixel value in all the others blocks: orange block is moved one row higher, green block is
moved one row lower, red block is moved one column to the right and purple block is moved
one column to the left.

The reference image block is analyzed pixel by pixel and if all the following
condition are satisfied the current pixel is memorized as a local maximum.
Conditions to be satisfied are:

• current pixel value > value of the pixel at the same location in the image
block moved one pixels row higher (orange block in figure 3.15);

• current pixel value > value of the pixel at the same location in the image
block moved one pixels row lower (green block in figure 3.15);

• current pixel value > value of the pixel at the same location in the image
block moved one pixels column to the right (red block in figure 3.15);

• current pixel value > value of the pixel at the same location in the image
block moved one pixels column to the left (purple block in figure 3.15).

• current pixel value > threshold.

4. Local maxima Information Extraction:

• total number of local maxima;

• average of local maximum values;

• sum of all local maximum values.
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5. Map Normalization:

Mapnorm =


(M − m̄)Map; if n◦local maxima > 1

M2Map; if n◦local maxima = 1

Map; if n◦local maxima = 0

In the previous expression Mapnorm is the result of the normalization, M is the
output of the gropung mechanism and m̄ is the average of the local maxima
values.

This normalization allows to weigh the individual maps, giving emphasis to the
possible pop-out effect. In fact, the weight increases as the difference between the
value of the global maximum and the average value of the local maxima increases
and it is easy to understand that if a feature map is affected by the pop-out effect,
the peak intensity value will be much higher than the average value of the local
maxima. All these operations are repeated for each level of each pyramid.

Than the levels are scaled to a common scale, using a bicubic interpolation (read
the introduction to section 3.1 for further information). The scale to which scale all
the levels can be selected time by time the model runs but generally if it is close to
the middle level of the images pyramid, no important information from the other
levels should be lost. After that the normalization is repeated again the last step is
adding the resulting maps (one for each considered Opponency Channel).

Figure 3.16 shows the resulting D̄ map obtained running the entire disparity
channel algorithm, given as input the pair of stereo images taken into account in the
case shown in the figure 3.13. As can be seen in figure 3.16, the algorithm is able
to detect the presence of the only object located at zero disparity that, with all the
other features being equal, is expected to be the most salient object.
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(a) Input Images Red-cyan
anaglyph

(b) Disparity Saliency
Map: 2D representation

(c) Disparity Saliency
Map: 3D representation

Figure 3.16: Disparity Channel Output. (a) Red-cyan anaglyph from the two stereo images
given as input to the disparity channel: red numbers indicate the horizontal shift relative to
each blob and expressed as pixels number. (b) 2D representation of the Disparity channel
Saliency Map obtained as output from the disparity channel algorithm: high pixels value
(yellow) indicate the presence of a salient zone. (c) 3D representation of the Disparity
Channel Saliency Map obtained as output from the disparity channel algorithm

3.3 Sum of Two-dimensional and Disparity Saliency
Maps

Grouping algorithm is applied simultaneously to all the feature channel in figure 3.1.
Therefore, the last step is to combine the two-dimensional map (includes contribu-
tion of intensity, color opponency and orientation channels) with the contribution
of the disparity channel that add depth information to the whole model. The two
map are weight and summed together (linearly combined together) as follow:

SaliencyMapfinal = wdD̄ + wsS

where:

• SaliencyMapfinal is the final saliency map that accounts both disparity channel
information and two-dimensional information from intensity, color opponency
and orientation channel;

• D̄ is the saliency map that accounts only the disparity channel contribution;

• S is the saliency map that accounts only fro two-dimensional information from
the intensity, color opponency and orientation channels (see equation 3.3)

• wd multiplicative factor on which depends the weight of the results obtained
from the disparity channel in the final map;
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• ws multiplicative factor on which depends the weight of the results obtained
from the intensity, color opponency and orientation channels, considered to-
gether as a unique two-dimensional saliency map, in the final map.

The choice of the two weights does not follow a precise rule or specific knowledge
about human biology. However, common sense suggests that we can not consider
a 1: 1 ratio but rather we believe that the map that takes into account the three
two-dimensional features must weigh more than the added contribution from the
information to the binocular disparities added by the disparity channel. For that
reason, even if the weights can be settled each time the algorithm runs we almost
always set a weight equal to 20% for the disparity channel contribution ad a weight
equal to 80% for the two-dimensional contribution. This makes depth information
comparable with information from single two-dimensional feature channels but sub-
stantially smaller than the whole two-dimensional contribution that comes from the
global set of the three different feature channels.
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(a) Input Images and Red-cyan anaglyph

(b) SADmaps normalized in the range [-1-1]

(c) SADmaps after the trend inversion through the cosine operation

Figure 3.13: Example case: from input images to the final SAD map. (a) from left to
right: left view, right view and Red-cyan anaglyph. Red numbers are blobs disparity
values: given as input to the disparity channel algorithm (-5,0,+5).(b) from the left to
the right: SADmap at disparity -5, SADmap at disparity 0, SADmap at disparity +5.
The maps are normalized between -1 (blue) and +1 (red). (c) from the left to the right:
SADmap at disparity -5, SADmap at disparity 0, SADmap at disparity +5. The trend has
been reversed by a cosine operation, maps are normalized between 0 (blue) and +1 (red).
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Chapter 4

Results

Between the previous chapter, entirely dedicated to the model description, and the
next one that explains the evaluation techniques used to quantify model perfor-
mances, it was decided to insert this short intermediate chapter describing the ex-
periments carried out to test the correct operation of the model itself. The main
purpose is to discover if the extension of the existing proto-object saliency model [28]
[27] introduces any changes and and hopefully improvements to the model results.
In order to discover that, it is important to follow the steps listed below.

1. Evaluate that the added channel works as it is supposed to: we ar-
tificially created couples of stereo images where the only feature contributing
to potentially grab human attention is the different distribution of the items
across depth planes (figure 2.12) These tests only evaluate the correct contri-
bution of the disparity channel so the two-dimensional part of the algorithm
does not run for the first experiments.

2. Compare results obtained from the two-dimensional model alone
with those obtained by adding the disparity channel: for that purpose
is needed a dataset that includes the following data.

• Set of rectified stereo images pairs: to use as inputs for the model.
• Information about stereo disparity values: to use as input for the
disparity channel.

• Reliable ground truth: to test the performances quality of the model.

As anticipated in chapter 2, two are the common outputs for a generic visual selective
attention models (see figure 2.13):a saliency map and the focus of attention track
extracted from the saliency map itself. Since our model has saliency map as its sole
output, its evaluation consists in observing the similarity of its outputs maps with
the maps provided as ground truth by any online dataset. Frequently, as in the case
of the dataset used, the ground truth is obtained through eye tracking experiments.

81



4 – Results

In the case of the dataset we used, eye-tracker results from 35 different observes have
been post-processed into fixation density maps. Chapter 5 is entirely dedicated to
the evaluation of the model through specific statistic comparisons with the fixation
density maps, in this chapter results are shown only through visual comparison.
The paucity of datasets with both stereoscopic views and a valid ground truth
makes the validation of this approach particularly difficult. This chapter gives a
briefly description of both the creation of the artificially images to test the disparity
channel performances and the dataset used to test any changes made to the existing
model. For all the tests described in the following chapter, both for artificially stereo
pairs (section 4.1) and real scene images (section 4.2), model parameters are listed
in table 4.1.

Parameter Meaning Value

levels number number of levels in the image pyramid 10
collapse level normalization collapse level 8

γ edges detector Gabor filters parameter 0.5
σ edges detector Gabor filters parameter 2.24
ω edges detector Gabor filters parameter 1.57
σi center surround inner standard deviation 0.9
σo center surround outer standard deviation 2.7

wopp inhibitory signal weight (center surround) 1
R0 center surround zero cross radius 2
wb inhibitory signal weight (border ownership cells) 1
σ1 orientation channel Gabor filters parameter 3.2
γ1 orientation channel Gabor filters parameter 0.8
ω1 orientation channel Gabor filters parameter 0.7
M maximum values for normalization final step 10

neighborhood size contrast evaluation (disparity channel) 7x7
threshold contrast evaluation (disparity channel) 0.01

neighborhood size SAD maps evaluation (disparity channel) 7x7

Table 4.1: Model parameters

4.1 Artificial Stereo Images Pairs: Disparity Chan-
nel Results

In order to see if the disparity channel algorithm is able to detect disparity dis-
continuities between two stereo views of the same scene, we need to have couples
of simple stereo images where the only relevant feature to find is the item (or the
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items) that lies in depth plane different from the ones where the other items are.
Figure 4.1 aims to remember what we mean with the concept of depth plane.

Figure 4.1: Disparity or depth planes. Three dimensional scene is decomposed in a series
of planes parallel to the coronal head plane of the observer: each plane is associated to a
stereoscopic disparity that is expressed in the form of horizontal shift pixel numbers (x,y,z)
and that decreases with increasing distance of the plane from the observer.

4.1.1 Stereo Images Pairs Creation

To test the function of the disparity algorithm, we artificially created couples of
stereo images. Each couple is composed of two images of 7 gaussian blobs of random
dots on a uniform background. Between two views of the same image a horizontal
shifts is applied to all the Gaussian blobs, to see if the algorithm can detect the
presence of anomalous disparities. The composition of these images was performed
using the MATLAB2017b software in order to recreate pairs of rectified stereo im-
ages. Setting precise disparity values, each one associated with specific items in the
image, allows us to know a priori their relative distances from the observer. This
let us know, according to the fundamental hypotheses on which our model is based,
where is the most salient item that the algorithm should detect. Each stereo images
couple is composed by two view that we will call right view and left view by analogy
with the projections of the right and left retina.

Left view: created only once and left unchanged for all the images couples.

Right view: created specifically for each images couples on the basis of the dispar-
ities that we want to associate with each item in the figure.

Artificially Created Left View

The left view of all the artificially created stereo couples is build as explained below.

1. Creation of a two-dimensional space: a matrix of dimensions 601x501.
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2. Gaussian function positioning: 7 identical two-dimensional Gaussians are
created and centered at different points of the created grid.

3. Gaussian truncation and Gaussian Blobs creation: for every Gaussian
function all the values below 10% of the maximum are forced to be 0. This
makes sure that there is no overlap between functions and thus allowing to
isolate 7 Gaussian blobs (figure 4.2(a)).

4. Random dots insertion: the grid of Gaussian blobs is not use as it is to
evaluate the correct functioning of the algorithm. This choice is made to
avoid the perfect central symmetry (rare to find in natural scene images) of
the Gaussian functions to interact with the algorithm mechanisms. For that
reason instead of using a composition of simply Gaussian blobs random dots
are added: a grid of random dots is created (with the same dimensions of the
original one) and then is filtered using the mask composed by the distribution
of the 7 Gaussian blobs obtained at the end of step 2 and shown in figure
4.2(a). The resulting image is shown in figure 4.2(b).

The left view has to be considered as the reference one for every test: when a
blob "is moved to the right (left)" it means that its position in the right image
changes along the horizontal line, of a given number of pixels to the right (left)
relative to the position of the corresponding blob in the left view.

(a) Artificial stereo view before
random dots insertion

(b) Artificial stereo view after ran-
dom dots insertion

Figure 4.2: Artificially created stereo left view. (a) figure shows the 7 Gaussian blobs before
the random dots insertion. (b) Artificial stereo view after the random dots insertion, this
panel represents the stereo view as it is given to the algorithm.
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Artificially Created Right View

The steps to create the other view (right view) of each stereo images couple are the
same of those explained above. Obviously the Gaussians positioning requires the
knowledge of the disparities we want to give to the algorithm as inputs. Each blob
position is chosen starting from the position of the corresponding blob in the left
view shifted by the disparity value (horizontal shift) chosen for that specific blob.
The global grid dimensions have, of course, to be left unchanged. Each blob between
the two views can be left in its position (null disparity), shifted to the left (negative
disparity) or shift to the right (positive disparity).

We also performed an experiment with a stereo pair of images containing only 3
blobs. This choice was made to test the algorithm on a scene in which each object
had a disparity different from that of the others: in this case reducing from 7 to 3
the number of blobs allows to reduce the computational cost without loss of results
validity.

4.1.2 Disparity Channel Results

In order to evaluate if the disparity channel algorithm is able to find depth discon-
tinuity we performed a series of tests. To speed up the overall time of each test, we
chose to never give as input to the algorithm more than three different disparities.
When the disparities given as inputs are three we chose a set containing a positive
value, a null value and a negative one.

We conducted a series of experiments to test if:

1. the algorithm is able to find the most salient blob when it is represented by a
blob left alone at certain disparity;

2. algorithm results do not depend on the position of the salient blob;

3. algorithm results do not depend on the salient blob disparity value;

4. algorithm results do not depend on the number of salient blobs;

5. algorithm results are valid even when no blobs should be considered salient
(no disparity value is specific to a single blob).

Table 4.2 presents an overview of the experiments in figure 4.3 and in figure 4.5.
For each experiment are indicated: the disparity set, the disparities distribution
(how many blobs for each disparity values), the number of the peaks in the output
saliency map (SM) and the maximum value in the saliency map.
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Test Disparity Value n° blobs n° peaks Maximum value

−5 3
1◦ − 7◦ 0 1 1 [10000− 12000]

+5 3

−5 6
8◦ 0 0 1 17061

+5 1

−5 1
9◦ 0 3 1 10753

+5 3

−5 1
10◦ 0 5 2 12074

+5 1

−5 2
11◦ 0 2 no peak 3078

+5 3

−5 5
12◦ 0 0 no peak 3608

+5 2

−5 1
13◦ 0 1 3 12298

+5 1

Table 4.2: Blob disparities distribution tested.

Figure 3.16, at the end of the previous chapter, shows that the algorithm is able
to find blob at an anomalous disparity.

Results do not depend on the position of the salient blob

In all the panels in figure 4.3 there are 3 blob of disparity -5, one of disparity 0
and 3 blobs of disparity +5. Hence, the 0 blob disparity is the most salient for all
the 7 experiments shown in figure 4.3. Among the various tests conducted the only
variable is the most salient blob (disparity zero blob) position. Figure 4.3 shows
the ability of the algorithm to find object at an anomalous disparity regardless its
position in the image. Peak values of saliency are comparable: they never drop
below 10000 and never rise above 13000. The values at the non-salient blobs are
also comparable to each other and are about 4000. Figure 4.4 is a three-dimensional
representation of the saliency map resulting from the experiment with the salient
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Figure 4.3: Disparity channel algorithm finds the most salient blob and its results do not
depend on the position of the most salient blob. Each row shows single test input and
output. Left panels are the left views given as inputs: red numbers indicate pixels of the
horizontal shift. Right panels are the respective saliency maps returned as outputs by the
disparity channel algorithm: the most salient areas are the yellow ones.

blob in the middle of the scene (second case shown in figure 4.3): the non-salient
blobs present values that at maximum reach a quarter of the peak value (around
3000). The non-salient blobs are not supposed to have null values in the saliency
map. The presence of an item on a homogeneous background causes the algorithm
to recognize it and keep track of it in the output map, albeit with much lower values
than the peak ones.

After had verified that the algorithm regardless of the position of the most salient
blob is able to find it, we verified that algorithm performances were not influenced by
the disparity value. We performed new experiments without changing the disparity
set but only the disparity value of the most salient blob.
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(a) Input Images Red-cyan
anaglyph

(b) Disparity Saliency Map: 3D representation

Figure 4.4: Saliency map from Disparity Channel algorithm. (a) Red-cyan anaglyph from
the two stereo images given as input to the disparity channel: red numbers indicate the
horizontal shift relative to each blob and expressed as pixels number. The only blob at
null disparity (central blob) is supposed to be most salient one. (b) Three dimensional
saliency map representation. In the saliency map the most salient blob present a value
around 12000 while never have values above 3500.

Results do not depend on the salient blob disparity value

As shown in figure 4.5 the algorithm can find a salient blob even when its disparity
is either +5 (first row in figure 4.5) or -5 (second row in figure 4.5). In the first
case the disparities set is reduced because there is no blobs at null disparity and the
saliency map shows a peak value for the most salient blob that is higher than the ones
shown when the disparity set is bigger. Even if we do not have enough information
about human biology behavior, this result could be reflected in the mechanism of
selective attention. If the number of depth planes (figure 4.1) on which the objects
are arranged on the scene is reduced, the visual search is dispersed over a small
space so the object at an anomalous disparity will attract attention in a shorter
time, resulting even more salient than the surrounding objects. In the saliency
maps of both cases the non-salient blobs values are around one quart of the peak
values as the case show in figure 4.4. The results remain unchanged whether the
algorithm is required to look for objects with zero disparity, or it is not required to
(zero disparity is not included in the input set).

Results do not depend on the number of salient blobs

When the blobs left at an anomalous disparity are more than one we have to dis-
tinguish two cases:

88



4 – Results

Figure 4.5: Disparity channel algorithm finds the most salient blob and its results do not
depend on the disparity value of the most salient blob. Each row shows single test input
and output. Left panels are the left views given as inputs: red numbers indicate pixels of
the horizontal shift. Right panels are the respective saliency maps returned as outputs by
the disparity channel algorithm: the most salient areas are the yellow ones.

• two or more blobs are characterized by an anomalous disparity and these
disparities are different from each other (figure 4.6(a));

• two or more blobs are characterized by the same anomalous disparity (figure
4.6(b)).

In the first case shown in figure 4.6(a) the input stereo images pair presents one blob
at disparity -5, 5 blobs at null disparity and one blob at disparity +5. Both this two
blobs have the same level of saliency and in fact in the respective output map there
are two peaks of similar values (around 12000) and 5 areas whose value on the map is
always around 3500. The experiment shown in figure 4.6(b) represents the output in
the case where in the pair of stereo input images there are 7 blobs distributed in an
in-homogeneous manner between two disparities (5 blobs at disparity -5 and 2 blobs
at disparity +5). Although it is ecpected to find two higher peaks corresponding
to the displaced +5 blobs, te output map does not indicate the presence of actual
peak values: the highest values are around 4000 and are found for each blob present
in the scene. The comparison between the two cases in figure 4.6 suggests that
the disparity algorithm is able to find blobs at anomalous disparities when there
is a single blob for that specific disparity: this is confirmed by the results shown
in figure 4.7 where for each disparity in the scene there is only a blob. If each
blob in the scene has a unique disparity value the algorithm recognized each one of
them as salient. In figure 4.7, even if with values slightly different, each blob area
corresponds to a peak in the output saliency map (SM). The fact that the algorithm
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(a) 2 blobs for 2 anomalous disparities

(b) 2 blobs for one anomalous disparity

Figure 4.6: Results and salient blobs number.(a) from left to right: input images (red
numbers: horizontal shifts for each blob), two-dimensional saliency map: max value around
12074, most active areas are the yellow ones, three-dimensional saliency map: non-salient
blobs have all values in between 2000 and 3500. (b)from left to right: input images (red
numbers: horizontal shifts for each blob), two-dimensional saliency map: max value around
3608, most active areas are the yellow ones, three-dimensional saliency map: non-salient
blobs have all values in between 2000 and 3500

Figure 4.7: Each blob has a unique disparity. From left to right:Input left view (red
numbers: horizontal shifts for each blob), two-dimensional saliency map: max value around
12298, most active areas are the yellow ones, three-dimensional saliency map:blobs have
all values in between 8000 and 13000.

do not recognize as salient two items at the same anomalous disparity is probably due
to the normalization part of the algorithm. It is undoubtedly a question that must
be studied and resolved. To do this it is also necessary to collect a series of visual
search experiments results, in order to better understand how human attention is
distributed in these cases. Meanwhile, seeing the good results obtained in the other
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cases studied, we decided not to change the algorithm taking into account that the
disparity channel real contribution to the processing of the three-dimensional global
salience map occurs when objects lie alone on an anomalous depth plane (figure
4.1).

Results when no anomalous disparity are present

Figure 4.8 shows the last situation we tested: a scene where blobs are equally dis-
tributed among all the disparities in the input set. Two blobs are at disparity -5,
two blobs are at null disparity and three blobs are at disparity +5. In this case the
algorithm is not rightly able to find a real salient blob: maximum values is around
3600 comparable with al the values find at non-salient blobs in all the previous cases.

Figure 4.8: Disparity channel results when no anomalous disparity. From left to right:
Input left view (red numbers: horizontal shifts for each blob), Two-dimensional saliency
map: max value around 3600, most active areas are the yellow ones. Three-dimensional
saliency map: blobs have values below 3500

At the end of these first tests, based on the sufficiently good results, we decided
to continue testing the whole model using real scene as inputs, in order to see if
introducing notion about stereo disparities distribution model performances change
and hopefully improve. To evaluate the final saliency map a dataset with both
stereo views and a valid ground truth (i.e. fixation density map estimated using an
eye-tracker) are needed.

4.2 Real Scene Images: Three-dimensional model
Results

To evaluate the performance of the extended proto-object based saliency algorithm,
the ability of the model that includes disparity discontinuities notion to predict hu-
man fixations points is compared to that of the model without depth information.
Any differences between the three-dimensional output saliency map from the new
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version of the computational model, and the two-dimensional output saliency map
from the old version of the computational model is purely a result of adding in-
formation about three-dimensional because the only difference between the two is
the presence of the new Disparity Channel. For all the following tests we used the
image database GAZE3D [16] that is right now the only online accessible database
complete with all the information we need to be provided as inputs and to be used
as ground truth. We anticipate that the small number of picture in the dataset will
be a limitation for the quantitative evaluation of the model, explained in chapter 5.

4.2.1 Dataset Description

The GAZE3D dataset contains 18 stereoscopic images and the associated fixation
density map, disparity map, depth map, and the raw eye tracking data.

Three-dimensional Images are provided as a stereoscopic couple, the two stereo-
scopic views are used as inputs to test our model.

Disparity Maps are used to extract the disparities set to give as input to the
disparity channel algorithm (figure 3.9).

Fixation Density Maps are used as ground truth to evaluate the model through
distribution based evaluation metrics (chapter 5).

Raw eye tracking data used to extract binary fixation maps to use as inputs with
the location based evaluation metrics (chapter 5).

Three-dimensional Images

The dataset includes 18 3D images composed by 2 2D PNG images. The 2 PNG
images that compose a stereoscopic couple are marked as left ("_L") and right
("_R") image and they are used as inputs for the model. A briefly description fo
the sources is shown in table 4.3. The database is provided free from charge and it
is composed by 18 stereo pairs: the first 10 come from the Middlebury 2005/2006
database [29], and the other 8 images are acquired at the University of Nantes
campus [36]. All the stereo images are rectified (figure 3.10) but no information
about the rectification method are provided. Reference for the original sources is
the whole first column of figure 4.13.
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Source Resolution Description Author

1 1278× 1080 A painting artist desk Middlebury College
2 1278× 1080 Some dolls on a desk Middlebury College
3 1282× 1080 Some books on a desk Middlebury College
4 1279× 1080 A baby on in front of a map Middlebury College
5 1228× 1080 Some cleaning stuff on a desk Middlebury College
6 1274× 1080 Middlebury merchandising Middlebury College
7 1286× 1080 Colored and shaped objects Middlebury College
8 1194× 1080 Some plastic objects Middlebury College
9 1247× 1080 Objects at different planes Middlebury College
10 1192× 1080 Some rocks Middlebury College
11 1920× 1080 Two boxers training IRCCyN
12 1920× 1080 Hall between two buildings IRCCyN
13 1920× 1080 Girls in a chemical laboratory IRCCyN
14 1920× 1080 Two men reporting IRCCyN
15 1920× 1080 A man speaking on phone IRCCyN
16 1920× 1080 Two men playing football IRCCyN
17 1920× 1080 Tree branches slow moving IRCCyN
18 1920× 1080 A man using an umbrella IRCCyN

Table 4.3: GAZE3D dataset sources description.

Disparity Maps

In the dataset for each stereoscopic pair there is its associated Disparity Map store
like an image in a matrix in a size of:

height of the image ∗ width of the image

To each pixel is assigned a value that indicates the disparity existing between the
left and the right projections of the point that in the visual scene, corresponds
to the pixel in question. Due to the fact that the stereo pairs are composed by
two rectified views (see figure 3.10 and section 3.2.1), such disparities indicate the
number of horizontal shift between the left and the right representation. From the
disparity maps, information about the whole disparity set of a specific stereo couple
can be extracted, such values can be use as input for the Disparity Channel in the
model (figure 3.9). Figure 4.9 has been created using MATLAB2017b to show an
example of one disparity map from the dataset that was stored in a matrix.
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(a) Image n° 10: left view (b) Image n°10: Disparity Map

Figure 4.9: Image n°10 from GAZE3D dataset. (a) Original left view, size: 1192x1080.
(b) Disparity Map associated to Image n°10: the column on the right gives and indication
of the disparity values.

Fixation Density Maps and Binary Fixation Maps

As well as the disparity map for each of the 18 stereo pairs the dataset provides the
Fixation Density Map (FDM). These maps are saved as PNG black and white images
where more a pixel is white, more this pixel is visualized by the observers. The
fixation density maps are obtained through eye tracking experiment which are based
on the link between visual attention and eye movement. An eye-tracker exploits the
natural reflection of infrared light on the human eye. Each eye-tracker is equipped
with an infrared emitter directed towards the eye (or eyes) of the observer and a
sensor that detects the reflected ray, thus being able to extract the fixation point
on a screen. A fixation point is defined as a point that occupies a location where
the gaze stopped from 2 to 4 tenths of a second. In the case of these dataset a
series of participants is required to look at a screen while a three-dimensional scene
from the dataset is reproduced, the eye-tracker is able to track the eyes movement,
the result pattern is then processed to obtain the FDM of the single observer and
once the experiment has been completed on all the participants, the average FDM
is calculated to obtain the final fixation density map of which an example is shown
in figure 4.10(b). The whole set of Fixation Density Maps is shown in the second
column of figure 4.13.

The real output of the eye-trackers is a collection of positions within the image
under analysis (the one that the observers are asked to look at) that indicates
the coordinates of fixated points. When the Fixation Density Maps are given as
a uniform distribution of white areas on a black background il means that they
have been smoothed through some post processing operations. The most common
post processing operation includes the convolution with a two-dimensional gaussian
that generally has a standard deviation (in term of pixel number) equal to the the
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standard deviation ot the error of the eye-tracker. This operation acts as a regulation
in order to include in the FDM information [4]:

• Eye-tracker error;

• Uncertainty about what the observer is really looking at.

This smoothing can affect the evaluation metrics results (chapther 5). In the case of
the GAZE3D the FDMs are provided already smoothed but no information about
the eye-tracker error and its standard deviation is provided. Luckily the raw eye-
tracker data include the fixated points position for all the images in the dataset so it
is possible to rebuild a binary fixation density map as a black map (null pixel value)
where only the pixels corresponding to fixated locations are forced to be white (pixel
value equal to 1). Example is shown in figure 4.10(c).

(a) Image n° 10: left view (b) Image n°10: FDM (c) Image n°10: binary FM

Figure 4.10: Image n°10 from GAZE3D dataset. (a) Original left view. (b) Fixation den-
sity map linked to image n°10: more white pixels are the more visualized by the observers
(c) Binary fixation map: white pixels indicate the fixated points positions relative to image
10. These positions are stored as eye-tracker row data and shown using MATLAB2017b.

The eye-tracker works directly in binocular mode and the image shown to the
participants is the three-dimensional combination of the two stereoscopic view with
the task to "look around the image as you naturally would". The eye-tracker is the
SMI Hi-Speed, information about the test and the observers are provided in table
4.4.

Observer distance Duration Pre-screening N° observers Age:[Range]

63cm 10 seconds Snellen, Ishihara 35 [18 46]
Table 4.4: Eye-tracking tests conditions.
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4.2.2 Center Bias Problem

As visible in the example in figure 4.10 and in the second column of figure 4.13
human fixation points have a natural center bias. It means than in front of any
scene an observer tends, especially for the first few seconds of testing to fix the
center of the screen which is the optimal point of view. In the same way, even the
photographer who takes the picture is inclined to center the subject in the center
of the image. This phenomenon can not be predicted by any of the computational
models for visual salience. This phenomenon is visible if one observes the figure 4.11
which shows the average of the fixation density maps of the images coming from
the Mildelbury dataset (a), first 10 images in table 4.3, and those acquired in the
University of Nantes campus (b), last 8 images in table 4.3.

(a) Average of FDM: from Im-
age n°1 to Image n° 10

(b) Average of FDM: from Im-
age n°11 to Image n° 18

Figure 4.11: Fixation density Map center bias. Averaging the the saliency maps over all
the images respectively belonging ti one of the two groups, is clearly visible that the more
observed area appears to be always in the center of the scene. (a) average of the first 10
FDMs dataset. (b) average of the last 8 FDMs of the dataset.

Some evaluation metrics (chapter 5) we used to measure the ability of our com-
putational stereo vision model of proto-object based saliency to predict the location
of fixated points, are strongly influenced by the occurrence of the center bias phe-
nomenon. For that reason we decided to reduce its influence by subtracting to each
group of fixation density map (1st group: from image n°1 to image n°10, second
group: from image n°11 to image n°18) the averaged obtain across all the fixation
density maps of the corresponding group. The map subtracted to the first group is
shown in figure 4.11(a) and the one subtracted from the second group is shown in
figure 4.11(b). Results are shown in figure 4.13 in the third column.

Concerning the binary fixation density maps (figure 4.10(c)) the center bias is
removed forcing to 0 all the values include in the yellow and red areas in figure 4.11.
Thus for both groups of fixation binary maps we will not consider as fixated points
all the points that correspond to a pixel whose value, in the respective map obtained
through the average of all the fixation maps of the corresponding group, is included
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in the range [0.5− 1] (figure 4.11(a)(b) for reference).

4.2.3 Proto-Object Based Saliency Map in Three-dimensional
Space

In order to test the new extended proto-object based visual saliency model it is
necessary to exactly know which are the inputs to give to the model and to the
new disparity channel. Input images are time by time the two stereoscopic views
corresponding to one of the 18 scenes of the GAZE3D dataset (shown in the first
column in figure 4.13 and described in table 4.3).

Choice of Input Images

The intensity, color opponency and orientation channels use the view stored as
"right image" for evaluating the two-dimensional saliency map while the disparity
channel required both the left and the right view. To chose the reference view for
the evaluation of the SAD maps (section 3.2.4 we observed the disparity values set:
all of them are composed by number of negative disparities that is much higher
than the number of the positive ones. This, combined with the fact that the images
are all rectified, directed us to choose the one indicated as "right image" as the
reference one to start the algorithm for the SAD maps creation. As confirmation of
the correctness of the choice made, for one of the 18 scenes described in the table
4.3, we build the SAD maps for the most common disparity value in the whole set
(example in figure 4.12), choosing once the left view and once the right view as a
reference. The SAD map evaluated using the left view as reference did not show any
pixel at the analyzed disparity confirming that the right choice is to set the right
views as the reference for the SAD map evaluation. We noticed that Image n°12 has
only positive disparity so we repeat the steps for this image. Also the study on this
image confirmed what has already been discovered.

Choice of Disparity set

The disparity channel algorithm required as input a set of plausible disparities to
look for between the two stereo views of the same scene. As visible from table 4.5
disparity set dimension varies from one image to another and it can reach up to more
than 100 different disparities for a single image from the dataset. From equation 3.4
we know that for a total of N disparity values the opponency maps to give as inputs
to the grouping algorithm are (N)∗ (N −1), this means that the time to complete a
test increases greatly as the number of disparities taken into consideration increases.
In order to limit the computational cost for each stereo pair image we observe:

• Maximum disparity value;
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• Minimum disparity value;

• Most common disparity value.

This three disparity values are shown in table 4.5. After that, if the most common
value is close to the central value, we choose nine value of disparity: four below
the most common value, four above the most common value and the most common
value itself (figure 4.12). Anyway as visible from the summary in table 4.5 we never
considered more than ten different disparity values. This does not let us to see
items at each disparity but due to the fact that an object extends over several levels
of neighboring disparity (see figure 4.9), the hypothesis on which the algorithm is
based does not lose validity. Hopefully at least part of each object is visible and will
contribute to the grouping mechanism.

Figure 4.12: Disparity distribution for the scene n°10. Value marked with the red circle
indicates the most common disparity in the scene. Values reported under the histogram
are those chosen to test the model when using image n°10 as input.

Figure 4.13 shows the saliency maps obtained from the 18 tests performed on
the images of the considered dataset and the relative fixation density map with
and without center bias. To make the changes introduced by the addition of the
disparity channel when we summed up the two-dimensional saliency map and the
saliency map obtained from the disparity channel we used a 1:4 ration. It means
that the weight given to the map obtained through the disparity channel is equal to
80%. This choice is in contrast to what was stated in chapter 3 where we affirmed
that two-dimensional features have more relevance in determining the salience map,
considering a more biologically plausible model, but this is made only in order to
better show changes introduced when depth discontinuities information are included
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Source Disparities Range Most common Range for saliency

1 [-112 - -3] -72 [-112:10:-72;-55:17:-4]
2 [-23 - 20] -20 [-23;-20;-10;0;10;20]
3 [-75 - 1] -69 [-75;-69;-54;-39;-24;-9;1]
4 [-80 - 0] -34 [-80;-70:12:-10;2]
5 [-96 - 0] -59 [-96;-89;-74;-59;-44;-29;-14;0]
6 [-86 - 0] -73 [-86;-73;-58;-43;-28;-13;0]
7 [-80 - 0] -54 [-80;-69;-54;-39;-24;-9;0]
8 [-63 - 22] -10 [-63;-50;-40;-30;-20;-10;0;10;22]
9 [-63 - 5] -61 [-63;-61;-46;-31;-16;5]
10 [-80 - 0] -38 [-80;-68;-58;-48;-38;-28;-18;-8;0]
11 [-7 - 14] 6 [-7;-2;2;6;10;14]
12 [1 - 17] 4 [1;4;7;10;13;17]
13 [-44 - 26] -41 [-44;-41;-26;-11;4;19;26]
14 [-6 - 39] -5 [-5;5;15;25;39]
15 [-18 - 32] 17 [-18;-13;-3;7;17;32]
16 [-20 - 22] 11 [-20;-9;1;11;22]
17 [-24 - 19] -3 [-24;-13;-3;7;19]
18 [-52 - 15] -38 [-52;-38;-23;-8;7;15]

Table 4.5: Disparity sets description.

in the model. From a first visual comparison it is noted that none of the saliency
map (the two-dimensional map, the one processed by the disparity channel and
the three-dimensional map) is able to predict the presence of the center bias that
characterizes the fixation density maps as provided by the dataset. Confronting
the output saliency map a change introduced by the proposed extension of the two
dimensional model is clearly visible. Thus we can already affirm that information
about depth discontinuity change the prediction of fixated points. To know if this
changes improve the prediction quality it is necessary to evaluate the two model
(the two-dimensional and the three-dimensional) using some of the most common
evaluation metrics for models of visual saliency. For that reason, next chapter
is entirely dedicated to the description of these metrics and the discussion of the
results obtained when they are utilized to quantify the goodness of the salient areas
prediction operated by the two-dimensional and the three-dimensional proto-object
saliency models.
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Figure 4.13: All the 18 left views from GAZE3D dataset stereo pairs, their associated eye-
fixation maps, fixation density maps after center bias elimination, saliency maps calculated
using the previous two-dimensional model, saliency maps calculated using the disparity
channel algorithm and the saliency maps calculated using the new computational stereo-
vision model of proto-object based saliency in three-dimensional space.
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Chapter 5

Model Evaluation

A simple visual comparison between the various salience maps and the fixation
density map is not sufficient to estimate how the approximation of human visual
fixations is correct and valid. For that reason evaluation metrics are need to calculate
an index of the degree of similarity (or dissimilarity) between any ground truth and
a salience map elaborated by a specific computational model. Finding the correct
method to evaluate the quality of a predicted saliency map, has not been easy since
when the first model of visual attention came out. The choice changes in respect of
a lot of parameters and the overall evaluation setup (eventual tasks for the visual
search experiment, number of participants, distance from the screen, etc.) plays a
decisive role. As all the evaluation metrics the ones used for saliency, as affirmed by
Wilming et al., should respond to some basic needs [45]:

• Few parameter;

• Intuitive scale;

• Low data demand;

• Robustness.

The metrics reported in this chapter are all already widely used to evaluate the
quality of models of visual attention, there are many publications that evaluate
their performance so we can say that they meet these basic requirements.

In general, when possible, it is better to evaluate the model with more than
one type of evaluation metrics: the first evaluation shows a series of results, the
subsequent confirm, or deny, that the trend obtained is correct. Moreover, repeating
the same measure with different metrics allows to correct the eventually first choice
of metric unsuitable for the evaluation setup in question. Knowing that the fixation
density maps of the dataset we used were obtained through experiments in which
no specific task was given to the participants, makes our case less restrictive the
regarding the evaluation metrics choice. Generally a determining factor is the type
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of fixation map that are available but, again, in our case the dataset give us both the
map of fixation locations (example in figure 4.10(c)) and the continuous fixation map
(examples in figure 4.10(b)) allowing the use of a broad set of evaluation metrics.
In fact metrics are divided in: location based and distribution based. The former
require a discrete input in the form of fixation locations map while the letter require
a continue distribution as the one of our blurred fixation density maps.

We have chosen three of the most used metrics that are also the same ones
used by Russel et al. to evaluate the model’s performance based on the concept of
proto-object of which we are expanding: Area Under the ROC Curve (AUC)
and Kullback-Leibler divergence (KLD) and Normalized Scanpath Saliency
(NSS). Two of these metrics have been adapted to saliency maps evaluation from
other field of study: AUC is adapted from signal detection and KLD is used in
information theory. NSS has been designed specially for saliency maps. Table
5.1 summarizes the main differences between the three. Referring to table 5.1,
a similarity metric is a metric that measures the degree od similarity between a
ground truth map and a prediction so a high score from these metrics means that
the two maps are similar while for the dissimilarity metrics the situation is the
opposite (measure of dissimilarity: high scores mean the two maps look different).

Metrics Similarity Dissimilarity

Location Based AUC, NSS

Distribution Based KLD
Table 5.1: Main characteristics of the chosen metrics.

The code used for all the metrics is available online on the MIT Saliency Bench-
mark webpage [17] in the form of MATLAB code.

5.1 Receiver Operating Characteristic (ROC) curve

In decision theory the ROC (Receiver Operating Characteristic) curves are used to
study the relationship between true and false positive. Calculating the area under
the ROC curve (Area Under Curve, AUC) is possible to quantify the ability of
the visual saliency model under analysis to predict human fixation points as they
appear in the ground truth. The AUC is the most diffused method to evaluate
visual saliency models performance. In order to build a ROC curve, we need to
interpret the prediction of possible fixation points as a binary classification. This
can be done setting a discrimination threshold and analysis the saliency map values,
corresponding to the fixation points, relatively to this threshold. The information
on the fixation points position is given by the fixation map with discrete values
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where all this locations are marked with a white pixel. This confirms the statement
that AUC is a location based metric. Depending on the way that false positive are
counted, different methods for calculating AUC are distinguished. In our case to
define if a point that is marked as salient by the model, is a true positive (TP) or a
false positive (FP) the following steps must be followed.

1. A threshold value is settled;

2. SM (Saliency Map) points corresponding to the fixation points are
selected;

3. A set of random (Saliency Map) SM points is selected: excluding al
the pixels already selected (each pixel has to be selected once);

4. Each one of the selected points is marked as TP or FP:

considering a point p in the saliency map at the position (xi, yi)

p =

{
VP; if SM(xi, yi) > threshold ∧ p is a fixation point
FP; if SM(xi, yi) > threshold ∧ p is NOT a fixation point

5. Threshold is changed: threshold range goes from the minimum value of the
SM up to the maximum value of the SM;

6. Steps 2,3,4 are repeated whit a set of different thresholds.

The number of TP and FP is stored for each threshold value so at the end an ROC
curve can be built: along the two axes we can represent sensitivity and (1-specificity),
as True Positive Rate (TPR, fraction of true positives)

TPR =
TP

total n° fixations
(5.1)

and False Positive Rate (FPR, fraction of false positives)

FPR =
FP

FP + total n° not fixations
(5.2)

For each threshold value a point of the curve is defined. The AUC values is in
between 0 and 1:

• 0 ≤ AUC < 0.5→ algorithm perfoms worse than chance;

• AUC = 0.5→ algorithm predicts eye fixations at chance;

• 0.5 < AUC < 1→ algorithm perfoms better than chance;

103



5 – Model Evaluation

• AUC = 1→ algorithm perfectly predicts eye fixations;

Looking at the definition of both TPR and FPR from equations 5.1 and 5.2 it is
clear that the presence of center bias (see chapter 4.2.1 and figure 4.11) in the ground
truth data of the eye-tracker. The natural human tendency to look at the center
of a screen when an image is shown as well as the tendency of the photographer
to put the object in the center of the picture can not be predicted by any of the
models proposed by saliency models state of the art. For that reason we decided
to use the AUC metric also to compare the salience maps obtained as outputs from
the two-dimensional and three-dimensional models and fixation maps (in this case
we refer to the binary maps before the shading) after the removal of the center bias
(as proposed in the section 4.2.1). Scores are shown in tables 5.2 and tables 5.3

5.2 Kullback–Leibler Divergence (KLD)
In probability theory and in information theory, Kullback–Leibler divergence (KLD)
is a non-symmetric measure of the difference between two probability distributions
P and Q. If denoted by DKL(P ||Q), it is the measure of information lost when Q
is used to approximate P . The Kullback–Leibler Divergence in the discrete case is
defined as:

DKL(P ||Q) =
∑
i

Pilog
(
ε+

Pi
ε+ Qi

)
(5.3)

where ε is a regularization constant. Thus considering Q our saliency maps and P
the fixation density map we want to approximate, a good approximation quality is
indicated by small KLD cores, for that reason as shown in table 5.1 is included in
the dissimilarity evaluation metrics group. Therefor we have:

• low KLD→ saliency map performs better than chance;

• higt KLD→ saliency map performs at chance.

As KLD metric is distribution-based, it required as input the fixation density
map represented as a probability distribution: after blurring the fixation locations
(figure 4.10(b)) into a fixation density map (figure 4.10(c)). From equation 5.3 we
can affirm that when in the fixation density map (P in the equation 5.3) there is a
pixel whose value is not zero but the corresponding pixel in the saliency map (Q in
the equation 5.3) has a null value or a value close to zero a large quantity is added
to the global KLD score. This occurs in the areas affected by the center bias for
that reason also for KLD evaluation metrics we tested both the similarity between
the fixation density map as it is and the saliency map and the similarity between
the fixation density map after the center bias removal and the saliency map. Results
for our models are shown in tables 5.2 and 5.3.
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5.3 Normalized Scanpath Saliency (NSS)
The Normalized Scanpath Saliency (NSS) was specifically introduced in 2005 to
evaluate human saliency model ability to predict fixation locations. It computes the
average normalized saliency value at fixation locations. Given a saliency map Q and
the fixation binary map P the NSS is evaluated as follow:

NSS(P ||Q) =
1

N

∑
i

Q̄i × Pi (5.4)

where
N =

∑
i

Pi and Q̄ =
Q− µ(Q)

σ(Q)

. So Q̄ is the normalized saliency map that have a zero mean and a unit standard
deviation, N is the total number of fixation points. NSS score can be null, positive
or negative.

• NSS = 0→ saliency map performs at chance;

• NSS > 0 → correlation between salient points and eye fixations is greater
than chance;

• NSS = 0→ anti-correspondence between saliency map and eye fixation data;

NSS evaluation metric is used, as the AUC and KLD, to compare the performances
of the computational model of proto-object based saliency that includes the exten-
sion with the depth information, with the performances of the pure two-dimensional
model. If adding the disparity channel, the evaluation metrics scores denote that
model move away from the performance at chance conditions, it means that exten-
sion has improved the model’s ability to predict the location of fixation points.

5.4 Improvement against Two-dimensional Proto-
Object based saliency

The model is evaluated by comparing the saliency map generated by our model
with the ground truth data in the form of human fixations. Evaluation metrics
scores are calculated for each one of the 18 images in the GAZE3D [16] [29] [36].
Results presented in both table 5.2 and table 5.3 are obtained by averaging the single
results, one for each image in the dataset, over all the sources available. We decided
to repeat the same evaluations changing the inputs. In table 5.2 results are obtained
comparing saliency maps with the fixation density map (or fixation binary map see
figure 4.10(b) and figure 4.10(c)) as it is given by the dataset while for the results
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in table 5.3 we used the fixation maps without the center bias and we convoluted
with a two-dimensional Gaussian with a standard deviation of 6 pixels the saliency
maps. This last step was carried out in order to take into account the standard
deviation of the eye-tracker error. This error standard deviation is known once the
type of eye-tracker is known (information provided by those who have spread the
dataset online). It is actually provided in terms of degrees of visual field but the
equivalent pixel value can be estimated knowing the distance from the screen, the
size and resolution of the screen itself. Obviously the value changes with the size of
the image shown but it is assumed, without loss of generality, that the images are
all 1920× 1080 and shown in full screen. Below the list of the information obtained
from the data provided by the dataset, whose download includes a pdf attachment
containing information on the instrumentation used.

• Eye-tracker: SMI Hi-Speed → error standard deviation: 0.25◦;

• Monitor: Panasonic BT-3DL2550S → screen dimension: 25.5′′, screen
resolution: Full HD (1920x1080 pixels).

Starting from these data we evaluate an approximate value of the eye-tracker error
standard deviation that is equal to 6 pixels. So table 5.3 shows models performances
obtained after correcting some errors introduced by the eye-tracker: center bias and
inaccuracy in the definition of the coordinates of the fixation point (whose value is
included in the user manual, available online).

Looking at the results from all the metrics and for both test condition it is
immediately visible that, even if it is small, the introduction of three-dimensional
information, causes a global improvement on the model performances.

If eliminating the center bias and smoothing the saliency maps do not really
change AUC scores the other two metrics scores undergo an important change as a
result of these operations. These changes are, in our opinion, essentially related to
the removal of the center bias. In fact the center bias effect adds fixation points that
can not be found from neither two and three dimensional model and this causes an
increase in the total KLD score (as explain in section 5.2 and deducible from equation
5.3) and a decrease in NSS. From the definition of the NSS (equation 5.3), shown
in equation 5.4 it is easy to understand that, increasing the number of total fixation
points (consequence of the effect of center bias), the total NSS score decreases.

The fact that the improvements introduced, following the extension of the algo-
rithm, are contained, may be due to a number of factors, first of all the disproportion
between the multiplicative weights that are used to linearly sum the two-dimensional
saliency map and that obtained from the evaluation of the binocular disparities. In
fact, as anticipated at the end of chapter 3, is more biologically plausible to consider
that the overall two-dimensional features contribute more to the final saliency map.
Moreover, as affirmed by Hu et al. [13] and previous works, when, for the creation
of the ground truth, the participants are left to observe the image for a relatively
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long time, the two-dimensional features acquire more importance. This happens for
observation times longer than 5s, as in the case of our dataset (table 4.4).

Our disparity channel makes no distinction based on the disparity range. As
shown in picture 4.1 each disparity value is associated with a specific distance from
the observer, big disparities mean small distances and objects that appear bigger to
the observer. The objects characterized by big disparity values may be particularly
salient as a result of the grouping mechanism. So somehow we would have to split
the dataset into multiple subgroups based on the range of binocular disparities
associated with the source to better notice the improvements introduced through
the model extension. This would have been possible if the starting dataset had
been wider. In fact, already with 18 images it was not possible to reach statistical
significance.

Model AUC KLD NSS

Pure 2D model 0.591 0.927 0.293
2D model + disparity 0.595 0.917 0.324

Table 5.2: Evaluation metrics results:no smoothed SM and FDM with center bias.

Model AUC KLD NSS

Pure 2D model 0.633 0.672 0.512
2D model + disparity 0.634 0.667 0.516

Table 5.3: Evaluation metrics results: smoothed SM and FDM without center bias.

5.4.1 Statistical Significance

Comparing the scores obtained from the different evaluation metrics, we have ascer-
tained that introducing notions on depth discontinuity improves the quality of the
salient points prediction made by a computational model that exploits the notion
of proto-object rather than the feature integration theory. To state that the results
obtained are not the result of the chance, it is necessary to carry out a comparative
test that will give back information about the statistical significance. Significant was
calculated using a paired t-test between the results of proto-object based saliency
map in two-dimensional space and the results of proto-object based saliency map
in three-dimensional space. We performed a two-tails, paired Student t-tests, with
a significance level of α = 0.05. For all the tests, results never reach the significant
at the chosen level. All the p − values for both cases (with and without center
bias and before and after saliency map smoothing) turned out to be around 0.2.
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This does not allow us to deny the null hypothesis according to which each score
difference between the two-dimensional and three-dimensional models is a random
result. Previous works [13] have already shown that paired t-tests carried out on
the results obtained from experiments conducted starting from GAZE3D dataset
were not able to show statistical significance. We believe that the limited number
of images that make up the dataset determine this discouraging result. Given the
good results obtained, shown in the two tables 5.2 and 5.3, it is considered strictly
necessary repeat the experiments on a larger dataset. At the moment this is not
possible because there are no other datasets containing both the binocular views
and the fixation maps to be used as ground thruth. So the first step to actually
be able to affirm that the presence of depth discontinuity changes and improves the
prediction of the positions of the salient points in the visual scene, is to formulate a
new dataset that contains at least a hundred pairs of stereo images.
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Chapter 6

Conclusions

Visual saliency is defined as "the distinct subjective perceptual quality which makes
some items in the world stand out from their neighbors and immediately grab our
attention". This concept can, indeed, be extended to each one of the 5 human senses.
Each time that we explore the world around us, we receive a huge number of sensory
inputs, impossible to elaborate all real time with the relative low number of resources
available to our brain. For that reason our brain has developed the selective attention
mechanism according to which, after a rapid scan of all the inputs, only a small
portion, the most salient one, is selected for a more in-depth analysis. This selective
attention mechanism involve, among all the other, the sense of sight. Studying its
principles means understanding the methods our brain uses to select data to deepen
and those to discard because cataloged as less salient after a first very quick analysis.
This has been for decades field of research of important teams from Johns Hopkins
University and from the ETH of Zurich, just to name two of the most important ones,
that are interested in exploiting these principles in robotic applications. Nowadays
the study of such mechanism is involving other fields such as advertising graphics.
To approach this study, research has to be divided in more levels. It is needed to
understand how the visual scene is organized and how the information are read and
interpreted by the human visual system, this point is crucially important when, as
in our case, the aim is to create a computational model of visual saliency as much
biologically plausible as possible.

In the last five years the widely spread theory, according to which object features
as color, intensity and orientation are perceived before the object itself (the so called
Feature Integration Theory (FIT)), has been joined by the eve-increasing belief that
features are nothing more the vehicle to divide the scene in a series of perceptual
objects. The fundamentals of this statement are found in well-established studies
as Gestalt psychology born around 1980 and the more recent Rensink theory. They
are both based on the idea that the whole is different from the sum of its parts
so it is not correct to say that perceiving features first is a fundamental step to
recognized objects later, at the contrary the simple fact that an object exist can
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be the reason why we perceive it, it exists as a super-ordinate phenomenon. These
theories perfectly interact with the concepts of Border Ownership cells and Grouping
mechanism, that suppose the existence, confirmed by neuronal activity registration
experiments, of two type of neurons that work together to let us perceive the presence
of a possible object within the first 50ms from the presentation of the stimulus. On
these hypotheses the first biologically plausible computational model of proto-object
based visual saliency is based. This model, proposed in 2012 by Russel et al. [28]
breaks into a state of the art where more than half proposed models are based
on the FIT principles. The performances of the model exceed those of the most
widespread FIT-based models, confirming the now almost certain hypothesis that
the decomposition of the visual scene into perceptual structures is a valid theory in
the field of visual perception. This model does not deal with object recognition that
is a mechanism that biologically occurs 120−150ms after the stimulus presentation,
at the contrary it explains an alternative way to direct attention within the first tens
of millisecond.

Starting from these good results, our study aims to add to the Russel et al.
model the contribution of depth information to see if and how they change saliency
areas prediction operated by the proto-object based model. Depth scene perception
is something that we experiment every day but that, even if it has been demon-
strated that the objects distribution in the space is decisive for the most salient
areas selection, has been having a very marginal role in saliency models literature.
We assumed that, as for two-dimensional features (color, intensity, etc.), depth dis-
continuity attracts human attention more than zones characterized by a constant
depth and that grouping mechanism remain valid in depth perception theory. Dif-
ferently from previous three-dimensional saliency models, ours does not required a
pre-computed saliency map as input but directly uses stereopsis principles, inspired
by human visual system. This latter is able to positioned an object in the space,
starting from the relatives positions of its projection on the two retinas (left and
right). This information is encoded by Binocular cells, neurons responsible for the
perception of space according to planes parallel to the coronal head plane. Our
algorithm identifies these plans starting from the analysis of a pair of stereoscopic
images that are identical except for the fact that the position of the same image
point is horizontally shifted between the two views. The different entity of this shift
makes it possible to identify parallel planes at different distance from the observer,
in three-dimensional space, just as it happens with the coding of the position of
the projections on the two retinas. After having identifying the parallel planes, we
suppose the grouping mechanism is activated within each plane. It is already known
that grouping works at one feature level at the time: a proto-objects can be per-
ceived because it lies on a unique depth plane as when it has a unique uniform color.
Following these hypothesis we added to the previous version of the model [28] a new
channel working alongside the already included channels related to two-dimensional
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features and we developed the Computational Stereo-Vision Model of Proto-Object
based Saliency in Three-Dimensional Space whose main steps are shown in figures
3.1.

After evaluating the correct functioning of the new channel (the Disparity Chan-
nel) using artificially created images were the where the shifts between th views
were known, we tested the model on real scene images. From the comparison be-
tween three different evaluation metrics scores we demonstrate that the algorithm
extension improves the model ability od predicting saliency areas: output saliency
maps are more similar to the fixation density map included in the dataset and used
as ground truth. Scores are visible in table 5.2 and table 5.3. This allows us to
affirm that depth discontinuities influence the selection of the most salient areas
within the image and that the grouping mechanism can be used to identify salient
proto-objects even when working with three-dimensional perception.

Even if as the algorithm is know implemented it requires an estimation of the
horizontal shifts that we expect to find between the tho views, information that
should be given by the dataset used to test the algorithm itself, the overall idea is
to contribute to te creation of a final computational stereo-vision model that will be
able to automatically choose the range of disparity (horizontal shifts) to evaluate. It
will follow the limit imposed by the resolution and the working method of far, near
and tuned zero binocular cells of the visual cortex. Working on new channels that
include new information, both two-dimensional and three-dimensional, on the visual
scene, a higher output saliency map completeness level can certainly be reached.

A practical difficult with this approach is the paucity of dataset with bot stereo-
scopic views and a valid ground truth (i.e. fixation density map estimated using and
eye-tracker) to evaluate the final saliency maps. The only complete dataset avail-
able online is composed by 18 images that are not enough to let our results to reach
statistical significance. So to complete the study and find out if the information on
depth discontinuity really improves the performance of the overall model, the first
fundamental step is to create a new set of complete datasets.
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