
POLITECNICO DI TORINO

Department of Structural, Geotechnical and Building Engineering
Master of Science in Civil Engineering

MACHINE LEARNING METHODOLOGIES TO
ASSES DEBRIS EXTENT AFTER EARTHQUAKE

Supervisor:

Prof. Gian Paolo Cimellaro

UCLA Supervisor:

Prof. Henry Burton

Dissertation of:

Luca Rampini 223989

Academic Year 2017/2018

Alla mia famiglia

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Professor Gian Paolo Cimellaro who gave
me the chance to write my master thesis and the opportunity to have this remarkable
work experience in a prestigious and important university such as UCLA. I will
always be grateful to him also for the advices and the knowledge that directly derives
from his collaboration.
I am deeply indebted to Professor Burton to give me a great chance of learning, to
guide me in all the process necessary to finish my work and to host me at UCLA; I
really appreciate his competence, kindness and availability for all the period that I
have been in Los Angeles.
I would also like to extend my thanks to Professor Taciroglu, to give me the
possibility to work with his research group, that turned out a continuous source of
knowledge.
A huge thank you goes to Antonio and Matteo, who have helped me a lot to improve
my knowledge about Machine Learning and the use of Python in general; and made
my experience in Los Angeles crisper.

Tutta la mia gratitudine è rivolta ai miei genitori, Brunella e Roberto, per avermi dato
non solo la possibilità di perseguire i miei studi al Politecnico, ma anche questa
preziosa opportunità di studio all’estero senza far mai mancare il loro supporto.
Un ringraziamento speciale va a mio fratello Giacomo, sempre pronto a dispensare
preziosi consigli e che ha sempre rappresentato per me un modello da seguire.
Voglio estendere i miei ringraziamenti anche ai miei amici di sempre, Mirko, Silvio,
Nicola, Simone, Andrea, Antonio, Matteo, Nicodemo, Fabio, Paride, Emanuele,
Giacomo, Niko e Gabriele; i quali mi sono stati vicini, nonostante la distanza, e che
mi hanno reso in larga parte la persona che sono oggi.
Un sentito ringraziamento ad Alessandro, Mattia, Stefano e Daniele, per avermi fatto
passare gli ultimi mesi a Torino con una sintonia tale da credere che fossimo sempre
vissuti insieme.
Un sentito grazie va inoltre a Miriam, Claudia, Martina, Aurelio, Ludovico,
Pierpaolo, Fabio, Desideria, Giulio, Francesca, Vittoria, Simone, Livio, Arturo,
Enrico e a tutti gli altri ragazzi che ho avuto la fortuna e l’onore di conoscere in

questi anni a Torino, per avermi accompagnato in questo viaggio rendendolo
sicuramente più piacevole ed elettrizzante.
Un caloroso grazie lo devo anche ad Alessio, per avermi sopportato per ben due anni
come coinquilino e per essersi rivelato un amico sempre pronto ad aiutare in ogni
momento.
Un grazie speciale anche a Mattia R. per aver sempre creduto in me e per la sua
amicizia che, sono sicuro, non verrà mai a mancare.

ABSTRACT

Each significant seismic event is an opportunity to assess the performance of our

built environment. After such events, a large quantity of varied information is often

collected within a short time period.

Therefore, a quick and reliable method for detecting damage to buildings is required

for disaster response with the intent of reducing both human and economic losses.

In the last few years, the increasing advancement of technologies and Computer

Science has permitted the adoption of Machine Learning techniques in various fields,

included Civil Engineering and Urban Resilience.

One of the most influence parameters in the evaluation of seismic loss is the

extension of the debris and their associated effects on critical infrastructure. Debris

accumulation can result in disruption of the road network and compromise rescue

operations. This implies an overall increase in the average number of people who have

difficulty evacuating, with a significant risk that some residents cannot evacuate at all.

Starting from the newest Machine Learning algorithms and using Python

programming language, the purpose of this study is to collect different features and

data from the main seismic events that occurred in the past several decades and use

them to forecast the extension of building-rubble after earthquakes. This type of

model would ultimately allow civil protection agencies to plan their rescue

operations while reducing the risk of getting stuck by extended rubble.

Finally, the PHI Challenge sponsored by PEER, gives a chance to introduce Deep

Learning methodologies for Image Recognition tasks related to Earthquake

Reconnaissance. This topic indeed, is one of the most popular argument in the state

of the art that connects Machine Learning techniques and Civil Engineering.

SINTESI

Ogni evento sismico di una certa rilevanza rappresenta una opportunità per valutare
le prestazioni dei nostri edifici e delle nostre infrastrutture. Infatti, dopo tali eventi,
una grande quantità di informazioni è raccolta entro breve tempo.
Pertanto, una rapida ed affidabile metodologia è necessaria per valutare velocemente
i danni strutturali, allo scopo di ridurre le perdite umane ed economiche.
Negli ultimi anni, la rapida crescita delle tecnologie e della Computer Science, ha
permesso l’utilizzo di tecniche di Machine Learning nei più svariati campi, incluso

l’Ingegneria Civile e la Resilienza Urbanistica.
Uno dei parametri più influenti per la valutazione delle perdite, dovute ad eventi
sismici, è l’estensione dei detriti e gli effetti associati ad essa sulle infrastrutture di
importanza strategica. L’accumulo di macerie può infatti provocare l’interruzione
della rete stradale, o parte di essa. Tutto ciò implica un generale aumento delle
persone che incontrano difficoltà ad evacuare determinate zone, con l’effettivo

rischio che alcune persone non riescano affatto ad evacuare in tempo.
Utilizzando gli algoritmi di Machine Learning più aggiornati e il linguaggio di
programmazione Python, lo scopo di questa tesi è di raccogliere dati ottenuti dagli
eventi sismici precedenti, per predire l’estensione dei detriti. Questo modello può,
come fine ultimo, permettere agli enti di Protezione Civile di pianificare gli
interventi di salvataggio, riducendo il rischio di essere bloccati dalle macerie durante
il percorso.
Infine, la PHI Challenge organizzata dal PEER, fornisce l’occasione giusta per

introdurre le tecniche di Deep Learning applicate al riconoscimento automatico di
Immagini da dividere in categorie legate all’Ingegneria Sismica. Tale argomento
infatti, risulta essere uno dei più popolari e discussi nello stato dell’arte attuale della

ricerca che collega Machine Learning all’Ingegneria Civile.

I

TABLE OF CONTENTS

List of Figures .. V

List of Tables .. VII

Chapter 1 Introduction ... 1

1.1 Python, tools and modules .. 2

1.2 Layout of the Thesis .. 3

Chapter 2 DATA COLLECTION .. 5

2.1 Dataset sources .. 5

2.2 Earthquakes ... 8

2.2.1 Central Italy ... 8

2.2.2 Cephalonia ... 9

2.2.3 Christchurch ... 10

2.2.4 Ecuador .. 10

2.2.5 India ... 11

2.2.6 Mexico Central .. 12

2.2.7 Nepal .. 12

2.2.8 South Napa Valley ... 13

2.2.9 Southern Taiwan .. 14

2.3 Dataset features ... 14

2.3.1 Debris extension .. 15

2.4 Dataset ... 18

II

Chapter 3 MACHINE LEARNING METHODOLOGIES .. 21

3.1 Machine Learning .. 21

3.2 Machine Learning algorithms .. 22

3.2.1 k-Nearest Regressor .. 23

3.2.2 Linear models ... 24

3.2.3 Decision Trees .. 26

3.2.4 Support Vector Regression (SVR) ... 28

3.2.5 Multilayer Perceptrons (MLP) Regressor .. 29

Chapter 4 DATA VISUALIZATION AND PREPROCCESING 31

4.1 Data visualization .. 31

4.1.1 Stories-EOD ... 31

4.1.2 Year-EOD ... 32

4.1.3 Magnitude-EOD ... 33

4.1.4 Distance from Epicenter-EOD ... 33

4.1.5 Height-EOD .. 34

4.1.6 Logarithmic values ... 34

4.1.7 t-Distributed Stochastic Neighbor Embedding (t-SNE) 35

4.2 Preprocessing data ... 36

Chapter 5 DATA TESTING AND RESULTS ... 37

5.1.1 Data tuning ... 37

5.2 Data testing .. 39

5.2.1 R-squared .. 39

5.2.2 Mean Absolute Relative Distance (MARD) ... 40

5.3 Results .. 41

5.3.1 KNR .. 41

III

5.3.2 Linear models .. 43

5.3.3 Decision Tree ... 47

5.3.4 Random forest .. 49

5.3.5 SVR .. 50

5.3.6 MLP regressor .. 52

5.3.7 Scores report .. 53

Chapter 6 PHI CHALLENGE AND IMAGE RECOGNITION 55

6.1 Introduction ... 55

6.2 PHI Challenge tasks .. 56

6.3 Deep Learning models and Transfer Learning .. 60

6.4 Google Cloud Platform (GCP) .. 61

6.5 Training and results ... 62

Conclusions .. 64

Appendix .. 66

8.1 Dataset ... 66

8.2 Extension of debris evaluation .. 71

8.3 Data visualization script .. 76

8.4 Training and test script .. 78

8.5 Results visualization script .. 82

8.6 PHI Challenge labeling algorithm ... 88

References .. 93

V

LIST OF FIGURES

Figure 2.1 Instance template of the images forming the dataset 7

Figure 2.2 Torre dell'Orologio in Poggio Renatico (FE) ... 9

Figure 2.3 Damaged building in Cephalonia ... 9

Figure 2.4 Cathedral of the Blessed Sacrament Catholic in Christchurch 10

Figure 2.5 Concrete building damaged in Ecuador ... 11

Figure 2.6 Hotel damaged during the Earthquake occurred in India 11

Figure 2.7 A building collapse during the Central Mexico earthquake 12

Figure 2.8 Damage in Nepal building after the seismic event 13

Figure 2.9 Damaged building in South Napa after earthquake 13

Figure 2.10 Removal of debris caused by a damaged building after the seismic event

in Southern Taiwan .. 14

Figure 2.11 The width of a car is used as reference measure 16

Figure 2.12 Evaluation of the debris extension ... 16

Figure 3.1 Scikit-learn diagram to choose the correct algorithms. 22

Figure 3.2Predictions made by k=1 ... 23

Figure 3.3 Predictions made by k=3 .. 24

Figure 3.4 Predictions of a linear model .. 25

Figure 3.5 Decision tree learned on the data ... 27

Figure 3.6 Instance of SVR fit line and boundaries ... 28

Figure 3.7 Illustration of a multilayer perceptron with a single hidden layer 29

Figure 4.1 Data representation: Number of stories-EOD .. 32

Figure 4.2 Data representation: Year of construction-EOD 32

Figure 4.3 Data representation: Magnitude-EOD .. 33

Figure 4.4 Data representation: Distance from epicenter-EOD 33

VI

Figure 4.5 Data representation: Height-EOD ... 34

Figure 4.6 Data representation: Height-EOD with logarithmic values 35

Figure 4.7 t-SNE data visualization .. 36

Figure 5.1 R-squared score for testing set about (a)15% (b)20% (c) 33% 42

Figure 5.2 MARD score for testing set about (a)15% (b)20% (c) 33% 43

Figure 5.3 Lasso-R-squared score for testing set about (a)15% (b)20% (c) 33% 43

Figure 5.4 Elastic Net-R-squared score for testing set about (a)15% (b)20% (c) 33%

 .. 44

Figure 5.5 Ridge-R-squared score for testing set about (a)15% (b)20% (c) 33% 45

Figure 5.6 Lasso-MARD score for testing set about (a)15% (b)20% (c) 33% 45

Figure 5.7 Elastic Net-MARD score for testing set about (a)15% (b)20% (c) 33% .. 46

Figure 5.8 Ridge-MARD score for testing set about (a)15% (b)20% (c) 33% 47

Figure 5.9 Decision tree-R-squared score for testing set about (a)15% (b)20% (c)

33% ... 48

Figure 5.10 Decision tree-MARD score for testing set about (a)15% (b)20% (c) 33%

 .. 48

Figure 5.11 Random forest-R-squared score for testing set about (a)15% (b)20% (c)

33% ... 49

Figure 5.12 Random forest-MARD score for testing set about (a)15% (b)20% (c)

33% ... 50

Figure 5.13 SVR-R-squared score for testing set about (a)15% (b)20% (c) 33%...... 51

Figure 5.14 SVR-MARD score for testing set about (a)15% (b)20% (c) 33% 51

Figure 5.15 MLP regressor-R-squared score for testing set about (a)15% (b)20% (c)

33% ... 52

Figure 5.16 MLP regressor-MARD score for testing set about (a)15% (b)20% (c)

33% ... 53

VII

LIST OF TABLES

Table 2-1 Number of photographs for each earthquake event 7

Table 2-2 Parameters to evaluate the extension of debris in the instance id.061 17

Table 2-3 Quantity of samples for each feature ... 18

Table 5-1 Alpha values for linear models regressor .. 38

Table 5-2 R-squared and MARD scores .. 54

Table 6-1 Summary of Images in the training process. ... 59

Table 6-2 Summary of frozen layers ... 61

Table 6-3 Nvidia v100 GPU characteristics .. 61

Table 6-4 Summary of the training and testing process. ... 63

1

CHAPTER 1

INTRODUCTION

After every disaster, a huge number of images are collected by reconnaissance teams

formed by professional engineers, academic researchers and graduate students.

All of them are charged with collecting perishable data to be used for:

• learn as much as possible about the nature of the event and the extent of the

consequences;

• identify potential gaps in existing research or in the application of

engineering knowledge;

• make recommendations regarding the need of further investigations and/or

changes to codes and laws.

All this collected data can be used to reduce social and economic losses that follow

strong ground motions. Indeed, after a seismic event, often a large amount of debris

is generated that might be a critical obstacle to emergency operations and

evacuations.

Starting from existing collections of data, the purpose of this thesis is to forecast the

extension of the debris and, eventually, to determine whether a road is blocked or

not.

In this way, it is possible to lead a procedure that can predict the best path for rescue

operations and increase the possibility for a better action in term of human security

and time safe.

Using the methodologies of modern Machine Learning (ML), it is possible to

evaluate the accuracy of our predictions and increasing constantly the precision

adding more and new data that could be collected in the future events.

Chapter 1
Introduction

2

Because most data collected by reconnaissance teams are pictures, it was considerate

appropriate obtain evaluations about the amount of rubble from them.

Indeed, this parameter is not directly reported inside the reports that are compiled

around the world and the future availability of new data, taken directly on field,

could improve significantly the results of this study.

Once the extension of debris is extracted from the dataset (as shown in Chapter 2),

the most famous and important ML algorithms is used to forecast a prediction.

ML indeed, represents one of the most powerful and modern instruments to make

predictions and is widely used around the world in different fields.

The first result of the present research is to forecast, for new data, the amount of

rubble, giving some inputs as magnitude, height, material and distance from

epicenter.

Finally, it is described another important aspect that connects ML and Earthquake

resilience: Image Recognition (IR). This aspect continues to take the field in the

Earthquake Engineering investigations and proof of this is the challenge sponsored

by PEER. Using Google Cloud Project (GCP) and the deep learning most modern

models, the concerned thesis covers also this aspect.

1.1 Python, tools and modules

Running ML algorithms required a good knowledge of programming language and

Computer Science. One of the powerful and widely used programming language is

Python, an open-source project that spreads out in the last few years.

The power of this language lies on his flexibility due to the versatility of his modules

and tools. Unlike MATLAB, indeed, a lot of functionalities could be downloaded as

different packs and installed separately from the main program.

This allows the availability of a huge number of different packages, easy to install

and to use for every purpose. In the list below is listed the modules used in this

research and what is their function:

Chapter 1
Introduction

3

• Scikit-learn: this module is constantly being developed and improved, thanks

to a very active community. It contains several state-of-art ML algorithms, as

well as comprehensive documentation about each algorithm.

• Numpy: surely one of the fundamental packages for data analysis in Python.

It contains functionality for multidimensional arrays, high-level mathematical

functions such as linear algebra operations.

• Scipy: is a collection of functions for scientific computing. It provides special

mathematical functions and statistical distribution.

• Matplotlib: is the primary scientific plotting library in Python. It provides

functions for making publication-quality visualizations such as line charts,

scatter plots, and so on.

• Tensorflow: is a powerful library used for train the Convolutional Neural

Network (CNN) models for the PHI Challenge

• Keras: is a high-level neural networks API, written in Python and capable of

running on top of TensorFlow. All ingredients within CNN mentioned in

previous paragraphs are available in Keras, one only need to call those

function in a reasonable order.

1.2 Layout of the Thesis

The present work is divided into seven chapters, described below:

 - Chapter 2 shows how the dataset is built and how the extension of the debris is

calculated for each sample.

 - Chapter 3 presents the description of all the ML algorithm that are used to train,

test and validate the data.

 - Chapter 4 describes how the training and preprocessing operations are conducted

and visualizes the dataset to give important insights for how to use them.

Chapter 1
Introduction

4

 - Chapter 5 summarizes the testing phase and give the results in terms of accuracy

for each ML algorithm.

 - Chapter 6 describes the PHI Challenge organized by the Pacific Earthquake

Engineering Research (PEER) about Image classification for detecting damage

in buildings from pictures taken after seismic event.

 - Conclusions at the end resume what has been done in the present work, running

through the main features. This chapter gives an interpretation about the results

as well as final consideration about how improves them and how could be

conducted further researches on this field.

5

CHAPTER 2

DATA COLLECTION

This chapter describes in detail the process of create the dataset used for train and

test the ML algorithms. The sources of the images are mentioned as well as the

methodology used to extracting information from that.

2.1 Dataset sources

In a typical seismic evaluation mission, a group is dispatched to a region where a

seismic event has taken place. The teams may follow established guideline, that can

be vary nation by nation, to provide a well-informed dataset, where it is possible to

obtain important information as location of the damaged buildings, severity of the

event, materials involved in the damaged and so on.

In the recent years many databases, publicly available, come out and they are usable

for every kind of research and activities.

The dataset used for this thesis comes from these main sources:

• EERI clearinghouse: The Earthquake Engineering Research Institute (EERI)

is a national, non-profit, technical society of engineers, geoscientists,

architects, planners, public officials, and social scientists. EERI members

include researchers, practicing professionals, educators, government officials,

and building code regulators. The objective of the Earthquake Engineering

Research Institute is to reduce earthquake risk by (1) advancing the science

and practice of earthquake engineering, (2) improving understanding of the

impact of earthquakes on the physical, social, economic, political, and

Chapter 2
DATA COLLECTION

6

cultural environment, and (3) advocating comprehensive and realistic

measures for reducing the harmful effects of earthquakes.

• Datacenterhub.org: as written on the internet site: “Too often, the results of

years of engineering and scientific inquiry are stored on media that become

outdated, broken, misplaced, or are simply not accessible. Even when these

data are accessible, it can be difficult to interpret them. DataCenterHub seeks

to alleviate this problem by providing a simple, standardized yet flexible

platform to preserve and share data. In the future, this platform will offer data

visualization tools and the ability to compare directly data from different

sources. We plan to archive each uploaded dataset on Purdue’s institutional

repositories (FORTRESS and PURR) to ensure the longevity of the data

contributed to DataCenterHub. While funding is available, we shall also

maintain a more readily accessible copy of all data on DataCenterHub.

• Db.concretecoalition.org: This database contains over 50 case studies on

concrete buildings damaged in over 20 earthquakes. Each case study provides

detailed information about the building and photographs of damage.

• GEER: The Geotechnical Extreme Events Reconnaissance (GEER)

Association was formed as an outgrowth of grassroots efforts to investigate

and document the geotechnical impacts of the 1989 Loma Prieta Earthquake,

1994 Northridge Earthquake, and 1995 Kobe Earthquake. Following these

earthquakes, members of the geotechnical earthquake engineering community

responded with ad hoc reconnaissance teams that relied on past personal and

professional relationships.

These databases provide thousands of images (around 15000), but the purpose of the

thesis is to study only pictures where the extent of the rubble is clearly visible and

could be measured and compared with other elements present inside the photographs

(as shown in the instance below). For that reason, a big effort was required to select

manually each picture from these sources to build the dataset necessary for the

concerned research.

Chapter 2
DATA COLLECTION

7

Figure 2.1 Instance template of the images forming the dataset

Following this approach, a database of 198 photographs after past earthquakes events

is gathered from these sources and each picture shows an entire building (or, at least,

a good portion of it) that was damaged or collapsed by an earthquake event and his

extension of rubble after damage.

The pictures cover an amount of 14 different earthquakes as shown in Table 2-1:

Table 2-1 Number of photographs for each earthquake event

Earthquake Pictures

Central Italy 38

Cephalonia (Greece) 6

Christchurch (New Zealand) 9

Ecuador 38

India 6

Chapter 2
DATA COLLECTION

8

Loma Prieta (US) 5

Mexico Central 20

Nepal 38

Northern Iran 1

Northridge (US) 2

North western Armenia 5

South Napa Valley (US) 6

Southern Taiwan 26

Turkey 1

In the following paragraphs, a brief description about the earthquakes as well as

some useful considerations, are provided for each earthquake (except for Loma

Prieta, Northern Iran, Northridge and Turkey, where less than 6 samples are taken

from these earthquakes).

2.2 Earthquakes

2.2.1 Central Italy

The Central Italy earthquake it happened in two different events, the first on 24

August 2016 and the second on 26 October 2016. The magnitude of these

Earthquakes was around 5.7. The main part of building hit by the ground motion was

built in masonry and dates from more than one hundred years ago.

Chapter 2
DATA COLLECTION

9

Figure 2.2 Torre dell'Orologio in Poggio Renatico (FE)

2.2.2 Cephalonia

In 2014 a shake hit the island of Cephalonia with a Magnitude of 6. The general

damage was not too heavy, but some buildings lost some debris and create rubble on

the streets.

Figure 2.3 Damaged building in Cephalonia

Chapter 2
DATA COLLECTION

10

2.2.3 Christchurch

An earthquake with a magnitude of 6.3 hit the city of Christchurch in New Zealand

on 22 February of 2011. This event caused a lot of building damage, including the

Cathedral, and an amount of 185 victims.

Figure 2.4 Cathedral of the Blessed Sacrament Catholic in Christchurch

2.2.4 Ecuador

The 16th of April 2016 a 7.8 Magnitude seismic event occurred in Ecuador. It is one

of the most tragic events for the nation since 1987 and the number of damage and

victims is high. A lot of buildings, both in masonry and in reinforced concrete, were

damaged, as well as some infrastructures.

Chapter 2
DATA COLLECTION

11

Figure 2.5 Concrete building damaged in Ecuador

2.2.5 India

The 2001 India earthquake, occurred in 26th January, had a magnitude of 7.7. It

caused more than 10’000 victims and destroyed a lot of buildings and infrastructures.

Figure 2.6 Hotel damaged during the Earthquake occurred in India

Chapter 2
DATA COLLECTION

12

2.2.6 Mexico Central

A 7.1 of magnitude earthquake hit the central part of Mexico on 19 September 2017.

The earthquakes caused damage in the states of Puebla and Morelos and around 370

people was killed during the seismic event.

Figure 2.7 A building collapse during the Central Mexico earthquake

2.2.7 Nepal

In 2015, on 25th of April, a seismic event with a magnitude of 8.0 hit the nation of

Nepal. It was the worst natural disaster from 1934 and caused thousands of victims

and around $10 billion of total damage. Almost all the buildings were made in

masonry, so the amount of debris was very huge in this case.

Chapter 2
DATA COLLECTION

13

Figure 2.8 Damage in Nepal building after the seismic event

2.2.8 South Napa Valley

On 24th August 2014, in the south of Napa, an earthquake of 6.0 magnitude was

occurred. The event was the biggest in the San Francisco Bay Area since the 1989

Loma Prieta earthquake.

Figure 2.9 Damaged building in South Napa after earthquake

Chapter 2
DATA COLLECTION

14

2.2.9 Southern Taiwan

A 6.4 magnitude earthquake occurred in the Southern Taiwan on 6th February 2016.

Tainan was the city most hit by the event with a lot of building damage.

Figure 2.10 Removal of debris caused by a damaged building after the seismic event in Southern Taiwan

2.3 Dataset features

Quite possibly the most important part in ML process is understanding the data you

are working with and how it relates to the task you want to solve.

In a larger context, the algorithms and methods in ML are only one part of a greater

process to solve a problem, and it is always good to keep the big picture in mind.

Indeed, no ML algorithm will be able to make a prediction on data for which it has

no information.

For this reason, is extremely important feed the dataset with several features that

allows to treat the problem and forecast a solution.

Chapter 2
DATA COLLECTION

15

Looking at the purpose of this thesis, the following attributes have been kept in

consideration because strictly connected with the resultant amount of debris that has

been collected for each sample:

• Material: the buildings considered in this study are made in reinforced

concrete or in masonry. The behavior of the two materials is quite different in

term of extension of debris.

• Stories: tallest buildings could produce a bigger amount of rubble and could

be interest see if there is a relation between height and extension of debris.

• Year of construction: construction technologies and methodologies can vary

during the years because of both different regulations and construction

technique.

• Magnitude: stronger is the ground motion and more are the possibilities to

damage a building.

• Distance from epicenter: as the magnitude, buildings close to epicenter suffer

from a stronger ground motion.

• Height: This parameter influences the seismic force (and, in consequence, the

damages) that is felt by the structure since the Natural Period depending

strongly from this value.

The complete table with all the pictures’ information is shown in the appendix 8.1.

2.3.1 Debris extension

The purpose of this thesis is to forecast the extension of debris after earthquake based

on different parameters of the buildings. Unfortunately, this information is not

reported inside the report that usually are written after every event.

A method to evaluate the rubble’s dimension from pictures is requested as explained

in the next paragraphs.

Starting from a photograph, it is identified an object or a dimension, which the

measure is well known; in the instance below, which correspond to the sample id.061

of the dataset, the standard width of a car is used as reference.

Chapter 2
DATA COLLECTION

16

Figure 2.11 The width of a car is used as reference measure

Using PhotoFiltre, a photo editing program, it is possible evaluate the coordinates of

the pixel of the two extreme points of a diagonal in the red square (both x axis and y

axis).

Same operation is done to calculate the extension of the debris inside the picture.

Figure 2.12 Evaluation of the debris extension

Chapter 2
DATA COLLECTION

17

Using a proportion (equation (1.1)), is possible to obtain an estimation of the rubble’s

amount along one axis (x-axis in the instance):

(1.1) Pd p
D

= 

Where:

• 1 2r r
P x x= − (1r

x and 2 r
x are the pixel coordinates (x or y) of the reference

element)

• 1 2d d
p x x= − (1d

x and 2 d
x are the pixel coordinates (x or y) of the debris

extension)

• D is the value in meters of the principal measure of the reference element

• d is the value in meters of the debris extension

Completing the instance, the parameters used to evaluate the rubble is summarize in

the Table 2-2:

Table 2-2 Parameters to evaluate the extension of debris in the instance id.061

Coefficient Value

1r
x 502

2 r
x 334

1d
x 720

2 d
x 371

p 349

P 168

D 1.8 m

d 3.629 m

Once the extension of the debris is evaluated for all possible pictures, the estimation

that is obtained is divided by the height of the building.

Chapter 2
DATA COLLECTION

18

This operation is called “normalization” and is very common when samples, used for

a ML study, are collected. This process is very useful for a series of reason that are

listed here:

• Makes training data less sensitive to the scale of features: in this study the

height of a building heavily influences the general amount of the rubble.

• Minimize the variance of the dataset

• Consistency for comparing results across models: if other studies decide to

cover this argument with other methods, with normalization is easier to

compare results.

• Makes optimization well-conditioned: most of the ML optimizations are

solved using gradient descent and the speed of convergence depends on the

scaling of features.

For completeness, all the parameters used to calculate the extension of the debris are

reported in the appendix section 8.2.

2.4 Dataset

Once the features and the methodologies required to build the dataset are shown, it is

appropriate to summarize for each feature how many samples are available.

Indeed, not for all the pictures it was possible to collect every parameter because the

reports written all around the world are made by different teams and people, with

different methodologies and instruments.

Therefore, the next Table 2-3 is helpful to understand and see, for each feature, how

many samples are collected.

Table 2-3 Quantity of samples for each feature

Feature Quantity of samples

Material 198

Stories 198

Year of construction 43

Chapter 2
DATA COLLECTION

19

Magnitude 198

Distance from epicenter 170

Height 198

If there is a greater interest in the values and the composition of data, the complete

dataset is available in the appendix section 8.1.

21

CHAPTER 3

MACHINE LEARNING

METHODOLOGIES

3.1 Machine Learning

Arthur Samuel in 1959 defined Machine Learning as:

 “Field of study that gives computers the ability to learn without being

 explicitly programmed”

As the definition suggest, ML is about extracting knowledge from data. It is a

research field at the intersection of Artificial Intelligence (AI), statistics and

Informatics.

From the beginning of Computer Science and programming the idea behind ML was

always well known by the scientists in the field of Informatic Engineer.

However, the limited capacity both in term of calculation power and storage data

capacity of the computers never allowed a practical and fruitful use of this camp.

Only recently, ML methodologies has become ubiquitous in everyday life, thanks to

the great improvement registered in the field of Informatic and computers.

From detecting spam, recognizing people inside photos and automatic

recommendations of which movies to watch, many modern website and company

have ML algorithms at their core.

The most successful kinds of ML methodologies are those that automate decision-

making processes by generalizing from known examples, which is known as

supervised learning. The concerned study provides the algorithm with pairs of input

Chapter 3
MACHINE LEARNING METHODOLOGIES

22

and desired outputs in order to allow the algorithm to find a way to produce a desired

output given an input.

The concerned study is treated as a supervised learning problem with a regression

task, where the answer to be learned is a continuous value.

3.2 Machine Learning algorithms

There are a lot of algorithms available in literature, so it is important to understand

which one could be useful for the purpose (and is also important to have a deep

comprehension of the data by visualizing them, as it will be described in Chapter 4).

For this reason, Scikit-learn provides the chart shown in Figure 3.1 that help to

choose the correct algorithm based on the dimension of the dataset and the problem

that is dealt with.

Figure 3.1 Scikit-learn diagram to choose the correct algorithms.

In the next paragraphs, all the different typologies of algorithms are introduced and

explained as well as strengths and weakness for each method.

Chapter 3
MACHINE LEARNING METHODOLOGIES

23

3.2.1 k-Nearest Regressor

The k-Nearest Neighbours (KNR) algorithm is arguably one of the simplest. It makes

prediction for a new data point starting from the closest data in the training datasets,

its “nearest neighbours”.

The k stands for how many samples are used to evaluate the prediction; in the

following Figure 3.2 and Figure 3.3 is shown how change the prediction varying the

value of k from 1 to 3.

In the first case, the target value is the same of the closest data. In the latter, the

prediction is given by the mean of the relevant neighbours.

Figure 3.2Predictions made by k=1

Chapter 3
MACHINE LEARNING METHODOLOGIES

24

Figure 3.3 Predictions made by k=3

In conclusion, there are two important parameters for the KNR algorithm: the k value

and how you measure distance between data points. Usually, the number of

neighbours used is not more than 5 (to avoid overfitting, as it will be discussed in the

next Chapter) and the lengths are measured by the Euclidean distance.

One of the strengths of KNR is that model is very easy to use and understand, and

often give good result without a lot of adjustment.

On the other hand, with a large training set, the prediction can be slow, and the

reliability of the result is less accurate.

3.2.2 Linear models

Linear models are the oldest method and is widely used for his simplicity and

robustness.

The general prediction formula in this case, is represented by the following (3.1)

equations:

(3.1) 0 0 1 1 ... n ny w x w x w x b=  +  + +  +

Chapter 3
MACHINE LEARNING METHODOLOGIES

25

Where x0 to xn denotes the features and w and b are parameters of the model that are

learned.

In conclusion, linear models try to predict labels approaching the training data as a

straight line.

Figure 3.4 Predictions of a linear model

In literature, there are a lot of different linear models and their difference lies in how

the parameters w and b are learned from the training data.

In this concerned study, the most popular linear regression models are used to predict

the extension of debris.

3.2.2.1 Ridge regression

In ridge regression, the coefficients (w) are chosen not only so that they predict well

on the training data, but also to fit an additional constraint.

The target is to have the magnitude of coefficients to be as small as possible and so,

all entries of w should be close to zero. In other words, this means each feature

should have as little effect on the outcome as possible (which translates to having a

small slopes), while still predicting well. This is a clear example of “regularization”,

where the model is restricted to avoid overfitting.

Chapter 3
MACHINE LEARNING METHODOLOGIES

26

How much simplicity is placed in the model is decided by the alpha parameter;

increasing alpha, indeed, forces coefficients to move more toward zero, which

decreases training set performances but might help generalization.

3.2.2.2 Lasso

The last linear model that is presented is Lasso. As with Ridge regression, also lasso

restricts coefficients to be close to zero, but in a slightly different way. Indeed, in this

case some of the coefficients are exactly zero. This means some features are

completely ignored by the model; and this be a form of automatic feature selection.

Also lasso has a regularization parameter alpha, that controls how strongly

coefficients are pushed toward zero.

3.2.2.3 Elastic Net

Elastic net is a hybrid of ridge regression and lasso regularization. Like lasso, elastic

net can generate reduced models by generating zero-valued coefficients. Empirical

studies have suggested that the elastic net technique can outperform lasso on data

with highly correlated predictors.

3.2.2.4 Linear models’ strengths and weaknesses

Linear models are very fast to train, and fast to predict. They scale to very large

datasets and work well with sparse data. Another strength of linear models is that

they make it relatively easy to understand how a prediction is made, using the

formulas we saw earlier for regression and classification. Unfortunately, it is often

not entirely clear why coefficients are the way they are.

3.2.3 Decision Trees

Decision trees are widely used models for regression tasks. Essentially, they are

learning a sequence of if/else questions that gets us to the true answer most quickly.

In the ML settings, these questions are called “tests”.

To build a tree, the algorithm searches over all possible tests and finds the one that is

most informative about the target variable (see Figure 3.5).

Chapter 3
MACHINE LEARNING METHODOLOGIES

27

Figure 3.5 Decision tree learned on the data

Typically, using pure leaves (means that all the training data are at the end of the

tree) leads the model to overfit the training data. To prevent that, there are two

commons strategies: stopping the creation of the tree early (also called “pre-

pruning”) or building the tree but then removing or collapsing nodes that contain

little information (also called “post-pruning” or just pruning).

Decision trees have two advantages over many of the algorithms that are discussed:

the resulting model can easily be visualized and understood by nonexperts, and the

algorithms are completely invariant to scaling of the data.

The weakness of this method otherwise, still lies in the risk of overfitting data

providing poor generalization, despite the use of pre-pruning or post-pruning.

Therefore, in most applications, the ensemble methods are usually used in place of a

single decision tree.

3.2.3.1 Random Forests

As we just observed, a main drawback of decision trees is that they tend to overfit the

training data. Random forests are one way to address this problem. A random forest

is essentially a collection of decision trees, where each tree is slightly different from

the others. The idea behind random forests is that each tree might do a relatively

good job of predicting but will likely overfit on part of the data. If we build many

Chapter 3
MACHINE LEARNING METHODOLOGIES

28

trees, all of which work well and overfit in different ways, we can reduce the amount

of overfitting by averaging their results.

To implement this strategy, we need to build many decision trees. Each tree should

do an acceptable job of predicting the target and should also be different from the

other trees. Random forests get their name from injecting randomness into the tree

building to ensure each tree is different. There are two ways in which the trees in a

random forest are randomized: by selecting the data points used to build a tree and by

selecting the features in each split test.

3.2.4 Support Vector Regression (SVR)

In the SVR it is defined as hyper plane the line that will predict the continuous value

that is the subject of the research.

On the other hand, two boundary lines are situated at the distance ‘ε’ from the hyper

plane.

The SVR algorithm counts the number of data that are inside the boundaries and the

best fit line is the one that contain the maximum number of data.

Figure 3.6 Instance of SVR fit line and boundaries

Chapter 3
MACHINE LEARNING METHODOLOGIES

29

3.2.5 Multilayer Perceptrons (MLP) Regressor

In the last few years a new methodology spreads out and it is so important that is

considered a new field of ML, under the name “deep learning”. The main task for

this method is Image Recognition where, thanks to the huge improvements in terms

of both hardware power and number of data, in the last decade impressive results are

reached.

MLP is a Convolutional Neural Network (CNN) that try to simulate the same

procedures that occur in the neurons of the human brain. Each processing units

indeed, behaves like neuron and therefore calculate a weighted sum of its inputs.

Then, uses an activation function to form the single output value.

 Usually, in a CNN we have an input layer where the features are collocated, then

other layer called hidden, where the weights are calculated step by step and finally

the output value.

Figure 3.7 Illustration of a multilayer perceptron with a single hidden layer

31

CHAPTER 4

DATA VISUALIZATION

AND PREPROCCESING

4.1 Data visualization

The data representation is one of the main tasks of a data scientist and ML

practitioners trying to solve and it is known as feature engineering.

Indeed, visualize the data in an efficient way can have a bigger influence on the

results than the parameters tuning.

The purpose of this research is to estimate the extension of debris (EOD), so, in the

next charts, is shown this quantity along the y-axis, meanwhile, in the x-axis are

represented 5 different features (one for each graph).

In each graph, the data are divided in two categories: masonry and reinforced

concrete building, as indicated in the label.

4.1.1 Stories-EOD

The number of stories of a building is not a continuous number, but a discrete one.

For this reason, all the sample are situated only in the integer positions of the chart

below.

Chapter 4
DATA VISUALIZATION AND PREPROCCESING

32

Figure 4.1 Data representation: Number of stories-EOD

4.1.2 Year-EOD

The year of construction is an interesting feature but unfortunately is very difficult to

find this kind of information. Indeed, the number of samples of this graph is the

smallest.

Figure 4.2 Data representation: Year of construction-EOD

Chapter 4
DATA VISUALIZATION AND PREPROCCESING

33

4.1.3 Magnitude-EOD

The data are grouped in 11 x coordinates because these are the magnitude of the

different earthquakes.

Figure 4.3 Data representation: Magnitude-EOD

4.1.4 Distance from Epicenter-EOD

The distance from epicenter is expressed in kilometers and is measured taking the

geographic coordinates of building and epicenter (so it’s measured in the surface).

Figure 4.4 Data representation: Distance from epicenter-EOD

Chapter 4
DATA VISUALIZATION AND PREPROCCESING

34

4.1.5 Height-EOD

This is the features with more and well distributed data.

Figure 4.5 Data representation: Height-EOD

4.1.6 Logarithmic values

Visualize the data help to understand if a correlation between features and target is

possible. Looking to this data it is possible to say that linear correlation will not fit

properly the dataset so the accuracy of the most part of the algorithm will not be

high. Therefore, to improve the accuracy of our forecast, it is appropriate to use the

logarithmic values of our data with the purpose to get a better linearization of the

problem. In Figure 4.6 it is shown the new distribution of the data and it is clearly

visible a higher linearization than the previous chart in Figure 4.5.

Chapter 4
DATA VISUALIZATION AND PREPROCCESING

35

Figure 4.6 Data representation: Height-EOD with logarithmic values

4.1.7 t-Distributed Stochastic Neighbor Embedding (t-SNE)

Since our problem is a multifeatured regression in 6 dimensions is useful utilize

some tools that allow a sort of 2D visualization of the data in order to make more

comprehensive the distribution of them. In 2008 an algorithm called t-SNE was

developed to visualize high dimensional data using Barnes-Hut approximations.

Using this algorithm for the dataset related to this research, the result is shown in

Figure 4.7.

Looking at the graph it is possible to say that the R-squared value hardly could has a

high score because for the same x-value on the graph we have more than one data in

the y-axis (forward is explained better how works the R-squared coefficient).

Its useful repeat that the graph has only a visual importance, therefore the values in

the axes have not any meaning for the concerned problem.

Chapter 4
DATA VISUALIZATION AND PREPROCCESING

36

Figure 4.7 t-SNE data visualization

4.2 Preprocessing data

Once the data are collected is important to scale them to avoid overfitting or other

problems. Overfitting, or high variance, is when an algorithm, which it is used to fit a

training set, can have a high accuracy for the train set but a lower one for the

predictions. In other words, overfitting occurs when the algorithm may fit the

training set very well but fail to generalize to new examples.

In Scikit Learn there are many possibilities to scale the data but in this research the

following are used:

• StandardScaler; this preprocessing ensures that for each feature the mean is 0

and the variance is 1, bringing all the features to the same magnitude. In this

way it is possible to avoid odd data points, called outliers, that could create

problem for the accuracy.

• MinMaxScaler; this procedure shifts the data such that all features are exactly

between 0 and 1. For a two-dimensional dataset this means all the data is

contained within the maximum and the minimum value of the feature.

37

CHAPTER 5

DATA TESTING AND

RESULTS

The chapter is dedicated to the comparison of all the results obtained, in order to

show which parameter are used to evaluate the accuracy and the reliability of the

prediction.

5.1.1 Data tuning

For each different algorithm, several parameters or coefficients are needed to tune in

order to obtain the best result in terms of R-squared and MARD.

In the next paragraphs the parameter necessary to find the best fit regression are

described. For further information it is recommended to consult the documentation of

Scikit-learn since in the concerned research only the parameters and the options

modified are described but, for each algorithm, there are more coefficients to tune in

general.

5.1.1.1 KNR

For the KNR algorithm the parameter to tune is just one, that is “n_neighbors”. This

represents the number of neighbors taken into consideration to evaluate the

predictions for the X test. A value of 5 it is used to obtain the best results.

5.1.1.2 Linear Models

For all the 3 linear models (Ridge, Elastic Net and Lasso) the parameter to tune is

one, that is alpha. It gives an idea of how many samples are not considered by the

DATA TESTING AND RESULTS

38

model to avoid overfitting. Since the dataset is not huge the values of alpha are quite

small.

Table 5-1 Alpha values for linear models regressor

Algorithm Alpha

Ridge 0.1

Elastic Net 0.01

Lasso 0.01

5.1.1.3 Decision Tree

The coefficients used for Decision Tree are 3:

• Min_samples_split: gives the minimum number of samples required to split

an internal node and it is set to 25.

• Min_samples_leaf: is the minimum number of samples required to be at a

leaf node. A value of 10 it is used, it means that a split point at any depth will

only be considered if it leaves at least 10 training samples in each of the left

and right branches.

• Presort: setting this option to ‘True’ the data are presorted to speed up the

finding of best splits in fitting. This is widely used for small dataset.

5.1.1.4 Random Forest

For the Random Forest algorithm, the parameters tuned are 3:

• Max_depth: indicates the maximum depth of the tree. It is set to 10 to avoid

overfitting.

• N_estimators: gives the number of trees in the forest. A value of 20 it is used.

• Min_sample_split: has the same meaning as in the decision tree algorithm

and it is set to 40.

5.1.1.5 SVR

The options tuned for the SVR are 3. C and epsilon, respectively 0.1 and 0.001, are

parameters to produce no penalty associated in training loss function for points that

are predicted within a certain distance (evaluated using C and epsilon) from the

DATA TESTING AND RESULTS

39

actual value. Finally, the Kernel type ‘rbf’, which stands for Radial Basis Function, is

used.

5.1.1.6 MLP Regressor

CNN required a lot of parameters to tune due to their nature of multilayer connective

framework. In the concerned research the parameters set are 7:

• Alpha = 0.1; is the regularization parameter

• Batch_size = 10; is the number of samples included in the minibatches to

train the model.

• Hidden_layer_sizes = 1000; is the number of neurons in the i-th hidden layer

• Learning_rate = ‘constant’;

• Learning_rate_init = 0.001;

• Activation = ‘relu’; defines the activation function for the hidden layer. ‘relu’

stands for Rectified Linear Unit Function.

• Solver = ‘adam’; defines the solver for weight optimization. ‘adam’ refers to

a stochastic gradient-based optimizer proposed by Kingma, Diederik and

Jimmy Ba.

5.2 Data testing

Once the data are preprocessed the next step is to tune the parameter for each

algorithm in order to obtain the best accuracy for the task. But how is measured the

accuracy?

For regression problems doesn’t exist a unique parameter to evaluate quality of our

prediction, therefore in the concerned research are used the two most used

parameters: R-squared and Mean Absolute Error (MARD).

5.2.1 R-squared

The R-squared value, also known as coefficient of correlation, provides a measure of

how well future samples are likely to be predicted by the model valuating how much

the scatter points are distant from the regression fit line calculated by the algorithm.

DATA TESTING AND RESULTS

40

Best possible score is 1.0 and it can be negative (that means, for instance that the

model is predicting descending values while the true data are growing). Furthermore,

a constant model that always predicts the expected value of y, disregarding the input

features, would get a R-squared score of 0.

The statistic definition of the coefficient of correlation is the following:

If iy is the predicted value of the i-th sample and iy is the corresponding true value,

then the score R2 estimated over samplesn is defined as:

(0.1)

1
2

2 0
1

2

0

()
(,) 1

()

samples

samples

n

i i
i

n

i
i

y y
R y y

y y

−

=

−

=

−

= −

−





Where 1

0

1 samplesn
ii

samples

y y
n

−

=
=  (0.2).

5.2.2 Mean Absolute Relative Distance (MARD)

MARD is the average vertical distance between each point and the regression line.

MARD is also the average horizontal distance between each point and the best fit

line.

Therefore, lower is the value of MARD and better are the predictions.

In statistic the definition of MARD is the following:

If iy is the predicted value of the i-th sample, and iy is the corresponding true value,

then the MARD estimated over samplesn is defined as:

(0.3)
1

0

1(,)
samplesn

i i

isamples i

y y
MARD y y

n y

−

=

−
= 

DATA TESTING AND RESULTS

41

5.3 Results

In the next paragraphs are shown the R-squared and MARD values for each

algorithm. In the charts, shown for each algorithm, 3 colors are used, where;

• Blue bars refer to the score with a test size data about 15% of the dataset;

• Red bars refer to the score with a test size data about 20% of the dataset

• Green bars refer to the score with a test size data about 33% of the dataset

These quantities are the most common when an algorithm is trained.

Furthermore, each algorithm is run with a different number of features. That because

the number of samples are different if we consider this 3 groups of multiple features.

Indeed, as shown in Table 2-1, if we consider all the features, the dataset it is

composed by 43 features; if the “year of construction” is ignored, the dataset is

formed by 170 samples and if also the “distance from epicenter” is ignored, all the

dataset and his 198 samples are used.

5.3.1 KNR

Using the parameters described in 5.1.1.1, the KNR algorithm gives the following R-

squared scores, shown in Figure 5.1.

(a) (b)

DATA TESTING AND RESULTS

42

 (c)

 Figure 5.1 R-squared score for testing set about (a)15% (b)20% (c) 33%

The best score of 0.32 is obtained for the case (a), considering 3 features.

In Figure 5.2 are shown the MARD score for each case. The best score is reached for

the case (b) with 3 features.

 (a) (b)

(c)

DATA TESTING AND RESULTS

43

Figure 5.2 MARD score for testing set about (a)15% (b)20% (c) 33%

5.3.2 Linear models

Linear models present, except for very few percentages of difference, the same

scores both in terms of R-squared and MARD. In Figure 5.3, Figure 5.4 and Figure

5.5 are shown the R-squared scores for Lasso, Elastic Net and Ridge algorithms.

(a) (b)

 (c)

Figure 5.3 Lasso-R-squared score for testing set about (a)15% (b)20% (c) 33%

DATA TESTING AND RESULTS

44

(a) (b)

 (c)

 Figure 5.4 Elastic Net-R-squared score for testing set about (a)15% (b)20% (c) 33%

(a) (b)

DATA TESTING AND RESULTS

45

 (c)

Figure 5.5 Ridge-R-squared score for testing set about (a)15% (b)20% (c) 33%

Linear models do not give good results in terms of R-squared and also the MARD

scores are worse as it is possible to see in Figure 5.6, Figure 5.7, Figure 5.8.

(a) (b)

(c)

Figure 5.6 Lasso-MARD score for testing set about (a)15% (b)20% (c) 33%

DATA TESTING AND RESULTS

46

(a) (b)

 (c)

 Figure 5.7 Elastic Net-MARD score for testing set about (a)15% (b)20% (c) 33%

(a) (b)

DATA TESTING AND RESULTS

47

(c)

Figure 5.8 Ridge-MARD score for testing set about (a)15% (b)20% (c) 33%

5.3.3 Decision Tree

With decision tree algorithm the scores are better as it is shown in Figure 5.9.

(a) (b)

DATA TESTING AND RESULTS

48

(c)

Figure 5.9 Decision tree-R-squared score for testing set about (a)15% (b)20% (c) 33%

The best score is in the case (a) with all the features. The same case gives also the

best result in terms of MARD with a value of 0.23 as shown in Figure 5.10.

(a) (b)

(c)

Figure 5.10 Decision tree-MARD score for testing set about (a)15% (b)20% (c) 33%

DATA TESTING AND RESULTS

49

5.3.4 Random forest

Random Forest gives the best scores both in terms of R-squared and MARD. Indeed,

the R-squared score reach a total of 0.52 while the MARD score is 0.22. In the

following Figure 5.11 and Figure 5.12 are shown the overall scores for each case.

(a) (b)

(c)

Figure 5.11 Random forest-R-squared score for testing set about (a)15% (b)20% (c) 33%

DATA TESTING AND RESULTS

50

(a) (b)

(c)

Figure 5.12 Random forest-MARD score for testing set about (a)15% (b)20% (c) 33%

5.3.5 SVR

In the following graphs are reported the results for the SVR algorithm. In Figure 5.13

are shown the R-squared scores.

DATA TESTING AND RESULTS

51

(a) (b)

(c)

Figure 5.13 SVR-R-squared score for testing set about (a)15% (b)20% (c) 33%

In Figure 5.14 instead, are shown the MARD scores.

(a) (b)

(c)

Figure 5.14 SVR-MARD score for testing set about (a)15% (b)20% (c) 33%

DATA TESTING AND RESULTS

52

5.3.6 MLP regressor

The last algorithm used is the MLP regressor that gives good results. For larger

dataset this algorithm could give improved results.

(a) (b)

(c)

Figure 5.15 MLP regressor-R-squared score for testing set about (a)15% (b)20% (c) 33%

In Figure 5.15 it is possible to see R-squared scores, while in Figure 5.16 are

reported the MARD values.

DATA TESTING AND RESULTS

53

(a) (b)

(c)

Figure 5.16 MLP regressor-MARD score for testing set about (a)15% (b)20% (c) 33%

5.3.7 Scores report

In Table 5-2 are reported all the values in numerical term for 3 different test set

(15%, 20% and 33%) and for 3 different groups of features.

DATA TESTING AND RESULTS

54

Table 5-2 R-squared and MARD scores

 Number of features

Algorithm
5 4 3

15% 20% 33% 15% 20% 33% 15% 20% 33%

KNR
R2 0.42 0.47 0.36 0.38 0.46 0.35 0.36 0.45 0.30

MARD 0.32 0.35 0.34 0.34 0.36 0.35 0.29 0.36 0.34

Lasso
R2 0.54 0.53 0.47 0.54 0.55 0.49 0.54 0.55 0.49

MARD 0.53 0.60 0.50 0.53 0.60 0.50 0.53 0.60 0.50

Elastic Net
R2 0.54 0.54 0.48 0.54 0.56 0.49 0.54 0.56 0.50

MARD 0.53 0.60 0.50 0.53 0.60 0.50 0.53 0.60 0.50

Ridge
R2 0.54 0.54 0.48 0.54 0.56 0.49 0.54 0.56 0.49

MARD 0.52 0.58 0.55 0.51 0.57 0.50 0.51 0.57 0.43

Random

Forest

R2 0.61 0.48 0.42 0.59 0.52 0.42 0.51 0.49 0.40

MARD 0.56 0.58 0.52 0.55 0.61 0.52 0.55 0.61 0.53

Decision Tree
R2 0.56 0.56 0.43 0.52 0.57 0.43 0.50 0.55 0.43

MARD 0.60 0.63 0.55 0.59 0.63 0.55 0.58 0.63 0.55

SVR
R2 0.43 0.36 0.29 0.47 0.36 0.30 0.46 0.40 0.31

MARD 0.53 0.56 0.48 0.50 0.55 0.47 0.51 0.56 0.48

MLP

Regressor

R2 0.49 0.54 0.48 0.50 0.55 0.47 0.44 0.50 0.43

MARD 0.53 0.61 0.54 0.53 0.61 0.51 0.53 0.59 0.50

PHI CHALLENGE AND IMAGE RECOGNITION

55

CHAPTER 6

PHI CHALLENGE AND

IMAGE RECOGNITION

6.1 Introduction

Another relevant aspect of ML that is spread out in the last years (from 2011) is

Convolutional Neural Network (CNN). This topic has assumed such importance that

it has earned its own name: Deep Learning. The models and the algorithms included

in this category are improved every year and a big amount of challenge and

competition comes out in different fields: from entertainment (company such as

Netflix, Spotify made their own competition) to Financial online security.

One of the most popular field where Deep Learning is widely used is for the Image

Recognition. With this term it is indicated all the methods that allow computer CPU

or, above all, GPU to classify pictures in different categories, which implies to

“understand” what is represented in the pictures relying on the categories.

There have been several recent image-based recognition competitions (such as the

PASCAL VOC, ImageNet, and COCO challenges) based on natural objects and

scenes.

On 18th January 2018 the Pacific Earthquake Engineering Research (PEER) center

announced the PEER Hub ImageNet (PHI) Challenge that provided the use of

PHI CHALLENGE AND IMAGE RECOGNITION

56

Computer Science and Deep Learning techniques to organize the first image-based

structural damage recognition competition. As it is possible to read in the main

online page of the competition: “In the PHI Challenge, PEER will provide a large

image dataset which is relevant to the field of structural engineering, and will design

several detection tasks, which will contribute to the establishment of automated

vision-based structural health monitoring. The goal of the PHI challenge is to

evaluate algorithms for structural image classification using a large-scale dataset

based on service conditions and past reconnaissance efforts and laboratory

experiments for conditions of extreme events. The state-of-the-art algorithms to be

tested in the PHI challenge are expected to enhance the accuracy and the

generalization of vision-based approaches. These approaches will aim towards the

construction of a big structural image dataset to solve societal-scale problems of

structural health monitoring and assessment of the built environment.”

The concerned study belongs to the classification problems (different from the

regression one, which we treated in the other paragraph). Even if it is still a

supervised learning problem, classification problem is different from regression

because now the parameter that is tried to forecast is not continuous but relies on

different categories that are individuated before the training phase.

6.2 PHI Challenge tasks

In this competition, all training images were labeled by Pacific Earthquake

Engineering Center, and each task has at most 4 categories. All images are assumed

to be labeled well without any outlier in any category. All images have been resized

to 224 x 224 x 3, which means its width, height, and channel (RGB).

The tasks have different weights for the overall score based on difficulty factors. The

tasks are:

Easy:

• Task 1: Scene classification, 3 classes (pixel/object/structural levels);

PHI CHALLENGE AND IMAGE RECOGNITION

57

Pixel Level Object Level Structural Level

• Task 2: Damage check, 2 classes (yes/no);

Undamaged Damaged

• Task 3: Spalling condition, 2 classes (yes/no);

No spalling Spalling

• Task 4: Material type, 2 classes(steel/others);

PHI CHALLENGE AND IMAGE RECOGNITION

58

Steel Others

Medium:

• Task 5: Collapse check, 3 classes (no/partial collapse/collapse);

No collapse Partial collapse Collapse

• Task 6: Component type, 4 classes (beam/column/wall/else);

Beam Column Wall Else (i.e.joint)

PHI CHALLENGE AND IMAGE RECOGNITION

59

• Task 7: Damage level, 4 classes (no/minor/moderate/heavy damage);

No damage Minor damage
Moderate
damage Heavy damage

Hard:

• Task 8: Damage type, 4 classes (no/flexural/shear/combined);

No damage
Flexural
damage Shear damage

Combined
damage

In our training process,80% of images will be the training set, the rest 20% will be

separated as the validation and test set equally (Table 6-1).

Table 6-1 Summary of Images in the training process.

 Task1 Task2 Task3 Task4 Task5 Task6 Task7 Task8

Training Set 13,939 4,730 3,294 3,469 412 2,104 2,105 2,105

ValidationSet 1,742 591 329 433 51 263 263 263

PHI CHALLENGE AND IMAGE RECOGNITION

60

Test Set 1,742 591 329 433 51 263 263 263

Kaggle Test 4,356 1,479 824 1,085 129 658 658 658

After the algorithm is trained, a database of unlabeled images is provided so that

predications of labels and annotation can be generated.

All the competition takes place in the Kaggle platform, which is defined in

Wikipedia as “an online community of data scientists and machine learners, owned

by Google, Inc. Kaggle allows users to find and publish data sets, explore and build

models in a web-based data-science environment, work with other data scientists and

machine learning engineers, and enter competitions to solve data science

challenges.”

Through this platform it is possible to update in real time the prediction of the test

and see the accuracy of the model.

6.3 Deep Learning models and Transfer Learning

The general definition of Transfer Learning (TL) is written in [15] (see the

references):

“Given a source domain and its learning task, a target domain and its target task, the

objective of TL is to help improve the prediction function in learning target task

using the knowledge from source domain with source target.”

In the concerned study, TL is practiced within the training process so that the lower

level features (e.g., color, corner, and edge) can be used directly from pre-trained

models (e.g., VGG16, VGG19, Inception, ResNet), which effectively reduce the

training time with large-scale image set.

To obtain the baseline model, 4 state-of-the-art models have been chosen based on

their performance in ImageNet Challenge, which includes VGG16, VGG19,

Inception, and Xception. According to TL, lower convolutional bocks that have

predictors (weights and biases) to capture common features such as edge, colour, and

corner. Within the training process, those features do not need to be learned so that

PHI CHALLENGE AND IMAGE RECOGNITION

61

the overall training time can be reduced. In order to skip the training for lower

features, the number of layers that need to be frozen must be defined initialized so

that those weights and biases will not be updated during the backward propagation

process. The summary of frozen layers for different models in our training is shown

in Table 6-2. The layer indicated in the table including convolutional layer, Rectified

Linear Units (ReLU), max pooling layer, and fully connected layer.

Table 6-2 Summary of frozen layers

Model VGG16 VGG19 Inception ResNet50 Xception

Frozen

Layers

25 20 197 160 54

6.4 Google Cloud Platform (GCP)

The dataset provided by PEER is formed by images with a dimension of 224x224

pixel. Applying this dimension for all the pictures gives an idea about the huge

amount of work that is required for the algorithm to make a prediction. Therefore,

treating this data needs a powerful machine that permits to run different CNN models

in order to get the best accuracy in terms of predictions.

Using commercial computer, even most powerful, could give memory error working

with such big database. For that reason, to run the models in very powerful virtual

machines it is used Google Cloud Platform (GCP), which is a suite of cloud

computing services that runs on the same infrastructure that Google uses internally

for its end-user products, such as Google Search and YouTube.

In this way, it was possible use a computer with the v100 GPU having the following

characteristics:

Table 6-3 Nvidia v100 GPU characteristics

Characteristic Value

PHI CHALLENGE AND IMAGE RECOGNITION

62

Transistors 21.1 billion

CUDA cores 5,120

Tensor cores 640

GPU clock speed 1200MHz base, 1455MHz boost

Memory capacity 12GB HBM2

Memory clock 850MHz

Memory interface 3,072-bit

Total memory bandwidth 652.8GBps

Texture units 320

Power
250W TDP via 1x 6-pin and 1x 8-pin power

connectors

Ports 3x DisplayPort, 1x HDMI

Price $3,000 on Nvidia.com

6.5 Training and results

For preprocessing, all input images were assigned as 224 x 224 x3 at the beginning.

However, each model has its own default input size. For example, VGG16, VGG19,

and ResNet require image size 224 x 224 x3. Both InceptionV3 and Xception require

image size 299 x 299 x 3. Besides the modification of size, normalization is also

implemented for all images. That is, the pixel must be divided by 255 so that its

value is between 0 and 1. Based on the observation, the given images have some

rotation and flip that can be confusing during the learning process. As a result, 10%

of input images will be randomly rotated and the other 10% will be randomly flipped

to make sure that those confusing example in the real test set can be captured.

The overall hyperparameters that utilized in our training process are shown in Table

6-4. The initial learning rate is fixed to all tasks but with different decay rate and

epoch based on the size of images. The decay rate can make sure the learning process

PHI CHALLENGE AND IMAGE RECOGNITION

63

will not go too fast to skip the global solution. The accuracy of each task is the result

by voting the most predicting category among all models.

Table 6-4 Summary of the training and testing process.

 Task1 Task2 Task3 Task4 Task5 Task6 Task7 Task8

Mini-Batch 64 32 32 32 16 32 32 32

Initial Learning

Rate

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Learning Rate

Decay

1e -03 1e -03 1e -03 1e -03 1e -03 1e -03 1e -03 1e -03

Epoch 10,000 6,000 5,000 5,000 2,000 3,000 3,000 3,000

Accuracy 0.907 0.791 0.83 0.967 0.625 0.684 0.608 0.559

Conclusions

64

CONCLUSIONS

The subject of this thesis was the development of a methodology to assess the

extension of the debris caused by earthquake damage. The amount of rubble is

estimated from pictures taken in the field and several modern Machine Learning

algorithms are evaluated based on their prediction accuracy in terms of R-squared

and Mean Absolute Relative Distance (MARD). The work begins with a collection

of 198 pictures (and related data) from 14 different earthquakes.

Using this dataset and 6 features, 8 different algorithms were trained and their

performance in terms of predicting the extension of the debris was evaluated.

During the training process, some parameters, different for each algorithm, were

altered and tested in order to achieve the best score.

Looking at the results, the main features of the present research can be summarized

as follows:

- KNR algorithm gives the best MARD score (0.32) but the low value of R-

squared (0.42) means that with more data the algorithm, probably, will

generalize too much.

- Linear models furnish similar results;

- Random forest gives the best R-squared but a high mean absolute relative

deviation (MARD) (0.56). The predictive performance can be improved if

more data is collected;

- MLP Regressor, which is a type of Convolutional Neural Network, does not

achieve good results because of the size of the dataset that does not allow the

network to exploit his power.

- The best score, both for R-squared and MARD, are reached considering all

the features and a testing set of 15%. This is due to the medium-small

Conclusions

65

dimension of the dataset. If more data are collected, maybe, better results can

be reached for bigger testing data (which could give more consistence

values).

In conclusion Random forest and KNR are the best choices for predicting the debris-

extension and the performances suggest that there is some potential for using

machine learning methodologies in this field. It is appropriate to underline that

collecting more pictures and data from other Earthquakes in future could

significantly improve the results.

In the last part of the concerned thesis, it is described the PHI Challenge, organized

by PEER.

In this competition, state-of-the-art CNN and Transfer Learning are implemented to

classify the structural image into multi-category which includes the damage status

before and after the disaster as wells the materials and structural components. Due to

the pre-trained models that are available in Keras/TensorFlow, the training process

can be reduced to focus on the higher-level features for a specific category. GCP also

provides a friendly environment for the beginner of Deep Learning who may not

have enough computing power to fulfill large-scale image classification, which is

also utilized in this competition.

The overall performance and the process give a good chance for civil engineers to

learn the new technology and utilize it to improve current research topics.

Appendix

66

APPENDIX

8.1 Dataset

Legend:

1. ID = Identification number of the picture

2. Earthquake = Earthquake location

3. Mat. = Material:

• 0 = Masonry

• 1 =Reinforced Concrete

4. Stories

5. Year

6. Magnitude

7. Distance = Distance from epicenter in kilometers

8. Log(Height) = logarithm of the buildings’ heights

9. Log(EOD Norm.) = Logarithmic value of Extension Of Debris normalized

with the heights of the buildings

10. d = Extent of debris calculated following the procedure in the paragraph 2.3.1

Note: A missing data is replaced with the value -1.

ID Earthquake Mat Stories Year Magnitude Distance
[km]

Log(Height)
[m]

Log(EOD
 Norm.) d [m]

id.001 Mexico City 1 8 -1 8.1 60 0.826075 -0.4973 1.9091

id.002 Mexico City 0 12 -1 8.1 51 0.812913 0.093912 7.4483

id.003 Mexico City 1 7 -1 8.1 52 0.778151 -0.47716 2

id.004 Mexico City 1 6 -1 8.1 48 1.30103 -0.80272 2.8356

id.006 Mexico City 1 2 -1 8.1 54 0.90309 -0.41016 3.5

id.007 Northwestern Armenia 0 3 -1 6.9 47 0.944483 -0.66655 1.9397

id.009 Northwestern Armenia 1 5 -1 6.9 168 0.778151 -0.37069 2.5556

Appendix

67

id.010 Northwestern Armenia 1 5 -1 6.9 167 1.255273 -0.68909 3.6833

id.011 Northwestern Armenia 0 5 -1 6.9 173 0.939519 -0.57955 2.3697

id.012 Northwestern Armenia 0 5 -1 6.9 170 0.90309 -0.13829 6.5455

id.013 Loma Prieta 0 3 -1 7.1 175 1.041393 -0.93033 1.0568

id.014 Loma Prieta 0 2 -1 7.1 -1 1 -0.8617 1.2371

id.015 Loma Prieta 0 3 -1 7.1 17 1.255273 -1.51428 0.55

id.016 Loma Prieta 0 4 -1 7.1 16 0.954243 -0.18092 5.9333

id.017 Loma Prieta 0 4 -1 7.1 17 1.255273 -0.80715 2.8056

id.019 Northern Iran 0 6 -1 7.7 14 0.954243 -0.96417 0.9778

id.020 Northridge 0 2 -1 6.8 13 1.20412 -0.95117 1.678

id.021 Northridge 0 2 -1 6.8 15 0.845098 -0.51727 1.8235

id.022 Central Italy 0 2 -1 6.1 36 0.845098 -0.55533 1.6702

id.023 Central Italy 0 2 -1 6.1 35 0.778151 -0.63097 1.4033

id.024 Emilia Romagna 0 3 1935 6.1 -1 0.982271 -0.22863 5.3165

id.025 Emilia Romagna 0 3 1935 6.1 -1 1 -0.25524 5

id.026 Emilia Romagna 0 6 1935 6.1 -1 1.255273 -0.08197 14.9032

id.028 Emilia Romagna 0 2 -1 6.1 34 0.819544 -0.49785 1.9068

id.029 Emilia Romagna 0 2 -1 6.1 33 0.799341 -0.83062 0.886

id.030 Emilia Romagna 0 3 -1 6.1 37 0.954243 -0.86012 1.2424

id.032 Emilia Romagna 0 3 1864 6.1 48 0.954243 -0.83893 1.3043

id.033 Emilia Romagna 0 3 1864 6.1 48 0.90309 -1.07935 0.75

id.035 Emilia Romagna 0 5 1744 6.1 57 1.176091 -0.92812 1.77

id.036 Emilia Romagna 0 3 -1 6.1 35 1.012837 -0.59963 2.2629

id.039 Emilia Romagna 0 5 1401 6.1 -1 1.176091 -0.7597 2.6086

id.040 Emilia Romagna 0 3 -1 6.1 69 0.944483 -0.74256 1.6279

id.043 Emilia Romagna 1 2 -1 6.1 198 0.875061 -0.80052 0.95

id.044 Emilia Romagna 1 3 -1 6.1 200 0.954243 -1 0.9

id.045 South Napa Valley 0 3 1940 6 28 0.968483 -0.54668 2.5556

id.046 South Napa Valley 0 3 1940 6 29 0.968483 -0.5373 2.6122

id.049 South Napa Valley 0 3 1905 6 30 9 0.121727 1.095541

id.050 South Napa Valley 0 2 1940 6 31 0.939519 -0.20363 5.6316

id.051 South Napa Valley 0 2 1940 6 33 0.778151 -0.65995 1.3125

id.053 South Napa Valley 0 1 1940 6 27 0.826075 -0.285 3.1125

id.054 South Napa Valley 0 1 1940 6 30 0.69897 -0.18329 3.2784

id.055 Southern Taiwan 0 2 -1 6.4 202 1.255273 -0.85356 2.5213

id.056 Southern Taiwan 0 2 -1 6.4 -1 0.973128 -0.58939 2.3163

id.057 Puebla 1 3 -1 7.1 -1 1.176091 -1.07314 1.2676

id.059 Puebla 0 2 -1 7.1 -1 1 -0.52476 2.6886

id.060 Puebla 1 2 -1 7.1 -1 0.755875 -0.1224 4.5263

id.061 Puebla 0 2 -1 7.1 -1 0.954243 -0.38143 3.7393

id.062 Puebla 0 2 -1 7.1 -1 0.954243 -0.39448 3.6289

Appendix

68

id.064 Christchurch 0 2 -1 6.2 -1 1.255273 -0.51089 5.5514

id.068 Christchurch 0 3 -1 6.2 411 1.518514 -0.35018 14.7342

id.069 Christchurch 0 3 -1 6.2 403 0.845098 -0.27368 3.195

id.070 Christchurch 0 3 -1 6.2 -1 0.69897 -0.21254 3.6783

id.079 Christchurch 1 3 -1 6.2 160 0.934498 -0.57073 2.4187

id.081 Christchurch 1 2 -1 6.2 158 0.799341 -0.35566 2.6452

id.082 Christchurch 1 2 -1 6.2 162 0.778151 -0.00753 5.8966

id.084 Christchurch 0 2 -1 6.2 230 0.954243 -0.31292 4.3784

id.086 Christchurch 0 3 -1 6.2 229 1.255273 -0.70708 3.5342

id.087 Cephalonia 1 2 -1 6 232 0.778151 -1.03953 0.5479

id.088 Cephalonia 1 2 -1 6 228 0.954243 -1.04048 0.8203

id.089 Cephalonia 1 2 -1 6 233 1.255273 -1.4318 0.6667

id.090 Cephalonia 1 2 -1 6 230 1.255273 -1.39794 0.7204

id.091 Cephalonia 1 3 2007 6 -1 0.954243 -0.96019 0.9861

id.092 Cephalonia 0 1 -1 6 250 0.69897 -0.24558 2.8403

id.093 Central Italy 0 1 -1 6.2 244 1.255273 -0.8729 2.4118

id.094 Central Italy 0 3 -1 6.2 246 0.986772 -0.72955 1.6774

id.095 Central Italy 0 1 -1 6.2 247 0.863323 -0.28659 3.1011

id.096 Central Italy 0 1 1701 6.2 -1 0.973128 -0.56431 2.4545

id.097 Central Italy 1 2 -1 6.2 240 0.845098 -0.9751 0.6353

id.098 Central Italy 1 2 -1 6.2 238 1.176091 -0.88107 1.9728

id.100 Central Italy 0 4 -1 6.2 235 1.079181 -0.96738 1.2938

id.101 Central Italy 0 4 -1 6.2 233 0.778151 -0.32523 2.8377

id.102 Central Italy 0 3 -1 6.2 234 0.954243 -0.72102 1.7109

id.103 Central Italy 0 3 -1 6.2 240 1.623249 -1.45967 1.4583

id.104 Central Italy 0 3 -1 6.2 239 0.812913 -0.33106 2.7994

id.106 Central Italy 0 3 -1 6.2 235 0.954243 -0.81987 1.3622

id.107 Central Italy 0 4 -1 6.2 235 0.995635 -0.63714 2.0755

id.112 India 1 11 1995 7.7 -1 1.623249 -1.09313 3.3913

id.114 India 1 4 -1 6.9 160 1.380211 -1.22695 1.4237

id.116 India 1 2 -1 6.9 157 1.255273 -0.98548 1.8613

id.118 India 1 6 -1 6.9 222 1.518514 -1.60033 0.8296

id.120 India 1 6 -1 6.9 227 1.518514 -1.48545 1.0777

id.122 India 1 6 -1 6.9 225 1.053078 -0.95429 1

id.123 Mexico City 1 14 1962 8.1 48 1.079181 -0.07438 10.1111

id.129 Turkey 1 3 1999 6.4 20 0.832509 -1.15181 0.4227

id.133 Ecuador 1 2 -1 7.8 223 0.778151 -0.77806 1

id.134 Ecuador 1 2 -1 7.8 227 0.845098 -0.81588 0.9169

id.135 Ecuador 1 2 -1 7.8 225 0.954243 -0.77806 1.5

id.136 Ecuador 1 2 -1 7.8 224 1.041393 -1.10735 0.859

id.137 Ecuador 1 2 -1 7.8 60 0.832509 -0.82304 0.9016

Appendix

69

id.138 Ecuador 1 2 -1 7.8 62 0.778151 -0.80024 0.9501

id.139 Ecuador 1 2 -1 7.8 58 0.954243 -1.04191 0.8175

id.140 Ecuador 1 2 -1 7.8 63 1 -0.96658 0.9717

id.141 Ecuador 1 3 -1 7.8 59 1.477121 -1.21183 1.8409

id.142 Ecuador 1 3 -1 7.8 61 0.929419 -0.69789 1.8045

id.144 Ecuador 1 3 -1 7.8 387 0.939519 -0.69702 1.8084

id.145 Ecuador 1 3 -1 7.8 407 0.792392 -0.52827 1.7778

id.146 Ecuador 1 3 -1 7.8 386 0.845098 -0.5583 1.6591

id.147 Ecuador 1 3 -1 7.8 390 0.954243 -0.70202 1.7872

id.148 Ecuador 1 3 -1 7.8 414 1.079181 -0.88339 1.5701

id.149 Ecuador 1 3 -1 7.8 392 0.954243 -0.99654 0.9074

id.150 Ecuador 1 3 -1 7.8 395 1.079181 -0.48945 3.8879

id.151 Ecuador 1 3 -1 7.8 400 1.477121 -0.87452 4.0055

id.152 Ecuador 1 5 -1 7.8 404 1.322219 -1.25806 1.1584

id.153 Ecuador 1 5 -1 7.8 3 0.954243 -0.92885 1.0601

id.154 Ecuador 1 6 -1 7.8 2 1.176091 -1.31426 0.7281

id.155 Ecuador 1 6 -1 7.8 12 1.176091 -1.23062 0.8814

id.158 Ecuador 1 3 -1 7.8 11 1 -0.81361 1.536

id.162 Ecuador 1 3 -1 7.8 9 1.079181 -0.84345 1.7203

id.163 Ecuador 1 3 -1 7.8 8 0.845098 -0.66254 1.3048

id.164 Ecuador 1 5 -1 7.8 7 1.556303 -1.41341 1.3896

id.165 Ecuador 1 5 -1 7.8 10 1.176091 -1.20482 0.9364

id.166 Ecuador 1 5 -1 7.8 10 1.380211 -1.56067 0.6606

id.167 Ecuador 1 3 -1 7.8 16 1.079181 -1.14691 0.8554

id.168 Ecuador 1 3 -1 7.8 14 0.954243 -0.74136 1.6327

id.169 Ecuador 1 3 -1 7.8 15 0.792392 -0.53417 1.7536

id.170 Ecuador 1 2 -1 7.8 17 0.778151 -0.914 0.7312

id.172 Ecuador 1 2 -1 7.8 147 1.041393 -1.11805 0.8385

id.173 Ecuador 1 2 -1 7.8 153 1.079181 -1.1831 0.7869

id.174 Ecuador 1 2 -1 7.8 98 0.653213 -0.78675 0.7354

id.175 Ecuador 1 3 -1 7.8 102 0.90309 -0.75995 1.5638

id.176 Ecuador 1 3 -1 7.8 100 1.021189 -0.73212 1.6677

id.177 Ecuador 1 3 -1 7.8 101 1 -0.73142 1.6704

id.184 Nepal 1 3 -1 7.8 65 0.929419 -0.32587 4.25

id.190 Mexico City 1 6 -1 5.7 126 1.556303 -0.91686 4.3608

id.191 Mexico City 1 6 -1 5.7 124 1.278754 -0.78755 2.9361

id.192 Mexico City 1 6 -1 5.7 123 1.176091 -0.99353 1.5219

id.193 Mexico City 1 6 -1 5.7 127 1 -0.83003 1.3311

id.194 Mexico City 1 6 -1 5.7 125 0.982271 -0.77989 1.4944

id.195 Central Italy 0 1 -1 6.2 -1 1.477121 -0.82016 4.5396

id.196 Central Italy 0 3 -1 6.2 -1 0.977724 -0.27597 4.7676

Appendix

70

id.201 Central Italy 1 2 -1 6.2 63 0.963788 -0.47716 3

id.204 Central Italy 0 1 -1 6.2 67 0.653213 -0.1986 2.8486

id.205 Central Italy 1 3 -1 6.2 66 1.033424 -0.94962 1.0104

id.206 Central Italy 0 3 -1 6.2 65 0.939519 -0.84497 1.2861

id.209 Central Italy 0 3 -1 6.2 64 1.079181 -1.37986 0.5

id.211 Central Italy 0 3 -1 6.2 62 0.977724 -0.61618 2.1776

id.212 Central Italy 0 3 -1 6.2 70 0.838849 -0.67778 1.26

id.214 Southern Taiwan 0 8 1985 6.4 -1 1.623249 -1.18046 2.7707

id.220 Southern Taiwan 0 2 1975 6.4 44 1.255273 -0.66696 3.875

id.221 Southern Taiwan 0 2 1975 6.4 46 1.518514 -0.91757 3.9911

id.224 Southern Taiwan 1 4 1981 6.4 -1 0.819544 -0.72677 1.1255

id.226 Southern Taiwan 1 1 1982 6.4 22 1.477121 -0.88874 3.8773

id.227 Southern Taiwan 1 1 1982 6.4 21 0.954243 -0.99055 0.9194

id.228 Southern Taiwan 0 1 1971 6.4 50 0.838849 -0.64187 1.3685

id.232 Southern Taiwan 1 4 1984 6.4 15 1.079181 -1.57349 0.3207

id.234 Southern Taiwan 1 4 1984 6.4 24 1.518514 -1.57025 0.8881

id.235 Southern Taiwan 1 4 1984 6.4 24 1.380211 -1.40012 0.955

id.236 Southern Taiwan 1 4 1984 6.4 15 1.079181 -1.57349 0.3207

id.238 Southern Taiwan 1 3 1985 6.4 67 0.845098 -0.21439 3.6622

id.239 Southern Taiwan 1 4 1984 6.4 21 1.079181 -0.78068 1.9881

id.240 Southern Taiwan 1 1 1982 6.4 30 0.653213 -0.21424 3.6636

id.241 Southern Taiwan 1 1 1982 6.4 29 0.954243 -0.50626 2.8056

id.242 Southern Taiwan 1 1 1982 6.4 28 1.079181 -1.26841 0.6466

id.243 Southern Taiwan 1 1 1982 6.4 28 0.69897 -0.98047 0.6278

id.244 Southern Taiwan 1 1 1982 6.4 29 0.954243 -1.098 0.7186

id.248 Southern Taiwan 1 1 1982 6.4 31 0.778151 -0.969 0.6445

id.249 Southern Taiwan 1 1 1982 6.4 31 1.612784 -1.75203 0.7269

id.250 Southern Taiwan 1 1 1982 6.4 -1 0.832509 -0.67882 1.2571

id.251 Southern Taiwan 1 1 1982 6.4 -1 0.954243 -0.78383 1.4803

id.254 Southern Taiwan 1 1 1982 6.4 190 0.90309 -0.82681 1.3412

id.256 Southern Taiwan 1 1 1982 6.4 160 0.954243 -1.28483 0.4675

id.257 Nepal 0 3 -1 7.8 100 1.113943 -1.00789 1.1786

id.258 Nepal 0 2 -1 7.8 100 0.954243 -0.44491 3.2308

id.259 Nepal 0 2 -1 7.8 90 1.623249 -1.10458 3.3

id.260 Nepal 0 2 -1 7.8 85 0.812913 -0.26098 3.2897

id.261 Nepal 0 2 -1 7.8 110 0.778151 -0.56511 1.6331

id.262 Nepal 0 2 -1 7.8 110 0.78533 -0.40938 2.3377

id.263 Nepal 0 2 -1 7.8 95 0.929419 -0.61943 2.0417

id.264 Nepal 0 2 -1 7.8 121 0.812913 -0.14291 4.3178

id.266 Nepal 0 2 -1 7.8 118 0.778151 -0.28997 3.0771

id.267 Nepal 0 3 -1 7.8 123 0.954243 -0.42899 3.3517

Appendix

71

id.268 Nepal 0 2 -1 7.8 117 0.778151 -0.68825 1.2303

id.269 Nepal 0 3 -1 7.8 122 1.041393 -0.98843 1.1298

id.270 Nepal 0 2 -1 7.8 119 0.845098 -0.41976 2.2823

id.271 Nepal 0 2 -1 7.8 120 0.778151 -0.99654 0.6048

id.272 Nepal 0 4 -1 7.8 98 0.778151 -0.59912 1.5101

id.273 Nepal 0 3 -1 7.8 102 1.060698 -0.94923 1.0118

id.274 Nepal 0 4 -1 7.8 99 0.778151 -0.55424 1.6747

id.275 Nepal 0 3 -1 7.8 101 0.60206 -0.15889 2.0809

id.276 Nepal 0 3 -1 7.8 97 0.763428 -0.39147 2.436

id.277 Nepal 0 2 -1 7.8 100 1.255273 -1.27165 0.963

id.278 Nepal 0 3 -1 7.8 103 0.799341 -0.67695 1.2627

id.279 Nepal 0 3 -1 7.8 100 0.799341 -0.40949 2.3369

id.285 Nepal 0 14 -1 7.8 90 1.39794 -1.24489 1.4219

id.286 Nepal 0 2 -1 7.8 135 0.778151 -0.31069 2.9339

id.288 Nepal 0 4 -1 7.8 115 0.812913 -0.63827 1.3797

id.289 Nepal 0 4 -1 7.8 114 0.778151 -0.25407 3.3429

id.291 Nepal 0 3 -1 7.8 105 0.94939 -0.65817 1.977

id.292 Nepal 0 2 -1 7.8 106 0.799341 -0.4318 2.22

id.294 Nepal 0 2 -1 7.8 104 1 -0.58956 2.316

id.295 Nepal 0 2 -1 7.8 107 0.863323 -0.66635 1.2935

id.296 Nepal 0 2 -1 7.8 105 0.653213 -0.44105 1.6301

id.297 Nepal 0 3 -1 7.8 102 0.954243 -0.80827 1.3996

id.298 Nepal 0 2 -1 7.8 120 0.845098 -0.60102 1.5038

id.299 Nepal 0 3 -1 7.8 115 1.079181 -0.5516 3.3694

id.300 Nepal 0 2 -1 7.8 95 0.845098 -0.2568 3.3219

id.301 Nepal 0 3 -1 7.8 90 0.778151 -0.27165 3.2102

id.302 Nepal 0 3 -1 7.8 85 1.230449 -0.96257 1.6355

8.2 Extension of debris evaluation

Note: A missing data is replaced with the value -1.

The meaning of the different parameters is well described in the paragraph 2.3.1.

The reference column shows the object or the dimension that is taken as comparison

(with well-known measure) in the proportion (1.1) to evaluate the extent of the

debris.

Appendix

72

ID Y1 Y2 y1 y2 D [m] P p d [m] EOD norm. Reference Coordinate Reference

id.001 301 312 299 313 1.5 11 14 1.9090 0.31818 Sidewalk y

id.002 95 153 152 164 36 58 12 7.4482 1.24138 Height y

id.003 280 289 285 297 1.5 9 12 2 0.33333 Sidewalk y

id.004 12 304 169 307 6 292 138 2.8356 0.15753 Height y

id.006 -1 -1 -1 -1 -1 -1 -1 3.5 0.38889 Sidewalk y

id.007 162 278 163 213 4.5 116 50 1.9396 0.21552 Height y

id.009 415 451 282 305 4 36 23 2.5555 0.42593 Wall x

id.010 14 295 95 164 15 281 69 3.6832 0.20463 Height x

id.011 74 312 240 287 12 238 47 2.3697 0.26331 Height y

id.012 78 210 239 263 36 132 24 6.5454 0.72727 Height y

id.013 333 377 326 357 1.5 44 31 1.0568 0.11742 Height y

id.014 172 269 296 320 5 97 24 1.2371 0.13746 Height y

id.015 380 410 401 412 1.5 30 11 0.55 0.03056 Sidewalk y

id.016 138 198 360 449 4 60 89 5.9333 0.65926 Car x

id.017 376 484 227 429 1.5 108 202 2.8055 0.15586 Sidewalk x

id.019 212 302 121 143 4 90 22 0.9777 0.10864 Height y

id.020 150 209 290 345 1.8 59 55 1.6779 0.11186 Car x

id.021 543 594 366 428 1.5 51 62 1.8235 0.30392 Sidewalk x

id.022 1243 1555 1870 2063 2.7 312 193 1.6701 0.27837 Door y

id.023 1221 1550 1645 1816 2.7 329 171 1.4033 0.23389 Door y

id.024 45 203 283 311 30 158 28 5.3164 0.59072 Height y

id.025 143 239 41 57 30 96 16 5 0.55556 Height y

id.026 21 176 183 260 30 155 77 14.903 0.82796 Height y

id.028 416 534 1332 1407 3 118 75 1.9067 0.3178 Door y

id.029 40 147 326 405 1.2 107 79 0.8859 0.14766 Window y

id.030 354 453 993 1034 3 99 41 1.2424 0.13805 Height y

id.032 168 260 152 182 4 92 30 1.3043 0.14493 Height y

id.033 44 268 173 215 4 224 42 0.75 0.08333 Height y

id.035 200 300 70 129 3 100 59 1.77 0.118 Lamp y

id.036 50 225 146 212 6 175 66 2.2628 0.25143 Height y

id.039 155 225 49 132 2.2 70 83 2.6085 0.1739 Signal y

id.040 71 157 201 236 4 86 35 1.6279 0.18088 Height y

id.043 88 148 329 348 3 60 19 0.95 0.15833 Height y

id.044 51 191 151 193 3 140 42 0.9 0.1 Door y

id.045 173 245 140 186 4 72 46 2.5555 0.28395 Height y

id.046 44 191 233 329 4 147 96 2.6122 0.29025 Height y

id.050 216 368 199 413 4 152 214 5.6315 0.62573 Car x

id.051 304 368 292 348 1.5 64 56 1.3125 0.21875 Sidewalk x

id.053 247 279 174 257 1.2 32 83 3.1125 0.51875 Window y

id.054 26 179 0 418 1.2 153 418 3.2784 0.65569 Window x

Appendix

73

id.055 404 849 78 265 6 445 187 2.5213 0.14007 Height y

id.056 237 882 187 436 6 645 249 2.3162 0.25736 Height y

id.057 156 298 30 60 6 142 30 1.2676 0.08451 Height y

id.059 84 163 251 369 1.8 79 118 2.6886 0.29873 Car x

id.060 876 933 598 770 1.5 57 172 4.5263 0.75439 Sidewalk x

id.061 334 502 371 720 1.8 168 349 3.7392 0.41548 Car x

id.062 48 436 0 704 2 388 704 3.6288 0.40321 Signal x

id.064 175 282 219 549 1.8 107 330 5.5514 0.30841 Car x

id.068 465 544 287 481 6 79 194 14.734 0.44649 Car x

id.069 271 351 149 362 1.2 80 213 3.195 0.5325 Rail x

id.070 44 159 222 269 9 115 47 3.6782 0.61304 Height y

id.071 214 508 490 589 61 294 99 20.540 2.28231 Lenght x

id.079 219 342 455 540 3.5 123 85 2.4186 0.26874 Height y

id.081 5 284 315 438 6 279 123 2.6451 0.44086

id.082 280 367 239 524 1.8 87 285 5.8965 0.98276 Car x

id.084 217 328 171 333 3 111 162 4.3783 0.48649 Height y

id.086 187 260 174 260 3 73 86 3.5342 0.19635 Height y

id.087 99 318 206 246 3 219 40 0.5479 0.09132 Height y

id.088 213 341 227 262 3 128 35 0.8203 0.09115 Height y

id.089 26 314 351 415 3 288 64 0.6666 0.03704 Height y

id.090 22 326 309 382 3 304 73 0.7203 0.04002 Height y

id.091 51 483 1 143 3 432 142 0.9861 0.10957 Height y

id.092 35 392 421 590 6 357 169 2.8403 0.56807 Height y

id.093 191 395 22 186 3 204 164 2.4117 0.13399 Height y

id.094 352 445 651 677 6 93 26 1.6774 0.18638 Height y

id.095 105 283 52 144 6 178 92 3.1011 0.51685 Height y

id.096 167 277 362 407 6 110 45 2.4545 0.27273 Height y

id.097 299 367 436 472 1.2 68 36 0.6352 0.10588 Window y

id.098 201 385 179 300 3 184 121 1.9728 0.13152 Height y

id.100 417 481 699 735 2.3 64 36 1.2937 0.10781 Door y

id.101 276 353 106 201 2.3 77 95 2.8376 0.47294 Door y

id.102 1 769 184 330 9 768 146 1.7109 0.1901 Height y

id.103 355 643 364 434 6 288 70 1.4583 0.03472 Height y

id.104 103 821 198 533 6 718 335 2.7994 0.46657 Height y

id.106 218 329 73 157 1.8 111 84 1.3622 0.15135 Height y

id.107 224 383 308 418 3 159 110 2.0754 0.23061 Height y

id.112 366 435 240 318 3 69 78 3.3913 0.08075 Height y

id.114 316 375 373 401 3 59 28 1.4237 0.05932 Height y

id.116 180 317 146 231 3 137 85 1.8613 0.10341 Height y

id.118 455 590 147 203 2 135 56 0.8296 0.02514 Signal y

id.120 472 845 644 845 2 373 201 1.0777 0.03266 Signal y

Appendix

74

id.122 218 323 34 69 3 105 35 1 0.11111 Signal y

id.123 447 474 329 420 3 27 91 10.111 0.84259 Height y

id.129 648 868 478 509 3 220 31 0.4227 0.07045 Height y

id.133 1712 3368 864 1416 3 1656 552 1 0.16667 Height y

id.134 1796 3432 976 1476 3 1636 500 0.9168 0.15281 Height y

id.135 2276 3340 3380 3912 3 1064 532 1.5 0.16667 Height y

id.136 1948 3764 1900 2420 3 1816 520 0.8590 0.07809 Height y

id.137 1039 2969 1859 2439 3 1930 580 0.9015 0.15026 Height y

id.138 1024 2388 1708 2140 3 1364 432 0.9501 0.15836 Height y

id.139 1346 2168 1102 1326 3 822 224 0.8175 0.09084 Height y

id.140 1225 2213 3139 3459 3 988 320 0.9716 0.10796 Height y

id.141 2068 2420 1952 2168 3 352 216 1.8409 0.06136 Height y

id.142 481 2230 3158 4210 3 1749 1052 1.8044 0.2005 Height y

id.144 1352 2208 36 552 3 856 516 1.8084 0.20093 Height y

id.145 2088 2844 2780 3228 3 756 448 1.7778 0.2963 Height y

id.146 1396 2452 1868 2452 3 1056 584 1.6590 0.27652 Height y

id.147 703 2338 278 1252 3 1635 974 1.7871 0.19857 Height y

id.148 1870 2426 2528 2819 3 556 291 1.5701 0.13085 Height y

id.149 1664 2312 2038 2234 3 648 196 0.9074 0.10082 Height y

id.150 1956 2402 730 1308 3 446 578 3.8878 0.32399 Height y

id.151 2069 2615 388 1117 3 546 729 4.0054 0.13352 Height y

id.152 4052 5744 724 1284 3.5 1692 560 1.1583 0.05516 Height y

id.153 1692 3488 4572 5116 3.5 1796 544 1.0601 0.11779 Height y

id.154 1621 2684 1279 1537 3 1063 258 0.7281 0.04854 Height y

id.155 2552 3117 1903 2069 3 565 166 0.8814 0.05876 Height y

id.158 1988 2488 1508 1764 3 500 256 1.536 0.1536 Height y

id.162 3460 4604 632 1288 3 1144 656 1.7202 0.14336 Height y

id.163 1469 4389 2179 3449 3 2920 1270 1.3047 0.21747 Height y

id.164 4312 5780 3224 3904 3 1468 680 1.3896 0.0386 Height y

id.165 3960 5344 2972 3404 3 1384 432 0.9364 0.06243 Height y

id.166 4464 5572 1596 1840 3 1108 244 0.6606 0.02753 Height y

id.167 2892 3888 8 292 3 996 284 0.8554 0.07129 Height y

id.168 1688 2276 1760 2080 3 588 320 1.632653 0.18141 Height y

id.169 1273 2178 2269 2798 3 905 529 1.753591 0.29227 Height y

id.170 1498 2294 2164 2358 3 796 194 0.731156 0.12186 Height y

id.172 1944 3808 1112 1633 3 1864 521 0.838519 0.07623 Height y

id.173 2244 3868 460 886 3 1624 426 0.786946 0.06558 Height y

id.174 1448 2476 1676 1928 3 1028 252 0.735409 0.16342 Height y

id.175 599 2481 3123 3450 9 1882 327 1.563762 0.17375 Height y

id.176 644 2603 2376 2739 9 1959 363 1.667688 0.1853 Height y

id.177 564 2509 2670 3031 9 1945 361 1.670437 0.1856 Height y

Appendix

75

id.184 1039 1363 165 624 3 324 459 4.25 0.47222 Height y

id.190 2506 2894 146 710 3 388 564 4.360825 0.12113 Height y

id.191 2207 3099 60 933 3 892 873 2.936099 0.16312 Height y

id.192 2768 3111 2759 2933 3 343 174 1.521866 0.10146 Sidewalk y

id.193 1112 1716 1616 1884 3 604 268 1.331126 0.1479 Sidewalk x

id.194 165 972 585 987 3 807 402 1.494424 0.16605 Sidewalk x

id.195 1108 1525 1417 2048 3 417 631 4.539568 0.15132 Door y

id.196 747 1711 837 1603 6 964 766 4.767635 0.52974 Height y

id.201 0 0 3 0.33333

id.204 1435 2300 525 1141 4 865 616 2.848555 0.63301 Car x

id.205 1108 1880 76 336 3 772 260 1.010363 0.11226 Height y

id.206 942 1274 584 706 3.5 332 122 1.286145 0.1429 Height y

id.209 0 0 0.5 0.04167

id.211 1117 1376 828 1016 3 259 188 2.177606 0.24196 Door y

id.212 1278 1708 1002 1260 2.1 430 258 1.26 0.21 Door y

id.214 363 1305 2279 3584 2 942 1305 2.770701 0.06597 Car x

id.220 408 696 428 1048 1.8 288 620 3.875 0.21528 Car x

id.221 452 788 968 1713 1.8 336 745 3.991071 0.12094 Car x

id.224 759 846 1459 1765 0.32 87 306 1.125517 0.18759 License plate x

id.226 2056 2708 280 912 4 652 632 3.877301 0.12924 Car x

id.227 1156 2496 3448 3756 4 1340 308 0.919403 0.10216 Car x

id.228 1308 1892 2284 2728 1.8 584 444 1.368493 0.22808 Car x

id.232 516 1414 1315 1411 3 898 96 0.320713 0.02673 Height x

id.234 476 1557 694 1014 3 1081 320 0.888067 0.02691 Height y

id.235 332 1221 1226 1509 3 889 283 0.955006 0.03979 Height y

id.236 516 1414 1315 1411 3 898 96 0.320713 0.02673 Height y

id.238 862 1084 650 921 3 222 271 3.662162 0.61036 Height y

id.239 3308 3442 3190 3338 1.8 134 148 1.98806 0.16567 Car x

id.240 565 672 766 864 4 107 98 3.663551 0.61059 Car x

id.241 221 1085 1293 2101 3 864 808 2.805556 0.31173 Height y

id.242 480 1240 1300 1534 2.1 760 234 0.646579 0.05388 Door y

id.243 794 1356 1200 1368 2.1 562 168 0.627758 0.10463 Door y

id.244 492 1094 1486 1692 2.1 602 206 0.718605 0.07984 Door y

id.248 910 1200 717 806 2.1 290 89 0.644483 0.10741 Door y

id.249 958 1218 1347 1437 2.1 260 90 0.726923 0.01773 Door y

id.250 648 900 174 438 1.2 252 264 1.257143 0.20952 Window y

id.251 111 462 930 1363 1.2 351 433 1.480342 0.16448 Window y

id.254 916 1188 1676 1980 1.2 272 304 1.341176 0.14902 Window y

id.256 510 1040 794 912 2.1 530 118 0.467547 0.05195 Door y

id.257 440 580 397 452 3 140 55 1.178571 0.09821 Height y

id.258 500 669 438 620 3 169 182 3.230769 0.35897 Height y

Appendix

76

id.259 357 447 96 261 1.8 90 165 3.3 0.07857 Car x

id.260 2140 2604 360 1632 1.2 464 1272 3.289655 0.54828 Window y

id.261 1992 3660 1356 2264 3 1668 908 1.633094 0.27218 Height y

id.262 2460 2884 2184 2656 2.1 424 472 2.337736 0.38962 Door y

id.263 1916 2924 2088 3068 2.1 1008 980 2.041667 0.2402 Door y

id.264 1208 2064 240 1472 3 856 1232 4.317757 0.71963 Height y

id.266 1800 2780 916 2352 2.1 980 1436 3.077143 0.51286 Door y

id.267 1252 1484 1808 2456 1.2 232 648 3.351724 0.37241 Door y

id.268 3128 3276 204 773 0.32 148 569 1.23027 0.20505 License plate x

id.269 1930 2639 1345 1612 3 709 267 1.12976 0.10271 Height y

id.270 1364 2200 3160 3796 3 836 636 2.282297 0.38038 Height y

id.271 1555 2180 2651 2777 3 625 126 0.6048 0.1008 Height y

id.272 587 736 363 438 3 149 75 1.510067 0.25168 Height y

id.273 513 682 492 549 3 169 57 1.011834 0.11243 Height y

id.274 620 699 322 385 2.1 79 63 1.674684 0.27911 Door y

id.275 600 710 774 883 2.1 110 109 2.080909 0.69364 Door y

id.276 658 808 1036 1210 2.1 150 174 2.436 0.406 Door y

id.277 412 736 226 330 3 324 104 0.962963 0.0535 Height y

id.278 562 720 845 940 2.1 158 95 1.262658 0.21044 Door y

id.279 656 851 654 871 2.1 195 217 2.336923 0.38949 Door y

id.285 1848 2712 1528 2113 2.1 864 585 1.421875 0.05688 Door y

id.286 1088 2540 2200 3620 3 1452 1420 2.933884 0.48898 Height y

id.288 2071 2485 955 1227 2.1 414 272 1.37971 0.22995 Door y

id.289 1712 2496 680 1928 2.1 784 1248 3.342857 0.55714 Door y

id.291 1944 2968 1624 2588 2.1 1024 964 1.976953 0.21966 Door y

id.292 1344 2044 3748 4488 2.1 700 740 2.22 0.37 Door y

id.294 2024 3152 1536 2780 2.1 1128 1244 2.315957 0.25733 Door y

id.295 2459 3412 1416 2003 2.1 953 587 1.293494 0.21558 Door y

id.296 1813 2597 1048 1474 3 784 426 1.630102 0.36224 Height y

id.297 1849 2357 51 288 3 508 237 1.399606 0.15551 Height y

id.298 2076 3168 1786 2568 2.1 1092 782 1.503846 0.25064 Door y

id.299 2248 2784 5092 5952 2.1 536 860 3.369403 0.28078 Door y

id.300 1594 2060 3255 3771 3 466 516 3.321888 0.55365 Height y

id.301 2020 2334 3450 3786 3 314 336 3.210191 0.53503 Height y

id.302 2740 3648 2352 2847 3 908 495 1.635463 0.10903 Height y

8.3 Data visualization script

#import modules in python

Appendix

77

import matplotlib.pyplot as plt

import numpy as np

#load dataset

matrix = np.loadtxt('Database_pictures_python_multi.csv',

usecols=(2,3,4,5,6,7,8),

 delimiter = ';', skiprows=1)

index_list = [1,2,3,4,5]

#define graphs properties

titles = ['Stories','Year','Magnitude', 'Distance from

epicenter', 'Height']

options = [0]

for i in range(len(index_list)):

 f, axs = plt.subplots(1,1,figsize=(10,5))

 plt.title(titles[i])

 plt.ylabel('Extension of debris')

 plt.xlabel(titles[i])

 good_rows_masonry = np.logical_and(matrix[:,

index_list[i]]>=0,

 matrix[:, 0]==0)

 good_rows_concrete = np.logical_and(matrix[:,

index_list[i]]>=0,

 matrix[:, 0]==1)

 plt.scatter(matrix[good_rows_masonry, index_list[i]],

matrix[good_rows_masonry, 6],

 marker = 'o', label='masonry')

 plt.scatter(matrix[good_rows_concrete, index_list[i]],

matrix[good_rows_concrete, 6],

 marker = 'v', label='concrete')

 plt.legend(loc=1)

Appendix

78

plt.show()

8.4 Training and test script

#import modules in python

from sklearn.model_selection import train_test_split

import numpy as np

from sklearn.neighbors import KNeighborsRegressor as KNR

from sklearn.preprocessing import MinMaxScaler

from sklearn import svm

from sklearn.tree import DecisionTreeRegressor

import sklearn

from sklearn.ensemble import RandomForestRegressor

from sklearn import linear_model

from sklearn.linear_model import ElasticNet

from sklearn.linear_model import Ridge

from sklearn.svm import SVR

import matplotlib.pyplot as plt

from sklearn import tree

from sklearn.neural_network import MLPRegressor

import seaborn as sns

from sklearn.manifold import TSNE

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import mean_absolute_error

#import database from folder

db = np.loadtxt('Database_pictures_python_multi.csv',

usecols=(2,3,4,5,6,7,8),

 delimiter = ';', skiprows=1)

index_list = [1,3,4,5]

X = db[np.sum(db[:,index_list],1) > 0,:][:,index_list]

Appendix

79

y = db[:,6]

y = y.reshape(-1,1)

#Preprocessing

scaler = StandardScaler()

X_scaled = scaler.fit_transform(X)

#X_scaled = preprocessing.scale(X)

#min_max_scaler = preprocessing.MinMaxScaler()

#X_scaled = min_max_scaler.fit_transform(X)

#X_embedded = TSNE(n_components=2).fit_transform(X_scaled)

X_train, X_test, y_train, y_test = train_test_split(X_scaled,

y, test_size=0.33

 ,

shuffle=True, random_state=0)

#run algorithms

clf = KNR(n_neighbors=5)

clf.fit(X_train, y_train)

y_predict = clf.predict(X_test)

MARD = mean_absolute_error(y_predict, y_test)

print("KNR")

print("Train set R^2: {:.2f}".format(clf.score(X_train,

y_train)))

print("Test set R^2: {:.2f}".format(clf.score(X_test,

y_test)))

print("Mean absolute error {:.2f}".format(MARD))

clf = linear_model.Lasso(alpha=0.01, max_iter=10)

clf.fit(X_train, y_train)

y_predict = clf.predict(X_test)

MARD = mean_absolute_error(y_predict, y_test)

print("Lasso")

Appendix

80

print("Train set R^2: {:.2f}".format(clf.score(X_train,

y_train)))

print("Test set R^2: {:.2f}".format(clf.score(X_test,

y_test)))

print("Mean absolute error {:.2f}".format(MARD))

clf = ElasticNet(alpha=0.01)

clf.fit(X_train,y_train)

y_predict = clf.predict(X_test)

MARD = mean_absolute_error(y_predict, y_test)

print("Elastic Net")

print("Train set R^2: {:.2f}".format(clf.score(X_train,

y_train)))

print("Test set R^2: {:.2f}".format(clf.score(X_test,

y_test)))

print("Mean absolute error {:.2f}".format(MARD))

clf = Ridge(alpha=0.1)

clf.fit(X_train,y_train)

y_predict = clf.predict(X_test)

MARD = mean_absolute_error(y_predict, y_test)

print("Ridge")

print("Train set R^2: {:.2f}".format(clf.score(X_train,

y_train)))

print("Test set R^2: {:.2f}".format(clf.score(X_test,

y_test)))

print("Mean absolute error {:.2f}".format(MARD))

clf = SVR(C=0.1, epsilon=0.001, kernel='rbf')

clf.fit(X_train,y_train)

y_predict = clf.predict(X_test)

MARD = mean_absolute_error(y_predict, y_test)

print("SVR")

Appendix

81

print("Train set R^2: {:.2f}".format(clf.score(X_train,

y_train)))

print("Test set R^2: {:.2f}".format(clf.score(X_test,

y_test)))

print("Mean absolute error {:.2f}".format(MARD))

clf = RandomForestRegressor(max_depth=10, n_estimators=20,

min_samples_split=40)

clf.fit(X_train, y_train)

y_predict = clf.predict(X_test)

MARD = mean_absolute_error(y_predict, y_test)

print("random forest")

print("Train set R^2: {:.2f}".format(clf.score(X_train,

y_train)))

print("Test set R^2: {:.2f}".format(clf.score(X_test,

y_test)))

print("Mean absolute error {:.2f}".format(MARD))

clf = tree.DecisionTreeRegressor(min_samples_split=25,

min_samples_leaf=10, presort=True)

clf = clf.fit(X_train, y_train)

y_predict = clf.predict(X_test)

MARD = mean_absolute_error(y_predict, y_test)

print("Tree")

print("Train set R^2: {:.2f}".format(clf.score(X_train,

y_train)))

print("Test set R^2: {:.2f}".format(clf.score(X_test,

y_test)))

print("Mean absolute error {:.2f}".format(MARD))

clf = MLPRegressor(alpha=0.1, batch_size=10,

hidden_layer_sizes=1000,

 learning_rate='constant',

learning_rate_init=0.001, solver='adam',

Appendix

82

 activation='relu', random_state=27)

clf = clf.fit(X_train, y_train)

y_predict = clf.predict(X_test)

MARD = mean_absolute_error(y_predict, y_test)

print("MLP Regressor")

print("Train set R^2: {:.2f}".format(clf.score(X_train,

y_train)))

print("Test set R^2: {:.2f}".format(clf.score(X_test,

y_test)))

print("Mean absolute error {:.2f}".format(MARD))

'''

#producing charts

X_embedded = TSNE(n_components=2,

random_state=0).fit_transform(X_scaled)

g = sns.scatterplot(X_embedded[:,0], X_embedded[:,1])

g.set(xticks=[])

g.set(yticks=[])

g.set_title('t-SNE data visualization')

plt.show()

#sns.scatterplot(X_embedded[:,0], X_embedded[:,1], hue=y[:,0])

8.5 Results visualization script

import numpy as np

import matplotlib.pyplot as plt

import matplotlib as mpl

mpl.style.use('default')

x = np.arange(3)

plt.bar(x, height= [0.29,0.27,0.26], color='b')

plt.xticks(x, ['5','4','3'])

plt.xlabel('Number of features')

Appendix

83

plt.ylabel('R^2')

plt.title('KNR-MARD')

plt.axis([-1, 3, -0.1, 0.6])

plt.grid(False)

#plt.axes().spines['right'].set_visible(False)

#plt.axes().spines['top'].set_visible(False)

plt.axes().spines['bottom'].set_position(('data', -0.1))

plt.axes().tick_params(axis='x', pad=5)

plt.axhline(y=0, color='k')

plt.axes().axhline(linewidth=0, color="k")

plt.tick_params(

 axis='x', # changes apply to the x-axis

 which='both', # both major and minor ticks are

affected

 bottom=False, # ticks along the bottom edge are off

 top=False, # ticks along the top edge are off

 labelbottom=True) # labels along the bottom edge are off

plt.show()

x = np.arange(3)

plt.bar(x, height= [0.33,0.31,0.31], color='b')

plt.xticks(x, ['5','4','3'])

plt.xlabel('Number of features')

plt.ylabel('R^2')

plt.title('Lasso-MARD')

plt.axis([-1, 3, -0.1, 0.6])

plt.grid(False)

#plt.axes().spines['right'].set_visible(False)

#plt.axes().spines['top'].set_visible(False)

plt.axes().spines['bottom'].set_position(('data', -0.1))

plt.axes().tick_params(axis='x', pad=5)

plt.axhline(y=0, color='k')

Appendix

84

plt.axes().axhline(linewidth=0, color="k")

plt.tick_params(

 axis='x', # changes apply to the x-axis

 which='both', # both major and minor ticks are

affected

 bottom=False, # ticks along the bottom edge are off

 top=False, # ticks along the top edge are off

 labelbottom=True) # labels along the bottom edge are off

plt.show()

x = np.arange(3)

plt.bar(x, height= [0.33,0.31,0.31], color='b')

plt.xticks(x, ['5','4','3'])

plt.xlabel('Number of features')

plt.ylabel('R^2')

plt.title('Elastic Net-MARD')

plt.axis([-1, 3, -0.1, 0.6])

plt.grid(False)

#plt.axes().spines['right'].set_visible(False)

#plt.axes().spines['top'].set_visible(False)

plt.axes().spines['bottom'].set_position(('data', -0.1))

plt.axes().tick_params(axis='x', pad=5)

plt.axhline(y=0, color='k')

plt.axes().axhline(linewidth=0, color="k")

plt.tick_params(

 axis='x', # changes apply to the x-axis

 which='both', # both major and minor ticks are

affected

 bottom=False, # ticks along the bottom edge are off

 top=False, # ticks along the top edge are off

 labelbottom=True) # labels along the bottom edge are off

Appendix

85

plt.show()

x = np.arange(3)

plt.bar(x, height= [0.33,0.31,0.31], color='b')

plt.xticks(x, ['5','4','3'])

plt.xlabel('Number of features')

plt.ylabel('R^2')

plt.title('Ridge-MARD')

plt.axis([-1, 3, -0.1, 0.6])

plt.grid(False)

#plt.axes().spines['right'].set_visible(False)

#plt.axes().spines['top'].set_visible(False)

plt.axes().spines['bottom'].set_position(('data', -0.1))

plt.axes().tick_params(axis='x', pad=5)

plt.axhline(y=0, color='k')

plt.axes().axhline(linewidth=0, color="k")

plt.tick_params(

 axis='x', # changes apply to the x-axis

 which='both', # both major and minor ticks are

affected

 bottom=False, # ticks along the bottom edge are off

 top=False, # ticks along the top edge are off

 labelbottom=True) # labels along the bottom edge are off

plt.show()

x = np.arange(3)

plt.bar(x, height= [0.27,0.26,0.26], color='b')

plt.xticks(x, ['5','4','3'])

plt.xlabel('Number of features')

plt.ylabel('R^2')

plt.title('SVR-MARD')

Appendix

86

plt.axis([-1, 3, -0.1, 0.6])

plt.grid(False)

#plt.axes().spines['right'].set_visible(False)

#plt.axes().spines['top'].set_visible(False)

plt.axes().spines['bottom'].set_position(('data', -0.1))

plt.axes().tick_params(axis='x', pad=5)

plt.axhline(y=0, color='k')

plt.axes().axhline(linewidth=0, color="k")

plt.tick_params(

 axis='x', # changes apply to the x-axis

 which='both', # both major and minor ticks are

affected

 bottom=False, # ticks along the bottom edge are off

 top=False, # ticks along the top edge are off

 labelbottom=True) # labels along the bottom edge are off

plt.show()

x = np.arange(3)

plt.bar(x, height= [0.23,0.22,0.22], color='b')

plt.xticks(x, ['5','4','3'])

plt.xlabel('Number of features')

plt.ylabel('R^2')

plt.title('Random forest-MARD')

plt.axis([-1, 3, -0.1, 0.6])

plt.grid(False)

#plt.axes().spines['right'].set_visible(False)

#plt.axes().spines['top'].set_visible(False)

plt.axes().spines['bottom'].set_position(('data', -0.1))

plt.axes().tick_params(axis='x', pad=5)

plt.axhline(y=0, color='k')

plt.axes().axhline(linewidth=0, color="k")

plt.tick_params(

Appendix

87

 axis='x', # changes apply to the x-axis

 which='both', # both major and minor ticks are

affected

 bottom=False, # ticks along the bottom edge are off

 top=False, # ticks along the top edge are off

 labelbottom=True) # labels along the bottom edge are off

plt.show()

x = np.arange(3)

plt.bar(x, height= [0.23,0.28,0.27], color='b')

plt.xticks(x, ['5','4','3'])

plt.xlabel('Number of features')

plt.ylabel('R^2')

plt.title('Decision tree-MARD')

plt.axis([-1, 3, -0.1, 0.6])

plt.grid(False)

#plt.axes().spines['right'].set_visible(False)

#plt.axes().spines['top'].set_visible(False)

plt.axes().spines['bottom'].set_position(('data', -0.1))

plt.axes().tick_params(axis='x', pad=5)

plt.axhline(y=0, color='k')

plt.axes().axhline(linewidth=0, color="k")

plt.tick_params(

 axis='x', # changes apply to the x-axis

 which='both', # both major and minor ticks are

affected

 bottom=False, # ticks along the bottom edge are off

 top=False, # ticks along the top edge are off

 labelbottom=True) # labels along the bottom edge are off

plt.show()

Appendix

88

x = np.arange(3)

plt.bar(x, height= [0.24,0.24,0.24], color='b')

plt.xticks(x, ['5','4','3'])

plt.xlabel('Number of features')

plt.ylabel('R^2')

plt.title('MLP regressor-MARD')

plt.axis([-1, 3, -0.1, 0.6])

plt.grid(False)

#plt.axes().spines['right'].set_visible(False)

#plt.axes().spines['top'].set_visible(False)

plt.axes().spines['bottom'].set_position(('data', -0.1))

plt.axes().tick_params(axis='x', pad=5)

plt.axhline(y=0, color='k')

plt.axes().axhline(linewidth=0, color="k")

plt.tick_params(

 axis='x', # changes apply to the x-axis

 which='both', # both major and minor ticks are

affected

 bottom=False, # ticks along the bottom edge are off

 top=False, # ticks along the top edge are off

 labelbottom=True) # labels along the bottom edge are off

plt.show()

8.6 PHI Challenge labeling algorithm

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

import argparse

import sys

Appendix

89

import tensorflow as tf

parser = argparse.ArgumentParser()

parser.add_argument(

 '--image', required=True, type=str, help='Absolute path to

image file.')

parser.add_argument(

 '--num_top_predictions',

 type=int,

 default=5,

 help='Display this many predictions.')

parser.add_argument(

 '--graph',

 required=True,

 type=str,

 help='Absolute path to graph file (.pb)')

parser.add_argument(

 '--labels',

 required=True,

 type=str,

 help='Absolute path to labels file (.txt)')

parser.add_argument(

 '--output_layer',

 type=str,

 default='final_result:0',

 help='Name of the result operation')

parser.add_argument(

 '--input_layer',

 type=str,

 default='DecodeJpeg/contents:0',

 help='Name of the input operation')

def load_image(filename):

Appendix

90

 """Read in the image_data to be classified."""

 return tf.gfile.FastGFile(filename, 'rb').read()

def load_labels(filename):

 """Read in labels, one label per line."""

 return [line.rstrip() for line in tf.gfile.GFile(filename)]

def load_graph(filename):

 """Unpersists graph from file as default graph."""

 with tf.gfile.FastGFile(filename, 'rb') as f:

 graph_def = tf.GraphDef()

 graph_def.ParseFromString(f.read())

 tf.import_graph_def(graph_def, name='')

def run_graph(image_data, labels, input_layer_name,

output_layer_name,

 num_top_predictions):

 with tf.Session() as sess:

 # Feed the image_data as input to the graph.

 # predictions will contain a two-dimensional array,

where one

 # dimension represents the input image count, and the

other has

 # predictions per class

 softmax_tensor =

sess.graph.get_tensor_by_name(output_layer_name)

 predictions, = sess.run(softmax_tensor, {input_layer_name:

image_data})

 # Sort to show labels in order of confidence

 top_k = predictions.argsort()[-num_top_predictions:][::-1]

Appendix

91

 for node_id in top_k:

 human_string = labels[node_id]

 score = predictions[node_id]

 print('%s (score = %.5f)' % (human_string, score))

 return human_string, score

def main(argv):

 """Runs inference on an image."""

 if argv[1:]:

 raise ValueError('Unused Command Line Args: %s' %

argv[1:])

 if not tf.gfile.Exists(FLAGS.image):

 tf.logging.fatal('image file does not exist %s',

FLAGS.image)

 if not tf.gfile.Exists(FLAGS.labels):

 tf.logging.fatal('labels file does not exist %s',

FLAGS.labels)

 if not tf.gfile.Exists(FLAGS.graph):

 tf.logging.fatal('graph file does not exist %s',

FLAGS.graph)

 # load image

 image_data = load_image(FLAGS.image)

 # load labels

 labels = load_labels(FLAGS.labels)

 # load graph, which is stored in the default session

 load_graph(FLAGS.graph)

Appendix

92

 run_graph(image_data, labels, FLAGS.input_layer,

FLAGS.output_layer,

 FLAGS.num_top_predictions)

if __name__ == '__main__':

 FLAGS, unparsed = parser.parse_known_args()

 tf.app.run(main=main, argv=sys.argv[:1]+unparsed)

93

REFERENCES

[1] Andreas C. Muller, Sarah Guido “Introduction to Machine Learning with

Python”. O’Reilly Media, Inc., Sebastopol, 22 September 2016.

[2] Ian Goodfellow, Yoshua Bengio, Aaron Courville. “Deep Learning”. The MIT

Press, 2016.

[3] James Bialas. “Object-based classification of earthquake damage from high-

resolution optical imagery using machine learning”. Michigan University, 2015.

[4] Chul Min Yeum, Shirley J. Dyke, Julio Ramirez. “Visual data classification in

post-event building reconnaisance”. Elsevier, 22 October 2017.

[5] T. Kim, O. Kwon, J. Song “Assestment of seismic responses of nonlinear

structural system using deep-learning”, 11NCEE Conference, Los Angeles, 2018.

[6] M. Kovacevic, Z. Stojadinovic, D. Marinkovic, B. Stojadinovic. “Sampling and

machine learning methods for a rapid earthquake loss assessment system”. 11NCEE

Conference, Los Angeles, 2018.

[7] C. M. Yeum, S. J. Dyke, B. Benes, T. Hacker et al. “Automating visual data

processing to support post-earthquake reconnaisance”. 11NCEE Conference, Los

Angeles, 2018.

 [8] M. Matsuoka, Y. Ishii, N. Maki, K. Horie, S. Tanaka et al. “Damaged building

recognition using deep learning with photos taken after the Kobe earthquake”.

11NCEE Conference, Los Angeles, 2018.

[9] Cimellaro G.P. (2016) “Urban Resilience for Emergency Response and

Recovery”, Springer International Publishing, Switzerland, 2016.

[10] Bishop C. “Pattern Recognition and Machine Learning”, Springer, 2006.

[11] Mitchell T. M., “Machine Learning”, McGraw Hill, 1997.

References

94

[12] Bai JW, Hueste MBD, Gardoni P. “Probabilistic Assessment of Structural

Damage due to Earthquakes for Buildings in Mid-America”. Journal of Structural

Engineering, 2009.

[13] “Scikit-learn user guide”, Scikit-learn developers, 2018.

[14] Y.Gao, K.Mosalam “Deep Transfer Learning for Image-Based Structural

Damage Recognition”. Computer-Aided Civil and Infrastructure Engineering, April

2018.

[15] S.J.Pan, Q.Yang “A Survey on Transfer Learning” IEEE transactions on

knowledge and data engineering, 2010.

[16] Chollet, F. (2017). “Xception: Deep learning with depthwise separable

convolutions.” arXiv preprint, 1610-02357.

