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The thesis consists in the creation of a wind power production model of mesoscale
areas, like states. Inputs of the model are the production history of a geographical
area, weather data, total installed capacity and possibly power capacity distribution.
In case this last datum is not available, it is still possible to indirectly estimate it and
train the model through an inverse mathematical problem. Due to the large amount
of calculations, different optimization schemes are compared, in order to achieve a
good solution in the most efficient way.
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Chapter 1

Introduction

1.1 Historical background

Power production is going through a genuine revolution, approximately started
in 1970. This revolution consists in a lot higher percentage of Renewable Energy
Sources (RES) production, such as wind, solar and hydro power. Causes of this
movement can be identified in the following factors:

• Two "oil shocks" demonstrated that concentration of the market on a limited
spectrum of energy sources makes it fragile [1]. The first one, in 1973, was
provoked by the rise of oil prices set by OPEC. The second one rose through
the war between Iraq and Iran, both of which aimed at destroying each others
refineries. A natural consequence of these events is the decision from the most
energy consuming countries to start reducing energy imports, in order to be
less influenced by political occurrences [2];

• Scientific community agrees on the impact of greenhouse emissions on global
warming. Most of these emissions originate in the energy sector. It has there-
fore become vital to start and speed up a decarbonization procedure of the
power industry [3].

• RES are interesting from an economical point of view. In fact, their Levelized
Cost Of Electricity (LCOE) is lower with respect to fossil based power produc-
tion [4].

• Countries like Germany, Sweden and France have started a reduction of the
nuclear energy share. One technical reason is that nuclear plants present a lim-
ited ramping potential, which makes them poorly compatible with highly vari-
able energy sources like RES. Furthermore, Fukushima’s accident increased
social adversity against nuclear energy.

1.2 Definition of the problem

The general problem the thesis proposes to solve consists in a sufficiently detailed
description of Wind Power Production (WPP) of a geographical area. In particular,
a physical vs. statistical model is built in Python 3, so that results can be easily
interpreted and criticized. The most important aspect the model should be able
to take into account is the typical variable pattern of wind, directly connected to
weather. More details on the inputs and outputs of the model are reported further
on.
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1.3 Motivation and objectives

Gaining insights into WPP of a geographical area is extremely important today. In
fact, increasing decarbonization needs of the most technological advanced countries
lead to a growing percentage of RES. However, Solar and WPP are both character-
ized by a strong weather dependent behaviour and this makes power production
highly variable. Thus, in the particular case of Fortum, a model for wind power sys-
tems is necessary in order to evaluate their sensitivity to weather volatility. The fun-
damental idea at the base of this modelling is that, once the model of a wind power
system is calibrated, it would be possible to run it with historical weather data and
obtain a full spectre of scenarios. Since variety of scenarios is directly linked to the
amount of available historical data, weather reanalysis data constitutes a perfect re-
source for the purpose, due to its abundance and high time and space resolution.
More details about reanalysis and its datasets are given in the following parts of the
document.

Based on the explanations just reported, the thesis focuses on the following as-
pects of this complex problem:

• Building a physical statistical model for WPP, in case of known wind capacity
location;

• Introduction of a mathematical method for the estimation of wind capacity
location in case this piece of information is not available;

1.4 Overview of the report

Chapter 2 starts with a deeper discussion of the WPP modelling from a mathematical
and physical point of view. Power Curves (PCs) are modelled through two possible
functions and their features are deeply analysed. After that, it is stressed how the
model has been implemented and what computational schemes have been tested
and adopted in models.
In chapter 3 validation of all proposed models and schemes is described and per-
formed. Its results are consequently analyzed and compared.
Chapter 4 finally summarizes observation developed through the whole work and
gives a conclusion about it. Possibilities for improvements in the models are also
examined.
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Chapter 2

Mathematical formulation and
optimization algorithms

The following chapter describes methodology adopted for wind power modelling
and discusses how to computationally solve the resulting optimization problem,
both in cases of availability or absence of capacity data 1.

2.1 General physical model

The model built for the description of WPP aims at the minimum amount of input
data and a sufficient precision of results. The reason of this choice is due to public
availability of information. In fact, in most of the cases, it is not easily possible to
have details about installed wind farms in a geographical area 2. A natural conse-
quence of this lack is the formulation of a simplified model, which associates one
PC to each geographical area with available Production Data (PD). Fortunately, PD
can be found in transparency platforms like ENTSO-E TP, whose role is collecting
and sharing generation, transportation and consumption data and information for
the pan-European market [5]. However, to have a sufficient level of precision, it is
still necessary to know (or to estimate) where wind capacity is installed. In this case,
unfortunately, data is not always available. Table number 2.1 resumes all the inputs
and outputs of the model.

It is important to stress that the model works with normalized PD, as shown
in the table. In fact, the advantage of using normalized data is principally linked
to computational schemes adopted in the solution of the mathematical problems,
which will be described in detail afterwards.

2.2 ERA-5: reanalysis weather data for wind observations

ERA-5 is a reanalysis atmospheric dataset produced by ECWMF. Reanalysis gives
numerical descriptions of weather phenomena and consists in an immutable data
assimilation scheme, able to process a huge amount of data through consistent me-
teorological models. Data is acquired from a wide observational network, like ra-
diosondes, satellites, buoys, aircrafts and ships. Estimates are extended to all the
areas of the earth, with relatively small time resolutions. There are many powerful
reanalysis datasets commonly used today, like MERRA-2 (created by NASA), but
ERA-5 has been chosen for four principal reasons:

1Capacity data consists in the location and value of wind capacity installed in a prescribed region.
2Some providers sell this data. For example, at the moment, a detailed database of European wind

farms can be bought for 600 euros from the website thewindpower.com
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Inputs Outputs

Normalized hourly production data Power curve

Reanalysis weather data (Normalized capacity geodata)

(Normalized capacity geodata)

TABLE 2.1: List of inputs and outputs in wind power production
modelling. Capacity data is reported between parenthesis because
they can be an input or an output of the model according to the case.

• It is easily accessible and processable via Python and its packages 3;

• ERA-5 has the highest time and space resolution among the most used reanal-
ysis datasets: spatial grid has a resolution of 31 kilometers and time resolution
of 1 hour [8]. An example of a spatial grid is reported in figure 2.1;

• Recent studies reported the high quality of the dataset in wind modelling in
comparison with other important reanalysis datasets [9];

• It is possible to get wind speed observations at 100 meters of altitude. All
wind speed measurements processed by the statistical model are referred to
this elevation, since it corresponds to the average tower height of modern wind
turbines. Furthermore, since wind speeds follow a power law, differences be-
tween wind speeds at 100 meters and 90 meters of altitude are a lot less signif-
icant than differences between wind speeds at 30 meters and 40 meters. The
reason why a power law effectively describes wind speed distributions is that
local orography has a relevant impact only on limited altitudes. [10]

2.3 The wind power curve

The wind PC is a function that links wind speed and power output of a wind turbine.
An example of PC is reported in figure 2.3a, while figure 2.3b shows where the PC
is extrapolated from. As it is possible to notice from the figure, the characteristic
parameters describing the curve are three:

• Cut-in speed: this parameter describes the minimum wind speed necessary
to start producing mechanical (electrical) power. If this value is not reached,
there is not enough torque to make turbine blades start rotating;

• Cut-out speed: this value corresponds to the maximum wind speed sustain-
able by a wind turbine before mechanical stress becomes too high. If wind
speed is larger than cut-out speed, blades are deviated to reduce wind lift;

• Rated output speed: when wind speed is larger than or equal to this parame-
ter, electric generator provides maximum power.

3Reanalysis data is downloaded through ECMWF Web API [6], while the package Iris is used for
processing reanalysis data [7]
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FIGURE 2.1: ERA-5 nodes in Italy.

Another interesting feature to investigate is how the slope of the PC is affected.
Ideally, the ascending part of the curve would be proportional to the cube of wind
speed passing through the turbine. More precisely:

Pid =
1
2

ρv3S (2.1)

where S corresponds to the area covered by turbine’s blades. In reality, mechan-
ical power delivered by wind turbines is also affected by the pitch angle of blades β
and the rotating speed ωrt of the wind rotor:

Prt = CpPid = f (v, β, ωrt) (2.2)

A function describing Cp can be found in literature [11]:

Cp = Cp(λ, β) = c1(c2/λi − c3β− c4)e−c5/λi + c6λ (2.3)

1/λi = 1/(λ + 0.08β)− 0.035/(β3 + 1) (2.4)

λ =
ωrtR

v
(2.5)

where λ is defined as the tip speed ratio and R corresponds to the length of a
blade. Parameters c1, ..., c6 are a function of the wind turbine. Plot in figure 2.4
shows the behaviour of Cp for different pitch angles. Generally, in order to keep
Cp to its maximum value for a fixed value of β, λ is kept constant by continuously
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adjusting the rotor speed ωrt according to wind speed v. Thus, Prt approximately
conserves the cubic trend of Pid.

Literature shows that this curve can also be adopted to model WPP of a wind
farm [12], but in this case it is used to describe every single node of a geographical
area. In other words, it is assumed that a geographical area is like a huge wind farm,
composed of wind turbines provided with the same normalized PC.

Two models of PC are proposed:

• Sigmoid function: a first approximation of a PC can be obtained through a
sigmoid function. A sigmoid has the following form:

S(x) =
1

1 + e−x (2.6)

In order to give it a physical sense, the function assumes this particular shape:

PC(v) =
η

(1 + e(c1−v)/p1)(1 + e(v−cout)/p2)
(2.7)

Where parameters c1, cout, p1, p2 correspond to shape factors, η to the effi-
ciency of the curve (asymptotic value) and v to wind speed. A graphical expla-
nation of the role of each parameter is reported in figure 2.5. However, wind
speed data show that there is no need for a pole in correspondence of cout. In
fact, histograms reported in figures 2.2 show that high wind speeds are rare.
This happens because maximum resolution of reanalysis data is in the order
of mesoscales, where big deviations from average wind speeds are still very
unlikely. Thus, from this moment, the function will be simplified as it follows:

PC(v) =
η

(1 + e(c−v)/p)
(2.8)

Where c1 is substituted with c and p1 is substituted with p.

• Piecewise function: a more refined approximation of a power curve can be
obtained from the proposed piecewise function.

η

(1+e(c−v)/p)
v > c

η( v−c
4p + 0.5) z ≤ v ≤ c

η(z−c)
4p+0.5 e

v−z
z−c+2p 0 ≤ v < z

0 elsewhere

(2.9)

Where c and p correspond to the previous c1, p1. The first piece of the function
is identical to a Sigmoid, the second one is linear and the third one follows an
exponential trend. A clearer vision of how each parameter shapes the curve
and of its division into different pieces is in figure 2.6, while a comparison of
this PC with the previous one is reported in figure 2.7. It is obvious that, thanks
to parameter z, it is possible to better model how the curve converges to zero
for low wind speeds. Furthermore, it is possible to verify that the derivative
of this function is continuous and so the function itself. The increase of com-
plexity of the curve by one parameter is justified by the intention to increase
precision in the results.
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FIGURE 2.3: Original measures and derived power curve.
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2.4 Case of known capacity location

If the geographical distribution of capacity is known, the only unknown is the PC.
If the Sigmoid is used (eq. 2.7), three optimal parameters need to be found. If the
piecewise PC is selected (eq. 2.9), four of them must be optimized.

The fitting procedure of the PC can be described as a non linear optimization
problem. In fact, the objective is finding the combination of the PC parameters that
minimize the distance between the calculated profile and the real one:

min
PC
{||A · x− b||2}

A = |PC(v1), ..., PC(vn)|, i ∈ {1, ..., n}
(2.10)

where x corresponds to the vector of the wind capacities, vi correspond to wind
speed history of every single node and b is the total area production data. The se-
lected distance (objective function) in this problem is the L2 norm of the difference
of the two profiles. Algorithms chosen for this optimization are reported in table
number 2.2.

Both optimizations have bounded solution. In fact, all the parameters must be
positive. Furthermore, in order to speed up the convergence of the solution, proper
upper bounds are set for each investigated quantity. However, Piecewise PC also
needs two constraints:

• z must be smaller than c;

• z-c+2p must be larger than zero in order to keep its exponent negative.
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trend.

Sigmoid PC Piecewise PC

Method L-BFGS-B [15] SLSQP [16]

Typology Gradient based Gradient based

Feature Bounded optimization Bounded & Constrained optimization

TABLE 2.2: Synthetic description of WPP models and featured com-
putational models.
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FIGURE 2.7: Comparison between Sigmoid power curve and piece-
wise power curve. The increase in the complexity of the function per-

mits to model the power curve more freely.

L-BFGS-B is a proper scheme for the Sigmoid case because it is specialized in
bounded, unconstrained problems. Instead, SLSQP is suitable for constrained opti-
mizations [17], thus it is used for the second case.

The limit of these two methods is that their result may be heavily influenced by
the initial guess the method needs. Thus, in order to have maximum chances of
finding the global minimum, both methods are integrated into the Basin-Hopping
(BH) algorithm, which combines a global stepping algorithm with local optimiza-
tion. Further details of the algorithm can be found in the relative appendix A.

2.5 Case of unknown capacity location: the mathematical in-
verse problem of the capacity estimation

Thanks to transparency platforms (like ENTSO-E TP), accessing to production and
installed capacity data has become easier. However, in many countries, it is still
not possible to know where wind parks are located with sufficient precision. Thus,
estimating the position and the entity of installed wind capacity becomes crucial to
obtain sufficiently accurate results. In order to explain the nature of this problem, it
is convenient to start from the following simplified reasoning:

Suppose to have a finite number of WPP time series C = {p1(t), p2(t), ..., pn(t)}
and a particular WPP profile b(t). Which of their infinite possible linear combina-
tions gives a resulting profile that better fits b(t)? In a practical way, the following
problem must be solved:

Each grid point of a prescribed geographical area has its own normalized WPP time series,
derived from the application of a PC to its wind speed time series. How should the grid

points be weighted to recover area production data b?

In a more formal way, we are trying to minimize the error between two profiles
by using proper weights. If the error is defined as the L2 norm of the difference
of these two profiles, the problem will consist of the Non Negative Least Squares
(NNLS) problem, a particular case of the OLS problem:



12 Chapter 2. Mathematical formulation and optimization algorithms

min
x∈Rn
{||A · x− b||2}

A = |p1, p2, ..., pn|
s.t.

xi ≥ 0 ∀ i ∈ {1, ..., n}

(2.11)

Furthermore, an important observation should be done about parameters that
should be optimized. Since the efficiency of a PC is a linear therm:

PC(v) = ηPC(v, η = 1) = ηPCM(v) (2.12)

If equation 2.12 is substituted in definition of A in equation 2.11:

A = |p1, p2, ..., pn| = |PC(v1), ..., PC(vn)| = η|PCM(v1), ..., PCM(v3)| (2.13)

Since η is unknown, it is possible to define a new variable and substitute it to the
unknown capacity vector x in problem 2.11:

x′ = ηx (2.14)

In this way, the number of variables that should be optimized reduced by one.
Now that a general idea has been outlined, it will be easier to understand the

introduction of more complexity into this inverse mathematical problem: since the
realized production b is subject to estimation and measurements errors and A de-
rives from the application of a simplified model of reality, it is necessary to regularize
the solution. Otherwise, the resulting model would overfit the profile b, with a con-
sequent loss of predictivity of the model. Plot in figure 2.8 describes this concept
more effectively: if the candidate model overfits training data, testing the model on
some new data will give worse results than an apparently less precise model.

2.5.1 Regularization procedure

The previously described regularization problem can be solved by the introduction
of a regularization procedure. The selected one for this specific problem is LASSO.
The reason why it has been preferred to other regularization techniques will become
clear soon.

LASSO is formally introduced as the solution of the following optimization prob-
lem:

min
x∈Rn
{||b− A · x||22 + λ||x||1} (2.15)

Where λ is a non negative real number. Observing the equation gives the reader
lots of interesting observations about the method:

• Since the optimization consists in a minimization, increasing λ will make en-
tries of x smaller, provoking an increase in the difference between A · x and
b;

• The increase of λ increases the sparsity of the solution, a desired phenomenon
due to the typically sparse distribution of wind capacity in a country (valida-
tion of results shows this pattern);
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FIGURE 2.8: General behavior of an overfitting model. A polyno-
mial curve explains the measured points perfectly, but it would not
be effective in case of an extrapolation. In this case, a linear function
would better describe trend of measures, even if the resulting error is

larger. [18]

• In case of perfect observations, which means A and b without noise or uncer-
tainty, the solution would not need regularization:

lim
λ→0

min
x∈Rn
{||b− A · x||22 + λ||x||1} = min

x∈Rn
{||b− A · x||22} (2.16)

which corresponds to the NNLS problem again;

• It is crucial to investigate which value of λ guarantees the best regularization.
In fact, picking a too small value will lead to an overfitting solution, while
picking a too large value will generate a model that is not even able to explain
the fitted data.

2.5.2 Choice of the regularization parameter: Cross Validation

Cross validation is a simple, intuitive and established method for the calibration of λ.
Before continuing with the explanation, it is necessary to introduce some definitions.

We define (xi, yi), i = 1, ..., n, the training data, which consists in the observation
of the phenomenon that the model should describe. Once an estimator f is formu-
lated based on the training data, it is possible to calculate TRaining Error (TRE):

TRE( f ) =
1
n

n

∑
i=1

(yi − f (xi))
2 (2.17)

Given a set of test data (x′i , y′i), i = 1, ..., m, it is possible to define TEst Error (TEE)
in a analogous way:

TEE( f ) =
1
n

n

∑
i=1

(y′i − f (x′i))
2 (2.18)

In order to create test data, the model is trained on a subset of the total avail-
able data, called fold. The test is performed on the excluded part. It follows that the
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distinction between training data and test data is labile. For example, if the whole
sampled data is divided into K folds, it is possible to train and test the model K
times. In fact, it will be sufficient to leave one of the folds out, training the model on
the remaining ones and then testing the model on the excluded one. This procedure
is called K-fold validation and it is widely used in Machine Learning. However, in
this case, the Shuffle-Split cross validation is executed. Indeed, it has the particu-
lar feature of assembling the K sets by randomly selecting samples from the total
data. The advantage of this choice is that the model will be trained without losing
the influence of the seasonal trends in wind power production. The procedure is
schematically explained in figure 2.9 and resumed below:

• The total data is divided into K subsets, randomly composed and roughly of
the same size. A set of possible values for λ is selected;

• ∀ λ ∈ [λmin, λmax]:

– For every subset, the model is trained on all but one subsets;

– The TEE of the excluded subset is calculated;

– The average TEE is calculated from all the subsets.

A typical behavior of λ is reported in figure 2.10. It is obvious that the optimal λ
is the one that minimizes prediction errors, i.e. TEE.

2.6 Algorithms in case of unknown capacity location

As already explained, in case of unknown wind capacity location, it becomes neces-
sary to estimate it. However, in this case, gradient based methods are not suitable for
the problem under exam. In fact, the amount of variables involved into the problem
is the following:

• One variable for each parameter of the modelled PC, excluding the efficiency
η;

• One variable for each grid point of a geographical area 4.

In order to apply a gradient based optimization procedure, the gradient of a
function should be calculated at each iteration. Computationally, this means that
function evaluations in one iteration of the local gradient based optimization would
be equal to the number of variables in the problem. If this procedure is integrated
into a global optimization procedure like the BH algorithm, it is possible to imagine
how slow the optimization would be. As a consequence, a different approach must
be used. In the following sections, two approaches are proposed.

4As an example, the number of nodes in Stockholm is over 300.
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FIGURE 2.9: Scheme of the Shuffle-Split cross validation, for K=3 and
data composed by ten items. Former data is splitted into K subsets.
K-1 subsets are used to train the model, while the remaining one is

used for its validation.
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FIGURE 2.10: Typical behavior of the average TEE as a function of
regularization parameter. It is possible to maximize the predictivity
of the model by selecting the value of λ that minimizes the average

TEE.

2.6.1 Social approach: particle swarm optimization

The mathematical nature of the allocation problem has been already described. In
particular, it is possible to underline the following points:

• For an assigned combination of matrix A and vector b, there are uniques x
and λ that solve the minimization problem reported in equation 2.15. In other
words, there exist a unique capacity allocation (x) that solves the minimization
problem for each collection of wind profiles A;

• A is the output of the application of a PC to wind speeds of each grid point
of a geographical domain at each hour of a prescribed period. In other words,
matrix A is a function of the PC;

• The PC’s shape is unknown.

As a conclusion, it is possible to state that the only concrete variables in this
optimization problem are the parameters of the PC, since all the remaining quantities
are an implicit function of them.

Starting from these observations, a Particle Swarm Optimization (PSO) scheme
is implemented into a bigger optimization procedure:

• At each iteration, a swarm of PC parameters is found starting from the previ-
ous one through the PSO algorithm;

• For each set of PC parameters, the spatial distribution that optimizes the dis-
tance between the simulated power profile and the real one is found;

• A new swarm of PC parameters is obtained, until convergence conditions are
satisfied or a maximum number of iterations is reached.

Particle swarm optimization is a social stochastic scheme, graphically represented
in the flowchart in figure 2.11. Its idea originated from the observation of behavior
of large flocks of birds, schools of fishes or swarms of insects. In fact, all of their
movements follow two concurrent dynamics:
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FIGURE 2.11: Flowchart of the particle swarm optimization scheme.

• Movements of the single individual: each member of the group collabo-
rates/competes with its neighbors individually;

• Movement of the whole group: on a global scale, the set of individuals be-
haves as a single entity.

Starting from this fascinating movement logic, a computational scheme is mod-
elled in order to emulate it. From this moment, the word particle will be used for
each individual of the group, while swarm will correspond to the group itself.

Modelling of the particle’s movements

The movement of each particle in the swarm is modeled through three factors:

• Cognitive behavior: each particle is attracted by the optimum found in its
movements;

• Social behavior: the same particle is also attracted by the global optimum the
swarm has found so far;
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Particle’s behavior Representative parameter

Cognitive behavior ω

Social behavior φ

Inertia m

TABLE 2.3: List of particle’s behaviors and representative parameters.

• Inertia: a mass (inertia) is assigned to particles. In fact, in the same way a body
will oppose resistance to a force due to its mass, a particle will tend to conserve
its original cinematic state.

Table 2.3 links each tendency of the particle to its corresponding representative
parameter.

In practice, the model is implemented as it follows. At each iteration, the updated
position of the particle xi

k+1 is:

xi
k+1 = xi

k + vi
k+1 (2.19)

Where vi
k+1 corresponds to the particle’s velocity at the k+1-th iteration, calcu-

lated through the equation below:

vi
k+1 = mvi

k + ωr1(pi
k − xi

k) + φr2(pg
k − xi

k) (2.20)

Terms r1 and r2 are random numbers between 0 and 1. pi
k and pg

k represent the
optimum found by the single particle and the one found by the swarm at the k-th
iteration.

As regards xi
0 and vi

0, they are randomly initialized.
It is interesting to notice how simple the algorithm and its implementation is.

The only values that must be set are behavioral parameters, size of the swarm and
convergence parameters (maximum number of iterations and tolerance).

Stopping criteria and time complexity of the algorithm

The algorithm stops iterating in two possible conditions:

• The maximum number of iterations is reached;

• Variations in swarm’s optimum are below the prescribed tolerance.

Time complexity of the scheme is O(α) per function evaluation, where α is the
size of the swarm. If time complexity of function application is taken into account,
time complexity is O(αn), where n is the size of matrix A in equation 2.15.

2.6.2 Heuristic approach

Observations of PSO logs report that there is a poor dispersion of local minima:
they all tend to concentrate in a small space of parameters combination and the
objective function assumes really similar values in all those points. This leads to two
important conclusions: the first one is that all those points can satisfy the required
level of precision of the model and the second one is that, if the starting point of a
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gradient based method is close enough to one of those local optima, the algorithm
will successfully converge. These two important observations constitute the basis
for a heuristic approach, which led to very fast and precise enough results. 5 The
algorithm is articulated as it follows:

• A first estimate of the power curve is produced by approximating the whole
geographical area with a single node, where wind speed time series corre-
sponds to the average of all the time series of each node. In this way, it is
possible to produce a scatter plot that associates wind power production of a
geographical area to wind speeds;

• A fitting procedure is applied, in order to extrapolate a PC from the scattered
data. The Levenberg–Marquardt algorithm has been adopted for this fitting
[19];

• Starting from this first estimation of PC, optimal parameters for the PC are
found with a Quasi-Newton scheme, under the assumption of homogeneous
capacity distribution;

• A new optimal geographical capacity distribution is found through the solu-
tion of its inverse mathematical problem. Lasso Cross-validation is used to
regularize the problem;

• The capacity distribution works as an input for the next iteration, where new
PC parameters will be determined through the minimization of the L2 norm
between the estimated power series profile and the actual one, like in the PSO.

The last three steps of the procedure are repeated until convergence or the maxi-
mum number of iterations is achieved. For better clarity, the scheme is also reported
in the flowchart in figure 2.12.

5In the section dedicated to validation of the models, it will be possible to verify how this method
gives results similar to more accurate but slower methods.
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FIGURE 2.12: Flowchart of the heuristic optimization scheme.
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Chapter 3

Validation of models

In this chapter, models are tested against production data through five Shuffle-Split
cross validations. In a first section, the two proposed wind power curves are vali-
dated with a fixed spatial distribution. In the special case of Denmark, thanks to data
availability, capacity distribution of every day of 2017 is available. Thus, the model
is validated against the actual wind capacity distributions through the whole year
of bidding area DK2. Figure 3.1 reports all the bidding zones of nordic countries.

In the second section, the complete allocation algorithm is tested in two ways:

• Simulated time series are validated against actual WPP time series;

• Simulated capacity distribution is compared against the year-ending one [20]
[21] [22] [23]. In this case, the former assumes the physical meaning of an aver-
age wind capacity distribution. In fact, theoretically, in order to get a daily ca-
pacity distribution, the simulated period should be reduced to one day. How-
ever, the model would fail, since the available samples for the calibration of
the model should be reduced to 24 and they would be too few.

As regards simulated geographical zones in this part, Finland, Sweden, Norway
and Denmark are selected. In particular, for each country a bidding zone is studied
singularly.

3.1 Validation procedure

The validation procedure is described in detail in this section. As a first step, it is ver-
ified that approximating one PC for a geographical region can give good results. In
order to asses the quality of the approximation, three indices are taken into account:

• R2 score: this value, also called coefficient of determination, indicates the per-
centage of variability explained by the model and it’s widely used to test the
predictivity of regression models. If this value is calculated from training data,
its value is limited between 0 and 1. However, since this value is obtained
from test data in this case, it only has an upper limit of 1 (the best score). If
an estimator f , observations yi and their average value ȳ are introduced, R2 is
mathematically defined in the following way:

R2 = 1− SSres

SStot
(3.1)

SSres = ∑
i
(yi − fi)

2 (3.2)

SStot = ∑
i
(yi − ȳ)2 (3.3)
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FIGURE 3.1: Nordic bidding areas. [24]

It is observable that if the model is perfect, fi = yi for every i, so R2 converges
to 1.

• MAE: MAE stands for Mean Absolute Error. As the acronym already explains,
it corresponds to the average value of the n absolute values of errors ei:

ei = yi − fi (3.4)

MAE =
∑i|ei|

n
(3.5)

• MAD: MAD stands for Median Absolute Deviation. It corresponds to the me-
dian of the absolute values of errors ei, defined in equation 3.4.

As regards capacity distributions, the allocation error should take into account
two important factors:

• Geographical pattern of the estimated capacity with respect to the real one;

• Magnitude of estimated capacity in a certain sub-area with respect to the actual
one;

In other words, due to the typically high number of nodes in a geographical area,
it is practically impossible that the estimated capacity distribution will ever perfectly
coincide with the real one. However, this does not mean that estimations are wrong.
For example let us suppose that, in a particular node in Finland, 10% of the country’s
total capacity is installed. Let us also suppose that the model allocates the same iden-
tical amount of capacity in a node right after the actual one. Given that Finland has a
surface of 338, 424 km2 and that neighboring nodes have a distance of approximately
30 km (40 km if they are diagonally placed), the error committed by the model can
be considered null. In an analogous way, if in one node there is a certain amount of
actual wind capacity and the model estimates the same wind capacity, but in many
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neighboring nodes, results can still be considered valid 1. Thus, a clustering of the
capacity geodata becomes necessary. In this way, it is possible to represent a partic-
ular sub-area of a wider zone with an equivalent node, in which installed capacity
corresponds to the total capacity in that sub-area. After that, the allocation error for a
single cluster is calculated as the absolute value of the difference between the actual
cluster capacity and the simulated one. Finally, the total allocation error is calculated
as the sum of all the allocation errors of each cluster.

For these particular applications, Spectral Clustering and Agglomerative Clus-
tering from the Scikit-Learn Python package have been adopted due to their good
performances [25].

3.2 Power curves validation

Results of the first validation step are reported in table 3.1 2. For each PC, BH and
PSO are adopted as optimization schemes. However, the two numerical schemes al-
ways converge to the same solution, so the four optimization procedures results are
condensed into two. It is possible to notice that both of the PCs are able to describe
WPP effectively. Specifically, it is possible to conclude that both of the modelled
PCs assume the same optimal shape. Figure 3.3 shows this result graphically. Plots
3.2-3.4, instead, give a better description of WPP patterns. It is possible to notice
that the model tends to underestimate peak load production, as can be observed
in figure 3.2a. A further confirmation of this feature can be obtained from figures
3.2b-3.4. In fact, while low load hours are described with relatively small errors, in-
termediate and high load may present higher offsets. An example of this tendency
can be observed in figure 3.4, between the 17th and the 24th of January: the simu-
lated WPP pattern is the same of the realised one, but there is a systematic error that
leads to a constant overestimation. An analogous kind of error can be found around
the 7th of February, with the difference that there is a systematic underestimation.
Nevertheless, in other cases this underestimation (overestimation) is very small, so
the simulated time series almost perfectly match realised production, like between
the 3rd and the 17th of January. Furthermore, the model is able to describe sudden
rampings of the realised production.

Another observable limit of the model consists in the underestimation of hours
in which production is equal to zero. This limit can be observed in the general time
series in figure 3.2b or more clearly in figure 3.2a, in correspondence of a normalized
power production of zero. An explanation of this phenomenon is that the sigmoid
adopted in the WPP modelling converges to zero asymptotically. As a consequence,
probabilities that the total production of an area is zero are almost null.

Thanks to very similar test errors, it is possible to conclude that both of the PCs
are able to describe WPP accurately. Moreover, convergence of both methods is
achieved in a comparable number of iterations. However, while the Piecewise func-
tion depends on four parameters, the Sigmoid function is built with three. Also, from
a numerical point of view, the two curves are optimized through different schemes.
In fact, while the Piecewise function is optimized with a SLSQP scheme due to con-
straints in its correspondent optimization problem, the Sigmoid function is shaped
through a L-BFGS-B scheme, suitable for bounded optimization problems. On top of

1This logic has also sense in the opposite way: if a locally homogeneous distribution is estimated
by a concentrated capacity in one node by the model, estimation can still be considered correct.

2Results between parenthesis in the table are standard deviations. For example, 3.61(165) means
3.61± 1.65 and 5.60(43) means 5.60± 0.43. If the standard deviation is not written, it is equal to zero.
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Test errors Piecewise function Sigmoid

R2 score [%] 94.09(32) 94.10(32)
MAE 4.412(100)× 10−2 4.401(96)× 10−2

MAD 2.991(99) × 10−2 3.024(87)× 10−2

Parameters Piecewise function Sigmoid

c 10.141(6) 10.138(9)
p 1.961(10) 1.849(6)
z 0.848(1) 0.839(1)
η 8.408(41) //

Scheme P. F., PS P. F., BH Sigmoid, PS Sigmoid, BH
No. iterations 27(6) 40(6) 24(4) 61(18)

TABLE 3.1: Comparison of results for Piecewise function and Sig-
moid, DK2. P. F.: Piecewise Function.

that, L-BFGS-B is computationally cheaper than SLSQP. In fact, L-BFGS-B presents
a time complexity of O(nm), where n corresponds to the number of variables of the
problem and m to the number of previous optimization steps stored into memory.
SLSPQ, instead, has a typical time complexity of O(mn2), where n assumes the same
meaning and m is the maximal number of active constraints 3. It is possible to get
more details of both schemes and their comparison in the relative appendix B. As a
conclusion, the Sigmoid curve represents a better option for the description of WPP,
due to its greater simplicity and faster optimization procedure. Thus, the following
steps of the validation are made with this power curve.

3Given a feasible point of an optimization problem, an inequality constraint of the form c(x) ≤ 0 is
active in that point if c(x) = 0.
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FIGURE 3.3: Comparison of the average simulated power curves for
bidding zone DK2 with known geodata. The two power curves are

almost identical.

���	������ ���	������ ���	�����	 ���	������ ���	������ ���	�����	
����

���

���

���

���

��


��
��

���
��

��

��������������
����������������

FIGURE 3.4: Time series zoom, DK2, fixed geodata: Sigmoid curve.
General pattern of wind power production is successfully described
by the model, especially in case of sudden ramping phenomena.
However, it is possible to notice the presence of underestimations

(overestimation) of peaks in power outputs.
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3.3 Complete model validation

3.3.1 Sweden

As regards Sweden, bidding zone SE1 is selected, due to its sparse capacity distribu-
tion. In this way, it is possible to test how accurate allocation of wind capacity can
be, in both of the possible approaches.

Table 3.2 reports quantitative measures of accuracy obtained for this area and the
number of necessary iterations in order to achieve convergence. In order to make
understanding of the table easier, supportive plots accompany it. A first interesting
observation that can be done is the amount of necessary iterations for the conver-
gence of the solution. While PSO needs an average of 17 iterations, the heuristic
method is able to converge in only 3 iterations. Moreover, if the time complexity of
each iteration is taken into account, differences in convergence speed become even
stronger. In fact, one optimization step of the Heuristic scheme corresponds to one
optimization step made by one particle in the swarm. To make an example, if a
swarm is composed by fifty particles, PSO will be fifty times slower than the heuris-
tic method.

Standard deviation of test errors is low, which shows that the model has been
trained on a sufficient amount of samples. Furthermore, high similarity of test errors
and figure 3.5 make the observer suspect that both methods converged to approxi-
mately the same solution, since PCs are practically the same.

Quality of capacity allocation can be checked by comparing the real year-ending
distribution and the simulated one in figure 3.8. In particular, subplot 3.8a shows
how each node of the map is clustered, in order to calculate the allocation error. It is
possible to observe that accuracy of allocation is good as well, due to an acceptable
total error. On top of that, it is clearly visible that the difference between the two
allocation methods is not the pattern of the estimated wind capacity, but the amount
of capacity allocated in each cluster, as can be observed from colorbars and in the
total estimated capacity in table 3.2. As a consequence, in the allocation error it is
also necessary to take into account that the total estimated wind capacity does not
necessarily coincide with the real one. In fact, in order to keep the adopted schemes
numerically stable, constraints on total capacity have been relaxed. As a conclusion,
allocation errors are influenced by both the single cluster allocation error and the
total estimated capacity of an area, which may not be equal to one.

A final verification of the two models allocations can be made by comparing their
resulting spatial distribution. Using the same clustering logic adopted for validation
of capacity distributions, it is possible to evaluate how similar estimated capacities
are. Allocation difference in table 3.2 shows that average cluster differences are re-
ally low. This means that resulting distributions are very similar and this obviously
confirms the small differences in allocation errors.

Observations of curves in figures 3.6-3.7 complete the validation by showing
strength and weak points of the model 4. At first glance, it is possible to notice
that there is a general accurate yearly power distribution in plot 3.7a. However, the
model constantly underestimates peak loads, as it is possible to notice at tails of the
power output distributions. A further confirmation of this underestimating behav-
ior is confirmed by observing year 2017 time series in figure 3.7b. However, except
for this issue, WPP patterns are accurately described by the model. A closer look to a
section of time series in figure 3.6 permits to get more details of the model. A sudden

4Resulting plots of PSO have not been included because it is impossible to notice differences from
results of the Heuristic scheme.
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Parameters PS scheme Heuristic scheme

c 6.921(11) 6.824(12)
p 1.233(7) 1.190(10)
Total capacity 0.961(3) 0.946(5)

Test errors PS scheme Heuristic scheme

R2 score [%] 92.50(37) 92.49(39)
MAE 5.073(97) × 10−2 5.075(98)× 10−2

MAD 3.670(113)× 10−2 3.659(95)× 10−2

Iterations 17(2) 3

Allocation error PS v. Reality Heuristics v. Reality

Cluster 1 2.07(16) × 10−2 2.48(17) × 10−2

Cluster 2 3.35(68) × 10−2 2.57(61) × 10−2

Cluster 3 1.04(5) × 10−1 1.10(5) × 10−1

Cluster 4 4.51(322) × 10−3 2.20(174)× 10−3

Cluster 5 4.86(38) × 10−2 5.45(37) × 10−2

Total A. error 2.12(9) × 10−1 2.17(10) × 10−1

Allocation difference PS v. Heuristics

Cluster 1 4.13(55) × 10−3

Cluster 2 7.78(113)× 10−3

Cluster 3 5.18(52) × 10−3

Cluster 4 4.45(76) × 10−3

Cluster 5 5.95(76) × 10−3

Total difference 2.75(24) × 10−2

TABLE 3.2: Comparison of results for PS and Heuristic method, SE1.

drop of WPP from the 25th of September and the 2nd of October is accurately de-
scribed by the model. It is also possible to notice that majority of errors concentrate
in peak load hours, as already noticed in power output distributions plots.

The underestimation of null power production is also present, as already found
in the first step of the validation. Unfortunately, this error is inherently part of the
model itself, so it can’t be removed without changing the PC modelling radically.
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FIGURE 3.5: Comparison of the average simulated power curves for
bidding zone SE1. Differences between the two power curves are al-

most absent.

���
������ ���
������ ���
������ ���
������ ���
�����	 ���
������ ���
������
�����

���

���

���

��	

���

��
��
���
� 
��

�������������
����������������

FIGURE 3.6: Time series zoom, SE1: Heuristic scheme. The model
is able to describe low loads very accurately, while higher loads are

described with a relatively larger error.



30 Chapter 3. Validation of models

�
��

�
��

�
��

�
��

�
�	

�
��

�
�
�
�
���

�
#
�
�
��

�
�
��
�

�

�
�

�
�
�

�
�
�

�
�
�

��"� 



�
!"
�
���

� 
!�
��
"
!��

�
�
�
�
�
"
!�
�
��
� 
!�
��
"
!��

�

(A
)Pow

er
outputdistribution:heuristic

schem
e

v.validation
data.

�
�
�


�
�
�

�
�
�


�
�
�

�
�
�


�
�
�

�
�
�


�
�



�
�
�


�
�
�

�
�
�


�
�
�

�
�
�
�
�
�
�

�
�
�
�
�

�
��

�
��

�
��

�
�	

�
��

�
��

�������� ��


�
��
�
���
�
�
����

�
�
�
�
�
��
�
��
�
�
����

(B)Tim
e

series:heuristic
schem

e
v.validation

data.

F
IG

U
R

E
3.7:Pow

er
outputdistributions

and
tim

e
series

for
bidding

zone
SE1.



3.3. Complete model validation 31

16
18

20
22

24
Lo

ng
itu

de

646566676869 Latitude

C.
 1

C.
 2

C.
 3

C.
 4

C.
 5

(A
)W

in
d

ca
pa

ci
ty

di
st

ri
bu

ti
on

:c
lu

st
er

in
g

of
th

e
ar

ea

16
18

20
22

24
Lo

ng
itu

de

646566676869 Latitude

0.0
00

0.0
25

0.0
50

0.0
75

0.1
00

0.1
25

0.1
50

0.1
75

0.2
00

(B
)W

in
d

ca
pa

ci
ty

di
st

ri
bu

ti
on

:a
ct

ua
ld

is
tr

ib
ut

io
n.

16
18

20
22

24
Lo

ng
itu

de

646566676869 Latitude

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

0.1
4

(C
)W

in
d

ca
pa

ci
ty

di
st

ri
bu

ti
on

:h
eu

ri
st

ic
sc

he
m

e.

16
18

20
22

24
Lo

ng
itu

de

646566676869 Latitude

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

0.1
4

0.1
6

(D
)W

in
d

ca
pa

ci
ty

di
st

ri
bu

ti
on

:P
S

sc
he

m
e.

FI
G

U
R

E
3.

8:
C

om
pa

ri
so

n
of

w
in

d
ca

pa
ci

ty
di

st
ri

bu
ti

on
s

fo
r

bi
dd

in
g

zo
ne

SE
1.

It
is

po
ss

ib
le

to
no

ti
ce

a
ve

ry
si

m
ila

r
pa

tt
er

n
in

ca
pa

ci
ty

al
lo

ca
ti

on
am

on
g

th
e

si
m

ul
at

io
ns

an
d

re
al

it
y.

D
iff

er
en

ce
s

ar
e

in
th

e
en

ti
ty

of
th

es
e

al
lo

ca
ti

on
s.



32 Chapter 3. Validation of models

3.3.2 Norway

In the case of Norway, NO3 is tested. In fact, the diffused presence of mountains
and the concentration of wind capacity close to the Norwegian Sea constitutes an
interesting setting for testing the model.

Results of the validation can be found in table 3.3. First of all, it is possible to no-
tice how PSO and the Heuristic schemes converged to different solutions but with
comparable test errors, as can be verified in figure 3.9. Diversity in results was ex-
pectable for this area, due to abundance of mountains. As a matter of fact, this leads
to bigger gradients in velocity distributions and more difficulties to achieve a global
minimum. Consequently, capacity distributions are allocated in different ways, since
they are optimized according to the shape of the PC. In fact, as reported in figures
3.10c-3.10d, the Heuristic scheme tends to return a sparser solution with respect to
the PSO. This higher sparsity makes the estimated distribution more similar to the
actual one, reported in figure 3.10d. However, allocation errors reported in table
3.3 are similar in both approaches and allocation differences are small. This means
that, even if the PSO scheme returns a solution with a less pronounced sparsity, on a
smaller scale, the estimation of the total cluster capacity is still accurate enough. Fur-
thermore, even if the Heuristic scheme is able to better estimate the sparse pattern
of the actual capacity distribution, the order of magnitude of estimated wind capac-
ities is quite different from the real one. Indeed, while the color bar of the realized
normalized capacity distribution has a maximum of 0.4, in the Heuristic scheme the
maximum is slightly below 0.3. Probably, difference of the two models in the to-
tal estimated capacity (roughly five percent) balances out their sparsity differences
with respect to the real capacity distribution, making the two distributions equally
accurate.

Estimated power output distributions and time series are reported in figures
3.11-3.12. It is quite clear from figure 3.11 that the Heuristic scheme presents a recur-
rent underestimation of peak power hours, while PSO seems to be more effective.
Moreover, like in the previous cases, both of the schemes show a large underesti-
mation of hours with no production. However, time series of the two schemes are
hardly distinguishable, so complete time series are reported only for the Heuristic
scheme to give a general idea of the model’s behaviour (figure 3.12). As a confirma-
tion, the underestimating behaviour of the model for peak load and null production
hours is visible.

A more detailed comparison of the two schemes is made in figures 3.12b-3.12c. It
is clear that, despite the phenomenon of the underestimation, large rampings events
are explained by the model effectively. Also low loads hours are correctly described,
with relatively smaller errors.

Number of iterations performed by the two methods are similar. However, as
already explained in the validation of SE1, every iteration of the Heuristic scheme
is sensibly faster, since function evaluations are not repeated per each particle of the
swarm, like in PSO. It is possible to have a clearer idea of how the schemes differ by
reading appendix ??.
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Parameters PS scheme Heuristic scheme

c 9.822(75) 8.442(71)
p 1.957(20) 1.510(18)
Total capacity 0.882(5) 0.833(5)

Test errors PS scheme Heuristic scheme

R2 score [%] 92.30(34) 91.93(44)
MAE 4.818(97)× 10−2 4.914(132)× 10−2

MAD 3.270(60)× 10−2 3.381(133)× 10−2

Iterations 18(4) 15(1)

Allocation error PS v. Reality Heuristics v. Reality

Cluster 1 7.62(41) × 10−2 8.17(38) × 10−2

Cluster 2 4.33(34) × 10−2 3.78(29) × 10−2

Cluster 3 1.12(3) × 10−1 1.23(6) × 10−1

Cluster 4 2.78(49) × 10−2 0.00
Total A. error 2.60(9) × 10−1 2.42(6) × 10−1

Allocation difference PS v. Heuristics

Cluster 1 7.26(230)× 10−3

Cluster 2 5.83(312)× 10−3

Cluster 3 1.02(52) × 10−2

Cluster 4 2.78(49) × 10−2

Total difference 5.11(65) × 10−2

TABLE 3.3: Comparison of results for PS and Heuristic method, NO3.
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FIGURE 3.9: Comparison of the average simulated power curves for
NO3. The Heuristic scheme returned a steeper power curve.
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3.3.3 Finland

As already mentioned, Finland is the only studied case in which the whole area is
not divided into sub areas, due to data availability. For this reason, a large area is
simulated and this allows to test models in a more extensive way.

Results of the optimization are reported in table 3.4. The first clear result that can
be observed is the presence of distinct, yet similar, solutions for the two schemes. In
fact, figure 3.13 shows that resulting curves are distinguishable. As a consequence,
test errors and capacity distributions are different, as it can be verified in the table
and in figure 3.14. However, the general pattern of the original distribution is still
effectively emulated by simulations in both approaches. Moreover, the two capac-
ities distributions are similar on a cluster scale, since differences in capacity alloca-
tion per each cluster are relatively low. What changes significantly in the allocation
procedure is the total estimated capacity, since PSO returns 0.807 and the Heuristic
scheme gives 0.872. This can be identified as the principal cause of the higher total
allocation error of PSO with respect to the Heuristic scheme.

In this case, PSO shows a greater tendency in underestimating WPP, as can be
observed in figure 3.15. However, both of the approaches are not capable to describe
hours with no production. Furthermore, from a practical point of view, differences in
time series are hardly distinguishable. Thus, time series resulting from the Heuristic
scheme are the only ones reported, in figure 3.16a. In order to get more details of
the model’s behaviour, the period between the 9th of August and 20th of October
is studied in figures 3.16b-3.16c. Despite the concentration on a smaller range of
hours, the two models are hardly distinguishable. However, it is possible to notice
a slightly better accuracy in the description of low load hours in PSO, for example
around the 29th of September. A confirmation of this fact is in figure 3.15: bins
of the histogram corresponding to ranges 0.01-0.02 and 0.02-0.03 of the normalized
production are more accurate in PSO than in the Heuristic scheme. From a general
perspective, both of the schemes are capable to describe sudden rampings in WPP,
both in case of ramp ups or ramp downs.

The convergence speed of the Heuristic scheme is particularly higher than previ-
ously. To give a concrete idea, four iterations of the Heuristic scheme are performed
in less time than a single iteration in PSO. An explanation of this phenomenon is
that the number of effectively active nodes in the grid are a very small portion of the
total grid points contained in Finland and they all concentrate on the western coast.
As a consequence, individuating these nodes becomes easier for the algorithm and
a lower number of iterations is necessary.
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Parameters PS scheme Heuristic scheme

c 7.389(10) 8.079(25)
p 1.297(7) 1.532(9)
Total capacity 0.807(5) 0.872(8)

Test errors PS scheme Heuristic scheme

R2 score [%] 94.76(29) 94.46(34)
MAE 3.308(97) × 10−2 3.460(67)× 10−2

MAD 2.378(113)× 10−2 2.552(50)× 10−2

Iterations 18(5) 4(1)

Allocation error PS v. Reality Heuristics v. Reality

Cluster 1 2.49(80) × 10−2 1.23(68) × 10−2

Cluster 2 4.20(68) × 10−2 1.33(76) × 10−2

Cluster 3 1.26(3) × 10−1 1.05(4) × 10−1

Total A. error 1.93(4) × 10−1 1.30(7) × 10−1

Allocation difference PS v. Heuristics

Cluster 1 1.45(26)× 10−2

Cluster 2 2.87(18)× 10−2

Cluster 3 2.15(16)× 10−2

Total difference 6.46(35)× 10−2

TABLE 3.4: Comparison of results for PS and Heuristic method, Fin-
land.
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FIGURE 3.13: Comparison of the average simulated power curves for
Finland. In this case, curves are distinguishable.
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3.3.4 Denmark

DK2 represents an interesting challenge for the model, since this area presents a
really small extension, a sparse capacity distribution and it is composed by two sep-
arated areas. Despite the severity of the optimization, results in table 3.5 report good
test errors, in both the schemes. Furthermore, even if the two schemes return distin-
guished PCs, they are very similar, as the reader can observe in figure 3.17. However,
resulting spatial distributions are quite different, as figure 3.18 and allocation differ-
ences report. From allocation errors in table 3.5 it is also possible to conclude that
the Heuristic scheme is more capable of allocating wind capacity correctly, since its
total allocation error is half of the total allocation error in PSO. In particular, it is
possible to see that error committed in estimating capacity installed in cluster 2 is
particularly high. However, it is also important to underline that allocation errors
are calculated for a very small area compared to previous cases. In fact, the whole
area is mapped with less than sixty nodes. As a consequence, each cluster contains
a smaller amount of grid points and the allocation error becomes more sensible to
small variations of the distribution.

Like in all the previous cases, figure 3.19 shows the typical phenomenon of un-
derestimation of the zero production hours in both schemes. As regards peak load
hours, the Heuristic scheme seems to be more accurate than PSO. Analogously to
previous areas, complete time series of the Heuristic scheme reported in figure 3.20a
confirm this general tendency. Figures 3.20b-3.20c focus on a smaller production pe-
riod, in order to observe more details. It is possible to notice that the two schemes
report almost undistinguishable time series. Both of them are able to explain ramp-
ing events. In this particular segment, both of the results recursively overestimates
spikes in WPP.

In this area, convergence speed of the two schemes is in line with previous cases
(except Finland): as usual, the Heuristic scheme is capable to achieve converge rela-
tively faster than PSO.
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Parameters PS scheme Heuristic scheme

c 10.067(25) 10.526(56)
p 1.825(8) 1.995(25)
Total capacity 0.841(1) 0.875(3)

Test errors PS scheme Heuristic scheme

R2 score [%] 94.50(30) 94.38(24)
MAE 4.245(101)× 10−2 4.289(72)× 10−2

MAD 2.937(108)× 10−2 2.965(51)× 10−2

Iterations 18(1) 16

Allocation error PS v. Reality Heuristics v. Reality

Cluster 1 7.23(32) × 10−2 5.22(47) × 10−2

Cluster 2 1.24(3) × 10−1 4.93(59) × 10−2

Cluster 3 6.88(28) × 10−2 7.38(589)× 10−3

Cluster 4 3.11(8) × 10−2 3.07(17) × 10−2

Total A. error 2.97(6) × 10−1 1.40(14) × 10−1

Allocation difference PS v. Heuristics

Cluster 1 2.01(30) × 10−2

Cluster 2 7.50(76) × 10−2

Cluster 3 6.16(54) × 10−2

Cluster 4 4.25(849)× 10−4

Total difference 1.57(13) × 10−1

TABLE 3.5: Comparison of results for PS and Heuristic method, DK2.
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similar.
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Chapter 4

Conclusions

In order to estimate wind power production of wide areas, a statistical model has
been developed. The model associates a power curve to the area and individuates
its optimal shape, by minimizing the error between the simulated wind power pro-
duction series and the realized ones. If wind capacity distribution is unknown, it
is estimated by splitting the original optimization problem into two sequential sub-
problems (Heuristic scheme) or by directly linking a generic power curve to its op-
timized capacity distribution (PSO).

As a first step, two possible power curves have been proposed and tested, in
the case of known capacity geodata. In this step it has been possible to conclude
that a Sigmoid describes wind power production of an area as accurately as a more
complex, piecewise curve. However, its correspondent optimization procedure re-
sulted to be faster. In fact, shaping the Sigmoid requires the solution of a bounded
optimization problem, while shaping the piecewise function requires solving a con-
strained optimization problem, which is clearly more complex and computationally
expensive. As a conclusion, a Sigmoid represents a better choice for the purposes of
the model.

In the following step, the complete model has been tested against four zones
(SE1, NO3, DK2 and Finland), by using two different schemes. The first scheme
is PSO, while the second one is the Heuristic scheme. Both approaches showed
good approximation of reality, with similar spatial patterns in most of the studied
cases. In particular, PSO presented slightly higher scores in validation tests, while
the Heuristic scheme seemed to be more accurate in the capacity allocation. How-
ever, the Heuristic method is significantly faster than PSO in achieving convergence.
For this reason, the Heuristic method is a better choice, if both of the quality of the
results and time complexity are taken into account in the choice of an algorithm.

Despite promising results from associating a power curve to an extensive area,
the complete validation of the model reported some limitations in the quality of the
results. In fact, the tendency to underestimate hours without power production was
present in all the test results. This is due to the shape of the Sigmoid, which con-
verges to zero asymptotically. Thus, as long as a sufficient number of nodes presents
wind speeds different from zero, wind production would always be larger than ten
percent of the total installed capacity. A similar problem found in the validation of
the problem is the tendency to underestimate power outputs in peak load hours.
A plausible explanation of this systematic error is the association of a single power
curve to an area, instead that one power curve per wind park.

A possible improvement of the model would consist in building a model based
on more available data. For example, if production data for each wind park in a
prescribed area is available, it would be possible to associate a single power curve
to each wind park and optimize its shape according to production history. An even
more detailed model would be developable if the power curve and the height of
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each turbine in a prescribed area are known. In this case, there would not be any
unknown quantities and the whole optimization problem would collapse in a direct
calculation of the estimated production based on given information.

A final critical aspect must be taken into account in the discussion of the results
and in possible applications of the model. The model has been trained and validated
on realized data. However, once trained, the model would be also capable of taking
wind forecasts as inputs. This means that, based on the current level of accuracy
of weather forecasts, it would be possible to forecast wind power production of an
area.

As a conclusion, based on validation data, it is possible to state that the model
developed in this work constitutes a good approximation of reality.
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Appendix A

Basin Hopping algorithm

BH algorithm (or Monte Carlo optimization) is a stochastic global optimization cou-
pled with local optimization methods (such as gradient based methods). Its working
principle can be shortly resumed in the following procedure:

• At each iteration, coordinates of the previous optimum are casually perturbed
through a customized stepping procedure and the local optimization is run
again, until a new optimum is found. The chosen stepping procedure for this
application is reported below. At each BH iteration:

xi
0,k+1 = rand((xi

opt,k − xi
lb) · s, (xi

ub − xi
opt,k) · s) (A.1)

Where xi
0,k+1 is the starting point of the i-th variable at the k+1-th BH iteration,

rand(x,y) is the function that extract one random value from the homogeneous
probability distribution in the interval [x,y]. xi

opt,k is the local optimum found
at the k-th BH iteration, xi

lb and xi
ub are bounds of the optimized i-th variable

and s is the step taken by the algorithm. The step s is periodically updated by
the algorithm, in order to maximize the exploration of the domain in which
variables are bounded/constrained.

• If the new solution is better than the previous one, it becomes the new global
optimal candidate. However, if the local optimum is worse than the previous
one, an acceptance test is performed. The probability of the new solution to
pass the test is the following:

p = e−
f (xnew)− f (xold)

T (A.2)

Where T is a parameter calibrated on what is the typical difference in value
between two local minima.

The first iteration’s minimum will depend on the initial guess if BH is coupled
with a gradient based optimization, but a sufficiently high number of perturbations
should make the algorithm converge to the global optimum.

A.1 Stopping criteria and time complexity of the algorithm

Two stopping criteria regulate the convergence of the algorithm:

• Iterations stop if the best candidate is not replaced in a certain number of BH
iterations;
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• The algorithm stops if a maximum number of BH iterations is reached.

It is important to notice that, due to the purely stochastic nature of the algorithm,
a high number of perturbations is necessary. Furthermore, time complexity of a
BH step exactly corresponds to the local optimization’s one. In fact, the function
of global optimization is essentially perturbing coordinates of known local optima,
which can be considered instantaneous with respect to the actual local optimization.
Thus, this scheme can become extremely expensive in case a local optimum requires
a significative amount of time to be found.
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Appendix B

L-BFGS-B and SLSQP algorithms

L-BFGS-B and SLSQP are two quasi-Newton schemes adopted for nonlinear opti-
mization problems. While the former solves unconstrained, bounded problems, the
second one solves constrained, bounded problems. Formally, SLSQP solves prob-
lems of this form:

min
x∈Rn
{ f (x)}

s.t.

Ax = b
c(x) = u
l < x < u

It is important to specify that the presence of equalities in the linear and nonlinear
constraints does not make the problem lose generality, since it is always possible to
convert an inequality in an equality through the introduction of slack variables. L-
BFGS-B, instead, solves simpler problems in this form:

min
x∈Rn
{ f (x)}

s.t.

l < x < u

B.1 Quasi-Newton methods

Quasi-Newton methods are iterative computational schemes in which Jacobian and/or
Hessian of an objective function is not available or too expensive to be calculated at
each iteration. In Newton’s method, the scalar objective function f (x) is paraboli-
cally approximated through Taylor’s series expansion:

f (xk + ∆x) ≈ f (xk) +∇ f (xk)
T∆x +

1
2

∆xT H∆x (B.1)

Where H is the Hessian matrix of function f . In order to search for the direction
of maximum variation of the function, the gradient of equation B.1 is applied with
respect to ∆x:

∇ f (xk + ∆x) ≈ ∇ f (xk) + H∆x (B.2)
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This equation is also called secant equation. Setting ∇ f (xk + ∆x) to zero (which
means searching for stationary points of the function), it is possible to finally calcu-
late the optimal step:

∆x = −H−1∇ f (xk) (B.3)

If H is positive definite, it will always be invertible and step ∆x will lead to a
local minimum of ∇ f (xk + ∆x). Furthermore, if the problem is convex, the iterative
procedure will converge to a global optimum.

At this point, the particular feature of Quasi-Newton methods is introduced:
∇ f (xk) and H may be unavailable. In particular, H may be computationally ex-
pensive to be computed. These two quantities are estimated as follows:

• Since f is a scalar function, the gradient ∇ f (xk) is numerically approximated.
A possible numerical approximation is the FE method:

∇ f (x)i ≈
f (xi + ∆x)− f (xi)

∆x
(B.4)

Where ∇ f (x)i is the i-th component of the gradient ∇ f (x) and ∆x is an in-
crement, small enough. It is possible to demonstrate that the precision of this
scheme is of the first order, which means that its error is proportional to ∆x
[26]. A faster convergence of the error can be achieved with more sophisti-
cated methods, like Central Differencing [27] or Crank-Nicolson schemes [28].

• The Hessian matrix H is substituted with an approximated version of it, B. The
way B is estimated depends on the scheme adopted and the kind of problem
in question. However, in general, two conditions must be satisfied:

– B must satisfy the secant condition, which corresponds to equation B.2.

– B must be definitive positive ans symmetric, so that it can be inverted and
used in the equation B.3;

B.2 L-BFGS-B approximation

In order to maintain symmetry and positive definitiveness, matrix B−1 at the k-th
iteration is updated in the following iterations through the sum of two rank-one
matrices Uk and Vk [29]:

B−1
k+1 = B−1

k + Uk + Vk (B.5)

At the first iteration, B−1
0 can be set equal to the identity matrix. A rank-one

matrix A1 can also be identified with the following notation:

A1 = wvT (B.6)

In words, a rank-one matrix is the collection of a vector w and its multiples,
contained in vector v. Uk and Vk are defined to have the following form:

Uk = αuuT (B.7)

Vk = βvvT (B.8)
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Notation can become more readable by setting ∇ f (xk+1) − ∇ f (xk) = yk and
xk+1 − xk = ∆x = sk. By imposing the secant condition of equation B.2, it is possible
to write:

Bk
−1yk + α(uTyk)u + β(vTyk)v = sk (B.9)

By arbitrarily imposing u = sk and v = B−1
k yk:

α(sT
k yk)sk + β(yT

k B−1
k yk)B−1

k yk = sk − B−1
k yk (B.10)

It is sufficient to observe equation B.10 to notice that it is solved for:

α =
1

sT
k yk

(B.11)

β = − 1
yT

k B−1
k yk

(B.12)

Substituting the result in equation B.9, the Davidon Fletcher and Powell (DFP)
rank 2 update formula is found:

B−1
k+1 = B−1

k +
sksT

k

sT
k yk
−

B−1
k ykyT

k B−1
k

yT
k B−1

k yk
(B.13)

If the same update logic of equation B.9 is applied to matrix B, it is possible to
obtain the following equation:

Bk+1 = Bk +
ykyT

k

yT
k sk
−

BksksT
k Bk

sT
k Bksk

(B.14)

Which introduces the concept of Duality, independently discovered by the four
authors Broyden, Fletcher, Goldfarb and Shanno. In order to ease computation of
matrix B−1

k+1, the Sherman-Morrison-Woodbury formula is adopted:

(A + UVT)−1 = A−1 − A−1UC−1VT A−1 (B.15)

C = I + VT A−1U (B.16)

Thus, the new expression of B−1 becomes:

B−1
k+1 = (I −

skyT
k

sT
k yk

)B−1
k (I −

yksT
k

sT
k yk

) +
sksT

k

sT
k yk

(B.17)

Since the initial value B−1
0 can be set to the identity matrix I, it is possible to

use the secant equation B.2 to obtain B−1
k+1 without never explicitly calculating the

intermediate inverse Hessian matrices B−1
1 , ..., B−1

k . However, the recursive nature
of equation B.17 forces the storage of the history of coordinates xk and ∇ f (x)k. In
order to limit the amount of memory dedicated to this data, the last m iteration are
the only ones kept in account while calculating the Hessian. Bounds in variables are
taken into account by increasing the complexity of the algorithm, but the core idea
of the Hessian approximation remains essentially the same.
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B.3 SLSQP

In the case of a constrained problem, at each iteration k, the original problem is
splitted into two subproblems:

• The first subproblem is a QP problem, in which the best optimization direction
dk is found. f (x) is approximated through a quadratic approximation and
constraints are linearized. If we assume for simplicity that all the variables
are non-negative:

min
dk∈Rn

{ f (xk) + g(xk)
Tdk +

1
2

dT
k H(xk, πk)dk}

s.t.

c(xk) + J(xk)d = 0
dk > 0

Where J(xk) is the Jacobian matrix of constraints c(x), g(x) is the gradient of
f (x) and H(x, π) is the Hessian matrix of the Lagrangian function:

H(x, π) = ∇2
xxL(x, π, x) = ∇2 f (x)−

m

∑
i

πi∇2ci(x) (B.18)

L(x, π, x) = f (x)− πTc(x)− zTx (B.19)

Quantities π and z are technically defines as dual variables in the context of
mathematical optimization. In a more traditional way, they correspond to La-
grange multipliers. The reason why the Hessian of Lagrange function is chosen
instead of the Hessian of f (x) can be explained through the following expla-
nation. It is possible to demonstrate that the QP constrained subproblem is
mathematically equivalent to the unconstrained optimization of the modified
Lagrangian:

L(dk, xk, πk) = f (xk + dk)− πT
k (c(xk + dk)− ĉk(x)) (B.20)

ĉk(x) = c(xk) + J(xk)dk (B.21)

where xk and πk are fixed. The quantity c(xk + dk) − ĉk(x) is also called de-
parture from linearity and this explains the choice of H: the objective function
optimized in the QP subproblem constitutes a local quadratic model of f that
incorporates the curvature of the constraints c(x) = 0 [16]

• The second subproblem consists in estimating how big the step in the dk direc-
tion should be. If α is defined so that:

x− xk = αkdk, α ∈ [0, 1] (B.22)

It is possible to estimate the optimal step magnitude through the minimization
of the scalar penalty function Φ:
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Φ(αk, ρ) = f (xk + αkdk) + ρ
m

∑
i
|ci(xk + αkdk)| (B.23)

Where ρ corresponds to the penalty of the function. If this value is large
enough, it guarantees global convergence. In a more practical way, the mini-
mization of Φ relaxes the resolution of the global optimization problem, since
constraints do not have to be perfectly satisfied. ρ works as a parameter, cor-
rected at each iteration if convergence is not reached.

The way these two subproblems are solved is not trivial, especially for the first
one. In fact, while the second subproblem essentially corresponds to the op-
timization of a scalar function of one variable, solvable in multiple fast ways,
the first one can be really computational expensive. The generality of the ap-
proaches for the QP problem come from the resolution of the KKT system. The
KKT system is the following:[

H(xk) J(xk)
J(xk) 0

] [
dk
−πk+1

]
= −

[
gk
ck

]
(B.24)

and it derives from the first order optimality conditions for a nonlinear opti-
mization problem. If the problem is in the form:

min
x∈Rn
{ f (x)} s.t. c(x) = 0, x ≥ 0 (B.25)

first order optimality conditions are the following1:

c(x) = 0, (B.26)

g(x)− J(x)Tπ − z = 0, (B.27)
x · z = 0 (B.28)

Some of the computational schemes addresses system B.24 directly, while some
others are based on the so called nullspace factorization of the KKT system. With
Qk a nonsingular matrix defined so that JkQk = (0 Uk), with Uk sized m×m,
the KKT system is algebraically manipulated and turned into an equivalent
system: [

QT
k H(xk)Qk (J(xk)Qk)

T

J(xk)Qk 0

] [
dQ
−πk+1

]
= −

[
QT

k gk
ck

]
(B.29)

Where dk = QkdQ. Since Jk has shape n×m and rank m, Uk is nonsingular. By
partitioning Qk into two submatrices Zk and Yk so that:

JkQk = Jk(Zk Yk) = (0 Uk) (B.30)

it is possible to state that vectors of Zk constitute the basis for the null space of
Jk and. If equation B.30 is substituted into B.29, the final system is obtained:

1First order optimality conditions are necessary conditions for the optimality of a point, but not
sufficient.
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 Uk 0 0
ZT

k HkYk ZT
k HkZk 0

YT
k HkYk YT

k HkZk UT
k

 dY
dZ
−πk+1

 = −

 ck
ZT

k gk
YT

k gk

 (B.31)

Where dY and dZ are subvectors of dQ. The advantage of this approach is in
the possibility to determine whether the KKT system is singular or not. In
fact, from equation B.31 it is possible to asses that the system is not singular
if ZT

k HkZk is not singular and Jk has maximum rank m. In order to reduce
time complexity of the algorithm, Hk is substituted with an approximation,
analogue to the BFGS approximation reported in section B.2. In most of the
algorithms, the Jacobian is exactly calculated [30].

B.4 Time complexity

Time complexity is a critical factor to take into account. In some cases, computational
resources may be limited or obtaining a good enough, fast solution may be more
important than an analytical, computational expensive solution.

B.4.1 L-BFGS-B

Time complexity of L-BFGS-B algorithm is O(nm), where n corresponds to the num-
ber of variables of the problem and m to the number of previous steps stored into
memory. Coherently, the original BFGS has a time complexity of O(n2).

B.4.2 SLSPQ

Generally, time complexity of SLSPQ is polynomial. In particular, it can vary accord-
ing to how each subproblem is solved and how the Jacobian of the constraints and
the Hessian of the Lagrangian functions in equation B.24 are calculated or approx-
imated. The shape of the Jacobian is also important. For example, in the nullspace
factorization approach, matrix Zk of equation B.31 can be directly calculated through
a QR factorization of Jk if the matrix is dense [31]. In case Jk is sparse, the idea is to
transfer this property to Zk. Through some manipulations, it is possible to obtain the
desired results at the cost of a LU factorization [32], which has the same time com-
plexity of QR factorization 2. Some advanced algorithms rely on the approximation
of the Jacobian as well, provoking a significant reduction in time complexity. For
example, the ZED is DEAD approach permits a reduction of the whole SQP system
complexity from O(mn2) to O(n · max(m, l)), where n corresponds to the number
of variables, m corresponds to the maximal number of active constraints 3 and l the
number of stored updates [33].

2Both of them have complexity O(n3), where n is the size of the matrix to be factorized.
3Given a feasible point of an optimization problem, an inequality constraint of the form c(x) ≤ 0 is

active in that point if c(x) = 0.
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