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Summary

Smart structures have a wide range of potential applications in aerospace engi-
neering, such as vibration and noise suppression, shape adaption and aeroelastic
control of lifting surfaces. Piezoelectric materials are largely used as smart materi-
als due to the their capability to perform both as sensors and actuators. Composite
structures embedded with piezoelectric materials confer the low density, superior
mechanical and thermal properties of composite materials along with sensing and
vibration control.
The aim of this thesis is the study of the dynamic behaviour and vibration at-
tenuation of carbon nanotube reinforced composite (CNT-RC) plates, integrated
with piezoelectric layers at the bottom and top surfaces. Distribution of CNTs
reinforcement may be uniformly distributed (UD) or functionally graded (FG) ac-
cording to linear functions of the thickness direction. The material properties of
both matrix and CNTs are obtained through a modi�ed rule of mixtures approach.
Plate is modeled acccording with the method of the power series expansion of the
displacement components and the electric potential. Primary variable's expan-
sion order is considered as a free parameter of the model. Hamilton's principle
is employed to derive the governing equations in their weak form. The latter are
written in terms of fundamental nuclei which are mathematically invariant with
respect to both the expansion order and the kinematic description of the unknows.
The free vibration analysis is carried out considering the full coupling between the
electrical and mechanical �elds. The approximated solution is obtained by using
Ritz method based on highly stable trigonometric trial functions. Forced response
is obtained through the Newmark method considering various dynamic load cases.
The response of the plate is controlled through the dynamic velocity feedback con-
trol algorithm and a closed loop. The upper piezoelectric layer acts as actuators,
while the lower one acts as sensors.
Corvengence and accurancy of the proposed formulation is investigated comparing
results with those available in literature. The e�ect of signi�cant parameters such
as volume fraction, CNTs distribution and boundary conditions, on the natural
frequencies and both uncontrolled and controlled response, is discussed.

9



Chapter 1

Introduction

1.1 Composite structures and their applications

In the last few decades the development of composite materials in structural ap-
plications has dramatically risen. Composite materials consist of a combination
of two or more materials that are mixed together in order to reach speci�c struc-
tural properties or give a new set of charateristics that neigther single costituents
could achieve on their own. Laminated composites, that show anisotropic prop-
erties, have completely changed the methodology of design and made possible a
wide range of new possibilities as materials for construction. Composites have
become especially attractive in the aerospace and aircraft sectors because of their
outstanding strength and sti�ness-to-density ratios, corrosion resistance and supe-
rior physical properties compared to traditional isotropic materials. In fact, Fibre
reinforced plastics (CFRP) can and will in the future contribute more than 50%
of the structural mass of an aircraft [1]. As well as traditional composites, the so-
called smart structures has been developed in the last years, due to their potential
applications in aerospace industry, such as: monitoring of composites, suppression
of structural vibration, noise suppression, and surface morphing. An overview of
several structures and their appications, that are the aim of study in this thesis,
is described in this chapter.

1.1.1 Multilayered structures

The most common composite structure is made of a �brous material embedded
in a resin matrix. For istance, Carbon �ber-reinforced plastic (CFRP) is a typi-
cal composite for structural applications in aerospace and automotive industries.
Fibers are the primary load carrying elements, and the matrix material has the
function of keeping the �bers together, acting as a load-transfer medium between
�bers, and protecting �bers from the external environment. The composite mate-
rial is strong and sti� only in the direction of the �bers. Geometrically, �bers have
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1.1 � Composite structures and their applications

near crystal-sized diameter and a very high length-todiameter ratio. Constituents
used in composites are either metallic or non-metallic. Fibers are commonly made
of organic materials such as glass, boron, and graphite. Fiber-reinforced compos-
ites for structural applications are often made in the form of a thin layer, called
lamina. A multilayerd plate is obtained by stacking uni-directional laminae until
speci�c mechanical properties are reached. The stacking sequence describes the
distribution of ply orientations through the laminate thickness. The lamination
scheme and material properties of individual lamina provide an added �exibility to
designers to tailor the sti�ness and strength of the laminate to match the structural
sti�ness and strength requirements [2].

Figure 1.1: Typical Multilayered structure

1.1.2 Sandwich structures

A Sandwich structure is a special class of composite, obtained by bonding two
thin and sti� face sheets to a lightweight and tick core. This kind of composite is
especially suitable in order to develop a lightweight structure with high in-plane
and �exural sti�ness. Sandwich structures are used for producing boat hulls, car
hoods and other body part, aircraft panels ecc. The core supports the faces against
buckling and resists out-of-plane shear loads, while the skins carry all the bending
and in-plane loads. Commonly used materials for facings are composite laminates
and metals, while cores are made of metallic and non-metallic honeycombs, cellular
foams, balsa wood and trusses. The overall performance of sandwich structures
depends on the material properties of the constituents (facings, adhesive and core),
geometric dimensions and type of loading.

1.1.3 Functionally Graded Materials

While laminated composite materials provide the design �exibility to achieve desir-
able sti�ness and strength through the choice of lamination scheme, the anisotropic
constitution of laminated composite structures often results in stress concentra-
tions near material and geometric discontinuities that can lead to damage in the

11



1 � Introduction

Figure 1.2: Typical Sandwich structure

form of delamination, matrix cracking, and adhesive bond separation. Function-
ally graded materials are a class of composite, consisting of two or more di�erent
constituents, designed to have a gradually varying spatial composition pro�le with
a corresponding continuous change in macroscopic properties [7]. The continuous
variation in properties of the material reduces thermal stresses, residual stresses,
and stress concentration factors. The gradual variation results in a very e�cient
material tailored to suit the needs of the structure. FGMs are mainly constructed
to operate in high-temperature environments such as ultra-light and temperature-
resistant materials for space vehicles [9]. They are typically manufactured from
isotropic components such as metals and ceramics as they are mainly used as
thermal barrier structures in environments with severe thermal gradients [8]. The
concept of functionally graded materials was introducted �rst in Japan in the 80s
during a space project, in order to construct a thermal barrier capable of withstand-
ing a surface temperature of 2000 K and a temperature gradient of 1000 K across
a 10 mm section. Due to the high thermal stress, conventional thermal barrier
coating can easily peel o� at the phase boundary. FGM o�ers an advantage since
the thermal stress distribution is smooth. The application of this new material is
increased over the years in the aerospace industry. Most aerospace equipment and
structures are made of functionally graded materials. These include, for istance,
the rocket engine components, the turbine wheels and the turbine blade coatings.

Figure 1.3: Multilayered plate embedding a FGM layer

12



1.1 � Composite structures and their applications

1.1.4 Carbon-Nanotubes

Carbon nanotubes (CNTs) are allotropes of carbon with a cylindrical nanostruc-
ture. Nanotubes have been constructed as hollows with length-to-diameter ratio
of up to 132 million, signi�cantly larger than any other material. These cylindri-
cal carbon molecules have unusual properties that are valuable for nanotechnol-
ogy, electronics, optics, and structural applications. They are derived from the
grapheme sheets which are rolled at speci�c and discrete chiral angles. The com-
bination of the rolling angle and radius a�ect the nanotube properties. Carbon-
nanotubes exhibit outstanding mechanical, thermal and electrical properties and
they can be considered as a valid alternative to classical �ber reinforced compos-
ites. They have low density, high sti�ness and strength aspect ratios [5]. It has
been shown that CNTs are very strong in the axial direction: Young's modulus on
the order of 270-950 GPa and tensile strength of 11-63 GPa [6]. Dispersion of low
weight of graphene ( 0.02 wt.%) results in signi�cant increases in compressive and
�exural mechanical properties of polymeric nanocomposites. Referring to their
electronic structure, they exhibit semiconducting, as well as metallic behavior and
thus cover the full range of properties important for technology.

Figure 1.4: Single-walled Carbon nanotube

1.1.5 Piezoelectric materials

Research on piezoelectricity started in 1880 when Jaques and Pierre Curie dis-
covered that some kind of crystals were able to generate electric charges under
mechanical loads. A charge is generated when molecular electrical dipoles are
caused by a mechanical loading: this is called the direct e�ect (sensor con�gura-
tion). Conversely, when an electric charge is applied, a slight change occurs in
the shape of the structure: that is called the inverse e�ect (actuator con�gura-
tion). Thus, piezoelectric materials can be used at the same time as actuators and
sensors, obtaining the so-called self-sensing piezoelectric actuator [3]. The most
common piezoelectric materials are the piezoceramic barium titanate (BaTiO3)
and piezo lead zirconate titanate (PZT). The crystal lattice of piezoelectric mate-
rials is the face-centered cubic (FCC). Metallic atoms are located at the vertex of
the cube, while oxygen atoms are located at the center of the faces. Due to the
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1 � Introduction

slightly shift of an havier atom to positions with less energy, the crystal lattice
undergoes deformation. On the other hand, when an elctric �eld is applied to the
structure, the central atom can exceed the potential energy and move to a lower
energy con�guration. The rupture of symmetry causes the generation of an electric
dipole as shown in Figure 1.5.

Pb

+

-

O2

Ti, Zr

Figure 1.5: Piezoceramic cell before and after polarization

This phenomenon occurs only when piezoeletric material has a temperature lower
than the so called Curie temperature. In fact, due to high thermal agitation the
piezoelectric e�ect disappears. To obtain the piezoelectric e�ect, piezoceramic
material must be subjected to a poling process: It is heated above the Curie
temperature and then subjected to an intense electric �eld during thermal cooling.
So all the dipoles are oriented in the same direction and the material obtains
a permanent polarization. An Hysteresis curve for polarization of piezoelectric
material is shown in Figure 1.6. The piezoelectric layers considered in this work
are polarized through the thickness-direction.

P

p

First polingRemanent polarization

p�

� �

Figure 1.6: Poling of piezoelectric materials: Hysteresis of polarization P
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1.1 � Composite structures and their applications

Applications of smart structures

Piezoelectric materials are of great interest when designing smart structures, which
are systems that are able to sense and react to their environment, through the in-
tegration of various elements, such as sensors and actuators. Smart structures that
use discrete piezoelectric patches or layers to control the response of a structure
have been of considerable interest in recent years. Thanks to the improvement of
modern software, it is possible to model coupled thermo-mechanical-electrical sys-
tems and to obtain mutual relations between piezoelectric actuator voltages and
system response. So by integrating these models into a closed-loop control system,
active control can be achieved. Main current and potential applications of smart
structure are mentioned:

Structural health monitoring

By embedding sensors in some critical locations of a structural system, it is possi-
ble to measure the strain �eld in order to identify potential damage and mantain
structural safety and reliability. Self-diagnostic plays a crucial role in the aeronau-
tical and space industry, where sensing the strain �eld of some relevant structural
subcomponents helps in the conduction of an appropriate maintenance program
and in avoiding crack propagation. Self-diagnostic is particular relevant for com-
posites whose the failure prediction is still a challenging task. The monitoring
process is performed by measuring the dynamic response from an array of sensors,
properly located on the structural system. The measurements are recorded and by
a statistical analysis it is possible to extract damage-sensitive features to determine
the current state of system health. This concept is widely applied in civil engineer-
ing to various forms of infrastructures, ranging from bridges to skyscrapers. The
most well-known examples refer to the remote monitoring of bridge de�ections,
mode shapes, and the corresponding frequencies [3].

Vibration control

Piezoelectric sensors and actuators are employed for vibration damping, atten-
uation and suppression. They are used to reduce noise and improve the comfort
of vehicles, such as cars, trucks, and helicopters. Piezoelectric materials are also
e�ective in passive damping: a part of the mechanical energy introduced into the
structural system is converted into electrical energy, according to the piezoelectric
e�ect. Piezoelectric passive damping devices are commonly embedded in high-
performance sports devices, such as tennis rackets, baseball bats, and skis. Due
to their high strain sensitivity (Sirohi and Chopra 2000), piezoelectric sensors and
actuators are easily employed for vibration damping/attenuation/suppression (In-
man et al. 2001). The same technique is often employed in spacecraft carrying
equipment in a pure operational dynamic environment. Active vibration control is
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1 � Introduction

usually applied in engineering practice in order to suppress dangerous vibrations
over a certain range of frequencies, as in the case of helicopter blades (Chopra
2000).

Shape morphing

In the aeronautics �eld, shape morphing has been used to identify those aircraft
wings that undergo certain geometrical changes to enhance or adapt to their mis-
sion pro�les [4]. In fact, commercial aircraft have to satisfy increasing e�ciency
requirements and reduce emissions. The means that can be employed to vary the
shape of the wing are quite challenging and can vary in complexity, depending on
which properties have to be modi�ed: sweep angle, pro�le, aspect ratio, etc. A
smart �exible wing that would be able to perform proper shape changes, without
movable rigid parts as �aps, slats, ailerons, and spoilers, would lead to a reduction
in drag, weight, and overall system complexity.

Ampli ier

Controller
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actuator
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Figure 1.7: Sensor-Actuator network for a plate
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1.2 � Overview on free vibration analysis and control of composite piezoelectric plates

1.2 Overview on free vibration analysis and con-

trol of composite piezoelectric plates

A brief literature review on free vibration analysis and control of composite piezo-
electric plates is reported. Fayaz R. Rofooei and Ali Nikkhoo derived the govern-
ing di�erential equation of motion for an un-damped thin rectangular plate with
a number of bonded piezoelectric patches on its surface and arbitrary boundary
conditions, by using Hamilton's principle [11]. F. Moleiroa, A.L. Araújoa and J.N.
Reddy provided a new Benchmark 3D exact free vibration solutions for two dif-
ferent piezoelectric multilayered plates, using piezoelectric polymer polyvinylidene
�uoride (PVDF) as material and considering three sets of electrical boundary con-
ditions and three di�erent aspect ratios [12]. Zhu Su, Guoyong Jin and Tiangui Ye
investigated the dynamic characteristic of functionally graded piezoelectric plates
with di�erent boundary conditions through an uni�ed approach on the basis of �rst
order shear deformation theory. A modi�ed Fourier series is employed in this work,
to describe both diplacements and electric potential [13]. Farhad Abada and Jafar
Rouzegar used the spectral element method (SEM) for free vibration analysis of
FG plate with two piezoelectric layers embedded to the upper and lower surfaces.
A �rst-order shear deformation theory is employed and governing equations are de-
rived by Hamilton's principle and Maxwell's equation. One of the most interesting
features is that the number of elements required for getting an acceptable accuracy
of results is much lower than FEM [10]. B.A. Selim, L.W. Zhang and K.M. Liew
used a novel element-free IMLS-Ritz model, based on Reddy's higher order shear
deformation theory to study the free vibration and active control of FG-CNTRC
plates with piezoelectric layers [14]. A. Robaldo, E. Carrera and A. Benjeddou
presented new �nite elements for the dynamic analysis of piezolaminated plates
based on the principle of virtual displacement (PVD) and an uni�ed formula-
tion. The full coupling between electric and mechanical �eld is considered. Both
equivalent single layer (ESL) and layer wise model are employed for displacement
variables, while a layer wise description is assumed for the electric potential [15].
D.Ballhause, M.D'Ottavio, B.Kroplin and E. Carrera propose a uni�ed formulation
for the electro- mechanical analysis of multilayered plates embedding piezo-layers
to assess multilayered theories for piezoelectric plates [16]. Chih-Ping, Wu and
Hong-Ru Lin developed a uni�ed formulation of �nite layer methods based on the
Reissner's mixed variational theorem for the dynamic analysis of simply supported,
functionally graded carbon nanotube-reinforced composite plates embedded with
piezoelectric layers, considering closed and open-circuit surface conditions. The
elastic displacement, transverse shear and normal stress, electric potential, and
normal electric displacement components are considered as primary variables of
the formulation [17]. Y. Kiani analyzed free vibration behavior of carbon nanotube
reinforced composite, embedded with two piezoelectric layers at the bottom and
top surfaces. The displacement �eld is apporximated according to the �rst order
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1 � Introduction

shear deformation plate theory and the electric potential across the piezoelectric
thickness is emplyed to be linear. Distribution of CNTs through the thickness
of the plate may be functionally graded (FG) or uniformly distributed (UD). The
complete set of motion and Maxwell equations of the system are obtained according
to the Ritz formulation suitable for arbitrary in-plane and out-of-plane boundary
conditions. Close circuit and open circuit boundary conditions on the free surfaces
of piezoelectric layers are studied. Chebyshev polynomials are assumed as trial
functions in Ritz approximation. frequencies and mode shapes are obtained by
solving the eigenvalue system. It is shown that, fundamental frequency of a closed
circuit plate is always higher than a plate with open circuit boundary conditions
[18]. K. Nguyen-Quang, T. Vo-Duy, H. Dang-Trung and T. Nguyen-Thoi proposed
an isogeometric approach for the dynamic response of carbon nanotube reinforced
composite (CNTRC) plates integrated with piezoelectric layers. The displacement
�eld is approximated to the higher-order shear deformation theory (HSDT) using
the formulation based on Non-Uniform Rational B-Spline (NURBS) basis func-
tions, while a linear function through the thickness of each piezoelectric sub-layer
is employed for the electric potential. The single-walled carbon nanotubes (SWC-
NTs) are assumed to be uniformly distributed (UD) or functionally graded (FG)
distributed along the thickness direction. The active control of the plate is based on
a velocity feedback control algorithm through a closed-loop control with piezoelec-
tric sensors and actuators [19]. S. Y. Wang, S. T. Quek and K. K. Ang investigated
the e�ect of the stretching-bending coupling of the piezoelectric sensor/actuator
pairs on the system stability of smart composite plates. An isoparametric �nite
element is formulated and the classical negative velocity feedback control method
is assumed for the active vibration control analysis of composie plates embedded
with distribuited piezoelectric sensors and actuators [20]. X.Q. He, T.Y. Ng, S.
Sivashanker and K.M. Liew developed a �nite element formulation basend on the
classical laminated plate thoery for the shape and vibration control of FGM plates
integrated with piezoelectric sensors and actuators. A constant velocity feedback
control algorithm is used for the active control of the dynamic response of the
FGM plate through closed loop control. Both static and dynamic response are
analyzed for an FGM plate of aluminum oxide/Ti-6A1-4V material composition.
The e�ect of the volume fractions and the in�uence of feedback control gain are
examined for static and dynamic responses of the plates [21].
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Chapter 2

Constitutive equations

2.1 Equations of Elasticity

2.1.1 Laminate Reference system

The reference system adopted for the plate has the x and y axes which identi�es
the plate mid-surface Ω and the z axis is orthogonal at both as shown in the �gure
2.1.

2.1.2 Generalized Hooke's law

The linear constitutive model for in�nitesimal deformation is referred to as the
generalized Hooke's law. Stress components are assumed to be linear functions of
the strain components and the material coe�cients that specify the constitutive
relationship between the stress and strain components are assumed to be constant
during the deformation. The most general form of the constitutive equations for
an elastic material, which does not have a residual stress state σ0, is given as [25]

σ11

σ22

σ33

τ23

τ13

τ33

 =


C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66




ε11

ε22

ε33

γ23

γ13

γ12

 (2.1)

where Cij are the elastic coe�cients, σi are the 6 indipendent components of the
stress tensor and εj are the 6 indipendent components of the strain tensor expressed
in the the engineering notation. The elastic matrix [C] must be symmetric by
virtue of the assumption that the material is hyperelastic. Thus, there are 21
independent sti�ness coe�cients for the most general anisotropic material.
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Figure 2.1: Coordinate system of a plate

Isotropic materials

When there exist no preferred direction in the materials (i.e., the material has
in�nite number of planes of material symmetry), the number of independent elastic
coe�cients reduces to 2. Such materials are called isotropic. For isotropic material
we have that the stress-strain relations take the following form [2]

σxx
σyy
σxy
τxz
τyz
τzz

 =


C11 C12 0 0 C13 C23

C12 C22 0 0 0 0
0 0 C66 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
C13 C23 0 0 0 C33




εxx
εyy
γxy
γxz
γyz
εzz

 (2.2)

with

C11 = C22 = C33 = λ+ 2µ

C12 = C23 = C13 = λ

C44 = C55 = C66 = µ

(2.3)
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2.1 � Equations of Elasticity

and

µ = G =
E

2(1 + ν)

λ =
Eν

(1 + ν)(1− 2ν)

(2.4)

µ and λ are referred to as Lamé constants, E indicates the Young's modulus, G is
the transverse shear modulus and ν the Poisson's ratio.

Orthotropic materials

When three mutually orthogonal planes of material symmetry exist, the number
of elastic coe�cients is reduced to 9 and such materials are called orthotropic. The
stress-strain relations for an orthotropic material takes the form [25]

σ11

σ22

σ12

τ13

τ23

τ33

 =


C11 C12 0 0 C13 C23

C12 C22 0 0 0 0
0 0 C66 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
C13 C23 0 0 0 C33




ε11

ε22

ε12

γ13

γ23

γ33

 (2.5)

with

C11 = E1
1− ν23ν32

∆
, C12 = E1

ν21 − ν31ν23

∆
= E2

ν12 + ν32ν13

∆

C22 = E2
1− ν13ν31

∆
, C13 = E1

ν31 − ν21ν32

∆
= E3

ν13 + ν12ν23

∆

C33 = E3
1− ν12ν21

∆
, C23 = E1

ν32 − ν12ν31

∆
= E3

ν23 + ν21ν13

∆

C44 = G23 , C55 = G13 , C66 = G12

∆ = 1− ν12ν21 − ν23ν32 − ν31ν13 − 2ν12ν32ν13

(2.6)

The nine independent material coe�cients for an orthotropic material are

E1, E2, E3, G12, G13, G23, ν12, ν13, ν23 (2.7)
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2 � Constitutive equations

where E1, E2, E3 are Young's moduli in 1, 2 and 3 material direction respectively,
νij is Poisson's ratio, de�ned as the ratio of transverse strain in the jth direction
to the axial strain in the ith direction when stressed in the ith direction, and G23,
G13, G12 are shear moduli in the 2�3, 1�3, and 1�2 planes, respectively.

2.1.3 Characterization of a Unidirectional Lamina

A unidirectional �ber-reinforced lamina is considered as an orthotropic material
whose material symmetry planes are parallel and transverse to the �ber direc-
tion. The material coordinate axis l is taken to be parallel to the �ber, the 2-axis
transverse to the �ber direction in the plane of the lamina, and the 3-axis is per-
pendicular to the plane of the lamina. The orthotropic material properties of a
lamina are determined either by suitable laboratory tests or through the theoret-
ical approach, called micromechanics approach. The moduli and Poisson's ratio
of a �ber-reinforced material can be expressed in terms of the moduli, Poisson's
ratios, and volume fractions of the constituents [2]

E1 = Efvf + Emvm , ν12 = νf vf + νm vm

E2 =
EfEm

Ef vm + Em vf
, G12 =

GfGm

Gfvm +Gmvf

(2.8)

where the subscripts m and f indicate matrix and �ber rispectively. E1 is the
longitudinal modulus, E2 is transverse modulus, ν12 is the major Poisson's ratio,
and G12 is the shear modulus.

Coordinate Transformations

The constitutive relations for an orthotropic material were written in terms of the
stress and strain components that are referred to a coordinate system that coincides
with the principal material coordinate system. In general the coordinate system
used in the problem formulation, does not coincide with the principal material
coordinate system. Furthermore, composite laminates have several layers, each
with di�erent orientation of their material coordinates with respect to the laminate
coordinates. Thus, there is a need to establish transformation relations among
stresses and strains in one coordinate system to the corresponding quantities in
other coordinate system. These relations can be used to transform constitutive
equations from the material coordinates of each layer to the coordinate used in the
problem description. Beginning from the stress and strain vector written in both
coordinate systems
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2.1 � Equations of Elasticity

x

y

1
2

1, 2, 3 Principal material axes

3=z 

x, y, z Laminate reference axes

Figure 2.2: Reference system

σm =


σ11

σ22

σ12

σ13

σ23

σ33

 , εm =


ε11

ε22

γ12

γ13

γ23

ε33

 , σ =


σxx
σyy
σxy
σxz
σyz
σzz

 , ε =


εxx
εyy
γxy
γxz
γyz
εzz

 (2.9)

the relation that links stress and strain components in the two di�erent reference
systems can be written as

σ = Tσm

εm = TTε
(2.10)

where the rotation matrix T is given as

T =



cos(θ)2 sin(θ)2 − sin(2θ) 0 0 0
cos(θ)2 sin(θ)2 sin(2θ) 0 0 0

sin(θ) cos(θ) − sin(θ) cos(θ) cos(θ)2 − sin(θ)2 0 0 0
0 0 0 cos(θ) − sin(θ) 0
0 0 0 sin(θ) cos(θ) 0
0 0 0 0 0 1


(2.11)

Thus, by substituting Eq. (2.5) in Eq.(2.10) the constitutive equation, referred to
the (x,y,z) reference system, are obtained

σ = Tσm = TCmεm = TCmT
Tε (2.12)
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2 � Constitutive equations

Finally assuming

C̃ = TCmT
T =



C̃11 C̃12 0 0 C̃13 C̃23

C̃12 C̃22 0 0 0 0

0 0 C̃66 0 0 0

0 0 0 C̃44 0 0

0 0 0 0 C̃55 0

C̃13 C̃23 0 0 0 C̃33

 (2.13)

Hooke's law becomes

σ = C̃ε (2.14)

2.2 Constitutive equations for FGMs

2.2.1 Material properties of FG-CNT reinforced composite

plates

The FG-CNTRC plates are composed of a mixture of CNTs and the polymeric
matrix. It is assumed that CNTs are (10,10) armchair single-walled carbon nan-
otubes (SWCNT) and the matrix is supposed to be isotropic and homogeneous.
Four types of linear distributions of CNTs through the thickness are considered,
including a uniformly distributed (UD) and three di�erent functionally graded
(FG), as shown in the Table 2.1

Table 2.1: Volume fraction of CNTs as a function of thickness coordinate

CNTs Distribution VCNT (z)

UD CNTRC V ∗CNT

FG-V CNTRC V ∗CNT

(
1 +

2z

h

)

FG-O CNTRC 2V ∗CNT

(
1− 2|z|

h

)

FG-X CNTRC 2V ∗CNT
2|z|
h
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2.2 � Constitutive equations for FGMs

FG-V

FG-X FG-O

UD

Figure 2.3: CNTs Distributions

where

V ∗CNT =
wCNT

wCNT +
ρCNT
ρm

− wCNTρCNT
ρm

(2.15)

is the CNTs volume fraction, wCNT is the mass fraction of the carbon nanotube
in the composite plate, ρm and ρCNT are the densities of the matrix and carbon
nanotube, respectively. The quantities VCNT and Vm represent the volume fraction
of the CNTs and the polymeric matrix, respectively, and they are related by the
equation VCNT (z) + Vm(z) = 1. The structure of the carbon nanotube strongly
in�uences the overall properties of the composite. Several micromechanical mod-
els have been developed to predict the e�ective material properties of CNTRCs.
They can be de�ned eighter by using the extended Voigt's rule of mixtures or
Mori-Tanaka micromechanical model [23]. According to the rule of mixtures, the
e�ective material properties can be expressed as follows [5]:

E11 = η1VCNTE
CNT
11 + VmEm

η2

E22

=
VCNT
ECNT

22

+
Vm
Em

η3

G12

=
VCNT
GCNT

12

+
Vm
Gm

ν12 = VCNTν
CNT
12 + Vmνm

ρ = VCNTρCNT + Vmρm

(2.16)
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2 � Constitutive equations

Where ECNT
11 , ECNT

22 , GCNT
12 , νCNT12 and ρCNT are the Young's modulii, the shear

modulus, the Poisson's ratio and the density of the SWCNTs, respectively. Em,
Gm, νm and ρm are the material properties for the isotropic matrix. The e�ciency
parameters η1, η2 and η3 are introduced in the equations to take into account the
size dependent material properties of the plate. These parameters are chosen to
equal the obtained values of Young modulus and shear modulus from the present
modi�ed rule of mixtures with the results obtained according to the molecular
dynamics approach (MD).

Constitutive relations

The 3D constitutive equations for FG-CNT can be written as

σ = C(z)ε (2.17)

Where C is the constitutive matrix

C(z) =


C11(z) C12(z) 0 0 C13(z) C23(z)
C12(z) C22(z) 0 0 0 0

0 0 C66(z) 0 0 0
0 0 0 C44(z) 0 0
0 0 0 0 C55(z) 0

C13(z) C23(z) 0 0 0 C33(z)

 (2.18)

2.3 Constitutive equations for piezoelectric mate-

rials

The general coupling between the mechanical, electric, and thermal �elds can
be established using thermodynamical principles and Maxwell's relations. For this
purpose, it is necessary to de�ne a Gibbs free-energy function G and a thermopiezo-
electric enthalpy density H

G(εij, Ei, θ) = σijεij − EiDi − ηθ

H(εij, Ei, θ, ϑi) = G(εij, Ei, θ)− F (ϑi)

(2.19)

where σij and εij are the stress and strain components,Ei is the electric �eld
vector, Di is the electric displacement vector, η is the variation in entropy per
unit of volume, and θ is the temperature considered with respect to the reference
temperature T0. F (ϑi) is the dissipation function which depends on the spatial
temperature gradient ϑi and in the most general case is given as:
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2.3 � Constitutive equations for piezoelectric materials

F (ϑi) =
1

2
κijϑiϑj − τ0ḣi (2.20)

where κij is the symmetric, positive, semi-de�nite conductivity tensor, τ0 is a

thermal relaxation parameter and ḣi is the temporal derivative of the heat �ux hi.
The thermal relaxation parameter is usually omitted in the proposed multi�eld
problems. The thermopiezoelectric enthalpy density H can be expanded in order
to obtain a quadratic form for a linear interaction:

H(εij, Ei, θ, ϑi) =
1

2
Qijklεijεkl − eijkεijEk − λijεijθ

− 1

2
εklEkEl − pkEkθ −

1

2
χθ2 − 1

2
κijϑiϑj

(2.21)

where Qijkl is the elastic coe�cient tensor considered for an orthotropic material
in the problem reference system. eijk are the piezoelectric coe�cients and εkl are
the permittivity coe�cients.λij are thermo-mechanical coupling coe�cients, pk are
the pyroelectric coe�cients, and χ = ρCv/T0, where ρ is the material mass density,
Cv is the speci�c heat per unit mass, and T0 is the reference temperature. For the
piezoelectricity problems, the thermal contributions are not considered and the
piezoelectric enthalpy density H coincides with the Gibbs free-energy function G.
Hence, equation 2.21 can be rewritten as

H(εij, Ei, θ, ϑi) =
1

2
Qijklεijεkl − eijkεijEk −

1

2
εklEkEl (2.22)

The constitutive equations are obtained by considering the following relations:

σij =
∂H

∂εij
, Dk = − ∂H

∂Ek
(2.23)

The constitutive equations for the electromechanical problem are obtained by
considering Eq.(2.22) and Eq. (2.23)

σij = Qijklεkl − eijkEk

Dk = eijkεij + εklEl

(2.24)

Considering a generic multilayered structure, equations 2.24 can be written in
their vectorial form in the reference system (x,y,z) as

σk = Qkεk − ekTEk

Dk = ekεk + εkEk

(2.25)
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2 � Constitutive equations

Where the strain and stress component vectors are

σk =


σxx
σyy
σxy
σxz
σyz
σzz



k

, εk =


εxx
εyy
γxy
γxz
γyz
εzz



k

(2.26)

The electric �eld Ek and electrical displacement Dk vectors are

Ek =

ExEy
Ez

k , Dk =

Dx

Dy

Dz

k (2.27)

The elastic coe�cients matrix Qk of Hooke's law in the problem reference system
for an orthotropic material is:

Qk =


Q11 Q12 Q13 0 0 Q16

Q12 Q22 Q23 0 0 Q26

Q13 Q23 Q33 0 0 Q36

0 0 0 Q44 Q45 0
0 0 0 Q45 Q55 0
Q16 Q26 Q36 0 0 Q66



k

(2.28)

The matrix εk of the permittivity coe�cients has 3 Ö 3 dimensions:

εk =

ε11 ε12 0
ε12 ε22 0
0 0 ε33

k (2.29)

The piezoelectric coe�cients matrix ek has 3 Ö 6 dimensions:

ek =

 0 0 0 e14 e15 0
0 0 0 e24 e25 0
e31 e32 e33 0 0 e36

k (2.30)
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Chapter 3

Plate structural models

3.1 2D structural theories

The exact closed-form solution of the fundamental equations of continuum me-
chanics is generally available only for a few sets of geometries and boundary con-
ditions. In most cases approximated solutions are required to solve the general 3D
problem. This has brought, over the years, to the development of a large amount
of structural theories in order to reduce the 3D problem to a 2D or 1D problem.
The choice to reduce the 3D problem is strongly related to the geometric dimen-
sions of structural element that has to be analyzed. There are two main approach
to derive structural theories:

� The asymptotic method

� The axiomatic method

The axiomatic method is based on the establishment of a number of hypoth-
esis that cannot be proved mathematically. Thus, it is possible to reduce the
mathematical complexity of the 3D elasticity di�erential equations. This method
provides a new set of governing equations that can be solve in a comfortable man-
ner, and sometimes under speci�c iphotesis, the equations can be easily solved in
the close-form. The asymptotic method introduced a geometric parameter in the
governing equations that in the case of a 2D theory could be the ratio between
the thickness and the length of a plate. One of the advantages by adopting this
approch is that all the terms in the equations which multiply the geometric param-
eter by exponents that are lower or equal to n are preserved for a given value of the
exponent. So all the terms have the same order of magnitude and th 2D solution
approaches to the 3D solution when the parameter tends to zero. Despite this
method provides a control on the e�ectiveness of each term in the equations, the
development of asymptotic theories are generally more di�cult than the axiomatic
theories.
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3 � Plate structural models

3.1.1 Plate reference system

Plates are de�ned as 2D structural elements with a small thickness h compared to
the planar dimensions a and b. Due to this geometric assumption, it is possible to
reduce 3D problem to a 2D one. The reference system assumed for the plate has
the x and y axes which identify the plate mid-surface Ω and the z axis is orthogonal
at both as shown in the �gure 3.1.

y   u

x   u

�

z   uz

y

x 

a

b

h

Figure 3.1: Coordinate system of a plate

3.1.2 The Uni�ed approach for the displacement �eld

Dealing with a two-dimensional axiomatic theory, in the most general case the un-
known displacements can be expressed as a series expansion through the tickhness
coordinate. By the Uni�ed Formulation, introduced by Carrera, the displacemnt
�eld of a 2D structural problem can be expressed as [25]:

u = Fτ (z)uτ (x, y) τ = 0,1, ...., N (3.1)

Where Fτ (z) are generic functions of the plate-thickness coordinate, uτ (x, y) is the
vector of the unknow diplacements referred to the mid-surface of the plate Ω, and
N is the order of expansion that can be arbitrarily chosen. Thus, by expanding the
displacement �eld at any desired order, is possible to include a great number of 2D
theories, from classical to advanced theories. For example, considering a Taylor-
like polynomial expansion the displacement �eld assumes the following explicit
form:

ux(x, y, z) = ux0(x, y) + z ux1(x, y) + z2 ux2(x, y) + .....+ zN uxN(x, y)

uy(x, y, z) = uy0(x, y) + z uy1(x, y) + z2 uy2(x, y) + .....+ zN uyN(x, y)

uz(x, y, z) = uz0(x, y) + z uz1(x, y) + z2 uz2(x, y) + .....+ zN uzN(x, y)

(3.2)
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3.2 � Classical plate theories

3.2 Classical plate theories

Dealing with the displacement formulation, since the late 19th century many plate
theories have been developed, such as those proposed by Kirchho� and Reissner-
Midlin, see [24]. A brief review of these classical models along with the complete
linear expansion are described in this section.

3.2.1 Classical plate theory

In the framework of the Uni�ed Formulation, the Kirchho� plate theory, referred
as Classical Plate Theory (CPT), can be considered as particular case of the N =
1 model by using a Taylor-like polynomial expansion. The displacement �eld is
expressed as:

ux(x, y, z) = ux0(x, y) + z ux1(x, y)

uy(x, y, z) = uy0(x, y) + z uy1(x, y)

uz(x, y, z) = uz0(x, y)

(3.3)

The CPT is derived from the following a-priori assumptions:

1. segments normal to the mid-surface of the plate remain straight after defor-
mation. Thus, the in-plane displacements are assumed to be linear along z as
follows:

ux(x, y, z) = ux0(x, y) + z ux1(x, y)

uy(x, y, z) = uy0(x, y) + z uy1(x, y)
(3.4)

2. segments normal to the mid-surface of the plate remain normal after defor-
mation. This assumption implies that the shear deformations γxz and γyz are
neglected:

γxz = uz,x + ux,z = uz0,x + ux1 = 0⇒ ux1 = −uz0,x
γyz = uz,y + uy,z = uz0,y + uy1 = 0⇒ uy1 = −uz0,y

(3.5)

3. the tickness remains constant after deformation. The out-of-plane deforma-
tion εzz is neglected:

εzz = uz,z = 0 (3.6)
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3 � Plate structural models

Thus, the aforementioned ipothesis can be resumed in the following displacement
model:

ux(x, y, z) = ux0(x, y)− z uz0,x(x, y)

uy(x, y, z) = uy0(x, y)− z uz0,y(x, y)

uz(x, y, z) = uz0(x, y)

(3.7)

CPT presents three unknown variables (ux0, uy0, uz0) and the relations amongst
them have been derived from kinematic ipothesis. According to the kinematics
hypotheses, CPT takes into account the in-plane strains only and neglects the
cross-sectional shear deformation phenomena. Figure 3.4 shows the typical distri-
bution of displacement components according to CPT: linear for ux and uy and
constant for uz. The physical meaning of the derivatives of transversal displace-
ment, uz,x and uz,y, is also represented.

u

z

x

z,x

uz,x

z

x

ux uy uz

Figure 3.2: Kinematics of Kirchho� plate model

3.2.2 First order shear deformation theory

The �rst order shear deformation theory (FSDT) is considered as an extesion of
the classical plate theory and it is based on Reissner-Midlin ipothesis. The second
assumption of Kirchho� hypothesis is removed, thus the shear deformation is taken
into account:

γxz = uz,x + ux,z = uz0,x + φx
γyz = uz,y + uy,z = uz0,y + φy

(3.8)
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3.2 � Classical plate theories

Where φx and φy are the rotation functions. According to Reissner-Midlin ipoth-
esis, the displacement �eld can be resumed in the form:

ux(x, y, z) = ux0(x, y)− z φx(x, y)

uy(x, y, z) = uy0(x, y)− z φy(x, y)

uz(x, y, z) = uz0(x, y)

(3.9)

The unknows increase from to 3 to 5 (ux0, uy0, uz0, φx, φy). Dealing with thin
plates, when the in-plane characteristic dimension to thickness ratio is on the order
50 or greater the shear e�ect disappears and the rotation functions φx and φy
approach the respective slopes of the transverse de�ections uz0,x and uz0,y. Figure
3.3 shows the typical distribution of displacement components according to FSDT.
Also the physical meaning of the rotations, φx and φy, is represented.

ux uy uz

z

x

z

x

xz

x

-uz,x

-uz,y

Figure 3.3: FSDT kinematics

3.2.3 The complete linear expansion case N=1

Considering the complete linear expansion case, the plate model has 6 displace-
ment variables: three constant (N=0) and three linear (N=1). Thus, the displace-
ment �eld assumes the following form:

ux(x, y, z) = ux0(x, y) + z ux1(x, y)

uy(x, y, z) = uy0(x, y) + z uy1(x, y)

uz(x, y, z) = uz0(x, y) + z uz1(x, y)

(3.10)
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3 � Plate structural models

Strain components are obtained by substituting the displacement �eld in the ge-
ometrical relations:

εxx = ux,x = ux0,x + z ux1,x

εyy = uy,y = uy0,y + z uy1,y

εzz = uz,z = uz1

γxy = ux,y + uy,x = ux0,y + uy0,x + z (ux1,y + uy1,x)

γxz = ux,z + uz,x = ux1 + uz0,x + z uz1,x
γyz = uy,z + uz,y = uy1 + uz0,y + z uz1,y

(3.11)

The adoption of the complete linear expansion (N=1) is necessary to introduce
the through-the-thickness stretching of the plate, given by εzz. This model leads
to a constant distribution along the tickness of the strain component εzz and a
linear distribution of other strain components. The thickness stretching cannot be
neglected when the plate is relatively thick.

3.3 Higher order theories

The classical plate models are not able to account for many higher-order e�ects,
such as the second-order out-of-plane deformations. The limitations of these mod-
els stimulated the development of higher order shear deformation theories (HSDT),
to include the e�ect of cross sectional warping and to get the realistic variation
of the transverse shear strains and stresses through the thickness of plate. Fur-
ther re�nements of FSDT are known as Higher-Order Theories (HOT). In general,
higher-order theories are based on displacement models of the following type:

ui(x, y, z) = u0(x, y) + z u1(x, y) + z2 u2(x, y) + .....+ zN uN(x, y) (3.12)

3.3.1 Reddy's higher-order shear deformation theory

Reddy proposed a third-order plate theory based on the same assumptions as the
classical and �rst-order plate theories, except that the assumption on the straight-
ness and normality of a transverse normal after deformation is removed by expand-
ing the displacements ux, uy as cubic functions of the thickness coordinate [26]. The
displacement �eld is obtained by imposing traction-free boundary conditions on
the top and bottom faces of the laminate (σyz(x, y,±h/2) = σxz(x, y,±h/2) = 0):

34



3.3 � Higher order theories

ux(x, y, z) = ux0(x, y) + z φx(x, y)− 4

3h2
z3(φx + uz0,x)

uy(x, y, z) = uy0(x, y) + z φy(x, y)− 4

3h2
z3(φy + uz0,y)

uz(x, y, z) = uz0(x, y)

(3.13)

Where ux0, uy0, uz0, φx and φy are the unknow variables.

uz0,x

���
x

uz0,x

���
x

uz0,x

uz0,x

z

u

uz ,

x ,

CPT

FSDT

HOT

x

Figure 3.4: Deformation of a transverse normal according to the classical, �rst order,
and third-order plate theories
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3 � Plate structural models

3.4 Theories on Multylayered structures

Multilayered structures exhibit higher transverse shear and transverse normal �ex-
ibilities with respect to in-plane deformability along with a discontinuity of the
mechanical properties in the thickness direction. These features require the dis-
placement �eld and the transverse stresses to satisfy some conditions, summarized
with the acronym C0

z : the displacement �eld u should be able to describe sudden
changes of slope in correspondence of layer interfaces. This is known as the zig-zag
e�ect (ZZ). Although in-plane stresses σp can be discontinuos, the Cauchy theo-
rem demands the continuity of the transverse stresses σn. The ful�lment of the
C0
z -Requirements is a crucial point in the development of any theory suitable for

multilayered structures.

3.4.1 ZZ theories

The extension of CLT, FSDT and HOT to multilayered plates doesn't permit the
Cz

0 -requirements to be ful�lled. Re�ned theories have therefore been introduced to
resolve this problem. These types of theories are referred to as Zig-Zag theories.
The idea behind zig-zag theories is that a certain displacement model is assumed
in each layer and then compatibility and equilibrium conditions are used at the
interface to reduce the number of unknown variables. Lekhnitskii was the �rst to
propose a Zig-Zag theory, which was obtained by solving an elasticity problem in-
volving a layered beam. An independent manner of formulating zig-zag plate/shell
theories has been provided in the by Reissner. His formulation permits to satisfy,
completely and a priori, the C0

z -Requirements by assuming two indipendent �elds
for diplacements and transverse stresses [27].

3.4.2 ESL models

The theories mentioned in the previous sections consider a number of unknown
variables that is independent of the number of constitutive layers Nl. These all
are known as Equivalent Single Layer Models (ESL). Although these kinematic
theories can describe transverse shear and normal strains, including transverse
warping of the cross-section, their approach is kinematically homogeneous in the
sense that the kinematics is insensitive to individual layers, unless zig-zag models
are used. In the most general case, ESL models appear in the following form:

ux(x, y, z) = ux0(x, y) + z ux1(x, y) + z2 ux2(x, y) + .....+ zN uxN(x, y)

uy(x, y, z) = uy0(x, y) + z uy1(x, y) + z2 uy2(x, y) + .....+ zN uyN(x, y)

uz(x, y, z) = uz0(x, y) + z uz1(x, y) + z2 uz2(x, y) + .....+ zN uzN(x, y)

(3.14)

where N is the order of the Taylor-like polynomial expansion. These higher-order
theories are denoted by acronyms ED1, ED2,ED3,...., EDN.
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3.4 � Theories on Multylayered structures

ED1 ED3 x, y

z

Figure 3.5: Linear and cubic Equivalent single layer expansions

3.4.3 Murakami's zig-zag function

For an ESL theory, the ZZ form of the displacements can be reproduced by intro-
ducing the Murakami's function which is able to describe the zig-zag e�ect [28].
He modi�ed the FSDT theories according to the following model:

ux(x, y, z) = ux0(x, y) + z ux1(x, y) + (−1)kζkuxZ

uy(x, y, z) = uy0(x, y) + z uy1(x, y) + (−1)kζkuyZ
uz(x, y, z) = uz0(x, y)

(3.15)

Where the subscript Z is referred to murakami's function and ζk = 2zk/hk is the
non-dimensioned layer coordinate. The exponent k changes the sign of the zig-zag
term in each layer. With the addition of the ZZ function, the discontinuity of
the �rst derivative of the displacement variables can be reproduced through the
thickness direction. Transverse normal strain/stress e�ects can be included in the
displacement �eld, leading to:

ux(x, y, z) = ux0(x, y) + z ux1(x, y) + (−1)kζkuxZ

uy(x, y, z) = uy0(x, y) + z uy1(x, y) + (−1)kζkuyZ

uz(x, y, z) = uz0(x, y) + z uz1(x, y) + (−1)kζkuzZ

(3.16)

Where

F0 = 1, F1 = z, F2 = FZ = (−1)kζk, τ = 0,1,2 (3.17)

This model is denoted by the acronym EDZ1, in which Z is referred to the inclusion
of murakami's function in the displacement �eld. Higher-order models take the
following form:
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3 � Plate structural models

ux(x, y, z) = ux0(x, y) + z ux1(x, y) + .....+ zN uxN(x, y) + (−1)kζkuxZ

uy(x, y, z) = uy0(x, y) + z uy1(x, y) + .....+ zN uyN(x, y) + (−1)kζkuyZ

uz(x, y, z) = uz0(x, y) + z uz1(x, y) + .....+ zN uzN(x, y) + (−1)kζkuzZ

(3.18)

That in compact form can be written as:

u = u0 + (−1)kζkuZ + zr ur = Fτuτ τ = 0,1, ...., N, Z (3.19)

Where N is the order of expansion, thus:

F0 = 1, F1 = z, F2 = z2...., FN = zN , FZ = (−1)kζk (3.20)

These higher-order theories are denoted by acronyms EDZ1,EDZ2, EDZ3,..., EDZN.

x, y

z

ED3

Zig-Zag

Figure 3.6: Cubic case of Murakami's zig-zag function

3.4.4 Layer Wise models

In all equivalent single-layer laminate theories, it is assumed that the displace-
ments are continuous functions of the thickness coordinate. Hence, the transverse
stresses at the interface of two layers, are discontinuous. For thin laminates the
error introduced due to discontinuous interlaminar stresses can be negligible. How-
ever, for thick laminates, the ESL theories can give erroneous results for all stresses,
requiring a more accurate approach to include the ZZ e�ect. By introducing the
Layer Wise theories, is possible to obtain a detailed response of individual layer
which is considered as an independent plate. The layer wise approach constists of
the use of special higher-order theories at layer level which leads to an increase in
the number of unknows in the solution process, and consequently to an higher com-
putational cost of the analysis. The compatibility of the displacement components,
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3.4 � Theories on Multylayered structures

corresponding to each interface, is then imposed as a constraint. The thickness
variation of the displacement components in each layer can be de�ned eighter in
terms of lagrangian interpolation functions [29] or, more preferred, in terms of
Legendre polynomials. For the linear expansion case, the following displacement
�eld is employed:

u(k)
x (x, y, z) = Ft(ζk)u

(k)
xt (x, y) + Fb(ζk)u

(k)
xb (x, y)

u(k)
y (x, y, z) = Ft(ζk)u

(k)
yt (x, y) + Fb(ζk)u

(k)
yb (x, y)

u(k)
z (x, y, z) = Ft(ζk)u

(k)
zt (x, y) + Fb(ζk)u

(k)
zb (x, y)

(3.21)

The subscripts t and b denote values related to the top and bottom layer-surface,
respectively. These two terms consist of the linear part of the expansion. The
thickness functions Fτ (ζk) have now been de�ned at the k-layer level:

Ft =
P0 + P1

2
, Fb =

P0 − P1

2
(3.22)

Where Pj = Pj(ζk) is the Legendre polynomial of the j-order de�ned in the ζk-
domain −1 ≤ ζk ≤ 1. The �rst �ve Legendre polynomials are:

P0 = 1 , P1 = ζk , P2 =
3ζ2
k − 1

2
, P3 =

5ζ3
k

2
, P4 =

35ζ4
k

8
− 15ζ2

k

4
+

3

8
(3.23)

The chosen functions have the following interesting properties:

ζk =

{
1 : Ft = 1; Fb = 0; Fr = 0;

−1 : Ft = 1; Fb = 0; Fr = 0;
(3.24)

That permits to have interface values as unknown variables, avoiding therefore
the inclusion of constraint equations to impose Cz

0 -requirements. Higher-order
layer-wise theories are written by adding higher-order terms:

u(k)
x (x, y, z) = Ftu

(k)
xt + Fbu

(k)
xb + F2u

(k)
x2 + ..+ FNu

(k)
xN

u(k)
y (x, y, z) = Ftu

(k)
yt + Fbu

(k)
yb + F2u

(k)
y2 + ..+ FNu

(k)
yN

u(k)
z (x, y, z) = Ftu

(k)
zt + Fbu

(k)
zb + F2u

(k)
z2 + ..+ FNu

(k)
zN

(3.25)

39



3 � Plate structural models

Where

Fr = Pr − Pr−2, r = 2,3, ..., N (3.26)

In a compact form the displacement �eld is given as follows:

u(k) = Ftu
(k)
t + Fbu

(k)
b + Fru

(k)
r = Fτu

(k)
τ , τ = t, b, r, r = 2,3, .., N (3.27)

These higher-order expansions have been denoted by the acronyms LD2,LD3,...,LDN.

LD1 LD3 x, y

z

Figure 3.7: Linear and cubic Layer-wise expansions
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Chapter 4

Theoretical Formulation

4.1 Geometric and constitutive relations in electro-

mechanical problems

The features of multilayered composite plates geometry are shown in the �gure
4.1. In the most general case the plate is composed of Nl layers which can be made
of any kind of materials (piezoelectric or purely elastic). The integer k, used as
superscript or subscript, identi�es the layer number which starts from the bottom
of the plate. The plate middle surface Ω coordinates are indicated by x and y
while z is the thickness coordinate. Ωk denotes the k-layer surface domain. zk
denotes the local thickness coordinate of each layer. According to the classical
nomenclature used in literature, the length of the plate in the x and y direction
is indicated by a and b, respectively, while h and hk denote the plate and layer
thicknesses. ζk is the dimensionless local layer-coordinate. Ak denotes the k-layer
thickness domain. Symbols without the k subscript or superscripts refer to the
whole plate.

The notation for the displacement and electric �eld vectors uk and Ek are given
as

uk =

uxuy
uz

k , Ek =

ExEy
Ez

k (4.1)

Consistently to the reference coordinate system the stress and strain vectors σk

and εk are indicated as follows
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Figure 4.1: Multilayered composite plate geometry

σk =


σxx
σyy
σxy
σxz
σyz
σzz



k

, εk =


εxx
εyy
γxy
γxz
γyz
εzz



k

(4.2)

The strain-displacement relations are

εk = Duk (4.3)

where D is a di�erential matrix operator, de�ned as follows
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D =



∂
∂x

0 0

0 ∂
∂y

0

∂
∂x

∂
∂y

0

∂
∂z

0 ∂
∂x

0 ∂
∂z

∂
∂y

0 0 ∂
∂z


(4.4)

The electric �eld Ek is de�ned as the gradient of the electric potential Φk

Ek = −


∂
∂x

∂
∂y

∂
∂z

Φk = DpeΦ
k (4.5)

In the laminate reference system, the constitutive equations for the kth layer take
the following form

σk = Ckεk − ekTEk

Dk = ekεk + εkEk

(4.6)

where σk is the stress tensor, εk is the linear strain tensor, Ck is the matrix of
the elastic moduli and is given as

Ck =


C11 C12 C16 0 0 C13

C12 C22 C26 0 0 C23

C16 C26 C66 0 0 C36

0 0 0 C44 C45 0
0 0 0 C45 C55 0
C13 C23 C36 0 0 C33



k

(4.7)

ek is the matrix of the piezoelectric constants and assumes the following form

ek =

 0 0 0 e14 e15 0
0 0 0 e24 e25 0
e31 e32 e33 0 0 e36

k (4.8)
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Dk is the vector of the electric displacement and εk is the permittivity matrix and
is given as

εk =

ε11 ε12 0
ε12 ε22 0
0 0 ε33

k (4.9)

4.2 Approximations of the mechanical displacement

�eld and electric potential

As mentioned in Section 3.4 the unknown variables uk and Φk can be expressed
as a set of thickness functions that only depend on the thickness coordinate z and
the associated variable depending on the in-plane coordinate x and y. The dis-
placement �eld is assumed by using a generalized expansion that allows to develop
both equivalent single layer and layer-wise analyses. Instead the approximation
of the potential is restricted only to layer-wise formulation. In fact, due to the
signi�cant di�erences of the electric properties of each layer, the ESL description
for the potential is not appropriate to cover these high gradients [16]. The most
general displacement �eld and electric potential assume the following explicit form
[5]

ukx(x, y, z, t) =

Nux∑
τux=1

Fτux (z)ukxτux (x, y, t)

uky(x, y, z, t) =

Nuy∑
τuy=1

Fτuy (z)ukyτuy (x, y, t)

ukz(x, y, z, t) =

Nuz∑
τuz=1

Fτuz (z)ukyτuz (x, y, t)

Φk(x, y, z, t) =

Nφ∑
τφ=1

Fτφ(z) Φk
τφ

(x, y, t)

(4.10)

where Fτux , Fτuy , Fτuz and Fτφ are the thickness functions. According to this ap-
proach, the governing di�erential equations can be written in terms of fundamental
nuclei, which are mathematically invariant with respect to both the expansion or-
der and the kinematic description of the unknows. The expansion order of the
potential Nφ is totally indipendent from the expansion of the displacement Nu,
even if the two orders can be the same. In this case the superscript Nφ is omitted
in the analysis.
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4.3 � Hamilton's principle

4.3 Hamilton's principle

Hamilton's principle (HP) is assumed to derive the governing equations of the
electro-mechanical problem in their weak form [33]. The approximated solution is
then obtained by using the Hierarchical Trigonometric Ritz Formulation (HTRF)
[31]. In its most general form HP can be written as∫ t2

t1

δLk dt = 0 (4.11)

where δ is the variational operator, t1 and t2 are the initial and the generic instant
of time. Lk is the Lagrangian for the kth layer and assumes the following form
[30]

Lk = T k − Πk (4.12)

where T k is the kinetic energy and Πk is the total potential energy which includes
strain energy, dielectric energy and the external work by point-loads.

T k =
1

2

∫
V k
ρk u̇k

T

u̇k dV k

Πk = Uk
el + Uk

d + V k =
1

2

∫
V k
εk

T

σk dV k − 1

2

∫
V k
EkTDk dV k −

P∑
p=1

uk
T

p F
k
p

(4.13)
Substituting Eq. (4.12) in Eq. (4.11), HP becomes:

δ

∫ t2

t1

Πk dt− δ
∫ t2

t1

T k dt = 0 (4.14)

where the variational form of the kinetic and potential energy can be rearranged
as

δ

∫ t2

t1

T k dt = −
∫ t2

t1

∫
V k
ρkδuk

T

ük dV kdt

δ

∫ t2

t1

Πk dt =

∫ t2

t1

∫
V k
δεk

T

σk dV kdt−
∫ t2

t1

∫
V k
δEkTDk dV kdt−

P∑
p=1

δuk
T

p F
k
p

(4.15)
By coupling (4.6) in Eq. (4.14) HP becomes
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∫ t2

t1

∫
V k

(δεk
T

Ckεk − δεkTekTEk − δEkTekεk − δEkT εkEk) dV kdt

−
P∑
p=1

δuk
T

p F
k
p +

∫ t2

t1

∫
V k

(ρkδuk
T

ük) dV kdt = 0

(4.16)

subtituting Eq. (4.3), (4.5) in Eq. (4.16) the variational form of Eq. (4.11) can
be expressed in terms of the unknown variables uk and Φk

∫ t2

t1

∫
V k

(δuk
T

DTCkDuk − δukTDTek
T

DpeΦ
k − δΦkDT

pee
kDuk

− δΦkDT
peε

kDpeΦ
k) dV kdt−

P∑
p=1

δuk
T

pi
F k
pi

+

∫ t2

t1

∫
V k

(ρkδuk
T

ük) dV kdt = 0

(4.17)

4.3.1 The Hierarchical Ritz Formulation

In the variational form of (4.17), the mechanical displacement �eld and electric
potential �eld are unknown functions. To solve these unknowns numerically, it is
necessary to use e�cient numerical methods to approximate the mechanical dis-
placement �eld and electric potential �eld. In this work the Hierarchical Trigono-
metric Ritz Formulation (HTRF) [34] is employed to derive the GDEs in their
weak form. In the Ritz method the displacement vector uk and the potential Φk

are expressed in series expansion and assume the following explicit form [32].

ukx(x, y, z, t) =
N∑
i=1

Nux∑
τux=1

Uk
xτux i

(t)Fτux (z)ψxi(x, y)

uky(x, y, z, t) =
N∑
i=1

Nuy∑
τuy=1

Uk
yτuy i

(t)Fτuy (z)ψyi(x, y)

ukz(x, y, z, t) =
N∑
i=1

Nuz∑
τuz=1

Uk
zτuz i

(t)Fτuz (z)ψzi(x, y)

Φk(x, y, z, t) =
N∑
i=1

Nφ∑
τφ=1

Φk
τφi

(t)Fτφ(z)ψφi(x, y)

(4.18)

whereN indicates the order of expansion in the Ritz approximation, Uxτux i, Uyτuy i,
Uzτuz i, Φτφi are the time-dependent unknown coe�cients and ψxi , ψyi , ψzi , ψφi
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4.3 � Hamilton's principle

are the Ritz functions appropriately selected with respect to the features of the
problem under investigation. Convergence to the exact solution is guaranteed
if the Ritz functions are admissible functions in the used variational principle.
Highly stable trigonometric functions are assumed as trial functions. The harmonic
assumptions used for the displacements and the electric potential are

ψxmn =
M∑
m=1

N∑
n=1

cos
(mπx

a

)
sin
(nπy

b

)
ψymn =

M∑
m=1

N∑
n=1

sin
(mπx

a

)
cos
(nπy

b

)
ψzmn =

M∑
m=1

N∑
n=1

sin
(mπx

a

)
sin
(nπy

b

)
ψφmn =

M∑
m=1

N∑
n=1

sin
(mπx

a

)
sin
(nπy

b

)
(4.19)

It is known that in Ritz family methods, adoption of a shape function depends
only on the essential boundary conditions. In this case on each edge of the plate
either electric potential and the displacements should be equal to zero to satisfy
simply supported condition and grounded condition, respectively. The armonic
displacement and potential �eld of Eq. (4.18) can be expressed in a compact way
as

uk = FτΨuiU
k
τi

Φk = FτφψφiΦ
k
τφi

(4.20)

Where:

U k
τi =

Uk
xτux i

Uk
yτuy i

Uk
zτuz i

 ,Ψui =

ψxi 0 0
0 ψyi 0
0 0 ψzi

 ,Fτ =

Fτux 0 0
0 Fτuy 0
0 0 Fτuz

 (4.21)

4.3.2 Fundamental Nuclei

Substituting Eq. (4.20) in Eq. (4.17), the variational form of the total potential
energy and the kinetic energy become
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δΠk = δU kT

τi

∫
Ωk

∫
Ak

[D(FτΨui)]
TCkDFτΨui dAkdΩkU

k
sj

− δU kT

τi

∫
Ωk

∫
Ak

[D(FτΨui)]
Tek

T

DpeFsφψφj dAkdΩkΦ
k
sφj

− δΦkT

τψi

∫
Ωk

∫
Ak

[DpeFτφψφi ]
TekDFsΨuj dAkdΩkU

k
sj

− δΦkT

τψi

∫
Ωk

∫
Ak

[DpeFτφψφi ]
TεkDpeFsφψφj dAkdΩkΦ

k
sφ

− δU kT

τi

P∑
p=1

FτpΨuipFp

δT k = −δU kT

τi

∫
Ωk

∫
Ak

[ρk(FτΨui)
T (FsΨuj)] dAkdΩkÜ

k
sj

(4.22)

The compact form of Eq. (4.22) is

δΠk = δU kT

τi K
kτsij
uu U k

sj + δU kT

τi K
kτsij
uφ Φk

sφj

+ δΦkT

τψi
Kkτsij

φu U k
sj + δΦkT

τψi
Kkτsij

φφ Φk
sφj
− δU kT

τi Fsj

δT k = −δU kT

τi M
kτsijÜ k

sj

(4.23)

the Ritz primary fundamental nuclei are obtained:

Kkτsij
uu =

∫
Ωk

∫
Ak

[D(FτΨui)]
TCkDFτΨui dAkdΩk

Kkτsij
uφ = −

∫
Ωk

∫
Ak

[D(FτΨui)]
Tek

T

DpeFsφψφj dAkdΩk

Kkτsij
φu = −

∫
Ωk

∫
Ak

[DpeFτφψφi ]
TekDFsΨuj dAkdΩk

Kkτsij
φφ = −

∫
Ωk

∫
Ak

[DpeFτφψφi ]
TεkDpeFsφψφj dAkdΩk

M kτsij =

∫
Ωk

∫
Ak

[ρk(FτΨui)
T (FsΨuj)] dAkdΩk

(4.24)

whereM kτsij is the mass fundamental nucleus,Kkτsij
uu is the sti�ness fundamental

nucleus, Kkτsij
uφ and Kkτsij

φφ are the piezoelectric and permettivity fundamental
nuclei respectively.
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Table 4.1: Dimensions of the fundamental nuclei

Fundamental Nucleus Dimension

Kkτsij
uu [3× 3]

Kkτsij
uφ [3× 1]

Kkτsij
φu [1× 3]

Kkτsij
φφ [1× 1]

M kτsij [3× 3]

The explicit forms of the secondary sti�ness, piezoelectric, permettivity and mass
fundamental nuclei are following reported:

Kτuxsux
uxux = Ck

11

[∫
Ak

(FτuxFsux ) dz

][∫
Ωk

(ψxi,xψxj ,x) dΩk

]

+ Ck
16

[∫
Ak

(FτuxFsux ) dz

][∫
Ωk

(ψxi,xψxj ,y) dΩk

]

+ Ck
16

[∫
Ak

(FτuxFsux ) dz

][∫
Ωk

(ψxi,yψxj ,x) dΩk

]

+ Ck
66

[∫
Ak

(FτuxFsux ) dz

][∫
Ωk

(ψxi,yψxj ,y) dΩk

]

+ Ck
55

[∫
Ak

(Fτux ,zFsux ,z) dz

][∫
Ωk

(ψxiψxj) dΩk

]
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K
τuxsuy
uxuy = Ck

16

[∫
Ak

(FτuxFsuy ) dz

][∫
Ωk

(ψxi,xψyj ,x) dΩk

]

+ Ck
12

[∫
Ak

(FτuxFsuy ) dz

][∫
Ωk

(ψxi,xψyj ,y) dΩk

]

+ Ck
66

[∫
Ak

(FτuxFsuy ) dz

][∫
Ωk

(ψxi,yψyj ,x) dΩk

]

+ Ck
26

[∫
Ak

(FτuxFsuy ) dz

][∫
Ωk

(ψxi,yψyj ,y) dΩk

]

+ Ck
45

[∫
Ak

(Fτux ,zFsuy ,z) dz

][∫
Ωk

(ψxiψyj) dΩk

]

Kτuxsuz
uxuz = Ck

55

[∫
Ak

(Fτux ,zFsuz ) dz

][∫
Ωk

(ψxiψzj ,x) dΩk

]

+ Ck
45

[∫
Ak

(Fτux ,zFsuz ) dz

][∫
Ωk

(ψxiψzj ,y) dΩk

]

+ Ck
13

[∫
Ak

(FτuxFsuz ,z) dz

][∫
Ωk

(ψxi,xψzj) dΩk

]

+ Ck
36

[∫
Ak

(FτuxFsuz ,z) dz

][∫
Ωk

(ψxi,yψzj) dΩk

]

K
τuy sux
uyux = Ck

16

[∫
Ak

(FτuyFsux ) dz

][∫
Ωk

(ψyi,xψxj ,x) dΩk

]

+ Ck
12

[∫
Ak

(FτuyFsux ) dz

][∫
Ωk

(ψyi,yψxj ,x) dΩk

]

+ Ck
66

[∫
Ak

(FτuyFsux ) dz

][∫
Ωk

(ψyi,xψxj ,y) dΩk

]

+ Ck
26

[∫
Ak

(FτuyFsux ) dz

][∫
Ωk

(ψyi,yψxj ,y) dΩk

]

+ Ck
45

[∫
Ak

(Fτuy ,zFsux ,z) dz

][∫
Ωk

(ψyiψxj) dΩk

]
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K
τuy suy
uyuy = Ck

26

[∫
Ak

(FτuyFsuy ) dz

][∫
Ωk

(ψyi,yψyj ,x) dΩk

]

+ Ck
22

[∫
Ak

(FτuyFsuy ) dz

][∫
Ωk

(ψyi,yψyj ,y) dΩk

]

+ Ck
66

[∫
Ak

(FτuyFsuy ) dz

][∫
Ωk

(ψyi,yψyj ,x) dΩk

]

+ Ck
26

[∫
Ak

(FτuyFsuy ) dz

][∫
Ωk

(ψyi,yψyj ,y) dΩk

]

+ Ck
44

[∫
Ak

(Fτuy ,zFsuy ,z) dz

][∫
Ωk

(ψyiψyj) dΩk

]

K
τuy suz
uyuz = Ck

45

[∫
Ak

(Fτuy ,zFsuz ) dz

][∫
Ωk

(ψyiψzj ,x) dΩk

]

+ Ck
44

[∫
Ak

(Fτuy ,zFsuz ) dz

][∫
Ωk

(ψyiψzj ,y) dΩk

]

+ Ck
36

[∫
Ak

(FτuyFsuz ,z) dz

][∫
Ωk

(ψyi,xψzj) dΩk

]

+ Ck
23

[∫
Ak

(FτuyFsuz ,z) dz

][∫
Ωk

(ψyi,yψzj) dΩk

]

Kτuz sux
uzux = Ck

55

[∫
Ak

(FτuzFsux ,z) dz

][∫
Ωk

(ψzi,xψxj) dΩk

]

+ Ck
45

[∫
Ak

(FτuzFsux ,z) dz

][∫
Ωk

(ψzi,yψxj) dΩk

]

+ Ck
13

[∫
Ak

(Fτuz ,zFsux ) dz

][∫
Ωk

(ψziψxj ,x) dΩk

]

+ Ck
36

[∫
Ak

(Fτuz ,zFsux ) dz

][∫
Ωk

(ψziψxj ,y) dΩk

]
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K
τuz suy
uzuy = Ck

45

[∫
Ak

(FτuzFsuy ,z) dz

][∫
Ωk

(ψzi,xψyj) dΩk

]

+ Ck
44

[∫
Ak

(FτuzFsuy ,z) dz

][∫
Ωk

(ψzi,yψyj) dΩk

]

+ Ck
36

[∫
Ak

(Fτuz ,zFsuy ) dz

][∫
Ωk

(ψziψyj ,x) dΩk

]

+ Ck
23

[∫
Ak

(Fτuz ,zFsuy ) dz

][∫
Ωk

(ψziψyj ,y) dΩk

]

Kτuz suz
uzuz = Ck

45

[∫
Ak

(FτuzFsuz ) dz

][∫
Ωk

(ψzi,yψzj ,x) dΩk

]

+ Ck
44

[∫
Ak

(FτuzFsuz ) dz

][∫
Ωk

(ψzi,yψzj ,y) dΩk

]

+ Ck
55

[∫
Ak

(FτuzFsuz ) dz

][∫
Ωk

(ψzi,xψzj ,x) dΩk

]

+ Ck
45

[∫
Ak

(FτuzFsuz ) dz

][∫
Ωk

(ψzi,xψzj ,y) dΩk

]

+ Ck
33

[∫
Ak

(Fτuz ,zFsuz ,z) dz

][∫
Ωk

(ψziψzj) dΩk

]

K
τuxsφ
uxφ

= ek31

[∫
Ak

(FτuxFsφ,z) dz

][∫
Ωk

(ψxi,xψφj) dΩk

]

+ ek36

[∫
Ak

(FτuxFsφ,z) dz

][∫
Ωk

(ψxi,yψφj) dΩk

]

+ ek14

[∫
Ak

(Fτux ,zFsφ) dz

][∫
Ωk

(ψxiψφj ,x) dΩk

]

+ ek24

[∫
Ak

(Fτux ,zFsφ) dz

][∫
Ωk

(ψxiψφj ,y) dΩk

]
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K
τuy sφ
uyφ

= ek32

[∫
Ak

(FτuyFsφ,z) dz

][∫
Ωk

(ψyi,yψφj) dΩk

]

+ ek36

[∫
Ak

(FτuyFsφ,z) dz

][∫
Ωk

(ψyi,xψφj) dΩk

]

+ ek15

[∫
Ak

(Fτuy ,zFsφ) dz

][∫
Ωk

(ψyiψφj ,x) dΩk

]

+ ek25

[∫
Ak

(Fτuy ,zFsφ) dz

][∫
Ωk

(ψyiψφj ,y) dΩk

]

K
τuz sφ
uzφ

= ek14

[∫
Ak

(FτuzFsφ) dz

][∫
Ωk

(ψzi,xψφj ,x) dΩk

]

+ ek24

[∫
Ak

(FτuzFsφ) dz

][∫
Ωk

(ψzi,xψφj ,y) dΩk

]

+ ek15

[∫
Ak

(FτuzFsφ) dz

][∫
Ωk

(ψzi,yψφj ,x) dΩk

]

+ ek25

[∫
Ak

(FτuzFsφ) dz

][∫
Ωk

(ψzi,yψφj ,y) dΩk

]

+ ek33

[∫
Ak

(Fτuz ,zFsφ,z) dz

][∫
Ωk

(ψziψφj) dΩk

]

K
τφsφ
φφ = εk11

[∫
Ak

(FτφFsφ) dz

][∫
Ωk

(ψφi,xψφj ,x) dΩk

]

+ εk12

[∫
Ak

(FτφFsφ) dz

][∫
Ωk

(ψφi,xψφj ,y) dΩk

]

+ εk21

[∫
Ak

(FτφFsφ) dz

][∫
Ωk

(ψφi,yψφj ,x) dΩk

]

+ εk22

[∫
Ak

(FτφFsφ) dz

][∫
Ωk

(ψφi,yψφj ,y) dΩk

]

+ εk33

[∫
Ak

(Fτφ,zFsφ,z) dz

][∫
Ωk

(ψφiψφj) dΩk

]
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M τuxsux
uxux = ρk

[∫
Ak

(FτuxFsux ) dz

][∫
Ωk

(ψxiψxj) dΩk

]

M
τuy suy
uyuy = ρk

[∫
Ak

(FτuyFsuy ) dz

][∫
Ωk

(ψyiψyj) dΩk

]

M τuz suz
uzuz = ρk

[∫
Ak

(FτuzFsuz ) dz

][∫
Ωk

(ψziψzj) dΩk

] (4.25)

4.3.3 Weak form of the governing equations

The minimization of the total energy of Eq. (4.14) leads to the equation:

δΠk − δT k = 0 (4.26)

Now coupling Eq. (4.26) with Eq. (4.23) and considering that virtual variations
are independent and arbitrary, the discrete form of two set of governing di�erential
equations in terms of fundamental primary nuclei are obtained:

δU kT

τi : M kτsijÜ k
sj +Kkτsij

uu U k
sj +Kkτsij

uφ Φk
sφj

= Fsj

δΦkT

τi : Kkτsij
φu U k

sj +Kkτsij
φφ Φk

sφj
= 0

(4.27)

Once the fundamental nuclei have been assembled at structure level as widely
discussed in [32], the governing equations take the following form:

MÜ +KuuU +KuφΦ = F

KφuU +KφφΦ = 0
(4.28)

where U and Φ are the vectors of the unknown degrees of freedom related to the
elctro-mechanical problem.

4.3.4 Free vibration problem

The free-vibration response of the multilayered plate, by assuming a simple ar-
monic expansion of the variables in the time domain U = Ûeiωt, Φ = Φ̂eiωt, leads
to the following eigenvalues problem:

(K∗uu − ω2M)Û = 0 (4.29)

where K∗uu is the sti�ness matrix, obtained applying the static condensation pro-
cedure [30]. This procedure requires to solve the second equation of the system in
Eq. (4.27) which leads to the expression:
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K∗uu = Kuu −KuφK
−1
φφKφu (4.30)

The static condensation has been computed for di�erent advanced theories. Eq.
(4.29) is associated to the natural frequencies of an open circuit (OC) plate inte-
grated with piezoelectric layers. On the other hand, dealing with a closed circuit
condition (CC), it is assumed that piezoelectric layers are grounded and the elec-
tric potential at the free surfaces is identically zero. Therefore, for closed circuit
condition, natural frequencies are obtained by set to zero the potential degrees of
freedom at the top and bottom surfaces.

+

_

�

Closed-Circuit

R 0 

I= 8
 

��R 

A 

B 

+

_

�

Open-Circuit

R 

0 I= 

8
 

��R 

A 

B 

I I 

Figure 4.2: Electrical boundary conditions

4.4 Dynamic response and Active vibration con-

trol of CNT-RC plates with piezoelectric sen-

sor and actuator layers

A laminated FG-CNTRC plate, embedded with piezoelectric layers at the bottom
and top surfaces as shown in 4.4, is considered in this section. The top layer
is a piezoelectric actuator denoted with subscript a and the bottom layer is a
piezoelectric sensor labeled with subscript s.

Piezoelectric Actuator

Piezoelectric Sensor Sensor output

Controller

Actuator input

Figure 4.3: A schematic diagram of a FG-CNTRC plate with integrated piezoelectric
sensors and actuators
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4.4.1 Velocity feedback control algorithm

The distributed piezoelectric sensing layer monitors the structural oscillation due
to the direct piezoelectric e�ect and the distributed actuator layer suppresses the
oscillation via the converse piezoelectric e�ect. The velocity feedback control ap-
proach is employed for the active vibration control of each functionally graded
CNTRC plate which can give a velocity component by using an appropriate elec-
tronic circuit [14]. When applying any external mechanical force, the composite
plate undergoes deformation. Due to this deformation, a sensor output voltage is
generated and is sent to the controller. The latter ampli�es the sensor voltage and
sends it to the actuator as input voltage. Due to the converse piezoelectric e�ect,
stress and strains are generated. A resultant force, which actively suppresses and
controls the vibration, is generated. The constant gain velocity feedback Gv is
used to couple the input actuator voltage vector Φa and the output sensor voltage
as follows

Φa = GvΦ̇s (4.31)

actuator layer

h

�s

c

s

�a

hp

hp sensor layer

FG-CNTRC layer

Q

aQ

controller

�������������a sGv

Figure 4.4: Close-loop control diagram

When there is no external charge Q, the output voltage from the piezoelectric
layer is obtained from the second equation of the system (4.28) as

Φs = −Ks−1

φφ K
s
φuUs (4.32)

The sensor charge caused by deformation is given as

Qs = −Ks
φuUs (4.33)

When an electric charge Q occurs as external load, Eq. (4.28) become

MÜ +KuuU +KuφΦ = F

KφuU +KφφΦ = Q
(4.34)
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Eq. (4.34) can be rearranged by static condensation as

MÜ +KuuU +KuφΦ = F −KuφK
−1
φφQ (4.35)

The actuator layer charge can be obtained by substituting Eqs. (4.31) and (4.32)
in the second equation of the system (4.34)

Qa = Ka
φu −GvK

a
φφK

s−1

φφ K
s
φuU̇s (4.36)

Now, substituting Eqs. (4.36) and (4.33) in Eq. (4.35), the equation of motion is
obtained:

MÜ +CU̇ +KuuU = F (4.37)

where C is the active damping matrix computed by

C = Ka
uφK

s−1

φφ K
s
φu (4.38)

If the structural damping is considered in Eq. (4.37), it can be rearranged as

MÜ + (C +CS)U̇ +KuuU = F (4.39)

in which CS is the Rayleigh damping matrix which is computed assuming a linear
combination ofM and Kuu [35]

CS = aSM + bSKuu (4.40)

in which aS and bS are Rayleigh damping coe�cients that can be determined from
experiments.

4.4.2 Dynamic response

The equation of motion is solved by the iterative procedure of Newmark presented
in [19]. When the current state of variables (Ui, U̇i, Üi) is known at t = ti, a new
state (Ui+1, U̇i+1, Üi+1) at t = ti + ∆t is computed from(

1

β∆t2
M +

α

β∆t
(C +CS) +K

)
Ui+1 = Fi+1 +M

[
1

β∆t2
Ui +

1

β∆t
U̇i +

(
1

2β
− 1

)
Üi

]

U̇i+1 =

(
1− α

β

)
U̇i +

(
1− α

2β

)
∆tÜi +

α

β∆t
(Ui+1 −Ui)

Üi+1 =
1

β∆t2
(Ui+1 −Ui)−

1

β∆t
U̇i −

(
1

2β
− 1

)
Üi

(4.41)

where α = 0.5 and β = 0.25.
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Chapter 5

Numerical Results: Modal

analysis

5.1 Laminated orthotropic plate

A laminated orthotropic piezoelectric plate is considered as �rst test-case of the
formulation proposed in Chapter 4. The laminate is made of �ve layers which are
perfectly bonded to each other. The top and bottom layers are made of PZT-4
piezoelectric material with the thickness of hp = 0.1h each. The three structural
composite layers (graphite/epoxy) have equal thickness and have a cross-ply con-
�guration [0/90/0]. The material properties are listed in Table 5.1. The plate is
simply supported and short circuited Φt = Φb = 0. Firstly, in Tables 5.2-5.10 a
stability model assessment is carried out by comparing the �rst six natural fre-
quencies of the plate with the exact solutions provided in [16]. The free vibration
analysis is performed with ED, EDZ and LD theories and the expansion order of
the potential Nφ is consider totally indipendent from the expansion order of the
displacements Nu in order to investigate how Nφ a�ects the convergence rate to
the exact solutions. The length to thickness ratio is set to a/h = 4. Secondly, a
convergence study on the �rst six natural frequencies is provided in Tables 5.14-
5.15. Two di�erent length to thickness ratios a/h = 4, 50 are considered. Tables
5.18-5.18 shows the �rst six natural frequencies of both mechanical and coupled
case, computed with all the theories with a/h = 4,100. ∆ denotes the natural
frequency increment due to the electro-mechanical coupling and is de�ned as:

∆ =
ω̂coupled − ω̂uncoupled

ω̂uncoupled
(5.1)
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5 � Numerical Results: Modal analysis

x

z

y

a

b

������
b

������������
t

Figure 5.1: Hybrid sandwich plate [PZT-4/0/90/0/PZT-4]

Table 5.1: Elastic, piezoelectric and dielectric properties of used materials

Property PZT-4 Gr/Ep SWCNT (300 K) PmPV matrix

E1 (GPa) 81.3 132.38 5646.6 2.1

E2 (GPa) 81.3 10.756 7080.0 2.1

E3 (GPa) 64.5 10.756 7080.0 2.1

ν12 0.329 0.24 0.175 0.34

ν13 0.432 0.24 0.175 0.34

ν23 0.432 0.49 0.175 0.34

G23 (GPa) 25.6 3.606 19944.5 0.7836

G13 (GPa) 25.6 5.6537 19944.5 0.7836

G12 (GPa) 30.6 5.6537 19944.5 0.7836

e14 (C/m2) 12.72 0 0 0

e25 (C/m2) 12.72 0 0 0

e31 (C/m2) - 5.20 0 0 0

e32 (C/m2) - 5.20 0 0 0

e33 (C/m2) 15.08 0 0 0

ε11/ε0 1475 3.5 2000 10

ε22/ε0 1475 3.0 2000 10

ε33/ε0 1300 3.0 2000 10

ρ (Kg/m3) 7600 1590 1400 1150
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5.1 � Laminated orthotropic plate
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5 � Numerical Results: Modal analysis
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5.1 � Laminated orthotropic plate
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5 � Numerical Results: Modal analysis
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5.1 � Laminated orthotropic plate
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5 � Numerical Results: Modal analysis
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5.1 � Laminated orthotropic plate
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5 � Numerical Results: Modal analysis
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5.1 � Laminated orthotropic plate
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5 � Numerical Results: Modal analysis
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5.1 � Laminated orthotropic plate
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5 � Numerical Results: Modal analysis
T
a
b
le

5
.1
3
:
S
tab

ility
m
o
d
el
assessm

en
t,
�
rst

six
n
atu

ral
freq

u
en
cies

ω̂
=

ω
/100

w
ith

L
D

th
eories

for
th
e
sim

p
ly
-su

p
p
orted

h
y
b
rid

san
d
w
ich

p
late

w
ith

a
/
h

=
4
an
d
N
φ

=
4

N
φ

=
4

ω̂
1

ω̂
2

ω̂
3

ω̂
4

ω̂
5

ω̂
6

A
v
e.

∆
%

M
a
x

∆
%

E
x
a
ct

[1
6
]

5
7
0
7
4
.5

1
9
1
3
0
1

2
5
0
7
6
9

2
7
4
9
4
1

3
6
2
4
9
2

3
8
1
0
3
6

L
D

41
1
1

5
7
2
5
7
.8
7
3
8

1
9
4
8
3
9
.5
9
2
5

2
5
5
6
4
6
.2
6
0
0

2
8
2
1
6
7
.4
9
8
4

3
6
8
4
5
7
.7
4
0
1

3
8
9
5
2
5
.3
8
2
0

1
.7
7

2
.6
2

L
D

42
2
1

5
7
1
6
2
.0
7
2
3

1
9
1
3
1
2
.5
0
1
3

2
5
1
1
8
9
.9
7
1
8

2
7
5
1
5
8
.0
3
0
3

3
6
3
4
9
3
.7
1
0
6

3
8
8
6
0
3
.9
7
8
7

0
.4
4

1
.9
9

L
D

43
3
1

5
7
1
5
3
.5
0
2
3

1
9
1
3
1
2
.3
1
1
8

2
5
1
1
8
8
.0
1
7
8

2
7
5
0
6
0
.7
0
7
1

3
6
3
1
7
4
.5
0
8
1

3
8
8
5
3
7
.3
5
3
3

0
.4
2

1
.9
7

L
D

44
4
1

5
7
1
5
3
.4
9
3
0

1
9
1
3
1
2
.1
7
9
4

2
5
1
1
8
7
.4
6
0
5

2
7
5
0
5
9
.3
1
9
2

3
6
3
1
7
2
.5
3
7
9

3
8
8
5
3
7
.0
4
4
9

0
.4
2

1
.9
7

L
D

41
1
2

5
7
1
7
7
.9
3
2
2

1
9
4
8
3
8
.1
4
5
1

2
5
5
2
3
1
.8
7
2
9

2
8
2
0
7
1
.6
1
3
9

3
6
7
8
0
1
.5
4
6
8

3
8
2
1
6
5
.3
0
8
8

1
.3
6

2
.5
9

L
D

42
2
2

5
7
0
8
1
.8
4
6
6

1
9
1
3
1
1
.0
6
2
9

2
5
0
7
8
5
.8
2
6
1

2
7
5
0
6
0
.2
6
7
0

3
6
2
8
8
1
.5
7
8
7

3
8
1
3
2
2
.1
8
1
4

0
.0
4

0
.1
1

L
D

43
3
2

5
7
0
7
4
.1
0
4
8

1
9
1
3
1
0
.8
5
1
7

2
5
0
7
8
2
.4
7
9
7

2
7
4
9
5
8
.8
6
1
4

3
6
2
5
2
1
.0
1
0
6

3
8
1
1
6
6
.2
3
4
2

0
.0
1

0
.0
3

L
D

44
4
2

5
7
0
7
4
.0
9
5
5

1
9
1
3
1
0
.7
1
9
3

2
5
0
7
8
1
.9
2
8
4

2
7
4
9
5
7
.4
7
6
0

3
6
2
5
1
9
.0
7
8
8

3
8
1
1
6
6
.0
0
4
8

0
.0
1

0
.0
3

L
D

41
1
3

5
7
1
7
7
.9
3
2
1

1
9
4
8
3
8
.0
8
5
6

2
5
5
2
2
9
.3
0
3
4

2
8
2
0
7
1
.3
6
7
0

3
6
7
7
9
8
.5
9
3
9

3
8
2
0
5
9
.6
5
7
3

1
.3
5

2
.5
9

L
D

42
2
3

5
7
0
8
1
.7
0
6
7

1
9
1
3
0
1
.3
0
1
1

2
5
0
7
7
1
.5
2
5
6

2
7
5
0
4
3
.4
7
3
6

3
6
2
8
5
2
.3
1
6
8

3
8
1
1
9
2
.5
7
2
1

0
.0
3

0
.1
0

L
D

43
3
3

5
7
0
7
3
.9
6
4
8

1
9
1
3
0
1
.0
9
0
0

2
5
0
7
6
8
.1
7
9
7

2
7
4
9
4
2
.1
2
6
2

3
6
2
4
9
1
.9
7
9
9

3
8
1
0
3
7
.3
7
7
5

0
.0
0

0
.0
0

L
D

44
4
3

5
7
0
7
3
.9
5
7
0

1
9
1
3
0
0
.9
5
0
5

2
5
0
7
6
7
.4
6
5
0

2
7
4
9
4
0
.4
7
5
3

3
6
2
4
8
9
.5
4
8
8

3
8
1
0
3
6
.7
0
9
4

0
.0
0

0
.0
0

L
D

41
1
4

5
7
1
7
7
.9
3
2
1

1
9
4
8
3
8
.0
8
5
6

2
5
5
2
2
9
.2
9
9
0

2
8
2
0
7
1
.3
6
5
4

3
6
7
7
9
8
.5
6
0
0

3
8
2
0
5
9
.2
3
4
1

1
.3
5

2
.5
9

L
D

42
2
4

5
7
0
8
1
.7
0
6
7

1
9
1
3
0
1
.3
0
1
1

2
5
0
7
7
1
.5
2
1
6

2
7
5
0
4
3
.4
7
2
2

3
6
2
8
5
2
.2
8
6
9

3
8
1
1
9
2
.1
5
7
7

0
.0
3

0
.1
0

L
D

43
3
4

5
7
0
7
3
.9
6
0
4

1
9
1
3
0
1
.0
8
9
8

2
5
0
7
6
8
.1
6
9
5

2
7
4
9
4
2
.0
3
8
5

3
6
2
4
9
1
.4
3
9
0

3
8
1
0
3
6
.2
4
9
1

0
.0
0

0
.0
0

L
D

44
4
4

5
7
0
7
3
.9
5
2
6

1
9
1
3
0
0
.9
5
0
3

2
5
0
7
6
7
.4
5
4
7

2
7
4
9
4
0
.3
8
7
7

3
6
2
4
8
9
.0
0
7
9

3
8
1
0
3
5
.5
8
1
1

0
.0
0

0
.0
0

∆
%

=
|
ω̂
i −
ω̂
e
x
a
c
t

ω̂
e
x
a
c
t
|×

10
0

72



5.1 � Laminated orthotropic plate
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5 � Numerical Results: Modal analysis
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5.1 � Laminated orthotropic plate

Table 5.16: Coupling e�ect on the �rst six natural frequencies ω̂ = ω/100 with ED
theories for the simply-supported hybrid sandwich plate with a/h = 4 and
a/h = 100

a/h = 4 a/h = 100

coupled (SC) uncoupled ∆% coupled (SC) uncoupled ∆%

ED4 ω̂1 58713.9221 56939.2867 3.12 155.3185 146.8253 5.78

ω̂2 194592.1273 193118.9470 0.76 7847.0781 7800.0647 0.60

ω̂3 254739.3875 250329.3699 1.76 10750.8523 10484.9161 2.54

ω̂4 281830.2732 279663.2320 0.77 217208.5781 217196.7310 0.00

ω̂5 371143.8485 362994.4955 2.24 218408.7479 218393.1767 0.01

ω̂6 390960.9564 388144.2091 0.72 385725.9000 386390.7652 0.17

ED3 ω̂1 58818.5898 57163.1434 2.90 155.3392 147.0295 5.65

ω̂2 195825.4056 194618.3471 0.62 7847.1666 7800.1711 0.60

ω̂3 259586.1199 254169.1651 2.13 10751.1371 10485.1325 2.54

ω̂4 282244.1329 279977.6950 0.81 217208.7749 217196.7545 0.00

ω̂5 371905.1891 363372.5578 2.35 218409.7552 218393.6229 0.01

ω̂6 392802.0161 390534.8377 0.58 388129.6691 386420.8898 0.44

ED2 ω̂1 69413.6740 66641.6628 4.16 155.4498 147.1240 5.66

ω̂2 195859.5902 194618.5553 0.64 7847.4964 7804.4665 0.55

ω̂3 262204.0384 255320.1774 2.70 10753.8682 10508.7944 2.33

ω̂4 373493.1294 372521.4827 0.26 320462.8873 320453.8215 0.00

ω̂5 459959.7518 453187.4552 1.49 330617.3938 330608.7186 0.00

ω̂6 698489.6372 668362.3884 4.51 679909.3135 644125.8394 5.55

ED1 ω̂1 74105.8979 73720.9288 0.52 172.9563 171.8841 0.62

ω̂2 196021.3374 194876.7410 0.59 7847.5058 7804.4814 0.55

ω̂3 266337.1465 259635.8978 2.58 10754.1390 10509.0805 2.33

ω̂4 375608.2780 375555.5069 0.01 320488.1367 320487.2236 0.00

ω̂5 479222.7800 478536.3310 0.14 330641.1352 330640.2137 0.00

ω̂6 700380.4385 669973.6977 4.54 679914.7177 644130.7562 5.55

∆% = | ω̂coupled−ω̂uncoupled
ω̂uncoupled

| × 100
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5 � Numerical Results: Modal analysis

Table 5.17: Coupling e�ect on the �rst six natural frequencies ω̂ = ω/100 with EDZ
theories for the simply-supported hybrid sandwich plate with a/h = 4 and
a/h = 100

a/h = 4 a/h = 100

coupled (SC) uncoupled ∆% coupled (SC) uncoupled ∆%

EDZ4 ω̂1 57585.0247 56004.1835 2.82 155.3103 146.8172 5.78

ω̂2 194140.7846 193045.5801 0.57 9028.1864 7798.5358 15.77

ω̂3 254705.2324 250278.9961 1.77 11422.7968 10476.8747 9.03

ω̂4 279406.4871 276872.5801 0.91 99733.4355 211511.4983 52.85

ω̂5 368997.2431 361485.9774 2.08 99733.4355 215775.6740 53.78

ω̂6 386098.4398 386590.2057 0.13 211527.0479 384883.3594 45.04

EDZ3 ω̂1 57656.7172 56185.1779 2.62 155.3285 147.0212 5.65

ω̂2 195710.5652 194566.6773 0.59 7843.5789 7798.6434 0.58

ω̂3 259570.1855 254146.8380 2.13 10749.3416 10477.0948 2.60

ω̂4 279713.6605 277078.0626 0.95 211527.6590 211511.6725 0.01

ω̂5 369974.2928 361938.8579 2.22 215791.9741 215775.7522 0.01

ω̂6 390746.6533 388737.7370 0.52 386107.4111 384911.6749 0.31

EDZ2 ω̂1 60605.4801 59073.6908 2.59 155.3707 147.0597 5.65

ω̂2 195965.3819 194594.9664 0.70 7846.8424 7803.9407 0.55

ω̂3 266196.0204 254975.9700 4.40 10749.3468 10478.3042 2.59

ω̂4 293428.0734 290390.6244 1.05 221516.9683 221499.8172 0.01

ω̂5 404987.5286 395729.7279 2.34 261492.5647 261478.8186 0.00

ω̂6 455520.7908 436929.2236 4.25 429558.9614 428945.3271 0.14

EDZ1 ω̂1 63198.5291 63030.6094 0.27 172.8467 171.7729 0.62

ω̂2 195965.2576 194876.7406 0.56 7846.8536 7803.9538 0.55

ω̂3 266195.2458 259606.4802 2.54 10749.5892 10478.5173 2.59

ω̂4 298704.5651 298461.1021 0.08 221557.5866 221555.2405 0.00

ω̂5 427699.8535 426409.5804 0.30 261525.0359 261523.1462 0.00

ω̂6 455511.7257 455468.4938 0.01 429599.0590 428984.4909 0.14

∆% = | ω̂coupled−ω̂uncoupled
ω̂uncoupled

| × 100
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5.1 � Laminated orthotropic plate

Table 5.18: Coupling e�ect on the �rst six natural frequencies ω̂ = ω/100 with LD
theories for the simply-supported hybrid sandwich plate with a/h = 4 and
a/h = 100

a/h = 4 a/h = 100

coupled (SC) uncoupled ∆% coupled (SC) uncoupled ∆%

LD4 ω̂1 57073.9526 55514.7764 2.81 155.2848 146.6802 5.87

ω̂2 191300.9503 189939.4848 0.72 7841.7120 7795.9804 0.59

ω̂3 250767.4547 246834.0821 1.59 10748.8484 10476.1621 2.60

ω̂4 274940.3877 272676.7516 0.83 208921.5919 208910.6773 0.00

ω̂5 362489.0079 355350.7482 2.01 209855.3115 209837.2685 0.01

ω̂6 381035.5811 379190.1485 0.49 378390.2280 378350.7473 0.01

LD3 ω̂1 57073.9648 55514.7915 2.81 155.2848 146.6801 5.87

ω̂2 191301.0900 189939.6207 0.72 7841.7120 7795.9804 0.59

ω̂3 250768.1797 246834.6942 1.59 10748.8484 10476.1621 2.60

ω̂4 274942.1262 272678.4240 0.83 208921.6976 208910.7823 0.00

ω̂5 362491.9799 355352.7720 2.01 209855.6885 209837.6459 0.01

ω̂6 381037.3775 379192.1675 0.49 378390.6738 378351.1914 0.01

LD2 ω̂1 57081.8463 55523.8953 2.80 155.2849 146.6802 5.87

ω̂2 191311.0629 189949.2767 0.72 7841.7120 7795.9804 0.59

ω̂3 250785.8261 246848.8669 1.59 10748.8484 10476.1621 2.60

ω̂4 275060.2670 272794.5064 0.83 209006.0233 208995.1025 0.00

ω̂5 362881.5767 355708.8005 2.02 209937.3849 209919.3148 0.01

ω̂6 381322.1808 379503.0350 0.48 378532.6039 378492.6851 0.01

LD1 ω̂1 57252.4975 55754.8334 2.69 155.5084 146.9533 5.82

ω̂2 194839.5803 193420.5759 0.73 7841.9461 7796.2128 0.59

ω̂3 255646.0517 251327.1948 1.72 10749.0796 10476.3759 2.60

ω̂4 282167.4738 279928.7532 0.80 211932.0962 211919.3192 0.01

ω̂5 368457.5514 359977.4902 2.35 214106.0242 214088.2300 0.01

ω̂6 389524.3101 388091.4042 0.37 385093.0154 385058.8333 0.01

∆% = | ω̂coupled−ω̂uncoupled
ω̂uncoupled

| × 100
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5 � Numerical Results: Modal analysis

5.2 Sandwich Hybrid CNT-RC piezoelectric plate

In this section free vibration analysis of square simply supported CNT-RC plate,
embedded with piezoelectric layers (PZT-4) at the top and bottom of free surfaces,
is carried out. Short-circuit surface conditions are considered for the potential in
the electro-mechanical case (Φt = Φb = 0). Four di�erent types of uniaxially
aligned reinforcements are investigated in the analysis, including uniformly dis-
tributed UD-CNT and functinally graded (FG-X, FG-O and FG-V). Properties of
single costituents of the composite CNT-RC plate are reported in Table 5.1. For
all of the numerical examples proposed the material properties of the CNT-RC
are those given by the extended Voigt's rule of mixtures Eq. 2.16 for the room
temperature T = 300K, with the e�ciency parameters η1, η2 and η3 related to the
CNT volume fraction indices V ∗CNT involved in the analysis [5]. Tables from 5.19 to
5.22 show solutions for the fundamental frequency parameter of simply supported
and short-circuited hybrid CNT-RC piezoelectric plate by considering all the CNT
distribution through the thickness and several values of the volume fraction indices
V ∗CNT = 0.11, V ∗CNT = 0.14 and V ∗CNT = 0.17. The dimensionless eigen-frequency

parameter is de�ned as ω̂ = (ωa2/h)
√
ρm/Em. The length to thickness ratio of the

plate is set to a/h = 20 and two di�erent thickness con�gurations are considered
in the analysis hp : hc : hp = 0.1h : 0.8h : 0.1h and hp : hc : hp = 0.2h : 0.6h : 0.2h,
where hp and hc denote the thickness of piezoelectric layer and the thickness of
CNT-RC core layer, respectively. Frequency parameters are computed by using
di�erent theories (ED and LD). The convergence study is carried out by compar-
ing frequencies with respect to the results of Wu and Lin [17] and the relative
errors are reported. Table 5.23 show the electro-mechanical coupling e�ect on the
frequency parameters.

x
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Figure 5.2: Hybrid sandwich plate [PZT-4/CNT-RC/PZT-4]
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5.2 � Sandwich Hybrid CNT-RC piezoelectric plate

Table 5.19: ED solutions of frequency parameters for the simply supported sandwich
[PZT-4/CNTRC/PZT-4] plates with di�erent CNTs types, CNT voulme
fraction V ∗

CNT , length to thickness ratio a/h = 20, and 0.1 h : 0.8 h : 0.1 h

V ∗
CNT Theories UD FG-V FG-O FG-X

0.11 ED1 23.366974 23.098914 23.024593 23.708535
(25.1284 %) (25.4892 %) (26.9160 %) (23.9954 %)

ED2 21.1304 20.8268 20.7457 21.5108
(13.1519 %) (13.1459 %) (14.3544 %) (12.5014 %)

ED3 19.2028 19.0302 19.0227 19.3658
(2.8299 %) (3.3447 %) (4.8985 %) (1.2833 %)

ED4 19.1963 19.0240 19.0159 19.3590
(2.7950 %) (3.3517 %) (4.8198 %) (1.2476 %)

Wu and Lin [17] 18.6744 18.4071 18.1416 19.1205

0.14 ED1 23.7892 23.4381 23.3613 24.2135
(25.0181 %) (25.4036 %) (27.0842 %) (23.8733 %)

ED2 21.6113 21.2157 21.1327 22.0823
(13.5732 %) (13.5129 %) (14.9604 %) (12.9703 %)

ED3 19.5490 19.3541 19.3211 19.7319
(2.7353 %) (3.5522 %) (5.1056 %) (0.9463 %)

ED4 19.5422 19.3475 19.3136 19.7246
(2.6991 %) (3.5173 %) (5.0651 %) (0.9091 %)

Wu and Lin [17] 19.0286 18.6902 18.3826 19.5470

0.17 ED1 24.2837 23.8597 23.7786 24.7839
(19.7350 %) (20.5411 %) (22.7416 %) (17.8885 %)

ED2 22.1474 21.6711 21.5832 22.7017
(9.2019 %) (9.4840 %) (11.4095 %) (7.9845 %)

ED3 20.5786 20.2963 20.2620 20.8453
(1.4665 %) (2.5386 %) (4.5897 %) (0.8461 %)

ED4 20.5705 20.2887 20.2531 20.8365
(1.4265 %) (2.5002 %) (4.5436 %) (0.8876 %)

Wu and Lin [17] 20.2812 19.7939 19.3729 21.0232

∆% = | ω̂i−ω̂Wu

ω̂Wu
| × 100
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5 � Numerical Results: Modal analysis

Table 5.20: LD solutions of frequency parameters for the simply supported sandwich
[PZT-4/CNTRC/PZT-4] plates with di�erent CNTs types, length to thick-
ness ratio a/h = 20, and CNT volume fraction V ∗

CNT = 0.11

V ∗
CNT = 0.11

hp : hc : hp Theories UD FG-V FG-O FG-X

0.1 h : 0.8 h : 0.1 h LD1 18.7800 18.5255 18.3132 19.2095
(0.5660 %) (0.6434 %) (0.9461 %) (0.4655 %)

LD2 18.7684 18.5138 18.3015 19.1879
(0.5038 %) (0.5798 %) (0.8814 %) (0.3528 %)

LD3 18.7684 18.5076 18.3015 19.1879
(0.5038 %) (0.5461 %) (0.8814 %) (0.3528 %)

LD4 18.7684 18.5076 18.3015 19.1879
(0.5038 %) (0.5461 %) (0.8814%) (0.3528 %)

Wu and Lin [17] 18.6744 18.4071 18.1416 19.1205

0.2 h : 0.6 h : 0.2 h LD1 17.4244 17.3847 17.3135 17.5347
(0.7285 %) (0.7611 %) (0.7403 %) (0.7824 %)

LD2 17.3967 17.3715 17.3057 17.4952
(0.5685 %) (0.6802 %) (0.6952 %) (0.5555 %)

LD3 17.3967 17.3607 17.3001 17.4902
(0.5685 %) (0.6225 %) (0.6626 %) (0.5269 %)

LD4 17.3967 17.3607 17.3001 17.4902
(0.5685 %) (0.6222 %) (0.6626 %) (0.5269 %)

Wu and Lin [17] 17.2984 17.2534 17.1863 17.3986

∆% = | ω̂i−ω̂Wu

ω̂Wu
| × 100
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5.2 � Sandwich Hybrid CNT-RC piezoelectric plate

Table 5.21: LD solutions of frequency parameters for the simply supported sandwich
[PZT-4/CNTRC/PZT-4] plates with di�erent CNTs types, length to thick-
ness ratio a/h = 20, and CNT volume fraction V ∗

CNT = 0.14

V ∗
CNT = 0.14

hp : hc : hp Theories UD FG-V FG-O FG-X

0.1 h : 0.8 h : 0.1 h LD1 19.1325 18.8235 18.5602 19.6429
(0.5464 %) (0.7133 %) (0.9665 %) (0.4910 %)

LD2 19.1159 18.8009 18.5549 19.6234
(0.4590 %) (0.5925 %) (0.9374 %) (0.3913 %)

LD3 19.1159 18.8006 18.5549 19.6234
(0.4590 %) (0.5908 %) (0.9374 %) (0.3912 %)

LD4 19.1159 18.8006 18.5549 19.6234
(0.4590 %) (0.5908 %) (0.9374 %) (0.3912 %)

Wu and Lin [17] 19.0286 18.6902 18.3826 19.5470

0.2 h : 0.6 h : 0.2 h LD1 17.5809 17.5342 17.4694 17.7099
(0.7091 %) (0.7980 %) (0.8837 %) (0.7430 %)

LD2 17.5622 17.5122 17.4574 17.6808
(0.6019 %) (0.6717 %) (0.8144 %) (0.5779 %)

LD3 17.5622 17.5048 17.4523 17.6808
(0.6019 %) (0.6294 %) (0.7852 %) (0.5779 %)

LD4 17.5622 17.5048 17.4523 17.6808
(0.6019 %) (0.6291 %) (0.7852 %) (0.5779 %)

Wu and Lin [17] 17.4572 17.3954 17.3164 17.5793

∆% = | ω̂i−ω̂Wu

ω̂Wu
| × 100
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5 � Numerical Results: Modal analysis

Table 5.22: LD solutions of frequency parameters for the simply supported sandwich
[PZT-4/CNTRC/PZT-4] plates with di�erent CNTs types, length to thick-
ness ratio a/h = 20, and CNT volume fraction V ∗

CNT = 0.17

V ∗
CNT = 0.17

hp : hc : hp Theories UD FG-V FG-O FG-X

0.1 h : 0.8 h : 0.1 h LD1 20.3409 19.8762 19.5019 21.1202
(0.2945 %) (0.4162 %) (0.6661 %) (0.4616 %)

LD2 20.3301 19.8664 19.4977 21.1052
(0.2414 %) (0.3664 %) (0.6446 %) (0.3903 %)

LD3 20.3301 19.8662 19.4977 21.1052
(0.2414 %) (0.3656 %) (0.6446 %) (0.3903 %)

LD4 20.3301 19.8662 19.4977 21.1052
(0.2414 %) (0.3656 %) (0.6446 %) (0.3903 %)

Wu and Lin [17] 20.2812 19.7939 19.3729 21.0232

0.2 h : 0.6 h : 0.2 h LD1 18.5712 18.4709 18.3973 18.7701
(0.5495 %) (0.5628 %) (0.8308 %) (0.5472 %)

LD2 18.5537 18.4549 18.3895 18.7412
(0.4545 %) (0.4754 %) (0.7877 %) (0.3926 %)

LD3 18.5537 18.4427 18.3857 18.7412
(0.4545 %) (0.4090 %) (0.7668 %) (0.3925 %)

LD4 18.5537 18.4426 18.3857 18.7412
(0.4545 %) (0.4088 %) (0.7668 %) (0.3925 %)

Wu and Lin [17] 18.4698 18.3676 18.2458 18.6680

∆% = | ω̂i−ω̂Wu

ω̂Wu
| × 100
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5.2 � Sandwich Hybrid CNT-RC piezoelectric plate

Table 5.23: Coupled and Uncoupled solutions of frequency parameters for the simply
supported sandwich [PZT-4/CNTRC/PZT-4] plates with di�erent CNTs
types, length to thickness ratio a/h = 20, and CNT volume fraction

V ∗
CNT hp : hc : hp CNTs Type coupled (SC) uncoupled ∆%

0.11 0.1 h : 0.8 h : 0.1 h UD 18.7684 17.8517 5.1351

FG-V 18.5076 17.5742 5.3110

FG-O 18.3015 17.3465 5.5053

FG-X 19.1879 18.3183 4.7472

0.11 0.2 h : 0.6 h : 0.2 h UD 17.396744 16.440726 5.8149

FG-V 17.3607 16.3729 6.0329

FG-O 17.3001 16.2853 6.2313

FG-X 17.4902 16.6123 5.2848

0.14 0.1 h : 0.8 h : 0.1 h UD 19.1159 18.2192 4.9217

FG-V 18.8006 17.8870 5.1072

FG-O 18.5549 17.6215 5.2967

FG-X 19.6234 18.7721 4.5351

0.14 0.2 h : 0.6 h : 0.2 h UD 17.5622 16.6302 5.6042

FG-V 17.5048 16.5428 5.8156

FG-O 17.4523 16.4622 6.0142

FG-X 17.6808 16.8286 5.0642

0.17 0.1 h : 0.8 h : 0.1 h UD 20.3302 19.4142 4.7177

FG-V 19.8663 18.9353 4.9167

FG-O 19.4978 18.5507 5.1055

FG-X 21.1053 20.2249 4.3527

0.17 0.2 h : 0.6 h : 0.2 h UD 18.5537 17.6029 5.4012

FG-V 18.4426 17.4633 5.6082

FG-O 18.3857 17.3770 5.8048

FG-X 18.7412 17.8743 4.8503

∆% = | ω̂coupled−ω̂uncoupled
ω̂uncoupled

| × 100
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Chapter 6

Results: Dynamic Response

and Active Control

6.1 Dynamic Response and Active Control

In this section the dynamic response of a simply supported piezoelectric FG-
CNTRC square plate with a = b = 20m, is analyzed. The thickness of CNT-RC
core layer is hc = 0.8m, while the thickness for each piezoceramic layer is hp =
0.1m. The material properties of the plate are given the same as those in Table
5.1. Piezoelectric sensors and actuators are used to investigate the active vibration
control of the plate. In vibration control analysis, the upper piezoelectric layer
acts as actuators, while the lower one acts as sensors. The response of the plate
is controlled using the dynamic velocity feedback control algorithm and a close
loop. Four di�erent types of uniaxially aligned reinforcements are investigated
in the analysis, including uniformly distributed UD-CNT and functinally graded
(FG-X, FG-O and FG-V). Two load cases are considered in this work. The plate is
subjected to an harmonic load F = F0 sin(Ωt) and to an impulsive load F0 which
is suddenly removed, placed in the mid-point. The structural damping ratio for
each mode is assumed to be 0.8 % according with [19]. The mechanical de�ection
uz is evaluated in the mid-point of the plate.
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Figure 6.1: Forced response of the piezoelectric laminated UD-CNTRC plate with Gv =
1.5× 10−3 for the case V ∗

CNT = 0.11
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Figure 6.2: Forced response of the piezoelectric laminated FG-X plate with Gv = 1.5×
10−3 for the case V ∗

CNT = 0.11
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Figure 6.3: Forced response of the piezoelectric laminated FG-O plate with Gv = 1.5×
10−3 for the case V ∗

CNT = 0.11
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Figure 6.4: Forced response of the piezoelectric laminated FG-V plate with Gv = 1.5×
10−3 for the case V ∗

CNT = 0.11
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Figure 6.5: Dynamic de�ection of the piezoelectric laminated UD-CNTRC plate for the
case V ∗

CNT = 0.11
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Figure 6.6: Dynamic de�ection of the piezoelectric laminated FG-X plate for the case
V ∗
CNT = 0.11
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Figure 6.7: Dynamic de�ection of the piezoelectric laminated FG-O plate for the case
V ∗
CNT = 0.11
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Figure 6.8: Dynamic de�ection of the piezoelectric laminated FG-V plate for the case
V ∗
CNT = 0.11
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Figure 6.9: E�ect of the velocity feedback control gain Gv on the dynamic response of
the simply supported UD-CNTRC plate
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Figure 6.10: E�ect of the velocity feedback control gain Gv on the dynamic response of
the simply supported FG-X plate
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Figure 6.11: E�ect of the velocity feedback control gain Gv on the dynamic response of
the simply supported FG-O plate
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Figure 6.12: E�ect of the velocity feedback control gain Gv on the dynamic response of
the simply supported FG-V plate
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Chapter 7

Conclusions: Numerical

Results and Discussion

7.1 Free Vibration Results

7.1.1 Laminated Orthotropic plate

Tables 5.2-5.10 show the �rst six natural frequencies of a square laminated or-
thotropic piezoelectric plate, as discussed in section 5.1. The analysis are per-
formed with all the thoeries. The expansion orders Nφ, Nuz and Nux are consider
totally indipendent in order to investigate the convergence to the exact solution.
As can be observed, Nφ do not a�ect the rate of convergence to the exact solutions.
Besides, dealing with ED theories, when the expansion order Nu overcomes the
potential expansion order Nφ = 4 the solution stability is compromised. Tables
5.14-5.15 provide a convergence study on the �rst six natural frequencies with
length to thickness ratios a/h = 4, 50. As expected, the LDN theories produce the
best results. The ESL models with imposed zig-zag form EDZN lead in the most
cases to a slight improvement compared to the EDN theories. More speci�cally,
LD3 and LD4 theories lead to the exact solutions while ED4 and EDZ3 lead to an
Average error ∆% of less than 2.5 % when the plate is thick (a/h = 4). Further-
more for LD theories, an increase of the expansion order has a very small e�ect.
On the contrary ED theories are more sensible to the expansion order, especially
when the plate is thick.
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7.1.2 FG-CNTRC Piezoelectric plate

Convergence assessment and validation

As widely introduced in section 5.2, a convergence assessment of the models for
the free vibration of a simply supported square CNT-RC piezoelectric plate is
presented in Tables 5.19-5.22. It is clear that the LDN theories achieve the best
level of accurancy and are in excellent agreement with the results of [17]. More
speci�cally, the analysis performed with the LD4 theory leads to an error ∆% on
natural frequency parameter of less than 1%. On the other hand, the analysis
performed with the ED4 theory leads to an average error of 3 %.

Parametric study

Table 5.23 provides the parametric study, carried out to evaluate the in�uences of
distribution pattern of CNT reinforcements, volume fraction of CNT and thickness
con�gurations of the sandwich CNT-RC piezoelectric plate as well as the electro-
mechanical coupling e�ect. The parametric study is performed by using the LD4
theory. As can be seen by comparing the four di�erent types of CNT distribu-
tions through the thickness, the magnitude order of the frequency parameters is:
FG-X > UD > FG-V > FG-O-type. This order highlights the fact that the CNT
reinforcements are more e�cient when are distributed far from the mid-surface,
enanching the overall sti�ness of the CNT-RC plate. In all the cases, increas-
ing the CNT volume fraction V ∗CNT results in higher frequency parameter due to
the enanchement of the sti�ness of the plate. On the contrary, reducing the core
thickness of the CNT-RC leads to a lower value of the frequency parameter, as ex-
pected. It is worth mentioning the electro-mechanical coupling e�ect by comparing
the frequency parameter for the electro-mechanical case with the pure mechani-
cal case. In general, the frequency parameters, which is a �exural mode, for the
coupled case result higher than those of the uncoupled case. This phenomenon is
compatible with all the results obtained in literature [18], [19] and [14]. In fact
for the coupled case, due to the direct piezoelectric e�ect, when the plate oscil-
lates, the electrical energy is converted to mechanical energy and the piezoelectric
coupling matrix can be consider as an additional sti�ness for the plate. Besides,
when the mechanical sti�ness of the plate is higher, the direct piezoelectric ef-
fect results in a lower electro-mechanical coupling in accordance with [14]. This
trend can be seen by comparing the two thickness con�gurations of the sandwich
plate. Increasing the thickness of the piezoelectric layers results in decreasing of
the overall sti�ness of the plate. Then, the natural frequency increment ∆, due to
the direct piezoelectric e�ect, is more evident in thicker piezoelectric layers (case
hp : hc : hp = 0.2h : 0.6h : 0.2h). Instead it is observed that the higher CNT
volume fraction leads to an higher stifness of the plate which results in lower value
of the increment ∆. In particular, the FG-X CNT-RC plate with V ∗CNT = 0.17
which results the sti�est plate, shows the lowest value of ∆.
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7.2 � Dynamic vibration control of FG-CNTRC Piezoelectric plate

7.2 Dynamic vibration control of FG-CNTRC Piezo-

electric plate

Figures from 6.9 to 6.12, show the e�ect of the velocity feedback gain Gv on the
transient response of the mid-point for all CNT distributions. As can be seen,
when the control system is inoperative (Gv = 0), the response decreases with re-
spect to time due to the only structural damping e�ect. The decay of the response
is faster when the Gain factor Gv increases and the control system results stable,
as expected. In fact, the stability of the system is ensured by the active damp-
ing matrix which results always de�nite positive. Figures from 6.1 to 6.8, show
dynamic forced response of the mid-point of the plate. It can be seen that the
amplitude of the center point de�ection of the plate is reduced due to the active
damping e�ect. Furthermore the graphs re�ect the resonance phenomena of the
plate, as expected when the plate is subjected to an armonic load.

Overall the vibration of the plate can be properly controlled and suppressed by
using the velocity feedback control algorithm based on a closed loop and the Gain
factor can be adeguately designed in order to satisfy constrains on the dynamic
oscillations.

7.3 Future works

Dynamic analysis of CNT-Reinforced composite plate embedded with single piezo-
electric patches at the top and bottom of free surfaces could be consider as a
possible extension of this work. The analysis could be carried out in order to
investigate how the placement of the patches a�ects the vibration control results
and to �nd the optimal positions to suppress and control the �rst modes of the
structure. A further possible extension could be place the piezoelectric sensor and
actuator layers at the same side of the plate in order to evaluate the stability and
the e�ectiveness of the control system [14]. Furtheremore two additional layers
of FGMs (Al/Al2O3) could be integrated at the top and bottom of the plate to
enanche thermal resistance of the structure.
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