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Abstract

The aim of the project is to develop a software that can be used to
solve the cardiovascular flow inside the Aorta, this can be very useful in
the medical investigation on the aneurism after the diagnosis. Visualize
how the aneurism affect the blood flow inside the Aorta permit to plan
with extreme accuracy the actions that has to be taken. This work will
present a method to improve the accuracy and make more efficient the
numerical evaluation of the force distribution on the surface of an Aorta
affected by an aneurism. Fluid Dynamic forces will be evaluate over a
complex geometry using immersed boundary method and octree grids.
The advantages in terms of time and memory used, using an octree grid
instead of a uniform cartesian grid are first investigate. After that we
present and test two different methods to evaluate the force over an im-
mersed body, The first consist in integrating the forces over the surface
of the body, in the second case a control volume approach is used. The
result will be compared and the method to be used will be chosen to
evaluate the force distribution over an aneurism of the aorta. Prelim-
inary simulation are then performed and force distribution is evaluate
using a simple non realistic boundary condition model.

Lo scopo del progetto é quello di sviluppare un software che possa es-
sere utilizzato per risolvere il flusso cardiovascolare all’interno dell’aorta,
ció puó essere molto utile nell’indagine medica sull’aneurisma dopo la
diagnosi. Visualizzare come l’aneurisma influisce sul flusso di sangue
all’interno dell’aorta permette di pianificare con estrema precisione le
azioni che devono essere intraprese. In questo lavoro si presenterá un
metodo per migliorare l’accuratezza e rendere piú efficiente la valu-
tazione numerica della distribuzione delle forze sulla superficie di un’Aorta
affetta da un aneurisma. Le forze fluidodinamiche saranno valutate su
una geometria complessa utilizzando un metodo immersed boundary e
una griglia di tipo octree. I vantaggi in termini di tempo e memoria
utilizzati, utilizzando una griglia octree anziché una griglia cartesiana
uniforme, verranno investigati inizialmente. Dopodiché sono stati anal-
izzati due diversi metodi per valutare la forza su un corpo immerso, il
primo consiste nell’integrare le forze sulla superficie del corpo, nel sec-
ondo caso viene utilizzato un approccio che si basa sulla variazione di
quantitá di moto all’interno di un volume di controllo. I risultati saranno
poi confrontati e si sceglierá quale metodo da utilizzare per valutare la
distribuzione delle forze su un aneurisma dell’aorta. Quindi verranno es-
eguite delle simulazioni preliminari del calcolo delle forze sulla superficie
dell’aorta e si verificherá la presenza di una concentrazione delle forze
all’interno dell’aneurisma.
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Introduction

Computational fluid dynamics is already been used to investigate the charac-
teristics of aortic flow in a detailed way clarifying structures that are otherwise
invisible to experimental measurements. To analyze these conditions, CAD
models of the cardiovascular system are build using state of the art imaging
techniques as the computed axial tomography (TAC). A 3D model is recon-
structed from several TAC images and the flow can be computed over or in-
side the structure. Blood properties like Non-Newtonian behavior and realistic
boundary conditions (e.g. systemic pressure or Windkessel model) have to be
taken into consideration in order to have a realistic simulation of the problem.
Therefore, it is possible to analyze and optimize the flow in the cardiovascular
system for different applications [1]. This project has been developed within
the MEMPHIS team of the research center INRIA, Bordeaux.The aim of the
team is to develop a software that can be used to solve the cardiovascular flow
inside the Aorta, this can be very useful in the medical investigation on the
aneurism after the diagnosis. An aortic aneurysm is an enlargement (dilation)
of the aorta up to 1.5 times normal size. They are most commonly located
in the abdominal aorta, but can also be located in the thoracic aorta. If un-
treated, aneurysms tend to become progressively larger, although the rate of
enlargement is individual and unpredictable. Aortic aneurysms cause weak-
ness in the walls of the aorta and an aortic rupture can occur. Ruptures can
result in massive internal bleeding and, unless treated immediately, shock and
death can occur. Rarely, clotted blood which lines most aortic aneurysms can
break off and result in an embolus.The risk of rupture of an Aortic abdominal
aneurysm is related to its diameter and walls thickness; once the aneurysm
reaches about 5 cm, the risk of rupture may exceed the risks of surgical re-
pair for an average patient. Rupture risk is also related to shape; so-called
"fusiform" (long) aneurysms are considered less rupture prone than "saccu-
lar" (shorter, bulbous) aneurysms[1], the latter having more wall tension in a
particular location in the aneurysm wall. This force concentration is what we
want to investigate in this work. Aortic aneurysms resulted in about 152,000
deaths worldwide in 2013, up from 100,000 in 1990 [14]. The main challenge
is to make a simple, user friendly, software that can be used from surgeons
or other staff members inside any medical facility. It would be then easy to
visualize how the aneurism affect the blood flow inside the Aorta and plan
with extreme accuracy the action that has to be taken. The software has been
written by the Team and can solve the pressure and velocity fields inside the
aneurysm. In this work is presented a method to evaluate fluid dynamic forces
and how it is implemented in the code. Different action are taken in order
to improve and make more efficient the numerical evaluation of the force dis-
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tribution on the surface of an aneurism. In order to discretize and solve the
Navier-Stokes equations a finite volume approach will be used. The velocity
and pressure fields are solved using a fractional step method that consist in a
prediction step in which the velocity is evaluated using a guess pressure field,
and then a Correction step to correct the velocity and satisfy the continuity
equation. The body is taken into account using the "penalization method"
that consist in adding a term to the momentum equation to define the rigid
body. The grid used to discretize the domain is an octree grid, a consequential
subdivision of the cells only where needed. This can guarantee a more efficient
use of the memory and a faster computation.To evaluate forces on the surface
of the body, the original method was not very accurate, so the first step of this
work is to find a more accurate method to evaluate the force. The Lagrangian
Marker [9] and Noca method [11] will be introduced and tested on the simple
test case of the flow past a 2D cylinder. The best choice will be then Validated
through the use of two Benchmark test case, In [12] is presented a proposal to
validate 2D CFD software from S.Turek, and then the code will be validated
in 3D using the flow past a still sphere, presented by R.Campregher et al. in
2009 [13]. Preliminary simulation on the aorta has been then performed to
verify the presence of a concentration of the forces inside the aneurysm.



Chapter 1

Navier-Stokes equations and
problem definition

1.1 Introduction to Navier-Stokes

To describe the behavior of a flow and it’s macroscopic and microscopic char-
acteristics, using computational fluid dynamics techniques, it is necessary to
numerically solve, fluid mechanics equation. Fluid statics or hydrostatics is the
branch of fluid mechanics that studies fluids at rest, while fluid dynamic is the
study of fluids in motion. Fluid mechanics has a wide range of applications
in several engineering field with the aim to solve complex flow field around
bodies or structures. Even field like meteorology or oceanography are regu-
lated by fluid mechanics equation. Hydrostatics is fundamental to hydraulics,
the engineering of equipment for storing, transporting and using fluids. It is
also relevant to some aspect of medicine (in the context of blood pressure)
and it will be the principal objective of this thesis work. We will treat, for
a firs general overview on the problem, the fluid as continuum (a continuous
distribution of mass in space).The continuum assumption is an idealization of
continuum mechanics under which fluids can be treated as continuous, even
though, on a microscopic scale, they are composed of molecules. In so doing,
the atomic or molecular nature of the fluid is neglected and this implies that
any small volume element (small in comparison to the characteristic length
scale of the system) is always supposed to be sufficiently big to contains a
huge number of molecules. Speaking about of an infinitesimal volume ele-
ment we mean that it’s very small compared with the volume domain but still
large to contain vary many molecules. There are two common descriptions of
continuum motion were both first presented by Leonhard Euler (1707-83).

1. Lagrangian Method: is a way of looking the fluid motion where the
observer follows an fluid parcel during it’s motion in space and time. In
summary, using the Lagrangian method, we follow the fluid parcel to
determine it’s properties

2. Eulerian Method: focuses on specific locations in the space through
which the fluid flows as time passes. It means to fix the coordinate and
evaluate fluid characteristics in that point.
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All the assumption inherent to a Newtonian fluid can be expressed in term of
equation:

1. Conservation of mass

2. Conservation of energy

3. Conservation of momentum

It’s necessary chose a control volume, which is an imaginary surface enclosing
a volume of interest. Different control volume could be employed during the
Navier Stokes writing, that choice affect the form of the governing equations
but the physical concept is always the same. As graphically showed in 1.1
from [2] the first difference that can be observed is between a Finite volume,
and anInfinitesimal volume. That difference conducts us, respectively, to an
integral form and a differential form of the Navier-Stokes equation. Starting

Figure 1.1: Different control volumes result in different approaches

from the example of the mass conservation law showed in 1.1, it’s possible to
write the first equation of interest.

1.1.1 Mass balance equation

The general form quoted for a mass balance is The mass that enters a system
must, by conservation of mass, either leave the system or accumulate within
the system . General hypothesis are shown below, referring to 1.2

• Defining a Cartesian frame of reference x, y, z, where density and velocity
are function of space and time t.

• Considering an infinitesimal volume element placed in a generic point
x, y, z, those dimensions are dx, dy, dz.

• Considering the mass flux across the six surfaces of the volume, and
evaluating the net flux difference along x axis, so the flux across the left
surface and the right one, we obtain the gradient of the mass along x
direction.
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Figure 1.2: Volume forces acting on the control volume

[
(ρu) +

∂(ρu)

∂x

]
dydz − (ρu)dydz =

∂(ρu)

∂x
dxdydz (1.1)

Using the same process it’s possible to obtain the y and z directions the net
flux coming out from the volume[

(ρv) +
∂(ρv)

∂y

]
dydz − (ρv)dydz =

∂(ρv)

∂y
dxdydz (1.2)

[
(ρw) +

∂(ρw)

∂z

]
dydz − (ρw)dydz =

∂(ρw)

∂z
dxdydz (1.3)

Therefore, the global mass flux that pass through the volume chosen is[∂(ρu)

∂x
+
∂(ρv)

∂y

]
dxdydz (1.4)

So the overall mass in the domain is

ρdxdydz (1.5)

So the time-rate of reduction of the mass fluid in the control volume is
∂ρ

∂t
dxdydz (1.6)

Obviously we can say that the Time rate reduction of the mass is equal to
the Net flux of mass coming out from the control volume. Comparing the
expression of the 1.4 with the 1.6, we obtain the mass balance equation written
as [∂(ρu)

∂x
+
∂(ρv)

∂y

]
dxdydz =

∂ρ

∂t
dxdydz (1.7)

Writing the vectorial form of the above equation we obtain the conservative
form of the mass balance equation

∂(ρ)

∂t
+∇(̇ρV ) = 0 (1.8)
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Using the ∇ · (ρV ) = V · ∇ρ + ρ∇ · V and the material derivative applied to
the tensor field as

Dρ

Dt
=
∂ρ

∂t
+ V · ∇ρ (1.9)

we finally have been obtained the Lagrangian or the Non-Conservative form.
Summarizing we can write:

• finite control volumes:equation in integral form.

• infinitesimal control volumes:equation in differential form.

• fixed control volumes:equation in conservative form.

• moving control volumes:equation in non-conservative form.

If the equation has been written using an integral approach, it’s always possible
to switch to the differential form and vice versa. To reconstruct one form to
each other we use the Gauss theorem in order to transform a surface integral
into a volume integral of the flux through the surface ds that surrounds the
volume dv.

Gauss Theorem

The Gauss, or divergence, theorem states that, if V is a connected three-
dimensional region in R3 whose boundary is a closed, piece-wise connected
surface S and F is a vector field with continuous first derivatives in a domain
containing V then ∫

V

∇ · FdV =

∫
S

F · ndS (1.10)

where S is oriented with the normal pointing outward . S can be disconnected,
if V has one or more inner boundaries the normal points inwards on the inner
boundary. In other words, the normal always points away from V .

Figure 1.3: Volume example for Gauss theorem

1.1.2 Momentum balance equation

Using the second Newton’s law on a infinitesimal control volume that contain a
fixed mass δm and moves with the flow, the equation will be a vector equation.
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The control volume always contains ρdxdydz, and the acceleration can be
written, dividing the three direction components as

ax =
Du

Dt

ay =
Dv

Dt
(1.11)

az =
Dw

Dt

We can identify two kind of forces as the Volumetric and the Surfaces ones.
The first one act directly on the mass of the control volume, while the second
one can be described as the consequences of two different phenomena, referring
only to the components along x-axis of the vectorial equation

Figure 1.4: Forces and shear stress acting on the infinitesimal control volume

1. Pressure imposed from the external field on the surface that surrounds
the cell volume. If defined as as a force per unit mass

ρfxdxdydz (1.12)

2. Shear and normal stress imposed by the external field due friction on
the surface.

• Net pressure in the x direction acting on the dydz surface, taking
care of 1.4. [

p−
(
p+

∂p

∂x
dx
)]
dydz (1.13)

• Net friction force in the x-direction, according to

[
−τxx +

(
τxx +

∂τxx
∂x

dx
)]
dydx+[

−τyx +
(
τyx+

∂τyx
∂y

dy
)]
dxdz+[

−τzx +
(
τzx +

∂τzx
∂z

dz
)]
dydx (1.14)
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By adding together the field and the surfaces forces, and writing on the left
hand side the second Newton’s law for each Cartesian axis direction we obtain
the three momentum balance equation we were looking for. These equation
are the three component of the one vectorial equation mentioned before. Using
some mathematical manipulation as the material derivative, and introducing
the 1.9 it’s possible to remove a therm in the equation that represent exactly
the 1.9, thus

ρ
Du

Dt
=
∂(ρu)

∂t
+∇(ρuV ) (1.15)

that’s the non-conservative form of the momentum balance equation. We can
also obtain the differential conservative form.

∂(ρu)

∂t
+∇(ρuV ) = −∂p

∂x
+
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+ ρfx

∂(ρv)

∂t
+∇(ρvV ) = −∂p

∂y
+
∂τxy
∂x

+
∂τyy
∂y

+
∂τzy
∂z

+ ρfy (1.16)

∂(ρw)

∂t
+∇(ρwV ) = −∂p

∂z
+
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

+ ρfz

1.1.3 Energy balance equation

For this subsection we should consider all the net heat flux through the surface
containing volume showed in 1.5 and the volumetric heating. We have although

Figure 1.5: The net heat flux due to thermal conduction that flows along x
axis

consider the work done on each surface of our control volume by the shear
stress. Using the equation of the total energy in our infinitesimal volume and
it’s rate of change and the Fourier’s law we define the non-conservative form
of the energy balance equation. That equation can be manipulated using also
the mass balance equation multiplied by total volume energy per unit mass to
obtain the differential conservative form.

1.1.4 Newtonian and non-Newtonian fluids

A Newtonian fluid is defined as a fluid whose shear stress is proportional to
the velocity gradient( measured in the direction perpendicular to the plane the



1.2. THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 15

shear stress) of the flow. Water is a simple example of Newtonian fluid. A
less rigorous definition of Newtonian fluid is that the drag of a generic body
immersed in the flow is proportionally to the force applied to the body.
By contrast a Non-Newtonian fluid does not obey Newton’s law viscosity. In
general the viscosity for that kind of fluid depends on shear rate. Although
fluid can even exhibit time-dependent viscosity. Therefore, it’s impossible to
define a constant viscosity term. A classic example of a non-Newtonian flows
is the blood. It results important to specify that all the study about the blood
through aorta vessel did in this thesis project have been considered as Newto-
nian flow in order to use the classical Navier-Stokes equation. It’s necessary
evaluate a viscous time dependent term to introduce blood characteristics on
the test case that characterize the present work.

1.2 The incompressible Navier-Stokes equations
It’s important to note that for incompressible flows, equation of state does not
exist. In practice this means that the energy equation is decoupled from the
other two equations. Therefore we can solve continuity and Navier-Stokes
equations to find the unknown velocity and pressure distribution without
knowing the temperature (we assume that fluid properties are taken to be con-
stant, i.e. not functions of temperature. If fluid properties change with temper-
ature all equations becomes coupled as in the case of compressible flows). Heat
transfer and therefore the energy equation isn’t always a primary objective in
an incompressible flow. For isothermal incompressible flows energy equation
can be dropped and only the mass and momentum equations are solved to-
gether to obtain the velocity and pressure fields in the whole domain. The
main difficulty of solving these equation for an incompressible test case lies in
the role of pressure. Pressure, under the incompressible hypothesis is no longer
a thermodynamic quantity and it can not be related to density or temperature
through an equation of state. It establishes it self with infinite velocity, so
it’s instantaneously, so that the velocity field always remains divergence free.
In the continuity equation there is no pressure term and in the momentum
equation there are only the derivatives of pressure, but not the pressure itself.
This means that , in this case, under that hypothesis the value of the pressure
is not important, only the changes of pressure in space are important. The
equation system of the Navier-Stokes equation for an incompressible flow are
shown below.

∂ρ

∂t
+∇ · (ρV ) = 0→ ∇ · V = 0 (1.17)

∂(ρV )

∂t
+∇p+∇ · (ρV V )−∇ · τ = 0→ ρ

∂(V )

∂t
+∇p+ ρ∇ · (V V )−∇ · τ = 0

(1.18)

where τ is the shear stress tensor defined as a 3by3 matrix, and can be written
in a compact form as.

τij = δijλ∇ · V + µ
[∂Vi
∂xj

+
∂Vj
∂xi

]
with λ = −2

3
µ (1.19)
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Thanks to the continuity equation (∇ · V = 0) the components of the shear
stress tensor are reduced to

τij = µ
[∂Vi
∂xj

+
∂Vj
∂xi

]
(1.20)

Expanding the vectorial notation in a two-dimension configuration is possible
to observe, as done in [2], that we should now resolve a three equation system.
The first one is the classical incompressible mass equation, the second and
the third are the momentum equation in the two direction axis.Re- arranging
the diffusive terms using the mass balance equation and using µ = const it is
possible to obtain the following equation system.

∇ · V = 0

ρ
∂u

∂t
+
∂p

∂x
+ ρ∇ · (uV )− µ∇ · (∇u) = 0 (1.21)

ρ
∂v

∂t
+
∂p

∂y
+ ρ∇ · (vV )− µ∇ · (∇v) = 0

Now, we need further equations that will allow us to solve the pressure field.
First of all, let’s derive the two equation from the momentum balance equation
and summing them together applying the mass balance equation we arrive to
the Poisson equation for the pressure field as

∇2p+ ρ
∂(V · ∇u)

∂x
+ ρ

∂(V · ∇v)

∂y
= 0 (1.22)

Further manipulation leads us to the Integral form and it will be possible to
transform the non time dependent term showed in the 1.22 in surface integrals
using the Gauss theorem explained before.

1.3 Problem definition

Out task is to solve a 3D incompressible flow inside a cave body (the Aorta),
but we start considering a 2D flow around a solid body first, we will subse-
quently extend the discussion to the three dimensional case. The whole domain
is denoted as Ω = Ωf ∪ Ωb. The solid domain is named Ωb and the boundary
of the solid body is denoted as ∂Ωb. Let ub be the velocity of each xb ∈ Ωb.
The problem is governed by the following equations:

ρ
(∂u
∂t

+ (u · ∇)u
)

= −∇p+ µ∆u in Ωf (1.23)

∇ · u = 0 in Ωf (1.24)
u = ub on ∂Ω (1.25)

With homogeneous initial condition in Ω and Boundary Conditions of Dirichelet
for the pressure on ∂Ω and Neumann boundary condition for the velocity on
the inlet side of ∂Ω and free flow condition on the outlet side of ∂Ω.
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1.4 Penalization method
Having a body immersed in the fluid leads to the use of a body fitted mesh,
which complicate the problem, to avoid the insurgence of this issue the Penal-
ization Method [3] can be applied to our problem.
According to that to take into account the presence of the solid body inside the
fluid domain the whole system is considered to be a fluid flow that has density
ρ. The solid body is considered to be a porous item inside the fluid with a
very small permeability K << 1. We now define a characteristic function χ
that will be equal to 1 inside the solid body and null elsewhere.

χ(x, t) = 1 if x ∈ Ωb (1.26)
χ(x, t) = 0 if x /∈ Ωb (1.27)

In [3] is shown how to take into account the penalization model inside the
Navier-Stokes equation on the entire domain Ω through adding the so called
penalization term to the momentum equation in the limit of K → 0.

ρ
(∂u
∂t

+ (u · ∇)u
)

= −∇p+ µ∆u +
ρ

K
χ(ub − u) in Ω (1.28)

∇ · u = 0 in Ω (1.29)

So the velocity on the boundary of the immersed body through the use of the
penalization term 1

K
χ(ub−u) and the equations governing the problem can be

discretized on the cartesian grid, so the use of a body fitted mesh is no longer
needed. But the points on the boundary of the body do not correspond to the
points of the grid, to solve this issue and to verify the condition 1.25 in the
first approach of the penalization method, the penalized velocity is forced on
all the grid points inside the rigid body, that gives a first order of accuracy in
time.

1.4.1 Second order penalization method

In [4] is shown how the penalized velocity can be corrected using the Image
Point Correction. Using this method is possible to correct the penalized veloc-
ity in all the ghost points, solid points which have at least one fluid neighbor.
this is needed to evaluate a more accurate value of the gradient in the zone
near the immersed boundary.
The level set function φ is now introduced, is defined as the signed distance
from the solid-fluid interface ∂Ωb to a given point of the domain [5], is positive
if outside the solid and negative if inside (∈ Ωb) figura1.6. The solid-liquid in-
terface is defined by φ = 0. The level set function has to satisfies the condition

[h]
∂φ

∂t
+ (u · ∇)φ

)
= 0 in Ω (1.30)

and the normal vector to the surface is

n =
∇φ
|∇φ|

(1.31)
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Figure 1.6: Level set function distribution for a solid cylinder immersed in the
fluid domain.

Figure 1.7: [4] one-dimensional scheme for second order penalization

To evaluate the correction of the velocity we use the fact that the velocity
gradient through the interface in the normal direction with respect to the in-
terface does not change. In relation to figure 1.7 we can express this statement
as:

uS − uB

|φS|
=

uB − uF

|φF |
(1.32)

where|φS| and |φF | are the absolute value of the level set in the points S and
F
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The velocity on the ghost nodes uS (figure 1.8) is evaluated knowing the ve-
locity on the symmetric point with respect to the interface along the Normal
to the interface itself uF, and imposing the desired velocity of the point on the
interface uB.

uS = uS − φ
(∂u
∂n

)∣∣∣
φ=0

(1.33)

In the two-dimensional case (figure 1.8) we need to compute
(
∂u
∂n

)
forφ = 0, we

find all the normal points to the ghost points as the point on the interface B is
located at a distance φ ant the symmetric point is at 2φ from the ghost point.
The value of uF can be interpolated using the velocity his fluid neighbors.

Figure 1.8: [4] sketch of the correction for the velocity in a two-dimensional
case.

1.5 Prediction-Correction fractional step method
For the discretization in time of the problem a predictor-corrector fractional
step method is used, This method consist in calculate a velocity u∗ using an
initial guess for the pressure field p∗. But in this way the condition ∇·un+1 = 0
is not verified so a correction on the velocity field has to be evaluated.

∂u

∂t
+ (u · ∇)u = −∇p

ρ
+ ν∆u +

1

K
χ(ub − u) in Ω (1.34)

∇ · u = 0 in Ω (1.35)

Discretizing the derivative with an implicit scheme

un+1 − un

∆t
= ν∇2un + (un · ∇)un − 1

ρ
∇pn+1 +

1

K
χ(un

b − u∗) (1.36)



20CHAPTER 1. NAVIER-STOKES EQUATIONS AND PROBLEM DEFINITION

adding and subtracting to the equation u∗ and 1
ρ
∇pn we obtain:

un+1 − u∗

∆t
+
u∗ − un

∆t
= −1

ρ
∇pn+1− 1

ρ
∇p∗+ 1

ρ
∇p∗−(un ·∇)un+ν∇2un (1.37)

In this work the a-dimensional form of the equations is used.

1.5.1 Prediction step

In the prediction step we solve the first fractional step given a guess pressure
field and in order to obtain u∗.

u∗ − un

∆t
= −(un · ∇)un −∇p∗ +

1

Re
∇2un +

1

K
χ(un

b − u∗) (1.38)

The Penalization term is taken into account in this step, so to solve it and
evaluate u∗ we need tho know ub in the ghost cells.
If we use a first order prediction the velocity (figure 1.9a) into the ghost cell
(in blue) is enforced to be the velocity of the body itself, if the body does not
move ub = 0.

(a) First order interpolation to evaluate
ub

(b) Second order interpolation to evaluate
ub

If we use a second order penalization the velocity enforced on the ghost cell is
the opposite of the value on the symmetric point respect to the boundary of
the body, this because if the body does not move the velocity on the red point
is null. Referring to figure 1.9b, the value of ub in interpolated using only fluid
points ( black circles).

ub =
∑
i

ωiu
∗
i = F (u∗i )

where ω are the interpolation weights and F (u∗i ) represent the interpolation
function.
If the body is in motion the velocity of the red points is uc 6= 0 and the
penalized velocity on the ghost cell is ub = [2uc − F (u∗i )]
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1.5.2 Projection and Correction steps

Since this velocity does not satisfy the continuity equation, we need to correct
it, in the Projection Step we solve the second fractional step. using the
velocity field u∗ evaluated in the prediction step we can evaluate the correction
on the pressure.

un+1 − u∗

∆t
= −(∇pn+1 −∇p∗) (1.39)

What we want to be verified is ∇ · un+1 = 0 we take the divergence of the
equation above and we get the Poisson equation

∇u∗

∆t
= −∇2Φ (1.40)

where Φ = pn+1 − p∗
Solving with a Poisson solver we get the correction step of the field:

pn+1 = p∗ + Φ (1.41)
un+1 = u∗ + ∆t∇Φ (1.42)

1.6 Space Discretization

For the discretization in space of our problem a first order upwind scheme
is used for the advection equation. The original idea was to use a Semi-
Lagrangian Scheme, but there were several problem using it in three dimen-
sional cases, so it is been decided to use a more conventional first order Upwind
scheme. The scheme will be soon improved to reach the second order of accu-
racy. But for the first test the first order is enough

(a)
(b)

Figure 1.10: The schematization of the method used to evaluate the second
Derivatives.

(u · ∇)u =
[uj − uj−1

∆x
+
vj − vj−1

∆y

]
uj (1.43)
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For the Diffusive part of the equation a second order finite difference scheme
is used, that leads to:

ν∇2u = ν
(ux+∆x,y − 2ux,y + ux−∆x,y

∆x2
+
ux,y+∆y − 2ux,y + ux,y−∆y

∆y2

)
(1.44)

∇p =
pj+1 − pj−1

2∆xi
(1.45)

The Navier-Stokes solver was already implemented inside the code. First a La-
grangian scheme was adopted to discretize the convective part of the equation
in space, but due to the problems this kind of discretization have in three-
dimension, a more simple upwind scheme has been used for more complex or
3D problems. We will focus on the method used to evaluate the forces over
a surface using the pressure and velocity fields evaluated using the fractional
step method.



Chapter 2

Numerical Grid

In classical approaches for many problems like incompressible multi-phase fluid
flow or fluid-structures interaction, the interfaces are considered to be inter-
nal boundaries using interface fitted meshes. These methods leads to the use
of simple discretization and gives accurate results, but has very long compu-
tational times and generating and handling these grid can be hard for non-
stationary problems. In general case, a uniform mesh results efficient for prob-
lem without regions where a greater accuracy is required. Such regions could be
place where discontinuity occurs, or even shocks. The original idea was to im-
plement a uniform cartesian grid with a finer refinement to catch this particular
region, but this kind of approach leads to an always increasing computational
cost. On the other hand, many problems in numerical analysis do not require
an uniform precision in the entire discretized domain, but eventually only in
some areas. In order to achieve high precision numerical simulation avoid-
ing excessive computational cost, adaptive mesh refinement (AMR) method is
used. It consist of an adaptive time dependent mesh during the calculation
or fixed statically at its beginnings. It provides a focus on the precision of
numerical computation based on those areas while leaving the other region of
the domain at lower levels of precision and resolution. This kind of reproach
allows the user to solve problems that are intractable on an uniform grid.The
approach we use is presented in [6] and uses a mesh with hierarchical nature
that makes the grid easy to be generated and partitioned and can be easily
evolutive. This being more efficient with a low need of memory that makes it
faster.

2.1 Discretization of the domain

For the space discretization of the whole fluid domain we use a hierarchical
data structure that consist in a consequential subdivision of the cell. At each
level a cell (parent) is subdivided into 4 equal cells called children for the two
dimensional case (quadtree) or 8 children for a three-dimensional problem (oc-
tree). As the quadtree is defined in a square is easier to describe the structure
of the grid in two dimensions (figure 2.1).
Referring to figure 2.2 the root cell is the base of the tree and is the whole
domain before the discretization. The leafs are the cells that have no child
(red cells in the figure). The tree is composed both by leaf and no leafs cells,

23
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Figure 2.1: A quadtree subdivision of the grid

Figure 2.2: The decomposition of the grid represented as a quadtree

Figure 2.3: A solid cylinder in a fluid domain discretized with a cartesian
hierarchical quadtree mesh
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only leafs are stored in memory. The level of the cell is defined giving to the
root cell the level zero and adding one each time there is a subdivision into
4 children, i.e. every time a new group of children is placed below the tree.
Neighbors to the cells can be defined through the surfaces or through the cor-
ners.

If each cell has all the neighbors that has at most 1 level difference with the
cell itself, then the grid is called Graded or balanced by definition. In this
work only graded grids are used, but un-graded grid can be used as well, a
progressive increment of two levels at the time it is also fine to be used.
The generation and handling of this kind of grid is guaranteed by the use of
the library PABLO [7].

The main advantages of using this kind of grid are:

1. efficient access to the data stored in memory.

2. easy access to the cell number level and position.

3. easy neighbors identification.

2.1.1 Refinement criteria of the cell

The final aim of the code is to have an automatic adaptive refinement of the
grid. The code can create a dynamic mesh refinement, based on the computed
value of the velocity gradient in each cell. In each cell the gradient is computed
and compared to the limit value imposed in the code. If the value in the
cell is greater than the limit value, the cell is refined Obviously, the dynamic
refinement results in large computational costs each time the grid is refined.
For the purpose of this work this algorithm that evaluates the adaptive grid
was ignored. The grid used is static, does not change in time and the cells to
be refined are chosen by the user.
For the test case of the flow past a rigid cylinder the grids used are several:

• Circular refinement: this approach leads a low computational costs since
only the areas around the cylinder is refined, on the other hand the eddies
that occurs in the wake are not represented in the best way since there
is no refinement provided.

• Rectangular refinement: This approach avoid the low resolution problem
that occurs in the wake for the previous refinement. There will be areas
where the refinement is not required.

• Combined refinement: such approach is a good balanced mix between
the two previous method. A circular refinement on the cylinder wall
is imposed as well as a rectangular refinement that provides the high
resolution required on the wake to catch all the vortex structures.

If a very high precision on the force evaluation is needed a circular refined grid
is use as is more accurate on the surface of the body. If a good accuracy on
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the vortex structures on the wake is needed, a rectangular refined grid is used.
The combined grid presents both the advantages but the computational cost
is larger.

(a) Circular Refinement around the sur-
face of the cylinder

(b) Reptangular refinement of the wake
of the cilinder

(c) A combination of both the cyrcular and the reptangular
refinement

2.2 Z ordering

To arrange multi dimensional data into a mono-dimensional array several
space filling curve can be used to number the cells. There are two kind of
curves mostly used in multidimensional problems: the Hilbert Curve and the
Z-Ordering Curve [10].

Hilbert curve

This curves was introduced by Hilbert in 19th century. Using this pattern each
cell of a two-dimensional space can be represented with an index, with order
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shown in figure 2.5a . So it makes possible to map 2D spaces into 1D. To find
Hilbert order many algorithms can be used that generates, and handle it.

(a) A representation of the
Hilbert curves in three dimen-
sions

(b) A representation of the Hilbert curve
ordering at different levels of refinement

Z-Order

The Z-ordering was first introduced by Morten in 1966 [10]. It can be used to
generate an ordered numeration of the cells while using an quadtree grid. The
basic idea is to sort the cell index following a space filling line with an inverse
Z shape. At each subdivision of a cell into four children to each child an index
is assigned from 0 to 3. 0 will be the bottom-left cell, 1 to the bottom-right
cell, 2 to the top-left cell and 3 to the top-right one, as its possible to see in
figure 2.6b.

(a) A representation of the Z-ordering
in 3D at different levels of refinement

(b) A representation of the Z-
ordering in 2D at different levels
of refinement

The approach we use, once the cells have been sorted, is to store the indices
in a binary search tree and used directly, which is called a linear quadtree,[3]
or they can be used to build a pointer based quadtree.
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Table 2.1: Geometric parameters

Dimension domain 16x16
Diameter 1
x center -4
y center 0

2.3 Quadtree and Cartesian grid comparison
To appreciate the improvement given by using a quadtree grid we compared
the computational cost performing simulations for the same test case with a
cartesian grid versus a quadtree grid. The test case we use is the flow past
a circular cylinder at Reynolds 100 (Figure 2.7) and CFL condition set to
0.8.s The cylinder diameter is 1 and his center is positioned in [-4, 0]. The
Drag coefficient will be evaluated and compared with the results found by B.N
Rajany et al. [9].

Figure 2.7: The circular cylinder in the fluid domain at t=0

To solve Navier-Stokes equation boundary and initial condition has been im-
posed. Table (2.3) summarize the overall geometrical condition. In particular,
a free flow condition has been fixed for the outflow area while the inflow area
needs Dirichelet boundary condition on the velocity field in order to have
flow motion in the square domain. Upper and lower domain walls have been
provided of Dirichelet BC on the velocity field, and a Neumann condition
(∇p = 0) on the Pressure field. This kind of approach simulates a flow paste
a 2D cylinder in free field condition.
For this test we suppressed the automatic generation of the grid. We imposed
a rectangular refinement of the grid to include the wake of the cylinder in order
to get a more accurate evaluation of the force (How the force are evaluated on
the cylinder surface will be the next chapter’s task). The simulation has been
first performed on a cartesian grid and then we compared the values of the
Drag Coefficient obtained with the results acquired using a quadtree domain’s
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Table 2.2: Initial condition imposed to the flow at the first time step.

Flow initial condition

ρ 1
U 1
T 1
p 1
Re 100

Table 2.3: Boundary condition used for this analysis

Boundary Condition

Inflow U=1 ∇p = 0
Ouflow Freeflow
upper&lower boundaries U=1 ∇p = 0

discretization.
The uniform cartesian mesh has cells dimensions which correspond to the one
we would have using a Level 10 quadtree subdivision of the domain . That
means, using a square domain, dividing ten times the domain following a
quadtree pattern. Fixed the most refined level to 10 we will use 1, 2 and 3 levels
of refinement to get to level 10 in the wake of the cylinder, starting respectively
from level 9 8 and 7 as less refined levels. All the simulation has been performed
in parallel using the same number of processors (196 processors on 24 Nodes).
The value of the drag coefficient is taken after 500 seconds of physical time,
after which the transient has ended and the flow is fully developed. According
with the above explained the grids used will be:

1. Level 10 with 0 refinements, figure 2.8a

2. Level 9 with 1 refinements, figure 2.8b

3. Level 8 with 2 refinements, figure 2.8c

4. Level 7 with 3 refinements, figure 2.8d

Table 2.4: The results obtained for different grids in terms of Drag coefficient,
the time reduction and the cell reduction is evaluated with respect to the cpu
time and number of cell of the finest uniform grid L 10-0.

Grid Cdav ||ε|| Tcpu [h] reduction #cell #cell red

L10-0 1, 2534 6, 13% 12 : 42 : 13 0, 00% 1048576 0, 00%
L9-1 1, 2483 6, 52% 05 : 08 : 42 59, 50% 441856 57, 86%
L8-2 1, 2756 4, 47% 02 : 40 : 09 78, 99% 179584 82, 87%
L7-3 1, 2620 5, 49% 01 : 41 : 47 86, 65% 84832 91, 91%
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(a) Cartesian mesh, Level 10 with no re-
finement

(b) Initial Level 9 with one refinement on
the wake

(c) Initial Level 8 with two refinement on
the wake

(d) Initial Level 7 with three refinement
on the wake

Figure 2.8: he grids used to discretize the domain
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(a) (b)

Figure 2.9: In figure 2.9a is presented the velocity field after 500s of physical
time using the grid level 7 with three refinements. In figure 2.9b the velocity
field after 500s of physical time using the cartesian grid

The result are presented in table 2.4. the computational time is significantly
reduced when using the octree mesh as well as the number of cells, even using
only one level of refinement on the wake of the cylinder we have a reduction
of the 59% on the cpu time and 58% in number of cell used to discretize the
domain. The error does not change significantly respect to the one evaluated
on the cartesian grid.

To have a significant reduction of The computational time without increasing
the error too much, we take into consideration all the result with a percentage
error less or equal to the 5% The first graph represented in figure 2.11 the cpu
time needed for the simulation , summarized in table 2.4, compared with the
cell’s number of the discretized domain. It’s possible to appreciate the quasi-
linear dependence between the computational cost and the cell’s number.
In order to have a graphical representation that highlights an optimized simu-
lation configuration, in figure 2.10 fo each simulation performed is reported the
percentage relative error with respect to the values obtained in [9], related to
the corresponding percentage cpu time reduction with respect to the cartesian
grid. This result are shown in table 2.4. The best grid set up seems to be the
red circled point in figure 2.10. Such point corresponds to the initial grid level
8 with 2 refinement, and represent the minimum relative error4.47% obtained
with a significant time reduction, the 80% less time, respect to the simulation
performed using a cartesian uniform grid.



32 CHAPTER 2. NUMERICAL GRID

Figure 2.10: The percentage cpu time reduction with respect to the cartesian
grid, versus the relative error with respect to the value presented in [9]. From
this graph we can enlighten the best compromise grid that permit to reach a
very high reduction in cpu time without increase the relative error.

Figure 2.11: In this graph is shows how the computational time increase lin-
early increasing the number of cells used.

in order to have a larger view of the error and number of cells behavior further
simulation has been accomplished. Maximum level discretization has been
fixed as level 9 (each octant has been sub-divided 9 times), and the related
simulation were:

• Initial level 9 with 0 refinement

• Initial level 8 with 1 refinement



2.3. QUADTREE AND CARTESIAN GRID COMPARISON 33

• Initial level 7 with 2 refinement

• Initial level 6 with 3 refinement

Calculating the mean drag coefficient obtained after transient phenomena, we
can compare these results with the ones we obtained using as maximum dis-
cretization level 10.

Table 2.5: We repeat the analysis using several grids to have a better overview.

Grid Cdav (err%) Tcpu [h] reduction #cell #cell reduction

L10-0 1, 2534 6, 13% 12 : 42 : 13 0, 00% 1048576 0, 00%
L9-1 1, 2483 6, 52% 05 : 08 : 42 59, 50% 441856 57, 86%
L8-2 1, 2756 4, 47% 02 : 40 : 09 78, 99% 179584 82, 87%
L9-0 1, 2515 6, 28% 01 : 48 : 30 85, 77% 262144 75, 00%
L7-3 1, 2620 5, 49% 01 : 41 : 47 86, 65% 84832 91, 91%
L8-1 1, 2278 8, 05% 01 : 07 : 26 91, 15% 110464 89, 47%
L7-2 1, 2212 8, 54% 00 : 38 : 59 94, 89% 44896 95, 72%
L6-3 1, 2843 3, 82% 00 : 26 : 27 96, 53% 21208 97, 98%

Even if the grid at level 6 with 3 level of refinement gives the lowest error, we
don’t take into account this result as the grid is not enough refined and it is
impossible to catch all the vortex structures inside the wake of the cylinder.

(a) (b)

Figure 2.12: From the graphs above is it possible to chose the discretization
that can guarantee the best compromise between a fast computation and a
small error.
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Chapter 3

Evaluation of the forces

In this chapter will be shown the mathematical and numerical approach to
describe forces distribution over a generic body immersed in a fluid domain.
Since the cylinder is the most common case study for tests that includes force
evaluation, and since the literature provides experimental and others numerical
data, in the following paragraph a two-dimensional cylinder will be simulated
using the Nurea code. Two mathematical approach are presented in this chap-
ter. Integrating the force over the surface of the cylinder, this approach is
based on the the principle for which dynamic force around a solid body im-
mersed in a fluid flow can be calculated integrating the shear stress on the
surface of the body. The second method presented by Noca [11], is based on
the conservation of momentum. The force acting on the body is equal to the
difference between the inflow and outflow momentum inside an arbitrary cho-
sen control volume. The two methods has been both developed, implemented
in the code and tested in order to chose the most suitable to use to compute
the force distribution over the aneurysm.

3.1 Force evaluated on the surface
Starting from the momentum balance equation, and neglecting the gravity
contribute we obtain a general formulas for continuous field. The total force
acting on the surface of the cylinder can be evaluated from the equation that
describes the total force acting on the surface of a body immersed in a fluid
flow.

F =

∫
S

pn dS +

∫
S

∇u · n dS (3.1)

This equation in order to be solved numerically has to be discretized, consid-
ering the integrals as a sum of the values in all the cell of the surface.∑

i

Fi =
∑
i

pi∆Sin +
∑
i

∇ui · n∆Si (3.2)

As the surface of the cell is the same we can rearrange the equation:∑
i

Fi =
(∑

i

pi +
∑
i

∇ui
)
·
∑
i

∆Si · n (3.3)

35
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3.1.1 Lagrangian markers method

In order to evaluate the fluid dynamic forces acting on the surface of the cylin-
der we will integrate the forces acting on each point of the surface. According
to 5.1 to compute the force on a single cell we need the knowledge of pres-
sure, velocity gradient, normal vector to the cell and surface of the cell. The
points used to define the geometry of the cylinder ( in red in fig 3.1) are called
Lagrangian markers, and are not points of the grid so we don’t know neither
the pressure nor the velocity gradient. Furthermore in these points we cant
evaluate the normal and obtaining the surface between two of them is difficult.
To over come this problems we use a Lagrangian marker approach. The forces
will be computed on the middle point of the segment connecting two conse-
quential Lagrangian markers. On this control point we can easily compute the
normal vector. The surface of the cell is equal to the length of the segment
in the two-dimensional case. However Pressure and Gradient on the control
points are interpolated using the values in the neighbor cells. Referring to
figure 3.1 the red points are the Langrangian markers while the blue points
are the control points. in the following sections of this work the control points
will be represented as points on the surface of the body. Even if this points
are not exactly on the boundary it is easier to illustrate how they will be used.

Figure 3.1: The points used to define the geometry of the solid body are
used as lagrangian marker. The forces are computed on the middle point of
the segment connecting two consecutive marker, where it is easy to calculate
normal vector and surface of the cell, this control point are represented in blue.

3.2 Original force evaluation.

From equation 5.1, the total force acting on the cylinder is the sum of the forces
acting on each single control point The force on each single control point ( red
points in figure 3.2) is:
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Fi =
(
pi +∇ui

)
· Si · n (3.4)

In order to evaluate it, interpolations of the velocity gradient and pressure are
needed so we need a criteria to chose the neighbors to use. Referring to figure
3.2 from the i-th control point we move to the closest vertex and we chose as
neighbors the four cells insisting on the vertex.

The pressure is defined both in solid and fluid cells, but the gradient of velocity
is defined only in fluid cells as the velocity is null inside the body. So to
interpolate we need to select only fluid cells that can be used to interpolate
the force. The strategy is to evaluate ps +∇us for each fluid neighbor (cells
s = [1 3 4] in figure). The value of the pressure is known in the cell centers
of the neighbors cell and the gradient in each s-th point can be approximate
using a second order finite difference scheme.

Fi =
1

N

∑
s

(ps +∇us
)
· Si · ni

Figure 3.2: the Neighbors used for the interpolation are selected moving from
the control point to the nearest vertex and the neighbors are the 4 cell insisting
on this vertex.

3.2.1 Results

With the method previously presented we obtain the two components of the
total force on the surface of the cylinder F = [Fx Fy]. The previous works
found in literature present the non-dimensional force. The Drag coefficient is
computed and used to compare the result. The reference value obtained in [9]
is used to evaluate the error on the CD.
In table 3.1 the result in terms of drag coefficient are presented. The simu-
lation is performed for different grid both uniform and quadtree with circular
refinement.

CD =
Fx

1/2ρu2S
(3.5)
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(a) (b)

Figure 3.3: The fluid domain used for the test, in 3.3a the velocity field at
the initial condition, in 3.3b the quadtree grid with initial level 7 and three
circular refinement around the surface of the cylinder.

This results are the same already used to compare the quadtree grid to the
uniform cartesian grid presented in the previous chapter.

Table 3.1: The drag coefficient obtained with several grids both cartesian or
quadtree, the error respect to the reference value and the computational time
needed to reach 500 seconds of physical time.

Grid Cdav err% Tcpu [h] #cell

L10-0 1, 2534 6, 13% 12 : 42 : 13 1048576
L9-1 1, 2483 6, 52% 05 : 08 : 42 441856
L8-2 1, 2756 4, 47% 02 : 40 : 09 179584
L9-0 1, 2515 6, 28% 01 : 48 : 30 262144
L7-3 1, 2620 5, 49% 01 : 41 : 47 84832
L8-1 1, 2278 8, 05% 01 : 07 : 26 110464
L7-2 1, 2212 8, 54% 00 : 38 : 59 44896
L6-3 1, 2843 3, 82% 00 : 26 : 27 21208
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(a) The comparison between theDrag Co-
efficient obtained using a uniform carte-
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Figure 3.4: Original method: The results in terms of drag coefficient obtained
using the Lagrangian markers method. The forces on the control points are
calculated averaging the force on the neighbors.

3.3 New method to evaluate the Forces

The method presented above is not very accurate as the force result from an
average of the values of the neighbors, and so doing we have to sum to the
interpolation error, the error made approximating of the value of the velocity
gradient in the neighbor’s centers. In order to improve the accuracy of the
method, p and ∇u will be interpolated o the control point directly, only know-
ing p and u in each neighbor cell center. With this method we don’t need to
approximate the velocity gradient on the neighbors, so the error is expected
to be smaller as we only have the interpolation error.

3.3.1 Interpolation of the Pressure with RBF scheme

In practical applications we have to face the problem of reconstructing an
unknown function f from a set (usually small) of data. These data consist
of two sets: the data sites X = x1, ..., xN and the data values fj = f(xj),
j = 1, ..., N . The reconstruction has to approximate the data values at the
data sites. In practice we are looking for a function s that either interpolates
the data, i.e. it satisfies the conditions s(xj) = fj , 1 ≤ j ≤ N or approximate
the data, i.e. s(xj) w fj . This latter is important, for example, when the data
come from some measurement or contain noise.
A radial basis function is a function φ whose value depends only from the
distance from the origin or alternatively on the distance from a generic point
called c, so that

φ(x, c)) = φ(||x− c||) (3.6)



40 CHAPTER 3. EVALUATION OF THE FORCES

Such functions, as wrote, depend only from the radial distance from a fixed
point. The norm usually is the Euclidean distance.Sums of radial basis func-
tions are typically used to approximate given functions. RBFs functions are
typically used to build up function approximations of the form

y(x) =
N∑
i=1

wiφ(||x− xi||) (3.7)

Where, our approximating function has been written as a sum of N radial basis
functions, each associated with a different center and with a proper weight wi.
Such weights can be estimated using the matrix method of linear least squares.

3.3.2 Interpolation of the gradient with the least square
interpolation

To interpolate the velocity gradient on the control point a least square interpo-
lation approach has been used. This allow to obtain the value of the gradient
on the desired point without the need to compute the gradient on the neighbors
cell center first. So the error made is only the interpolation error and there is
no error committed approximating the gradient on the neighbors anymore.

Denoting with i the index of the neighbors, the Taylor expansion of the velocity
on the i-th point is

u(xi) = u(x0) + (Xi −X0)∇u(x0) (3.8)

Where for the two-dimensional case:

• u = [u v] ∈ R2

• X = [x y] ∈ R2

• ∇u =

[∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]
∈ R2×2

Interpolating in the sense of the least square is based on minimizing the sum, of
all the distances between the values in the neighbors, used to interpolate, and
the interpolated value itself, From the 3.8 we can get the sum of the distances.

I =
∑
i

1

2

[
uxi
− ux0 −∇U‖x0(Xi −X)

]2

(3.9)

This is a vectorial equation, in order to minimize this quantity the derivative
is taken with respect to the gradient of the velocity, and imposed null. To
simplify we will split the gradient into two vectors, consequently the equation
will be split in two equations as well.

∇u =

[∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]
=

{
∂u
∂x
∂u
∂y

}
∪
{

∂v
∂x
∂v
∂y

}
(3.10)
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∇U‖x0(Xi −X) =
2∑
d=1

(Xd
i −Xd) (3.11)

Where d is an index that represent the two vectors in which the gradient was
divided. According to that and expanding the square, the 3.9 can be rewritten.

I =
∑
i

1

2

{
∆u2 − 2∆ui∇u‖x0(Xi −X) +

[ 2∑
d=1

(Xd
i −Xd)

]2}
(3.12)

Where for convenience ∆u = uxi
− ux0 . Now we take the derivative of each

component of the 3.12 with respect to the two vectors in which the gradient
was divided. and we obtain two linear sistems.{

∂Iu
∂∇xu = 0
∂Iu
∂∇yu = 0

(3.13)

{
∂Iv
∂∇xv = 0
∂Iv
∂∇yv = 0

(3.14)

Where ∇x = ∂
∂x
, ∇y = ∂

∂y
and I = {Iu Iv}.

The system 3.13 is obtained deriving the first component of I and imposing it
equal to zero we can evaluate the first two components of the gradient.


∂Iu
∂∇xu =

∑
i

1
2

[
0− 2∆ui(xi − x) + 2

(
(xi − x)∂u

∂x
+ (yi − y)∂u

∂y

)
(xi − x)

]
= 0

∂Iu
∂∇yu =

∑
i

1
2

[
0− 2∆ui(yi − y) + 2

(
(xi − x)∂u

∂x
+ (yi − y)∂u

∂y

)
(yi − y)

]
= 0

(3.15)

{∑
i∇xu(xi − x)2 +

∑
i∇yu(xi − x)(yi − y) =

∑
i ∆ui(xi − x)∑

i∇xu(yi − y)2 +
∑

i∇yu(xi − x)(yi − y) =
∑

i ∆ui(yi − y)
(3.16)

And rearranging in matrix form we obtain the linear system implemented in
the code used to interpolate the gradient in the control point.

[ ∑
i(xi − x)2

∑
i(xi − x)(yi − y)∑

i(xi − x)(yi − y)
∑

i(yi − y)2

]{
∂u
∂x
∂u
∂y

}
=

{ ∑
i(xi − x)∆ui∑
i(yi − y)∆ui

}
(3.17)

The system 3.14 is obtained deriving the second component of I and imposing
it equal to zero we can evaluate the last two components of the gradient.

∂Iv
∂∇xv =

∑
i

1
2

[
−2∆ui(xi − x) + 2

(
(xi − x) ∂v

∂x
+ (yi − y)∂v

∂y

)
(xi − x)

]
= 0

∂Iv
∂∇yv =

∑
i

1
2

[
0− 2∆ui(yi − y) + 2

(
(xi − x) ∂v

∂x
+ (yi − y)∂v

∂y

)
(yi − y)

]
= 0

(3.18)

{∑
i∇xv(xi − x)2 +

∑
i∇yv(xi − x)(yi − y) =

∑
i ∆vi(xi − x)∑

i∇xv(yi − y)2 +
∑

i∇yv(xi − x)(yi − y) =
∑

i ∆vi(yi − y)
(3.19)
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And rearranging in matrix form we obtain the linear system implemented in
the code used to interpolate the gradient in the control point.

[ ∑
i(xi − x)2

∑
i(xi − x)(yi − y)∑

i(xi − x)(yi − y)
∑

i(yi − y)2

]{
∂v
∂x
∂v
∂y

}
=

{ ∑
i(xi − x)∆vi∑
i(yi − y)∆vi

}
(3.20)

This two system can be easily be solved using a PETSC library function to
invert the matrix. As is it possible to notice the matrix is the same for both
system so it will be inverted once by the code, this allow to spare computational
time and memory.

Neighbors selection

The preceding method didn’t have many restrictions in terms of neighbors
selection, the method could be used with any number of fluid neighbors of the
cell containing the control point. However with this new method it is important
to guarantee always the existence of at least 3 fluid neighbors, as in the case
brought in figure 3.5a. So the choice of the neighbors used to interpolate the
gradient consist in finding the closest grid cell center to the control point, all
the border cell are taken into account, as well as the cell itself. In order to
guarantee the existence of the gradient in the neighbors, the interpolation is
made using only the fluid cell among the nine taken into account.

(a) Pressure (b) Velocity gradient

Figure 3.5: From control point, in red, we move to the closest grid cell center.
All the bordering cell, of this cell are taken into acount, also the cell itself is
added. Only the fluid cell among the 9 neighbors are used to interpolate the
gradient, while all the neighbors are used to interpolate the pressure.

3.4 Convergence Analysis
The aim of this section is to find a different method to interpolate the forces
on the control point that can improve the accuracy of the computation, but
without compromising the computational time. We want to evaluate the con-
vergence rate of the method through a convergence analysis. An analytic field
is imposed and the numerical solution is compared with the analytical solution.



3.4. CONVERGENCE ANALYSIS 43

The analytical solution Φ can be expressed as the numerical solution φ pus a
discretization error εd.

Φ = φ+ εd (3.21)

The discretization error can be estimated from the truncation error of the
Taylor expansion εd = α∆xn +H.

||εd|| = ||Φ− φ|| = O(∆x)n (3.22)

Taking the logarithm of both sides of the equation 3.22

log(||Φ− φ||) = nlog(∆x) (3.23)

log(||εd||) = nlog(∆x) (3.24)

From a graphical point of view the slope of the line identified plotting log(||ε||)
in function of log(||∆x||) is the convergence rate p.

We can use the the definition of the truncation error to verify the order of
accuracy of a discretization scheme. If we have at least three solutions obtained
on systematically refined grids, for example with spacing 4δx, 2δx and δx, we
can write: {

φ∆x + α∆xn +H = φ2∆x + α(2∆x)n +H

φ2∆x + α(2∆x)n +H = φ4∆x + α(4∆x)n +H
(3.25)

{
φ∆x − φ2∆x = α(2∆x)n − α∆xn = α∆xn(2n − 1)

φ2∆x − φ4∆x = α(4∆x)n − α(2∆x)n = α2n∆xn(2n − 1)
(3.26)

If we now make the ratio of the two equations above, we get:

φ2δx − φ4δx

φ∆x − φ2δx

= 2n (3.27)

n =
log φ2δx−φ4δx

φ∆x−φ2δx

log2
(3.28)

The ratio of the error obtained halving the cell dimensions is equal to 2n.
This means that if we have a n = 1 it is a first order convergence order and
εd(∆x) = 2εd(2∆x), if we have a second order accuracy n = 2 and εd(∆x) = 4εd(2∆x)

3.4.1 Convergence order for a single point

The convergence analysis is performed on a single control point first, exact and
numerical solution for pressure and gradient of the velocity will be evaluated
after imposing simple analytical fields to pressure and velocity.
The coordinate of the point are represented in table 3.2
Such point is the first control point considered in the code. The analytical
field imposed is represented in table 3.3. The function sin2(x) for the pressure
ensure the pressure has always a positive value.
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Table 3.2: Coordinate of the first control point

Control point coordinate

x y

−3, 00049 0, 0314108

Table 3.3: Imposed Flow field

Imposed field

u sin(x)
v cos(y)
P sin2(x)

In table 3.4 are shown the analytic fields of pressure and gradient.

(a) p = cos2 x (b) u = sinx

(c) v = cos y

Table 3.4: Analytical ∇V of velocity and pressure value for the control point
of table 3.2

∇V analytic P analytic

du/dx du/dy dv/dx dv/dy -
−0, 99006 0 0 −0, 03141 0, 019778174
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∇V convergence order

In table 3.5 are presented the numerical result obtained with different levels
of refinement. The errors presented in table 3.6 are evaluated subtracting the
numerical solution from the analytical solution.

Table 3.5: Numerical ∇V over one single point

Level du/dx du/dy dv/dx dv/dy ∆x

6 −0, 9706124 0, 005310934 −0, 082124 −0, 3313 0, 5
7 −0, 9786534 −3, 6717 · 10−17 −0, 13009 −0, 12338 0, 25
8 −0, 984979 −3, 64299 · 10−17 −0, 07483 −0, 0623 0, 125
9 −0, 987664 9, 80707 · 10−18 −0, 04099 −0, 03122 0, 0625
10 −0, 988886 −6, 95525 · 10−17 −0, 01277 −0, 04685 0, 03125
11 −0, 989467 0 −0, 00627 −0, 03905 0, 015625
12 −0, 989749 5, 83438 · 10−17 −0, 00303 −0, 03515 0, 007813

Only the component du/dx has been token into account for the convergence
analysis, since the errors on the components dv/dx and du/dy are about the
same order of magnitude of the machine precision, so would not be significant
a convergence analysis.

Table 3.6: ∇V convergence order over one single point

Level εdu/dx εdu/dy εdv/dx εdv/dy ∆x

6 −0, 01945 −0, 00531093 0, 082118 0, 299895 0, 5
7 −0, 01141 3, 6717 · 10−17 0, 130089 0, 091974 0, 25
8 −0, 00508 3, 64299 · 10−17 0, 074831 0, 030891 0, 125
9 −0, 0024 −9, 80707 · 10−18 0, 040985 −0, 00018 0, 0625
10 −0, 00118 6, 95525 · 10−17 0, 012767 0, 015445 0, 03125
11 −0, 00059 0 0, 006269 0, 007645 0, 015625
12 −0, 00031 −5, 83438 · 10−17 0, 003028 0, 003743 0, 007813

To evaluate the rate of convergence we need to plot the log||ε|| in function of
the log||∆x||, and evaluate the slope of the linear regression line. The slope is
exactly the convergence order n.

As expected this method of interpolation of the velocity gradient does not
increase the rate of convergence respect to the previous method, but the errors
are smaller and the accuracy is improved.
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Figure 3.7: Convergence order of the gradient interpolation using least square.

Pressure convergence order

The same approach is used for the convergence analysis on the pressure inter-
polation. An analytical field for the pressure is imposed, so the exact value is
known in each cell of the domain. The pressure is interpolated in the control
points using an RBF interpolation. The interpolated pressure will be com-
pared to the analytical solution to evaluate the absolute error of the method.

Table 3.7: Pressure convergence order over one single point

Error on the pressure

Level p Log|εp||| Log∆x

6 0, 07855340 −2, 83403483 −0, 69315
7 0, 03470310 −4, 20472255 −1, 38629
8 0, 02352310 −5, 58735333 −2, 07944
9 0, 02071440 −6, 97365327 −2, 77259
10 0, 02001140 −8, 36350107 −3, 46574
11 0, 01983560 −9, 76500712 −4, 15888
12 0, 01979160 −11, 21829058 −4, 85203

In order to evaluate the convergence rate, the bi.logarithmic graph is made as
presented above and the convergence rate n is the slope of the regression line.
Inside the code an object that interpolates with an RBF method is was already
implemented, in the class called interpolator.tpp.
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Figure 3.8: Convergence order of the Pressure interpolation using RBF

3.4.2 Convergence Order for the whole cylinder surface

Until this moment all the convergence order test has been done using just
the first control point identified by the coordinate shown in 3.2. Once the
convergence on a single control point has been achieved is necessary to ver-
ify if such convergence is confirmed integrating over the surface of the cylinder.

We use the same analytical fields imposed above to evaluate the analytical and
numerical values of p and ∇u. In this case we will consider the convergence of
the sum of the solutions evaluated on each control point.

The graph reported in figure 3.9 represent the convergence order of the first
component of the gradient.

Table 3.8: Convergence analysis over all the Control points of the geometries

Level ||ε∇V || ||εP || Log||ε∇V || Log||εP || Log(∆x)

6 0, 335492 0, 058803 −1, 092157168 −2, 8335641 −0, 69315
7 0, 169286 0, 015 −1, 776165687 −4, 1997051 −1, 38629
8 0, 083714 0, 00389 −2, 480352635 −5, 5493204 −2, 07944
9 0, 042739 0, 000973 −3, 152645766 −6, 9346477 −2, 77259
10 0, 020799 0, 000243 −3, 87285037 −8, 3207345 −3, 46574
11 0, 010489 6, 08E − 05 −4, 557466326 −9, 7071201 −4, 15888
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(a) ∇u (b) p

Figure 3.9: The convergence order for ∇u and p considering the whole cylinder
surface.

Even if te convergence rate is nt significantly improoved from the original
method,first order rate of convergence on the ∇V and a second order for the
pressure, we expect a much more accurate evaluation of the forces using this
second approach.

3.4.3 Results

To test the New method, the simulation of the same test case used before has
been performed. We tested the method using an uniform cartesian grid first.
The drag coefficient has been evaluated and the results are then compared
tho the CD obtained using quadtree grids with different discretization levels..
In table 3.9 are reported the Drag coefficients obtained with the improved
Lagrangian Markers Method on different grids. As already done before the
results obtained with the uniform grid at level 9 and 10 are compared with the
CD obtained with differently discretized quadtree grids. The reference value is
the results proposed from [9] for a flow past a cylinder at reynolds 100.

CDREF = 1, 3353

The relative error is evaluated as:

err% =
CD − CDREF

CDREF
× 100
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Table 3.9: Results in terms of drag coefficient, obtained with the new approach
to the Lagrangian marker method. Is it possible to notice that using a quadtree
discretization of the domain the computational time is much shorter and the
number of cells is much smaller.

Grid Cdav err% Tcpu [h] #Cells

L10 1,318 1,30 % 10h:17m:16s 1056820
L9-1 1,3599 1,84 % 06h:27m:14s 500000
L8-2 1,3158 1,46% 03h:24m:18s 115554
L9 1,3009 2,58 % 01h:48m:01s 266443
L7-3 1,3269 0,63% 01h:41m:12s 38143
L8-1 1,2872 3,60 % 01h:08m:35s 89572
L7-2 1,2888 3,48 % 00h:41m:41s 29780
L6-3 1,4142 5,91 % 00h:27m:00s 10124

The Drag Coefficients are computed using different quatree discretization, all
with the same refinement lever around the surface of the cylinder. The result
(table 3.9)are compared with the forces obtained using a uniform cartesian
grid at the same level of the fines quadtree refinement.
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(a) The comparison between the CD ob-
tained using a cartesian uniform grid al
Level 9 and a quadtree grid at Level 7
with 2 circular refinement.
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Figure 3.10: The results for the forces, expressed in terms of Drag Coeffi-
cient obtained using the improved Lagrangian markers method. The forces
on the control points are evaluated interpolating the pressure using an RBF
interpolation and the gradient using the least square methods.
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(a) t=0 s (b) t=2 s

(c) t=10 s (d) t=40 s

(e) t=100 s (f) t=500 s

Figure 3.11: The velocity field of the flow past a unit diameter cylinder at
Re = 100. In 3.11a are reported the initial conditions t=0s, in 3.11fthe field
after the end of the transient, the flow is completely developed at t=500s
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In order to underline again the convenience in using a quadtree mesh instead
of a uniform cartesian grid we can focus on figure 3.12 , where are presented
the same graphics already seen in section 2.3. In 3.12a is presented, for each
simulation performed , the number of cell used in function of the cpu time
needed to reach 500 seconds of physical time. Is it possible to see how this
behavior is nearly linear, a part for the more coarse grids. In 3.12b is plotted
the relative error respect to the reference value from [9], in function of the
percentage of saved computational time that comes from using a quadtree
grid. As seen before the discretization that gives the best result in a shorter
time is the grid 7-3 that presents a relative error of 0, 63% saving more than
60% of computational time.

(a) The cpu time needed to reach 500 s of
physical time versus the number of cell of
the discretized domain.

(b) The reduction in time respect to the
cartesian grid versus the percentage error.

Figure 3.12: From the graphs above is it possible to chose the discretization
that can guarantee the best compromise between a fast computation and a
small error.

3.5 Comparison between the two methods used
to interpolate the force on the control points.

In this section the result obtained above with the new method are compared
with the original forces evaluated averaging the forces on the neighbors. We
will compare the relative errors obtained using the same grids. The improve-
ment using the interpolation of pressure and gradient is clear from table 3.10.
The relative reports a significant reduction using the second method. For the
uniform grid at level 10 the error using the first method is 6, 13% while it
decrease to 1.30% using the second approach. In addition to this the error
for a quadtree grid with initial level 7 with 3 refinement in < 1%. The accu-
racy of the methods for the evaluation of the forces is significantly improved
interpolating the pressure and gradient on the points of the cylinder.
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Table 3.10: Comparison between the Drag coefficient obtained with the previ-
ous approach and the results of the new approach.

Grid CDI err% CDII err%

L10 1, 2534 6, 13% 1, 318 1, 30%
L9− 1 1, 2483 6, 52% 1, 3599 1, 84%
L8− 2 1, 2756 4, 47% 1, 3158 1, 46%
L9 1, 2515 6, 28% 1, 3009 2, 58%

L7− 3 1, 262 5, 49% 1, 3269 0, 63%
L8− 1 1, 2278 8, 05% 1, 2872 3, 60%
L7− 2 1, 2212 8, 54% 1, 2888 3, 48%
L6− 3 1, 2843 3, 82% 1, 4142 5, 91%

The behavior of the Drag coefficient curve in time in time is not affected from
this improvement, the curve is translated towards the exact value.

Figure 3.13: The Drag Coefficient obtained with the new method is compared
with the result previously obtained for two different uniform grids.

3.6 Noca method

In this section is presented an other way to evaluate the fluid dynamic force
around a rigid body immersed in a fluid domain, using a moving control volume
approach [11]. This method consist in evaluating the volume integral over
an arbitrary control volume. The force will be the variation in time of the
momentum contained in the control volume. In two dimensions this can be seen



3.6. NOCA METHOD 53

as the difference between the incoming momentum inside the control volume
and the out-coming momentum, but as this method will be after extended to
a 3D case we will present a more general case. Applying the conservation of
linear momentum we get:

d

dt
(m·u) = F = − d

dt

∫
V

ρudV+

∫
SCV

n·[−pI−(u−uS)ρu+T]dS−
∫
Sb

n·(u−uS)ρudS

(3.29)
where T is the viscous stress tensor:

T = µ(∇u +∇uT ) (3.30)

and n is the normal unit vector to the surface of the control volume, positive
if pointing outwards. V is the volume contained in the control volume without
taking into account the volume of the body itself, uS is the velocity of the
surface over which the volume is taken, i.e. is the velocity of SCV and can
generally be chosen arbitrary to always contain the rigid body if it is in motion
u 6= uS. But in our case the control volume is fixed as the rigid body is not
moving and uS = 0. The equation became:

F = − d

dt

∫
V

ρudV +

∫
SCV

n · [−pI− uρu + T]dS (3.31)

F = − d

dt

∫
V

ρudV +

∫
SCV

n · [T− pI]dS +

∫
SCV

uρ(n · u)dS (3.32)

Discretizing each terms of the equation to make is suitable for the integration
in the code we get:

∑
i

F =
ρ

∆t

[∑
i

un+1
i ·Vi−

∑
i

uni ·Vi
]
+
∑
i

ρ(T−pI)i ·ni ·Si+
∑
i

ρui(ni ·ui)·Si

(3.33)

3.6.1 The control volume

The case presented is the same used in the previous chapter, a flow past a
cylinder at Re 200, but in this case we use a CFL condition of 0.2. The same
simulations will be performedThe control volume to evaluate the fluid dynamic
forces can be chosen arbitrary. The one we used is a rectangle containing the
cylinder as shown in figure 3.14. The sides of the cylinder is set to coincide
with the interface between the cell in order to obtain an easier evaluation of the
volume integral. to define the control volume in the code we take as reference a
cartesian grid at level 6 that correspond to a cell dimension of ∆x = ∆y = 0.5.
Refining the grid or using a quadtree mesh will keep the sides of the control
volume on the interface between the cell.
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Figure 3.14: The control volume defined for this problem is a rectangle con-
taining the cylinder

The control volume is defined through imposing the coordinates of the rectan-
gle vertex. Referring to figure 3.14 the coordinates of the vertexes will be:

1. Point A (−4−N∆x,−N∆y)

2. Point B (−4−N∆x,N∆y)

3. Point C (−4 + 2N∆x,N∆y)

4. Point D (−4 + 2N∆x,−N∆y)

Where N is an integer chosen to define the size of the control box for us N = 4.
The control points are chosen by the user, in this case we use 200 control point
on the longer side and 100 points on the shortest side of the rectangle. A
the longest side is defined to be twice as long as the short side, the distance
between two control points d is the same all around the control box.

d =
NP

PR
(3.34)

where NP is the number of points on the perimeter of the control box and PR
is the perimeter of the control box.
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3.6.2 Forces evaluations

In order to get the drag coefficient we need the aerodynamic forces over the
cylinder. The three terms of the 3.33 have been evaluated separately, in par-
ticular the first one it has been evaluated on each cell contained in the control
box, the second and the third terms have been calculated for each control point
on the surface and then added to the total force.

To calculate the first term we need to compute a time derivatives, that implies
the necessity to know the values of the field at the previous time step.

F′ =
ρ

∆t

[∑
i

un+1
i · Vi −

∑
i

uni · Vi
]

(3.35)

In two dimensions the volume of the cell is a surface evaluated by a function
included in the manager of the grid PABLO [7], and the three components of
the force are:

F ′X =
ρ

∆t

[∑
i

un+1
i · Si −

∑
i

uni · Si
]

(3.36)

F ′Y =
ρ

∆t

[∑
i

vn+1
i · Si −

∑
i

vni · Si
]

(3.37)

F ′Z =
ρ

∆t

[∑
i

wn+1
i · Si −

∑
i

wni · Si
]

(3.38)

(3.39)

The second term is the shear stress force on the surface of the control box
and we use the same algorithm used to evaluate the force with the Lagrangian
markers method.
The third term is:

F′′ =
∑
i

ρui(ni · ui) · Si (3.40)

and the three components of the force are:

F ′′X =
∑
i

ρ(ui · nX) · uid (3.41)

F ′′Y =
∑
i

ρ(ui · nY ) · vid (3.42)

F ′′Z =
∑
i

ρ(ui · nZ) · wid (3.43)

(3.44)

3.6.3 Results

in table 3.11 are shown the values of the average drag coefficient obtained with
the Noca method. Is it possible to see that to obtain significant results with
this method, very refined grid are needed, way more refined than the grid used
with the Lagrangian markers method. Furthermore the solution seems to not
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be convergent for low refined grid. This limit imply the adoption of grids with
millions of points and the simulations has a very high computational cost both
in terms of resources and cpu time. Using a very refined grid (level 10) we
have a percentile error of 1.43%, while using the Lagrangian markers method
we found 3.82%.

Table 3.11: Drag coefficient evaluated with the Noca method

Lin Cd ave Err %

6-1 1.6812 -25.90%
7-2 1.4334 -7.35%
8-0 1.6659 -24.76%
8-1 1.4389 -7.76%
9-0 1.5726 -17.77%
8-2 1.7775 -33.12%
9-1 1.518 -13.68%
10-0 1.3162 1.43%

In figure 3.15 is shown the drag coefficient plotted with respect to the physical
time. It is possible to note very big oscillations of the drag coefficient. This
may be due to the numerical noise that affect this method as reported in [11],
to investigate the source of this noise the three terms of the 3.33 have been
plotted separately to locate which of these is the source of the noise (figure
3.16). Both the first therm and the shear stress have big oscillations but they
compensate each other in amplitude. The problem could be caused by the
characteristic frequencies of the oscillations. By performing a Fourier analysis
we found out that the two terms in object present two frequencies of oscilla-
tions after the transient is ended.
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Figure 3.15: Temporal evolution of the drag coefficient evaluated with the
Noca method for a circular refined grid.
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Figure 3.16: The three terms of the 3.33 have been plotted separately to found
the source of the oscillations

We can conclude by saying that the Noca method gives More accurate results
but it imply high computational costs, and the presence of the numerical noise.
Also it is very difficult to define a control volume in three dimensions for an
internal flow, so this method will not be used for the simulation of the flow
inside the aorta.

3.7 Noca and Lagrangian markers comparison
The forces obtained with the Noca method, in terms of Drag coefficient, are
compared with the results obtained previously using the improved Lagrangian
markers method.

Table 3.12: Drag coefficients obtained with the two methods on L 9 and L 10
uniform cartesian grid

Grid Cd ave err %

L10 LM 1.318 1.30%
L10 Noca 1.3162 1.43%
L9 LM 1.3009 1.30%
L9 Noca 1.2756 17.77 %

From table 3.12 is it possible to notice that using a very refined grid at Level
10 the results are pretty much the same , the Noca method is a little more
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accurate. For more coarse grid as Level 9 the error is very big using the Noca
method. So the Noca methods needs the use of more refined grids to get
acceptable results. While the Lagrangian Markers gives small error even on
more coarse grid. On very refined grids The Noca Method is more accurate but
the trend of the CD in time is not smooth at all, it presents numerical noise
that result in very big oscillation of the forces around the cylinder. Even if the
results are slightly less accurate using the Lagrangian markers method we can
get accetable results even using coarse grid and the trend of the CD in time is
very smooth.

Figure 3.17: Comparison between the 2 methods used, the Drag Coefficient
obtained using the Lagrangian method is smooth but the result are less ac-
curate, the results obtained with the Noca method are more accurate but the
numerical noise affecting the solution make difficult to use this method
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Chapter 4

Validation of the code

Before using the method to calculate the force distribution acting on an aneurysm,
the code has to be tested and validated. To do so, we will use our algorithm to
simulate test case found in literature and the result obtained will be compared
to the ones obtained in past works from the literature. In this section the
forces will be evaluated using the Lagrangian marker method only.
The first 2D test case is the flow past a circular cylinder presented in the pre-
vious chapter. in order to moreover validate the code in 2D the second test
case chosen is the so called Turek test presented in [12]. After that is presented
how the code has been modified to be usable in 3D. To validate the code in
three dimensions a flow past a rigid sphere is used as presented in [13]. If the
solution obtained for this cases will match the result presented in literature,
we will pass to our final test case: the internal flow inside an aneurysm of the
aorta.

4.1 Turek test case

In this sectiion we will use our algorithm to evaluate the force around a 2D
rigid body in a channel, the result will be compared to the test case presented
in [12], The Turek test-case is a specific configuration developed to test and
compare different numerical methods and different code implementations used
for fluid-structure interaction problems.

4.1.1 Problem definition

The rigid body is composed by a circle with a rectangular bar attached on
its back. The length of the channel is 2,5m, the eight is 0,41m. The origin is
positioned in the left bottom corner of the channel. The center of the circle is
positioned at {0.2,0.2} and it has radius 0,05m. The tail is 0.35m long with
0,02m height, its right bottom corner is positioned in {0, 6,0, 019}. All the
geometric parameters are summarized in table 4.1.

61
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Table 4.1: Geometric parameters

Parameters value[m]
channel length L 2.5
channel width H 0.41
circle center C [0.2 , 0.2]
circle radius r 0.05
tail length l 0.35

tail thickness h 0.02

0
,4
1

2,5

R
0,
05

0,350
,2
1

Figure 4.1: The geometry used for this test

Figure 4.2: The 2D Turek test case, the body is not symmetric respect to the
axis of the channel, that leads to the presence of a lift force.

Is it possible to notice that this configuration is not symmetric, the axis of the
body does not coincide with the channel axis. This is made in order to get a
lift different to zero besides the drag force. This allow us to prevent periodic
oscillations that could effect the precision of the computation [12].
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4.1.2 Boundary and initial conditions

The boundary condition imposed on the inflow of the channel is a parabolic
profile for the velocity such that the average velocity i Ū and the maximum
value of the inflow velocity is 1.5Ū (figure 4.2).

u(0,y) = 1.5Ū
y(H − y)

(H
2

)2
= 1.5Ū

4y

0.1681
(0.41− y) (4.1)

For the outflow the [12] states that any boundary conditions can be chosen,
for example the free-flow or stress-free condition. We chose to use a free-flow
condition for the velocity and Dirichelet boundary conditions for the pressure.
As we are in the incompressible case the value for the pressure can be chosen
arbitrary [12]. We set the value to have a null mean value.
On the walls and on the body surface the no-slip condition is imposed.

The initial condition on the velocity is set to be the parabolic profile (equation
4.1) used as boundary condition.

4.1.3 Results

We performed the simulation setting the parameters shown in table 4.2. We
compare the result obtained using a quadtree grid with the ones obtained
using a cartesian discretization inside the channel. Using the cartesian grid we
expect to have a more accurate result but longer cpu time. Instead using a
quadtree grid less computational power is required but the result are slightly
less accurate.

Table 4.2: Fluid parameters

Dimensional Parameters value

ρf [103 kg
m3 ] 1

νf [10−3m2

s
] 1

U [m
s
] 1

non-Dimensional Parameters .

Re = Ud
νf

100
Ū 1
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(a) Quadtree grid. (b) Cartesian grid.

Figure 4.3: The two grid used to perform the simulation, in the first simulations
(figure 4.3a) the grid is refined using the octree around the body, after that
the result are compared to a uniform cartesian grid inside the channel (4.3b).

Table 4.3: Result obtained for lift and drag on the body.

Grid Lift err % Drag err %
Quadtree grids

L4-3 26.3406 150.15% 113.086 -17.27%
L5-3 22.1852 110.69% 116.773 -14.58%
L6-3 19.5035 85.22% 124.949 -8.60%
l7-3 17.3514 64.78% 136.287 -0.30%
L8-3 16.1598 53.46% 142.589 4.31%
L9-3 13.0895 24.31% 150.298 9.95%

Cartesian grids

L7 -4.00158 -138.00% 116.642 -14.67%
L8 -3.31084 -131.44% 126.5621 -7.42%
L9 2.38659 -77.34% 128.2216 -6.20%
L10 4.74355 -54.95% 134.054 -1.94%
L11 4.8292 -54.14% 135.4788 -0.89%
L12 8.88562 -15.62% 143.44 4.93%

ref 10.53 0.00% 136.7 0.00%

In table 4.3 are presented the result obtained in term of lift and Drag. Is it
possible to notice how the result obtained using a cartesian grid present more
accurate value. For example using an octree grid at initial level 7 with 3 re-
finements the error on the lift is 64.78%, instead discretizing the channel with
an uniform grid at level 10 the error is 54.14%.



4.1. TUREK TEST CASE 65

The Lagrangian marker method used to evaluate the force’s components con-
verge(figure ref) but is not consistent for the Drag, that means that refining
the grid the error decrease but the solution tends to a value that is bigger than
the one presented in [12]. Furthermore to get a solution with a reasonable
error, very refined grids has to be used.
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(a) Result obtained with Quadtree grid (b) Result obtained with cartesian grid

Figure 4.5: The result in term of velocity field obtained using the quadtree
grid 4.5a, and the cartesian grid into the channel 4.5b.
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(a) The Lift obtained for the Turek test
case at Reynolds100.
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(b) The Drag obtained for the Turek test
case at Reynolds100.

4.2 Extension to three dimensions
In three dimensions the components of the velocity will be u = {u, v, w},
and the Force has three components as well F = {FX , FY , FZ} To extend the
usability of the force evaluation to 3D cases the only part to be extended is
the interpolation of gradient and pressure on the control points.
For the pressure there is no need to intervention, because the algorithm we use
to perform the RBF interpolation is already in three dimensions. Although
the Gradient interpolation we used in two dimensions only considers two com-
ponents of the velocity, so we need to compute the least square interpolation
considering the whole three components of the velocity.
The least square interpolation used to interpolate the gradient is presented in
chapter 3 and is based on the principle to minimize the distance from the data
to the interpolated value.
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The gradient of the velocity will be a 3X3 matrix in the 3D case, and to get
all its 9 components we will have to solve 3 linear system 3X3 instead of the
two system we had in the 2D case.

∇u =

 ∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z


The Distance is Defined as

I =
∑
i

1

2

[
uxi
− ux0 −∇U‖x0(Xi −X)

]2

(4.2)

Where X = { x y z}. and uxi
is the velocity in the neighbor cells and ux0

is the penalized velocity To minimize this distance we impose the derivative
equal to zero. In the 3D case I has three components I = {Iu Iv Iw}, that
leads to three equation systems.

∂Iu
∂∇xu

= 0 (4.3)

∂Iu
∂∇yu

= 0 (4.4)

∂Iu
∂∇zu

= 0 (4.5)

(4.6)

∂Iv
∂∇xv

= 0 (4.7)

∂Iv
∂∇yv

= 0 (4.8)

∂Iv
∂∇zv

= 0 (4.9)

(4.10)

∂Iw
∂∇xw

= 0 (4.11)

∂Iw
∂∇yw

= 0 (4.12)

∂Iw
∂∇zw

= 0 (4.13)

(4.14)

Where ∇x = ∂
∂x
, ∇y = ∂

∂y
and ∇z = ∂

∂z
, From this we can get the equation

systems to solve in order to evaluate the gradient.
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
∑
i(xi − x)2

∑
i(xi − x)(yi − y)

∑
i(xi − x)(zi − z)∑

i(xi − x)(yi − y)
∑
i(yi − y)2

∑
i(yi − y)(zi − z)∑

i(xi − x)(zi − z)
∑
i(yi − y)(zi − z)

∑
i(zi − z)2




∂u

∂x
∂u
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∂z
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i(yi − y)∆ui∑
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∑
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∑
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∑
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∑
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∑
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∑
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∑
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

Is it possible to notice that in this case also, the matrix A in all the three
systems is identical, that leads to a mole efficient computation as we need to
invert one single matrix instead of three to solve the systems and find the
gradient of the velocity. Using this method leads to a more efficient way to
evaluate the interpolated gradient. Previous approach was to evaluate the
approximate value of the gradient on the neighbor’s cell centers first, and then
interpolate the value of the gradient in the desired point, this brings a first
truncation error summed to the interpolation error. With the least square
interpolation we can get the interpolated value of the gradient in any point
knowing only the velocity values in the neighbor’s cell centers, the only error
affecting this method is the interpolation one. So this method is more accurate.
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4.3 Sphere Re 500

(a) The Solid Domain (b) The Discretized Domain

(c) Section of the Domain (d) Section of the discretized Domain

Figure 4.7: The sphere test case used to validate the code.

To validate the code in 3D we chose to use the test case of a fluid flow over
a rigid sphere at Reynolds 500, this because we have several examples in lit-
erature of computational and experimental analysis of the incompressible flow
past a sphere. Even if this test case is symmetric and simple, the structures
that can be observed at moderate and high Reynolds Numbers can be com-
plex. This two has the main Reasons why this test case is considerate to be a
benchmark to validate Navier-Stokes equation solvers.
In [13] Is presented a numerical solution of the flow over a sphere at moderate
Reynolds Numbers using an immersed boundary method. We will compare
the Drag Coefficient obtained with the result from [13] and other works.

4.3.1 Problem Definition

The test case chosen to validate the data is a unit diameter sphere at Reynolds
500.
The forces will be evaluated in the control points distributed on the surface
then integrated on the surface of the sphere. Unit diameter sphere is placed
with his center in [-4, 0, 0] the density and pressure are set to 1. we will use a
0.8 CFL condition for the time evolution.
The grid used to discretize the domain is a combination of the circular and
rectangle refinement seen before in this work. That allow to have both the
advantages of the 2 grid. The force evaluation will be accurate on the surface
of the body and the velocity field in the wake is enough refined to represent
all the vortex structures.
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Table 4.4: Geometric parameters

Dimension domain 16x16
Diameter 1
x center -4
y center 0
z center 0

ρ 1
Re 500
CFL 0.8

(a) The initial condition of the test case
in plane

(b) The Discretization of the grid used to
validate the code

Figure 4.8: A plane view of the Domain’s section

Figure 4.9: zoom of the discretized domain around the sphere

On the inflow of the domain the boundary condition are Neumann type for the
pressure and Dirichlet on the velocity equal to 1 parallel to the x axis . On the
outflow a free flow condition is enforced. On the upper and lower boundaries
of the domain we use the same boundary condition used for the inflow.

4.3.2 Results

The force is evaluated using the Lagrangian marker method previously pre-
sented and the Drag coefficient is defined:

CD =
Fx

1/2ρu2S
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The simuation is stopped after 500 seconds of physical time, to be sure the flow
is completely developed and the transient is ended. In table 4.5 are presented
the result for the force around the sphere in terms of drag coefficient. Is it
possible to notice that using quite coarse grids the errors are very big, that
means we need to use very refined grids in order to find accettable results.
This presumably come from the first order upwind scheme used to discretize
the convection equation. It is planned to improve the code switching to a
second order upwind scheme. The Use of an adaptive grid based on the gradient
criteria could bring to more accurate result even using more coarse grids saving
computational time.

Table 4.5: Result obtained using an octree grid

Grid Cd err %
L6-3 0.9832 46.32%
L7-3 0.8532 33.32%
L8-3 0.6945 17.45%
L9-3 0.6034 8.34%
Ref 0.52 0.00%

In table 4.6, the Drag coefficient evaluated using the most refined grid, is
compared with the result obtained in previous works from literature. As is it
possible to notice, different works use different method to evaluate the force
or different schemes to solve pressure and velocity fields. This leads to have
slightly different result in terms of drag coefficient. To have a more complete
ensemble overview we will compare our result with several result obtained from
the literature.

Table 4.6: Comparison of the result with other works from literature.

Reference Cd

Campregher et al.(2009) 0.520
Fornberg (1988) 0.4818
Fadlun et al.(2000) 0.476
This work 0.6034
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(a) Time=0s

(b) Time=20s

(c) Time=500s

Figure 4.10: The velocity field obtained for the sphere at Re = 500 at three
different physical time.
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Figure 4.11: The Convergence order for the Drag coefficient evaluated for the
sphere at Reynolds 500.

4.3.3 Convergence Order

As we use a first order accurate upwind scheme to discretize the convection
equation, we expect to find a convergence order at most one for the force
evaluation. We use a second order interpolation for the pressure and a firs
order scheme for the gradients. There is no point in using higher orders since
the velocity and pressure fields are first order accurate.

Table 4.7: Data used for the convergence analysis.

Grid CD |err| ∆x Log|err| Log∆x

L6-3 0.9832 0.46 0.0625 -0.3342314 -1.20412
L7-3 0.8532 0.33 0.03125 -0.477295 -1.50515
L8-3 0.6945 0.17 0.015625 -0.7582046 -1.80618
L9-3 0.6034 0.0834 0.0078125 -1.0788339 -2.10721

To be rigorous we should calculate the absolute error using the exact value,
but we don’t have an exact solution so we should use the result obtained with
the most refined grid. But this value is not an analytic solution so we chose
to use the reference value from [13].
The linear regression line has equation:

Log |err| = 0, 8354 · Log |∆x|+ 0, 721

According to what presented in section 3.4 the convergence order is p = 0, 84 ≈
1, that means that the error is nearly double using double size cell as explained
in chapter 3.
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Chapter 5

Force evaluation on the Aortic
Aneurysm

Figure 5.1: The 3D image of the aorta obtained by overlaying several 2D images
produced with computed axial tomography as described in section 5.1.2.

An aortic aneurysm is an enlargement (dilation) of the aorta to greater than 1.5
times normal size. They are most commonly located in the abdominal aorta,
but can also be located in the thoracic aorta. Untreated, aneurysms tend to
become progressively larger, although the rate of enlargement is unpredictable
for any individual. Aortic aneurysms cause weakness in the wall of the aorta
and increase the risk of aortic rupture. When rupture occurs, massive internal
bleeding results and, unless treated immediately, shock and death can occur.
Rarely, clotted blood which lines most aortic aneurysms can break off and
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result in an embolus.The risk of rupture of an Aortic abdominal aneurysm is
related to its diameter; once the aneurysm reaches about 5 cm, the yearly risk
of rupture may exceed the risks of surgical repair for an average-risk patient.
Rupture risk is also related to shape; so-called "fusiform" (long) aneurysms are
considered less rupture prone than "saccular" (shorter, bulbous) aneurysms,
the latter having more wall tension in a particular location in the aneurysm
wall. Aortic aneurysms resulted in about 152,000 deaths worldwide in 2013,
up from 100,000 in 1990 [14].

5.1 Problem definition

In this section we will present the test case used to perform some preliminary
simulation using the force evaluation method presented previously, to evaluate
the force distribution over the surface of the aorta.
The 3D model of the aorta affected by an aneurysm is immersed inside a fluid
cube of dimension 30. The test is performed at Re = 200. To guarantee the
stability of the numerical scheme a CFL condition 0.6 is imposed. The pressure
and velocity fields will be evaluated on the fluid grid and the result are used
to evaluate the Forces on the control points on the surface of the aorta.

∑
i

Fi =
(∑

i

pi +
∑
i

∇ui
)
·
∑
i

∆Si · n (5.1)

Figure 5.2: The fluid domain is a cube and the 3D model of the aorta is placed
inside the cube.
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5.1.1 Initial and Boundary conditions

The initial condition imposed consist in placing a semi-sphere at the inlet of
the aorta (figure 5.3) where the velocity is defined u = [0 0 −1].

u =

{
[0 0 −1] ∀X ∈ semi− sphere
[0 0 0] ∀X 6∈ semi− sphere

(5.2)

For the boundary conditions for the preliminary simulation a free flow condi-
tions are imposed at the outflow ends of the aorta.In the reality the aorta is not
immersed in the fluid but is connected to the cardiovascular system. To best
simulate the reality, the boundary conditions model will be improved with
the implementation of the so called Windkessel model that consist in using
the equations of the electrical schemes to simulate the velocity and pressure
of the cardiovascular system. On the boundaries of the cube Dirichelet type
boundary conditions are imposed on the velocity and Neumann type on the
pressure. {

u = 0 ∀X ∈ ∂Ω

∇p = 0 ∀X ∈ ∂Ω
(5.3)

Figure 5.3: The initial condition used is a semi-sphere in which the velocity is
defined one

5.1.2 Construction of the 3D model

The 3D image of the aorta, shown in figure 5.1 it is build through the use of
the Computerized axial Tomography CAT. The Image is a three dimensional
model of the structure within the body created by a computer that takes
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Figure 5.4: In this image four two-dimensional "cuts" of the abdominal CAT
are presented

the data from multiple X-ray images and turns them in pictures. The CAT
scan can reveal some soft-tissue and other structures that cannot be seen in
conventional X-rays. Using the same dosage of radiation of an ordinary X-
ray, an entire slice of the body can be made visible with about 100 times
more clarity with the CAT scan. Each scan result in a 2D section of the
desired structure. The "cuts"(tomograms) are usually made some mm apart.
The CAT machine rotates 180 degrees around the patient’s body; hence, why
is called "axial." The machine produce a slim X-ray beam at 160 different
points. Some Crystals positioned at the opposite points of the beam pick up
and record the absorption rates of the varying thicknesses of tissue and bone.
The data are then relayed to a computer that turns the information into a
2-dimensional cross-sectional image. In order to obtain a three-dimensional
model of the desired object, the multiple cuts are than overlaid one on top of
the other to have a 3D image of the structure.

5.1.3 Grid

For the fluid domain an octree discretization inside the cube is used. As pre-
sented before this kind of grid allows to have a very high precision where needed
while it reduce the computational cost in terms of memory and computational
time. The forces are evaluated on the points of the surface using the values of
pressure and velocity of the nearest cells, as seen in chapter 3. To have an high
accuracy for the force evaluation we need a very refined grid near the surface
while far from the body the gradients are very small and we can accept a more
coarse grid. The fluid domain is discretized at initial level is 5 with three levels
of refinement near the surface of the body and inside the aorta as the flux we
are interested in is an internal flow.
In figure 5.7a is reported a section of the fluid domain where is it possible to
see the grid that is very refined close to the surface and is more coarse as we
move far from the body. Contrary to what done untill now, the cells marked
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: A rapresentation of the building of the 3D image of the aorta. It
is obtained by overlaying several two-dimensional images of the section of the
aorta.
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Figure 5.6: To give a better view of the aorta, a section of the fluid domain is
reported, the plane used to define the section is the red square in figure.

to refine are not imposed by the user, but the discretization is evaluated auto-
matically by BitPit, the library that manages the grid. The grid is static, does
not change in time so the adaptivity of the grid is not used for this preliminary
simulations.
For what concern the surface of the aorta, it is discretized using triangles as
is it possible to see in figure 5.8. The problem of evaluating the force on the
triangle’s vertex is to evaluate the normal vector and the surface of the cell.
As done before in order to calculate the cell area and the outward normal to
the cell the Lagrangian marker approach is used, to find the points on which
the forces will be evaluated. In the three-dimensional case the Lagrangian
markers are the vertex of the triangle. Cell area and outward normal are easy
to evaluate on the surface of the triangle and the force can be evaluated on
the center of the triangle, that it is our control point, as seen in section 3.1.1.

5.2 Force evaluation inside concavities.
As seen in chapter three the interpolation of the gradient using a least square
approach present a constraint in terms of number of neighbors needed. The
code it has been used, until now, to simulate the flow over convex geome-
tries or more in general on very simple geometries. For the test cases already
presented, for each control point, it has always been possible to find an appro-
priate number of neighbors for the interpolations. There was no evidence of
any problem even in presence of concave surface.
But the geometry of the aorta is much more complex and presents concavities
with a very small curvature radius. For all the control points inside the con-
cavities there are not enough fluid neighbors to interpolate the gradient and
the forces can’t be evaluated.

To overcome this problem the value of the force on this "ill" points it is inter-
polated using all the near control point where the force has been evaluated.
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(a)

(b)

Figure 5.7: 5.7a The fluid domain space discretization. 5.7b The discretization
of the fluid domain inside the aorta
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Figure 5.8: A detail of the discretization of the aorta surface.

Figure 5.9: Seeing it from the two-dimensinal point of view, the control point in
figure has only two fluid neighbors and the Velocity gradiet cant be evaluated.
In red the "ill" points, in blue the control points where the gradient can be
evaluated normally.
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The idea is not to evaluate the force on the "ill" control point. but to express
it as a function of the force on the control points where the force can be eval-
uated. To interpolate the force on the "ill" control point we use the Radial
Basis Function approach already used to interpolate the pressure.

5.3 Force Distribution

The aneurysms tend to become progressively larger. This means there is a
concentration of the stress inside it, this forces continue to enlarge the aneurism
until an aortic rupture occur. In this phase the body is rigid, but from the
result there should be visible the force concentration inside the aneurism.

Figure 5.10: From the force distribution over the surface of the aorta is it
possible to see a concentration of the stress over the aneurism.
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From image 5.10 is it possible to see the concentration of the forces inside the
aneurysm, but there is a second zone where the force are concentrate, this is
due to the boundary condition used. The semi-sphere is facing downward the
z axis, and it is not aligned with the axis of the inflow section of the aorta.
This model is not completely realistic, The implementation of the Windkessel
model for the boundary conditions will impose at the inflow and outflow a
model that can give a realistic modeling of the cardiovascular system.

5.4 Future Developments
As we have seen, even if the scheme presented to evaluate the fluid dynamics
forces seems to work fine on a complex geometry, many problem has been
underlined during the validation of the code.
The errors obtained when the first order upwind scheme is used are relatively
high. This is due to the poor accuracy order of the scheme.The first step to
improve the evaluation of the forces is to implement a second order upwind
scheme to discretize the advection equation.

To have a realistic simulation of the flux inside the aorta we need appropri-
ate boundary conditions at the inlet and outlets of the structures.This can
be possible implementing in the code the winkessel model for the boundary
conditions. This allows to model the cardio vascular system using the principle
and the formulations of the electrical circuits.

Till this phase the immersed body is considered to be rigid.In order to develop
a more realistic model and to predict the evolution of the aneurysm after his
formation, a structural elastic deformation model of the body has to be
implemented in a way similar to the penalization model, used to define the
rigid body. The elastic model allow to Predict the rate of enlargement
and when the aortic rupture occur.

This work will provide the basis for future research on a more precise prediction
of rupture risk.
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