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Abstract

Satellites encounter different kinds of attitude perturbations on orbit. Attitude per-

turbations are essentially torques that can be generated inside the satellite (sloshing

of liquids, movable mechanisms...) or can derive from the space environment the

satellite is in. This second class of perturbation torques can be subdivided in four

groups: gravity gradient torque, magnetic torque, solar radiation pressure torque

and aerodynamic torque. The estimation of these perturbations is crucial for the

design of the Attitude and Orbit Control System (AOCS) of a satellite. Moreover,

disturbing forces have an influence on the mission analysis of the satellite, in terms

of propellant consumption and mission profile. This master’s thesis, carried out

at Thales Alenia Space in France, concerns the validation of a generic tool for the

calculation of the solar radiation pressure perturbation acting on a satellite, and

the development of an add-on of this tool for the computation of the aerodynamic

disturbance as well. The tool consists in different modules that interact with each

other. A module has been developed to propagate the orbit and the attitude of the

satellite. Then, space environment models have been integrated in the modules aim-

ing at estimating the attitude disturbances. Furthermore, a graphical user interface

has been implemented to facilitate the insertion of the necessary inputs to set up a

simulation. The tool has been validated by comparison with ESABASE, which is a

software provided by the European Space Agency.

Keywords: space environment, perturbation torque, shadowing, solar radiation

pressure, atmospheric density
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Chapter 1

General context

1.1 Attitude and Orbit Control System (AOCS)

All satellites have specific pointing requirements, based on the mission to perform. Pointing

requirements are expressed in terms of pointing directions of the three body axes of the

satellite. Therefore, satellites’ attitude must be controlled by means of actuators, sensors

and control laws. The attitude and orbit control of satellites is a closed-loop system: that

means that the control torque to apply to the satellite is calculated taking into account the

difference between the desired and the measured attitudes of the satellite. A typical block

diagram of an attitude control system is shown in fig. 1.1.

Figure 1.1: Typical closed loop AOCS of a satellite.

The control laws block evaluates the torque to apply to the satellite as a function of the

attitude error, that is the difference between the command and the measured attitude of the

satellite. This torque is applied by means of actuators. The satellite’s attitude is measured

with sensors. Since sensors are affected by noise and biases, estimators are included in the

loop in order to find the best estimation of the real attitude. Estimators are also used

to estimate variables that cannot be measured. In the block diagram of fig. 1.1, space
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environment and disturbances play an important role. Indeed, they are responsible not only

for pointing errors, but also for actuators sizing, as explained hereafter. Typically, reaction

wheels are used as actuators. These wheels can rotate with respect to the satellite body

by means of electric motors (stator plus rotor). Their functioning is based on the action

reaction principle: if a wheel is accelerated in a certain direction, the satellite is submitted

to the opposite angular acceleration. A satellite has typically three reaction wheels oriented

so that their rotation axis form a Cartesian reference frame. To achieve a better pointing

precision and for redundancy issues, some satellites have four reaction wheels. These two

configurations are shown in fig. 1.2.

Figure 1.2: On the left, configuration of three reaction wheels having their rotation axis
perpendicular to each other. On the right, configuration of four reaction wheels placed on
the faces of a pyramid.

The dynamics equation of a rigid body satellite having reaction wheels as actuators is the

following

~text = ~̇hsat + ~̇hRWS + ~ωsat ∧
(
~hsat + ~hRWS

)
(1.1)

where ~text is the sum of all the external torques applied to the satellite, ~̇hsat is the time

derivative of the angular momentum of the satellite without taking into account the reaction

wheels, ~̇hRWS is the time derivative of the sum of all angular momenta of the reaction wheels,

and ~ωsat is the satellite’s angular velocity. All the vectors in the eq. 1.1 are expressed in the

satellite reference frame. It can be noticed that ~text has a direct influence on ~̇hRWS , therefore

it also influences the angular momentum of the wheels, which is the time integral of ~̇hRWS .

If the reaction wheels reach their maximum angular momentum (that means that they reach

their maximum rotational speed), they lose their control capability. To avoid this, other

actuators such as magnetorquers or thrusters are used. Thus, the estimation of perturbation

torques is crucial to predict how frequently reaction wheels must be desaturated and how
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to operate desaturation actions. From these aspects, trade-off choices about the sizing of

the AOCS actuators are made.

1.2 The Multi-physics analysis and modelization team

of Thales Alenia Space in France

During my internship, I worked in collaboration with the Multi-physics analysis and mod-

elization team of Thales Alenia Space in France. This team carries out different types of

analysis, such as the impact of the space environment on satellites and the interactions be-

tween the different subsystems of a spacecraft. This includes the propulsion, the structure,

the power and thermal subsystems. The analysis conducted by the Multi-physics analysis

and modelization team serve as support to the trade-off choices of the design of a satellite

or mission. Within the company, the engineers of this team are the experts of orbital me-

chanics and disturbing torques and represent a reference for these subjects. Hence, they fill

in the AOCS and Mission Analysis DataBank of a satellite project with the values of space

environment disturbances.

1.3 The necessity of a new tool for attitude perturba-

tion analysis

Until 2015, engineers at Thales Alenia Space in France used the software ESABASE, pro-

vided by ESA, for the calculation of the main kinds of perturbation torques. The use of

ESABASE has various drawbacks:

1. ESABASE is a closed source program. It is not possible to see its source code, so

debug actions are quite limited, and there is no possibility to develop and improve

ESABASE internally.

2. ESABASE has very limited graphics capabilities. For instance, it is not possible to

visualize the orbit or the attitude of the satellite. The satellite position and pointing

information is saved only in a text file, by means of x-y-z coordinates.

3. It is an old tool: it is dated 1988. This means that the environment models (see

appendix A and section 12.3) are not up-to-date, therefore solar activity and solar

flux, as well as the atmospheric density estimation, are affected by relevant errors.

4. ESABASE runs on old servers that often have operational problems.

5. Because of their obsoleteness, there is a potentially high risk of malfunctioning of the

servers of ESABASE, with the possibility of loosing all the data inside them.
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For these reasons the Multi-physics analysis and modelization team of TASinF decided to

develop a tool internally, in order to replace ESABASE. This new tool is called TAPAS

(Tool for Attitude Perturbation AnalysiS) and it is developed in the Matlab environment.

My TAS tutor Andrea Sita started the development of this tool in 2015.

1.4 The scope of my internship

Within my internship, my main activities were to validate the solar torque module of TAPAS

and to develop the aerodynamic torque module. Beside this, I was asked to change the

meshing software used for TAPAS applications, to pass from a proprietary to an open

source software. Moreover, other tasks of my internship were to improve the algorithm

of the shadowing (see section 12.1) in order to make it faster, and to work on the user-

friendliness of the tool.
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Chapter 2

Planning and expected outcomes

2.1 Planning

The list of the main activities to carry out during my internship, in order of priority, is

presented in table 2.1. The amount of time spent for each activity is indicated as well.

Table 2.1: Number of days spent for each main activity of the internship.

The Gantt diagram related to the planning of the internship is presented in fig. 2.1

Figure 2.1: Gantt diagram related to the planning of the internship.

The two critical reviews of the internship were at the end of the validation phases of the
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solar and aerodynamic torques modules. Indeed, the validation activities of the internship

were crucial for its success.

2.2 Expected outcomes

The main expected outcome of the internship is a tool capable of calculating the solar and

the aerodynamic forces and torques on a generic satellite. This also includes the user manual

and the other documentation of the tool, such as the internship report and the validation

files that can prove the proper functioning of TAPAS.

2.3 Report outline

This report is structured as follows. Chapters 3, 4 and 5 introduce the conventions used in

the TAPAS tool as well as some basic theoretical notions necessary for the understanding

of the report. Part III (that is, chapters 6 to 10) explains the structure of TAPAS, the

creation and mesh of the geometric model of the satellite and the other inputs needed to

set up a simulation. An explanation of the graphical user interface of the tool is given too.

Chapters 11 and 12 show the main modules of TAPAS, i.e. the orbital mechanics and the

disturbing torques modules. Finally, chapters 13 and 14 present an example of simulation

and the validation results. Some possible ideas of improvement of the tool are detailed in

part VI. The appendices contain specific theoretical insights to complement the document.
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Part II

Basic notions
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Chapter 3

Time conventions

There are different conventions to express an instant of time in space engineering. This

chapter illustrates the ones used in the TAPAS tool.

3.1 Solar time

”Solar time is a calculation of the passage of time based on the position of the Sun in the sky.

The fundamental unit of solar time is the day” [1]. The apparent solar time and the mean

solar time can be distinguished as follows. Apparent solar time is based on the apparent

motion of the actual Sun relative to the Earth. The fundamental time unit of the apparent

solar time is the solar day, which corresponds to the time interval between two successive

returns of the Sun to the local meridian [1]. Since the orbit of the Earth around the Sun is

elliptical, the speed of the Earth throughout its orbit changes, therefore the duration of the

solar day is not constant in a year. The mean solar time is the apparent solar time averaged

throughout a year, so that the mean solar day remains constant.

3.2 Sidereal time

Sidereal time is a time scale that is based on Earth’s rate of rotation measured relative to

the fixed stars. ”From a given observation point on the Earth, a star found at one location

in the sky will be found at the same location on another night at the same sidereal time”

[22].

3.3 Solar day vs Sidereal day

As explained previously, the duration of the solar day is the time interval between two

successive returns of the Sun to the local meridian, so it is based on the Earth’s rotation

motion as seen from the Sun. On the other hand, the sidereal day is the duration between
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two successive returns of a fixed star to the local meridian, therefore it is based on the

Earth’s rotation motion as seen from the fixed stars (see fig. 3.1). On yearly average, the

duration of a solar day is approximately 86400 UTC seconds, while the sidereal time lasts

86164.1 UTC seconds (see section 3.4 for the definition of UTC).

Figure 3.1: Difference between solar and sidereal days [1]. From position 1 to position 2,
one sidereal day has elapsed, while from position 1 to position 3, one solar day has elapsed.

3.4 Universal Time (UT)

The most used time scale in the TAPAS tool is the Universal Time (UT) scale. This is also

the most common time scale in space engineering. Universal time is a time standard based

on Earth’s rotation. Each instant of time is represented by the related year, month, day,

hour, minute, second and millisecond. There are different versions of Universal Time [23]:

the ones used in TAPAS are listed below.

1. UT1: ”UT1 is the principal form of Universal Time” [23]. Conceptually, it coincides

with the mean solar time at 0o longitude, therefore it is related to the Earth’s rotation

motion around its rotation axis, relative to the Sun. One second UT1 is equal to

1/86400 of a Solar Day (see section 3.1). Since precise measurements of the Sun

direction are difficult, UT1 is computed from observations of distant quasars (Active

Galactic Nucleus). Due to the slowdown of the Earth’s rotation motion around its

axis, the duration of one second UT1 is not constant over the years, but it increases

of almost 2 milliseconds every 100 years.

2. UTC: UTC means Universal Time Coordinated and is the primary time standard by

which the world regulates clocks and time [24]. It is an atomic timescale that approxi-

mates UT1. The duration of one UTC second is constant over time and coincides with
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the duration of one second as defined by the International System of Units (SI). The

duration of one UTC second is slightly smaller than the duration of one UT1 second

and, due to the slowdown of the Earth’s rotation motion, this difference increases over

the years. In order to maintain the difference between the UTC and UT1 time scales

smaller than one UTC second, leap seconds are occasionally added to the UTC time.

3.5 Terrestrial Time (TT)

Terrestrial Time is an ideal time scale used for time-measurements of astronomical obser-

vations made from the surface of the Earth [25]. One TT second coincides with one SI

second.

3.6 International Atomic Time (Temps Atomique In-

ternational - TAI)

”International Atomic Time is a high-precision atomic coordinate time standard” [26]. It

is the principal realization of Terrestrial Time, except for a fixed offset. The duration of

one TAI second is equal to the duration of one UTC second. TAI and UTC time scales

coincided in 1958. Since then, leap seconds were added to the UTC, but not to the TAI

time scale. Therefore, the difference between the TAI and UTC time scales increases over

the years due to the addition of UTC leap seconds. The current and historical difference

between TAI and UTC is also a reference of all the leap seconds added to the UTC scale

over time. Nowadays, the TAI time scale is ahead the UTC of 37 SI seconds and behind

the Terrestrial Time scale of about 32.184 SI seconds.

3.7 Julian day

Julian day is the continuous count of days since a specific starting date [27]. Each instant

of time is associated to a Julian day number. This number can be integer or decimal.

Decimal Julian day numbers express fractions of days. Julian days are used in different

space engineering applications such as the Sun ephemeris calculation (see appendix A.3).

There are different variants of Julian day depending on the time scale and on the starting

date chosen to count days.
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Chapter 4

Reference frames used in TAPAS

The following reference frames are used in the TAPAS tool. All the cartesian reference

frames used within this tool are right-handed.

4.1 EME2000

The most used Earth-centered inertial reference system in space engineering is the EME2000

(also called J2000). Its origin is at the center of mass of the Earth. The x-axis of this frame

is directed towards the Sun at the Spring equinox (approximately on 20th March), and the

z-axis is aligned with the Earth’s spin axis (towards the north pole). The y-axis completes

the cartesian frame (see fig. 4.1). Since the Earth rotation is affected by precession and

nutation, the convention for this frame is to take the J2000 epoch (1st January 2000 at

12:00 TT) as reference for the Earth rotation axis and the Earth-to-Sun direction at Spring

equinox.

Figure 4.1: EME2000 reference frame. References are dated to the J2000 epoch (1st Jan-
uary 2000 at 12:00 TT) [2].
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4.2 Earth Centered-Earth Fixed (ECEF) frame

The origin of the ECEF frame is the center of the Earth. Its x-axis corresponds to the

intersection between the plane defined by the Greenwich meridian (or Prime Meridian) and

the equatorial plane. The z-axis is directed from the South to the North Pole of the Earth

and the y-axis completes the Cartesian reference frame (see fig. 4.2).

Figure 4.2: ECEF reference frame [3].

4.3 Geocentric and geodetic coordinates

The geocentric and geodetic coordinates are two similar ways of defining the position of a

satellite by exploiting angular measures.

4.3.1 Geocentric coordinates

The geocentric coordinates are the geocentric latitude (φ) and longitude (λ) referred to the

center of the Earth, as shown in fig. 4.3. Note that

−90o ≤ φ ≤ 90o (4.1)

and

−180o ≤ λ < 180o (4.2)

To completely define the position of a point with respect to the Earth, a third coordinate is

necessary. This third parameter is often the radius from the Earth’s center to the considered

point.
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Figure 4.3: Geocentric latitude (φ) and longitude (λ) of a point on the surface of the Earth
[4].

4.3.2 Geodetic coordinates

The geodetic coordinates are similar to the geocentric ones, but, in this case, the reference

is the axis which is normal to the spheroid representing the Earth and passes through the

point under consideration (fig. 4.4). In fact, the Earth is not a perfect sphere, being slightly

flattened at the poles.

Figure 4.4: Geodetic vs geocentric latitude [5]. The form of the Earth ellipsoid is exaggerated
in this figure.

For the geodetic coordinates, the third parameter used to define completely the position of

a point P is the altitude (h), evaluated along the direction normal to the spheroid modelling

the Earth’s surface (see fig. 4.4 and 4.5).
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Figure 4.5: Geodetic coordinates of a point P [6].

4.4 Local Orbital Frame (LOF)

The Local Orbital Frame is centered at the satellite’s center of gravity. There are different

types of Local Orbital Frames. The one which is used in TAPAS is called VVLH, that

stands for Vehicle Velocity, Local Horizontal. The z-axis of this frame is directed towards

the Earth’s center of gravity, and the y-axis is perpendicular to the orbital plane so that

the x-axis forms an acute angle with the velocity of the satellite (see fig. 4.6).

Figure 4.6: VVLH Local Orbital Frame (LOF) for a satellite orbiting around the Earth.
IRF stands for Inertial Reference frame [7].
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4.5 Local Orbital Frame at time 0 (LOF0)

The Local Orbital Frame 0 (LOF0) is simply the Local Orbital Frame at the first instant

of the simulation. This reference frame is important because it does not rotate, therefore it

can be considered as inertial. In an inertial reference frame, the equation 1.1 becomes

~text = ~̇hsat, tot (4.3)

where ~hsat, tot is the global angular momentum of the satellite. One can notice that the time

integration of external torques in an inertial reference system, from the start to the end of

the simulation, is equal to the global angular momentum that the spacecraft accumulates

all over the simulation period. This is a clear index for the sizing of the actuators of the

AOCS of the satellite.

4.6 Satellite reference frame

The satellite reference system is a frame of reference which is linked to the body of the

satellite. Its origin is usually the satellite’s center of gravity, but can be any other point of

the satellite’s body. This reference system is important because all the satellite’s equipment,

including the AOCS actuators and sensors, is linked to this frame. The fig. 4.7 shows a

typical example of satellite reference frame, where solar panels are along the y-axis.

Figure 4.7: Satellite reference frame [8].
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Chapter 5

Perturbation torques

A satellite encounters different kinds of attitude perturbation on orbit. In this chapter,

all the possible types of external attitude perturbations are listed, explaining the physical

phenomena underlying these perturbations, and the equations to estimate them.

5.1 Magnetic torque

The Earth, like many others planets of the solar system, is surrounded by a magnetic field

that originates at its core.

Inside a satellite, there are usually a lot of electronic components that can create a mag-

netic moment. Due to the presence of the Earth’s magnetic field, these magnetic moments

generate a torque on the satellite, according to the following law

~tB = ~M ∧ ~B (5.1)

where ~tB is the magnetic torque, ~B is the magnetic field of the Earth and ~M is magnetic

moment inside the satellite [28]. This kind of perturbation torque is significant only for LEO

satellites, because the intensity of the magnetic field of the Earth decreases proportionally

to 1/r3 (see eq. A.6), therefore it becomes negligible in high orbits.

5.2 Gravity gradient torque

The Earth gravity acts on the satellite and, due to its non-uniform mass distribution along

its three axes, a gravity gradient torque is created. This torque is the sum of the forces

acting on each infinitesimal mass element having a lever arm with respect to the center of

gravity of the satellite [29]. The resulting gravity gradient torque, ~tGG, is described by the

following cross product.

~tGG = 3
µ

r3
~eE−sat ∧ (Isat · ~eE−sat) (5.2)
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where µ is the gravitational parameter GM of the Earth, r is the distance between the

satellite’s and the Earth’s centers of gravity, Isat is the inertia matrix of the satellite and

the ~eE−sat is the unit vector in the direction Earth-satellite. This kind of torque is important

for LEO satellites whose inertia around one axis is much smaller than the inertia around

the other two axis. As the magnetic torque, the gravity gradient torque becomes negligible

in high orbits, due to the presence of 1/r3 in its expression (eq. 5.2).

5.3 Aerodynamic torque

Satellites in LEO are exposed to atmospheric forces too. Even if the atmospheric density

decreases exponentially with the altitude, it has a non-negligible effect on satellites under

1000 km of altitude. The estimation of the aerodynamic force acting on a plane surface of

a satellite is calculated by the following equation

~Faero =
1

2
ρ ||~V || 2A (Ct sin(α) cos(α)~t− Cn cos2(α)~n) (5.3)

where ρ is the atmospheric density, ~V is the velocity of the satellite with respect to the

atmosphere, A is the dimension of the surface (m2), Ct is the tangential aerodynamic coeffi-

cient, α is the angle between the normal to the surface and the vector ~V (0 ≤ α ≤ 90o), ~t is

the unit vector which is tangent to the surface and is in the same plane as the vector ~V , Cn

is the normal aerodynamic coefficient and ~n is the unit vector normal to the surface. The

eq. 5.3 is valid under the hypothesis of free molecular flow, which is linked to the Knudsen

number as follows [30]

Kn =
λ

L
> 1 (5.4)

where λ is the mean free path of the atmosphere molecules and L is the representative

physical length scale of the problem under consideration. For spacecraft applications, the

hypothesis of free molecular flow is applicable above 140 km of altitude [30].

The values of the aerodynamic coefficients Ct and Cn are difficult to estimate. Typically,

a good approximation is Ct = 1.7 and Cn = 2.3 [31]. The estimation of the atmospheric

density is another crucial aspect in the eq. 5.3. The atmospheric density at high altitudes

depends widely on the solar and geomagnetic activities. The stronger these two activities,

the denser the atmosphere is.

It is assumed that the force ~Faero is applied to the geometric center of the surface under

consideration. Therefore, the resulting torque about the satellite’s center of gravity, deriving

from this force, is

~taero = ~vGO ∧ ~Faero (5.5)
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where ~vGO is the vector going from the center of gravity of the satellite to the geometric

center of the surface on which ~Faero acts. In estimating the aerodynamic force with the

eq. 5.3, one has to consider only those surfaces of the satellite which are exposed to the air

flow. For this, an algorithm capable of calculating the shadowing on the satellite’s external

surfaces (see section 12.1) is necessary. The estimation of the global torque acting on the

satellite is made by integration of all the contributions of each infinitesimal elementary

surface:

~taero =

∫
surf

~r ∧ ~dF aero (5.6)

where ~dF aero is the aerodynamic force acting on the elementary surface, and ~r is the lever

arm of ~dF aero with respect to the point around which the torque is evaluated. The integral

in eq. 5.6 is applied to the external surfaces of the satellite which are exposed to the airflow.

In TAPAS, a finite elements model of the satellite must be created using triangle elements.

The overall aerodynamic torque acting on the satellite is then calculated as the sum of the

contributions of the forces applied to all the N triangle elements which are exposed to the

airflow.

~taero, tot =
N∑
i=1

~taero, i =
N∑
i=1

~vGO i ∧ ~Faero, i (5.7)

5.4 Solar radiation pressure torque

While all the other kinds of disturbing torques are considerable only for LEO satellites, the

solar radiation pressure torque is predominant in high orbits. This is the main perturbation

torque for geostationary satellites. The cause of this kind of torque on a satellite is the

impacts of solar photons on the satellite’s surfaces. To estimate the solar radiation pressure

force acting on a plane surface, the following expression is used

~Fsolar = pA cos(α)

{
−
[
(1 + CS) cos(α) +

2

3
CD

]
~n+ (1− CS) sin(α)~t

}
(5.8)

where p is the solar pressure (near the Earth, p ' 4.66 · 10−6N/m2), A is the dimension

of the surface under consideration (m2), α is the angle between the vector which goes from

the satellite’s center of gravity to the Sun’s center of gravity and the normal to the surface

(0o ≤ α ≤ 90o), CS is the specular coefficient of the material of the surface, CD its diffuse

coefficient, ~n is the unit vector normal to the surface and ~t is the unit vector tangent to the

surface and in the same plane as the satellite-to-Sun vector. As for the aerodynamic force, it

is assumed that the force ~Fsolar is applied to the geometric center of the considered surface,

so a torque about the satellite’s center of gravity is created, according to the following
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expression

~tsolar = ~vGO ∧ ~Fsolar (5.9)

where ~vGO is the vector going from the center of gravity of the satellite to the geometric

center of the surface on which ~Fsolar acts. Also in this case, one has to consider only those

surfaces of the satellite which are enlightened by the Sun, therefore a shadowing algorithm

is necessary (see section 12.1). The global solar torque is estimated by integration of all the

contributions of each infinitesimal elementary surface:

~tsolar =

∫
surf

~r ∧ ~dF solar (5.10)

where ~dF solar is the solar force acting on the elementary surface, and ~r is the lever arm of

~dF solar with respect to the point around which the torque is evaluated. The integral in the

eq. 5.10 is applied to all the enlightened surfaces of the satellite.

As already mentioned, in TAPAS a finite elements model of the satellite must be created

using triangle elements. The overall solar torque acting on the satellite is then calculated as

the sum of the contributions of the forces applied to all the N enlightened triangle elements.

~tsolar, tot =
N∑
i=1

~tsolar, i =
N∑
i=1

~vGO i ∧ ~Fsolar, i (5.11)

5.5 Disturbance torques summary

The fig. 5.1 shows a typical dependence of the four types of disturbance torques on the

altitude.

Figure 5.1: Magnitude of perturbation torques as a function of the altitude [9]. au stands
for arbitrary unit. Real values depend on the spacecraft design.

The TAPAS tool only estimates the aerodynamic and solar torques on a satellite, because
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these are the most complex ones, especially because of the shadowing of some surfaces of

the satellite. The magnetic and the gravity gradient torques can be simply calculated by

analytical equations.
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Part III

The inputs of the tool
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Chapter 6

Structure of TAPAS

The structure of the folders of the TAPAS tool is shown in fig. 6.1.

Figure 6.1: Structure of the folders of TAPAS.

All the folders in the fig. 6.1 are contained inside the main folder which is called TAPAS.

The tool can be launched by running the script TAPAS Main.m. The central core of the

tool is inside the APE folder. APE stands for Attitude Perturbation Estimation. The

Documentation folder contains the user manual and other documentation about the tool.

The folder FunctionsAndClasses contains all the functions of TAPAS, including those for

the environmental models, orbit propagation and disturbing torques estimation. The folder

GeneralInputs contains some general input files of the tool, such as the Gmsh files and

the function f input.m (see chapter 7 and section 9.1). Before running the TAPAS Main.m

script, the user has to create a folder, inside Projects, with a specific name, where TAPAS

stores all the results of the analysis at the end of the simulation. This folder contains also the

input files of the analysis to perform. The ValidationFiles folder contains all the validation

files (see chapter 14).
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6.1 Interactions between the different modules of the

tool

The fig. 6.2 shows the interactions between the different modules of the TAPAS tool.

Orbital propagator 
 

Knowledge of the position and 
velocity of the satellite at each step of 
orbit propagation 

Geometry 
Calculation of the area, normal and 
tangent vectors of the mesh of the 
satellite 
 

Reference frames 
Rotation matrix 

Attitude law 

Solar arrays rotation 

Disturbing torques analysis 

Solar perturbation 

Materials 
CA, CD, CS and transparency 

Models 
Space environment 

Initial date + 
orbital elements 

Gmsh files 

Aerodynamic perturbation 

Shadowing 

Figure 6.2: Interactions between the different modules of TAPAS

When the user launches a new simulation, the first calculations carried out by TAPAS are

the orbit and attitude propagations. Once the position and attitude of the satellite are

known at each propagation step, knowing the shape of the spacecraft, the tool can evaluate

the disturbing forces and torques acting on it. For this, the space environment models and

a shadowing algorithm are necessary. This is explained in more detail in chapter 12.
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Chapter 7

Creation of the geometric model of
the satellite

Since solar and aerodynamic perturbation torques depend on the external shape of the

satellite, a CAD model of the satellite must be created and meshed with finite elements.

The mesh is necessary to approximate the integrals 5.6 and 5.10 with sums, and to evaluate

the shadows on the satellite. TAPAS tool uses the open source software Gmsh to create the

satellite’s geometric model and to mesh it.

7.1 What is Gmsh?

As already mentioned, Gmsh is a finite-element mesh generator. Released under the GNU

General Public License, Gmsh is a free software. It contains 4 modules: geometry de-

scription, meshing, solving and post-processing. Gmsh supports parametric input and has

advanced visualization mechanisms [32]. The graphical user interface of Gmsh (see fig. 7.1)

allows a user-friendly utilization of this software.

7.2 Gmsh routines linked to TAPAS

To simplify the creation of the geometric model of the satellite, some Gmsh routines have

been developed within Thales Alenia Space. When the geometric model is created, one has to

mesh it with finite triangular elements. The images that follow show different meshes created

with Gmsh. The implemented routines are called by a main script, which is structured as

follows. The user can decide whether he or she wants to include or not the following items

in the geometric model of the satellite:

1. The satellite’s central body, including any possible parabolic reflector.

2. The yoke, which is the support structure for solar panels (see fig. 7.2).

3. The solar arrays.
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Figure 7.1: Mesh of a satellite model created with the graphical user interface of Gmsh.

7.2.1 Body of the satellite

The implemented Gmsh routines include five different kinds of satellite central bodies.

(A) Simple parallelepiped (fig. 7.3)

(B) Body with inclined surfaces (fig. 7.4)

(C) Body with extensions of one face (fig. 7.5)

(D) Body with extensions on two faces (fig. 7.6)

(E) Body with extensions on three faces (fig. 7.7)

In addition to this, the user can add as many parabolic reflectors as needed. To add a

parabolic reflector, the user has to enter its dimensions in the main file. In particular, one

has to define:

(a) The focal of the reflector

(b) The semi-major and semi-minor axis of the reflector, as seen in plan view

(c) The position and the orientation of the antenna, in the satellite reference frame
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Figure 7.2: Typical yoke of a satellite.

Figure 7.3: Body of a satellite modeled as a simple parallelepiped.

Figure 7.4: Body of a satellite modeled with inclined surfaces.
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Figure 7.5: Body of a satellite with extensions on one face.

Figure 7.6: Body of a satellite with extensions on two faces.

Figure 7.7: Body of a satellite with extensions on three faces.

The satellite in fig. 7.1 has six parabolic reflectors.
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Geometric equations to draw a parabolic reflector

The parabolic reflector, in the Gmsh routines of TAPAS, is drawn as the intersection of a

paraboloid and a cylinder. The base of the cylinder can be circular or elliptical.

First of all, one defines the x and y coordinates of the center of the circular or elliptical base

of the cylinder, in the x-y plane of the reference system linked to the reflector. Then, the z

coordinate of the center of the reflector is calculated through the equation of the paraboloid:

zc =
x2c + y2c

4 f
(7.1)

where xc, yc and zc are, respectively, the x, y and z coordinates of the center of the reflector,

and f its focal. Next, the contour of the reflector is defined by means of the following

parametric equations

x = xc + a cos(θ) cos(−α) + b sin(θ) sin(−α)

y = yc − a cos(θ) sin(−α) + b sin(θ) cos(−α)

z =
x2 + y2

4 f

(7.2)

where a and b are, respectively, the semi-axis along x and y, θ is the angular parameter of

the equations (0 ≤ θ < 2 π) and α is the angle shown in fig. 7.8.

Figure 7.8: α angle between the ellipse and the x axis of the reflector reference frame, in
the xy plane.

An angular step of θ has to be chosen based on how precisely one wants to draw the reflector.

The shorter this step, the higher the number of points drawn and the more precise the shape

of the reflector is. Indeed, the points defined by the equations 7.2 are then interconnected

with splines, exploiting the spline command of Gmsh. The fig. 7.9 illustrates a reflector

drawn with few geometric points and a reflector drawn with more geometric points.

Open



Creation of the geometric model of the satellite 30

Figure 7.9: On the left, reflector drawn with a few points. On the right, reflector drawn
with a lot of points.

Once the contour of the reflector is drawn, one has to define some internal points to give

the reflector its parabolic shape. An example of a mesh of a parabolic reflector is shown in

fig. 7.10.

Figure 7.10: Mesh of a reflector created with the Gmsh routine of TAPAS

Initially, the reflector is drawn in its own reference frame and, later, the relative position of

this frame with respect to the satellite reference frame is taken into account.

7.2.2 Yoke

The TAPAS Gmsh routines allow the user to draw the yoke shape by defining the position

of its contour points. Therefore, different shapes can be drawn, as shown in fig. 7.11.
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Figure 7.11: Three different shapes of yoke, created with the Gmsh routines of TAPAS.

7.2.3 Solar arrays

The user can choose how many solar panels the satellite has. The maximum number of

solar panels is 16 (see fig. 7.1). Moreover, one can choose which solar panels to include in

the model. The convention for numbering the solar arrays is shown in fig. 7.12.

Figure 7.12: Convention for numbering the solar arrays.
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Chapter 8

Mesh file in input to TAPAS

As already mentioned, once the geometric model of the satellite is defined, the user has

to mesh it with finite triangular elements. This can be done easily with the Gmsh GUI.

The TAPAS Gmsh routines allow the user to define the mean dimension of the triangular

elements, for each part of the model: central body, antennas, yoke and solar panels. The

fig. 8.1 shows the same satellite meshed with two different mean element sizes.

Figure 8.1: On the left, rough mesh of a satellite. On the right, refined mesh of a satellite.
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Having a refined mesh is important in particular for the reflectors because they have a

parabolic surface, while each singular finite triangular element has a plane surface, so the

approximation of the paraboloid would be bad if the mesh was rough. Moreover, a refined

mesh is also important to calculate the shadows on the satellite precisely (see section 12.1).

8.1 bdf file

The format of the mesh file in input to TAPAS is the bdf format. This is a standard format

for mesh data used by the finite elements solver Nastran, which can be obtained by pre

and post-processing CAE software such as Femap or Patran. An example of a simple bdf

file created by Gmsh is shown hereafter.

$ Created by Gmsh
GRID 1 0 0 .00E+000.00E+001.000000
GRID 2 0 0 .00E+000.00E+000.00E+00
GRID 3 0 0 .00E+001.0000001.000000
GRID 4 0 0 .00E+001.0000000.00E+00
GRID 5 0 1 .0000000 .00E+001.000000
GRID 6 0 1 .0000000 .00E+000.00E+00
GRID 7 0 1 .0000001 .0000001 .000000
GRID 8 0 1 .0000001 .0000000 .00E+00
CTRIA3 129 100001 2 1 4
CTRIA3 130 100001 4 1 3
CTRIA3 131 100002 6 8 5
CTRIA3 132 100002 8 7 5
CTRIA3 133 100002 2 6 1
CTRIA3 134 100002 1 6 5
CTRIA3 135 100001 4 3 8
CTRIA3 136 100001 3 7 8
CTRIA3 137 110999 2 4 6
CTRIA3 138 110999 6 4 8
CTRIA3 139 110999 1 5 3
CTRIA3 140 110999 5 7 3
ENDDATA

The first part of the file, that is the lines starting with GRID, contains a list of all the

nodes of the mesh. The first number of each of these lines is the node identification number,

the second number indicates the reference system in which the coordinates of each node

are expressed (this number is always zero for TAPAS applications), while the remaining

numbers are the x, y and z coordinates of the node. Each coordinate number takes eight

characters. The second part of the file, that is the lines starting with CTRIA3, contains

the list of all the elements of the model. The expression CTRIA3 indicates that the line

refers to a triangular element. The first number that follows the expression CTRIA3 is
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the element identification number. These numbers may not be ordered when exporting in

bdf format from Gmsh. The second number is the group the element belongs to. This is

especially important for the attribution of a material to each elements group. Indeed, it is

necessary to have the properties of the material of each element to calculate the solar force

and torque on the satellite (see the CD and CS coefficients in the eq. 5.8). The last three

numbers are the identification numbers of the nodes of the element into account. The order

of the nodes of each element defines the direction of the element’s normal vector, following

the right hand rule (fig. 8.2).

Figure 8.2: Definition of the direction of the normal of a triangular element based on the
order of its elements, following the right hand rule [10].

The advantage of using triangular elements is that the triangle is a planar geometric figure,

so its normal can always be defined uniquely. TAPAS reads the bdf file associated to the

satellite into account, and retrieves the surface area and the normal of all its elements.
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Chapter 9

Date, orbit and attitude definition

Three fundamental inputs of all simulations are the initial date, the orbit and attitude law

of the satellite. These can be directly entered in TAPAS or in external files, as explained in

sections 9.1 and 9.2.

9.1 Initial date, orbit and attitude law of the simula-

tion, entered directly in TAPAS

The starting date and the satellite orbit for the simulation to perform can be defined in

the file f input.m of the tool (see chapter 6). The date is defined in the UTC time scale, in

terms of starting year, month, day, hour, minute and second. After this, one has to enter

the orbit of the satellite. For this, four different formats are possible:

1. Six keplerian orbital elements. In this case, the user has to enter

(A) the longitude of the ascending node of the orbit (Ω) in the EME2000 reference

frame

(B) the inclination of the orbit (i)

(C) the semi-major axis (a)

(D) the eccentricity (e)

(E) the argument of perigee (ω)

(F) the starting anomaly (ν)

The fig. 9.1 shows the meaning of the terms above.

2. State vector, so the initial position and velocity of the satellite, in the EME2000

reference frame.
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Figure 9.1: Explanation of the keplerian orbital elements [11].

3. Geostationary orbit, for which the user has to define only the longitude of the geosta-

tionary position of the satellite, in the ECEF frame.

4. Sun-synchronous orbit, for which one has to enter only the altitude, the θ angle (shown

in fig. 9.2) and the initial anomaly of the satellite.

Figure 9.2: θ angle for Sun-synchronous orbits [12]. The red line is the intersection between
the equatorial plane and the orbit plane.

Once the orbit is defined, the user has to choose the attitude law for the simulation. This

is done with a graphical user interface (section 10). Three choices are possible:

1. Classical Earth pointing (LOF), where the z-axis of the satellite points towards the

center of the Earth, the y-axis is perpendicular to the orbit plane and the x-axis is
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towards the velocity of the satellite and completes the right-handed frame (see fig.

4.6).

2. Yaw steering pointing law (fig. 9.3), where the z axis of the satellite is towards

the center of the Earth, the -x axis points towards the Sun ’at best’, and the y

axis completes the right-handed frame. The x axis points ’at best’ towards the Sun

because the constraint on the z axis pointing towards the Earth’s center must always

be satisfied. This kind of attitude law allows the solar arrays of the satellite, which are

usually along the y axis of the satellite reference system, to be pointed perpendicularly

to the Sun direction, thus maximizing the solar energy received. The yaw steering is

only possible if the mission doesn’t have specific requirements in the yaw angle of the

satellite.
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Figure 9.3: Yaw steering attitude law

3. Attitude file (see the file RollPitchYaw.txt in the fig. 6.1), that is a file containing the

attitude information of the satellite, for all the duration of the simulation, in terms

of Cardan angles and solar arrays rotation. The format of the attitude file read by

TAPAS is shown herein.
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t [mn] Rol l [ deg ] Pitch [ deg ] Yaw[ deg ] SA rotat ion [ deg ]
0 12 .65 85 .48 15 180
0 .5 15 .80 74 .68 13 .83 180
1 16 .23 65 .43 11 .13 180
1 .5 17 .97 60 .67 9 .97 180
2 19 .02 58 .71 8 .14 175 .94
2 .5 20 .94 55 .45 6 .77 170 .05
3 22 .13 52 .21 5 .11 168 .89
3 .5 24 .05 49 .88 4 .01 165 .07
4 25 .51 46 .50 2 .48 161 .79
4 .5 28 .06 43 .40 1 .03 155 .55
5 30 .62 40 .81 0 .06 153 .02

9.2 Orbit and attitude taken from external files

As already mentioned, date, orbit and attitude can also be defined in two different text files

(one for the orbit and one for attitude) which can be read by TAPAS. Each row of the orbit

file must contain the simulation time and the six orbital elements of the osculating orbit,

while the attitude file must contain the simulation time and the attitude of the satellite,

by means of quaternions (see appendix B.3). In this case, the user has to define, for each

of these two files, the start and the end line to read, and the line step. TAPAS then reads

these files and transforms the six orbital elements into a state vector (position and velocity)

and converts the quaternion into roll, pitch and yaw angles.
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Chapter 10

Graphical User Interface

As mentioned in the section 1.4, one of the scope of my internship was to work on the

user-friendliness of the tool. For this, a graphical user interface (GUI) has been developed.

In this chapter, the different windows of this interface are shown.

10.1 Starting windows

Just after launching the TAPAS Main.m script (see fig. 6.1), the fig. 10.1 appears.

TAPAS

Tool for Attitude Perturbation AnalysiS

Multi-Physics Analysis and Modelization team - Thales Alenia Space

Please enter the name of your project  
(pay attention to upper and lower case)

Ok

Figure 10.1: First window that appears after launching the TAPAS Main.m script.

In this window, the user has to enter the name of the folder related to the analysis to perform,

where all the relevant input files are stocked. This folder must be inside the Projects folder

of TAPAS (see fig. 6.1). This is a necessary step of the execution of TAPAS, because it lets
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TAPAS know where the input files are and in which folder the tool creates the output files

at the end of the simulation. When one presses the Ok button, a second window appears,

as shown in fig. 10.2.

Is it an analysis with orbit and attitude taken from external text files? If yes, simulation 
date and orbit, as well as the attitude law, will be taken from the external text files.

Yes No

Figure 10.2: Window that appears after pressing the Ok button of the first window.

With the window 10.2, the user decides if taking the orbit and attitude law for the simulation

from external files, or if taking the parameters entered in the f input.m file. If the user presses

the Yes button, the fig. 10.3 appears, otherwise, if one presses No, the fig. 10.4 shows.

Trajectory file

File name   
(with exten)

Start line

End line

Attitude file

File name   
(with exten)

Start line

End line

Line step

Altitude limit for
GS rotation [km]  

Ok

Figure 10.3: Window where the user can enter the parameters of the external files to be
read by TAPAS for the definition of the orbit and attitude of the simulation.

The window 10.3 allows the user to enter the parameters of the external files that define

the orbit and attitude of the simulation. The text field Altitude limit for GS rotation [km]

is used to set specific orientations of the solar panels for low perigee passages.

On the other hand, if one defines the initial date and orbit in the f input.m file, the window

10.4 allows to choose the orbit propagator and the attitude law, as explained in section 9.1.

Open



Graphical User Interface 41

Inputs

Choose the orbital propagator Numerical

Choose the attitude law LOF Start lineStart line End lineEnd line

Ok

Figure 10.4: Window where the user can choose the orbit propagator and the attitude law
of the simulation.

If the attitude is read from an external file, one has to enter the starting and the ending line

of this file. The user can choose between three different orbit propagators: the numerical,

the keplerian and Eckstein-Hechler propagator. This is explained more in detail in section

11.1.

10.2 Inputs for disturbing torques calculation

Finally, one has to enter the specific parameters of the analysis to carry out. Therefore, for

the aerodynamic torque the user has to enter the normal and tangential coefficients Cn and

Ct (see eq. 5.3), and the intensity of the solar activity. This is done through the window

10.5. Possible choices for the solar activity intensity are strong, average or weak.

Aerodynamic torque inputs

Cn Ct Solar activity intensity

STRONG

Ok

Figure 10.5: Definition of the inputs for the aerodynamic torque computation.

For the solar torque analysis, the user has to associate each element group to a material

with specific properties. This can be done in the window 10.6.

Open



Graphical User Interface 42

Materials association

Physical surface Material CA CD CS Transparency

100001 user-defined 0.48 0.31 0.21 0

100002 OSR 0.5 0.2 0.3 0

110999 Alluminium 0.4 0.6 0 0

Yoke Alluminium 0.4 0.6 0 0

SA edges Alluminium 0.4 0.6 0 0

SA +z face Solar cells 0.35 0.45 0.2 0

SA -z face kapton 0.28 0.47 0.25 0

Ok

Figure 10.6: Association of a material to each element group. On the left column there are
the element groups of the satellite model.

In fig. 10.6, the CA coefficient is the absorption coefficient of the material and the

transparency is the ratio between the solar flux that passes through the material and the

total solar flux that hits the material. One can also enter the four coefficients CA, CD, CS

and the transparency manually. Note that CA +CD +CS = 1, and 0 ≤ Transparency ≤ 1.
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Part IV

Main modules of the TAPAS tool
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Chapter 11

Orbital mechanics module

In this chapter, the orbital mechanics module of TAPAS is explained.

11.1 Orekit library

The TAPAS tool exploits the Orekit library for the orbit and attitude modules. Orekit is an

Open Source Java library of orbital mechanics, developed by CS Systèmes d’information. It

has different Java methods and classes to define and propagate the orbit and attitude of a

satellite, as well as for the calculation of the ephemeris of different celestial bodies of the so-

lar system. Orekit provides accurate and efficient low level components for the development

of flight dynamics applications. It is designed to be easily used in very different contexts,

from quick studies up to critical operations. Orekit has already been successfully used dur-

ing the real time monitoring of the rendez-vous phase between the Automated Transfer

Vehicle (ATV) and the International Space Station (ISS) by the Centre National d’Études

Spatiales (CNES, the French space agency) and the European Space Agency (ESA). It has

been selected in early 2011 by CNES to be the basis of its next generation space flight dy-

namics systems, including operational systems, study systems and mission analysis systems.

Furthermore, Orekit has been used for several studies and ground systems developments by

various industrial actors such as EUMETSAT [33]. This library is used also in other de-

partments of Thales Alenia Space. All TAPAS modules are developed under the Matlab

environment, so the Java Orekit library has been imported in Matlab.

Orekit proposes three different kinds of orbit propagation: the keplerian, the Eckstein-

Hechler and the numerical integration propagator. The propagation time step can be entered

by the user. For each propagation time instant, TAPAS stores the position and the velocity

of the satellite, in the EME2000 reference frame.

11.1.1 The keplerian propagator

The keplerian propagator is the simplest propagator of the Orekit library. It is an analytic
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solution of the following differential equation:

~̈r = − µ
r3
~r (11.1)

where ~r is the vector representing the satellite position in the EME2000 reference frame,

~̈r its second time derivative and µ the Earth’s standard gravitational parameter. This is a

simple model and it does not take into account disturbing effects of the Earth’s gravitational

potential (see appendix A.1). However, it is important to have it because, since satellites’

orbits are controlled by the AOCS, the actual orbit of a satellite is nearly keplerian.

11.1.2 The Eckstein-Hechler propagator

The Eckstein-Hechler propagator is another analytical propagator [34]. It can take into

account the zonal harmonics coefficients of the gravitational potential of the Earth up to

the sixth order (see appendix A.1), so it is more precise than the simple keplerian propagator.

However, the Eckstein-Hechler propagator is valid only for orbits whose eccentricity is less

than 0.05, and whose inclination is not equatorial nor critical (i 6= 0 and i 6= 63.4o). This

kind of propagator is based on the differential Lagrange equations, which take into account

only conservative disturbing effects of the Earth’s gravitational potential.

11.1.3 Numerical integration propagator

This propagator is based on a numerical integration of the dynamics equation of the motion

of the satellite. The TAPAS tool uses the numerical integrator Runge-Kutta 4 (see appendix

C). The gravitational potential model for this propagator takes into account the spherical

harmonics coefficients up to the order and index 10. The most important coefficient of the

spherical harmonics expansion is the J2 term of the equation A.1 because it is the term at

the basis of Sun-synchronous orbits.

11.2 Solar arrays rotation

For each point of the orbit, solar panels must be rotated so that solar cells are towards the

Sun. The axis of rotation of solar arrays is usually parallel to the y-axis of the satellite

reference frame (see fig. 4.7). A null angle of rotation of solar arrays coincides with the

solar cells being oriented towards the z axis of the satellite reference frame. In order to

find the angle of rotation of the solar arrays, one needs to know the Sun direction in the

satellite reference frame. Then, this direction is projected in the x-y plane of the satellite

reference frame, and the angle between this projected direction and the z axis of the satellite
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is evaluated. This angle is the solar arrays’ angle of rotation that makes solar cells point

towards the Sun.
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Chapter 12

Solar and aerodynamic disturbances
module

The solar and the aerodynamic disturbances modules are the main parts of the TAPAS tool.

The computation of these kinds of perturbations requires an algorithm for the shadowing due

to the presence of some external parts of the satellite between the Sun or the aerodynamic

flux (depending on which analysis one is performing) and other parts.

12.1 Shadowing algorithm

The basis of the shadowing algorithm has been taken from R. Mukundan [35]. First of

all, one needs to know all the elements and the coordinates of the nodes of the satellite

mesh. Herein, the example of the solar perturbation is presented, but everything is also

valid for the aerodynamic disturbance. Once all the coordinates of the nodes in the satellite

reference frame are known, they must be expressed in a new reference frame, which is called

Sun-oriented and which is defined by the declination (δ) and the azimuth (α) angles, as

shown in fig. 12.1.

To pass from the satellite to the Sun oriented reference frame, the following matrix equation

is used XY
Z

 =

cos(δ) cos(α) cos(δ) sin(α) −sin(δ)

−sin(α) cos(α) 0

sin(δ) cos(α) sin(δ) sin(α) cos(δ)

xy
z

 (12.1)

where (x, y, z) are the coordinates of the node in the satellite reference frame, while

(X, Y, Z) are the coordinates of the same node in the Sun oriented reference frame. After

this transformation, TAPAS calculates the coordinates of the geometric center and the nor-

mal of the elements, and it orders the elements in the descending order of the z coordinate

of their geometric centers. Next, it transforms the problem in a 2D problem in the x-y

plane of the Sun oriented frame, and it searches for possible superposition of the elements

in this plane. If a superposition occurs, it means that the superposed element having the
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Figure 12.1: Sun oriented reference frame, defined by the declination (δ) and azimuth (α)
angles.

lowest z coordinate is shadowed (see fig. 12.2). To find if an element is shadowed (that is,

a superposition occurs), TAPAS checks if the center of the element into account is inside

another element having a higher z coordinate. This check is done in the x-y plane of the

Sun-oriented reference frame.

Figure 12.2: Shadowing problem in the xy plane of the Sun oriented frame. The primary
polygon is the one having the lowest z coordinate in this frame.

To calculate the shadowing for the aerodynamic perturbation, the algorithm is the same,

but the Sun direction is replaced with the satellite velocity with respect to the air.
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12.2 Solar torque computation

To compute the solar force acting on the satellite, one has to sum up the solar forces acting

on all the enlightened elements, following the eq. 5.8:

~Fsolar = pA cos(α)
{
−
[
(1 + CS) cos(α) +

2

3
CD

]
~n+ (1− CS) sin(α)~t

}
where, in this case, A, ~n and ~t refer to a single finite element. In this equation, the value of

the solar pressure p has to be evaluated. The expression of p is

p =
φSun
c

(12.2)

where φSun is the solar flux expressed in W/m2, and c is the speed of light (c ' 3 ·108m/s).

The value of φSun depends essentially on the distance between the Sun and the satellite. At

1AU ' 1.495 · 1011m, φSun = 1367.5W/m2 and it changes proportionally to the inverse of

the square power of the distance between the satellite and the Sun. Finally, the global solar

torque on the satellite is computed with the eq. 5.11, represented below.

~tsolar, tot =
N∑
i=1

~tsolar, i =
N∑
i=1

~vGO i ∧ ~Fsolar, i

An important aspect for the solar perturbation is the evaluation of the eclipse of the satellite.

When the satellite is in eclipse, the solar perturbation is null. The passage from enlightened

to eclipse phase (and vice versa) is not instantaneous. Indeed, as shown in fig. 12.3, the

satellite passes through a penumbra phase where only a portion of the Sun disk is shadowed

by the Earth.

Figure 12.3: Eclipse phases that a satellite can encounter along its orbit [13].

The evaluation of the eclipse and penumbra phases of the simulation is carried out by

calculating the angle α between the satellite-to-Sun and the satellite-to-Earth vectors (see

fig. 12.4), and comparing it with the angles of the cones that define the eclipse and penumbra

phases.

Open



Solar and aerodynamic disturbances module 50

Figure 12.4: Angle α between the satellite-to-Sun direction and the satellite-to-Earth di-
rection. This angle is evaluated to know if the satellite is in eclipse, penumbra, or if it is
enlightened by the Sun.

12.3 Aerodynamic torque computation

For the calculation of the aerodynamic torque, similarly to the solar torque, TAPAS evalu-

ates the aerodynamic force and torque acting on each element of the satellite mesh, and it

eventually sums up all these contributions to find the global aerodynamic force and torque

on the satellite. The equations used for this are presented in chapter 5.3. Hereafter there is

a summary of these expressions.

~Faero =
1

2
ρ ||~V || 2A (Ct sin(α) cos(α)~t− Cn cos2(α)~n)

~taero, tot =
N∑
i=1

~taero, i =
N∑
i=1

~vGO i ∧ ~Faero, i

In this case, A, ~n and ~t refer to a single finite element. As one can see from these equa-

tions, the aerodynamic perturbation is directly proportional to the value of the atmospheric

density. So, in order to have good estimations of this kind of perturbation, one needs to use

an accurate model for this. Moreover, a model for the intensity of the solar and geomag-

netic activities must be implemented, because they influence significantly the density of the

higher layers of the atmosphere.

12.3.1 Solar and geomagnetic activity

The electromagnetic radiation emitted by the Sun is not constant over the years. This

concerns especially the UV solar flux, that varies between a minimum and a maximum
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value. The duration of a cycle of solar activity is 11 years. The UV solar flux has a relevant

influence on the temperature and density of the higher layers of the atmosphere, therefore

it plays an important role in the determination of the aerodynamic force and torque acting

on a satellite.

The variation in the solar activity are due to the presence of sunspot on the Sun’s surface.

The more numerous these sunspots are, the higher the intensity of the solar activity is. To

determine the intensity of the solar activity, the F10.7 index is used, which is the solar radio

flux emitted by the Sun at 2800 MHz (10.7 cm wavelength) [36]. The physical units of F10.7

are 10−22W m−2Hz−1, which corresponds to a Solar Flux Unit (SFU). This index is used

because it is well correlated to the sunspot number. The fig. 12.5 shows the evolution of

the observed and monthly-smoothed F10.7 index over the last two and a half solar cycles.
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Figure 12.5: Evolution of the F10.7 index from 1990 to 2020. The red part of the diagram
is the predicted radio flux. The smoothed radio flux is the flux averaged over one month.
[14]

Also the geomagnetic activity has a strong influence on the temperature and density of the

atmosphere. To describe the intensity of the geomagnetic activity, the ap index is used.
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This index is derived from measurements made at a number of stations world-wide of the

variation of the geomagnetic field due to currents flowing in the earth’s ionosphere and, to

a lesser extent, in the earth’s magnetosphere [37]. Values of ap range from 0 to 400 and

are expressed in units of 2 nT [36]. The ap index is updated every three hours. Its daily

average is the Ap index. The fig. 12.6 shows the evolution of the 13-month smoothed Ap

index and its predicted values until the year 2031.

Figure 12.6: Evolution of the Ap index. The black line is the observed 13-month smoothed
Ap index, while the blue, green and red lines are the predicted values, for different per-
centiles. [15]

Past, current and predicted values of the F10.7 and Ap indexes are given by the NASA

Marshall Space Flight Center [15].

12.3.2 Atmospheric density

As already mentioned, the knowledge of the value of the atmospheric density is fundamental

for the estimation of the atmospheric perturbation.

Exponential model

The most simple way to estimate the atmospheric density at a given altitude h is to use the

following exponential model [21]

ρ(h) = ρ(h0) e
−β (h−h0) (12.3)

where h0 = 200 km, ρ(h0) = 10−10 kg/m3 and β = 0.016 km−1. This model is valid for

300 km ≤ h ≤ 800 km. The fig. 12.7 shows the graph of the eq. 12.3.

This exponential model does not take into account the solar and geomagnetic activities.
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Figure 12.7: Exponential model of the atmospheric density ρ.

NRLMSISE-00 model

To have more accurate estimations of the atmospheric density, TAPAS uses the NRLMSISE-

00 model [38]. This model is valid from 0 to about 1000 km of altitude. ’NRL’ stands for US

Naval Research Laboratory, ’MSIS’ stands for Mass Spectrometer and Incoherent Scatter

Radar, ’E’ indicates that the model extends from the ground to the exosphere, and ’00’

means that the model was released in 2000. The NRLMSISE-00 model is an update of the

earlier models MSIS-86 and MSISE-90 [39]. This model makes use of a lot of data measured

by satellites, rockets and instruments on ground, over the years. The NRLMSISE-00 model

takes into account the solar and geomagnetic activities. The inputs of this model are:

1. The date of the simulation

2. The altitude of the satellite

3. The geodetic latitude and longitude of the satellite

4. F10.7av, which is the 81-day average of F10.7 index, centered on the day of the

simulation

5. The daily F10.7 index of the day before the one of the simulation

6. The daily and averaged geomagnetic ap indexes

The output of this model is the density of the atmosphere at the point under consideration.

The figure 12.8 shows the values of the atmospheric density at 0o latitude, obtained with
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the NRLMSISE-00 model, for low and high solar and geomagnetic activities. The values

shown are averaged over one year.
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Figure 12.8: Atmospheric density at 0o latitude as a function of the altitude, according to the
NRLMSISE-00 model. The ρ values are averaged over one year. The red line corresponds
to F10.7 = F10.7av = 65 and Ap = 0, while the blue line corresponds to F10.7 = F10.7av =
250 and Ap = 45.

The fig. 12.9 shows a map of the atmospheric density values, according to the NRLMSISE-

00 model, at 400 km of altitude. One can notice that the density is higher during daylight

and lower during the night.

TAPAS uses a Matlab function that implements the NRLMSISE-00 model. This function

can be found in the Mathworks file exchange website [40].
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Figure 12.9: Map of the atmospheric density according to the NRLMSISE-00 model. The
altitude is 400 km, the date is 21 Mar 2012, 12:00 UTC and the solar and geomagnetic
activities indexes are F10.7 = 88 and Ap = 1 [16].

Open



56

Part V

Results and validation
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Chapter 13

Example of analysis

This chapter contains an example of analysis on a generic satellite.

13.1 Inputs of the analysis

The satellite taken into account is the one in fig. 13.1.

Figure 13.1: Satellite of the example of this chapter.

This satellite presents extensions on three faces of its body, six parabolic reflectors and four
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solar panels on each side.

The orbit chosen for this analysis is the following:

1. Ω = 40o

2. ω = 0o

3. i = 58o

4. a = 13756 km

5. e = 0.1

6. ν = 0o

The attitude law is the yaw steering and the solar arrays are pointed towards the Sun.

The starting date of the simulation is 21st June 2001 at 00:00:00 UTC. The duration of

the simulation covers a complete orbit of the satellite. Aerodynamic and solar torques are

evaluated with respect to the center of the -z face of the satellite central body.

13.2 Solar perturbation results

In this chapter, the results concerning the solar disturbance are presented.

13.2.1 Visualization of the orbit

The fig. 13.2 shows the orbit and the attitude of the satellite for the simulation taken into

account. Moreover, it shows that the solar arrays of the satellite point perfectly towards

the Sun, thus maximizing the solar energy received. This is possible thanks to the choice of

the yaw steering attitude law.

13.2.2 Visualization of the shadowing

At the end of each simulation, the TAPAS tool creates some bdf files to visualize the shadows

on the satellite at each propagation time step. The visualization of the shadowing is done

by assigning two different colors to the elements which are enlightened and to the elements

which are shadowed, and visualizing it in the Gmsh GUI. The fig. 13.3 shows the solar

shadows on the satellite, at the second step of the simulation, from two different points of

view. The enlightened elements are green, while the shadowed elements are orange.
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Figure 13.2: Orbit and attitude of the satellite for the chosen simulation. The blue vector
is the vector normal to the solar arrays, while the orange vector is the Sun direction. In
the figure, these two vectors are superposed, which means that solar arrays point perfectly
towards the Sun.

13.2.3 Solar force

The fig. 13.4 shows the results obtained for the solar force acting on the satellite, expressed

in the satellite reference frame. In this picture, one can notice that the satellite is in eclipse

for about 30 minutes during its orbit.
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Figure 13.3: Solar shadow at the second step of the simulation, from two different points
of view. The elements that are exposed to the Sun are green, while the shadowed elements
are orange. In the image on the left, the satellite is seen from the Sun direction.

13.2.4 Solar torque

The fig. 13.5 shows the results of the analysis of the solar torque acting on the satellite,

expressed in the satellite reference frame. During the eclipse phase, the solar torque is null.

For this simulation, the predominant component of the solar torque is the one around the

y-axis of the satellite reference frame, because it is the axis parallel to the axis of rotation of

solar panels. Indeed, solar panels have a very big surface exposed to the Sun and they have

a lever arm with respect to the point of calculation of the solar torque, so their contribution

to the overall torque is predominant.
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Figure 13.4: Solar force acting on the satellite, expressed in the satellite reference frame.
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Figure 13.5: Solar torque acting on the satellite, expressed in the satellite reference frame.

13.3 Aerodynamic perturbation results

In this section, the results concerning the attitude perturbation linked to the aerodynamic

effects are presented.

13.3.1 Visualization of the orbit

The fig. 13.6 shows the orbit and the orientation of the satellite body axes for the simulation

taken into account.
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Figure 13.6: Orbit and attitude of the satellite for the chosen simulation. The blue vector is
the vector normal to the solar arrays, while the orange vector is the direction of the satellite
velocity with respect to the atmosphere.

13.3.2 Visualization of the shadowing

As for the solar shadows, the TAPAS tool allows the visualization of aerodynamic shadows

on the satellite too. The fig. 13.7 shows the aerodynamic shadows on the satellite at the

second simulation step, from two different points of view. The elements that are exposed to

the air flow are green, while the shadowed elements are orange.
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Figure 13.7: Aerodynamic shadow at the second step of the simulation, from two different
points of view. The elements that are exposed to the air flow are green, while the shadowed
elements are orange. In the image on the left, the satellite is seen in the direction of its
velocity with respect to the atmosphere.

13.3.3 Aerodynamic force

The fig. 13.8 shows the results obtained for the aerodynamic force acting on the satellite,

expressed in the satellite reference frame.

13.3.4 Aerodynamic torque

The fig. 13.9 shows the results obtained for the aerodynamic torque acting on the satellite,

expressed in the satellite reference frame.

One can notice that, since the orbit is quite high, the aerodynamic perturbation is very low.

Indeed, the semi major-axis of the orbit is 13756 km, which corresponds to a mean altitude

of about 1000 km. At this altitude, the atmosphere is quite rarefied (ρ ' 10−14 kg/m3).
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Figure 13.8: Aerodynamic force acting on the satellite, expressed in the satellite reference
frame.
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Figure 13.9: Aerodynamic torque acting on the satellite, expressed in the satellite reference
frame.
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Chapter 14

Validation results

In this chapter, some results of the validation of TAPAS are presented. Validation has been

performed to ensure the proper functioning of the tool, as regards the calculation of the

aerodynamic and solar perturbations. The software ESABASE has been used to validate

TAPAS. As already mentioned, ESABASE is a software delivered by ESA in 1988. It allows

the execution of different analysis such as the out-gassing, contamination and disturbing

torques calculations. ESABASE is a closed source program, so it is not possible to see the

equations and the algorithm used by this software.

14.1 Solar force and torque validation

To validate the solar torque, different case studies have been selected, with different geo-

metric models, as explained below:

1. Plane plate, in GEO orbit with LOF attitude law

2. Cube, in GEO orbit with LOF attitude law

3. Cube plus two plane plates, in GEO orbit with LOF attitude law. The two plane

plates represent the solar panels and are pointed towards the Sun.

4. Complete geostationary satellite with LOF attitude law

5. Complete satellite in LEO (about 50o of inclination) with yaw steering attitude law

Each case has been studied in three different initial dates:

(a) Spring equinox (21st March) 2001

(b) Summer solstice (21st June) 2001

(c) Winter solstice (21st December) 2001
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These dates are significant because, on 21st March, 21st June and 21st December, the Sun

is respectively at its mean, maximum and minimum latitudes as seen from the Earth. This

is illustrated in fig. 14.1.

Figure 14.1: The ecliptic. On summer solstice, the Sun is at its maximum latitude, while
on winter solstice, it is at its minimum latitude, as seen from the Earth [17].

For all these cases, the results of ESABASE and TAPAS have been compared. The names of

the satellites, as well as the results obtained for them, are omitted for confidentiality issues.

The selected cases have different orbits and attitude laws, which allows a complete validation

of the tool. This section illustrates the comparison between the results of ESABASE and

TAPAS for the first case: plane plate, in GEO orbit, with LOF attitude law.

14.1.1 ESABASE - TAPAS comparison for solar perturbation

The geometrical model chosen for this case is shown in fig. 14.2.
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Figure 14.2: Geometric model used for the validation case of this chapter.

The point with respect to which solar perturbation is calculated is the origin of the

satellite reference frame. The plate is not centered at the origin of this frame, because its

center has a negative y-coordinate. If the plate was centered on the origin of the satellite

reference frame, the disturbing torque would have been null, so the case would not have

been interesting. The side of the plate is 1m long, and the thickness is 1 cm. The initial

date of the simulation is 21st June 2001 at 00:00:00 UTC. The simulation covers a complete

orbit period. The orbit is geostationary and the longitude of the plate in the ECEF frame is

0o. The attitude law is the LOF. The material of the plate is solar cells, having the following

features

1. CA = 0.905

2. CD = 0.038

3. CS = 0.057

Solar force

For a quick comparison, the table 14.1 contains the values of the solar force components

calculated by ESABASE and TAPAS, while the fig. 14.3 and 14.4 show the solar force for

this analysis, obtained respectively with ESABASE and TAPAS.

The main differences between ESABASE and TAPAS results occur when the diagrams cross

the x-axis. Indeed, when the value of the force component is almost null, the relative error

between the two software increases significantly.
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t [h] Fx ESABASE [N] Fx TAPAS [N] Fy ESABASE [N] Fy TAPAS [N] Fz ESABASE [N] Fz TAPAS [N]
0 -1,91E-08 2,63E-08 1,51E-06 1,53E-06 -4,00E-06 -4,05E-06
1 -8,89E-07 -8,60E-07 1,46E-06 1,48E-06 -3,73E-06 -3,80E-06
2 -1,53E-06 -1,52E-06 1,31E-06 1,34E-06 -3,01E-06 -3,09E-06
3 -1,76E-06 -1,78E-06 1,07E-06 1,10E-06 -2,02E-06 -2,10E-06
4 -1,53E-06 -1,57E-06 7,64E-07 7,91E-07 -1,02E-06 -1,08E-06
5 -9,00E-07 -9,53E-07 4,02E-07 4,28E-07 -2,87E-07 -3,20E-07
6 -7,46E-08 -8,40E-08 3,13E-08 3,54E-08 9,88E-10 -1,50E-09
7 -9,34E-07 -9,04E-07 4,19E-07 4,04E-07 3,11E-07 2,86E-07
8 -1,55E-06 -1,55E-06 7,78E-07 7,70E-07 1,06E-06 1,03E-06
9 -1,76E-06 -1,78E-06 1,09E-06 1,09E-06 2,06E-06 2,03E-06

10 -1,51E-06 -1,55E-06 1,32E-06 1,33E-06 3,05E-06 3,04E-06
11 -8,54E-07 -9,09E-07 1,46E-06 1,48E-06 3,75E-06 3,77E-06
12 2,11E-08 -2,89E-08 1,51E-06 1,53E-06 4,00E-06 4,05E-06
13 8,91E-07 8,58E-07 1,46E-06 1,48E-06 3,73E-06 3,81E-06
14 1,53E-06 1,52E-06 1,31E-06 1,34E-06 3,00E-06 3,09E-06
15 1,76E-06 1,78E-06 1,07E-06 1,10E-06 2,02E-06 2,10E-06
16 1,53E-06 1,58E-06 7,63E-07 7,92E-07 1,02E-06 1,09E-06
17 8,98E-07 9,53E-07 4,01E-07 4,28E-07 2,86E-07 3,20E-07
18 7,71E-08 8,44E-08 3,24E-08 3,55E-08 -1,13E-09 1,53E-09
19 9,36E-07 9,04E-07 4,20E-07 4,04E-07 -3,12E-07 -2,85E-07
20 1,55E-06 1,55E-06 7,79E-07 7,70E-07 -1,07E-06 -1,03E-06
21 1,76E-06 1,78E-06 1,09E-06 1,08E-06 -2,07E-06 -2,03E-06
22 1,51E-06 1,55E-06 1,32E-06 1,32E-06 -3,05E-06 -3,03E-06
23 8,52E-07 9,10E-07 1,46E-06 1,48E-06 -3,75E-06 -3,77E-06

Table 14.1: Comparison between the results of the solar force components of ESABASE
and TAPAS.

Figure 14.3: ESABASE results of the solar force, expressed in the satellite reference frame.
The x-axis of the diagram is the time in hours, while the y-axis is the force in Newton.
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Figure 14.4: TAPAS results of the solar force, expressed in the satellite reference frame.
The x-axis of the diagram is the time in hours, while the y-axis is the force in Newton.

Solar torque

The table 14.2 contains the results of the x and z components of the solar torque on the

satellite, calculated by ESABASE and TAPAS. The y component of the torque being null,

it is not included in the table. The fig. 14.5 and 14.6 show the solar torque for this analysis,

obtained respectively with ESABASE and TAPAS.

Also for the solar torque, the main differences between ESABASE and TAPAS occur when

the torque is close to zero, because near these points the relative error between the two

software can reach high values. In general, the fig. 14.3-14.6 show that the results obtained

with the two software are very similar. Indeed, the ratio between ESABASE and TAPAS

results is between 0.9 and 1.1 for all simulation time instants. The validation showed good

results for all the case studies analyzed.
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t [h] Cx ESABASE [Nm] Cx TAPAS [Nm] Cz ESABASE [Nm] Cz TAPAS [Nm]
0 7,99E-06 8,09E-06 -3,82E-08 5,27E-08
1 7,46E-06 7,60E-06 -1,78E-06 -1,72E-06
2 6,01E-06 6,18E-06 -3,05E-06 -3,04E-06
3 4,04E-06 4,19E-06 -3,52E-06 -3,57E-06
4 2,05E-06 2,17E-06 -3,06E-06 -3,15E-06
5 5,74E-07 6,39E-07 -1,80E-06 -1,91E-06
6 -1,98E-09 3,01E-09 -1,49E-07 -1,68E-07
7 -6,22E-07 -5,71E-07 -1,87E-06 -1,81E-06
8 -2,13E-06 -2,06E-06 -3,10E-06 -3,10E-06
9 -4,13E-06 -4,07E-06 -3,52E-06 -3,57E-06
10 -6,09E-06 -6,07E-06 -3,01E-06 -3,10E-06
11 -7,51E-06 -7,55E-06 -1,71E-06 -1,82E-06
12 -7,99E-06 -8,10E-06 4,22E-08 -5,77E-08
13 -7,46E-06 -7,61E-06 1,78E-06 1,72E-06
14 -6,01E-06 -6,19E-06 3,06E-06 3,04E-06
15 -4,03E-06 -4,20E-06 3,52E-06 3,57E-06
16 -2,04E-06 -2,17E-06 3,06E-06 3,15E-06
17 -5,71E-07 -6,40E-07 1,80E-06 1,91E-06
18 2,26E-09 -3,05E-09 1,54E-07 1,69E-07
19 6,25E-07 5,70E-07 1,87E-06 1,81E-06
20 2,13E-06 2,05E-06 3,11E-06 3,09E-06
21 4,13E-06 4,06E-06 3,52E-06 3,57E-06
22 6,10E-06 6,07E-06 3,01E-06 3,10E-06
23 7,51E-06 7,54E-06 1,70E-06 1,82E-06

Table 14.2: Comparison between the results of the solar torque x and z components of
ESABASE and TAPAS.

Figure 14.5: ESABASE results of the solar torque, expressed in the satellite reference frame.
The x-axis of the diagram is the time in hours, while the y-axis is the torque in Newton
meters.
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Figure 14.6: TAPAS results of the solar torque, expressed in the satellite reference frame.
The x-axis of the diagram is the time in hours, while the y-axis is the torque in Newton
meters.

14.2 Aerodynamic force and torque validation

The validation of the aerodynamic perturbation has been carried out in the following cases:

1. Plane plate, in LEO orbit (about 50o of inclination) with LOF attitude law

2. Cube, in LEO orbit (about 50o of inclination) with LOF attitude law

3. Cube plus two plane plates, in LEO orbit (about 50o of inclination) with LOF attitude

law. The two plane plates represent the solar panels and are pointed towards the Sun.

4. Complete satellite in LEO orbit (about 50o of inclination), with yaw steering attitude

law

5. Body of a satellite in EOR orbit, with LOF attitude law. The EOR orbit is charac-

terized by a very low perigee and a very high apogee, and it is almost equatorial.

Also for the aerodynamic perturbation, each case has been studied in three different initial

dates:

(a) Spring equinox (21st March) 2001
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(b) Summer solstice (21st June) 2001

(c) Winter solstice (21st December) 2001

The selected cases have different orbits and attitude laws, which allows a complete validation

of the tool.

14.2.1 ESABASE - TAPAS comparison for aerodynamic pertur-
bation

The geometrical model chosen for the example shown in this section is the one in fig.

14.2. The initial date of this simulation is again the 21st June 2001 at 00:00:00 UTC. The

simulation covers a complete orbit period. The orbit has the following features:

1. altitude of 700 km

2. Ω = 180o

3. ω = 0o

4. i ' 50o

5. e = 0

6. ν = 0o

The values of the normal and tangential coefficients for the analysis are Cn = Ct = 2.2.

These are the values that ESABASE uses by default. Furthermore, it has been chosen a

strong intensity of solar activity.

Aerodynamic force

The fig. 14.7 and 14.8 show the aerodynamic force for this analysis, obtained respectively

with ESABASE and TAPAS.
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Figure 14.7: ESABASE results of the aerodynamic force, expressed in the satellite reference
frame. The x-axis of the diagram is the time in hours, while the y-axis is the force in
Newton.

Figure 14.8: TAPAS results of the aerodynamic force, expressed in the satellite reference
frame. The x-axis of the diagram is the time in hours, while the y-axis is the force in
Newton.

Aerodynamic torque

The fig. 14.9 and 14.10 show the aerodynamic torque for this analysis, obtained respectively

with ESABASE and TAPAS.
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Figure 14.9: ESABASE results of the aerodynamic torque, expressed in the satellite refer-
ence frame. The x-axis of the diagram is the time in hours, while the y-axis is the torque
in Newton meters.

Figure 14.10: TAPAS results of the aerodynamic torque, expressed in the satellite reference
frame. The x-axis of the diagram is the time in hours, while the y-axis is the torque in
Newton meters.

Also for the aerodynamic perturbation, the shape of the diagrams of ESABASE and

TAPAS are very similar. The values differ a bit and it is due to a different calculation

of the atmospheric density between the two software. Indeed, ESABASE uses the model

MSISE-86 [41], while TAPAS uses the NRLMSISE-00, which is the update of the MSIS-
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86. If TAPAS results are balanced with the ESABASE atmospheric density, the ratio of

the results between ESABASE and TAPAS becomes close to 1 (with 10 % of margin) for

all simulation time instants. This is shown in tables 14.3 and 14.4, where the comparison

between the two software is made taking into consideration the same atmospheric densities.

The validation showed good results for all the case studies analyzed.

t [h] Fx ESABASE [N] Fx TAPAS [N] Fy ESABASE [N] Fy TAPAS [N] Fz ESABASE [N] Fz TAPAS [N]
0 -1,78E-07 -1,78E-07 1,00E-08 1,00E-08 -3,79E-25 6,74E-23

0,07 -1,70E-07 -1,70E-07 9,30E-09 9,31E-09 -5,90E-11 -5,98E-11
0,14 -1,65E-07 -1,65E-07 8,08E-09 8,10E-09 -1,06E-10 -1,08E-10
0,2 -1,67E-07 -1,67E-07 6,65E-09 6,67E-09 -1,40E-10 -1,43E-10
0,28 -1,50E-07 -1,50E-07 4,21E-09 4,23E-09 -1,39E-10 -1,42E-10
0,34 -1,05E-07 -1,05E-07 1,52E-09 1,53E-09 -9,51E-11 -9,71E-11
0,41 -6,76E-08 -6,76E-08 -1,38E-11 -5,57E-12 -5,33E-11 -5,46E-11
0,48 -5,23E-08 -5,24E-08 -7,77E-10 -7,71E-10 -3,24E-11 -3,33E-11
0,55 -4,80E-08 -4,80E-08 -1,37E-09 -1,36E-09 -2,08E-11 -2,16E-11
0,62 -4,50E-08 -4,50E-08 -1,80E-09 -1,80E-09 -1,21E-11 -1,28E-11
0,69 -4,32E-08 -4,32E-08 -2,12E-09 -2,12E-09 -6,28E-12 -6,73E-12
0,75 -4,66E-08 -4,66E-08 -2,54E-09 -2,54E-09 -2,86E-12 -3,07E-12
0,82 -5,13E-08 -5,12E-08 -2,89E-09 -2,89E-09 -1,24E-13 4,02E-15
0,89 -5,17E-08 -5,17E-08 -2,80E-09 -2,81E-09 2,96E-12 3,45E-12
0,96 -5,47E-08 -5,47E-08 -2,65E-09 -2,66E-09 7,83E-12 8,66E-12
1,03 -6,94E-08 -6,94E-08 -2,73E-09 -2,75E-09 1,88E-11 2,01E-11
1,1 -9,12E-08 -9,13E-08 -2,50E-09 -2,53E-09 3,99E-11 4,18E-11
1,17 -1,10E-07 -1,11E-07 -1,52E-09 -1,56E-09 6,88E-11 7,11E-11
1,24 -1,31E-07 -1,31E-07 1,25E-10 7,80E-11 1,04E-10 1,06E-10
1,3 -1,61E-07 -1,61E-07 2,50E-09 2,45E-09 1,45E-10 1,49E-10
1,37 -1,84E-07 -1,84E-07 5,37E-09 5,32E-09 1,70E-10 1,74E-10
1,44 -1,89E-07 -1,89E-07 7,70E-09 7,66E-09 1,57E-10 1,61E-10
1,51 -1,88E-07 -1,88E-07 9,28E-09 9,26E-09 1,17E-10 1,20E-10
1,58 -1,87E-07 -1,87E-07 1,03E-08 1,02E-08 6,11E-11 6,33E-11
1,65 -1,79E-07 -1,79E-07 1,01E-08 1,01E-08 -2,61E-13 -2,42E-12

Table 14.3: Comparison between the results of the aerodynamic force components of
ESABASE and TAPAS. The comparison is made taking into consideration the same at-
mospheric densities.
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t [h] Cx ESABASE [Nm] Cx TAPAS [Nm] Cz ESABASE [Nm] Cz TAPAS [Nm]
0 -4,28E-18 -1,35E-22 -3,56E-07 -3,55E-07

0,07 1,18E-10 1,20E-10 -3,41E-07 -3,41E-07
0,14 2,12E-10 2,15E-10 -3,31E-07 -3,31E-07
0,2 2,81E-10 2,86E-10 -3,34E-07 -3,34E-07
0,28 2,78E-10 2,83E-10 -2,99E-07 -2,99E-07
0,34 1,90E-10 1,94E-10 -2,10E-07 -2,11E-07
0,41 1,07E-10 1,09E-10 -1,35E-07 -1,35E-07
0,48 6,48E-11 6,66E-11 -1,05E-07 -1,05E-07
0,55 4,17E-11 4,32E-11 -9,59E-08 -9,59E-08
0,62 2,43E-11 2,56E-11 -8,99E-08 -8,99E-08
0,69 1,26E-11 1,35E-11 -8,64E-08 -8,64E-08
0,75 5,71E-12 6,15E-12 -9,32E-08 -9,32E-08
0,82 2,48E-13 -8,05E-15 -1,03E-07 -1,02E-07
0,89 -5,91E-12 -6,90E-12 -1,03E-07 -1,03E-07
0,96 -1,57E-11 -1,73E-11 -1,09E-07 -1,09E-07
1,03 -3,75E-11 -4,01E-11 -1,39E-07 -1,39E-07
1,1 -7,97E-11 -8,35E-11 -1,82E-07 -1,83E-07
1,17 -1,38E-10 -1,42E-10 -2,21E-07 -2,21E-07
1,24 -2,07E-10 -2,13E-10 -2,61E-07 -2,61E-07
1,3 -2,91E-10 -2,98E-10 -3,22E-07 -3,22E-07
1,37 -3,40E-10 -3,49E-10 -3,69E-07 -3,69E-07
1,44 -3,14E-10 -3,22E-10 -3,78E-07 -3,78E-07
1,51 -2,34E-10 -2,41E-10 -3,75E-07 -3,75E-07
1,58 -1,22E-10 -1,27E-10 -3,74E-07 -3,74E-07
1,65 5,23E-13 4,84E-12 -3,58E-07 -3,58E-07

Table 14.4: Comparison between the results of the aerodynamic torque x and z components
of ESABASE and TAPAS. The comparison is made taking into consideration the same
atmospheric densities.
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Part VI

Conclusions
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Chapter 15

Conclusions

15.1 Current state of the TAPAS tool

At this stage, the TAPAS tool is capable of calculating the solar and aerodynamic perturba-

tions on a generic satellite. It is simple to use and it allows the user to carry out disturbance

forces and torques analysis quickly.

15.2 Way forward

Possible improvements of TAPAS are listed hereafter:

1. Making the tool more flexible as regards the pointing of the movable parts of the

satellite. Nowadays, TAPAS can take into consideration two different attitude laws,

one for the satellite’s central body and one for the rotation of its solar panels around

one axis. Possible future developments may improve this aspect of the tool, adding,

for instance, the possibility of analyzing satellites which have rotating solar panels

along two different axis, or which have movable antennas.

2. Taking the geometric model of the satellite from a step file (with .stp extension)

instead of creating it with the TAPAS Gmsh routines. This file might be provided by

the CAD department of TAS. Gmsh remains a necessary software for the mesh of the

satellite, but taking a step file has the advantage of saving time in the creation of the

satellite’s model. Furthermore, the step file would be a more detailed representation of

the satellite shape than the model created by the TAPAS Gmsh routines, thus allowing

more precise analysis. Since Gmsh can read step files, this improvement should be

quite straightforward.

3. Moving the TAPAS environment from Matlab to Python. Indeed, Python has the

convenience of being an open source code, therefore free of licenses.
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Appendix A

Other space environment models

A.1 Earth’s gravitational field

The Earth is not perfectly spherical, and its mass density is not uniform. The fig. A.1 shows
the geoid height with respect to the mean sea level, according to the EGM2008 model.

Figure A.1: Geoid height with respect to the mean sea level, according to the EGM2008
model [18].

The Earth’s gravitational potential U can be written as a series expansion [42]:

U(φ, λ, r) = −µ
r

{
1 +

∞∑
n=1

(req
r

)n [
−Jn Pn(sin φ) +

n∑
m=1

ln,m(λ)Pn,m(sin φ)

]}
(A.1)

where

1. φ is the geodetic latitude (see chapter 4.3.2) of the considered point.

2. λ is the longitude of the point taken into account.

3. r is the distance between the center of the Earth and the point under consideration.

4. µ is the Earth’s standard gravitational parameter, µ = GMEarth = 398600 km3/s2.
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5. req is the equatorial radius of the Earth, approximately 6378 km.

6. Jn is the Earth’s zonal harmonic constant of order n.

7. Pn is the Legendre polynomial [43]. For any real number x, Pn(x) is

Pn(x) =
1

2n n!

dn

dxn
[(
x2 − 1

)n]
(A.2)

8. ln,m is the following expression

ln,m(λ) = Cn,m cos(mλ) + Sn,m sin(mλ) (A.3)

where Cn,m and Sn,m are other Earth’s harmonic constants of degree n and order m. If
n 6= m they are called tesseral harmonic constants, otherwise they are called sectoral
harmonic constants.

9. Pn,m is the associated Legendre function [43], defined as

Pn,m(x) = (1− x2)m/2 d
m

dxm
Pn(x) (A.4)

where Pn is the Legendre polynomial (eq. A.2).

The fig. A.2 explains the terms zonal, tesseral and sectoral.

Figure A.2: Three different spherical harmonics.

The most important term in the equation A.1 is the term J2 = 1.0826 · 10−3 which is
associated to the Earth flattening.
The differential equation that governs the motion of a satellite around the Earth is

~̈r(t) = −∇U (φ(t), λ(t), r(t)) (A.5)

where ~r is the position of the satellite in the EME2000 reference frame and t is the con-
sidered instant of time. To solve the eq. A.5, one needs to know the initial position and
velocity of the satellite. TAPAS uses the Orekit library [33] to propagate the satellite’s orbit
and attitude. The most precise propagator of the Orekit library used in TAPAS implements
the equation A.1 truncated to n = m = 10.
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A.2 Earth’s magnetic field models

The Earth’s magnetic field lines have a similar shape to the one represented in fig. A.3.

Figure A.3: Shape of the Earth magnetic field lines [19]. The Sun and the Earth are not to
scale.

This field is not constant over time. The magnitude of the magnetic field at the Earth’s
surface ranges from 25 to 65 mT. For a first order approximation, nearby the Earth’s sur-
face the Earth’s magnetic field can be described as the field of a dipole. For more accurate
estimations, there are two standard numerical models: the IGRF (International Geomag-
netic Reference Field) and the WMM (World Magnetic Model). They have two very similar
formulations. Both models are defined by means of truncated series expansions which fit
data from surveys, observations and satellites’ instruments [44]. All the models presented
herein are valid from the Earth’s surface up to an altitude of about 800 km.

A.2.1 Dipole magnetic field

As already mentioned, up to an altitude of about 800 km, the Earth’s magnetic field can
be approximated as the field of a dipole currently tilted at an angle of 11o with respect
to Earth’s rotational axis. The south pole of the Earth’s field is actually at the northern
hemisphere and vice versa [45].
The equation that best approximates the Earth’s magnetic field as that of a dipole is the
following

~B = B0

(
3(~er · ~ME)~er − ~ME

)(RE

r

)3

(A.6)

where B0 is the mean value of Earth’s magnetic field at the equator, defined as B0 = 3 ·10−5

T, ~er is the unit vector of the Earth-to-satellite direction in EME2000, ~ME is the magnetic
moment in the EME2000 frame ( ~ME = [0, 0, −1]), RE = 6371.2 km is the geomagnetic
conventional Earth’s mean spherical radius and r is the norm of the satellite position vector
[21]. Moving away from the Earth’s surface, the dipole approximation is no more valid
because the lines of the Earth’s magnetic field are deflected by the solar wind, as shown in
fig. A.3.
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A.2.2 IGRF (International Geomagnetic Reference Field)

The IGRF model is a standard mathematical description of the Earth’s magnetic field [46].

On and above the Earth’s surface, the magnetic field ~B is defined in terms of a magnetic

scalar potential V as
~B = −∇V (A.7)

As already mentioned, the magnetic scalar potential is represented by a truncated series

expansion, as follows

V (r, ϕ, λ) = RE

N∑
n=1

(
RE

r

)n+1 n∑
m=0

(gn,m cos(mλ) + hn,m sin(mλ)) P̂n,m(cos(ϕ)) (A.8)

where r is the distance between the center of the Earth and the considered point, ϕ and

λ are the co-latitude and longitude of this point, t is the time, RE is the geomagnetic

conventional Earth’s mean spherical radius, N is equal to 13 and gn,m and hn,m are two

real, time-dependent empiric coefficients associated to n and m values. P̂n,m is the Schmidt

quasi-normalized associated Legendre function of degree n and order m. For any real number

x, this function is defined as follows [47]:

P̂n,m(x) =


√

2
(n−m)!

(n+m)!
Pn,m(x) if m > 0

Pn,m(x) if m = 0

(A.9)

where Pn,m is the associated Legendre function (see eq. A.4). In the last version of the
IGRF model (IGRF-12), the coefficients gn,m and hn,m are provided at epochs separated
by 5 years (for instance, 2000, 2005, 2010...). The time dependence of these coefficients is
assumed to be linear over 5-year intervals between two epoch dates.

A.2.3 WMM (World Magnetic Model)

Another standard model of the Earth’s magnetic field is the WMM. It is used by the US
and UK defense agencies. Its mathematical formulation is the same as the IGRF (see eq.
A.7-A.9), but the way the coefficients gn,m and hn,m are defined changes. The differences
between IGRF and WMM are within expected model inaccuracy. The WMM is a predictive-
only model and is valid for the current epoch (2015.0 to 2020.0). The IGRF is retrospectively
updated and its latest release is valid for the years 1900.0 to 2020.0. [48]

The fig. A.4 shows the declination of the Earth’s magnetic field lines, while the fig. A.5
shows the intensity of this field, according to the WMM model for the epoch 2015.0 [48].
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US/UK World Magnetic Model - Epoch 2015.0
Main Field Declination (D)

Map developed by NOAA/NGDC & CIRES
http://ngdc.noaa.gov/geomag/WMM
Map reviewed by NGA and BGS
Published December 2014

Main �eld declination (D)
Contour interval: 2 degrees, red contours positive (east); blue negative (west); green (agonic) zero line.
Mercator Projection.
      : Position of dip polesj
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Figure A.4: Declination of the Earth’s magnetic field lines, according to the WMM - Epoch
2015.0.
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Figure A.5: Intensity of the Earth’s magnetic field, according to the WMM - Epoch 2015.0.
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A.3 Sun ephemeris model

To estimate the solar radiation pressure force and torque, one has to know the position of
the Sun with respect to the spacecraft at each instant of time of the simulation. For this,
a model of the Sun ephemeris is necessary. TAPAS uses the Jean Meeus model [49], which
estimates the position of the Sun with respect to the Earth, in the EME2000 frame, for all
time instants from the 1st January 1901 to the 31st December 2099. The input of this model
is the Julian day (in Terrestrial Time) associated to the time instant of the simulation. The
starting date to count days is the 1st January 4713 BC of the proleptic Julian calendar
[27]. Then, the position of the Sun with respect to the satellite is given by the following
expression

~v
[EME2000]
sat−Sun = ~v

[EME2000]
Earth−Sun − ~v

[EME2000]
Earth−sat (A.10)

where ~v
[EME2000]
sat−Sun is the position of the Sun with respect to the satellite’s center of gravity,

~v
[EME2000]
Earth−Sun is the position of the Sun with respect to the Earth, and ~v

[EME2000]
Earth−sat is the

position of the satellite with respect to the Earth. All these vectors are expressed in the
EME2000 reference frame. Since the disturbing forces and torques are calculated in the
satellite reference frame, the vector ~vsat−Sun must be expressed in the satellite reference
frame. This can be done by multiplying this vector by the transformation matrix associated
to the attitude of the satellite with respect to the EME2000 reference frame.
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Appendix B

Different ways of defining the
attitude of a satellite

B.1 Cardan angles

Cardan angles express the attitude of an object in space by means of three elemental rota-
tions, i.e. rotations around the axis of a coordinate system [50]. It is important to specify
the order of the three rotations, because rotation operations are not commutative. For clas-
sical Cardan angles, the order of the three rotations is z, y and x and the related angles are
called yaw, pitch and roll. The fig. B.1 shows the Cardan angles of a satellite around the
Earth.

Figure B.1: Cardan angles of a satellite around the Earth [20].

The advantage of using Cardan angles for the definition of the attitude of a body is that
they have a straightforward physical meaning. On the other side, the big drawback of this
kind of attitude representation is the presence of a singularity when the pitch angle (around
y axis) is 90o. This phenomenon is known as gimbal lock. For the applications in which
TAPAS uses this kind of attitude definition, the tool makes a check on the value of the
second Cardan angle. If it is 90o, TAPAS modifies slightly the attitude of the satellite to
avoid the singularity.

B.2 Rotation matrix

Another way of defining the attitude of a rigid body in space is by means of a rotation

matrix. Taking into consideration two reference frames F1 and F2, and calling x
[F2]
1 , y

[F2]
1
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and z
[F2]
1 the three unit column vectors of the reference frame F1, expressed in F2, one can

write the following relationship

X [F2] = M ·X [F1] =
[
x
[F2]
1 y

[F2]
1 z

[F2]
1

]
·X [F1] (B.1)

where X [F2] is a vector expressed in the F2 reference frame, M is the rotation matrix,
and X [F1] is the same vector expressed in the F1 reference frame. The rotation matrices
do not present any singularity, but they have the downside of being difficult to use and
computationally heavy.

B.3 Quaternions

In spacecraft dynamics, quaternions are widely used to define the attitude of a satellite
with respect to a given reference system. Quaternions present the advantage of having
no singularities and being simple to use. The fundamental idea behind the definition of
a quaternion is that to pass from a reference system to another, one only needs a single
rotation around a specific axis, which, in general, does not coincide with any of the three
Cartesian axis of the two reference frames. This means that, to define the attitude of an
object in space, one just has to define the unit vector ~n related to the axis of rotation and
the angle of rotation θ. So, the quaternion corresponding to a rotation of θ around ~n is
defined as the following vector of four components

q =


cos

(
θ

2

)

sin

(
θ

2

)
~n

 (B.2)

For spacecraft orbiting around the Earth, the starting reference frame is usually the EME2000,
while the reference frame of arrival is the satellite reference system.
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Appendix C

The Runge-Kutta 4 method

The Runge-Kutta 4 is a method to solve ordinary differential equations numerically. A
generic initial value problem has the following expression:{

ẏ = f(t, y)

y(t0) = y0
(C.1)

where y is an unknown function of time t (y can be scalar or vectorial), ẏ its time derivative
and f a generic function of t and y. Taking a time step dt > 0 and denoting yn = y(n dt)
and tn = n dt, where n is a positive integer number, the Runge-Kutta 4 method consists in
approximating the function y at the time instant tn+1 with the following expression [51]

yn+1 = yn +
1

6
dt (k1 + 2 k2 + 2 k3 + k4) (C.2)

where 

k1 = f(tn, yn)

k2 = f

(
tn +

dt

2
, yn +

k1
2

)

k3 = f

(
tn +

dt

2
, yn +

k2
2

)

k4 = f (tn + dt, yn + k3)

(C.3)

A graphical explanation of the previous equations is given in fig. C.1
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Figure C.1: Runge-Kutta 4 method [21].
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