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Abstract

Transport processes of particles and physical quantities throughmatter constitute a physical
fundamental occurring in an extremely broad range of applications. The original Boltzmann
conservation equation, derived in study through a statistical approach of the transport of
molecules in a medium, it is nowadays properly declined for the study of the transport of
several different types of particles, from the spreading of cancer cells in human bodies, to
the photons transport through matter and neutrons throughout a nuclear reactor core. As
regards the case of neutrons, an accurate knowledge of the neutrons population distribution,
consequence of the transport processes involving these particles and the nuclei of the back-
ground matter, constitutes a crucial basic for any assessments concerning reactor physics
analysis, as design and safety analysis computations. Specifically, a peculiar issue is estab-
lishing whether the neutron population throughout the reactor core is independent of time,
decreases or increases with it, through the different operating stages of the nuclear device.
This task is referred to as the criticality problem, commonly intended as the research of the
combination of material composition and reactor geometrical configuration, which allows
the nuclear device to achieve a stationary energy production. In criticality analysis, the study
of the time-dependent behaviour of a neutron population is treated as an eigenvalue problem,
representing a fundamental field of interest both for the description of deviations from the
reactor stationary configuration, and for the use of the higher eigenvalue modes as a valid
tool for the characterization of localized phenomena and the study of nuclear reactor kinetics.
The most widely inspected eigenvalue is the effective multiplication factor k, together with
the time-eigenvalue α, particularly exploited for subcritical systems analysis. Though, other
eigenvalue types, as the effective multiplication factor per collision γ and the most unexplored
effective density factor δ, may constitute an interesting field of investigation for physical in-
terpretation of eigenvalue problems. Scope of this work consists in the study of the solution
of the Boltzmann equation applied to the transport of neutrons in an infinite-slab geometry
reactor core, in the most simplified case of a homogeneous medium, through the application
of the spherical harmonics method to a mono-energetic model. Hence, the PN approximation
is applied to the different eigenvalue formulations of the neutron transport equation in order
to investigate its time-independent solution for simplified models, in attempting to promote
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a deeper knowledge about the relations occurring in solving with different eigenvalue forms
the transport equation, at diverse orders of approximation accuracy. The first three chapters
are devoted to the outline of the theoretical physics foundations of the present work. The
successive one is dedicated to the description of the numerical algorithm implemented by the
author in MATLAB environment, to solve the time-independent neutron transport equation
in the specific eigenvalue form through PN approximation. The last part is finally devoted
to the examination of the results obtained by the algorithm solutions, with the appropriate
comparisons between both different eigenvalue forms and approximation orders of accuracy,
to the conclusions report and the proposal of future application fields.
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Introduction

Climate change represents one of the greater and challenging issues which contemporary
society has to address. In this contest, energy production technologies performed a crucial
role in possible solution strategies [1]. It is by now widely recognized among the scientific
community, that the exploitation of a mix of low-carbon and alternative energy sources
constitutes the current most effective and feasible strategy in facing the greenhouse-gas
worldwide emissions. As part of the alternative energy supply, nuclear power can provide
a critical contribution to a sustainable future energy production [2]. Nevertheless, due
to the peculiarities of such a technology, important issues concerning safety of nuclear
power reactors, resilience to nuclear weapons proliferation and public acceptance arise in the
discussion about nuclear power development.

In the last decades extremely great enhancement in these issues have been achieved, results
of both theoretical and technological efforts. In particular, the improvements in computing
technologies allow to handle more accurate and sophisticated models in the simulation of
physical phenomena occurring in nuclear energy production, returning always more precise
results which permit a deeper and more robust knowledge in safety issue.

It is in this specific contest, safety and design assessments in nuclear power reactor, which
the scope of the present work lies. Drive for this master thesis has been indeed the interest in
the investigation of a crucial aspect of design and safety analysis, and more in general, reactor
physics analysis, constituted by the criticality problem. Specifically, in criticality analysis the
study of the time-dependent behavior of a neutron population in a nuclear reactor is addressed
as an eigenvalue problem, a pseudo-stationary model for the description of slight changes
in reactor temporal behavior [3]. Criticality computations have indeed an important role in
the description of the deviation of a reactor from the stationary configuration which allow a
stationary energy production, and in the use of the higher eigenvalue modes as an adequate
tool for the study of localized phenomena behaviour and nuclear reactor kinetics.

In literature, four different eigenvalue formulations of the neutron transport equation, the
governing equation of particles transport processes in amedium, have been presented. Having
in mind that new generations of nuclear reactors are under constructions or object of research
and development efforts, a deeper knowledge of the difference which arise in the diverse
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neutron transport eigenvalue formulation may give a contribution in the investigation of some
new reactor design aspects. Indeed, while the most widely inspected eigenvalue of neutron
transport equation is the effective multiplication factor k, together with the time eigenvalue
α, other eigenvalue types, as the effective multiplication factor per collision γ and the most
unexplored effective density factor δ, represent a possibility in criticality computations.

Hence, scope of this work consists in the study of the solution of the linear Boltzmann
equation applied to the transport of neutrons in an infinite-slab geometry reactor core, in
the most simplified case of a homogeneous medium, by means of the application of the
spherical harmonics method to the case of a mono-energetic model. In particular, the PN
approximation is applied to the different eigenvalue formulations in order to investigate the
eigenvalues and eigenvectors solution to the generalized eigenvalue problem, at diverse orders
of approximation accuracy. In particular, both odd- and even-orders of the PN approximation
have been taken into consideration.

The fist chapter is thus devoted to the introduction of the theoretical physics foundations of
the present work, specifically, the integro-differential form of the neutron transport equation.
Then, the criticality problem definition for the different eigenvalue types analyzed is outlined
in Chapter 2. The following chapter is instead dedicated to the spherical harmonics method
presentation, both for a general geometry configuration and the simplified plane geometry
employed for the present work numerical calculations. A brief outline of the computational
code implemented by the author in order to investigate some numerical criticality results
is performed in Chapter 4. Finally, in chapter 5 numerical results obtained referring to
the eigenvalue spectrum and eigevectors solutions of the generalized eigenvalue problems,
with different orders of PN approximation and different boundary conditions imposition, are
reported.
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Chapter 1

The Neutron Transport Equation

The aim of this introductory chapter is to present the foundation equation of the study
conducted in this thesis: the neutron transport equation. This equation draws its origin from
the classical Boltzmann equation, of which it constitutes a linear version. The Boltzmann
equation, derived by Ludwig Boltzmann in 1872, represents a non-linear integro-differential
equation which describes, through a statistical approach, the behavior of thermodynamic
systems not in equilibrium. It was derived as a conservation model for the transport of
molecules in a medium, constituting the base of the kinetic theory of gas [4]. Thus, this
fundamental tool used for the study of transport of particles in a fluid, can be exploited, in
a more general sense, for the study of the transport of any type of particles, among which
neutrons or photons, or even physical quantities such as heat or charge.

In case of neutrons, the governing equation describing transport processes in a medium
was derived from the original Boltzmann equation with some essential assumptions, among
which: neutrons are considered as point particles1moving along straight trajectories between
subsequent collisions, which might occur only between neutrons and nuclei of the medium,
meaning that neutron-neutron interactions are neglected2. Hence, the general neutron trans-
port equation is reported in order to present the main physical quantities involved in the
work discussion, with proper definitions. Among its several possible formulations, it is here
presented in the integro-differential version, since this is the form that constitutes the starting
point for the application of the spherical harmonics method, to which Chapter 3 is devoted.
In Section 1.1.1 the integro-differential transport equation is derived for the most general
case of a three-dimensions space domain, time and energy dependent system. Then, the
mono-energetic model is reported in Section 1.1.2, whereas the last section of the chapter is
dedicated to the presentation of the most simplified case of the one-dimensional, steady-state,
mono-energetic model.

1A point-particle description implies that neutrons may be completely described by their positions and
velocities. [5]

2For the complete list of the 7 assumptions the transport theory for neutrons is based upon, refer to [6]
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Figure 1.1: Neutrons phase space[7]

1.1 The integro-differential neutron transport equation

1.1.1 The general model

The neutron transport equation is the mathematical expression of the balance in time of
the expected number of neutrons3 in an element of the phase space. The balance is built
by considering the different mechanisms which could alter the number of neutrons initially
contained within the elemental volume dr around position r, with kinetic energy E within
dE and direction of motion Ω within the solid angle dΩ. Thus, this package of neutrons is
observed in its modifications with an approach similar to the Lagrangian approach of fluid
dynamic.

Due to their free motion through the medium, neutrons could enter or leave the volume dr,
passing through its boundaries, collisions could cause a change in energy or direction of
motion of neutrons and finally, neutrons could be introduced in the observed volume with the
energy and direction of interest by neutron sources.

The phase space volume under study consists in a 6 dimensions space defined by the
position r, the energy E and the direction along which particles travel Ω.
Alternatively to the energy E within dE, the neutron velocity vector may be defined as

v = vΩ, where v is the magnitude of the velocity and Ω a unit vector in the direction of
motion [6].

Hence, the neutron population is generally described by the quantity called neutron angular
density, function of the independent variables defining the phase space. This quantity appears,

3The expression expected (or probable) number of neutrons refers to the fact that the average behavior of
the neutron population is under study, and possible fluctuation are generally not taken into account, as well
highlighted in [5].
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in symbols [5]:

n(r, E,Ω, t) ≡ probable numbers of neutrons at position r,

with energy E, direction Ω at time t

per unit volume per unit energy and per unit solid angle.

(1.1)

Generally, it is measured in n/(cm3 MeV sr).
The neutron angular flux is then defined as:

φ(r, E,Ω, t) ≡ v n(r, E,Ω, t) (1.2)

where v is the neutron speed, while term angular appearing in its definition emphasizes the
dependence on the direction of motion. The angular flux φ thus represents the total path
length traveled per unit time by the neutrons defined by (1.1) [8]. Its integration over all the
possible directions is referred to as the total flux, or the scalar flux, whose definition is, in
symbols:

Φ(r, E, t) ≡
∮

dΩφ(r, E,Ω, t). (1.3)

Furthermore, the neutron current consists in:

J(r, E, t) ≡
∮
dΩ Ωφ(r, E,Ω, t) (1.4)

representing the net number of neutrons at position r, with energyE and directionΩ at time t,
crossing the unit area perpendicular to such a direction per unit energy and unit time [5].

In order to characterize the different probabilities of interaction, based on the different
interaction types which neutrons may experience in the transport through the medium, a set
of macroscopic cross-sections are defined. These are, respectively: the total cross-section Σt,
which quantifies the probability per unit path of any type of interaction; the absorption cross-
section Σa, characteristic of the absorption events; the scattering cross-section Σs, for both
elastic and inelastic scattering collisions and finally, the fission cross-section Σf , for fission
reactions. Therefore, cross-sections are defined as the probability per unit path travelled by a
neutron to experience a specific interaction with the nuclei of matter. Their unit of measure
is the reciprocal of a length and the reciprocal of a macroscopical cross-section corresponds
to the neutron mean free path.

In this presentation cross-sections are considered as functions of space and particle energy
only. Inmost cases in nuclear engineering, isotropic materials are used and, as a consequence,
the dependence on the direction Ω of the macroscopic cross-sections could be neglected.
Furthermore, concerning the dependence on time t, it becomes relevant in few cases if one
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considers the different timescale characterizing the variation of Σ with respect to the average
lifetime of a neutron [5].

Thus, taking into account the different physical mechanisms involved in the neutron trans-
port equation, the balance in time of the number of neutrons in the elemental volume dr,
characterized by energy E and direction of motion Ω may be outlined as:

variation in time of neutrons number =− Leakage rate due to streaming

− Leakage rate due to collisions

( absorptions + scattering out)

+ Gain rate due to scattering in

+ Gain rate due to independent sources

where scattering out losses identify those neutrons having the energy and direction of interest
which suffer a scattering collision that causes a modification in energy and direction; as a
consequence, they are treated as a loss from the package of neutrons under investigation. In
the same way, scattering in identifies those neutrons with energy and direction different from
the ones of interest which, suffering a scattering event, emerge with energyE and directionΩ,
representing a gain from the point of view of the neutron balance.

Hence, in terms of angular fluxφ (1.2), themathematical expression of the neutron transport
equation in its integro-differential form reads:

1

v(E)

∂φ(r, E,Ω, t)

∂t
+ Ω · ∇φ(r, E,Ω, t) + Σt(r, E)φ(r, E,Ω, t)

=

∫
dE ′

∮
dΩ′ Σs(r, E

′)φ(r, E ′,Ω′, t) fs(r, E
′ → E,Ω′ → Ω) + S(r, E,Ω, t) (1.5)

where the angular flux φ(r, E,Ω, t) constitutes the unknown of the equation.
On the left-hand side, the first term appearing in (1.5) represents the variation in time of the

angular flux, origin of the differential nature of the equation. Then, the second is generally
called the streaming term and constitutes the net variation of neutrons traveling in and out the
space volume through its boundaries. Eventually, the last term concerns the probable number
of neutrons lost due to an absorption event or a scattering interaction involving neutrons with
the energy and direction of interest before the collision, which experience a change either
in their energy or direction caused by the interaction: the scattering out contribution. This
last term consists of the total cross-section Σt, which represents the probability per unit path
for a neutron of energy E at the position r, to undergo a collision. In this case in which the
absorption and scattering out contribution are combined, Σt is equal to the summation of the
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absorption and the scattering partial cross-sections [8]:

Σt = Σa + Σs. (1.6)

Then, on the right-hand side of Eq. (1.5) the former termdealswith neutrons of every energy
and direction of motion which, undergoing a scattering collision, emerge in the investigated
package with the energy and direction of interest, respectively E and Ω: it consists in the
scattering in contribution. In order to comprise neutrons of all the possible energies, coming
from all the possible directions, integrals over the energiesE ′ and the directionsΩ′ before the
scattering event are performed. Thus, this term is the one responsible of the integral nature of
the equation. The probability per unit path for a neutron of energy E ′ in the volume dr about
r to undergo a scattering interaction with a nucleus of the background medium is expressed
by the scattering cross-section Σs. Instead, the probability that a neutron with the initial
energy E ′ and direction Ω′ will emerge from the collision in the volume dr about r, with
the energy dE about E and direction Ω within the solid angle dΩ is given by the scattering
probability function fs(r, E ′ → E,Ω′ → Ω). Thus, the scattering kernel fs is defined as a
probability density function which may be conveniently normalized through the integration
over the energy range and over all the directions as:∮

dΩ′
∫ ∞

0

dE ′ fs(r, E
′ → E,Ω′ → Ω) = 1. (1.7)

Besides, it is useful to note that, generally, the scattering function fs may be assumed
as dependent only on the angle between the direction of motion of the particle before the
scattering event, Ω′, and the one after the interaction, Ω, which is referred to as the scattering
angle θ0. Defining the cosine of the scattering angle as:

cos θ0 ≡ µ0 = Ω′ ·Ω (1.8)

then the dependence of the scattering function fs may be rewritten as [8]:

fs(r, E
′ → E,Ω′ → Ω) = fs(r, E

′ → E,Ω′ ·Ω) (1.9)

Finally, the latter term appearing in the right-hand side of Eq. (1.5) consists in the source
term, which accounts for neutrons injected in the volume dr around position r, with energyE
within dE, direction Ω within dΩ at time t [5].

Hence, substituting the simplified notation adopted for the scattering kernel fs (1.9) in the
scattering integral, the neutron transport equation for a three-dimensional, time and energy
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dependent system yields4:

1

v(E)

∂φ(r, E,Ω, t)

∂t
+ Ω · ∇φ(r, E,Ω, t) + Σt(r, E)φ(r, E,Ω, t) =

=

∫
dE ′

∮
dΩ′ Σs(r, E

′)φ(r, E ′,Ω′, t) fs(r, E
′ → E,Ω′ ·Ω) + S(r, E,Ω, t). (1.10)

Moreover, to considered also the case of fundamental interest in nuclear reactor engineering
of fissionable material, a further term accounting for neutrons emerging from fission reactions
in the package of interest, that is with energy E and direction Ω in the volume dr, should
be included in the transport equation (1.10). As for the scattering term, the fission term
is built starting from the fission partial cross-section Σf and the fission probability density
function χ(r, E), which refers to the probability that from a fission reaction between neutrons
transported in the medium and the nuclei constituting of it, will emerge a neutron at the
position r, with energy E. The simplification with respect to the case of scattering concerns
the fact that fission may be considered in a good approximation as an isotropic phenomenon,
meaning that all directions are equally likely for the fission neutrons emission. Thus the
additional term to be inserted in Eq. (1.10) results in:

χ(r, E)

4π

∫
dE ′

∮
dΩ′ ν(E ′) Σf (r, E

′)φ(r, E ′,Ω′, t) (1.11)

where ν(E ′) is defined as the average number of fission neutrons emitted at the position r
due to the fission reaction of a nucleus induced by a neutron of energy E ′. Hence, the time-
dependent neutron transport equation in presence of fission reactions and external source S
reads:

1

v(E)

∂φ(r, E,Ω, t)

∂t
+ Ω · ∇φ(r, E,Ω, t) + Σ(r, E)φ(r, E,Ω, t)

=

∫
dE ′

∮
dΩ′ Σs(r, E

′)φ(r, E ′,Ω′, t)fs(r, E
′ → E,Ω′ ·Ω)

+
χ(r, E)

4π

∫
dE ′

∮
dΩ′ν(E ′) Σf (r, E

′) φ(r, E ′,Ω′, t) + S(r, E,Ω, t). (1.12)

Finally, if a stationary system has to be considered, the term characterized by the derivative
with respect to time is cancelled and the time variable is deleted from any quantity appearing
in the equation governing the particles transport.

4For the overall derivation the interested lecturer could refer to any transport theory or reactor analysis book,
such as yet cited [6] or [5].
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1.1.2 Boundary and initial conditions

From the mathematical point of view, the neutron transport equation requires initial and
boundary conditions to be solved. About the latter, different types of conditions may be
imposed based on the specific case of interest. As concerns the initial condition instead,
the integro-differential neutron transport equation is characterized by a first derivative with
respect to time, meaning that it is necessary to provide the initial value of the neutron angular
density or angular flux, as [9]:

φ(r, E,Ω, t = 0) = φ0(r, E,Ω). (1.13)

Conversely, the boundary conditions imply different possible options. Some of the most
common choices are the free surface, reflecting or albedo conditions, and periodic boundary
conditions [9].

In the present work, only the free surface type is examined and employed in the developed
mathematical discussion. These conditions are also denoted as vacuum boundary conditions
and interest those regions which are simply connected, meaning non-reentrant bodies. Ac-
cording to this type of conditions, neutrons which leave the region are supposed unable to
return in it and in addition, it is assumed that no neutrons can enter the region from outside.
Defining the outward normal direction vector n̂with respect to the surface ∂V delimiting the
domain V at the position rs, the free surface boundary conditions are then expressed as [5]:

φ(rs, E,Ωinc, t) = 0 for Ωinc · n̂ < 0. (1.14)

1.1.3 Mono-energetic model

The mono-energetic model, also denoted as one-velocity model or one-group theory [5],
represents a simplified model of the general neutron transport equation in which the descrip-
tion of the distribution of neutrons in the energy space is not treated. However, even though
it constitutes a restricted description of the neutron population transported in a medium,
the mono-energetic model may reveal itself extremely useful in several occasions in reactor
analysis [6].

The model may be derived from the integration over the energy range of the energy-
dependent neutron transport equation in the form (1.10). Holding true that cross-sections are
independent on energy, generally a reasonable assumption in case of thermal neutrons [5],
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the neutron transport equation becomes:

1

v

∂φ(r,Ω, t)

∂t
+ Ω · ∇φ(r,Ω, t) + Σt(r)φ(r,Ω, t)

=

∮
dΩ′ Σs(r)φ(r,Ω′, t) fs(r,Ω

′ ·Ω) + S(r,Ω, t). (1.15)

1.1.4 Plane geometry model

A simplified but useful approximation which may be derived about the neutron transport
equation is the one-dimensional mono-energetic model for homogeneous media. Despite its
several simplifications with respect to the most general neutron transport problem (1.10),
this model may be effective in different applications of transport theory calculations. The
following model is indeed the one employed in the description of the behavior of a neutron
population transported in a slab, which is the geometrical configuration considered in the
present thesis.

The fundamental assumption in plane geometry consists in the fact that the neutron angular
flux, or in general the neutron angular density, depends on a unique spatial coordinate, for
instance the x coordinate [9]. Then, as concerns the direction Ω, the angular flux depends
only on the angle formed by the direction with the x-axis or alternatively, on the cosine
of this angle, generally denoted as µ (see Figure). Besides, as a consequence of the plane
symmetry assumption, the angular flux is independent of the azimuthal angle ϕ, taking the
polar coordinate as coincident with the x-axis of Cartesian reference system.

In Cartesian coordinates, the expression of the unit direction vector Ω as function of the
the co-latitude angle θ and the azimuthal angle ϕ is:

Ω = cos θ êx + sin θ cosϕ êy + sin θ sinϕ êz. (1.16)

Defining µ = cos θ, the formulation becomes:

Ω = µ êx +
√

1− µ2 cosϕ êy +
√

1− µ2 sinϕ êz. (1.17)

Then, taking as reference the mono-energetic version of the neutron transport equa-
tion (1.15), the streaming term appearing in the left-hand side reduces in plane geometry
to [9]:

Ω · ∇φ(x,Ω, t) = Ωx
∂

∂x
φ(x,Ωx, t) (1.18)

where the x-component of the direction vector Ω, namely Ωx, corresponds to µ as evident
from (1.17). Hence, the one-dimensional form of the mono-energetic neutron transport
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Figure 1.2: Cartesian coordinate reference system[7]

equation yields:

1

v

∂φ(x, µ, t)

∂t
+ µ

∂φ(x, µ, t)

∂x
+ Σtφ(x, µ, t)

=

∫ 1

−1

dµΣs φ(x, µ′, t) fs(x, µµ
′) + S(x, µ, t). (1.19)

in which it may be noted how the range of integration over dµ, between−1 and 1, corresponds
to the variation of the polar angle θ between 0 and π [9].
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Chapter 2

The Criticality Problem

A crucial issue in nuclear reactor theory is establishing whether the neutron population
throughout the reactor core is independent on time, decreases or increases with it, through
the different operating stages of the nuclear device. As a consequence, one has to establish
whether the fission chain reaction involving the fissile or fissionable nuclei of the reactor fuel,
can be maintained stationary and controlled [10]

In particular, for fission chain reaction is intended the process in which neutrons produced
by fission reactions of heavy nuclides, asU235 orU238, interactingwith others of these nuclides
are able to induce further fission events and so on. Hence, it is said nuclear reactor that
specific device able to maintain a self-sustainable and controlled fission chain reaction [11].

In order to ensure a stationary energy production from the fission reactions taking place
in the reactor core, an exact balance between neutrons produced by fission events and those
lost due to absorption or leakages out of the boundary of the system has to occurred. In
the case in which such a balance is verified, it is then possible to have a neutron population
throughout the reactor that is independent of time, with fission as unique neutron source term.
A reactor in such a condition is said a critical reactor, characterized by a stationary fission
chain reaction. Whether instead the number of neutrons released in fission events involving
the nuclear fuel is smaller than the neutrons lost due to absorption or leakage out of outer
surface, in absence of an external neutron source 1, the chain reaction will die out over time
and the reactor is said subcritical. On the contrary, whether the number of neutrons produced
by fission reactions overcomes the number of those which are lost, the number of neutrons
in the system is destined to increase from generation to generation and the reactor is defined
supercritical [12].

Therefore, primary interest of the nuclear engineer is to design a power reactor able to
accomplish and maintain the critical state [13]. The two design aspects which play major
roles in relation to criticality are the material composition and the geometrical configuration.

1In general, a source different from fission is intended.

16



The criticality problem is indeed commonly intended as the research of the right combination
of these two aspects that allows the reactor to achieve a critical state. Generally, nuclear power
reactors are designed in such a way that their condition, among critical, super- or sub-critical,
can be modified as needed. The modification and control of the critical state of a nuclear
reactor is indeed an extremely delicate and fundamental aspect of nuclear reactor analysis,
commonly known as nuclear reactor control [13]. Several physical phenomena participate in
altering the reactor criticality over its different operating stages. Some phenomena, as the fuel
depletion or the accumulation of fission products in the core as the chain reaction develops,
contribute to decrease the number of neutrons in the neutron balance, making the system
tend to a subcritical condition. The increment of the amount of plutonium instead induces an
increase in the number of neutrons and, as a consequence, it contributes to make the system
supercritical [14]. From the engineering point of view, several different countermeasures
are foreseen in the reactor design in order to compensate for departure from the critical and
stationary state of the device. To name a few, the insertion or withdrawing of control rods, the
use of soluble poisons or the buildup of xenon are some of the strategies available [14], [15].

Mathematically, the criticality problem is approached as an eigenvalue problem. This
means that a non-trivial and non-negative solution to the homogeneous form of the stationary
neutron transport equation, meaning in absence of external sources, is searched, under
appropriate boundary conditions.

Bearing to mind the physical meaning of critical state in the reactor core, a perfect balance
between the number of neutrons produced by fission reactions and the number of neutrons
lost for absorption and leakage out of the system, the time-independent transport equation
expression of such a balance reads:

Ω · ∇φ(r, E,Ω) + Σt(r, E)φ(r, E,Ω)

=

∮
dΩ′

∫
dE ′Σs(r, E

′)φ(r, E ′,Ω′) fs(r, E
′ → E,Ω′ ·Ω)

+
χ(r, E)

4π

∮
dΩ′

∫
dE ′ ν(E ′)Σf (r, E

′)φ(r, E ′,Ω′) (2.1)

for which vacuum boundary conditions are considered. However, due to the use of approxi-
mations in numerical calculations and uncertainties in nuclear data, there are cases in which,
even if the reactor is actually critical, when computed, it may result deviated from critical-
ity [3]. Thus, in order to apply the steady-state Eq. (2.1) also to those systems that result
slightly not critical, and hence requiring a time-dependent model for the description of their
behavior, neutron transport equation is transformed in an eigenvalue problem by inserting a
constant, characteristic of the case to be analysed [15].
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Mathematically, an eigenvalue equation is an expression which reads:

Âϕ = λϕ (2.2)

where Â is a square matrix ∈ Cn×n, λ is a scalar, real or complex, and ϕ is a non-null
vector such that the expression (2.2) is verified. Thus, any λ satisfying Eq. (2.2) is called
an eigenvalue of the matrix Â and the corresponding solution vector ϕ is the associated
eigenvector [16]. This two, combined together, are named eigenpair. In summary, Â

consists in an operator which, when applied to ϕ, behaves like the operator "multiplication
times a constant", where the constant is the eigenvalue of the problem [10].

Concerning the neutron transport equation, four different eigenvalue equations may be
formulated in relation to, respectevely, the eigenvalues: k, the effective multiplication factor,
α, the fundamental multiplication rate, γ, the multiplication factor per collision and lastly
δ, the effective density factor. The eigenfunctions corresponding to the various eigenvalues,
constituting the neutron population distribution solution of the eigenvalue equations, differ
except in case of a critical systems [3].

Generally, it is useful in the treatment of eigenvalue problems the use of the operator
notation. Thus, referring to the steady-state homogeneous version of the integro-differential
form of the neutron transport equation (2.1), the following operators are defined:

L = Ω · ∇· Leakage operator

R = Σt(r, E)· Removal operator

S =

∮
dΩ′

∫
dE ′Σs(r, E

′) fs(r, E
′ → E,Ω′ ·Ω)· Scattering operator

F =
χ(r, E)

4π

∮
dΩ′

∫
dE ′ ν(E ′) Σf (r, E

′)· Fission operator

In addition, the combination of the L and R operator is defined as the transport operator
T = L + R. The transport equation (2.1) in operator form then yields:

Lφ(r, E,Ω) + Rφ(r, E,Ω) = Sφ(r, E,Ω) + Fφ(r, E,Ω).

The four different eigenvalue types are inserted in the neutron balance equation as modifi-
cation of its specific terms, peculiar of each possible type of eigenvalue. They constitute an
identifier of the amount of the system deviation from criticality.

Referring to each type of eigenvalue equation, the set of eigenvalues solution of the equation
is denoted as the eigenvalue spectrum, or eigenspectrum. The eigenfunctions associated to
the values of the spectrum are then called modes, or harmonics. The characteristic spectrum
of a specific operator can be continuous, discrete or can have the two natures combined.
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Furthermore, the eigenvalues may be real or complex, single or multiple [17]. Supposing
a discrete spectrum and organizing its eigenvalues in a descending order of modulus, it is
possible to individuate the eigenvalue with the largest modulus generally denoted as the
spectral radius, or the fundamental eigenvalue. The associated eigenfunction is then referred
to as the fundamental solution or the fundamentalmodewhich, in case of the neutron transport
equation, consists in the unique solution of the eigenvalue problem of physical significance.
It is indeed the only one of constant sign over all the domain [18], [16]. The solutions
associated to the other values of the spectrum are lastly denoted as higher-modes.

2.1 The k eigenvalue

In literature, the most widely inspected eigenvalue is the effective multiplication factor
k. The denomination comes from the fact that it is inserted in the homogeneous transport
equation as a modification to the fission source term. Specifically, it divides the fission
contribution of the time-independent neutron transport equation as follows:

Ω · ∇φ(r, E,Ω) + Σt(r, E)φ(r, E,Ω)

=

∮
dΩ′

∫
dE ′Σs(r, E

′) fs(r, E
′ → E,Ω′ ·Ω)φ(r, E ′,Ω′)

+
1

k

χ(r, E)

4π

∮
dΩ′

∫
dE ′ ν(E ′) Σf (r, E

′)φ(r, E,Ω). (2.3)

In operator notation the transport equation with the k eigenvalue (2.3) reads:

Lφ+ Rφ = Sφ+
1

k
Fφ. (2.4)

Thus, the effective multiplication factor k intervenes, in terms of neutron balance, as a
modification of the gain term with respect to the losses, allowing to alter the number of
neutrons emitted by fission reactions in order to make the system critical [17]. A first
definition hence denotes k as the ratio of the number of neutrons present in the core in two
successive fission generations [13]:

k =
Number of neutrons in one generation

Number of neutrons in preceding generation

Moreover, based on this definition, the k eigenvalue can be also found as the effective neutron
multiplication factor per neutron generation [15].

In reference to the k-eigenvalue spectrum, the set of k values for which a non-trivial
solution φ of Eq. (2.4) exists, the eigenvalue with the algebraically largest real part is denoted
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Figure 2.1: Neutron population density time behaviour in case of a sub-critical, critical and super-critical system
without external sources and n(0) = 1 (on the left), with the presence of an external source and n(0) = 0 (on
the right). [12]

as the fundamental k-eigenvalue, generally indicated as k0 or keff. As mentioned above, the
solution associated to this eigenvalue is the fundamental k-mode, the unique solution for the
neutron population distribution with a physical meaning because positive over all the domain.
Then, it may be noted that if k0 = 1, the number of neutrons in the reactor core does not vary
from a generation to the successive one. Hence, in this case the chain reaction is independent
on time and the reactor is referred to as critical. If k0 < 1, the reactor constitutes instead a
subcritical system, characterized by a chain reaction destined to die out. Finally, if k0 > 1

the system is supercritical, with the number of neutrons which increase from generation to
generation and consequently, the chain reaction does too.

Schematically: 
k0 > 1 supercritical reactor

k0 = 1 critical reactor

k0 < 1 subcritical reactor

Furthermore, alternatively to the definition of themultiplication factor k in terms of neutron
generations, the k factor may be also referred to as the ratio between the fission production
rate and the loss rate due to both absorption and leakage [13]. A graphical representation
of the different behavior of the neutron population with respect to time in a system that is,
respectively, critical, sub- or super-critical, is reported in Figure 2.1.

Looking to Figure 2.1, it interesting to notice how even for extremely small deviations
of the multiplication factor from unity, correspond substantial changes in neutron population
evolution with respect to time. The main cause of such a change is the small extent of neutron
lifetime, whose values are included between 10−8 and 10−4 s. However, the nuclear reactor
control is made possible by the presence of the delayed neutrons, those neutrons which are
not released immediately after the fission event. Delayed neutrons are indeed emitted in the
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decay process of some fission products called the delayed neutron precursors. The delay with
respect to those particles emitted almost instantaneously with the fission reaction, indicated
as prompt neutrons, ranges from values of the order of milliseconds up to seconds, nearly
a minute, in relation to the different half-live values of neutron precursors. Therefore, the
substantial difference in timescales between prompt and delayed neutrons emission constitutes
the crucial feature that permits the reactor control [12].

In the present work, delayed neutrons are not included in the mathematical and physical
discussion of the neutron transport in the reactor core. For steady-state problems and critical-
ity evaluations this is a reasonable assumption, but their fundamental role in nuclear reactor
kinetics is worth the citation.

1D mono-energetic model with k eigenvalue

With respect to the eigenvalue formalism of the neutron transport equation in its most
general model (2.3), object of the entire presentation consists in its simplified 1D mono-
energetic version, for a slab geometry reactor with isotropic scattering. Then, the equation
the work is concerned with, here presented specifically for the case with the k eigenvalue,
reads:

µ
∂φ(x, µ)

∂x
+ Σt φ(x, µ) =

(
Σs

2
+

1

k

νΣf

2

)∫
dµ′φ(x, µ′) (2.5)

where, as yet introduced in Sect. 1.1.4, φ(x, µ) is the neutron angular flux for geometri-
cal configuration implying plane symmetry. Furthermore, cross-sections are assumed as
independent of space and direction. Hence, in operator notation Eq. (2.5) results in:

Lφ+ Rφ = (S +
1

k
F)φ (2.6)

constituting the base for the application of the PN approximation to which Sect.3.2.3 is
devoted. Therefore, in this form Eq. (2.6) represents a generalized eigenvalue equation which
may be transformed in the standard form (Eq. (2.2)), by manipulating the left-hand side
as [17]:

(L + R− S) φ = L̂ φ =
1

k
F φ. (2.7)

Since the F operator could be singular, that is it does not admit the inverse, the inversion is
applied to the L operator which is not singular. Finally, the multiplication factor is taken on
the other side of the equation and the problem yields:

L̂−1F φ = k φ. (2.8)
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Thus, the problem consists in determining the discrete eigenvalues ki of the global matrix
L̂−1F and their associated eigenfunctions φi [17].

2.2 The α eigenvalue

The α eigenvalue may be found in literature as the fundamental multiplication rate eigen-
value [15], the decay constant [19] or the time eigenvalue [20], based on the different contests
in which such an eigenvalue may have a role.

Nearly all these denominations emphasize the relation between this eigenvalue type and
the description of the time-dependent behavior of a neutron population in a nuclear reactor,
representing a fundamental field of interest in nuclear reactor kinetic. In particular, in
criticality analysis theα eigenvalue equations constitute a valid tool for the study of subcritical
systems, for which an adequate description of the temporal behavior of the neutron population
requires the fundamental solution as well as a relevant number of higher modes [21].

The starting point to formulate theα eigenvalue problem is represented by the homogeneous
version of the time-dependent neutron transport equation in its integro-differential form:

1

v

∂φ(r, E,Ω, t)

∂t
+ Ω · ∇φ(r, E,Ω, t) + Σt φ(r, E,Ω, t)

=

∮
dΩ′

∫
dE ′Σs φ(r, E ′,Ω′, t) fs(r, E

′ → E,Ω′ ·Ω)

+
νχ(r, E)

4π

∮
dΩ′

∫
dE ′Σfφ(r, E ′,Ω′, t). (2.9)

This equation, with proper boundary conditions applied, such as vacuum boundary condi-
tions (1.14), defines an initial value problem. If the initial condition for the neutron population
distribution, φ(r, E,Ω, t = 0), is provided, the neutron angular flux may be found at any
time t > 0, as solution of Eq. (2.9), which has been demonstrated by many authors to exist
and to be unique under some mathematical constraints about cross-sections and the source
term [5].

Assuming boundary conditions as constant in time, solutions to Eq. (2.9) of the following
form are considered:

φ(r, E,Ω, t) = φ(r, E,Ω) eαt (2.10)

where α may assume all the values that generate a non-trivial solution of the homogeneous
time-independent neutron transport equation. The corresponding solutions constitute the
eigenfunctions of the problem, exponentials which are referred to as α-modes [22].
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Hence, by inserting the function (2.10) and the corresponding derivative with respect to
time into Eq. (2.9), one obtains:

α

v
φ(r, E,Ω) eαt + Ω · ∇φ(r, E,Ω) eαt + Σt φ(r, E,Ω) eαt

=

∮
dΩ′

∫
dE ′Σs φ(r, E ′,Ω′) eαt fs(r, E

′ → E,Ω′ ·Ω)

+
νχ(r, E)

4π

∮
dΩ′

∫
dE ′Σfφ(r, E ′,Ω′) eαt.

Then, canceling out the exponential from the above equation, the α eigenvalue problem is
obtained as [5]:

Ω · ∇φ(r, E,Ω) + (Σt +
α

v
)φ(r, E,Ω)

=

∫
dE ′

∮
dΩ′ Σsφ(r, E ′,Ω′)fs(r, E

′ → E,Ω′ ·Ω)

+
χ(r, E)

4π

∫
dE ′

∮
dΩ′ Σfνφ(r, E ′,Ω′) (2.11)

which may be also reached by applying Laplace transforms to Eq. 2.10.
In operator formalism Eq. (2.11) reads:

(T +
α

v
)φ = (S + F)φ. (2.12)

Thus, the criticality problemwithα eigenvalue is approached with an increment of the total
macroscopic cross-sectionΣt by a factorα/v, whichmay be referred to as fictitious capture [6]
or time-absorption term [23]. With v ,the neutron speed is denoted. The absorption term
of the neutron transport equation may be varied through the α eigenvalue, until the system
critical state is reached.

The α eigenvalue, differently from the other eigenvalue types, has a unit of measure
corresponding to the inverse of time. The set of α eigenvalues for which Eq. (2.12) is
verified, is referred to as the α-eigenvalue spectrum. Among these, the α which presents
the largest real part in absolute value is called the fundamental eigenvalue and it is generally
denoted as α0. The corresponding solution, an exponential with α0 as characteristic constant,
represents the asymptotic behavior of a neutron population described by Eq. (2.12). Indeed,
being α0 the eigenvalue with the largest real part, at late times the corresponding solution
will be the only one to survive with respect to the higher exponential modes [5].

Thus, the criticality problem reduces to determine the sign of α0. It follows indeed that for
α0 < 0 the system neutron population will decay over time following an exponential behavior
and, as a consequence, the system is subcritical; on the contrary, for α0 > 0 the neutron
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population will diverge over time and the system results supercritical, whereas for α0 = 0 the
system is critical.

To summarize: 
α0 > 0 supercritical reactor

α0 = 0 critical reactor

α0 < 0 subcritical reactor

Finally, in reference to this type of eigenvalue many studies concerning the nature of the
eigenvalue spectrum in different geometries with diverse boundary conditions applied and
different scattering features, have been conducted. In particular, it has been demonstrated
that for unbounded geometries a discrete eigenvalue spectrum could be not always found. As
regards for instance the case of a mono-energetic model applied to an infinite slab geometry,
it has been proved that the α-eigenvalue spectrum consists of both a finite set of real and
discrete eigenvalues and of a continuous part. The respective composition in terms of number
and location of the eigenvalues is based upon the extent of the eigenvalue real part in relation
to the value of the product between the total macroscopic cross-section and neutron speed
considered, named the Corngold limit [5], [24].

1D mono-energetic model with α eigenvalue

As reported for the k eigenvalue, the eigenvalue formalism of the neutron transport equation
for a slab geometry with isotropic scattering, with α as eigenvalue reads:

µ
∂φ(x, µ)

∂x
+ (Σt +

α

v
) φ(x, µ) =

cΣt

2

∫
dµ′φ(x, µ′) (2.13)

where c is defined as the average number of secondary neutrons, the mean number of particles
that one has to expect from a collision event.

In operator formalism Eq. (2.13) results in:

Lφ+ (R +
α

v
)φ = (S + F)φ (2.14)

basis for the application of the PN approximation reported in Sect. 3.2.3. Eq. (2.14) consists
in a generalized eigenvalue equation which, transformed in its standard form, yields:

vB φ = αφ (2.15)

withB =
[
(L+R)−(S+F)

]
. In these terms, the problem is therefore reduced to determine

theα-eigenvalue spectrum and the associated eigenfunctions φ, solutions of the equation [17].
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2.3 The γ eigenvalue

The γ eigenvalue was suggested by Davison [6] as a direct eigenvalue of the integro-
differential neutron transport equation. In literature it may be found as the effective multipli-
cation factor per collision or with the same physical meaning of the number of secondary
neutrons per collision, generally denoted as c [15], [24].

As its denomination indicates, the γ eigenvalue is inserted in the integro-differential neutron
transport equation as a modification of the number of neutrons per collision, which may be
altered until the criticality condition is achieved [17]. In particular, this type of eigenvalue is
inserted as constant factor by which, both the scattering in and the fission source term in the
neutron balance, are divided.

Hence, the γ-eigenvalue formalism of the homogeneous time-independent neutron trans-
port equation reads:

Ω · ∇φ(r, E,Ω) + Σt φ(r, E,Ω)

=
1

γ

(∮
dΩ′

∫
dE ′Σs φ(r, E ′,Ω′) fs(E

′ → E,Ω′ ·Ω)

+
νχ(r, E)

4π

∮
dΩ′

∫
dE ′Σf φ(r, E ′,Ω′)

)
(2.16)

which, written in operator formalism Eq. (2.16) yields:

(L + R) φ =
1

γ
(S + F)φ. (2.17)

Likewise the previous eigenvalue types, the set of γ values for which Eq. (2.17) is verified,
is referred to as the γ-eigenvalue spectrum, whereas the corresponding eigenfunctions φ
are denoted as γ-modes [17]. Among the possible γ, the one with the largest real part
in absolute value is named the fundamental eigenvalue and it is generally indicated as γ0.
The corresponding eigenfunction φ is the fundamental solution, the unique with a physical
meaning.The higher modes are oscillating functions which may assume negative values [18].

From a physical standpoint, the eigenvalue γ0 is interpreted as the ratio between the number
of neutrons produced by the scattering in and the fission source term, and the number of those
lost due to collisions and leakage through the system boundary [17]. According to this
approach, this type of eigenvalue is named the effective multiplication factor per collision.

Concerning the criticality condition discussion, a system is referred to as critical if γ0 = 1,
as subcritical if γ0 < 1 and finally as supercritical if γ0 > 1.
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Schematically: 
γ0 > 1 supercritical reactor

γ0 = 1 critical reactor

γ0 < 1 subcritical reactor

1D mono-energetic model with γ eigenvalue

The γ-eigenvalue formalism of the neutron transport equation for a slab geometry with
isotropic scattering reads:

µ
∂φ(x, µ)

∂x
+ Σt φ(x, µ) =

1

γ

cΣt

2

∫
dµ′φ(x, µ′) (2.18)

with c number of secondaries per collision or critical parameter. Eq. (2.18) may be written
in operator form as:

T φ =
1

γ
Hφ (2.19)

where the operator H is given by the union of the scattering integral and the fission one.
In Sect.3.2.3 the application of the PN approximation to this equation (2.19) is reported.
Eq. (2.19) represents a generalized eigenvalue equation which may be transformed in its

standard form through the inversion of the left-hand side operator T, mentioned above equals
to L + R:

T−1H φ = γφ . (2.20)

Hence, the problem is reduced to determine the γ eigenvalues and the associated eigenfunc-
tions φ [17].

2.4 The δ eigenvalue

The δ eigenvalue, named the effective density factor [3], is certainly the more obscure
eigenvalue type, rarely present in literature. As its denomination indicates, it is inserted in
the neutron transport equation as a modification of the nuclides densities in such a way that
the reactor criticality condition may be reached by altering the neutron leakage rate or the
nuclear densities [17].
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Specifically, the δ-eigenvalue form of the homogeneous stationary neutron transport equa-
tion reads:

Ω · ∇φ(r, E,Ω) +
1

δ
Σt φ(r, E,Ω)

=
1

δ

(∮
dΩ′

∫
dE ′Σsφ(r, E ′,Ω′) fs(E

′ → E,Ω′ ·Ω)

+
νχ(r, E)

4π

∮
dΩ′

∫
dE ′Σf φ(r, E ′,Ω′)

)
. (2.21)

In operator formalism Eq.(2.21) yields:

Lφ+
1

δ
Rφ =

1

δ
(S + F)φ (2.22)

where it is made evident how the δ eigenvalue intervenes both on the removal term that
on the source terms of the neutron balance, constituted by the scattering in and the fission
contribution.

As for the previously presented eigenvalue types, the different values which δ may assume
to make Eq. (2.22) verified, are referred to as the δ-eigenvalue spectrum. The corresponding
eigenfunctionsφ are denoted as δ-modes instead. From the physical point of view, the solution
of interest is the one denominated as the fundamental solution eigenfunction, corresponding
to the δ0 eigenvalue, the one characterized by the algebraically largest real part among the
discrete δ-eigenvalue spectrum.

Furthermore, δ0 represents the ratio between the difference of the fission and absorption
rate, and the leakage rate [17].

Based on this definition, the criticality condition in a nuclear system is characterized by
δ0 = 1, a subcritical system is a reactor such that δ0 < 1 and, as a consequence, a supercritical
system is characterized by δ0 > 1.
Schematically: 

δ0 < 1 subcritical reactor

δ0 = 1 critical reactor

δ0 > 1 supercritical reactor.

1D mono-energetic model with δ eigenvalue

The δ-eigenvalue formalism of the one-dimensional neutron transport equation for a slab
geometry with isotropic scattering yields:

µ
∂φ(x, µ)

∂x
+

1

δ
Σt φ(x, µ) =

1

δ

cΣt

2

∫
dµ′φ(x, µ′). (2.23)
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In operator form Eq. (2.23) then reads:

L φ+
1

δ
R φ =

1

δ
(S + F) φ, (2.24)

constituting the base upon which the PN approximation is applied in Sect. 3.2.3.
The standard form of the generalized eigenvalue equation (2.24) is then obtained through:

L−1
(
R− (S + F)

)
φ = δ φ (2.25)

and the problem is reduced to determine the δ eigenvalues and the associated eigenvec-
tors [17].
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Chapter 3

The Spherical Harmonics Method

A complete description of a neutron population in phase space should involve information
regarding the distribution in space, energy, time and travel direction of the population itself [8].
The solution of equations including contemporary all these dependencies requires extremely
great efforts, feasible only for simplified models.

Several methods have been developed in order to provide a description of the angular
distribution of a neutron population, among which the spherical harmonics method, the
discrete ordinates method and the method of the characteristics. Other methods, devoted
to the study of the distribution in the energy space of the population, are based on the
discretization of the energy domain. For the solution of the energy dependent problems
multigroup methods are generally applied [5].

In the present work, only the angular distribution of neutrons moving in a medium is
inspected, with the fundamental assumption of isotropic and homogeneous media. The
description of the neutron population distribution is limited to its spatial and angular depen-
dency, thus a mono-energetic model of the transport equation is adopted for the discussion.
Among the different approximations suitable for the study of the angular properties of the
neutron motion through a medium, the spherical harmonics method is the one explored in this
presentation. Thus, the derivation of the method applied to the neutron transport equation
in a general geometry is briefly outlined1 in Sect. 3.1, and the application of the method to
the simplified case of a plane geometry model is then developed in Sect. 3.2. Eventually, the
application of the spherical harmonics method to the different eigenvalue equations, to which
the entire work is devoted, is reported in Sect. 3.2.3.

In general, the starting point of the spherical harmonics method is the Boltzmann transport
equation in its integro-differential form. The angular dependency of the neutron flux is
treated through the use of an expansion in terms of spherical harmonics, which leads to an
infinite set of coupled differential equations in the various moments of the neutron flux. The

1For a rigorous derivation of the method one may refer to [8].
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resulting infinite set is then reduced to a finite system of differential equations by truncating
the series expansion of the neutron flux at an arbitrary high order of accuracy N , acquiring
the so-called PN approximation.

3.1 Spherical harmonics method in general geometry

Starting from the transport integro-differential formulation for a mono-energetic model, a
series representation of the functions involved in the equation is developed. The expansions
are carried out through the use of an orthonormal set of functions, the spherical harmonics[8].
The time-dependent neutron transport equation for the considered model reads:

1

v

∂φ(r,Ω, t)

∂t
+ Ω · ∇φ(r,Ω, t) + Σt φ(r,Ω, t) =

=

∮
dΩ′ Σs φ(r,Ω′, t)fs(Ω

′ ·Ω) + S(r,Ω, t). (3.1)

First, the probability density function for scattering collisions fs(Ω′ ·Ω) is inspected. As a
consequence of the isotropic and homogeneous medium assumption, the scattering function
results to be a function only of the scattering angle θ0 between the direction of motion
Ω′, before the scattering event, and the particle direction after the scattering interaction Ω.
Generally, the cosine of the scattering angle is defined, as previously reported:

µ0 ≡ cos θ0 = Ω′ ·Ω.

Thus, the scattering function fs(Ω′ · Ω) may be expanded in a series of Legendre poly-
nomials Pn(µ), which constitute a complete set of orthogonal polynomials defined on the
interval −1 ≤ µ ≤ 1 [5].
The expansion yields:

fs(Ω
′ ·Ω) ≡ fs(µ0) ≡

∞∑
n=0

(2n+ 1)

2
fnPn(Ω′ ·Ω). (3.2)

By making use of the orthogonality properties of the Legendre polynomials, through the
multiplication by the Legendre polynomial Pm(µ0) and the integration over dµ0 one acquires:∫ 1

−1

dµ0 fs(µ0)Pm(µ0) =
∞∑
n=0

(2n+ 1)

2
fn

∫ 1

−1

dµ0 Pn(µ0)Pm(µ0) = f−Lm (3.3)

where fm are referred to as the moments of the scattering function, whereas L denotes the
order of scattering anisotropy.
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The first moment of the scattering function fs corresponds to the average value of the
cosine of the scattering angle µ̄0.

Inserting (3.2) in the scattering integral of integro-differential equation (3.1), and consid-
ering that dΩ′ = dµ′dϕ′, yield the expression:∮

dΩ′ Σs φ(r,Ω′, t) fs(Ω
′ ·Ω) =

=

∮
dΩ′ Σs φ(r,Ω′, t)

∞∑
n=0

(2n+ 1)

2
fn Pn(Ω′ ·Ω) =

=

∫ 1

−1

dµ′
∫ 2π

0

dϕ′Σs φ(r,Ω′, t)
∞∑
n=0

(2n+ 1)

2
fn Pn(Ω′ ·Ω). (3.4)

The complicated dependency uponΩ′ ·Ω of the Legendre polynomialPn(Ω′ ·Ω) appearing
in the scattering integral could be rewritten in terms of the components of the directions Ω′

and Ω, respectively µ′, ϕ′, µ and ϕ, through the use of the addition theorem:

Pn(Ω′ ·Ω) =
n∑

β=−n

(n− β)!

(n+ β)!
P β
n (µ)P β

n (µ′) eiβ(ϕ−ϕ′) (3.5)

where P β
n are the associated Legendre functions, whose definition is:

P β
n (µ) = (sin θ)β

dβ

dµβ
Pn(µ). (3.6)

If β is even, the function P β
n is a polynomial [25]. The associated functions appear applied

for n ≥ 0 and −n ≤ β ≤ n. Then, the following relations may be noted:

P 0
n(µ) = Pn(µ) (3.7)

P β
n (µ) = 0 for β > n. (3.8)

Exploiting the addition therorem (3.5), rearranging the terms and by the multiplication and
division by 2π, the scattering integral appears as:

∫ 1

−1

dµ′
∫ 2π

0

dϕ′Σs φ(r,Ω′, t)
∞∑
n=0

2π

2π

(2n+ 1)

2
fn

n∑
β=−n

(n− β)!

(n+ β)!
P β
n (µ)P β

n (µ′) eiβ(ϕ−ϕ′) =

= Σs

∑
n,β

(n− β)!

(n+ β)!

2n+ 1

4π
2π fn P

β
n (µ) eiβϕ

∫ 1

−1

dµ′
∫ 2π

0

dϕ′φ(r,Ω′, t)P β
n (µ′) e−iβϕ

′ (3.9)
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where the following term may be defined as the coefficient Hβ
n :√

(n− β)!

(n+ β)!

2n+ 1

4π
≡ Hβ

n . (3.10)

The spherical harmonics, representing a complete orthonormal set of functions suitable for
the expansion in series of any functions sufficiently smooth on a sphere, are defined as [8]:

Y β
n (Ω) ≡ Y β

n (µ, ϕ) ≡ Hβ
n P

β
n (µ) eiβϕ (3.11)

where Y β
n is the spherical harmonic function of degree n and order β, with n = 0, 1, . . . and

−n ≤ β ≤ n. The complex conjugate of the spherical harmonic Y β
n is defined as [8]:

Y β?
n (Ω) ≡ (−1 )β Y −βn ≡ Hβ

n P
β
n (µ) e−iβϕ (3.12)

The orthogonality property of the spherical harmonics is expressed as:∫
Y β
n (Ω)Y α?

m (Ω) dΩ = δnmδβα (3.13)

where the notation δij denotes the Kronecker delta.
The expansion in spherical harmonics of the scattering function appearing in the scattering

integral, thus yields:

Σs

∑
n

∑
β

2π fn Y
β
n (Ω)

∮
dΩ′ φ(r,Ω′, t)Y β?

n (Ω′) (3.14)

The expansion in series in terms of spherical harmonics may be applied also to the neutron
flux φ(r,Ω, t) and to the source term S(r,Ω, t), respectively:

φ(r,Ω, t) ≡
∞∑
n=0

n∑
β=−n

φβn(r, t)Y β
n (Ω) (3.15)

S(r,Ω, t) ≡
∞∑
n=0

n∑
β=−n

Sβn(r, t)Y β
n (Ω) (3.16)

The coefficients φβn(r, t), defined as the moments of the angular flux, and Sβn(r, t), the
moments of the source function, can be obtained with the same procedure exploited for the
moments of the scattering function, by means of the orthogonality properties of spherical
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harmonics:

φβn(r, t) ≡
∫
φ(r,Ω, t)Y α?

m (Ω) dΩ (3.17)

Sβn(r, t) ≡
∫
S(r,Ω, t)Y α?

m (Ω) dΩ (3.18)

The integral nature of the integro-differential form of the neutron transport equation could
be hidden by the reformulation of the scattering integral in terms of moments of the neutron
flux. The scattering term as function of angular flux moments reads:

Σs

∑
n,β

ηn φ
β
n(r, t)Y β

n (Ω) (3.19)

where the coefficients ηn are related to the moments of the scattering function through
ηn = 2πfn .

Thus, referring to the original formulation of the transport equation (3.1), expressing each
member constituting of it in terms of spherical harmonics expansion, the neutron transport
equation figures as:

1

v

∂

∂t

∑
n,β

φβn(r, t)Y β
n (Ω) + Ω · ∇

∑
n,β

φβn(r, t)Y β
n (Ω) + Σt

∑
n,β

φβn(r, t)Y β
n (β) =

= Σs

∑
n,β

ηn φ
β
n(r, t)Y β

n (Ω) +
∑
n,β

Sβn(r, t)Y β
n (Ω). (3.20)

By multiplying each term by Y α?
m (Ω), integrating over all the possible directions of motion

Ω and exploiting the orthogonality property of spherical harmonics functions, the neutron
transport equation terms that are immediately obtainable read:

1

v

∂

∂t

∑
n,β

φbetan (r, t)

∮
dΩY β

n (Ω)Y α?
m (Ω) =

1

v

∂

∂t
φαm(r, t) (3.21)

Σt

∑
n,β

φβn(r, t)

∮
dΩY β

n (Ω)Y α?
m (Ω) = Σt φ

α
m(r, t) (3.22)

Σs

∑
n,β

ηn φ
β
n(r, t)

∮
dΩY β

n (Ω)Y α?
m (Ω) = Σs ηmφ

α
m(r, t) (3.23)

∑
n,β

Sβn(r, t)

∮
dΩY β

n (Ω)Y α?
m (Ω) = Sαm(r, t) (3.24)

In order to obtain the leakage term, the expansion of the operator Ω · ∇ is necessary:

Ω · ∇ = µ
∂

∂x
+ sin θ cosϕ

∂

∂y
+ sin θ sinϕ

∂

∂z
(3.25)
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In this case, the spherical harmonics expansion of the term involves different orders and de-
grees with respect to the ones characterizing the remaining members of the neutron transport
equation 2. Conceptually, the result of the expansion in spherical harmonics of the leakage
term could be seen as:

∇ · φ{ near (m,α)} (3.26)

where the notation near(m,α) denotes the involvement of spherical harmonics of orders
near α, specifically α− 1 and α + 1, and degrees nearm, respectivelym− 1 andm+ 1 3.

By the combination of the terms (3.21), (3.26), (3.22), (3.23) and (3.24), one obtains:

1

v

∂

∂t
φαm(r, t) +∇ · φnear(m,α)(r, t) + Σt φ

α
m(r, t) = Σs ηm φ

α
m(r, t) + Sαm(r, t). (3.27)

The resulting system of equations is thus an infinite set of coupled partial differential equa-
tions. For practical computation calculations, the expansion in terms of spherical harmonics
of the terms of the transport equation have to be truncated at the order N , obtaining the
so-called PN approximation.

3.2 Spherical harmonics method in plane geometry

In plane geometry the neutron flux depends only on a single Cartesian coordinate, for
instance the x coordinate, and on the single angle θ which the neutrons direction of motion
Ω forms with the adopted Cartesian axis, the x axis. Defining µ ≡ cos θ, in symbols the
neutron flux figures as:

φ1D = φ(x, µ, t) (3.28)

Hence, the derivation of the spherical harmonics method applied for a problem with general
geometry greatly simplifies in case of a plane geometry model, thanks to the system az-
imuthal symmetry [8]. In a one dimensional system spherical harmonics reduce to Legendre
polynomials, as evident from (3.11) considering β = 0.
Thus, for functions dependent only on the x-component of the direction Ω, spherical

harmonics are not necessary and Legendre polynomials are sufficient.
As yet reported, Legendre polynomials Pn(µ) constitute an orthogonal set of functions

defined for −1 ≤ µ ≥ 1. They represent a suitable type of functions for the expansion
in series of sufficiently regular functions of the angular component µ. The application of
the spherical harmonics method in case of plane geometry is outlined following the same
procedure adopted in the more complicated case of general geometry, and the consequent
simplifications are properly highlighted when occurring.

2The development of this term involves recursion relations [8]
3The formula containing all the terms explicitly expressed may be found in [8].
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The starting equation of the discussion this section deals with, is the neutron transport
equation for a one-dimensional, mono-energetic, time-dependent system. The assumption of
isotropic and homogeneous medium is made. The equation in the analyzed case reads:

1

v

∂

∂t
φ(x, µ, t) + µ

∂

∂x
φ(x, µ, t) + Σt φ(x, µ, t)

=

∮
dΩ′ Σsφ(x, µ′, t) fs(x,Ω

′ ·Ω) + S(x, µ, t). (3.29)

The scattering function fs, function of the cosine of the scattering angle only, could be
expanded in series of Legendre polynomials as yet developed in (3.2) and here reported again
for clarity in the exposition:

fs(x,Ω
′ ·Ω) ≡

∞∑
n=0

(2n+ 1)

2
fn(x)Pn(Ω′ ·Ω).

where fn(x) are the expansion coefficients obtainable through the use of the orthogonality
property of Legendre polynomials. This is stated as:∫ 1

−1

dµPn(µ)Pm(µ) =
2

2n+ 1
δnm (3.30)

where δnm denotes theKronecker delta. The expansion (3.2) could be inserted in the scattering
integral of (3.29) as it follows:∮

dΩ′ Σsφ(x, µ′, t)
∞∑
n=0

fn Pn(Ω′ ·Ω). (3.31)

The dependency upon Ω′ ·Ω of the Legendre polynomial Pn is treated through the use of
the addition theorem (3.5) which involves the associated Legendre functions P β

n (µ). In case
of functions not depending on the angular coordinate ϕ, β is equal to 0 and one obtains for
the corresponding associated Legendre polynomials:

P β
n (µ) = Pn(µ) for β = 0.
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Considering that dΩ′ = dµ′dϕ′, inserting the addition theorem (3.5) and rearranging the
terms, the scattering integral results in:

Σs(x)
∞∑
n=0

n∑
β=−n

∮
dΩ′ φ(x, µ′, t)

2n+ 1

2
fn(x)

(n− β)!

(n+ β)!
P β
n (µ)P β

n (µ′) eiβ(ϕ−ϕ′) =

Σs(x)
∑
n,β

2n+ 1

2

(n− β)!

(n+ β)!
fn(x)P β

n (µ)

∫ 1

−1

dµ′ φ(x, µ′, t)P β
n (µ′)

∫ 2π

0

dϕ′eiβ(ϕ−ϕ′). (3.32)

With β = 0, the integral over dϕ′ of the exponential, the unique part of the term depending
on ϕ′, results in 2π. Furthermore, taking into account (3.2) and denoting 2πfs(x) = ηn(x)

one obtains:

Σs(x)
∞∑
n=0

2n+ 1

2
ηn(x)Pn(µ)

∫ 1

−1

dµ′ φ(x, µ′, t)Pn(µ′). (3.33)

Eventually, also the angular flux φ(x, µ, t) and the source term S(x, µ, t) may be expressed
as series of Legendre polynomials through:

φ(x, µ, t) =
∞∑
n=0

2n+ 1

2
φn(x, t)Pn(µ) (3.34)

S(x, µ, t) =
∞∑
n=0

2n+ 1

2
Sn(x, t)Pn(µ) (3.35)

where the expansion coefficients φn(x, t) and Sn(x, t) may be computed exploiting the
orthogonality properties of the polynomials Pn(µ), respectively:

φn(x, t) =

∫ 1

−1

dµ′ φ(x, µ′, t)Pm(µ′) (3.36)

Sn(x, t) =

∫ 1

−1

dµ′ S(x, µ′, t)Pm(µ′). (3.37)

One of the advantage of the expansion in terms of Legendre functions for the angular flux
concerns the fact that the first two terms of it have a fundamental physical meaning [5]. Let
us consider that: Pn(µ) = 1 for n = 0;

Pn(µ) = µ for n = 1.
(3.38)

The insertion of these results in the definition of the angular flux moments (3.36) yields, for
the first moment:

φ0(x, t) =

∫ 1

−1

dµ′ φ(x, µ′, t) (3.39)
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which represents the total flux evaluated at x. The second moment instead reads:

φ1(x, t) =

∫ 1

−1

dµ′ µ′ φ(x, µ′, t) (3.40)

which constitutes the current in the x direction, generally denoted as J(x, t). Inserting
the angular flux expansion (3.34) and the source expansion (3.35) in the original transport
equation (3.29), one obtains:

1

v

∂

∂t

∞∑
n=0

2n+ 1

2
φn(x, t)Pn(µ)

+µ
∂

∂x

∞∑
n=0

2n+ 1

2
φn(x, t)Pn(µ) + Σt(x)

∞∑
n=0

2n+ 1

2
φn(x, t)Pn(µ)

= Σs(x)
∞∑
n=0

2n+ 1

2
ηn(x)φn(xt)Pn(µ) +

∞∑
n=0

2n+ 1

2
Sn(x, t)Pn(µ).

(3.41)

In order to expressed each member of the equation in terms of angular flux moments, the
orthogonality of Legendre polynomials is exploited through the multiplication by Pm(µ) and
the integration over dµ of each terms. The ones immediately evaluable are:

1

v

∂

∂t

∞∑
n=0

2n+ 1

2
φn(x, t)

∫ 1

−1

Pn(µ)Pm(µ) =
1

v

∂

∂t
φm(x, t) (3.42)

Σt(x)
∞∑
n=0

2n+ 1

2
φn(x, t)

∫ 1

−1

dµPn(µ)Pm(µ) = Σt(x)φm(x, t) (3.43)

Σs(x)
∞∑
n=0

2n+ 1

2
ηn(x)φn(xt)

∫ 1

−1

dµPn(µ)Pm(µ) = Σs(x) ηm(x)φm(x, t) (3.44)

∞∑
n=0

2n+ 1

2
Sn(x, t)

∫ 1

−1

dµPn(µ) = Sm(x, t). (3.45)

The leakage term instead requires in its development the recurrence relation given by:

µPn(µ) =
(n+ 1)Pn+1(µ) + nPn−1(µ)

2n+ 1
. (3.46)
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Thus, substituting this relation in the second term of (3.41), with the multiplication by Pm(µ)

and the integration over dµ one obtains:

∂

∂x

∞∑
n=0

2n+ 1

2
φn(x, t)

∫ 1

−1

(n+ 1)Pn+1(µ) + nPn−1(µ)

2n+ 1
Pm(µ)

=
m

2m+ 1

∂

∂x
φm−1(x, t) +

m+ 1

2m+ 1

∂

∂x
φm+1(x, t) (3.47)

Recombining together all the terms previously evaluated, the spherical harmonics equation,
or equation for the moments is finally obtained:

1

v

∂

∂t
φm(x, t) +

m

2m+ 1

∂

∂x
φm−1(x, t) +

m+ 1

2m+ 1

∂

∂x
φm+1(x, t) + Σt(x)φm(x, t)

= Σs(x) ηm φm(x, t) + Sm(x, t) m = 0, 1, 2, . . . .

(3.48)

The Eq. (3.48) represents an infinite set of coupled partial differential equations, whose
infinite number of unknowns is constituted by the moments of the angular flux. Due to
its dimension, the exact solution of this system of equations is, of course, not possible [6].
However, its size may be reduced to a finite dimension which allows an approximated solution
of the problem, by the introduction of a truncation in the angular flux expansion, based upon
the assumption:

φN+1(x, t) = 0 (3.49)

which lead to the PN approximation. Finally, the time-independent form of the equation for
the moments of the angular flux in plane geometry consists in:

m

2m+ 1

d

dx
φm−1(x) +

m+ 1

2m+ 1

d

dx
φm+1(x) + Σt(x)φm(x)

= Σs(x) ηm φm(x) + Sm(x) m = 0, 1, 2, . . . , N.

(3.50)

3.2.1 Boundary Conditions

Considering an infinite slab geometry, vacuum boundary conditions are developed to be
imposed to the set of first-order differential equations deriving from the application of the
PN approximation to the one-dimensional, steady-state, mono-energetic form of the neutron
transport equation, as presented in Sect. 3.2. Due to the approximate nature of the developed
model, also the boundary conditions may be not rigorously satisfied at the boundary [8].
Concerning the vacuum boundary conditions, different set of conditions may be exploited
and in particular, in the present work Mark and Marshak boundary conditions are taken into
consideration.
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The analytical expression of the free-surface boundary conditions as they have been pre-
sented in Sect. 1.1.2, it is here declined for the case of plane geometry:

φ(0, µ) = 0 µ < 0

φ(a, µ) = 0 µ > 0
(3.51)

where the boundaries have been located at the generic positions x = 0 and x = a. Thus, this
type of conditions corresponds to the statement of a neutron incoming flux equals to zero, as
from vacuum nothing can come.

Mark boundary conditions

In Mark boundary conditions physical interpretation, the proposed conditions are equiv-
alent to those for the case in which vacuum is replaced by a purely absorbing medium [5].
The conditions to be imposed are:

φ(0, µi) = 0 µi = 1, 2, 3, · · · N + 1

2

φ(a,−µi) = 0 µi = 1, 2, 3, · · · N + 1

2

(3.52)

where, being N + 1 the number of first-order differential equations expected by the PN
approximation, as many conditions must be provided. Thus, assuming N as odd, even
though in the numerical computation also even orders of accurancy are treated, (N+1)/2

positive values µi are chosen for the slab left-boundary, whereas the corresponding negative
directions, identified by −µi, are individuated for the application to the right-boundary. The
positive µi consists in the positive roots of equation [5]:

PN+1(µ) = 0, (3.53)

where PN+1(µ) represents the Legendre polynomial of order N + 1.

Marshak boundary conditions

The approach suggested by Marshak for the free-surface boundary conditions provides for
the verification of the following relations at the boundary:∫ 1

0

φ(0, µ)Pm(µ) dµ =0∫ 0

−1

φ(a, µ)Pm(µ) dµ =0 m = 1, 3, 5, · · · , (N + 1)

2

(3.54)
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The result consists in (N + 1)/2 equations at each boundary with all the moments of the flux
coupled. Furthermore, solving such relations (3.54) for m = 1 leads to set the conditions
of partial positive and partial negative incoming current respectively, equal to zero at each
boundary. Indeed: ∫ 1

0

µφ(0, µ) dµ = J+(0) = 0∫ 0

−1

µφ(a, µ) dµ = J−(a) = 0.

(3.55)

Thus, these relations express the zero incoming current condition, generally exploited in
diffusion theory [5].

Moreover, by the application of the P1 approximation to a slab geometry reactor with
Marshak boundary conditions, it may be noted that the extrapolation distance which may
be derived is coincident with the one from diffusion theory, hence representing a better
approximation with respect to the one assessed with Mark boundary conditions. Such a
consideration may suggest an higher accuracy of Marshak conditions, nevertheless even
Mark conditions are commonly exploited [5].

3.2.2 The P1 and P3 system of equations

By way of example, the system of differential equations characterizing the P1 and P3

approximation are here reported for the case of a slab geometry with isotropic scattering and
isotropic source, in a mono-energetic and time-independent system.

The P1 approximation

In the P1 approximation the expression of the angular flux φ reads:

φ(x, µ) ≈
1∑

n=0

2n+ 1

2
φn(x)Pn(µ) =

1

2
φ0(x) +

3

2
µφ1(x) (3.56)

where, recalling the physical meaning of the first and second order moment of the angular
flux, φ0(x) represents the total flux Φ(x), whereas φ1(x) is the neutron current J(x). Further,
by this expression it may be noted that the angular flux in the P1 approximation is linearly
dependent on the cosine of the direction µ.
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Then, referring to the time-independent version of the set of equations (3.48), the system
characteristic of the P1 approximation deriving from it consists in:

dφ1(x)

dx
+ Σtφ0(x) = η0Σsφ0(x) + S0(x) n = 0

1

3

dφ0(x)

dx
+

2

3

dφ2(x)

dx
+ Σtφ1(x) = η1Σsφ1(x) + S1(x) n=1

to which the assumption that φ2(x) = 0 is imposed as a closure requirement for the set of
differential equations. Then, considering the appearing moments of the scattering function,
respectively η0 and η1, it may be noted that:

η0 =

∫ 1

−1

η(µ0)P0(µ0) dµ0 = 1 (3.57)

η1 =

∫ 1

−1

η(µ0)P1(µ0) dµ0 = 0 if scattering is isotropic. (3.58)

Lastly, the assumption of an isotropic source S(x, µ) yields:

S1(x) =

∫ 1

−1

S(x)P1(µ) dµ = 0. (3.59)

Thus, the system (3.2.2) may be rewritten as:

dφ1(x)

dx
+ Σtφ0(x) = Σsφ0(x) + S0(x) (3.60)

1

3

dφ0(x)

dx
+ Σtφ1(x) = 0 (3.61)

to which appropriate boundary conditions have to be imposed.

The P3 approximation

In the P3 approximation, being N = 3, the angular flux is expressed through:

φ(x, µ) ≈
3∑

n=0

2n+ 1

2
φn(x)Pn(µ)

=
1

2
P1(µ)φ0(x) +

3

2
P1(µ)φ1(x) +

5

2
P2(µ)φ2(x) +

7

2
P3(µ)φ3(x).

(3.62)

As for the P1 approximation, the time-independent version of the equation for the mo-
ments (3.48) is reduced to the system of differential equations charaterized by 0 ≤ n ≤ 3.
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Thus, based on the assumption that φ4(x) = 0, the system reads:

dφ1(x)

dx
+ Σtφ0(x) = η0Σsφ0(x) + S0(x) (3.63)

1

3

dφ0(x)

dx
+

2

3

dφ2(x)

dx
+ Σtφ1(x) = 0 (3.64)

2

5

dφ1(x)

dx
+

3

5

dφ3(x)

dx
+ Σtφ2(x) = 0 (3.65)

3

7

dφ2(x)

dx
+ Σtφ3(x) = 0 (3.66)

where, as a consequence of the isotropic assumption for the scattering and the source term,
the scattering function moments ηn and the source function ones Sn with n ≥ 0 have been
neglected. Finally, appropriate boundary conditions have to be applied to solve the system of
equations.

3.2.3 Application to the eigenvalue forms of the neutron transport equa-
tion

This section is devoted to the introduction of the neutron transport models basis of the
study conducted in the present work. The different eigenvalue forms of the neutron transport
equation, associated to the four different eigenvalue types presented in the previous chapter 2,
have been solved in their one-dimensional, monoenergetic and time-independent model by
means of the PN approximation.

The steady-state, mono-energetic model of the neutron transport equation for a plane
geometry, declined in its possible eigenvalue forms, has been yet reported in Sect. (??). Here,
the associated equations for the moments of the angular flux, results of the application of
the PN approximation, are listed. The assumption of homogeneous medium and isotropic
scattering is made. The equations are all derived following the method exposed in Sect. ??
for the general model of plane geometry.

Moments equation with k eigenvalue

The k-eigenvalue form of the equation for themoments of the angular flux for a steady-state,
monoenergetic, one-dimensional system yields:

m+ 1

2m+ 1

d

dx
φm+1(x) +

m

2m+ 1

d

dx
φm−1(x) + Σtφm(x)

=
Σs

φ 0

(x)δm0 +
1

k

νΣf

φ 0

(x)δm0 m = 0, 1, 2, · · · , N (3.67)
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where δm0 denotes the Kroenecker delta. Thus, the neutron transport equation appears in its
homogeous version with isotropic scattering. As a consequence of the isotropic assumption
for the scattering interactions, generally feasible also for fission phenomenon, both these
terms appear only in relation to the first-order moment.

The k eigenvalue is then inserted as a modification of the fission source term, as charac-
teristic for this type of eigenvalue.

By way of example, the P1 system of equations for the k-eigenvalue form of the transport
equation is reported:

dφ1(x)
dx

+ Σtφ0(x) = Σs

φ 0
(x) + 1

k

νΣf

φ 0
(x) m = 0

1
3
dφ0(x)
dx

+ Σtφ0(x) = 0 m = 1
(3.68)

Moments equation with α eigenvalue

The α-eigenvalue form of the equation for the moments of the angular flux reads:

m+ 1

2m+ 1

d

dx
φm+1(x)+

m

2m+ 1

d

dx
φm−1(x)+(Σt+

α

v
)φm(x) =

cΣt

φ 0

(x)δm0 m = 0, 1, 2, · · · , N
(3.69)

where the scattering and the fission terms are gathered in unique member consituting of the
right-hand side of the equation, by means of the introduction of the criticality paramenter c.

The α eigenvalue is introduced as an increment to the total cross section appearing in the
left-hand side of Eq. (3.69).

As reported for the previous eigenvalue type, the P1 system of equations is developed for
the α eigenvalue case: 

dφ1(x)
dx

+ (Σt + α
v
)φ0(x) = cΣt

φ 0
(x) m = 0

1
3
dφ0(x)
dx

+ (Σt + α
v
)φ0(x) = 0 m = 1.

(3.70)

Moments equation with γ eigenvalue

The neutron transport equation in the γ eigenvalue version reads:

m+ 1

2m+ 1

d

dx
φm+1(x)+

m

2m+ 1

d

dx
φm−1(x)+Σtφm(x) =

1

γ

cΣt

φ 0

(x)δm0 m = 0, 1, 2, · · · , N
(3.71)

where the eigenvalue originally suggested by Davison is inserted as a modification of the
collisional part constituted by both the scattering and the fission contribution.
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The first-order approximation for the γ eigenvalue case of the neutron transport equation
yields: 

dφ1(x)
dx

+ Σtφ0(x) = 1
γ
cΣt

φ 0
(x) m = 0

1
3
dφ0(x)
dx

+ Σtφ0(x) = 0 m = 1.
(3.72)

Moments equation with δ eigenvalue

As a last instance, the δ eigenvalue version of the neutron transport equation is reported:

m+ 1

2m+ 1

d

dx
φm+1(x)+

m

2m+ 1

d

dx
φm−1(x)+

1

δ
Σtφm(x) =

1

δ

cΣt

φ 0

(x)δm0 m = 0, 1, 2, · · · , N.
(3.73)

The P1 for the δ eigenvalue case consists in:
dφ1(x)
dx

+ 1
δ
Σtφ0(x) = 1

δ
cΣt

2
φ0(x) m = 0

1
3
dφ0(x)
dx

+ Σtφ0(x) = 0 m = 1.
(3.74)
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Chapter 4

Numerical code implementation

Neutron transport computations comprise two possible approaches for the prediction of
the neutron distribution in phase space: the deterministic approach, which foresees the
discretization of the variables on which the neutron transport equation depends upon, and
the stochastic method, commonly referred to as the Monte Carlo method, which consists in
a numerical method involving statistical theory. The Monte Carlo method is indeed able to
simulate the random movement of a particle in a medium taking advantage of the probability
density distributions characteristic of the phenomenon. By performing the simulation a large
number of times themethod is then able tomimic physical experiments fromwhich is possible
to retrieve averaged quantities of interest. Deterministic methods start instead from the
mathematical equations describing the physical phenomenon under investigation, the neutron
transport equation in this case, to which discretization of the phase space variables is applied
in order to accomplish an approximate solution by means of numerical calculations [4].

In the present work a deterministic method has been adopted, starting from the integro-
differential neutron transport equation in the PN approximation, to evaluate the eigenvalues
and the associated eigenfunctions of its eigenvalue formalisms, in the simplified case of a
mono-energetic, time-independent model for an infinite-slab reactor core.

4.1 On the necessity of a staggered mesh in the spatial dis-
cretization

The following section is devoted to the demonstration that an equivalence between the
diffusion equation for a one-dimensional, steady-state, mono-energetic model and the P1

approximation in the continuous world is not straightforwardly verified passing to discrete.
In fact although in continuous is simple to demonstrate how the P1 approximation under
relative general assumptions corresponds to the diffusion approximation, the same procedure

45



developed for dicretized models reveal some tricky aspects. Hence, here it is reported the
logical path that has been followed for the implementation of the computational code which
has been developed for the solution of the PN model applied to the different eigenvalue forms
of the neutron transport equation, to which the entire work is devoted.

Starting from the diffusion approximation for a one-dimensional, mono-energetic and
steady-state model, in the case of non-multiplying medium, the equivalence between this
model and the P1 approximation is derived. The diffusion equation for the considered case
thus reads:

− d

dx
D(x)

d

dx
Φ(x) + Σa(x) Φ(x) = S(x) (4.1)

where D(x) represents the diffusion coefficient, peculiar of the governing equation of the
migration of particles in medium [12].

The differential equations characteristic of theP1 approximation are instead derived starting
from the equation for the moments of the angular flux in case of plane geometry which is, as
yet reported in Sect.3.2 for the time-dependent case:

m

2m+ 1

d

dx
φm+1(x) +

m+ 1

2m+ 1

d

dx
φm−1(x) + Σt(x)φm(x) = ηm Σs(x)φm(x) + Sm(x)

m = 0, . . . , N

where Σ denotes the total macroscopic cross section Σt. The relative equations, respectively
corresponding tom = 0 andm = 1, are:

dφ1(x)

dx
+ Σ(x)φ0(x) = η0 Σs(x)φ0(x) + S0(x)

1

3

dφ0(x)

dx
+ Σ(x)φ1(x) = η1 Σs(x)φ1(x) + S1(x)

(4.2)

to which the closure requirement of theP1 approximation, φ2(x) = 0, is applied. Focusing on
the former of the two equations presented, and recalling the physical significance attributed
to the zeroth and first order moment of the angular flux, the equation can be rewritten as:

dJ(x)

dx
+ Σa(x) Φ(x) = S0(x) (4.3)

where φ0(x), which constitutes the total flux, is denoted with the usual notation Φ(x) whereas
φ1(x), the current, is denoted as J(x). The equation thus represents a continuity equation,
which combined with the Fick’s law of diffusion theory, leads to the diffusion equation.
Therefore, an isotropic neutron emission is assumed, leading to S1(x) = 0, and an isotropic
scattering is stated through η1 = 0. As a consequence, the right-hand side of the equation for
m = 1 becomes null and the equation is rewritten, with the same notation introduced for the
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former one, as:
1

3

dΦ(x)

dx
+ Σ(x) J(x) = 0. (4.4)

From this equation, the Fick’s law of diffusion is merely derived as:

J(x) = − 1

3Σ(x)

dΦ(x)

dx
= −D(x)

dΦ(x)

dx
. (4.5)

Lastly, substituting this result (4.5) in the continuity equation (4.3), the diffusion equation is
obtained:

− d

dx
D(x)

d

dx
Φ(x) + Σa(x) Φ(x) = S(x). (4.6)

Thus, an equivalence between the two models under the assumption of isotropic emission,
may be easily derived in continuous. Passing to discrete, the equivalence between the
linear system of equations corresponding to the spatial discretization of the one-dimensional
diffusion equation, and the result of the combination of the two differential equations involved
by the P1 approximation properly discretized over the space coordinate, is not immediately
clear.

Supposing a infinite-slab domain ofwidth a in the x-coordinate, the diffusion equation (4.1)
should be satisfied at any generic location xi in the interval (0, a), yielding:

−Dd
2Φ(xi)

dx2
+ Σa Φ(xi) = S(xi) with i = 2, . . . , N − 1 (4.7)

where the left-side boundary corresponding to the position x = 0 is supposed individuated
by the node i = 1, whereas the right-side boundary at x = a is denoted by the node i = N .
Diffusion vacuum boundary conditions are then assumed at the slab boundaries, stated as:

Φ(x1) = 0, Φ(xN) = 0. (4.8)

For simplicity, the hypothesis of homogeneous medium, and hence, diffusion length and
cross-sections independent of space, have been introduced.

The set of equations (4.7) is then approximated at any nodes xi of the discretized domain
by means of the centered finite difference formula. The formula is applied in sequence
by considering the second-order derivative of the total flux evaluated at xi as a first-order
derivative of the first derivative of the total flux, centered in the xi node and involving two
neighboring nodes distant ∆x/2 from xi, with ∆x the constant space discretization step of
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Figure 4.1: Spatial discretization slab in an example with 5 nodes.

the considered domain [16]. The procedure thus reads:

d2

dx2
Φ(xi) =

d

dx
(
d

dx
Φxi) ≈

dΦ
dx

∣∣
i+1/2

− dΦ
dx

∣∣
i−1/2

2∆x
2

=
Φi+1 − 2Φi + Φi−1

∆x2

where the abbreviated notation Φi denotes Φ(xi).
The system of algebraic equations result of the spatial discretization of the diffusion

equation hence is:

−DΦi+1 − 2Φi + Φi−1

∆x2 + Σa Φi = Si with i = 2, . . . , N − 1 (4.9)

with Eq. (4.8) as boundary conditions imposed at x1 and xN . As an example, the resulting
system of equations for a slab domain discretized by a total of 5 nodes yields (see Fig. 4.1:

−DΦ3 − 2Φ2 + Φ1

∆x2 + Σa Φ2 = S2 i = 2

−DΦ4 − 2Φ3 + Φ2

∆x2 + Σa Φ3 = S3 i = 3

−DΦ5 − 2Φ4 + Φ3

∆x2 + Σa Φ4 = S4 i = 4

(4.10)

setting aside the equations at the boundary nodes. Once the discretization of the diffusion
equation has been obtained, the P1 differential equations are taken into account. The purpose
is to apply the same procedure adopted in continuous to reach diffusion starting from P1, but
with dicretized equations. Thus, the centered difference formula exploited for the diffusion
laplacian approximation is here applied to the first derivatives involved in the differential
equations of P1, with a space discretization step equal to ∆x/2. The approximation of the
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equations evaluated at the generic location xi then reads:

Ji+1/2 − Ji−1/2

∆x/2
+ Σa Φi =Si

1

3

Φi+1/2 − Φi−1/2

∆x/2
+ Σ Ji =0

with i = 2, . . . , N − 1 (4.11)

where the same notation previously introduced is exploited to indicate the unknowns. The
use of a collocated grid for the two equations of P1, which are coupled equations, implies a
discrepancy between the unknown referred to the current appearing in the second equation
at the node xi and the ones appearing in the first equation of the system (4.11), which are
the current at the nodes xi+1/2 and xi−1/2, respectively. This is due to the fact that the
colocated derivative of the current in the latter equation, and the one of the total flux in the
corresponding former equation ignores the quantity at xi involved by the specific derivative.

As a consequence, the substitution of the discretized Fick’s law derived from the second
equation of the system (4.11) in the corresponding discrete continuity equation, constituted by
the first discretized equation, can not be carried out. If instead a different spatial discretization
step is chosen in such a way that half-integer nodes are not involved in the approximation
of derivatives of P1, making possible in discrete the substitution adopted in continuous, the
resulting discretized diffusion equation system is still different from the one obtained at the
beginning of this description (4.10). Indeed, assuming in this case a spatial discretization
step equal to ∆x instead of ∆x/2, and applying the centered difference formula, the system
obtained in reference to the generic point xi for the P1 approximation is:

Ji+1 − Ji−1

∆x/2
+ Σa Φi =Si

1

3

Φi+1 − Φi−1

∆x/2
+ Σ Ji =0

with i = 2, . . . , N − 1 (4.12)

which, written explicitly for the originally defined 3 internal nodes of the slab mesh yields:

J3 − J1

∆x/2
+ Σa Φ2 =S2 (4.13a)

1

3

Φ3 − Φ1

∆x/2
+ Σ J2 =0 (4.13b)

J4 − J2

∆x/2
+ Σa Φ3 =S3 (4.14a)

1

3

Φ4 − Φ3

∆x/2
+ Σ J3 =0 (4.14b)
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Figure 4.2: Staggered grid for the spatial discretization of the P1 approximations system of equations [26].

J5 − J3

∆x/2
+ Σa Φ4 =S4 (4.15a)

1

3

Φ5 − Φ3

∆x/2
+ Σ J4 =0. (4.15b)

Deriving the expression for J2 and J4 respectively from Eqs. (4.13b) and (4.15b), and
substituting the results in Eq. (4.14b), it yields a diffusion equation which must be satisfied
at the node i = 3, reading:

−DΦ5 − 2Φ3 + Φ1

2∆x2 + Σa Φ3 = S3 i = 3 (4.16)

where it is made evident the fact that with a collocated grid for the spatial discretization of
P1 equations, the resulting laplacian of the total flux in the obtained diffusion equation does
not involved the immediate neighbors of the total flux at xi, where in this case i = 3, as an
example. This collocated discretization scheme leads to oscillations in the solution of the P1

system of equations.
A solution to address this problem consists in a different choice about the spatial grid

adopted in reference to the discretization of the two equations involved by P1. In particular,
a staggered grid is exploited, shown in Fig. 4.2. The overall spatial staggered grid adopted
for P1 system discretization is reported in the figure below.

The spatial step between the nodes is constant and equal to∆x/2. The first-order derivative
involving the current in the first equation of P1 is approximated by means of the centered
finite difference formula, centered in the integer nodes, yielding:

dJ

dx

∣∣
i
≈
Ji+ 1

2
− Ji− 1

2

2
∆x

2

=
Ji+ 1

2
− Ji− 1

2

∆x
(4.17)
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The resulting systems of algebraic equations written at the generic integer node i of the first
equation of P1 system is, exploiting (4.17):

Ji+ 1
2
− Ji− 1

2

∆x
+ Σa Φi = Si with i = 2, . . . , N − 1. (4.18)

The first-order derivative involving the total flux appearing in the second equation of P1 is
approximated by means of a centered finite difference, centered in the half-integer nodes of
the grid, yielding:

dΦ

dx

∣∣
i+ 1

2

≈ Φi − Φi−1

2
∆x

2

=
Φi − Φi−1

∆x
(4.19)

which substituted in the second equation of P1 leads to the discretized system of equations:

1

3

Φi − Φi−1

∆x/2
+ Σ Ji+ 1

2
= 0 with i = 2, . . . , N − 1. (4.20)

As previously done for the diffusion equation, considering a slab domain described by a
total of 5 integer nodes, Eq. (4.18) may be written explicitly for the 3 internal nodes as:

J2+ 1
2
− J1+ 1

2

∆x
+ Σa Φ2 =S2 i = 2 (4.21a)

J3+ 1
2
− J2+ 1

2

∆x
+ Σa Φ3 =S3 i = 3 (4.21b)

J4+ 1
2
− J3+ 1

2

∆x
+ Σa Φ4 =S4 i = 4 (4.21c)

where, as for diffusion equation, the discussion concerning the imposition of the boundary
conditions is set aside for the moment and addressed later in this section.

The same procedure is then performed for the second equation of P1 system which, written
explicitly becomes:

1

3

Φ3 − Φ2

∆x/2
+ Σ J2+ 1

2
=0 i = 2 +

1

2

1

3

Φ4 − Φ3

∆x/2
+ Σ J3+ 1

2
=0 i = 3 +

1

2

1

3

Φ5 − Φ4

∆x/2
+ Σ J4+ 1

2
=0 i = 4 +

1

2

(4.22)
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Therefore, the discrete diffusion Fick’s law written for the internal half-integer nodes is
derived as:

J2+ 1
2

= −DΦ3 − Φ2

∆x/2
i = 2 +

1

2

J3+ 1
2

= −DΦ4 − Φ3

∆x/2
i = 3 +

1

2

J4+ 1
2

= −DΦ5 − Φ4

∆x/2
i = 4 +

1

2

(4.23)

which, substituted in the system of equations constituted by Eqs. (4.21), leads exactly to the
algebraic system of equations outcome of the approximation of the diffusion equation by
means of the centered finite difference formula based on an spatial grid in which all nodes
are equidistant of an extent ∆x one from the subsequent. The result of the substitutions is
indeed:

−DΦ3 − 2Φ2 + Φ1

∆x2 + Σa Φ2 = S2 i = 2

−DΦ4 − 2Φ3 + Φ2

∆x2 + Σa Φ3 = S3 i = 3

−DΦ5 − 2Φ4 + Φ3

∆x2 + Σa Φ4 = S4 i = 4

(4.24)

4.2 Spatial staggered grid for higher-order PN approxima-
tions

The centered finite difference formula seemed to be the more suitable approximation
formula to be applied to the type of problem addressed in the entire work. In fact, the transport
of neutrons through a homogeneous medium is studied by means of a plane geometry model,
referred to a symmetric infinite-slab domain, in the case of a multiplying material in which
fission constitutes the unique neutron source term. Being both the fission emission and the
scattering one assumed as isotropic, no favored directions ofmotion are supposed to exist with
respect to neutron motion through the medium. For this reason, a symmetric finite difference
formula it seemed the more suitable choice for the discretization of the PN approximation
system of equations. Furthermore, from the standpoint of the model solution accuracy, this
specific approximation of the derivative of a function is second-order accurate, representing
a further advantage.

The necessity of a staggered spatial grid has been proved for the case of the P1 approx-
imation. The same demonstration may be performed also for the case of higher orders of
accuracy of the PN approximation and in particular, it is here carried out for the case of the
P2 approximation, in order to verified that the staggered grid adopted for P1 in the previous
section is suitable also for higher approximations, both even and odd ones.
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The same procedure exploited for the case of the diffusion equation and the P1 approxi-
mation is performed for the case of P2 approximation, which is still diffusion except for a
slightly modified diffusion coefficient. Firstly, the modified diffusion equation referred to P2

is found starting from the PN characteristic system of differential equation, and then, passing
to discrete, the effectiveness of a staggered grid is proved with respect to the discretized
diffusion equation of P2.

Therefore, the P2 system of first-order differential equations is obtained starting from the
equation for the moments of the angular flux written form ≤ 2, which yields:

dφ1(x)

dx
+ Σφ0(x) = η0 Σs φ0(x) + S0(x)

1

3

dφ0(x)

dx
+

2

3

dφ2(x)

dx
+ Σφ1 = η1 Σs(x)φ1(x) + S1(x)

2

5

dφ1(x)

dx
+ Σφ2(x) = η2 Σs φ2(x) + S2(x)

(4.25)

to which the closure requirement of P3 approximation, φ3(x) = 0 is imposed.
To achieve diffusion, the first step consists in assuming isotropic scattering, meaning

ηm = 0 with m ≥ 1, and isotropic source, that is Sm = 0 with m ≥ 1. Recalling that
Σ− Σs = Σa, the system may be rewritten as:

dφ1(x)

dx
+ Σa φ0(x) = S0(x) (4.26a)

1

3

dφ0(x)

dx
+

2

3

dφ2(x)

dx
+ Σφ1(x) = 0 (4.26b)

2

5

dφ1(x)

dx
+ Σφ2(x) = 0. (4.26c)

Thus, from Eq. (4.26c) the third-order moment φ2(x) is derived:

φ2(x) = −2

5

1

Σ

dφ1(x)

dx
. (4.27)

From Eq. (4.26a) the derivative of φ1(x) is derived as function of φ0(x):

dφ1(x)

dx
= −

(
Σa φ0(x)− S0(x)

)
. (4.28)

Substituting Eq. (4.28) in Eq. (4.27), making the assumption of source constant in space, and
substituting the result in Eq. (4.26b), one obtains the Fick’s law for P2 approximation:

φ1(x) = −
(

1

3Σ
+

4Σa

15Σ2

)
dφ0(x)

dx
. (4.29)
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Lastly, by the combination of Fick’s law and of the continuity equation constituted by
Eq. (4.26a), with the assumption of constant source over space, diffusion equation for P2

is obtained:
−DP2

d2φ0(x)

dx2
+ Σa φ0(x) = S0 (4.30)

where the diffusion coefficient characteristic of P2 corresponds to:

DP2 =
1

3Σ
+

4Σa

15Σ2
. (4.31)

Thus, defining a discrete domain individuated by the position of indexes i = 1, . . . , N , the
discretization of the diffusion equation by means of a centered finite difference yields:

−DP2

φ0,i+1 − 2φ0,i + φ0,i−1

dx2
+ Σa φ0,i = S0 with i = 1, . . . , N. (4.32)

Hence, the staggered spatial grid exploited in the previous section 4.2 is taken as a reference
for the discretization of the first-order differential equations comprised by P2. In particular,
the first derivative of odd order moments are approximated with centered finite difference
centered in the integer nodes of the grids, whereas derivatives of evenmoments are centered in
the half-integer nodes. The resulting system of algebraic equations for the P2 approximation
yields:

φ1,i+ 1
2
− φ1,i− 1

2

∆x
+ Σa φ0,i = S0 (4.33a)

1

3

φ0,i+1 − φ0,i

∆x
+

2

3

φ2,i+1 − φ2,i

∆x
+ Σφ1,i+ 1

2
= 0 (4.33b)

2

5

φ1,i+ 1
2
− φ1,i− 1

2

∆x
+ Σφ2,i = 0. (4.33c)

with i = 1, . . . , N

If the same procedure adopted for the P2 in continuous is conducted between equations
of (4.33), the discrete diffusion equation in the P2 approximation (4.32) is found, proof of
the validity of the staggered grid represented in Fig.(Ref) as a choice for the discretization of
the system of differential equations characteristic of the PN approximation even for order N
higher than 1.

Briefly, from Eq. (4.33c) the moment φ2 at the node i, meaning φ2,i is derived as:

φ2,i = −2

5

1

Σ

φ1,+ 1
2
− φ1,i− 1

2

∆x
(4.34)
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and the corresponding relation for φ2,i+1, appearing as unknown in Eq. (4.26b), consists in:

φ2,i+1 = −2

5

1

Σ

φ1,+ 3
2
− φ1,i+ 1

2

∆x
(4.35)

FromEq. (4.33a) the expression for the discretized derivative ofφ1 centered in i is derived and,
with the corresponding relation for the derivative centered in i+ 1, they yield, respectively:

φ1,+ 1
2
− φ1,i− 1

2

∆x
= −

(
Σa φ0,i − S0

)
φ1,+ 3

2
− φ1,i+ 1

2

∆x
= −

(
Σa φ0,i+1 − S0

)
.

(4.36)

Eqs. (4.36) may be substituted in Eqs. (4.34) and (4.35) respectively, in order to find an
expression for the third-order moment unknowns as function of φ0,i and φ0,i+1. Then, the
resulting expressions are substituted in Eq. (4.33b) in order to find the last unknown not
related to the moment φ0, which is φ1,i+ 1

2
, as:

φ1,i+ 1
2

= −
(

1

3Σ

4Σa

15Σ2

)
φ0,i+1 − φ0,i

∆x
(4.37)

which constitutes the approximation by means of a centered finite difference of the Fick’s
law for P2, previously found in continuous as Eq. (4.29). By considering the corresponding
relation for φ1 centered in i− 1

2
which yields:

φ1,i− 1
2

= −
(

1

3Σ

4Σa

15Σ2

)
φ0,i − φ0,i−1

∆x
(4.38)

and lastly, substituting Eqs. (4.37) and (4.38) in the discrete continuity equation (4.33a), the
diffusion equation derived from the P2 system of discrete equations is obtained, presenting an
expression mathematically equals to the one achieved by the discretization of the P2 diffusion
equation in continuous (4.32). The result reads indeed:

−DP2

φ0,i+1 − 2φ0,i + φ0,i−1

dx2
+ Σa φ0,i = S0 with i = 1, . . . , N. (4.39)

4.3 Boundary condition imposition

In order to correctly pose the discretized PN approximation system of equations, the
imposition of the boundary conditions must be carried out. The P1 approximation case is
here presented as an example of how such conditions have been prescribed. Both Mark’s and
Marshak’s conditions have been considered.
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As been reported in the previous section, a centered finite difference discretization scheme
based upon a staggeredmesh has been exploited for the spatial discretization of thePN system
of equations. The choice of the centered finite difference has been justified both from a sort
of physical point of view, considering the expectations about the transport of particles in
the configuration considered, and from a numerical approximation point of view as regards
the higher order of accuracy provided by such a scheme with respect to the forward and
backward finite difference schemes. Although, being the mesh staggered and the equations
of the PN approximation system, coupled equations, the equations involving the boundary
nodes needed some further considerations.

In order to treat the boundary conditions indeed, a change in the approximation scheme for
the first-derivative of the odd-order moments appearing in the system of equations has been
carried out. Specifically, the first-derivatives of the odd-order moments are approximated
at the boundaries by means of a first-order accuracy finite difference scheme, instead of the
centered finite difference used for the equations characteristic of the internal nodes. Since the
centered finite difference can not be applied at the boundary nodes [16], a backward and a
forward finite difference scheme are exploited as derivative approximation at the boundaries.
To clarify this application, the case of the P1 approximation system of equation discretized
on a staggered grid of a total of 5 integer nodes and 4 half-integer nodes, is here presented.
As considered in the previous section, the left and the right slab boundary are assumed
individuated by the nodes i = 1 and i = 5, respectively. The P1 system of equations for the
case considered is one again reported for sake of exposition clarity.

dφ1

dx
+ Σa φ0 =S0 (4.40a)

1

3

dφ0

dx
+ Σφ1 =0. (4.40b)

As a consequence of the staggered grid 4.2, equation (4.40a) is discretized moving on the
integer nodes of the mesh. At the node i = 1, corresponding to the left boundary of the
discretized slab, the derivative of the moment phi1 is approximated by means of a forward
finite difference scheme, yielding:

φ1,1+ 1
2
− φ1,1

∆x/2
+ Σa φ0,1 = S0. (4.41)

On the right boundary, individuated by the node i = 5 in the considered mesh, the equa-
tion (4.40a) is instead approximated by means of a backward difference scheme, reading:

φ1,5 − φ1,5− 1
2

∆x/2
+ Σa φ0,5 = S0. (4.42)
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Then, the expression for the introduced unknowns are derived from the relations provided by
Mark’s or Marshak’s boundary conditions. In particular,with Mark’s boundary conditions
the relations for the angular flux at the boundary state, in case of P1 approximation:

P0(µ1)φ0(x = 0) + P1(µ1)φ1(x = 0) = 0

P0(µ2)φ0(x = a) + P1(µ2)φ1(x = a) = 0
(4.43)

which, expressed with the notation exploited in the spatial discretization become:

P0(µ1)φ0,1 + P1(µ1)φ1,1 = 0

P0(µ2)φ0,5 + P1(µ2)φ1,5 = 0.
(4.44)

Hence, from these set of equations the unknowns φ1,1 and φ1,5 are derived as functions of φ0,1

and φ0,5 respectively, and substituted in the set of algebraic equations outcome of the spatial
discretization of the P1 system of differential equations. If Marshak’s boundary condition
are considered, the relations involving the angular flux at the boundaries yield:

1

2
φ0,1 +

1

3
φ1,1 = 0

1

2
φ0,5 −

1

3
φ1,5 = 0.

(4.45)

to which the same procedure adopted in the case of Mark’s boundary condition is applied for
the imposition to the discretized P1 system of differential equations.

4.4 Outline of the code: k-eigenvalue case

After the general drawings of the discretization and the boundary conditions treatment for
a general PN approximation system of equations, a brief outline of the code implemented
to solve numerically the eigenvalue formulations of the neutron transport equation in the
PN approximation presented in Sect. 3.2.3 is here reported. The code, implemented in a
MATLAB environment, consists in four modules, one for each eigenvalue-type, and it has
been implemented with the aim to solve a generalized eigenvalue problem formulated in
an arbitrary high order of the PN approximation. Hence, the accent has been posed upon
the automation to high orders of PN approximation and as a consequence, future efforts are
supposed to focus deeply on the optimization of the eigenvalues and eigenvectors calculation,
also considering the attention which has been paid in recent year to more sophisticated algo-
rithms for the eigenproblem numerical solution [27]. In the implemented code, eigenvalues
and eigenvectors computation is accomplished by means of a subroutine of the linear algebra
package ARPACK provided by MATLAB [28] the main details of which are provided below.
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The code is here presented for the particular case of the k-eigenvalue formulation of the
neutron transport equation, since the same procedure has been exploited for the implementa-
tion of the modules referring respectively to the γ, α and δ eigenvalue formulation.

4.4.1 Matrix formulation

The starting point for the implementation of the MATLAB code for the evaluation of the
eigenvalues and the associated eigenvectors of the k-eigenvalue problem is the creation of the
matrices characteristics of the specific PN approximation considered, outcomes of the spatial
discretization of the operators peculiar of the one-dimensional, time-independent, mono-
energetic version of the neutron transport equation. As way of example, the problem global
left- and right-hand matrix individuation for the case of P1 approximation is here reported.
The moments equation of the k-eigenvalue formulation (3.67) illustrated in Chapter 3, reads:

m+ 1

2m+ 1

d

dx
φm+1(x) +

m

2m+ 1

d

dx
φm−1(x) + Σtφm(x)

= Σs φ0(x)δm0 +
1

k
νΣf φ0(x)δm0 m = 0, 1, 2 . . . , N

from which the P1 approximation system of equations is derived as:

dφ1

dx
+ Σa φ0 =

1

k

νΣf

φ 0

1

3

dφ0

dx
+ Σφ1 =0.

(4.46)

In operators notation the system may be rewritten as:[
Σa

d
dx

d
dx

Σt

]
︸ ︷︷ ︸

L

[
φ0

φ1

]
=

1

k

[
νΣf 0

0 0

]
︸ ︷︷ ︸

F

[
φ0

φ1

]
(4.47)

where ϕ is the unknowns vector whose components are the discretized zeroth order moment
φ0 and the discretized first order moment φ1. In case of higher order of PN approximations,
the unknown moments are still disposed in an ascendant order per moment order.

The unknowns vector ϕ, the left-hand matrix and the right-hand one characteristic of
the P1 approximation in the k-eigenvalue formulation are here reported referred to a slab
discretized on a mesh of a total of 9 nodes, with indexes i = 1 and i = 5 identifiers of the
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slab boundaries nodes. Thus, in the proposed case the ϕ vector yields:

ϕ =



φ0
1

φ0
2

φ0
3

φ0
4

φ0
5

φ1
1.5

φ1
2.5

φ1
3.5

φ1
4.5


(4.48)

where the notation φ0
1 denotes φ0(x1) = φ0(x = 0). As yet reported in previous sections, the

even orders moments appearing as unknowns in the equations are evaluated at the integer-
index nodes of the staggered grid, whereas the odd-orders moments are computed at the
locations individuated by the half-integer indexes (see Fig. 4.2).

Then, the global left-hand matrix, outcome of the discretization of the L operator applied
to the unknowns vector ϕ, is created as a composition of sub-matrices deriving from the
discretization of the specific operator applied to the respective unknown in each equation.
The left-hand matrix L characteristic of the P1 approximation is reported explicitly for the
case considered, in order to make evident the alternative square and rectangular nature of
the sub-matrices which gives as result a global left-hand square matrix. Thus, the L matrix
yields:

L =




Σa 0 0 0 0

0 Σa 0 0 0

0 0 Σa 0 0

0 0 0 Σa 0

0 0 0 0 Σa





2
∆x

0 0 0

− 1
∆x

1
∆x

0 0

0 − 1
∆x

1
∆x

0

0 0 − 1
∆x

1
∆x

0 0 0 − 2
∆x



−1

3
1

∆x
1
3

1
∆x

0 0 0

0 −1
3

1
∆x

1
3

1
∆x

0 0

0 0 −1
3

1
∆x

1
3

1
∆x

0

0 0 0 −1
3

1
∆x

1
3

1
∆x




Σ 0 0 0

0 Σ 0 0

0 0 Σ 0

0 0 0 Σ





(4.49)

where in the sub-matrix corresponding to the spatial approximation of the derivative of φ1(x)

it may be noted the terms referred to the use of a forward and a backward finite difference
respectively, at the boundaries nodes.
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Lastly,the right-hand matrix F characterized by fission terms consists in:

F =




νΣf 0 0 0 0

0 νΣf 0 0 0

0 0 νΣf 0 0

0 0 0 νΣf 0

0 0 0 0 νΣf




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0





. (4.50)

Both the L and the F matrix are built as composition of sparse matrices, which allows
the implementation of high order PN approximation characteristic matrices. Obviously,
their dimensions depend upon both the N order of approximation received as input by the
code, and on the mesh size chosen for the spatial discretization. Even though the sparse
nature of the matrices created allows large matrix dimensions, the aim of computing the
eigenvalues for the neutron transport equation approximated in high orders of PN forces to
a compromise between the accuracy in the spatial discretization and the dimension of the
matrices characteristic of the generalized eigenvalue problem of which the eigenvalues and
eigenvectors have to be computed. Then, starting from the P1 characteristic matrices, the
global matrices of higher order of PN approximation are built by means of hemming of the
P1 global matrices, as described in the successive section.

4.4.2 PN global matrices automation

This section is devoted to briefly outline the logical path followed in the automation for
the computation of eigenvalues and eigenvectors characteristic of neutron transport equation
in the simplified model presented in previous sections and developed in arbitrarily high
orders of the PN approximation. Once the order N of the PN approximation is given as
input to the code specific of the eigenproblem desired, the implementation of the global left-
and right-hand matrix of the problem starts. Firstly, a matrix containing the characteristic
coefficients of the PN system of equations for the one-dimensional model is created in order
to collect the values of the coefficients which will be recalled later in the creation of the global
matrix. As a way of example, the development of the code for the k eigenvalue problem in
P2 approximation is reported.
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Table 4.1: Coefficients matrix created by the implemented code referred to the system of differential equations
of P2 approximation in k eigenvalue

LHS RHS

m
2m+1

Σ m+1
2m+1

νΣfδm0 Σsδm0

Eq.1(m = 0) 0 Σ 1 νΣf Σs

Eq.2(m = 1) 1
3

Σ 2
3

0 0

Eq.3(m = 2) 2
5

Σ 0 0 0

Referring to the equation for the moments in the k-eigenvalue (3.67), the P2 characteristic
system of differential equations consists in:

Σa φ0 +
dφ1

dx
=

1

k
νΣf φ0 (4.51)

1

3

dφ0

dx
+ Σφ1 +

2

3

dφ2

dx
=0 (4.52)

2

5

dφ1

dx
+ Σ phi2 =0 (4.53)

where the terms are disposed in such a way that the moments of the angular flux appear in
ascending order of indexes in each equation. Hence, a coefficient matrix is created in order
to store the coefficients of each term in the respective equation of the system, starting from
the general expression of the coefficients as function of the order of the equation, explicitly
visible in the moments equation (3.67). Specifically, for the P2 case the matrix structure is
shown in Table 4.1.

Then, the creation of the global left-hand matrix, which in the k-eigenvalue case comprises
the discretization of the leakage operator, and of the right-hand matrix, characterized by the
fission operator instead, is performed by hemming the P1 characteristic global matrices with
as many additional sub-matrices as needed to accomplish the complete discretization of the
PN system terms missing. Observing that the P1 matrices structure is common to the ones
of any higher PN approximation indeed, the sub-matrices necessary to a comprehensive
description of the differential equations discretization of both the odd and even higher order
approximations are added to the P1 nucleus by means of its hemming with square diagonal
and rectangular tridiagonal sub-matrices, whose associated coefficients are the ones stored in
the coefficient matrix presented above (see Table 4.1), and that correspond to the operators
discretization required by the specific approximation. Thus, the global left-hand and right-
hand matrices characteristic of the generalized eigenvalue problem which has to be solved,
are built as block sparse matrices for both the case of odd- and even-orderPN approximations.

The sparsity pattern of the resulting matrices is then reported in figure 4.3, referring to P5

approximation in the k-eigenvalue formulation.
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Figure 4.3: Sparsity patterns of the global left-hand (a) and right-hand matrix (b) of the generalized eigenvalue
problem in k eigenvalue with P5 approximation.

4.4.3 Boundary conditions evaluation and imposition

Together with the PN approximation order N required by the user, the implemented code
receives as input also the type of boundary conditions desired to solve the linear system of
equations. BothMark andMarshak boundary conditions can be provided to imposed vacuum
boundary conditions.

While in the generation of the problem global matrices, the distinction between odd-
and even-orders of the PN approximation does not imply substantial differences in the code
implementation, the numerical computation and imposition of boundary conditions have
required a more delicate development. Indeed, from the theoretical standpoint, the significant
difference affecting the even-order approximations with respect to the odd ones, consists in the
fact that they do not represent a more accurate approximation in refers to the preceding odd-
order PN . As instance, considering the P1 approximation which corresponds to the diffusion
approximation, the P2 approximation still corresponds to a diffusion model, meaning that the
degree of accuracy of P2 approximation is not higher than that of P1. In order to increment
the model accuracy is necessary to develop the successive odd-order PN approximation, in
this case P3 approximation. Hence, even-order PN approximations do not give additional
information in refers to the neutron angular distribution and this condition is reflected in the
discussion about PN boundary conditions [8].

Indeed, both odd- and even-order PN approximations requiresN + 1 boundary conditions
to result in a well-posed problem. In case of Mark boundary conditions (3.52), the N + 1

conditions are computed starting from the N + 1 roots of the Legendre polynomial of order
N + 1, which range symmetrically from −1 ≤ µ ≥ 1. The difference between the two
types of approximation order arises in the fact that even-order approximation boundary
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conditions comprise the root µ = 0, where µ represents the cosine of the angle formed by
the neutron motion direction and the x-axis. However, neutrons traveling along the direction
individuated by the µ = 0 never meet the configuration boundary and, as a consequence,
they do not provide further information about the neutron angular distribution solution of the
problem. An analogous aspect may be also referred to Marshak boundary conditions.

In the implemented code both Mark and Marshak boundary conditions are evaluated by
means of the Symbolic Math Toolbox provided by MATLAB. A preliminary developed
function starts computing the coefficients of the angular flux moments involved by the PN
approximation required, directly derived from the relations stated by Mark and Marshak con-
ditions. Then, these coefficients are manipulated in order to derive the proper equations to be
substitute in the original linear system of equations corresponding to the spatial discretization
of the PN approximation desired.

As yet reported for the generation of the left- and right-hand matrix of the generalized
k-eigenvalue problem, a draft of the numerical process developed for the implementation of
the boundary conditions in the P2 approximation is here reported. The general principles
upon which the imposition of conditions is based is yet reported in Sect. 4.3.

Thus, in case of Mark conditions, the N + 1 roots of the Legendre polynomial of order
N + 1 are computed in order to evaluate the angular moments coefficients referred to the P2

approximation expression of the angular flux evaluated at the boundaries for the prescribed
directions. Being N even in the case considered, the direction corresponding to µ = 0 is let
apart and only the positive and negative cosine values estimated are taken into consideration
for the substitution in the boundary conditions expressions. The relations which are referred
to in this particular case are:

φ(0, µ1) ≈ 1

2
P0(µ1)φ0(0) +

3

2
P1(µ1)φ1(0) +

5

2
P2(µ1)φ2(0) = 0 with µ1 > 0

φ(a, µ2) ≈ 1

2
P0(µ2)φ0(a) +

3

2
P1(µ2)φ1(a) +

5

2
P2(µ2)φ2(a) = 0 with µ2 < 0.

(4.54)

These equations, in relation to the notation exploited in the spatial discretization for
numerical computation, may be rewritten as:

1

2
P0(µ1)φ0

1 +
3

2
P1(µ1)φ1

1 +
5

2
P2(µ1)φ2

1 = 0 with x1 = 0

1

2
P0(µ2)φ0

end +
3

2
P1(µ2)φ1

end +
5

2
P2(µ2)φ2

end = 0 with xend = a
(4.55)

from which the symbolic expressions for the unknowns φ1
1 and φ1

end are derived as function
of the remaining angular moments evaluated at x1 = 0 and xend = a respectively.
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Figure 4.4: Sparsity patterns of the global left-hand (a) and right-hand matrix (b) of the generalized eigenvalue
problem in k eigenvalue with P5 approximation and boundary conditions imposed.

In case ofMarshak’s boundary conditions instead, the equations for φ1
1 and φ1

end are derived
from the integral relations:∫ 1

0

dµ (
1

2
P0(µ)φ0(0) +

3

2
P1(µ)φ1(0) +

5

2
P2(µ)φ2(0)) = 0∫ 0

−1

dµ (
1

2
P0(µ)φ0(a) +

3

2
P1(µ)φ1(a) +

5

2
P2(µ)φ2(a)) = 0.

(4.56)

Then, the outcomes φ1
1 and φ1

end are inserted in the corresponding equations of the original
P2 approximation system of equations which, in the k-eigenvalue case, consist in:

φ1
1+ 1

2

− φ1
1

∆x/2
+ Σa φ

0
1 =

1

k
νΣf φ

0
1

φ1
end − φ1

end− 1
2

∆x/2
+ Σa φ

0
end =

1

k
νΣf φ

0
end.

(4.57)

Lastly, the coefficients of each angular moment terms appearing in the symbolic expres-
sions (4.57) are converted into double precision values and stored in a coefficients matrix
characteristic of Mark or Marshak boundary coefficients.

The resulting values are then substituted in the properly corresponding positions of the
left-hand matrix L by means of a recursive procedure. The same process is followed for PN
approximations of higher orders and in other eigenvalue types formulations of the neutron
transport equation.

An example of the modified sparsity pattern due to the imposition of boundary conditions
in P5 approximation, for the k-eigenvalue formulation is shown in Figure 4.4.
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4.4.4 Eigenvalues and eigenvectors calculation

The eigenvalues and eigenvectors computation is finally performed in the implemented
code through the ARPACK package provided by MATLAB, specific for the solution of large
scale eigenvalue problems [28]. This package is based on the Implicit Restarted Arnoldi
Method (IRAM), an iterative method for the solution of eigenvalues and eigenvectors of large
sparse matrices. Specifically, IRAM is the method upon which the MATLAB function eigs
is implemented. This function is able to provide subset of eigenvalues and eigenvectors [29],
starting from the matrix characteristic of both a standard or generalized eigenvalue problem.
In the code implemented in the thesis, the problem has been considered in its generalized form
in order to exploit the capability of the function eigs to choose the more suitable algorithm
for the manipulation of the matrix according to their specific characteristics.

The default converge tolerance has been exploited in the computations, equal to 10−14 and
a subset of 20 eigenvalues and its associated eigenvectors has been required. The magnitude
characteristic of the desired eigenvalues can be optionally specified, in particular the smallest
or the largest magnitude, and the function can also provide the subset of the eigenvalues
nearest to a given shift value. In the analyzed case the smallest magnitude eigenvalues are
of interest and, according to the generalized eigenproblem formulation in case of k, γ and δ
eigenvalues, the final results are obtained by the inversion of the outcomes returned by eigs.

Other possible options to the function regards the maximum number of iterations allowed
to the algorithm and the maximum size of the Krylov subspace to be used. Experiments in
the changing of these last two options have been performed during the code implementation
without reporting substantial increments in the result accuracy, thus the default values have
been left for the calculus. Nevertheless, accurate considerations about these aspects can be
found in [27].

As regards the eigenvectors evaluated by theARPACKpackage, a remark should be pointed
for the case considered. The code implementation presented in the thesis exploited instead
a staggered grid for the spatial discretization of the differential equations modeled. As a
consequence, due to the spatial discretization setting, the solution vectors associated to odd-
order angular flux moments present a length diminished of a unit with respect to the one
characteristic of even-order moments. Thus, to perform the reconstruction of the angular
flux based on the relation for this quantity peculiar of the PN approximation, an interpolation
process to extent the even-order discrete moments at the query points is foreseen in the
implementation.
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Chapter 5

Numerical results

In order to test the reliability of the numerical results provided by the implemented code,
comparisons to benchmark criticality results for the case of the k, γ and α eigenvalue have
been performed, together with appropriate grid independence studies, necessary because of
the spatial discretization involved by the model considered. Due to a lack of both reference
numerical results and theoretical information concerning the δ eigenvalue, only a preliminary
study has been conducted for this type of eigenvalue.

Once that an acceptable quality of the numerical results obtained has been verified, con-
siderations about the different results obtained with even-order PN approximations with
respect to those deriving by odd-order approximations are reported. Furthermore, compari-
son concerning the use of Mark boundary conditions rather than Marshak type conditions are
performed for the each eigenvalue type calculations. Indeed, a quite different convergence
trend to the reference value for increasing orders of thePN approximation can be individuated
looking to the results conducted on the fundamental eigenvalue specifically.

A convergence study of the method implemented by ARPACK package is beyond the scope
of the present work and only a simple and intuitive verification on the obtained eigenvectors
is reported.

Furthermore, for each eigenvalue type a study regarding the variation of the fundamental
mode with respect to the slab thickness and the critical parameter is conducted, except for the
case of δ eigenvalue which, as yet mentioned, has implied difficulties in the interpretation.

5.1 Grid independence study

Grid independence studies are common numerical practices performed in order to ensure
that the chosen mesh resolution is sufficiently refined in such a way that the solution obtained
is independent of it. Thus, the residual error between the solution obtained with the most
refined mesh and the ones outcome of calculations with coarser meshes, has been investigated
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Figure 5.1: Grid independence study on the fundamental multiplication factor k0 for a multiplying slab of
thickness 8 mfp, with P5 and Marshak boundary conditions.

as function of the mesh size.
Furthermore, being aim of the present work the computation of not only the eigenvalue

type fundamental mode but also some higher-modes, a particular attention has been posed on
the accuracy of the results obtained for the fundamental eigenvalue about grid independence
study, since ARPACK algorithm for the eigenvalues and eigenvectors calculation converged
first on this value. As a consequence, assuming a worst convergence on higher-modes, a
particularly fine mesh size has been used in order to prevent from excessive numerical error
affecting higher-modes solution.

For sake of brevity, the grid independence study performed for the k eigenvalue and the
α eigenvalue only are reported. An exactly analogous investigation has been conducted for
the other eigenvalue types. The analysis has been performed considering a slab of thickness
equal to 8 mean free paths (mfp) developing the P5 approximation with Marshak boundary
conditions. The nuclear data set exploited is reported in Table 5.1.

Hence, as shown in Figures 5.1-5.2, a decreasing mesh size leads to decreasing error in
the evaluation of the fundamental eigenvalue, as expected. The relative error, reported on
the right y-axis of each figure, has been considered as the residual between the eigenvalue
computed with the current mesh size and the one obtained with the most refined mesh. In
order to be conservative for the reasons mentioned above, a mesh size equal to 0.005 mfp has
been adopted in the model implementation, corresponding to a relative error of an order of
magnitude with ranges from 10−8 and 10−7 for each eigenvalue type.
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Figure 5.2: Grid independence study on the fundamental time eigenvalue α0 with P5 and Marshak boundary
conditions.

Table 5.1: Nuclear data adopted in grid independence study and in benchmark assessments.

Parameter Value

Total cross-section [cm−1] Σt 1.0
Scattering cross-section [cm−1] Σs 0.8
Absorption cross-section [cm−1] Σa 0.2
Production cross-section [cm−1] νΣf 1.0

5.2 Comparison to benchmark criticality results

A comparison to available benchmark values of the results obtained in the evaluation of
the fundamental and higher-modes for the case of the k and the γ eigenvalue of the neutron
transport equation by R. S. Modak in [30] ,are performed. Specifically, Modak results are
referred to the first six even modes of the k and the c eigenvalue for the mono-energetic model
of a homogeneous one-dimensional slab and sphere. The results presented by Modak are, in
turn, the outcomes of a comparison with those found by Dahl and Sjöstrand in [31].

As concerned the cases of interest for the present thesis, the reference values are evaluated
with the application of the standard Sn method, with Gauss-Legendre quadrature sets for the
directions representation. Vacuum boundary conditions have been imposed. Two different
slab thicknesses are analyzed, 1 mfp and 8 mfp respectively, with isotropic scattering. The
nuclear data adopted by Modak in its study are summarized in Table 5.1.

The eigenvalues presented by Modak are evaluated, for both the case of 1 mfp and 8 mfp
slab dimension, with 100 meshes in the most accurate computation. For the thinner slab, 256
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directions have been used, whereas for the 8 mfp slab calculations have been performed with
64 directions only.

Furthermore, in the reference work the k-eigenvalues have been obtained by the compu-
tation with the Sn method and then converted into the corresponding c-eigenvalues through
the relation, valid in case of isotropic scattering:

c =
Σs + νΣf/k

Σt

(5.1)

also presented in [32] in which the direct relations between the three main neutron transport
eigenvalues k, α and c are reported.

In the present thesis a slightly different discussion has been made as regards the c-
eigenvalue. As mentioned in Sect. 2.3 of Ch. 2, the c eigenvalue corresponds to the physical
meaning of the mean number of secondary neutrons per collision. Thus, in its eigenvalue
connotation, it indicates the average number of secondaries per collision needed to accom-
plish a steady-state neutron population distribution [32]. In the present work instead, the γ
eigenvalue is investigated, intended as the effective multiplication factor per collision with
the same physical and mathematical approach adopted in the discussion for the effective
multiplication factor per fission k.

Hence, as done by Modak, which has correlated the numerically obtained k-eigenvalues
with the c-eigenvalues presented by Dahl et al. in [31] evaluated through a semi-analytical
method, the γ-eigenvalues outcome of the implemented code are related to the reference
results through:

c =
(Σs + νΣf )/γ

Σt

. (5.2)

k-eigenvalue assessments

First, the fundamental multiplication factor k0 obtained with increasing orders of the PN
approximation is compared with the value obtained by Modak with S64 in the case of 1 mfp
slab and with S256 for that of 8 mfp thickness. Vacuum boundary conditions are considered in
all the studies presented which have been exploited as benchmark. A similar comparison has
been conducted also in [33] and the reported results have been taken as a further benchmark
concerning the lower-orders ofPN approximations usedwith respect to theSn approximations
exploited by Modak. Specifically, fundamental multiplication factor evaluated in [33] with
S4, S8, S16 and S32 have been compared with the outcomes obtained with the corresponding
PN approximations by the code presented in the thesis. Mark boundary conditions has
been considered fro the implemented results.The possibility of such a comparison has been
considered since an equivalence between PN−1 and SN approximation with evenN has been
demonstrated in literature. Nuclear data adopted are the same as those reported in 5.1.
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Table 5.2: Fundamental multiplication factor k0 convergence to benchmark value at increasing order of PN

approximation with Mark boundary conditions. Reference values by Modak are evaluated with S256 in case of
1 mfp slab, and with S64 for the 8 mfp thick slab, both with vacuum boundary conditions. Reference values
denoted as k0,BARC have been evaluated with S4, S8, S16 and S32 respectively.

PN

1 mfp 8 mfp
k0,Modak = 1.2264 k0,Modak = 4.2300

k0 k0,BARC k0 k0,BARC

P3 1.129077 1.129075 4.225109 4.225105
P7 1.209379 1.209376 4.229069 4.229065
P15 1.223481 1.223479 4.229844 4.229840
P31 1.225737 1.225737 4.230024 4.230020

Table 5.3: Fundamental multiplication factor k0 convergence to benchmark value at increasing order of PN

approximation with Marshak BCs. Reference values by Modak are evaluated with S256 in case of 1 mfp slab,
and with S64 for the 8 mfp thick slab, both with vacuum boundary conditions. Reference values denoted as
k0,BARC have been evaluated with S4, S8, S16 and S32 respectively.

PN

1 mfp 8 mfp
k0,Modak = 1.2264 k0,Modak = 4.2300

k0 k0,BARC k0 k0,BARC

P3 1.171867 1.129075 4.228452 4.225105
P7 1.219462 1.209376 4.229725 4.229065
P15 1.225369 1.223479 4.229992 4.229840
P31 1.226151 1.225737 4.230058 4.230020

The comparison outcomes are reported in Table 5.2. As shown in the table, the results
obtained by the presented method agree well with the ones reported in [33], denoted as
k0,BARC . Specifically, in both the cases of 1 mfp and 8 mfp slab thickness, an agreement
up to five decimal places is reported. Increasing the order of the PN approximations,
the fundamental k-eigenvalue found approaches better the reference result by Modak, even
though, in the thinner slab case the evaluation still appears rough at the P31 approximation.
It is indeed accurate up to two decimal places only with respect to the reference.

The convergence to the benchmark value is faster for the case of thicker slab which, at P31

approximation shows an agreement to 4 decimals. The better convergence, at the same order
of PN approximation, of the thicker slab with respect to the thinner one, may be related to
the weaker impact of the leakages in larger systems.

An additional analysis performed with respect to the study conducted in [33] and in [30]
regards the imposition of Marshak boundary conditions. The same procedure adopted to find
the fundamental eigenvalue in case of PN approximations with Mark boundary conditions,
is exploited with the imposition of Marshak type conditions and the results are reported in
Table 5.3.
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Table 5.4: Even higher-order k-eigenvalues convergence to benchmark values at increasing orders of PN

approximation with Mark boundary conditions, for mesh size of 0.005 mfp. Benchmark values have been
obtained with S64, 100 meshes and vacuum boundary condition.

8 mfp

k-mode P3 P7 P15 P31 Modak (1995)

k0 4.2251089 4.2290691 4.2298438 4.2300236 4.2300510
k2 2.0187740 2.0394894 2.0413997 2.0417997 2.041626
k4 1.0812013 1.1355216 1.1384141 1.1387900 1.13835
k6 0.6633973 0.7496759 0.7563779 0.7567577 0.75610
k8 0.4424235 0.5448455 0.5586462 0.5591481 0.5583
k10 0.3127659 0.4177842 0.4401845 0.4410772 0.440

For all the approximations considered, the fundamental eigenvalues found with Marshak
boundary conditions are higher with respect to the ones obtained with Mark boundary con-
ditions, and to the results reported in [33] denoted as k0,BARC . The quite great enhancement
is particularly visible in the case of the 1 mfp slab which gains a decimal in accuracy at the
P31 approximation. Considering that in terms of implementation efforts, Marshak boundary
conditions are comparable to Mark type conditions, the accuracy gained with the former
conditions is quite attractive, especially in case of low-order approximations which present a
rough accuracy.

Then, higher-order k-eigenvalues results are compared. In this case only references by
Modak [30], referred to S64, are considered. Table 5.4 shows the numerical results obtained
for the first 6 even order k-eigenvalues for the mono-energetic slab with isotropic scattering,
at increasing odd-orders PN approximation. The slab thickness analyzed is the thicker one
(8 mfp), and Mark boundary conditions have been imposed.

Although an accuracy improvement, talking about criticality calculations, is desiderable,
the results obtained for both the fundamental and higher-order k-eigenvalues can be consid-
ered as verified, taking into account the different method used for the angular approximation.
The best agreement is shown by the highest order PN approximation, as expected. Starting
from an accuracy up to 4 decimals at the fundamental mode, it worsens in higher-modes
evaluation reaching only two decimal figures of accuracy at the tenth mode, with respect to
results provided byModak [30]. It is highlighted that the accuracy discussed is referred to the
results taken as benchmark, and is not an absolute accuracy of the computed results obtained
with the code implemented for the present thesis.

In order to verify the associated eigenvectors solution founded by ARPACK package, a
simple verification is made evaluating:

Lϕn −
1

kn
Fϕn = 0 with n=0,2,. . . ,10. (5.3)
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Table 5.5: Higher-mode k-eigenvalues and eigenvectors verification computed with increasing order of PN

approximations and Mark boundary conditions for the case of 8 mfp slab thickness.

P3 P7

k-mode |kn − kn,ref | |Lϕn − λnFϕn| |kn − kn,ref | |Lϕn − λnFϕn|

k0 4.9420·10−3 1.166·10−13 1.8668·10−3 8.116·10−14

k2 2.2859·10−2 3.628·10−14 5.0124·10−3 1.536·10−13

k4 5.7148·10−2 2.845·10−14 1.0724·10−2 8.110·10−14

k6 9.2702·10−2 2.151·10−14 2.4038·10−2 5.760·10−14

k8 1.1587·10−1 1.613·10−14 4.0373·10−2 2.725·10−14

k10 1.2723·10−1 5.898·10−15 5.4845·10−2 1.784·10−14

Taking into consideration the error due to the use of floating-point computations, the result
of such a relation must approach the null vector. Table 5.5 reports the difference in absolute
value of the nth-mode of k-eigenvalues with respect to the Modak benchmark values, and
the first element of the numerical solution vector corresponding to the verification for the
eigenvectors expressed by relation (5.3). Such a verification is well satisfied.

γ- eigenvalues assessments

The benchmark tests conducted for the k eigenvalue case is here presented for the γ
eigenvalue results. In order to compare the values obtained by the implemented code with the
ones provided byModak in [30] referred to the c eigenvalue, the expression (5.2) is exploited.
Nuclear data (Table 5.1) and methodologies are the ones reported in the previous section.
The reference c0 in case of thinner slab dimension, 1 mfp, is evaluated with S256 and 100
meshes. In case of thicker slab, benchmark result refers to S64 and 100 meshes.

Table 5.6 shows the fundamental c eigenvalue, denoted as c0, evaluated for two slab
thicknesses with increasing orders of PN approximation, with the imposition of Mark and
Marshak boundary conditions respectively.

The trend yet outlined for the k-eigenvalues calculations can be individuated again for the c
eigenvalue case, corresponding to the γ eigenvalues computations implemented in the thesis,
although a difference arises in terms of magnitude of variations individuated. Indeed, still a
convergence to an accuracy up to 3 decimal places is obtained with respect to the reference
value by means of P31 approximation, but the fundamental mode evaluated with lower-orders
of PN approximation are better than the corresponding fundamental k-eigenvalues presented
in the previous paragraph. The c0 value evaluated with P3 shows an accuracy up to the first
decimal which is not reached in the case of k0, for the same set of nuclear data.

Furthermore, Marshak boundary conditions still indicate a faster convergence to the refer-
ence value with respect to Mark type, but with a lower impact in terms of result significant
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Table 5.6: Convergence of c0 eigenvalue to benchmark values at increasing orders of PN approximation with
Mark and Marshak boundary conditions. Benchmark values by Modak [30] refer to 100 meshes and S256 for 1
mfp slab, while S64 in case of 8 mfp slab.

PN

1 mfp 8 mfp
c0,Modak = 1.61537 c0,Modak = 1.03640

Mark Marshak Mark Marshak

P3 1.685679 1.653339 1.036680 1.036493
P7 1.621573 1.620033 1.036458 1.036422
P15 1.617339 1.616080 1.036415 1.036407
P31 1.615835 1.615559 1.036405 1.036403

digits. In the case of slab thickness equal to 8 mfp, the fundamental mode presents an ac-
curacy of 4 decimals yet with P3 approximation and Marshak boundary conditions, reaching
the fifth decimal with P15. Once again, a faster convergence is expected in slab characterized
by thicker thickness due to the reduced leakage of neutrons from the buondary.

In the case of slab of 8mpf thick, withMark boundary conditions imposed, the convergence
at increasing orders of accuracy of thePN approximation, as regards higher-mode eigenvalues,
is shown in Table 5.7. As expected, the accuracy increases at increasing orders of PN
approximations, and higher-modes accuracy is worst than that of the fundamental eigenvalue.
A better convergence can be reached by both further refining the spatial mesh or with higher
PN approximations. However, being the model analyzed a first-order model, a finer mesh
implies larger dimensions of the problem matrices and higher computational costs to the
eigenvalue solver. A compromise between problem dimensions and computational costs
requirement, specially in the perspective of the application of such a model to multigroup
problems in two- or three-dimensional configurations, is required.

Nevertheless, a quite good accuracy is accomplished yet with P15 approximation. The
fundamental mode presents a four decimal places accuracy with respect to the reference
value. Looking at higher-modes, the last three even-modes, c6, c8 and c10, show an inverse
trend in the convergence behavior at increasing orders ofPN approximation. Indeed, values at
P15 result nearer, in terms of relative distance, to the reference values found by Modak. This
unexpected behavior may be related to the increment of the dimensions of the sparse matrices
input of the eigenvalue solver which increase the difficult the algorithm convergence. Since
an accurate analysis of the algorithm implemented by ARPACK is not treated in this master
thesis, and the eigs function provided in MATLAB has been used as a black box eigenvalue
solver, only qualitatively comments on the evaluated values can be drafted. Conversely, this
trend may be also related merely to the different angular approximation method exploited in
the implemented code, PN , and the one used in reference studies, Sn.
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Table 5.7: Even higher-order c-eigenvalues convergence to benchmark values at increasing orders of PN

approximation with Mark boundary conditions. Benchmark values by Modak [30] refer to 100 meshes and
S256 for 1 mfp slab, while S64 in case of 8 mfp slab.

8 mfp

c-mode P3 P7 P15 P31 Modak (1995)

c0 1.0366802 1.0364586 1.0364153 1.0364052 1.0364038
c2 1.2953501 1.2903187 1.2898599 1.2897640 1.289806
c4 1.7248971 1.6806525 1.6784150 1.6781250 1.678464
c6 2.3073922 2.1339097 2.1220904 2.1214269 2.12257
c8 3.0602775 2.6353826 2.5900417 2.5884349 2.5914
c10 3.997279 3.1935801 3.0717744 3.0671765 3.072

Table 5.8: Nuclear data adopted in benchmark assessments for α-eigenvalue case.

Parameter Value

Total cross-section [cm−1] Σt 1.0
Scattering cross-section [cm−1] Σs 1.0
Neutron velocity [cm/s] v 1.0
Slab thickness range [mfp] a 1-10

α-eigenvalues assessments

In the α-eigenvalue case, benchmark tests have been performed with comparisons analo-
gous to those conducted in [27], [32] and [34] with respect to the accurate results provided
by Dahl et al. [35] for different homogeneous slab thicknesses.

In [27], prompt α eigenvalues are calculated with a least-squared functional together with
spatial finite elements and the spherical harmonics method to treat the angular discretization.
In order to compare the obtained results with those previously found by Dahl et al. [35]
with semi-analytical methods, a homogeneous, mono-energetic, purely scattering slab is
considered. The presented results concern the dominant α eigenvalues for mono-energetic
slabs with size ranging from 1 to 25 mfp. In the present thesis, smaller slab dimensions have
been considered and the range of investigation was limited to thickness equal to 10 mfp. The
α-eigenvalues are provided in a dimensionless version obtained as α/vΣs , where v is the
neutron velocity.

Nuclear data exploited in the benchmark tests for α−eigenvalues computations are sum-
marized in Table 5.8.

A comparison with both results provided in [27] and [34] has been performed but, for
sake of brevity, only some of the obtained results are reported in this section. Specifically,
Table 5.9 shows the dimensionless α-eigenvalues obtained by the implemented code with P15

and P31 increasing slab thicknesses, ranging from 1 mfp to 10 mfp, with the application of
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Table 5.9: Dimensionless α-eigenvalue fundamental and higher-modes convergence with respect to results by
Dhal et al with semi-analytical methods. PN refers to Marshak boundary conditions imposition.

a α-mode P15 P31 Dhal et al. (1983)

1 α0 -6.11749 ·10−1 -6.08609·10−1 -6.08072·10−1

2 α0 -2.96981 ·10−1 -2.96799·10−1 -2.96728·10−1

5
α0 -8.11127 ·10−2 -8.10983 ·10−2 -8.10933·10−2

α1 -3.41391 ·10−1 -3.41259 ·10−1 -3.41216·10−1

α2 -8.39057 ·10−1∗ -8.41633 ·10−1 -8.34837·10−1

10

α0 -2.53530 ·10−2 -2.53508·10−2 -2.53520·10−2

α1 -1.02993 ·10−1 -1.02982 ·10−1 -1.02978·10−1

α2 -2.37991 ·10−1 -2.37954 ·10−1 -2.37942 ·10−1

α3 -4.40001 ·10−1 -4.39858 ·10−1 -4.39814·10−1

α4 -7.33540 ·10−1 -7.24568·10−1 -7.24185·10−1

Marshak boundary conditions. The results by Dahl et al. [35] are reported for the comparison.
As can be seen by Table 5.9, only the real eigenvalues outcomes of the application of IRAM
are listed, except for the second-order mode in case of 5 mfp thickness which has presented
a small imaginary part at P15, indicated with an asterisk in the table.

As concern the accuracy, the same trends highlighted in [27] can be observed in the reported
values. In particular, values accurate up to three decimal places are found with P31 approxi-
mation and Marshak boundary conditions. As a difference with respect to the k-eigenvalue
case, higher-modes do not present worsen accuracy when founded. Lathouwers [27] relates
the improvement to a sufficiently fine mesh, previously justified also by the dedicated grid
independence study reported in Sect 5.1. As a consequence, the discriminating factor in the
accuracy issue, for the case of α eigenvalue, consists in the order of the PN approximation
adopted for the computation.

Lastly, Table 5.10 reports the results of the particular case of slab thickness equal to 5
mfp in comparison to those founded by Lathouwersin [27] at the same PN approximations
exploited. The occurrence of a small imaginary part as concern the second-order modes
evaluated with P15 is experienced also in that case. As the PN approximation is increased in
accuracy, the corresponding eigenvalue is founded as real.

In conclusion, as regards the α-eigenvalue case, even though results present an evident
lower accuracy with respect to those previously computed by Dahl et al. [35], five decimals
accurate, they show the same accuracy level reached by several comparable studies. An
analogous consideration can be argued also for the previously presented eigenvalue types.

75



Table 5.10: Comparison of dimensionless α-eigenvalue higher-modes obtained for a 5 mfp thick slab with
respect to the reference values provided by Lathouwers [27], both obtained with PN approximation.

5 mfp

P15 P31

α-mode Lathouwers (2003) Lathouwers (2003)

α0 -8.11127 ·10−2 -8.12167 ·10−2 -8.10983 ·10−2 -8.12030·10−2

α1 -3.41391 ·10−1 -3.41493 ·10−1 -3.41259 ·10−1 -3.41379·10−1

α2 -8.39057 ·10−1∗ -8.39587 ·10−1∗ -8.41633 ·10−1 -8.38878 ·10−1

5.3 Odd- and even-order PN approximations comparison

The implementation of a numerical code able to automatize the solution of the different
neutron transport eigenproblems with the application of the PN approximation in its most
general case, has given the possibility of a comparison between odd-orders and even-orders of
the angular approximation. As yet mentioned, even-orders PN do not represent an increment
in the accuracy order of the approximation with respect to the odd-order ones. The P1

approximation, which corresponds to the diffusion approximation, is first-order accurate.
The P2 approximation still consists in diffusion and the order of accuracy is the same of
P1. Hence, to obtain a second-order accurate PN approximation, one has to consider P3

approximation [5],[8].
Nevertheless, as briefly shown in Sect. 4.2 discussing the PN approximation spatial dis-

cretization scheme, P2 still leads to a diffusion model characterized by a second-order dif-
ferential equation, but with a different diffusion coefficient with respect to that of the P1

approximation. Therefore, the influence of the difference in the coefficients of even-order
PN approximations has been investigated, in the present work, through the comparison of the
neutron transport eigenproblems solutions developed by means of increasing orders of the
PN approximation, both odd and even, with the imposition of Mark and Marshak boundary
conditions.

5.3.1 Fundamental eigenvalue convergence

This section is devoted to the presentation of the results obtained in the implementation
of both odd- and even-order of PN approximations for the neutron transport equation in its
eigenvalue forms. The fundamental eigenvalue of the different eigenvalue-spectra, computed
by means of IRAM implemented by the ARPACK package inMATLAB for increasing orders
of PN approximation, is investigated in its convergence behavior to a reference values, as
function of the order of the angular expansion.
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Diffusion model: Mark BCs
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Figure 5.3: Fundamental multiplication factor convergence at increasing orders of PN approximation with
imposition of Mark boundary conditions for the case of 1 mfp slab. The associated relative error with respect
to the reference value, 1.2264, is reported for P1 and P2 in (a), and for higher-order PN in (c). In (b), k0
convergence trends are reported for PN ranging from P3 to P32.

The obtained numerical results are first reported for the case of the k eigenvalue, both for
Mark and Marshak boundary conditions, and then, the other eigenvalue-types results follow
with an analogous presentation.

k-eigenvalue

First, the fundamental multiplication factor, evaluated with respect to the benchmark value
for a multiplying homogeneous slab reactor exploited in the benchmark assessments based
upon the results provided by Modak in [30] for a 1 mfp thick slab, are reported for increasing
orders of PN approximation, ranges from P1 to P32, withMark boundary conditions imposed.

The material properties used for the computation are summarized in Table 5.1, previously
reported. The slab thickness chosen is equal to 1mfp, themost critical in terms of convergence
velocity with respect to the two slab thicknesses investigated in the benchmark tests for k
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eigenvalue.
In the top graphic of Figure 5.3, the absolute error between the computed fundamental

k eigenvalue and the reference value equal to 1.2264 is reported for the case of P1 and P2

approximation. As shown in figure, the P1 approximation is slightly more accurate than P2.
As shown by the figure, a convergence to the reference value, in the case considered equal to
1.2264, is confirmed for increasing order of PN approximations.

Then, as regards higher-order approximations,a similar asymptotically convergence behav-
ior may be traced for both odd-order and even-order PN , as shown in the left bottom part
of Figure 5.3. Specifically, while odd-order PN approach the benchmark value from lower
estimates, even-order PN approach it from higher ones. In general, as yet mentioned in the
comments to benchmark results, a significantly slow convergence may be noted in the case of
k eigenvalue, with particularly rough estimations of the fundamental multiplication factor at
low-order PN approximation. As a consequence, in order to reach an acceptable accuracy in
the results, especially high-order of PN must be employed. Nevertheless, this discussion is
made only in reference to the available benchmark result obtained with a S256 approximation.

Considering the quite wide variation presented by the fundamental multiplication factor
results evaluated with P3 and P4 approximation, a reasons of the great distance may be
related to the superficial use of the eigensolver exploited for the eigenvalue evaluation in the
implemented code. In recent years several studies and research efforts have been dedicated
to the investigation of the different algorithms for the solution of eigenvalue problems and
diverse strategies have been individuated to obtain a better convergence of results for each
algorithm, based upon the specific eigenproblem treated. These strategies are out of the
scope of the present thesis, but they are individuated as a possible future field of investigation
related both to this specific thesis work, and more in general for criticality calculations in
neutron transport.

Then, the distance between the computed fundamental multiplication eigenvalue k0 and
the reference value by Modak [30] in absolute value at a fixed orders of PN , is graphically
displayed on the right of the bottom part of Figure 5.4. A quite surprising result is obtained
in case of P4 approximation, the corresponding k0 computed is nearer to the reference
value with respect to the estimate given by P3 approximation. However, if one looks to
the percentage improvement, it consists in 0.2%, representing only a slight enhancement.
Starting from P5 instead, odd-order PN approximations reclaim their role of more accurate
approximations, with an average distance in the result evaluation, from the corresponding
even-order approximations, equal to 0.3%.

A similar result to that found forP4 has been obtained for lower-order ofPN approximations,
specifically P1 and P2, in an application of the spherical harmonics method to Marshak wave
problem with Marshak boundary conditions, both for time-dependent [36] and steady-state
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Diffusion model: Marshak BCs
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Figure 5.4: Fundamental multiplication factor convergence at increasing orders of PN approximation with
imposition of Marshak boundary conditions for the case of 1 mfp slab. The associated relative error with
respect to the reference value, 1.2264, is reported for P1 and P2 in (a), and for higher-order PN in (c). In (b) k0
convergence trends are reported for PN ranging from P3 to P32.

case [37].
Then, the same procedure adopted for the study of the convergence behavior of the funda-

mental multiplication factor k0 for increasing orders of PN has been then conducted in the
case of Marshak boundary conditions imposition. Some evident differences with respect to
the case of Mark boundary conditions can be individuated looking to Figure .5.4.

The same range of variation of the order of PN approximation is reported for Marshak
boundary conditions case. As shown in figure, different convergence behaviors can be traced
in the case of odd-order and even-order PN . Indeed, while the odd-order PN with Marshak
conditions follow the same asymptotically type trend to the reference value yet individuated
in case of Mark boundary conditions, a substantial difference is represented by the case of
even-order PN . Indeed, while k0 evaluated with P4 show the same approach to the reference
value displayed for Mark boundary conditions case, a smaller value with respect to reference
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is computed with P6 and P7. From P8, the approaching trend aligns with the one presented
by odd-order PN .
Looking then to the figures showing the associated absolute error, on the top and bottom

right side of Figure 5.4, a trend similar to that individuated for P4 with Mark boundary
conditions, can be individuated for P2, P4, P6 and P8 approximation in this case. However,
while in case of Mark condition the improvement revealed by P4 with respect to P3 presents
a small magnitude, in this case P2 shows a quite great enhancement in k0 evaluation and
P4 with Marshak boundary conditions leads to an accuracy up to the first decimal place not
reached by P3. The faster convergence is visible also for P6 and P7, but with reduced extents.
From P9, odd-order approximations converge better than even-order one.

γ eigenvalue

The discussion about the results obtained in the case of γ eigenvalue are analogous to those
obtained in the k eigenvalue case, as expected since the similar nature of the twomultiplicative
eigenvalues of the neutron transport equation. The study has been conducted applying the
same procedure adopted for the previously presented eigenvalue-type. The reference value
for the fundamental multiplication factor per collision γ0 used is the one exploited in the
benchmark test reported in Sect. 5.2. In the benchmark assessments, the results referred to
the γ eigenvalue have been reported as the corresponding c-eigenvalues. In this section, the
γ eigenvalue in the form originally considered in the thesis is presented.

Figure 5.5 shows the convergence to the reference value equal to 1.1143 for a multiplying
homogeneous slab of 1 mfp thickness computed for increasing orders of the angular approx-
imation, with Mark boundary conditions. The corresponding absolute distance between the
computed γ0 and the benchmark value is reported.

Then, in the Figure. 5.6, the values obtained with Marshak boundary conditions are
graphically displayed.

As for the case of the effective multiplication factor per fission, the same trends of conver-
gence both with Mark and Marshak boundary conditions. However, a difference arises in the
variation range with respect to the reference value for low-order PN , which is more narrow
than the one recorded in the k eigenvalue case. As a consequence, a faster convergence for
increasing orders of PN is noted. In particular, forN = 4 and Marshak boundary conditions,
a result accurate to two decimals place is obtained. Another remarkable difference is related
to lower even-order approximations which present better convergence with respect to the
corresponding odd-order PN . Specifically, in case of Mark boundary conditions, both P2 and
P4 present a slightly better convergence with respect to P1 and P3, respectively. In case of
Marshak type conditions, the better convergence is extended to P8.
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Diffusion model: Mark Bcs
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Figure 5.5: Fundamental multiplication factor per collision convergence at increasing orders of PN approxi-
mation with imposition of Mark boundary conditions for the case of 1 mfp slab. The associated relative error
with respect to the reference value, 1.1143, is reported for P1 and P2 in (a), and for higher-order PN in (c). In
(b) γ0 convergence trends are reported for PN ranging from P3 to P32.
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Diffusion model: Marshak BCs
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Figure 5.6: Fundamental multiplication factor per collision convergence at increasing orders of PN approxima-
tion with imposition of Marshak boundary conditions for the case of 1 mfp slab. The associated relative error
with respect to the reference value, 1.1143, is reported for P1 and P2 in (a), and for higher-order PN in (c). In
(b) γ0 convergence trends are reported for PN ranging from P3 to P32.
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α eigenvalue

For sake of brevity, as done for γ eigenvalue, only the differences arising with respect to
the k or γ eigenvalue case results are discussed.

For the α eigenvalue, in order to be consistent with the system characteristics adopted in the
previous eigenvalue-type calculations, a difference set of nuclear data has been adopted for the
convergence study with respect to those exploited in benchmark section. The homogeneous
and multiplying slab of thickness equal to 1 mfp is considered. The values of the cross-
sections characteristic of the problem analyzed are reported in Table 5.1. As reference
value, the fundamental time eigenvalue computed with P41, α0 = 0.19368, is used. The
dimensionless version of α0, evaluated as α0/vΣt, is considered.
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Figure 5.7: Dimensionless fundamental time eigenvalue convergence at increasing orders of PN approximation
with imposition of Mark boundary conditions for the case of 1 mfp slab. The associated relative error with
respect to the reference value, α0 = 0.19368, is reported for P1 and P2 in (a), and for higher-order PN in (c).
In (b) α0 convergence trends are reported for PN ranging from P3 to P32.

Figure 5.7 displays the convergence behavior for increasing orders of PN with Mark
boundary conditions imposed, of the fundamental time eigenvalue and the corresponding
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error, at fixed PN , with respect to the reference value of α0. In this case, as for γ eigenvalue,
P2 and P4 approximations show a better convergence with respect to P1 and P2.

The results obtained with Marshak boundary conditions are shown in Figure 5.8. The
same behavior observed in the previous eigenvalue-types may be individuated also in this
case, with the better convergence referring to even-order PN yet meet for γ0. Specifically,
the α0 obtained with P2, P4 and P6 shows a better accuracy in comparison to P1, P3 and P5,
respectively.
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Figure 5.8: Dimensionless fundamental time eigenvalue convergence at increasing orders of PN approximation
with imposition of Marshak boundary conditions for the case of 1 mfp slab. The associated relative error with
respect to the reference value, α0 = 0.19368, is reported for P1 and P2 in (a), and for higher-order PN in (c).
In (b) α0 convergence trends are reported for PN ranging from P3 to P32.

5.3.2 Higher-order modes convergence

The graphical representation of a portion of the eigenvalue spectrumcomputed at increasing
orders of PN approximation is reported in this section. For each eigenvalue type, the ten
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Table 5.11: Nuclear data adopted in higher-order modes computations for k and γ eigenvalue case.

Parameter Value

Total cross-section [cm−1] Σt 1.0
Scattering cross-section [cm−1] Σs 0.8
Production cross-section [cm−1] νΣf 1.0
Slab thickness [mfp] a 8
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(a) Mark boundary conditions.
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(b) Marshak boundary conditions.

Figure 5.9: Convergence of the first ten higher-orders of the k eigenvalue at increasing orders of PN approxi-
mation, evaluated with Mark (a) and Marshak (b) boundary conditions for 8 mfp slab.

first higher-order modes are presented in order to analyze the nature of the spectrum. In the
implemented code, 20 eigenvalues have been required to the eigensolver.

The nuclear data set of the case for which results are presented is reported in Table 5.11,
referred to k and γ eigenvalue.

k eigenvalue

For the case of a mono-energetic slab with isotropic scattering, all the computed discrete
eigenvalues, result of the k eigenvalue problem develop with PN , are real. Figure 5.9 shows
the first part of the partial spectrum required to the eigensolver. The fundamental eigenvalue
k0 is not reported. In figure, the different higher-order eigenvalues computed at increasing
orders of PN approximation are presented for the case of Mark and Marshak boundary
conditions. As regards boundary conditions, Marshak boundary conditions generally work
better at lower-orders of PN , then Mark boundary conditions present a faster convergence.
As the mode order increases, a more evident oscillation in convergence occurs and higher-

orders of PN are needed to achieve a reasonable accuracy, proof of the incremented difficult
of the eigensolver in their computation.
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γ eigenvalue
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Figure 5.10: Convergence of the first ten higher-order of the γ eigenvalue at increasing orders of PN approxi-
mation, evaluated with Mark (a) and Marshak (b) boundary conditions for 8 mfp slab.

Results analogous to those found in the k eigenvalue case are obtained also for the γ eigen-
value. The partial discrete spectrum computed consists in all real and positive eigenvalues.
The same convergence trends described for the previous eigenvalue-type may be observed in
Figure 5.10, which reports the convergence at increasing orders of PN approximation of the
first ten higher-modes, both for Mark and Marshak boundary conditions.

α eigenvalue

The partial α eigenvalue spectrum is reported for the case yet exploited in the benchmark
tests, in order to have a further validation in the investigation. The nuclear data used in the
higher-modes computation are reported in Table 5.12.

First, the α eigenvalue higher-modes obtained with the implemented code have proved
to be both real and complex values, for any of the PN approximation developed. The
fundamental mode α0, individuated as the one with the smallest real part in modulus, has
been found always as a real value. As known from theory [20], the nature of the α eigenvalue

Table 5.12: Nuclear data adopted in higher-order modes computations for α eigenvalue case.

Parameter Value

Total cross-section [cm−1] Σt 1.0
Scattering cross-section [cm−1] Σs 0.8
Neutron velocity [cm/s] v 1.0
Slab thickness [mfp] a 5
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spectrum consists in a discrete part and in a continuous portion. In case of slab geometry,
real discrete eigenvalues can be found only below the Corngold limit [32], which is equal
to the product Σtv, with v neutron velocity, changed in sign. In this case it corresponds to
-1 [27]. Eigenvalues with an algebraically larger real part constitute the continuous part of
the spectrum.

Figure. 5.11 graphically displays the 20 eigenvalues outcome of the implemented code in
graphics having the real axis as abscissa and imaginary axis as the ordinate one. A progress
in the order of PN approximation is considered.

In this case a great difference in what is computed by odd-order and even-order PN may
be noted. While with odd-order PN few real eigenvalues and many complex values are
obtained, in case of even-order PN only real values are computed. Between real results,
higher-modes are individuated as the real values which follow the fundamental one, obtained
for any low-order PN . In general, yet in case of odd-order PN , a substantial increment in the
computational time required by the ARPACK subroutine for the computation is observed,
with respect to the previous eigenvalue-types. The increase becomes even more evident for
even-order PN in comparison to odd-order approximation.

Specifically, at P7, only two out of the twenty required eigenvalues are found as real. The
corresponding even-order PN , P8, converges instead to sixty out of twenty eigenvalues. The
algorithm fails in the convergence in four cases out of twenty required solutions indeed.
From P8 on, as regards even-order PN , an increasing number of the required solutions do
not arrive at convergence and the computational time continues to increase. Furthermore, at
P42 a pair of complex values are obtained, warning of the increased difficult in the numerical
convergence of the results.

Incrementing the odd-order of PN leads, as expected, to an higher number of modes found
as real. The more abundant complex obtained values move closer to the Corngold limit and
no values of the continuous spectrum are found.

The reasons of such a different behavior observed in the eigenvalues computation with odd-
or even-order PN approximations is not clear and quite surprising. Surely, this can represents
an interesting starting point for future researches. In particular, a theoretic study concerning
the spectrum of the matrices obtained by the implementation of the PN approximation for
neutron trasnport generalized eigenvalue problems are needed to a further investigation in
these numerical results.

δ eigenvalue

The δ eigenvalue, which has been left from discussion until now because of the lack of
information about, is here considered. Calculations have been performed with the data setting
used by Modak in [30], referred to a mono-energetic, homogeneous, multiplying slab. Once
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Figure 5.11: Dimensionless time eigenvalue partial discrete spectrum computed at increasing orders of PN

approximation, both odd and even, with imposition ofMark boundary conditions for the case of amono-energetic
purely scattering slab of 5 mfp thickness.
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again, data are summarized in Table 5.1. Results are reported for the case of a 1 mfp thick
slab, for increasing orders of PN approximation with Mark boundary conditions applied.

First of all, due to the formulation of the generalized δ eigenvalue problem developed,
presented in Sect. 2.4, the implementation of the even-order PN leads to singular matrices in
its descretized version. As a consequence, the eigenproblem in this formulation can not be
solved and only odd-order PN have been considered.

In the following analysis, the fundamental effective density factor δ0 is treated as part of
the discrete spectrum obtained.
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Figure 5.12: Density factor, δ, partial discrete spectrum computed at increasing orders of PN approximation,
with imposition of Mark boundary conditions for a multiplying slab of 1 mfp thickness.

Figure 5.12 shows the graphical representation of 20 discrete eigenvalues outcome of the
IRAM computation, for different odd-orders of PN approximation. Similarities with the case
of the α eigenvalue computations are found. Indeed, also in case of δ eigenvalue, few real
eigenvalues and many complex ones are obtained. Nevertheless, a difference arises in the
convergence behavior at increasing orders of PN . Indeed, while in case of α eigenvalue for
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Table 5.13: Nuclear data adopted in eigenvectors calculations for k eigenvalue.

Parameter Value

Total cross-section [cm−1] Σt 1.0
Scattering cross-section [cm−1] Σs 0.9
Fission cross-section [cm−1] Σf 0.1
Average number of fission neutrons [−] ν 1.2
Slab thickness [mfp] a 5

odd-order approximations some of the eigenvalues previously founded as complex, appearing
combined with the complex conjugate, coalesce in their real part, leaving apart the small
imaginary component, in case of δ eigenvalue the behavior is the one observed for even-order
PN in the α eigenvalue case. This means that at increasing odd N , the number of real
eigenvalues founded by the eigensolver algorithm decreases.

At P31, only 3 out of the 20 required modes are found as real, which indicate a particularly
slow convergence. Furthermore, the eigenvector associated to the eigenvalues found not
converge to the expected solution, appearing as a parabola with upward concavity.

5.3.3 Associated eigenvectors

By way of example, the first three harmonics of the zeroth-order moment φ0 and the first-
order moment φ1, for the k eigenvalue case, are reported. Analogous results are obtained for
the γ and α eigenvalue, while the δ eigenvalue case is left for future investigation due to lack
of both theoretic and numerical information.

Results are presented in relation to the computed eigenvectors with P3 approximation and
Mark boundary conditions. The characteristics of the system adopted for the evaluation are
given in Table 5.13.

TheMATLAB function eigs returns the eigenvectors associated to each eigenvalue required
in a matrix whose columns are the respective eigenvectors. A normalization of the type
ϕn/norm(ϕn) has been considered, where n indicates the specific mode. Since odd-order
moments solution vector present a reduced length with respect to even-order ones, due to
the use of a staggered grid in the problem spatial discretization, appropriate interpolation
procedures have been performed.

Figure 5.13 shows on the left the zeroth-order moment φ0 associated to the first three k
eigenvalue modes. As expected from theory, the fundamental mode, denoted as mode 0, is
the only solution with a constant sign over all the spatial domain. This is the only mode
with a physical meaning and it is associated to the neutron total flux Φ. Higher-order modes
present oscillations of increasing frequency, with no meaning from the physical standpoint.
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Figure 5.13: First three harmonics of the zeroth-order moment φ0 evaluated for k eigenvalue problem with P3,
Mark boundary conditions in case of 5 mfp slab.

On the right of Figure 5.13, the first three harmonics of the first-order moment φ1 are
shown instead. As for φ0, the fundamental mode is the unique to which a physical meaning
is associated, denoting the neutron current J

Figure fig:angular flux show the angular flux as function of both the spatial and the angular
variable. The flux has been obtained through a reconstruction performed on the fundamental
solution eigenvector whose components were the discrete moments of the angular flux, based
on the angular flux expression peculiar of the PN approximation.

Some slightly negative values are assumed by the angular flux as function of the space
coordinate at the slab boundaries for directions identified by µ = −0.5 and µ = 0.5. A brief
investigation is made in relation to the second-order partial derivative of the angular flux with
respect to the x variable. Starting from the one-dimensional mono-energetic steady-state
neutron transport equation for an homogeneous medium:

µ
∂ϕ(x, µ)

∂x
+ Σtϕ(x, µ) =

c

2
Φ(x) (5.4)

an expression for the second-derivative of the angular fluxwith respect to x is derived yielding,
with Σt = 1cm−1:

∂2ϕ(x, µ)

∂2x
=

1

µ2
ϕ(x, µ)− c

2µ
Φ(x) +

c

2µ

dΦ(x)

dx
. (5.5)

Hence, negative values of the angular flux are assumed as a possible outcomes.
Finally, a comparison of the total flux obtainedwith increasing orders ofPN approximation,

both odd- and even-orders, for the system characterized by the data summarized in Table 5.13,
are shown in Figure 5.15. The overall total flux solution is reported on the top, whereas two
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Figure 5.14: Angular flux evaluated for k eigenvalue problem with P3, Mark boundary conditions in case of 5
mfp slab. On the left, the angular flux as function of x-coordinate for fixed directions is reported, while on the
right the angular flux function of the direction variable for fixed x-coordinate can be observed.

details are visible in the lower part of the figure set. For odd-order PN , as the order increases,
smaller values of the total flux are founded at the center of the slab. The trend is instead
inverted in case of even-order PN . An exactly inverted behavior for both odd- and even-order
PN is observed in proximity of the right-hand side boundary.

For sake of brevity, the similar results obtained in case of γ and α eigenvalue are not
reported.

5.3.4 Parametric studies

slab dimension dependency

Two different parametric studies have been conducted in order to investigate the behavior
of each eigenvalue type with respect to the system dimensions and its characteristic critical
parameter. The studies concern the k, γ and α eigenvalue. First, the fundamental mode of
each analyzed eigenvalue type has been studied as function of increasing slab thicknesses. For
both the case of k and γ eigenvalue, a slab size ranging from 5 to 30 mfp has been considered.
In case ofα eigenvalue instead, the higher value of thickness range has been limited to 10mfp,
due to the higher computational costs required by this type of eigenvalue. AP7 approximation
with Marshak boundary conditions has been adopted in the model implementation for the
calculations. The nuclear data exploited in the evaluation are summarized in Table 5.14.

Figure 5.17 show the results for the eigenvalues fundamental modes as function of the
thickness range investigated. For all the three different eigenvalue types, an increase in
the system dimension returns an incremented fundamental mode. The increase is higher at
lower dimensions while in the right part of the thicknesses range, for analogous relative slab
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Figure 5.15: The zeroth-ordermoment associated to the fundamentalmode, meaning the total fluΦ, at increasing
orders of PN approximation with Mark boundary conditions for a 5 mfp slab domain. The overall solution is
reported on the top (a), while two details are reported in the lower part (b), (c).

Table 5.14: Nuclear data adopted in parametric studies.

Parameter Value

Total cross-section [cm−1] Σt 1.0
Scattering cross-section [cm−1] Σs 0.9
Absorption cross-section [cm−1] Σa 0.1
Production cross-section [cm−1] νΣf 1.2
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Figure 5.16: Fundamental multiplication factor per fission k0, per collision γ0 and time eigenvalue α0, as
function of the slab thickness, evaluated with P7 and Marshak boundary conditions.

variations, lower increment in the fundamental eigenvalue are observed. The k eigenvalue
show the slower convergence. Such results are related to the lower impact of the neutrons
leakages out of the slab boundaries, in thicker systems, combined with an increased in the
multiplying material.

Finally, at fixed system size, PN approximation and boundary conditions, the critical
parameter c is varied in order to investigate the system response. The variation has been
performed through the modification of the average number of neutrons per fission event.
In case of k and γ eigenvalue, a slab thickness of 8 mfp is adopted, while in case of α
computations referred to a 5 mfp thick slab. Linear proportionality between the increase
in the critical parameter and the increment in the computed fundamental eigenvalue can be
observed for each eigenvalue type.
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Figure 5.17: Fundamental multiplication factor per fission k0, per collision γ0 and time eigenvalue α0, as
function of the critical parameter c, evaluated with P7 and Marshak boundary conditions.
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Chapter 6

Conclusions

The drive for this thesis has been the interest in the investigation of the different eigenvalue
formulations of neutron transport equation in a mono-energetic, one-dimensional model.
After a brief presentation of the integro-differential version of the neutron transport equation,
both in general and one-dimensional geometry, in chapter 1, the criticality problem for the
neutron transport has been outlined in chapter 2. Specifically, the four different eigenvalue
formulations, related to the k, γ, α and δ eigenvalue have been presented, with the associated
physical interpretation. While the effective multiplication factor per fission k, together with
the time eigenvalue α, boast a large number of dedicated studies, fewer works are reserved for
the γ eigenvalue, and almost none are devoted to the δ eigenvalue, which remains the more
obscure eigenvalue type.

Then, the spherical harmonics method, the angular approximation selected in the present
work, is outlined for both general and one-dimensional spatial configuration in chapter 3,
where the neutron transport eigenvalue formulations, the solution of which are object of the
entire work, are presented. The majority of the studies dedicated to criticality calculations,
have been found related to the application of the Discrete Ordinates, the Sn method, for
the angular representation of the neutron angular flux. As a consequence, a lack of results
obtained by means of the PN method, as concern criticality computations, has been observed.

Chapter 4 has been devoted to the presentation of the matrix formulations outcomes of
the spatial discretization of the generalized eigenvalue problems in PN approximation, which
have been solved through the implementation of a numerical code, specific for the solution
of arbitrarily high-orders of PN approximation. The code, which has been implemented in
MATLAB environment, has been developed with a modular structure where each module
is dedicated to the solution of one of the four eigenvalue types considered. Both Mark and
Marshak boundary condition have been implemented. The automation to arbitrarily high-
orders of PN , both odd- and even-orders, has given the possibility of a comparison of both
the calculation performances in relation to the PN order nature, and to the specific eigenvalue
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type considered.
The comparison with the available benchmark numerical results, presented in the first

sections of chapter 5, shows a well agreement between the eigenvalues computed by the
implemented code and those reported in the reference studies. This result is also related
to the efficacy of the eigensolver exploited in the implemented code, the Implicit Restarted
Arnoldi Method implemented in the ARPACK package. For the case of a homogeneous,
mono-energetic slab, no benchmark numerical results have been found for the case of the
δ eigenvalue. As a consequence, only a preliminary study has been conducted for this
eigenvalue types.

The fundamental and some higher-modes convergence at increasing orders of PN ap-
proximation have been investigated for each eigenvalue type, both with Mark and Marshak
boundary conditions. The main result which can be highlighted in relation to the PN approx-
imation order, is that the generally stated superiority in accuracy of the odd-order PN with
respect to the even-orderPN , for low-orders of approximation, specially withMarshak bound-
ary conditions, is not always verified in the cases considered in the present work. Specifically,
as regards the fundamental mode convergence, with the k eigenvalue P4 shows a better con-
vergence with respect to P3 for Mark boundary conditions, and with Marshak boundary
conditions the improvement extents even from P2, to P8. Similar results are obtained for
α and γ eigenvalue, which in addition to the k eigenvalue, shows a better convergence also
with P2 and Mark boundary conditions, with respect to P1. Then, it is generally found that
Marshak boundary conditions works better than Mark type conditions at lower-orders of PN
approximation, while the trend is inverted at high-order PN .
Furthermore, a small portion of the discrete spectrum of each eigenvalue type has been

computed with the implemented code, showing some unexpected results as concerns the
convergence at increasing orders of PN approximation. Specifically, for the α eigenvalue an
inverted convergence behavior of numerical outcomes obtained with odd- and even-order PN
is observed.

Thus, these results suggest that a deeper investigation in the study of even-order PN
approximationswith respect to the odd-order ones, may represent an interesting field for future
researches, as regards solutions of the neutron transport equation in angular approximations.

Then, some results concerning the eigenvectors outcomes of the implemented code are
reported for the k eigenvalue case. The first three harmonics for both the zeroth-order and
the first-order angular flux moment are reported. Specific for the case of the zeroth-order
moment a brief description of the influence on the solution of the order of the PN exploited, is
given. Then, the angular flux as function of the spatial coordinate at fixed directions, is shown
for the case of P3 approximation with Mark boundary conditions in the k eigenvalue case.
For the same set of model conditions, the angular flux as function of the angular variable at
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fixed slab locations has been also reported.
Finally, two parametric studies have been conducted as a further investigation of criticality

results, for the case of k, γ and α eigenvalue. In these analysis, the variation of the slab
dimensions and of the critical parameter have been taken into account.

Hence, a systematic presentation of criticality numerical results obtained with odd- and
even-orders PN approximation, have been performed in the present work for the k, γ, α
and δ eigenvalue. Lack of information both from the theoretical and numerical standpoint
concerning the δ eigenvalue, has forced to qualitative discussion about the obtained results for
this eigenvalue. Furthermore, in the most diffused criticality studies, the Discrete Ordinates
method is exploited as angular approximation, and the contribution represented by the present
work may be inserted in an initial fulfillment of a systematic work performed for the PN
approximation. Finally, interesting results have been observed in relation to even-order PN
approximations, which are generally discarded in transport models implementation, applied
to criticality results, suggesting an interesting field for future investigation.
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