POLITECNICO DI TORINO

Corso di Laurea in
Ingegneria Aerospaziale

Tesi di Laurea Magistrale

Dynamic analysis of Carbon Nanotube-Reinforced Piezoelectric Composite for Active Control of Smart Structures

Supervisors:
prof. Fiorenzo Fazzolari
prof. Erasmo Carrera
Candidate:
Lorenzo Violi

Acknowledgements

I would like to thank Prof. Carrera who gave me the opportunity to carry out this research project abroad. I would like to say thank you to Prof. Fazzolari who provided me his consistent support for this work and for the willingness he has showed me during these months. A special thank you goes to Lorenzo Chianchiano who I had the pleasure to live with for 6 months and has always helped me when I was in trouble. I would like to thank my family who have always supported my choices these years. Last but not least, I'd like to thank my friends who have always been close to me.

Contents

List of Figures 5
List of Tables 7
1 Introduction 10
1.1 Composite structures and their applications 10
1.1.1 Multilayered structures 10
1.1.2 Sandwich structures 11
1.1.3 Functionally Graded Materials 11
1.1.4 Carbon-Nanotubes 13
1.1.5 Piezoelectric materials 13
1.2 Overview on free vibration analysis and control of composite piezo- electric plates 17
2 Constitutive equations 19
2.1 Equations of Elasticity 19
2.1.1 Laminate Reference system 19
2.1.2 Generalized Hooke's law 19
2.1.3 Characterization of a Unidirectional Lamina 22
2.2 Constitutive equations for FGMs 24
2.2.1 Material properties of FG-CNT reinforced composite plates 24
2.3 Constitutive equations for piezoelectric materials 26
3 Plate structural models 29
3.1 2D structural theories 29
3.1.1 Plate reference system 30
3.1.2 The Unified approach for the displacement field 30
3.2 Classical plate theories 31
3.2.1 Classical plate theory 31
3.2.2 First order shear deformation theory 32
3.2.3 The complete linear expansion case $\mathrm{N}=1$ 33
3.3 Higher order theories 34
3.3.1 Reddy's higher-order shear deformation theory 34
3.4 Theories on Multylayered structures 36
3.4.1 ZZ theories 36
3.4.2 ESL models 36
3.4.3 Murakami's zig-zag function 37
3.4.4 Layer Wise models 38
4 Theoretical Formulation 41
4.1 Geometric and constitutive relations in electro-mechanical problems 41
4.2 Approximations of the mechanical displacement field and electric potential 44
4.3 Hamilton's principle 45
4.3.1 The Hierarchical Ritz Formulation 46
4.3.2 Fundamental Nuclei 47
4.3.3 Weak form of the governing equations 54
4.3.4 Free vibration problem 54
4.4 Dynamic response and Active vibration control of CNT-RC plates with piezoelectric sensor and actuator layers 55
4.4.1 Velocity feedback control algorithm 56
4.4.2 Dynamic response 57
5 Numerical Results: Modal analysis 59
5.1 Laminated orthotropic plate 59
5.2 Sandwich Hybrid CNT-RC piezoelectric plate 78
6 Results: Dynamic Response and Active Control 85
6.1 Dynamic Response and Active Control 85
7 Conclusions: Numerical Results and Discussion 93
7.1 Free Vibration Results 93
7.1.1 Laminated Orthotropic plate 93
7.1.2 FG-CNTRC Piezoelectric plate 94
7.2 Dynamic vibration control of FG-CNTRC Piezoelectric plate 95
7.3 Future works 95
Bibliography 97

List of Figures

1.1 Typical Multilayered structure 11
1.2 Typical Sandwich structure 12
1.3 Multilayered plate embedding a FGM layer 12
1.4 Single-walled Carbon nanotube 13
1.5 Piezoceramic cell before and after polarization 14
1.6 Poling of piezoelectric materials: Hysteresis of polarization P 14
1.7 Sensor-Actuator network for a plate 16
2.1 Coordinate system of a plate 20
2.2 Reference system 23
2.3 CNTs Distributions 25
3.1 Coordinate system of a plate 30
3.2 Kinematics of Kirchhoff plate model 32
3.3 FSDT kinematics 33
3.4 Deformation of a transverse normal according to the classical, first order, and third-order plate theories 35
3.5 Linear and cubic Equivalent single layer expansions 37
3.6 Cubic case of Murakami's zig-zag function 38
3.7 Linear and cubic Layer-wise expansions 40
4.1 Multilayered composite plate geometry 42
4.2 Electrical boundary conditions 55
4.3 A schematic diagram of a FG-CNTRC plate with integrated piezo- electric sensors and actuators 55
4.4 Close-loop control diagram 56
5.1 Hybrid sandwich plate [PZT-4/0/90/0/PZT-4] 60
5.2 Hybrid sandwich plate [PZT-4/CNT-RC/PZT-4] 78
6.1 Forced response of the piezoelectric laminated UD-CNTRC plate with $G_{v}=1.5 \times 10^{-3}$ for the case $V_{C N T}^{*}=0.11$ 86
6.2 Forced response of the piezoelectric laminated FG-X plate with $G_{v}=1.5 \times 10^{-3}$ for the case $V_{C N T}^{*}=0.11$ 86
6.3 Forced response of the piezoelectric laminated FG-O plate with $G_{v}=1.5 \times 10^{-3}$ for the case $V_{C N T}^{*}=0.11$ 87
6.4 Forced response of the piezoelectric laminated FG-V plate with $G_{v}=1.5 \times 10^{-3}$ for the case $V_{C N T}^{*}=0.11$ 87
6.5 Dynamic deflection of the piezoelectric laminated UD-CNTRC plate for the case $V_{C N T}^{*}=0.11$ 88
6.6 Dynamic deflection of the piezoelectric laminated FG-X plate for the case $V_{C N T}^{*}=0.11$ 88
6.7 Dynamic deflection of the piezoelectric laminated FG-O plate for the case $V_{C N T}^{*}=0.11$ 89
6.8 Dynamic deflection of the piezoelectric laminated FG-V plate for the case $V_{C N T}^{*}=0.11$ 89
6.9 Effect of the velocity feedback control gain G_{v} on the dynamic re- sponse of the simply supported UD-CNTRC plate 90
6.10 Effect of the velocity feedback control gain G_{v} on the dynamic re- sponse of the simply supported FG-X plate 90
6.11 Effect of the velocity feedback control gain G_{v} on the dynamic re- sponse of the simply supported FG-O plate 91
6.12 Effect of the velocity feedback control gain G_{v} on the dynamic re- sponse of the simply supported FG-V plate 91

List of Tables

2.1 Volume fraction of CNTs as a function of thickness coordinate 24
4.1 Dimensions of the fundamental nuclei 49
5.1 Elastic, piezoelectric and dielectric properties of used materials 60
5.2 Stability model assessment, first six natural frequencies $\hat{\omega}=\omega / 100$ with ED theories for the simply-supported hybrid sandwich plate with $a / h=4$ and $N_{\phi}=1$ 61
5.3 Stability model assessment, first six natural frequencies $\hat{\omega}=\omega / 100$ with ED theories for the simply-supported hybrid sandwich plate with $a / h=4$ and $N_{\phi}=2$ 62
5.4 Stability model assessment, first six natural frequencies $\hat{\omega}=\omega / 100$ with ED theories for the simply-supported hybrid sandwich plate with $a / h=4$ and $N_{\phi}=3$ 63
5.5 Stability model assessment, first six natural frequencies $\hat{\omega}=\omega / 100$ with ED theories for the simply-supported hybrid sandwich plate with $a / h=4$ and $N_{\phi}=4$ 64
5.6 Stability model assessment, first six natural frequencies $\hat{\omega}=\omega / 100$ with EDZ theories for the simply-supported hybrid sandwich plate with $a / h=4$ and $N_{\phi}=1$ 65
5.7 Stability model assessment, first six natural frequencies $\hat{\omega}=\omega / 100$ with EDZ theories for the simply-supported hybrid sandwich plate with $a / h=4$ and $N_{\phi}=2$ 66
5.8 Stability model assessment, first six natural frequencies $\hat{\omega}=\omega / 100$ with EDZ theories for the simply-supported hybrid sandwich plate with $a / h=4$ and $N_{\phi}=3$ 67
5.9 Stability model assessment, first six natural frequencies $\hat{\omega}=\omega / 100$ with EDZ theories for the simply-supported hybrid sandwich plate with $a / h=4$ and $N_{\phi}=4$ 68
5.10 Stability model assessment, first six natural frequencies $\hat{\omega}=\omega / 100$ with LD theories for the simply-supported hybrid sandwich plate with $a / h=4$ and $N_{\phi}=1$ 69
5.11 Stability model assessment, first six natural frequencies $\hat{\omega}=\omega / 100$ with LD theories for the simply-supported hybrid sandwich plate with $a / h=4$ and $N_{\phi}=2$. 70
5.12 Stability model assessment, first six natural frequencies $\hat{\omega}=\omega / 100$ with LD theories for the simply-supported hybrid sandwich plate with $a / h=4$ and $N_{\phi}=3$. 71
5.13 Stability model assessment, first six natural frequencies $\hat{\omega}=\omega / 100$ with LD theories for the simply-supported hybrid sandwich plate with $a / h=4$ and $N_{\phi}=4$ 72
5.14 Convergence study on the first six natural frequencies $\hat{\omega}=\omega / 100$ for the simply-supported hybrid Sandwich plate with $a / h=4$ 73
5.15 Convergence study on the first six natural frequencies $\hat{\omega}=\omega / 100$ for the simply-supported hybrid sandwich plate with $a / h=50$ 74
5.16 Coupling effect on the first six natural frequencies $\hat{\omega}=\omega / 100$ with ED theories for the simply-supported hybrid sandwich plate with $a / h=4$ and $a / h=100$ 75
5.17 Coupling effect on the first six natural frequencies $\hat{\omega}=\omega / 100$ with EDZ theories for the simply-supported hybrid sandwich plate with $a / h=4$ and $a / h=100$ 76
5.18 Coupling effect on the first six natural frequencies $\hat{\omega}=\omega / 100$ with LD theories for the simply-supported hybrid sandwich plate with $a / h=4$ and $a / h=100$ 77
5.19 ED solutions of frequency parameters for the simply supported sandwich [PZT-4/CNTRC/PZT-4] plates with different CNTs types, CNT voulme fraction $V_{C N T}^{*}$, length to thickness ratio $a / h=20$, and $0.1 h: 0.8 h: 0.1 h$ 79
5.20 LD solutions of frequency parameters for the simply supported sand- wich [PZT-4/CNTRC/PZT-4] plates with different CNTs types, length to thickness ratio $a / h=20$, and CNT volume fraction $V_{C N T}^{*}=$ 0.11 80
5.21 LD solutions of frequency parameters for the simply supported sand- wich [PZT-4/CNTRC/PZT-4] plates with different CNTs types, length to thickness ratio $a / h=20$, and CNT volume fraction $V_{C N T}^{*}=$ 0.14 81
5.22 LD solutions of frequency parameters for the simply supported sand- wich [PZT-4/CNTRC/PZT-4] plates with different CNTs types, length to thickness ratio $a / h=20$, and CNT volume fraction $V_{C N T}^{*}=$ 0.17 82
5.23 Coupled and Uncoupled solutions of frequency parameters for the simply supported sandwich [PZT-4/CNTRC/PZT-4] plates with different CNTs types, length to thickness ratio $a / h=20$, and CNT volume fraction 83

Summary

Smart structures have a wide range of potential applications in aerospace engineering, such as vibration and noise suppression, shape adaption and aeroelastic control of lifting surfaces. Piezoelectric materials are largely used as smart materials due to the their capability to perform both as sensors and actuators. Composite structures embedded with piezoelectric materials confer the low density, superior mechanical and thermal properties of composite materials along with sensing and vibration control.
The aim of this thesis is the study of the dynamic behaviour and vibration attenuation of carbon nanotube reinforced composite (CNT-RC) plates, integrated with piezoelectric layers at the bottom and top surfaces. Distribution of CNTs reinforcement may be uniformly distributed (UD) or functionally graded (FG) according to linear functions of the thickness direction. The material properties of both matrix and CNTs are obtained through a modified rule of mixtures approach. Plate is modeled acccording with the method of the power series expansion of the displacement components and the electric potential. Primary variable's expansion order is considered as a free parameter of the model. Hamilton's principle is employed to derive the governing equations in their weak form. The latter are written in terms of fundamental nuclei which are mathematically invariant with respect to both the expansion order and the kinematic description of the unknows. The free vibration analysis is carried out considering the full coupling between the electrical and mechanical fields. The approximated solution is obtained by using Ritz method based on highly stable trigonometric trial functions. Forced response is obtained through the Newmark method considering various dynamic load cases. The response of the plate is controlled through the dynamic velocity feedback control algorithm and a closed loop. The upper piezoelectric layer acts as actuators, while the lower one acts as sensors.
Corvengence and accurancy of the proposed formulation is investigated comparing results with those available in literature. The effect of significant parameters such as volume fraction, CNTs distribution and boundary conditions, on the natural frequencies and both uncontrolled and controlled response, is discussed.

Chapter 1

Introduction

1.1 Composite structures and their applications

In the last few decades the development of composite materials in structural applications has dramatically risen. Composite materials consist of a combination of two or more materials that are mixed together in order to reach specific structural properties or give a new set of charateristics that neigther single costituents could achieve on their own. Laminated composites, that show anisotropic properties, have completely changed the methodology of design and made possible a wide range of new possibilities as materials for construction. Composites have become especially attractive in the aerospace and aircraft sectors because of their outstanding strength and stiffness-to-density ratios, corrosion resistance and superior physical properties compared to traditional isotropic materials. In fact, Fibre reinforced plastics (CFRP) can and will in the future contribute more than 50% of the structural mass of an aircraft [1]. As well as traditional composites, the socalled smart structures has been developed in the last years, due to their potential applications in aerospace industry, such as: monitoring of composites, suppression of structural vibration, noise suppression, and surface morphing. An overview of several structures and their appications, that are the aim of study in this thesis, is described in this chapter.

1.1.1 Multilayered structures

The most common composite structure is made of a fibrous material embedded in a resin matrix. For istance, Carbon fiber-reinforced plastic (CFRP) is a typical composite for structural applications in aerospace and automotive industries. Fibers are the primary load carrying elements, and the matrix material has the function of keeping the fibers together, acting as a load-transfer medium between fibers, and protecting fibers from the external environment. The composite material is strong and stiff only in the direction of the fibers. Geometrically, fibers have
near crystal-sized diameter and a very high length-todiameter ratio. Constituents used in composites are either metallic or non-metallic. Fibers are commonly made of organic materials such as glass, boron, and graphite. Fiber-reinforced composites for structural applications are often made in the form of a thin layer, called lamina. A multilayerd plate is obtained by stacking uni-directional laminae until specific mechanical properties are reached. The stacking sequence describes the distribution of ply orientations through the laminate thickness. The lamination scheme and material properties of individual lamina provide an added flexibility to designers to tailor the stiffness and strength of the laminate to match the structural stiffness and strength requirements [2].

Figure 1.1: Typical Multilayered structure

1.1.2 Sandwich structures

A Sandwich structure is a special class of composite, obtained by bonding two thin and stiff face sheets to a lightweight and tick core. This kind of composite is especially suitable in order to develop a lightweight structure with high in-plane and flexural stiffness. Sandwich structures are used for producing boat hulls, car hoods and other body part, aircraft panels ecc. The core supports the faces against buckling and resists out-of-plane shear loads, while the skins carry all the bending and in-plane loads. Commonly used materials for facings are composite laminates and metals, while cores are made of metallic and non-metallic honeycombs, cellular foams, balsa wood and trusses. The overall performance of sandwich structures depends on the material properties of the constituents (facings, adhesive and core), geometric dimensions and type of loading.

1.1.3 Functionally Graded Materials

While laminated composite materials provide the design flexibility to achieve desirable stiffness and strength through the choice of lamination scheme, the anisotropic constitution of laminated composite structures often results in stress concentrations near material and geometric discontinuities that can lead to damage in the

Figure 1.2: Typical Sandwich structure
form of delamination, matrix cracking, and adhesive bond separation. Functionally graded materials are a class of composite, consisting of two or more different constituents, designed to have a gradually varying spatial composition profile with a corresponding continuous change in macroscopic properties [7]. The continuous variation in properties of the material reduces thermal stresses, residual stresses, and stress concentration factors. The gradual variation results in a very efficient material tailored to suit the needs of the structure. FGMs are mainly constructed to operate in high-temperature environments such as ultra-light and temperatureresistant materials for space vehicles [9]. They are typically manufactured from isotropic components such as metals and ceramics as they are mainly used as thermal barrier structures in environments with severe thermal gradients [8]. The concept of functionally graded materials was introducted first in Japan in the 80s during a space project, in order to construct a thermal barrier capable of withstanding a surface temperature of 2000 K and a temperature gradient of 1000 K across a 10 mm section. Due to the high thermal stress, conventional thermal barrier coating can easily peel off at the phase boundary. FGM offers an advantage since the thermal stress distribution is smooth. The application of this new material is increased over the years in the aerospace industry. Most aerospace equipment and structures are made of functionally graded materials. These include, for istance, the rocket engine components, the turbine wheels and the turbine blade coatings.

Figure 1.3: Multilayered plate embedding a FGM layer

1.1.4 Carbon-Nanotubes

Carbon nanotubes (CNTs) are allotropes of carbon with a cylindrical nanostructure. Nanotubes have been constructed as hollows with length-to-diameter ratio of up to 132 million, significantly larger than any other material. These cylindrical carbon molecules have unusual properties that are valuable for nanotechnology, electronics, optics, and structural applications. They are derived from the grapheme sheets which are rolled at specific and discrete chiral angles. The combination of the rolling angle and radius affect the nanotube properties. Carbonnanotubes exhibit outstanding mechanical, thermal and electrical properties and they can be considered as a valid alternative to classical fiber reinforced composites. They have low density, high stiffness and strength aspect ratios [5]. It has been shown that CNTs are very strong in the axial direction: Young's modulus on the order of 270-950 GPa and tensile strength of 11-63 GPa [6]. Dispersion of low weight of graphene ($0.02 \mathrm{wt} . \%$) results in significant increases in compressive and flexural mechanical properties of polymeric nanocomposites. Referring to their electronic structure, they exhibit semiconducting, as well as metallic behavior and thus cover the full range of properties important for technology.

Figure 1.4: Single-walled Carbon nanotube

1.1.5 Piezoelectric materials

Research on piezoelectricity started in 1880 when Jaques and Pierre Curie discovered that some kind of crystals were able to generate electric charges under mechanical loads. A charge is generated when molecular electrical dipoles are caused by a mechanical loading: this is called the direct effect (sensor configuration). Conversely, when an electric charge is applied, a slight change occurs in the shape of the structure: that is called the inverse effect (actuator configuration). Thus, piezoelectric materials can be used at the same time as actuators and sensors, obtaining the so-called self-sensing piezoelectric actuator [3]. The most common piezoelectric materials are the piezoceramic barium titanate $\left(\mathrm{BaTiO}_{3}\right)$ and piezo lead zirconate titanate (PZT). The crystal lattice of piezoelectric materials is the face-centered cubic (FCC). Metallic atoms are located at the vertex of the cube, while oxygen atoms are located at the center of the faces. Due to the
slightly shift of an havier atom to positions with less energy, the crystal lattice undergoes deformation. On the other hand, when an elctric field is applied to the structure, the central atom can exceed the potential energy and move to a lower energy configuration. The rupture of symmetry causes the generation of an electric dipole as shown in Figure 1.5.

Figure 1.5: Piezoceramic cell before and after polarization

This phenomenon occurs only when piezoeletric material has a temperature lower than the so called Curie temperature. In fact, due to high thermal agitation the piezoelectric effect disappears. To obtain the piezoelectric effect, piezoceramic material must be subjected to a poling process: It is heated above the Curie temperature and then subjected to an intense electric field during thermal cooling. So all the dipoles are oriented in the same direction and the material obtains a permanent polarization. An Hysteresis curve for polarization of piezoelectric material is shown in Figure 1.6. The piezoelectric layers considered in this work are polarized through the thickness-direction.

Figure 1.6: Poling of piezoelectric materials: Hysteresis of polarization P

Applications of smart structures

Piezoelectric materials are of great interest when designing smart structures, which are systems that are able to sense and react to their environment, through the integration of various elements, such as sensors and actuators. Smart structures that use discrete piezoelectric patches or layers to control the response of a structure have been of considerable interest in recent years. Thanks to the improvement of modern software, it is possible to model coupled thermo-mechanical-electrical systems and to obtain mutual relations between piezoelectric actuator voltages and system response. So by integrating these models into a closed-loop control system, active control can be achieved. Main current and potential applications of smart structure are mentioned:

Structural health monitoring

By embedding sensors in some critical locations of a structural system, it is possible to measure the strain field in order to identify potential damage and mantain structural safety and reliability. Self-diagnostic plays a crucial role in the aeronautical and space industry, where sensing the strain field of some relevant structural subcomponents helps in the conduction of an appropriate maintenance program and in avoiding crack propagation. Self-diagnostic is particular relevant for composites whose the failure prediction is still a challenging task. The monitoring process is performed by measuring the dynamic response from an array of sensors, properly located on the structural system. The measurements are recorded and by a statistical analysis it is possible to extract damage-sensitive features to determine the current state of system health. This concept is widely applied in civil engineering to various forms of infrastructures, ranging from bridges to skyscrapers. The most well-known examples refer to the remote monitoring of bridge deflections, mode shapes, and the corresponding frequencies [3].

Vibration control

Piezoelectric sensors and actuators are employed for vibration damping, attenuation and suppression. They are used to reduce noise and improve the comfort of vehicles, such as cars, trucks, and helicopters. Piezoelectric materials are also effective in passive damping: a part of the mechanical energy introduced into the structural system is converted into electrical energy, according to the piezoelectric effect. Piezoelectric passive damping devices are commonly embedded in highperformance sports devices, such as tennis rackets, baseball bats, and skis. Due to their high strain sensitivity (Sirohi and Chopra 2000), piezoelectric sensors and actuators are easily employed for vibration damping/attenuation/suppression (Inman et al. 2001). The same technique is often employed in spacecraft carrying equipment in a pure operational dynamic environment. Active vibration control is
usually applied in engineering practice in order to suppress dangerous vibrations over a certain range of frequencies, as in the case of helicopter blades (Chopra 2000).

Shape morphing

In the aeronautics field, shape morphing has been used to identify those aircraft wings that undergo certain geometrical changes to enhance or adapt to their mission profiles [4]. In fact, commercial aircraft have to satisfy increasing efficiency requirements and reduce emissions. The means that can be employed to vary the shape of the wing are quite challenging and can vary in complexity, depending on which properties have to be modified: sweep angle, profile, aspect ratio, etc. A smart flexible wing that would be able to perform proper shape changes, without movable rigid parts as flaps, slats, ailerons, and spoilers, would lead to a reduction in drag, weight, and overall system complexity.

Figure 1.7: Sensor-Actuator network for a plate

1.2 Overview on free vibration analysis and control of composite piezoelectric plates

A brief literature review on free vibration analysis and control of composite piezoelectric plates is reported. Fayaz R. Rofooei and Ali Nikkhoo derived the governing differential equation of motion for an un-damped thin rectangular plate with a number of bonded piezoelectric patches on its surface and arbitrary boundary conditions, by using Hamilton's principle [11]. F. Moleiroa, A.L. Araújoa and J.N. Reddy provided a new Benchmark 3D exact free vibration solutions for two different piezoelectric multilayered plates, using piezoelectric polymer polyvinylidene fluoride (PVDF) as material and considering three sets of electrical boundary conditions and three different aspect ratios [12]. Zhu Su, Guoyong Jin and Tiangui Ye investigated the dynamic characteristic of functionally graded piezoelectric plates with different boundary conditions through an unified approach on the basis of first order shear deformation theory. A modified Fourier series is employed in this work, to describe both diplacements and electric potential [13]. Farhad Abada and Jafar Rouzegar used the spectral element method (SEM) for free vibration analysis of FG plate with two piezoelectric layers embedded to the upper and lower surfaces. A first-order shear deformation theory is employed and governing equations are derived by Hamilton's principle and Maxwell's equation. One of the most interesting features is that the number of elements required for getting an acceptable accuracy of results is much lower than FEM [10]. B.A. Selim, L.W. Zhang and K.M. Liew used a novel element-free IMLS-Ritz model, based on Reddy's higher order shear deformation theory to study the free vibration and active control of FG-CNTRC plates with piezoelectric layers [14]. A. Robaldo, E. Carrera and A. Benjeddou presented new finite elements for the dynamic analysis of piezolaminated plates based on the principle of virtual displacement (PVD) and an unified formulation. The full coupling between electric and mechanical field is considered. Both equivalent single layer (ESL) and layer wise model are employed for displacement variables, while a layer wise description is assumed for the electric potential [15]. D.Ballhause, M.D'Ottavio, B.Kroplin and E. Carrera propose a unified formulation for the electro- mechanical analysis of multilayered plates embedding piezo-layers to assess multilayered theories for piezoelectric plates [16]. Chih-Ping, Wu and Hong-Ru Lin developed a unified formulation of finite layer methods based on the Reissner's mixed variational theorem for the dynamic analysis of simply supported, functionally graded carbon nanotube-reinforced composite plates embedded with piezoelectric layers, considering closed and open-circuit surface conditions. The elastic displacement, transverse shear and normal stress, electric potential, and normal electric displacement components are considered as primary variables of the formulation [17]. Y. Kiani analyzed free vibration behavior of carbon nanotube reinforced composite, embedded with two piezoelectric layers at the bottom and top surfaces. The displacement field is apporximated according to the first order
shear deformation plate theory and the electric potential across the piezoelectric thickness is emplyed to be linear. Distribution of CNTs through the thickness of the plate may be functionally graded (FG) or uniformly distributed (UD). The complete set of motion and Maxwell equations of the system are obtained according to the Ritz formulation suitable for arbitrary in-plane and out-of-plane boundary conditions. Close circuit and open circuit boundary conditions on the free surfaces of piezoelectric layers are studied. Chebyshev polynomials are assumed as trial functions in Ritz approximation. frequencies and mode shapes are obtained by solving the eigenvalue system. It is shown that, fundamental frequency of a closed circuit plate is always higher than a plate with open circuit boundary conditions [18]. K. Nguyen-Quang, T. Vo-Duy, H. Dang-Trung and T. Nguyen-Thoi proposed an isogeometric approach for the dynamic response of carbon nanotube reinforced composite (CNTRC) plates integrated with piezoelectric layers. The displacement field is approximated to the higher-order shear deformation theory (HSDT) using the formulation based on Non-Uniform Rational B-Spline (NURBS) basis functions, while a linear function through the thickness of each piezoelectric sub-layer is employed for the electric potential. The single-walled carbon nanotubes (SWCNTs) are assumed to be uniformly distributed (UD) or functionally graded (FG) distributed along the thickness direction. The active control of the plate is based on a velocity feedback control algorithm through a closed-loop control with piezoelectric sensors and actuators [19]. S. Y. Wang, S. T. Quek and K. K. Ang investigated the effect of the stretching-bending coupling of the piezoelectric sensor/actuator pairs on the system stability of smart composite plates. An isoparametric finite element is formulated and the classical negative velocity feedback control method is assumed for the active vibration control analysis of composie plates embedded with distribuited piezoelectric sensors and actuators [20]. X.Q. He, T.Y. Ng, S. Sivashanker and K.M. Liew developed a finite element formulation basend on the classical laminated plate thoery for the shape and vibration control of FGM plates integrated with piezoelectric sensors and actuators. A constant velocity feedback control algorithm is used for the active control of the dynamic response of the FGM plate through closed loop control. Both static and dynamic response are analyzed for an FGM plate of aluminum oxide/Ti-6A1-4V material composition. The effect of the volume fractions and the influence of feedback control gain are examined for static and dynamic responses of the plates [21].

Chapter 2

Constitutive equations

2.1 Equations of Elasticity

2.1.1 Laminate Reference system

The reference system adopted for the plate has the x and y axes which identifies the plate mid-surface Ω and the z axis is orthogonal at both as shown in the figure 2.1.

2.1.2 Generalized Hooke's law

The linear constitutive model for infinitesimal deformation is referred to as the generalized Hooke's law. Stress components are assumed to be linear functions of the strain components and the material coefficients that specify the constitutive relationship between the stress and strain components are assumed to be constant during the deformation. The most general form of the constitutive equations for an elastic material, which does not have a residual stress state σ_{0}, is given as [25]

$$
\left[\begin{array}{l}
\sigma_{11} \tag{2.1}\\
\sigma_{22} \\
\sigma_{33} \\
\tau_{23} \\
\tau_{13} \\
\tau_{33}
\end{array}\right]=\left[\begin{array}{llllll}
C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\
C_{21} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\
C_{31} & C_{32} & C_{33} & C_{34} & C_{35} & C_{36} \\
C_{41} & C_{42} & C_{43} & C_{44} & C_{45} & C_{46} \\
C_{51} & C_{52} & C_{53} & C_{54} & C_{55} & C_{56} \\
C_{63} & C_{64} & C_{65} & C_{66}
\end{array}\right]\left[\begin{array}{c}
\epsilon_{11} \\
\epsilon_{22} \\
\epsilon_{33} \\
\gamma_{23} \\
\gamma_{13} \\
\gamma_{12}
\end{array}\right]
$$

where $C_{i j}$ are the elastic coefficients, σ_{i} are the 6 indipendent components of the stress tensor and ϵ_{j} are the 6 indipendent components of the strain tensor expressed in the the engineering notation. The elastic matrix $[C]$ must be symmetric by virtue of the assumption that the material is hyperelastic. Thus, there are 21 independent stiffness coefficients for the most general anisotropic material.

Figure 2.1: Coordinate system of a plate

Isotropic materials

When there exist no preferred direction in the materials (i.e., the material has infinite number of planes of material symmetry), the number of independent elastic coefficients reduces to 2 . Such materials are called isotropic. For isotropic material we have that the stress-strain relations take the following form [2]

$$
\left[\begin{array}{l}
\sigma_{x x} \tag{2.2}\\
\sigma_{y y} \\
\sigma_{x y} \\
\tau_{x z} \\
\tau_{y z} \\
\tau_{z z}
\end{array}\right]=\left[\begin{array}{cccccc}
C_{11} & C_{12} & 0 & 0 & C_{13} & C_{23} \\
C_{12} & C_{22} & 0 & 0 & 0 & 0 \\
0 & 0 & C_{66} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & C_{55} & 0 \\
C_{13} & C_{23} & 0 & 0 & 0 & C_{33}
\end{array}\right]\left[\begin{array}{c}
\epsilon_{x x} \\
\epsilon_{y y} \\
\gamma_{x y} \\
\gamma_{x z} \\
\gamma_{y z} \\
\epsilon_{z z}
\end{array}\right]
$$

with

$$
\begin{align*}
& C_{11}=C_{22}=C_{33}=\lambda+2 \mu \\
& C_{12}=C_{23}=C_{13}=\lambda \tag{2.3}\\
& C_{44}=C_{55}=C_{66}=\mu
\end{align*}
$$

and

$$
\begin{align*}
& \mu=G=\frac{E}{2(1+\nu)} \tag{2.4}\\
& \lambda=\frac{E \nu}{(1+\nu)(1-2 \nu)}
\end{align*}
$$

μ and λ are referred to as Lamé constants, E indicates the Young's modulus, G is the transverse shear modulus and ν the Poisson's ratio.

Orthotropic materials

When three mutually orthogonal planes of material symmetry exist, the number of elastic coefficients is reduced to 9 and such materials are called orthotropic. The stress-strain relations for an orthotropic material takes the form [25]

$$
\left[\begin{array}{c}
\sigma_{11} \tag{2.5}\\
\sigma_{22} \\
\sigma_{12} \\
\tau_{13} \\
\tau_{23} \\
\tau_{33}
\end{array}\right]=\left[\begin{array}{cccccc}
C_{11} & C_{12} & 0 & 0 & C_{13} & C_{23} \\
C_{12} & C_{22} & 0 & 0 & 0 & 0 \\
0 & 0 & C_{66} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & C_{55} & 0 \\
C_{13} & C_{23} & 0 & 0 & 0 & C_{33}
\end{array}\right]\left[\begin{array}{c}
\epsilon_{11} \\
\epsilon_{22} \\
\epsilon_{12} \\
\gamma_{13} \\
\gamma_{23} \\
\gamma_{33}
\end{array}\right]
$$

with

$$
\begin{align*}
& C_{11}=E_{1} \frac{1-\nu_{23} \nu_{32}}{\Delta}, C_{12}=E_{1} \frac{\nu_{21}-\nu_{31} \nu_{23}}{\Delta}=E_{2} \frac{\nu_{12}+\nu_{32} \nu_{13}}{\Delta} \\
& C_{22}=E_{2} \frac{1-\nu_{13} \nu_{31}}{\Delta}, C_{13}=E_{1} \frac{\nu_{31}-\nu_{21} \nu_{32}}{\Delta}=E_{3} \frac{\nu_{13}+\nu_{12} \nu_{23}}{\Delta} \\
& C_{33}=E_{3} \frac{1-\nu_{12} \nu_{21}}{\Delta}, C_{23}=E_{1} \frac{\nu_{32}-\nu_{12} \nu_{31}}{\Delta}=E_{3} \frac{\nu_{23}+\nu_{21} \nu_{13}}{\Delta} \tag{2.6}\\
& C_{44}=G_{23}, C_{55}=G_{13}, C_{66}=G_{12} \\
& \Delta=1-\nu_{12} \nu_{21}-\nu_{23} \nu_{32}-\nu_{31} \nu_{13}-2 \nu_{12} \nu_{32} \nu_{13}
\end{align*}
$$

The nine independent material coefficients for an orthotropic material are

$$
\begin{equation*}
E_{1}, E_{2}, E_{3}, G_{12}, G_{13}, G_{23}, \nu_{12}, \nu_{13}, \nu_{23} \tag{2.7}
\end{equation*}
$$

where E_{1}, E_{2}, E_{3} are Young's moduli in 1,2 and 3 material direction respectively, $\nu_{i j}$ is Poisson's ratio, defined as the ratio of transverse strain in the jth direction to the axial strain in the ith direction when stressed in the ith direction, and G_{23}, G_{13}, G_{12} are shear moduli in the $2-3,1-3$, and 1-2 planes, respectively.

2.1.3 Characterization of a Unidirectional Lamina

A unidirectional fiber-reinforced lamina is considered as an orthotropic material whose material symmetry planes are parallel and transverse to the fiber direction. The material coordinate axis 1 is taken to be parallel to the fiber, the 2 -axis transverse to the fiber direction in the plane of the lamina, and the 3 -axis is perpendicular to the plane of the lamina. The orthotropic material properties of a lamina are determined either by suitable laboratory tests or through the theoretical approach, called micromechanics approach. The moduli and Poisson's ratio of a fiber-reinforced material can be expressed in terms of the moduli, Poisson's ratios, and volume fractions of the constituents [2]

$$
\begin{align*}
& E_{1}=E_{f} v_{f}+E_{m} v_{m}, \quad \nu_{12}=\nu_{f} v_{f}+\nu_{m} v_{m} \\
& E_{2}=\frac{E_{f} E_{m}}{E_{f} v_{m}+E_{m} v_{f}}, \quad G_{12}=\frac{G_{f} G_{m}}{G_{f} v_{m}+G_{m} v_{f}} \tag{2.8}
\end{align*}
$$

where the subscripts m and f indicate matrix and fiber rispectively. E_{1} is the longitudinal modulus, E_{2} is transverse modulus, ν_{12} is the major Poisson's ratio, and G_{12} is the shear modulus.

Coordinate Transformations

The constitutive relations for an orthotropic material were written in terms of the stress and strain components that are referred to a coordinate system that coincides with the principal material coordinate system. In general the coordinate system used in the problem formulation, does not coincide with the principal material coordinate system. Furthermore, composite laminates have several layers, each with different orientation of their material coordinates with respect to the laminate coordinates. Thus, there is a need to establish transformation relations among stresses and strains in one coordinate system to the corresponding quantities in other coordinate system. These relations can be used to transform constitutive equations from the material coordinates of each layer to the coordinate used in the problem description. Beginning from the stress and strain vector written in both coordinate systems

Figure 2.2: Reference system

$$
\boldsymbol{\sigma}_{m}=\left[\begin{array}{l}
\sigma_{11} \tag{2.9}\\
\sigma_{22} \\
\sigma_{12} \\
\sigma_{13} \\
\sigma_{23} \\
\sigma_{33}
\end{array}\right], \quad \boldsymbol{\epsilon}_{m}=\left[\begin{array}{c}
\epsilon_{11} \\
\epsilon_{22} \\
\gamma_{12} \\
\gamma_{13} \\
\gamma_{23} \\
\epsilon_{33}
\end{array}\right], \quad \boldsymbol{\sigma}=\left[\begin{array}{c}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{x y} \\
\sigma_{x z} \\
\sigma_{y z} \\
\sigma_{z z}
\end{array}\right], \quad \boldsymbol{\epsilon}=\left[\begin{array}{c}
\epsilon_{x x} \\
\epsilon_{y y} \\
\gamma_{x y} \\
\gamma_{x z} \\
\gamma_{y z} \\
\epsilon_{z z}
\end{array}\right]
$$

the relation that links stress and strain components in the two different reference systems can be written as

$$
\begin{align*}
& \boldsymbol{\sigma}=\mathbf{T} \boldsymbol{\sigma}_{m} \\
& \boldsymbol{\epsilon}_{m}=\mathbf{T}^{T} \boldsymbol{\epsilon} \tag{2.10}
\end{align*}
$$

where the rotation matrix T is given as

$$
\mathbf{T}=\left[\begin{array}{cccccc}
\cos (\theta)^{2} & \sin (\theta)^{2} & -\sin (2 \theta) & 0 & 0 & 0 \tag{2.11}\\
\cos (\theta)^{2} & \sin (\theta)^{2} & \sin (2 \theta) & 0 & 0 & 0 \\
\sin (\theta) \cos (\theta) & -\sin (\theta) \cos (\theta) & \cos (\theta)^{2}-\sin (\theta)^{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \cos (\theta) & -\sin (\theta) & 0 \\
0 & 0 & 0 & \sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Thus, by substituting Eq. (2.5) in Eq.(2.10) the constitutive equation, referred to the ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) reference system, are obtained

$$
\begin{equation*}
\boldsymbol{\sigma}=\boldsymbol{T} \boldsymbol{\sigma}_{m}=\boldsymbol{T} \boldsymbol{C}_{m} \boldsymbol{\epsilon}_{m}=\boldsymbol{T} \boldsymbol{C}_{m} \boldsymbol{T}^{T} \boldsymbol{\epsilon} \tag{2.12}
\end{equation*}
$$

Finally assuming

$$
\tilde{C}=\boldsymbol{T} \boldsymbol{C}_{m} \boldsymbol{T}^{T}=\left[\begin{array}{cccccc}
\tilde{C}_{11} & \tilde{C}_{12} & 0 & 0 & \tilde{C}_{13} & \tilde{C}_{23} \tag{2.13}\\
\tilde{C}_{12} & \tilde{C}_{22} & 0 & 0 & 0 & 0 \\
0 & 0 & \tilde{C}_{66} & 0 & 0 & 0 \\
0 & 0 & 0 & \tilde{C}_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & \tilde{C}_{55} & 0 \\
\tilde{C}_{13} & \tilde{C}_{23} & 0 & 0 & 0 & \tilde{C}_{33}
\end{array}\right]
$$

Hooke's law becomes

$$
\begin{equation*}
\sigma=\tilde{C} \epsilon \tag{2.14}
\end{equation*}
$$

2.2 Constitutive equations for FGMs

2.2.1 Material properties of FG-CNT reinforced composite plates

The FG-CNTRC plates are composed of a mixture of CNTs and the polymeric matrix. It is assumed that CNTs are $(10,10)$ armchair single-walled carbon nanotubes (SWCNT) and the matrix is supposed to be isotropic and homogeneous. Four types of linear distributions of CNTs through the thickness are considered, including a uniformly distributed (UD) and three different functionally graded (FG), as shown in the Table 2.1

Table 2.1: Volume fraction of CNTs as a function of thickness coordinate

CNTs Distribution	$V_{C N T}(z)$
UD CNTRC	$V_{C N T}^{*}$
FG-V CNTRC	$V_{C N T}^{*}\left(1+\frac{2 z}{h}\right)$
FG-O CNTRC	$2 V_{C N T}^{*}\left(1-\frac{2\|z\|}{h}\right)$
FG-X CNTRC	$2 V_{C N T}^{*} \frac{2\|z\|}{h}$

Figure 2.3: CNTs Distributions
where

$$
\begin{equation*}
V_{C N T}^{*}=\frac{w_{C N T}}{w_{C N T}+\frac{\rho_{C N T}}{\rho_{m}}-\frac{w_{C N T} \rho_{C N T}}{\rho_{m}}} \tag{2.15}
\end{equation*}
$$

is the CNTs volume fraction, $w_{C N T}$ is the mass fraction of the carbon nanotube in the composite plate, ρ_{m} and $\rho_{C N T}$ are the densities of the matrix and carbon nanotube, respectively. The quantities $V_{C N T}$ and V_{m} represent the volume fraction of the CNTs and the polymeric matrix, respectively, and they are related by the equation $V_{C N T}(z)+V_{m}(z)=1$. The structure of the carbon nanotube strongly influences the overall properties of the composite. Several micromechanical models have been developed to predict the effective material properties of CNTRCs. They can be defined eighter by using the extended Voigt's rule of mixtures or Mori-Tanaka micromechanical model [23]. According to the rule of mixtures, the effective material properties can be expressed as follows [5]:

$$
\begin{align*}
& E_{11}=\eta_{1} V_{C N T} E_{11}^{C N T}+V_{m} E_{m} \\
& \frac{\eta_{2}}{E_{22}}=\frac{V_{C N T}}{E_{22}^{C N T}}+\frac{V_{m}}{E_{m}} \\
& \frac{\eta_{3}}{G_{12}}=\frac{V_{C N T}}{G_{12}^{C N T}}+\frac{V_{m}}{G_{m}} \tag{2.16}\\
& \nu_{12}=V_{C N T} \nu_{12}^{C N T}+V_{m} \nu_{m} \\
& \rho=V_{C N T} \rho_{C N T}+V_{m} \rho_{m}
\end{align*}
$$

Where $E_{11}^{C N T}, E_{22}^{C N T}, G_{12}^{C N T}, \nu_{12}^{C N T}$ and $\rho_{C N T}$ are the Young's modulii, the shear modulus, the Poisson's ratio and the density of the SWCNTs, respectively. E_{m}, G_{m}, ν_{m} and ρ_{m} are the material properties for the isotropic matrix. The efficiency parameters η_{1}, η_{2} and η_{3} are introduced in the equations to take into account the size dependent material properties of the plate. These parameters are chosen to equal the obtained values of Young modulus and shear modulus from the present modified rule of mixtures with the results obtained according to the molecular dynamics approach (MD).

Constitutive relations

The 3D constitutive equations for FG-CNT can be written as

$$
\begin{equation*}
\boldsymbol{\sigma}=\boldsymbol{C}(z) \boldsymbol{\epsilon} \tag{2.17}
\end{equation*}
$$

Where C is the constitutive matrix

$$
\boldsymbol{C}(z)=\left[\begin{array}{cccccc}
C_{11}(z) & C_{12}(z) & 0 & 0 & C_{13}(z) & C_{23}(z) \tag{2.18}\\
C_{12}(z) & C_{22}(z) & 0 & 0 & 0 & 0 \\
0 & 0 & C_{66}(z) & 0 & 0 & 0 \\
0 & 0 & 0 & C_{44}(z) & 0 & 0 \\
0 & 0 & 0 & 0 & C_{55}(z) & 0 \\
C_{13}(z) & C_{23}(z) & 0 & 0 & 0 & C_{33}(z)
\end{array}\right]
$$

2.3 Constitutive equations for piezoelectric materials

The general coupling between the mechanical, electric, and thermal fields can be established using thermodynamical principles and Maxwell's relations. For this purpose, it is necessary to define a Gibbs free-energy function G and a thermopiezoelectric enthalpy density H

$$
\begin{align*}
& G\left(\epsilon_{i j}, E_{i}, \theta\right)=\sigma_{i j} \epsilon_{i j}-E_{i} D_{i}-\eta \theta \\
& H\left(\epsilon_{i j}, E_{i}, \theta, \vartheta_{i}\right)=G\left(\epsilon_{i j}, E_{i}, \theta\right)-F\left(\vartheta_{i}\right) \tag{2.19}
\end{align*}
$$

where $\sigma_{i j}$ and $\epsilon_{i j}$ are the stress and strain components, E_{i} is the electric field vector, D_{i} is the electric displacement vector, η is the variation in entropy per unit of volume, and θ is the temperature considered with respect to the reference temperature $T_{0} . F\left(\vartheta_{i}\right)$ is the dissipation function which depends on the spatial temperature gradient ϑ_{i} and in the most general case is given as:

$$
\begin{equation*}
F\left(\vartheta_{i}\right)=\frac{1}{2} \kappa_{i j} \vartheta_{i} \vartheta_{j}-\tau_{0} \dot{h}_{i} \tag{2.20}
\end{equation*}
$$

where $\kappa_{i j}$ is the symmetric, positive, semi-definite conductivity tensor, τ_{0} is a thermal relaxation parameter and \dot{h}_{i} is the temporal derivative of the heat flux h_{i}. The thermal relaxation parameter is usually omitted in the proposed multifield problems. The thermopiezoelectric enthalpy density H can be expanded in order to obtain a quadratic form for a linear interaction:

$$
\begin{align*}
H\left(\epsilon_{i j}, E_{i}, \theta, \vartheta_{i}\right)= & \frac{1}{2} Q_{i j k l} \epsilon_{i j} \epsilon_{k l}-e_{i j k} \epsilon_{i j} E_{k}-\lambda_{i j} \epsilon_{i j} \theta \\
& -\frac{1}{2} \varepsilon_{k l} E_{k} E_{l}-p_{k} E_{k} \theta-\frac{1}{2} \chi \theta^{2}-\frac{1}{2} \kappa_{i j} \vartheta_{i} \vartheta_{j} \tag{2.21}
\end{align*}
$$

where $Q_{i j k l}$ is the elastic coefficient tensor considered for an orthotropic material in the problem reference system. $e_{i j k}$ are the piezoelectric coefficients and $\epsilon_{k l}$ are the permittivity coefficients. $\lambda_{i j}$ are thermo-mechanical coupling coefficients, p_{k} are the pyroelectric coefficients, and $\chi=\rho C_{v} / T_{0}$, where ρ is the material mass density, C_{v} is the specific heat per unit mass, and T_{0} is the reference temperature. For the piezoelectricity problems, the thermal contributions are not considered and the piezoelectric enthalpy density H coincides with the Gibbs free-energy function G. Hence, equation 2.21 can be rewritten as

$$
\begin{equation*}
H\left(\epsilon_{i j}, E_{i}, \theta, \vartheta_{i}\right)=\frac{1}{2} Q_{i j k l} \epsilon_{i j} \epsilon_{k l}-e_{i j k} \epsilon_{i j} E_{k}-\frac{1}{2} \varepsilon_{k l} E_{k} E_{l} \tag{2.22}
\end{equation*}
$$

The constitutive equations are obtained by considering the following relations:

$$
\begin{equation*}
\sigma_{i j}=\frac{\partial H}{\partial \epsilon_{i j}}, \quad D_{k}=-\frac{\partial H}{\partial E_{k}} \tag{2.23}
\end{equation*}
$$

The constitutive equations for the electromechanical problem are obtained by considering Eq.(2.22) and Eq. (2.23)

$$
\begin{gather*}
\sigma_{i j}=Q_{i j k l} \epsilon_{k l}-e_{i j k} E_{k} \tag{2.24}\\
D_{k}=e_{i j k} \epsilon_{i j}+\varepsilon_{k l} E_{l}
\end{gather*}
$$

Considering a generic multilayered structure, equations 2.24 can be written in their vectorial form in the reference system ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) as

$$
\begin{align*}
& \boldsymbol{\sigma}^{k}=\boldsymbol{Q}^{k} \boldsymbol{\epsilon}^{k}-\boldsymbol{e}^{k T} \boldsymbol{E}^{k} \\
& \boldsymbol{D}^{k}=\boldsymbol{e}^{k} \boldsymbol{\epsilon}^{k}+\boldsymbol{\varepsilon}^{k} \boldsymbol{E}^{k} \tag{2.25}
\end{align*}
$$

Where the strain and stress component vectors are

$$
\boldsymbol{\sigma}^{k}=\left[\begin{array}{c}
\sigma_{x x} \tag{2.26}\\
\sigma_{y y} \\
\sigma_{x y} \\
\sigma_{x z} \\
\sigma_{y z} \\
\sigma_{z z}
\end{array}\right]^{k}, \quad \boldsymbol{\epsilon}^{k}=\left[\begin{array}{c}
\epsilon_{x x} \\
\epsilon_{y y} \\
\gamma_{x y} \\
\gamma_{x z} \\
\gamma_{y z} \\
\epsilon_{z z}
\end{array}\right]^{k}
$$

The electric field \boldsymbol{E}^{k} and electrical displacement \mathbf{D}^{k} vectors are

$$
\boldsymbol{E}^{k}=\left[\begin{array}{l}
E_{x} \tag{2.27}\\
E_{y} \\
E_{z}
\end{array}\right]^{k}, \quad \boldsymbol{D}^{k}=\left[\begin{array}{c}
D_{x} \\
D_{y} \\
D_{z}
\end{array}\right]^{k}
$$

The elastic coefficients matrix \boldsymbol{Q}^{k} of Hooke's law in the problem reference system for an orthotropic material is:

$$
\boldsymbol{Q}^{k}=\left[\begin{array}{cccccc}
Q_{11} & Q_{12} & Q_{13} & 0 & 0 & Q_{16} \tag{2.28}\\
Q_{12} & Q_{22} & Q_{23} & 0 & 0 & Q_{26} \\
Q_{13} & Q_{23} & Q_{33} & 0 & 0 & Q_{36} \\
0 & 0 & 0 & Q_{44} & Q_{45} & 0 \\
0 & 0 & 0 & Q_{45} & Q_{55} & 0 \\
Q_{16} & Q_{26} & Q_{36} & 0 & 0 & Q_{66}
\end{array}\right]^{k}
$$

The matrix ε^{k} of the permittivity coefficients has 3×3 dimensions:

$$
\varepsilon^{k}=\left[\begin{array}{ccc}
\varepsilon_{11} & \varepsilon_{12} & 0 \tag{2.29}\\
\varepsilon_{12} & \varepsilon_{22} & 0 \\
0 & 0 & \varepsilon_{33}
\end{array}\right]^{k}
$$

The piezoelectric coefficients matrix \boldsymbol{e}^{k} has 3×6 dimensions:

$$
\boldsymbol{e}^{k}=\left[\begin{array}{cccccc}
0 & 0 & 0 & e_{14} & e_{15} & 0 \tag{2.30}\\
0 & 0 & 0 & e_{24} & e_{25} & 0 \\
e_{31} & e_{32} & e_{33} & 0 & 0 & e_{36}
\end{array}\right]^{k}
$$

Chapter 3

Plate structural models

3.12 D structural theories

The exact closed-form solution of the fundamental equations of continuum mechanics is generally available only for a few sets of geometries and boundary conditions. In most cases approximated solutions are required to solve the general 3D problem. This has brought, over the years, to the development of a large amount of structural theories in order to reduce the 3D problem to a 2 D or 1 D problem. The choice to reduce the 3D problem is strongly related to the geometric dimensions of structural element that has to be analyzed. There are two main approach to derive structural theories:

- The asymptotic method
- The axiomatic method

The axiomatic method is based on the establishment of a number of hypothesis that cannot be proved mathematically. Thus, it is possible to reduce the mathematical complexity of the 3D elasticity differential equations. This method provides a new set of governing equations that can be solve in a comfortable manner, and sometimes under specific iphotesis, the equations can be easily solved in the close-form. The asymptotic method introduced a geometric parameter in the governing equations that in the case of a 2D theory could be the ratio between the thickness and the length of a plate. One of the advantages by adopting this approch is that all the terms in the equations which multiply the geometric parameter by exponents that are lower or equal to n are preserved for a given value of the exponent. So all the terms have the same order of magnitude and th 2D solution approaches to the 3 D solution when the parameter tends to zero. Despite this method provides a control on the effectiveness of each term in the equations, the development of asymptotic theories are generally more difficult than the axiomatic theories.

3.1.1 Plate reference system

Plates are defined as 2D structural elements with a small thickness h compared to the planar dimensions a and b. Due to this geometric assumption, it is possible to reduce 3D problem to a 2 D one. The reference system assumed for the plate has the x and y axes which identify the plate mid-surface Ω and the z axis is orthogonal at both as shown in the figure 3.1.

Figure 3.1: Coordinate system of a plate

3.1.2 The Unified approach for the displacement field

Dealing with a two-dimensional axiomatic theory, in the most general case the unknown displacements can be expressed as a series expansion through the tickhness coordinate. By the Unified Formulation, introduced by Carrera, the displacemnt field of a 2D structural problem can be expressed as [25]:

$$
\begin{equation*}
\boldsymbol{u}=F_{\tau}(z) \boldsymbol{u}_{\tau}(x, y) \quad \tau=0,1, \ldots ., N \tag{3.1}
\end{equation*}
$$

Where $F_{\tau}(z)$ are generic functions of the plate-thickness coordinate, $\mathbf{u}_{\tau}(x, y)$ is the vector of the unknow diplacements referred to the mid-surface of the plate Ω, and N is the order of expansion that can be arbitrarily chosen. Thus, by expanding the displacement field at any desired order, is possible to include a great number of 2D theories, from classical to advanced theories. For example, considering a Taylorlike polynomial expansion the displacement field assumes the following explicit form:

$$
\begin{align*}
u_{x}(x, y, z) & =u_{x 0}(x, y)+z u_{x 1}(x, y)+z^{2} u_{x 2}(x, y)+\ldots . .+z^{N} u_{x N}(x, y) \\
u_{y}(x, y, z) & =u_{y 0}(x, y)+z u_{y 1}(x, y)+z^{2} u_{y 2}(x, y)+\ldots . .+z^{N} u_{y N}(x, y) \tag{3.2}\\
u_{z}(x, y, z) & =u_{z 0}(x, y)+z u_{z 1}(x, y)+z^{2} u_{z 2}(x, y)+\ldots . .+z^{N} u_{z N}(x, y)
\end{align*}
$$

3.2 Classical plate theories

Dealing with the displacement formulation, since the late 19th century many plate theories have been developed, such as those proposed by Kirchhoff and ReissnerMidlin, see [24]. A brief review of these classical models along with the complete linear expansion are described in this section.

3.2.1 Classical plate theory

In the framework of the Unified Formulation, the Kirchhoff plate theory, referred as Classical Plate Theory (CPT), can be considered as particular case of the $\mathrm{N}=$ 1 model by using a Taylor-like polynomial expansion. The displacement field is expressed as:

$$
\begin{align*}
& u_{x}(x, y, z)=u_{x 0}(x, y)+z u_{x 1}(x, y) \\
& u_{y}(x, y, z)=u_{y 0}(x, y)+z u_{y 1}(x, y) \tag{3.3}\\
& u_{z}(x, y, z)=u_{z 0}(x, y)
\end{align*}
$$

The CPT is derived from the following a-priori assumptions:

1. segments normal to the mid-surface of the plate remain straight after deformation. Thus, the in-plane displacements are assumed to be linear along z as follows:

$$
\begin{align*}
& u_{x}(x, y, z)=u_{x 0}(x, y)+z u_{x 1}(x, y) \\
& u_{y}(x, y, z)=u_{y 0}(x, y)+z u_{y 1}(x, y) \tag{3.4}
\end{align*}
$$

2. segments normal to the mid-surface of the plate remain normal after deformation. This assumption implies that the shear deformations $\gamma_{x z}$ and $\gamma_{y z}$ are neglected:

$$
\begin{align*}
& \gamma_{x z}=u_{z, x}+u_{x, z}=u_{z 0, x}+u_{x 1}=0 \Rightarrow u_{x 1}=-u_{z 0, x} \\
& \gamma_{y z}=u_{z, y}+u_{y, z}=u_{z 0, y}+u_{y 1}=0 \Rightarrow u_{y 1}=-u_{z 0, y} \tag{3.5}
\end{align*}
$$

3. the tickness remains constant after deformation. The out-of-plane deformation $\epsilon_{z z}$ is neglected:

$$
\begin{equation*}
\epsilon_{z z}=u_{z, z}=0 \tag{3.6}
\end{equation*}
$$

Thus, the aforementioned ipothesis can be resumed in the following displacement model:

$$
\begin{align*}
& u_{x}(x, y, z)=u_{x 0}(x, y)-z u_{z 0, x}(x, y) \\
& u_{y}(x, y, z)=u_{y 0}(x, y)-z u_{z 0, y}(x, y) \tag{3.7}\\
& u_{z}(x, y, z)=u_{z 0}(x, y)
\end{align*}
$$

CPT presents three unknown variables $\left(u_{x 0}, u_{y 0}, u_{z 0}\right)$ and the relations amongst them have been derived from kinematic ipothesis. According to the kinematics hypotheses, CPT takes into account the in-plane strains only and neglects the cross-sectional shear deformation phenomena. Figure 3.4 shows the typical distribution of displacement components according to CPT: linear for u_{x} and u_{y} and constant for $u z$. The physical meaning of the derivatives of transversal displacement, $u_{z, x}$ and $u_{z, y}$, is also represented.

Figure 3.2: Kinematics of Kirchhoff plate model

3.2.2 First order shear deformation theory

The first order shear deformation theory (FSDT) is considered as an extesion of the classical plate theory and it is based on Reissner-Midlin ipothesis. The second assumption of Kirchhoff hypothesis is removed, thus the shear deformation is taken into account:

$$
\begin{align*}
& \gamma_{x z}=u_{z, x}+u_{x, z}=u_{z 0, x}+\phi_{x} \\
& \gamma_{y z}=u_{z, y}+u_{y, z}=u_{z 0, y}+\phi_{y} \tag{3.8}
\end{align*}
$$

Where ϕ_{x} and ϕ_{y} are the rotation functions. According to Reissner-Midlin ipothesis, the displacement field can be resumed in the form:

$$
\begin{align*}
& u_{x}(x, y, z)=u_{x 0}(x, y)-z \phi_{x}(x, y) \\
& u_{y}(x, y, z)=u_{y 0}(x, y)-z \phi_{y}(x, y) \tag{3.9}\\
& u_{z}(x, y, z)=u_{z 0}(x, y)
\end{align*}
$$

The unknows increase from to 3 to $5\left(u_{x 0}, u_{y 0}, u_{z 0}, \phi_{x}, \phi_{y}\right)$. Dealing with thin plates, when the in-plane characteristic dimension to thickness ratio is on the order 50 or greater the shear effect disappears and the rotation functions ϕ_{x} and ϕ_{y} approach the respective slopes of the transverse deflections $u_{z 0, x}$ and $u_{z 0, y}$. Figure 3.3 shows the typical distribution of displacement components according to FSDT. Also the physical meaning of the rotations, ϕ_{x} and ϕ_{y}, is represented.

Figure 3.3: FSDT kinematics

3.2.3 The complete linear expansion case $\mathrm{N}=1$

Considering the complete linear expansion case, the plate model has 6 displacement variables: three constant $(\mathrm{N}=0)$ and three linear $(\mathrm{N}=1)$. Thus, the displacement field assumes the following form:

$$
\begin{align*}
& u_{x}(x, y, z)=u_{x 0}(x, y)+z u_{x 1}(x, y) \\
& u_{y}(x, y, z)=u_{y 0}(x, y)+z u_{y 1}(x, y) \tag{3.10}\\
& u_{z}(x, y, z)=u_{z 0}(x, y)+z u_{z 1}(x, y)
\end{align*}
$$

Strain components are obtained by substituting the displacement field in the geometrical relations:

$$
\begin{align*}
& \epsilon_{x x}=u_{x, x}=u_{x 0, x}+z u_{x 1, x} \\
& \epsilon_{y y}=u_{y, y}=u_{y 0, y}+z u_{y 1, y} \\
& \epsilon_{z z}=u_{z, z}=u_{z 1} \\
& \gamma_{x y}=u_{x, y}+u_{y, x}=u_{x 0, y}+u_{y 0, x}+z\left(u_{x 1, y}+u_{y 1, x}\right) \tag{3.11}\\
& \gamma x z=u_{x, z}+u_{z, x}=u_{x 1}+u_{z 0, x}+z u_{z 1, x} \\
& \gamma y z=u_{y, z}+u_{z, y}=u_{y 1}+u_{z 0, y}+z u_{z 1, y}
\end{align*}
$$

The adoption of the complete linear expansion $(\mathrm{N}=1)$ is necessary to introduce the through-the-thickness stretching of the plate, given by $\epsilon_{z z}$. This model leads to a constant distribution along the tickness of the strain component $\epsilon_{z z}$ and a linear distribution of other strain components. The thickness stretching cannot be neglected when the plate is relatively thick.

3.3 Higher order theories

The classical plate models are not able to account for many higher-order effects, such as the second-order out-of-plane deformations. The limitations of these models stimulated the development of higher order shear deformation theories (HSDT), to include the effect of cross sectional warping and to get the realistic variation of the transverse shear strains and stresses through the thickness of plate. Further refinements of FSDT are known as Higher-Order Theories (HOT). In general, higher-order theories are based on displacement models of the following type:

$$
\begin{equation*}
u_{i}(x, y, z)=u_{0}(x, y)+z u_{1}(x, y)+z^{2} u_{2}(x, y)+\ldots . .+z^{N} u_{N}(x, y) \tag{3.12}
\end{equation*}
$$

3.3.1 Reddy's higher-order shear deformation theory

Reddy proposed a third-order plate theory based on the same assumptions as the classical and first-order plate theories, except that the assumption on the straightness and normality of a transverse normal after deformation is removed by expanding the displacements u_{x}, u_{y} as cubic functions of the thickness coordinate [26]. The displacement field is obtained by imposing traction-free boundary conditions on the top and bottom faces of the laminate $\left(\sigma_{y z}(x, y, \pm h / 2)=\sigma_{x z}(x, y, \pm h / 2)=0\right)$:

$$
\begin{align*}
u_{x}(x, y, z) & =u_{x 0}(x, y)+z \phi_{x}(x, y)-\frac{4}{3 h^{2}} z^{3}\left(\phi_{x}+u_{z 0, x}\right) \\
u_{y}(x, y, z) & =u_{y 0}(x, y)+z \phi_{y}(x, y)-\frac{4}{3 h^{2}} z^{3}\left(\phi_{y}+u_{z 0, y}\right) \tag{3.13}\\
u_{z}(x, y, z) & =u_{z 0}(x, y)
\end{align*}
$$

Where $u_{x 0}, u_{y 0}, u_{z 0}, \phi_{x}$ and ϕ_{y} are the unknow variables.

Figure 3.4: Deformation of a transverse normal according to the classical, first order, and third-order plate theories

3.4 Theories on Multylayered structures

Multilayered structures exhibit higher transverse shear and transverse normal flexibilities with respect to in-plane deformability along with a discontinuity of the mechanical properties in the thickness direction. These features require the displacement field and the transverse stresses to satisfy some conditions, summarized with the acronym C_{z}^{0} : the displacement field \boldsymbol{u} should be able to describe sudden changes of slope in correspondence of layer interfaces. This is known as the zig-zag effect (ZZ). Although in-plane stresses σ_{p} can be discontinuos, the Cauchy theorem demands the continuity of the transverse stresses $\boldsymbol{\sigma}_{\boldsymbol{n}}$. The fulfilment of the C_{z}^{0}-Requirements is a crucial point in the development of any theory suitable for multilayered structures.

3.4.1 ZZ theories

The extension of CLT, FSDT and HOT to multilayered plates doesn't permit the C_{0}^{z}-requirements to be fulfilled. Refined theories have therefore been introduced to resolve this problem. These types of theories are referred to as Zig-Zag theories. The idea behind zig-zag theories is that a certain displacement model is assumed in each layer and then compatibility and equilibrium conditions are used at the interface to reduce the number of unknown variables. Lekhnitskii was the first to propose a Zig-Zag theory, which was obtained by solving an elasticity problem involving a layered beam. An independent manner of formulating zig-zag plate/shell theories has been provided in the by Reissner. His formulation permits to satisfy, completely and a priori, the C_{z}^{0}-Requirements by assuming two indipendent fields for diplacements and transverse stresses [27].

3.4.2 ESL models

The theories mentioned in the previous sections consider a number of unknown variables that is independent of the number of constitutive layers Nl. These all are known as Equivalent Single Layer Models (ESL). Although these kinematic theories can describe transverse shear and normal strains, including transverse warping of the cross-section, their approach is kinematically homogeneous in the sense that the kinematics is insensitive to individual layers, unless zig-zag models are used. In the most general case, ESL models appear in the following form:

$$
\begin{align*}
& u_{x}(x, y, z)=u_{x 0}(x, y)+z u_{x 1}(x, y)+z^{2} u_{x 2}(x, y)+\ldots .+z^{N} u_{x N}(x, y) \\
& u_{y}(x, y, z)=u_{y 0}(x, y)+z u_{y 1}(x, y)+z^{2} u_{y 2}(x, y)+\ldots .+z^{N} u_{y N}(x, y) \tag{3.14}\\
& u_{z}(x, y, z)=u_{z 0}(x, y)+z u_{z 1}(x, y)+z^{2} u_{z 2}(x, y)+\ldots .+z^{N} u_{z N}(x, y)
\end{align*}
$$

where N is the order of the Taylor-like polynomial expansion. These higher-order theories are denoted by acronyms ED1, ED2,ED3,...., EDN.

Figure 3.5: Linear and cubic Equivalent single layer expansions

3.4.3 Murakami's zig-zag function

For an ESL theory, the ZZ form of the displacements can be reproduced by introducing the Murakami's function which is able to describe the zig-zag effect [28]. He modified the FSDT theories according to the following model:

$$
\begin{align*}
u_{x}(x, y, z) & =u_{x 0}(x, y)+z u_{x 1}(x, y)+(-1)^{k} \zeta_{k} u_{x Z} \\
u_{y}(x, y, z) & =u_{y 0}(x, y)+z u_{y 1}(x, y)+(-1)^{k} \zeta_{k} u_{y Z} \tag{3.15}\\
u_{z}(x, y, z) & =u_{z 0}(x, y)
\end{align*}
$$

Where the subscript Z is referred to murakami's function and $\zeta_{k}=2 z_{k} / h_{k}$ is the non-dimensioned layer coordinate. The exponent k changes the sign of the zig-zag term in each layer. With the addition of the ZZ function, the discontinuity of the first derivative of the displacement variables can be reproduced through the thickness direction. Transverse normal strain/stress effects can be included in the displacement field, leading to:

$$
\begin{align*}
& u_{x}(x, y, z)=u_{x 0}(x, y)+z u_{x 1}(x, y)+(-1)^{k} \zeta_{k} u_{x Z} \\
& u_{y}(x, y, z)=u_{y 0}(x, y)+z u_{y 1}(x, y)+(-1)^{k} \zeta_{k} u_{y Z} \tag{3.16}\\
& u_{z}(x, y, z)=u_{z 0}(x, y)+z u_{z 1}(x, y)+(-1)^{k} \zeta_{k} u_{z Z}
\end{align*}
$$

Where

$$
\begin{equation*}
F_{0}=1, \quad F_{1}=z, \quad F_{2}=F_{Z}=(-1)^{k} \zeta_{k}, \quad \tau=0,1,2 \tag{3.17}
\end{equation*}
$$

This model is denoted by the acronym EDZ1, in which Z is referred to the inclusion of murakami's function in the displacement field. Higher-order models take the following form:

$$
\begin{align*}
& u_{x}(x, y, z)=u_{x 0}(x, y)+z u_{x 1}(x, y)+\ldots .+z^{N} u_{x N}(x, y)+(-1)^{k} \zeta_{k} u_{x Z} \\
& u_{y}(x, y, z)=u_{y 0}(x, y)+z u_{y 1}(x, y)+\ldots .+z^{N} u_{y N}(x, y)+(-1)^{k} \zeta_{k} u_{y Z} \tag{3.18}\\
& u_{z}(x, y, z)=u_{z 0}(x, y)+z u_{z 1}(x, y)+\ldots . .+z^{N} u_{z N}(x, y)+(-1)^{k} \zeta_{k} u_{z Z}
\end{align*}
$$

That in compact form can be written as:

$$
\begin{equation*}
\boldsymbol{u}=\mathbf{u}_{0}+(-1)^{k} \zeta_{k} \boldsymbol{u}_{Z}+z^{r} \boldsymbol{u}_{r}=F_{\tau} \boldsymbol{u}_{\tau} \quad \tau=0,1, \ldots, N, Z \tag{3.19}
\end{equation*}
$$

Where N is the order of expansion, thus:

$$
\begin{equation*}
F_{0}=1, \quad F_{1}=z, \quad F_{2}=z^{2} \ldots, F_{N}=z^{N}, \quad F_{Z}=(-1)^{k} \zeta_{k} \tag{3.20}
\end{equation*}
$$

These higher-order theories are denoted by acronyms EDZ1,EDZ2, EDZ3,..., EDZN.

Figure 3.6: Cubic case of Murakami's zig-zag function

3.4.4 Layer Wise models

In all equivalent single-layer laminate theories, it is assumed that the displacements are continuous functions of the thickness coordinate. Hence, the transverse stresses at the interface of two layers, are discontinuous. For thin laminates the error introduced due to discontinuous interlaminar stresses can be negligible. However, for thick laminates, the ESL theories can give erroneous results for all stresses, requiring a more accurate approach to include the ZZ effect. By introducing the Layer Wise theories, is possible to obtain a detailed response of individual layer which is considered as an independent plate. The layer wise approach constists of the use of special higher-order theories at layer level which leads to an increase in the number of unknows in the solution process, and consequently to an higher computational cost of the analysis. The compatibility of the displacement components,
corresponding to each interface, is then imposed as a constraint. The thickness variation of the displacement components in each layer can be defined eighter in terms of lagrangian interpolation functions [29] or, more preferred, in terms of Legendre polynomials. For the linear expansion case, the following displacement field is employed:

$$
\begin{align*}
u_{x}^{(k)}(x, y, z) & =F_{t}\left(\zeta_{k}\right) u_{x t}^{(k)}(x, y)+F_{b}\left(\zeta_{k}\right) u_{x b}^{(k)}(x, y) \\
u_{y}^{(k)}(x, y, z) & =F_{t}\left(\zeta_{k}\right) u_{y t}^{(k)}(x, y)+F_{b}\left(\zeta_{k}\right) u_{y b}^{(k)}(x, y) \tag{3.21}\\
u_{z}^{(k)}(x, y, z) & =F_{t}\left(\zeta_{k}\right) u_{z t}^{(k)}(x, y)+F_{b}\left(\zeta_{k}\right) u_{z b}^{(k)}(x, y)
\end{align*}
$$

The subscripts t and b denote values related to the top and bottom layer-surface, respectively. These two terms consist of the linear part of the expansion. The thickness functions $F_{\tau}\left(\zeta_{k}\right)$ have now been defined at the k-layer level:

$$
\begin{equation*}
F_{t}=\frac{P_{0}+P_{1}}{2}, \quad F_{b}=\frac{P_{0}-P_{1}}{2} \tag{3.22}
\end{equation*}
$$

Where $P_{j}=P_{j}\left(\zeta_{k}\right)$ is the Legendre polynomial of the j -order defined in the $\zeta_{k^{-}}$ domain $-1 \leq \zeta_{k} \leq 1$. The first five Legendre polynomials are:

$$
\begin{equation*}
P_{0}=1, P_{1}=\zeta_{k}, P_{2}=\frac{3 \zeta_{k}^{2}-1}{2}, P_{3}=\frac{5 \zeta_{k}^{3}}{2}, P_{4}=\frac{35 \zeta_{k}^{4}}{8}-\frac{15 \zeta_{k}^{2}}{4}+\frac{3}{8} \tag{3.23}
\end{equation*}
$$

The chosen functions have the following interesting properties:

$$
\zeta_{k}=\left\{\begin{array}{l}
1: \quad F_{t}=1 ; \quad F_{b}=0 ; \quad F_{r}=0 \tag{3.24}\\
-1: \quad F_{t}=1 ; \quad F_{b}=0 ; \quad F_{r}=0
\end{array}\right.
$$

That permits to have interface values as unknown variables, avoiding therefore the inclusion of constraint equations to impose C_{0}^{z}-requirements. Higher-order layer-wise theories are written by adding higher-order terms:

$$
\begin{align*}
& u_{x}^{(k)}(x, y, z)=F_{t} u_{x t}^{(k)}+F_{b} u_{x b}^{(k)}+F_{2} u_{x 2}^{(k)}+. .+F_{N} u_{x N}^{(k)} \\
& u_{y}^{(k)}(x, y, z)=F_{t} u_{y t}^{(k)}+F_{b} u_{y b}^{(k)}+F_{2} u_{y 2}^{(k)}+. .+F_{N} u_{y N}^{(k)} \tag{3.25}\\
& u_{z}^{(k)}(x, y, z)=F_{t} u_{z t}^{(k)}+F_{b} u_{z b}^{(k)}+F_{2} u_{z 2}^{(k)}+. .+F_{N} u_{z N}^{(k)}
\end{align*}
$$

Where

$$
\begin{equation*}
F_{r}=P_{r}-P_{r-2}, \quad r=2,3, \ldots, N \tag{3.26}
\end{equation*}
$$

In a compact form the displacement field is given as follows:

$$
\begin{equation*}
\mathbf{u}^{(k)}=F_{t} \mathbf{u}_{t}^{(k)}+F_{b} \mathbf{u}_{b}^{(k)}+F_{r} \mathbf{u}_{r}^{(k)}=F_{\tau} \mathbf{u}_{\tau}^{(k)}, \quad \tau=t, b, r, \quad r=2,3, . ., N \tag{3.27}
\end{equation*}
$$

These higher-order expansions have been denoted by the acronyms LD2,LD3,...,LDN.

Figure 3.7: Linear and cubic Layer-wise expansions

Chapter 4

Theoretical Formulation

4.1 Geometric and constitutive relations in electromechanical problems

The features of multilayered composite plates geometry are shown in the figure 4.1. In the most general case the plate is composed of N_{l} layers which can be made of any kind of materials (piezoelectric or purely elastic). The integer k, used as superscript or subscript, identifies the layer number which starts from the bottom of the plate. The plate middle surface Ω coordinates are indicated by x and y while z is the thickness coordinate. Ω_{k} denotes the k-layer surface domain. z_{k} denotes the local thickness coordinate of each layer. According to the classical nomenclature used in literature, the length of the plate in the x and y direction is indicated by a and b, respectively, while h and h_{k} denote the plate and layer thicknesses. ζ_{k} is the dimensionless local layer-coordinate. A_{k} denotes the k-layer thickness domain. Symbols without the k subscript or superscripts refer to the whole plate.
The notation for the displacement and electric field vectors \boldsymbol{u}^{k} and \boldsymbol{E}^{k} are given as

$$
\boldsymbol{u}^{k}=\left[\begin{array}{l}
u_{x} \tag{4.1}\\
u_{y} \\
u_{z}
\end{array}\right]^{k}, \quad \boldsymbol{E}^{k}=\left[\begin{array}{l}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right]^{k}
$$

Consistently to the reference coordinate system the stress and strain vectors $\boldsymbol{\sigma}^{k}$ and $\boldsymbol{\epsilon}^{k}$ are indicated as follows

Figure 4.1: Multilayered composite plate geometry

$$
\boldsymbol{\sigma}^{k}=\left[\begin{array}{c}
\sigma_{x x} \tag{4.2}\\
\sigma_{y y} \\
\sigma_{x y} \\
\sigma_{x z} \\
\sigma_{y z} \\
\sigma_{z z}
\end{array}\right]^{k}, \quad \boldsymbol{\epsilon}^{k}=\left[\begin{array}{c}
\epsilon_{x x} \\
\epsilon_{y y} \\
\gamma_{x y} \\
\gamma_{x z} \\
\gamma_{y z} \\
\epsilon_{z z}
\end{array}\right]^{k}
$$

The strain-displacement relations are

$$
\begin{equation*}
\boldsymbol{\epsilon}^{k}=\boldsymbol{D} \boldsymbol{u}^{k} \tag{4.3}
\end{equation*}
$$

where \boldsymbol{D} is a differential matrix operator, defined as follows

$$
\boldsymbol{D}=\left[\begin{array}{ccc}
\frac{\partial}{\partial x} & 0 & 0 \tag{4.4}\\
0 & \frac{\partial}{\partial y} & 0 \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & 0 \\
\frac{\partial}{\partial z} & 0 & \frac{\partial}{\partial x} \\
0 & \frac{\partial}{\partial z} & \frac{\partial}{\partial y} \\
0 & 0 & \frac{\partial}{\partial z}
\end{array}\right]
$$

The electric field \boldsymbol{E}^{k} is defined as the gradient of the electric potential Φ^{k}

$$
\boldsymbol{E}^{k}=-\left[\begin{array}{c}
\frac{\partial}{\partial x} \tag{4.5}\\
\frac{\partial}{\partial y} \\
\frac{\partial}{\partial z}
\end{array}\right] \Phi^{k}=\boldsymbol{D}_{p e} \Phi^{k}
$$

In the laminate reference system, the constitutive equations for the kth layer take the following form

$$
\begin{align*}
& \boldsymbol{\sigma}^{k}=\boldsymbol{C}^{k} \boldsymbol{\epsilon}^{k}-\boldsymbol{e}^{k^{T}} \boldsymbol{E}^{k} \\
& \boldsymbol{D}^{k}=\boldsymbol{e}^{k} \boldsymbol{\epsilon}^{k}+\boldsymbol{\varepsilon}^{k} \boldsymbol{E}^{k} \tag{4.6}
\end{align*}
$$

where $\boldsymbol{\sigma}^{k}$ is the stress tensor, $\boldsymbol{\epsilon}^{k}$ is the linear strain tensor, \boldsymbol{C}^{k} is the matrix of the elastic moduli and is given as

$$
\boldsymbol{C}^{k}=\left[\begin{array}{cccccc}
C_{11} & C_{12} & C_{16} & 0 & 0 & C_{13} \tag{4.7}\\
C_{12} & C_{22} & C_{26} & 0 & 0 & C_{23} \\
C_{16} & C_{26} & C_{66} & 0 & 0 & C_{36} \\
0 & 0 & 0 & C_{44} & C_{45} & 0 \\
0 & 0 & 0 & C_{45} & C_{55} & 0 \\
C_{13} & C_{23} & C_{36} & 0 & 0 & C_{33}
\end{array}\right]^{k}
$$

\boldsymbol{e}^{k} is the matrix of the piezoelectric constants and assumes the following form

$$
\boldsymbol{e}^{k}=\left[\begin{array}{cccccc}
0 & 0 & 0 & e_{14} & e_{15} & 0 \tag{4.8}\\
0 & 0 & 0 & e_{24} & e_{25} & 0 \\
e_{31} & e_{32} & e_{33} & 0 & 0 & e_{36}
\end{array}\right]^{k}
$$

\boldsymbol{D}^{k} is the vector of the electric displacement and ε^{k} is the permittivity matrix and is given as

$$
\varepsilon^{k}=\left[\begin{array}{ccc}
\varepsilon_{11} & \varepsilon_{12} & 0 \tag{4.9}\\
\varepsilon_{12} & \varepsilon_{22} & 0 \\
0 & 0 & \varepsilon_{33}
\end{array}\right]^{k}
$$

4.2 Approximations of the mechanical displacement field and electric potential

As mentioned in Section 3.4 the unknown variables \boldsymbol{u}^{k} and Φ^{k} can be expressed as a set of thickness functions that only depend on the thickness coordinate z and the associated variable depending on the in-plane coordinate x and y. The displacement field is assumed by using a generalized expansion that allows to develop both equivalent single layer and layer-wise analyses. Instead the approximation of the potential is restricted only to layer-wise formulation. In fact, due to the significant differences of the electric properties of each layer, the ESL description for the potential is not appropriate to cover these high gradients [16]. The most general displacement field and electric potential assume the following explicit form [5]

$$
\begin{align*}
u_{x}^{k}(x, y, z, t) & =\sum_{\tau_{u_{x}}=1}^{N_{u_{x}}} F_{\tau_{u_{x}}}(z) u_{x_{\tau_{u_{x}}}}^{k}(x, y, t) \\
u_{y}^{k}(x, y, z, t) & =\sum_{\tau_{u_{y}}=1}^{N_{u_{y}}} F_{\tau_{u_{y}}}(z) u_{y_{\tau_{u_{y}}}}^{k}(x, y, t) \\
u_{z}^{k}(x, y, z, t) & =\sum_{\tau_{u_{z}}=1}^{N_{u_{z}}} F_{\tau_{u_{z}}}(z) u_{y_{\tau_{u_{z}}}}^{k}(x, y, t) \tag{4.10}\\
\Phi^{k}(x, y, z, t) & =\sum_{\tau_{\phi}=1}^{N_{\phi}} F_{\tau_{\phi}}(z) \Phi_{\tau_{\phi}}^{k}(x, y, t)
\end{align*}
$$

where $F_{\tau_{u_{x}}}, F_{\tau_{u_{y}}}, F_{\tau_{u_{z}}}$ and $F_{\tau_{\phi}}$ are the thickness functions. According to this approach, the governing differential equations can be written in terms of fundamental nuclei, which are mathematically invariant with respect to both the expansion order and the kinematic description of the unknows. The expansion order of the potential N_{ϕ} is totally indipendent from the expansion of the displacement N_{u}, even if the two orders can be the same. In this case the superscript N_{ϕ} is omitted in the analysis.

4.3 Hamilton's principle

Hamilton's principle (HP) is assumed to derive the governing equations of the electro-mechanical problem in their weak form [33]. The approximated solution is then obtained by using the Hierarchical Trigonometric Ritz Formulation (HTRF) [31]. In its most general form HP can be written as

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}} \delta \mathcal{L}^{k} d t=0 \tag{4.11}
\end{equation*}
$$

where δ is the variational operator, t_{1} and t_{2} are the initial and the generic instant of time. \mathcal{L}^{k} is the Lagrangian for the kth layer and assumes the following form [30]

$$
\begin{equation*}
\mathcal{L}^{k}=T^{k}-\Pi^{k} \tag{4.12}
\end{equation*}
$$

where T^{k} is the kinetic energy and Π^{k} is the total potential energy which includes strain energy, dielectric energy and the external work by point-loads.

$$
\begin{gather*}
T^{k}=\frac{1}{2} \int_{V^{k}} \rho^{k} \dot{\boldsymbol{u}}^{k^{T}} \dot{\boldsymbol{u}}^{k} d V^{k} \\
\Pi^{k}=U_{e l}^{k}+U_{d}^{k}+V^{k}=\frac{1}{2} \int_{V^{k}} \boldsymbol{\epsilon}^{k^{T}} \boldsymbol{\sigma}^{k} d V^{k}-\frac{1}{2} \int_{V^{k}} \boldsymbol{E}^{k^{T}} \boldsymbol{D}^{k} d V^{k}-\sum_{p=1}^{P} \boldsymbol{u}_{p}^{k^{T}} \boldsymbol{F}_{\boldsymbol{p}}^{k} \tag{4.13}
\end{gather*}
$$

Substituting Eq. (4.12) in Eq. (4.11), HP becomes:

$$
\begin{equation*}
\delta \int_{t_{1}}^{t_{2}} \Pi^{k} d t-\delta \int_{t_{1}}^{t_{2}} T^{k} d t=0 \tag{4.14}
\end{equation*}
$$

where the variational form of the kinetic and potential energy can be rearranged as

$$
\begin{gather*}
\delta \int_{t_{1}}^{t_{2}} T^{k} d t=-\int_{t_{1}}^{t_{2}} \int_{V^{k}} \rho^{k} \delta \boldsymbol{u}^{k^{T}} \ddot{\boldsymbol{u}}^{k} d V^{k} d t \\
\delta \int_{t_{1}}^{t_{2}} \Pi^{k} d t=\int_{t_{1}}^{t_{2}} \int_{V^{k}} \delta \boldsymbol{\epsilon}^{k^{T}} \boldsymbol{\sigma}^{k} d V^{k} d t-\int_{t_{1}}^{t_{2}} \int_{V^{k}} \delta \boldsymbol{E}^{k^{T}} \boldsymbol{D}^{k} d V^{k} d t-\sum_{p=1}^{P} \delta \boldsymbol{u}_{p}^{k^{T}} \boldsymbol{F}_{\boldsymbol{p}}^{k} \tag{4.15}
\end{gather*}
$$

By coupling (4.6) in Eq. (4.14) HP becomes

$$
\begin{align*}
& \int_{t_{1}}^{t_{2}} \int_{V^{k}}\left(\delta \boldsymbol{\epsilon}^{k^{T}} \boldsymbol{C}^{k} \boldsymbol{\epsilon}^{k}-\delta \boldsymbol{\epsilon}^{k^{T}} \boldsymbol{e}^{k^{T}} \boldsymbol{E}^{k}-\delta \boldsymbol{E}^{k^{T}} \boldsymbol{e}^{k} \boldsymbol{\epsilon}^{k}-\delta \boldsymbol{E}^{k^{T}} \varepsilon^{k} \boldsymbol{E}^{k}\right) d V^{k} d t \\
& -\sum_{p=1}^{P} \delta \boldsymbol{u}_{p}^{k^{T}} \boldsymbol{F}_{\boldsymbol{p}}^{k}+\int_{t_{1}}^{t_{2}} \int_{V^{k}}\left(\rho^{k} \delta \boldsymbol{u}^{k^{T}} \ddot{\boldsymbol{u}}^{k}\right) d V^{k} d t=0 \tag{4.16}
\end{align*}
$$

subtituting Eq. (4.3), (4.5) in Eq. (4.16) the variational form of Eq. (4.11) can be expressed in terms of the unknown variables \boldsymbol{u}^{k} and Φ^{k}

$$
\begin{align*}
& \int_{t_{1}}^{t_{2}} \int_{V^{k}}\left(\delta \boldsymbol{u}^{k^{T}} \boldsymbol{D}^{T} \boldsymbol{C}^{k} \boldsymbol{D} \boldsymbol{u}^{k}-\delta \boldsymbol{u}^{k^{T}} \boldsymbol{D}^{T} \boldsymbol{e}^{k^{T}} \boldsymbol{D}_{p e} \Phi^{k}-\delta \Phi^{k} \boldsymbol{D}_{p e}^{T} \boldsymbol{e}^{k} \boldsymbol{D} \boldsymbol{u}^{k}\right. \\
& \left.-\delta \Phi^{k} \boldsymbol{D}_{p e}^{T} \varepsilon^{k} \boldsymbol{D}_{p e} \Phi^{k}\right) d V^{k} d t-\sum_{p=1}^{P} \delta \boldsymbol{u}_{p_{i}}^{k^{T}} \boldsymbol{F}_{\boldsymbol{p}_{i}}^{k}+\int_{t_{1}}^{t_{2}} \int_{V^{k}}\left(\rho^{k} \delta \boldsymbol{u}^{k^{T}} \ddot{\boldsymbol{u}}^{k}\right) d V^{k} d t=0 \tag{4.17}
\end{align*}
$$

4.3.1 The Hierarchical Ritz Formulation

In the variational form of (4.17), the mechanical displacement field and electric potential field are unknown functions. To solve these unknowns numerically, it is necessary to use efficient numerical methods to approximate the mechanical displacement field and electric potential field. In this work the Hierarchical Trigonometric Ritz Formulation (HTRF) [34] is employed to derive the GDEs in their weak form. In the Ritz method the displacement vector \boldsymbol{u}^{k} and the potential Φ^{k} are expressed in series expansion and assume the following explicit form [32].

$$
\begin{align*}
& u_{x}^{k}(x, y, z, t)=\sum_{i=1}^{\mathcal{N}} \sum_{\tau_{u_{x}}=1}^{N_{u_{x}}} U_{x \tau_{u_{x} i}}^{k}(t) F_{\tau_{u_{x}}}(z) \psi_{x_{i}}(x, y) \\
& u_{y}^{k}(x, y, z, t)=\sum_{i=1}^{\mathcal{N}} \sum_{\tau_{u_{y}}=1}^{N_{u_{y}}} U_{y \tau_{u_{y} i}}^{k}(t) F_{\tau_{u_{y}}}(z) \psi_{y_{i}}(x, y) \\
& u_{z}^{k}(x, y, z, t)=\sum_{i=1}^{\mathcal{N}} \sum_{\tau_{u_{z}}=1}^{N_{u_{z}}} U_{z \tau_{u_{z} i}}^{k}(t) F_{\tau_{u_{z}}}(z) \psi_{z_{i}}(x, y) \tag{4.18}\\
& \Phi^{k}(x, y, z, t)=\sum_{i=1}^{\mathcal{N}} \sum_{\tau_{\phi}=1}^{N_{\phi}} \Phi_{\tau_{\phi} i}^{k}(t) F_{\tau_{\phi}}(z) \psi_{\phi_{i}}(x, y)
\end{align*}
$$

where \mathcal{N} indicates the order of expansion in the Ritz approximation, $U_{x \tau_{u_{x}} i}, U_{y \tau_{u_{y}}}$, $U_{z \tau_{u_{z}} i}, \Phi_{\tau_{\phi} i}$ are the time-dependent unknown coefficients and $\psi_{x_{i}}, \psi_{y_{i}}, \psi_{z_{i}}, \psi_{\phi_{i}}$
are the Ritz functions appropriately selected with respect to the features of the problem under investigation. Convergence to the exact solution is guaranteed if the Ritz functions are admissible functions in the used variational principle. Highly stable trigonometric functions are assumed as trial functions. The harmonic assumptions used for the displacements and the electric potential are

$$
\begin{align*}
& \psi_{x_{m n}}=\sum_{m=1}^{M} \sum_{n=1}^{N} \cos \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right) \\
& \psi_{y_{m n}}=\sum_{m=1}^{M} \sum_{n=1}^{N} \sin \left(\frac{m \pi x}{a}\right) \cos \left(\frac{n \pi y}{b}\right) \tag{4.19}\\
& \psi_{z_{m n}}=\sum_{m=1}^{M} \sum_{n=1}^{N} \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right) \\
& \psi_{\phi_{m n}}=\sum_{m=1}^{M} \sum_{n=1}^{N} \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right)
\end{align*}
$$

It is known that in Ritz family methods, adoption of a shape function depends only on the essential boundary conditions. In this case on each edge of the plate either electric potential and the displacements should be equal to zero to satisfy simply supported condition and grounded condition, respectively. The armonic displacement and potential field of Eq. (4.18) can be expressed in a compact way as

$$
\begin{align*}
& \boldsymbol{u}^{k}=\boldsymbol{F}_{\tau} \boldsymbol{\Psi}_{u_{i}} \boldsymbol{U}_{\tau i}^{k} \\
& \Phi^{k}=F_{\tau_{\phi}} \psi_{\phi_{i}} \Phi_{\tau_{\phi} i}^{k} \tag{4.20}
\end{align*}
$$

Where:

$$
\boldsymbol{U}_{\tau i}^{k}=\left[\begin{array}{c}
U_{x \tau_{u_{i}} i}^{k} \tag{4.21}\\
U_{y \tau_{u_{y}}}^{k} \\
U_{z \tau_{u_{z}}}^{k}
\end{array}\right], \boldsymbol{\Psi}_{u_{i}}=\left[\begin{array}{ccc}
\psi_{x_{i}} & 0 & 0 \\
0 & \psi_{y_{i}} & 0 \\
0 & 0 & \psi_{z_{i}}
\end{array}\right], \boldsymbol{F}_{\tau}=\left[\begin{array}{ccc}
F_{\tau_{u_{x}}} & 0 & 0 \\
0 & F_{\tau_{u_{y}}} & 0 \\
0 & 0 & F_{\tau_{u_{z}}}
\end{array}\right]
$$

4.3.2 Fundamental Nuclei

Substituting Eq. (4.20) in Eq. (4.17), the variational form of the total potential energy and the kinetic energy become

$$
\begin{align*}
\delta \Pi^{k}= & \delta \boldsymbol{U}_{\tau i}^{k^{T}} \int_{\Omega_{k}} \int_{A_{k}}\left[\boldsymbol{D}\left(\boldsymbol{F}_{\tau} \boldsymbol{\Psi}_{u_{i}}\right)\right]^{T} \boldsymbol{C}^{k} \boldsymbol{D} \boldsymbol{F}_{\tau} \boldsymbol{\Psi}_{u_{i}} d A_{k} d \Omega_{k} \boldsymbol{U}_{s j}^{k} \\
& -\delta \boldsymbol{U}_{\tau i}^{k^{T}} \int_{\Omega_{k}} \int_{A_{k}}\left[\boldsymbol{D}\left(\boldsymbol{F}_{\tau} \boldsymbol{\Psi}_{u_{i}}\right)\right]^{T} \boldsymbol{e}^{k^{T}} \boldsymbol{D}_{p e} F_{s_{\phi}} \psi_{\phi_{j}} d A_{k} d \Omega_{k} \Phi_{s_{\phi} j}^{k} \\
& -\delta \Phi_{\tau_{\psi} i}^{k^{T}} \int_{\Omega_{k}} \int_{A_{k}}\left[\boldsymbol{D}_{p e} F_{\tau_{\phi}} \psi_{\phi_{i}}\right]^{T} \boldsymbol{e}^{k} \boldsymbol{D} \boldsymbol{F}_{s} \boldsymbol{\Psi}_{u_{j}} d A_{k} d \Omega_{k} \boldsymbol{U}_{s j}^{k} \\
& -\delta \Phi_{\tau_{\psi} i}^{k^{T}} \int_{\Omega_{k}} \int_{A_{k}}\left[\boldsymbol{D}_{p e} F_{\tau_{\phi}} \psi_{\phi_{i}}\right]^{T} \varepsilon^{k} \boldsymbol{D}_{p e} F_{s_{\phi}} \psi_{\phi_{j}} d A_{k} d \Omega_{k} \Phi_{s_{\phi}}^{k} \tag{4.22}\\
& -\delta \boldsymbol{U}_{\tau i}^{k^{T}} \sum_{p=1}^{P} \boldsymbol{F}_{\tau \boldsymbol{p}} \boldsymbol{\Psi}_{u_{i} \boldsymbol{p}} \boldsymbol{F}_{p} \\
\delta T^{k}= & -\delta \boldsymbol{U}_{\tau i}^{k^{T}} \int_{\Omega_{k}} \int_{A_{k}}\left[\rho^{k}\left(\boldsymbol{F}_{\tau} \boldsymbol{\Psi}_{u_{i}}\right)^{T}\left(\boldsymbol{F}_{s} \boldsymbol{\Psi}_{u_{j}}\right)\right] d A_{k} d \Omega_{k} \ddot{\boldsymbol{U}}_{s j}^{k}
\end{align*}
$$

The compact form of Eq. (4.22) is

$$
\begin{align*}
\delta \Pi^{k}= & \delta \boldsymbol{U}_{\tau i}^{k^{T}} \boldsymbol{K}_{u u}^{k \tau s i j} \boldsymbol{U}_{s j}^{k}+\delta \boldsymbol{U}_{\tau i}^{k^{T}} \boldsymbol{K}_{u \phi}^{k \tau s i j} \Phi_{s_{\phi} j}^{k} \\
& +\delta \Phi_{\tau_{\psi i}}^{k^{T}} \boldsymbol{K}_{\phi u}^{k \tau s i j} \boldsymbol{U}_{s j}^{k}+\delta \Phi_{\tau_{\psi i}}^{k^{T}} \boldsymbol{K}_{\phi \phi}^{k \tau s i j} \Phi_{s_{\phi} j}^{k}-\delta \boldsymbol{U}_{\tau i}^{k^{T}} \boldsymbol{F}_{s j} \tag{4.23}\\
\delta T^{k}= & -\delta \boldsymbol{U}_{\tau i}^{k^{T}} \boldsymbol{M}^{k \tau s i j} \ddot{\boldsymbol{U}}_{s j}^{k}
\end{align*}
$$

the Ritz primary fundamental nuclei are obtained:

$$
\begin{align*}
\boldsymbol{K}_{u u}^{k \tau s i j} & =\int_{\Omega_{k}} \int_{A_{k}}\left[\boldsymbol{D}\left(\boldsymbol{F}_{\tau} \boldsymbol{\Psi}_{u_{i}}\right)\right]^{T} \boldsymbol{C}^{k} \boldsymbol{D} \boldsymbol{F}_{\tau} \boldsymbol{\Psi}_{u_{i}} d A_{k} d \Omega_{k} \\
\boldsymbol{K}_{u \phi}^{k \tau s i j} & =-\int_{\Omega_{k}} \int_{A_{k}}\left[\boldsymbol{D}\left(\boldsymbol{F}_{\tau} \boldsymbol{\Psi}_{u_{i}}\right)\right]^{T} \boldsymbol{e}^{k^{T}} \boldsymbol{D}_{p e} F_{s_{\phi}} \psi_{\phi_{j}} d A_{k} d \Omega_{k} \\
\boldsymbol{K}_{\phi u}^{k \tau s i j} & =-\int_{\Omega_{k}} \int_{A_{k}}\left[\boldsymbol{D}_{p e} F_{\tau_{\phi}} \psi_{\phi_{i}}\right]^{T} \boldsymbol{e}^{k} \boldsymbol{D} \boldsymbol{F}_{s} \boldsymbol{\Psi}_{u_{j}} d A_{k} d \Omega_{k} \tag{4.24}\\
\boldsymbol{K}_{\phi \phi}^{k \tau s i j} & =-\int_{\Omega_{k}} \int_{A_{k}}\left[\boldsymbol{D}_{p e} F_{\tau_{\phi}} \psi_{\phi_{i}}\right]^{T} \boldsymbol{\varepsilon}^{k} \boldsymbol{D}_{p e} F_{s_{\phi}} \psi_{\phi_{j}} d A_{k} d \Omega_{k} \\
\boldsymbol{M}^{k \tau s i j} & =\int_{\Omega_{k}} \int_{A_{k}}\left[\rho^{k}\left(\boldsymbol{F}_{\tau} \boldsymbol{\Psi}_{u_{i}}\right)^{T}\left(\boldsymbol{F}_{s} \boldsymbol{\Psi}_{u_{j}}\right)\right] d A_{k} d \Omega_{k}
\end{align*}
$$

where $\boldsymbol{M}^{k \tau s i j}$ is the mass fundamental nucleus, $\boldsymbol{K}_{u u}^{k \tau \tau i j}$ is the stiffness fundamental nucleus, $\boldsymbol{K}_{u \phi}^{k \tau s i j}$ and $\boldsymbol{K}_{\phi \phi}^{k \tau s i j}$ are the piezoelectric and permettivity fundamental nuclei respectively.

Table 4.1: Dimensions of the fundamental nuclei

Fundamental Nucleus	Dimension
$\boldsymbol{K}_{u u}^{k \tau s i j}$	$[3 \times 3]$
$\boldsymbol{K}_{u \phi}^{k \tau s i j}$	$[3 \times 1]$
$\boldsymbol{K}_{\phi u}^{k \tau s i j}$	$[1 \times 3]$
$\boldsymbol{K}_{\phi \phi}^{k \tau s i j}$	$[1 \times 1]$
$\boldsymbol{M}^{k \tau s i j}$	$[3 \times 3]$

The explicit forms of the secondary stiffness, piezoelectric, permettivity and mass fundamental nuclei are following reported:

$$
\begin{aligned}
\boldsymbol{K}_{u_{x} u_{x}}^{\tau_{u_{x}} s_{u_{x}}}= & C_{11}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{x}}} F_{s_{u_{x}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{x_{i}, x} \psi_{x_{j}, x}\right) d \Omega_{k}\right] \\
& +C_{16}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{x}}} F_{s_{u_{x}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{x_{i}, x} \psi_{x_{j}, y}\right) d \Omega_{k}\right] \\
& +C_{16}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{x}}} F_{s_{u_{x}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{x_{i}, y} \psi_{x_{j}, x}\right) d \Omega_{k}\right] \\
& +C_{66}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{x}}} F_{s_{u_{x}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{x_{i}, y} \psi_{x_{j}, y}\right) d \Omega_{k}\right] \\
& +C_{55}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{x}}, z} F_{s_{u_{x}}, z}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{x_{i}} \psi_{x_{j}}\right) d \Omega_{k}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{K}_{u_{x} u_{y}}^{\tau_{u_{x}} s_{u_{y}}}=C_{16}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{x}}} F_{s_{u_{y}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{x_{i}, x} \psi_{y_{j}, x}\right) d \Omega_{k}\right] \\
& +C_{12}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{x}}} F_{s_{u_{y}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{x_{i}, x} \psi_{y_{j}, y}\right) d \Omega_{k}\right] \\
& +C_{66}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{x}}} F_{s_{u_{y}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{x_{i}, y} \psi_{y_{j}, x}\right) d \Omega_{k}\right] \\
& +C_{26}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{x}}} F_{s_{u_{y}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{x_{i}, y} \psi_{y_{j}, y}\right) d \Omega_{k}\right] \\
& +C_{45}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{x}}, z} F_{s_{u_{y}}, z}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{x_{i}} \psi_{y_{j}}\right) d \Omega_{k}\right] \\
& \boldsymbol{K}_{u_{x} u u_{z}}^{\tau_{u_{x}} s_{z}}=C_{55}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{x}}, z} F_{s_{u_{z}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{x_{i}} \psi_{z_{j}, x}\right) d \Omega_{k}\right] \\
& +C_{45}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{x}}, z} F_{s_{u_{z}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{x_{i}} \psi_{z_{j}, y}\right) d \Omega_{k}\right] \\
& +C_{13}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{x}}} F_{s_{u_{z}}, z}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{x_{i}, x} \psi_{z_{j}}\right) d \Omega_{k}\right] \\
& +C_{36}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{x}}} F_{s_{u_{z}}, z}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{x_{i}, y} \psi_{z_{j}}\right) d \Omega_{k}\right] \\
& \boldsymbol{K}_{u_{y} u_{x}}^{\tau_{u_{y}} s_{u_{x}}}=C_{16}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{y}}} F_{s_{u_{x}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{y_{i}, x} \psi_{x_{j}, x}\right) d \Omega_{k}\right] \\
& +C_{12}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{y}}} F_{s_{u_{x}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{y_{i}, y} \psi_{x_{j}, x}\right) d \Omega_{k}\right] \\
& +C_{66}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{y}}} F_{s_{u_{x}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{y_{i}, x} \psi_{x_{j}, y}\right) d \Omega_{k}\right] \\
& +C_{26}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{y}}} F_{s_{u_{x}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{y_{i}, y} \psi_{x_{j}, y}\right) d \Omega_{k}\right] \\
& +C_{45}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{y}}, z} F_{s_{u_{x}}, z}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{y_{i}} \psi_{x_{j}}\right) d \Omega_{k}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{K}_{u_{y} u_{y}}^{\tau_{u_{y}} s_{u_{y}}}=C_{26}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{y}}} F_{s_{u_{y}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{y_{i}, y} \psi_{y_{j}, x}\right) d \Omega_{k}\right] \\
& +C_{22}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{y}}} F_{s_{u_{y}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{y_{i}, y} \psi_{y_{j}, y}\right) d \Omega_{k}\right] \\
& +C_{66}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{y}}} F_{s_{u_{y}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{y_{i}, y} \psi_{y_{j}, x}\right) d \Omega_{k}\right] \\
& +C_{26}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{y}}} F_{s_{u_{y}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{y_{i}, y} \psi_{y_{j}, y}\right) d \Omega_{k}\right] \\
& +C_{44}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{y}}, z} F_{s_{u_{y}}, z}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{y_{i}} \psi_{y_{j}}\right) d \Omega_{k}\right] \\
& \boldsymbol{K}_{u_{y} u_{z}}^{\tau_{u_{y}} s_{u z}}=C_{45}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{y}, z}, z} F_{s_{u_{z}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{y_{i}} \psi_{z_{j}, x}\right) d \Omega_{k}\right] \\
& +C_{44}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{y}}, z} F_{s_{u_{z}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{y_{i}} \psi_{z_{j}, y}\right) d \Omega_{k}\right] \\
& +C_{36}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{y}}} F_{s_{u_{z}}, z}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{y_{i}, x} \psi_{z_{j}}\right) d \Omega_{k}\right] \\
& +C_{23}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{y}}} F_{s_{u_{z}}, z}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{y_{i}, y} \psi_{z_{j}}\right) d \Omega_{k}\right] \\
& \boldsymbol{K}_{u_{z} u_{x}}^{\tau_{u_{z}} s_{u_{x}}}=C_{55}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{z}}} F_{s_{u_{x}}, z}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{z_{i}, x} \psi_{x_{j}}\right) d \Omega_{k}\right] \\
& +C_{45}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{z}}} F_{s_{u_{x}}, z}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{z_{i}, y} \psi_{x_{j}}\right) d \Omega_{k}\right] \\
& +C_{13}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{z}}, z} F_{s_{u_{x}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{z_{i}} \psi_{x_{j}, x}\right) d \Omega_{k}\right] \\
& +C_{36}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{z}}, z} F_{s_{u_{x}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{z_{i}} \psi_{x_{j}, y}\right) d \Omega_{k}\right]
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{K}_{u_{z} u_{y}}^{\tau_{u_{z}} s_{u}}= & C_{45}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{z}}} F_{s_{u_{y}}, z}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{z_{i}, x} \psi_{y_{j}}\right) d \Omega_{k}\right] \\
& +C_{44}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{z}}} F_{s_{u_{y}}, z}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{z_{i}, y} \psi_{y_{j}}\right) d \Omega_{k}\right] \\
& +C_{36}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{z}, z}} F_{s_{u_{y}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{z_{i}} \psi_{y_{j}, x}\right) d \Omega_{k}\right] \\
& +C_{23}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{z}, z}} F_{s_{u_{y}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{z_{i}} \psi_{y_{j}, y}\right) d \Omega_{k}\right]
\end{aligned}
$$

$$
\boldsymbol{K}_{u_{z} u_{z}}^{\tau_{z} s_{u z}}=C_{45}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{z}}} F_{s_{u_{z}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{z_{i}, y} \psi_{z_{j}, x}\right) d \Omega_{k}\right]
$$

$$
+C_{44}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{z}}} F_{s_{u_{z}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{z_{i}, y} \psi_{z_{j}, y}\right) d \Omega_{k}\right]
$$

$$
+C_{55}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{z}}} F_{s_{u_{z}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{z_{i}, x} \psi_{z_{j}, x}\right) d \Omega_{k}\right]
$$

$$
+C_{45}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{z}}} F_{s_{u_{z}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{z_{i}, x} \psi_{z_{j}, y}\right) d \Omega_{k}\right]
$$

$$
+C_{33}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{z}}, z} F_{s_{u_{z}}, z}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{z_{i}} \psi_{z_{j}}\right) d \Omega_{k}\right]
$$

$$
\boldsymbol{K}_{u_{x} \phi}^{\tau_{u_{x}} s_{\phi}}=e_{31}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{x}}} F_{s_{\phi}, z}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{x_{i}, x} \psi_{\phi_{j}}\right) d \Omega_{k}\right]
$$

$$
+e_{36}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{x}}} F_{s_{\phi}, z}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{x_{i}, y} \psi_{\phi_{j}}\right) d \Omega_{k}\right]
$$

$$
+e_{14}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{x}}, z} F_{s_{\phi}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{x_{i}} \psi_{\phi_{j}, x}\right) d \Omega_{k}\right]
$$

$$
+e_{24}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{x}}, z} F_{s_{\phi}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{x_{i}} \psi_{\phi_{j}, y}\right) d \Omega_{k}\right]
$$

$$
\begin{aligned}
\boldsymbol{K}_{u_{y} \phi}^{\tau_{u_{y}} s_{\phi}}= & e_{32}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{y}}} F_{s_{\phi}, z}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{y_{i}, y} \psi_{\phi_{j}}\right) d \Omega_{k}\right] \\
& +e_{36}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{y}}} F_{s_{\phi}, z}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{y_{i}, x} \psi_{\phi_{j}}\right) d \Omega_{k}\right] \\
& +e_{15}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{y}, z}} F_{s_{\phi}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{y_{i}} \psi_{\phi_{j}, x}\right) d \Omega_{k}\right] \\
& +e_{25}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{y}, z}} F_{s_{\phi}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{y_{i}} \psi_{\phi_{j}, y}\right) d \Omega_{k}\right] \\
\boldsymbol{K}_{u_{z} \phi}^{\tau_{u_{z} s} s_{\phi}}= & e_{14}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{z}}} F_{s_{\phi}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{z_{i}, x} \psi_{\phi_{j}, x}\right) d \Omega_{k}\right] \\
& +e_{24}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{z}}} F_{s_{\phi}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{z_{i}, x} \psi_{\phi_{j}, y}\right) d \Omega_{k}\right] \\
& +e_{15}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{z}}} F_{s_{\phi}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{z_{i}, y} \psi_{\phi_{j}, x}\right) d \Omega_{k}\right] \\
& +e_{25}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{z}}} F_{s_{\phi}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{z_{i}, y} \psi_{\phi_{j}, y}\right) d \Omega_{k}\right] \\
& +e_{33}^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{z}, z}} F_{s_{\phi}, z}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{z_{i}} \psi_{\phi_{j}}\right) d \Omega_{k}\right] \\
& +\varepsilon_{33}^{k}\left[\int_{A_{k}}\left(F_{\tau_{\phi}, z} F_{s_{\phi}, z}\right) d z\right]\left[\int_{A_{k}}\left(F_{\tau_{\phi}} F_{s_{\phi}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{\phi_{i}, y} \psi_{\phi_{j}, y}\right) d \Omega_{k}\right] \\
\boldsymbol{K}_{\phi \phi}^{\tau_{\phi} s_{\phi}}= & \varepsilon_{11}^{k}\left[\int_{A_{k}}\left(F_{\tau_{\phi}} F_{s_{\phi}}\right) d z\right]\left[\Omega_{k}\right] \\
& +\varepsilon_{12}^{k}\left[\int_{A_{k}}\left(F_{\left.\left.\phi_{\phi_{\phi}, x} \psi_{\phi_{j}, x}\right) d \Omega_{k}\right]} F_{s_{\phi}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{\phi_{i}, x} \psi_{\phi_{j}, y}\right) d \Omega_{k}\right] \\
& \left.\left.F_{s_{\phi}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{\phi_{i}, y} \psi_{\phi_{j}, x}\right) d \Omega_{k}\right]
\end{aligned}
$$

$$
\begin{align*}
& \boldsymbol{M}_{u_{x} u_{x}}^{\tau_{u_{x}} s_{u_{x}}}=\rho^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{x}}} F_{s_{u_{x}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{x_{i}} \psi_{x_{j}}\right) d \Omega_{k}\right] \\
& \boldsymbol{M}_{u_{y} u_{y}}^{\tau_{u_{y}} s_{u_{y}}}=\rho^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{y}}} F_{s_{u_{y}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{y_{i}} \psi_{y_{j}}\right) d \Omega_{k}\right] \tag{4.25}\\
& \boldsymbol{M}_{u_{z} u_{z}}^{\tau_{u_{z}} s_{u_{z}}}=\rho^{k}\left[\int_{A_{k}}\left(F_{\tau_{u_{z}}} F_{s_{u_{z}}}\right) d z\right]\left[\int_{\Omega_{k}}\left(\psi_{z_{i}} \psi_{z_{j}}\right) d \Omega_{k}\right]
\end{align*}
$$

4.3.3 Weak form of the governing equations

The minimization of the total energy of Eq. (4.14) leads to the equation:

$$
\begin{equation*}
\delta \Pi^{k}-\delta T^{k}=0 \tag{4.26}
\end{equation*}
$$

Now coupling Eq. (4.26) with Eq. (4.23) and considering that virtual variations are independent and arbitrary, the discrete form of two set of governing differential equations in terms of fundamental primary nuclei are obtained:

$$
\begin{array}{ll}
\delta \boldsymbol{U}_{\tau i}^{k^{T}}: & \boldsymbol{M}^{k \tau s i j} \ddot{\boldsymbol{U}}_{s j}^{k}+\boldsymbol{K}_{u u}^{k \tau s i j} \boldsymbol{U}_{s j}^{k}+\boldsymbol{K}_{u \phi}^{k \tau s i j} \Phi_{s_{\phi j}}^{k}=\boldsymbol{F}_{s j} \\
\delta \Phi_{\tau i}^{k^{T}}: & \boldsymbol{K}_{\phi u}^{k \tau i j} \boldsymbol{U}_{s j}^{k}+\boldsymbol{K}_{\phi \phi}^{k \tau s i j} \Phi_{s_{\phi} j}^{k}=0 \tag{4.27}
\end{array}
$$

Once the fundamental nuclei have been assembled at structure level as widely discussed in [32], the governing equations take the following form:

$$
\begin{align*}
& \boldsymbol{M} \ddot{\boldsymbol{U}}+\boldsymbol{K}_{u u} \boldsymbol{U}+\boldsymbol{K}_{u \phi} \boldsymbol{\Phi}=\boldsymbol{F} \\
& \boldsymbol{K}_{\phi u} \boldsymbol{U}+\boldsymbol{K}_{\phi \phi} \boldsymbol{\Phi}=0 \tag{4.28}
\end{align*}
$$

where \boldsymbol{U} and $\boldsymbol{\Phi}$ are the vectors of the unknown degrees of freedom related to the elctro-mechanical problem.

4.3.4 Free vibration problem

The free-vibration response of the multilayered plate, by assuming a simple armonic expansion of the variables in the time domain $\boldsymbol{U}=\hat{\boldsymbol{U}} e^{i \omega t}, \boldsymbol{\Phi}=\hat{\boldsymbol{\Phi}} e^{i \omega t}$, leads to the following eigenvalues problem:

$$
\begin{equation*}
\left(\boldsymbol{K}_{u u}^{*}-\omega^{2} \boldsymbol{M}\right) \hat{\boldsymbol{U}}=0 \tag{4.29}
\end{equation*}
$$

where $\boldsymbol{K}_{u u}^{*}$ is the stiffness matrix, obtained applying the static condensation procedure [30]. This procedure requires to solve the second equation of the system in Eq. (4.27) which leads to the expression:

$$
\begin{equation*}
\boldsymbol{K}_{u u}^{*}=\boldsymbol{K}_{u u}-\boldsymbol{K}_{u \phi} \boldsymbol{K}_{\phi \phi}^{-1} \boldsymbol{K}_{\phi u} \tag{4.30}
\end{equation*}
$$

The static condensation has been computed for different advanced theories. Eq. (4.29) is associated to the natural frequencies of an open circuit (OC) plate integrated with piezoelectric layers. On the other hand, dealing with a closed circuit condition (CC), it is assumed that piezoelectric layers are grounded and the electric potential at the free surfaces is identically zero. Therefore, for closed circuit condition, natural frequencies are obtained by set to zero the potential degrees of freedom at the top and bottom surfaces.

Figure 4.2: Electrical boundary conditions

4.4 Dynamic response and Active vibration control of CNT-RC plates with piezoelectric sensor and actuator layers

A laminated FG-CNTRC plate, embedded with piezoelectric layers at the bottom and top surfaces as shown in 4.4, is considered in this section. The top layer is a piezoelectric actuator denoted with subscript a and the bottom layer is a piezoelectric sensor labeled with subscript s.

Figure 4.3: A schematic diagram of a FG-CNTRC plate with integrated piezoelectric sensors and actuators

4.4.1 Velocity feedback control algorithm

The distributed piezoelectric sensing layer monitors the structural oscillation due to the direct piezoelectric effect and the distributed actuator layer suppresses the oscillation via the converse piezoelectric effect. The velocity feedback control approach is employed for the active vibration control of each functionally graded CNTRC plate which can give a velocity component by using an appropriate electronic circuit [14]. When applying any external mechanical force, the composite plate undergoes deformation. Due to this deformation, a sensor output voltage is generated and is sent to the controller. The latter amplifies the sensor voltage and sends it to the actuator as input voltage. Due to the converse piezoelectric effect, stress and strains are generated. A resultant force, which actively suppresses and controls the vibration, is generated. The constant gain velocity feedback G_{v} is used to couple the input actuator voltage vector Φ_{a} and the output sensor voltage as follows

$$
\begin{equation*}
\boldsymbol{\Phi}_{a}=G_{v} \dot{\boldsymbol{\Phi}}_{s} \tag{4.31}
\end{equation*}
$$

Figure 4.4: Close-loop control diagram

When there is no external charge \boldsymbol{Q}, the output voltage from the piezoelectric layer is obtained from the second equation of the system (4.28) as

$$
\begin{equation*}
\boldsymbol{\Phi}_{s}=-\boldsymbol{K}_{\phi \phi}^{s^{-1}} \boldsymbol{K}_{\phi u}^{s} \boldsymbol{U}_{s} \tag{4.32}
\end{equation*}
$$

The sensor charge caused by deformation is given as

$$
\begin{equation*}
\boldsymbol{Q}_{s}=-\boldsymbol{K}_{\phi u}^{s} \boldsymbol{U}_{s} \tag{4.33}
\end{equation*}
$$

When an electric charge \boldsymbol{Q} occurs as external load, Eq. (4.28) become

$$
\begin{align*}
& \boldsymbol{M} \ddot{\boldsymbol{U}}+\boldsymbol{K}_{u u} \boldsymbol{U}+\boldsymbol{K}_{u \phi} \boldsymbol{\Phi}=\boldsymbol{F} \tag{4.34}\\
& \boldsymbol{K}_{\phi u} \boldsymbol{U}+\boldsymbol{K}_{\phi \phi} \boldsymbol{\Phi}=\boldsymbol{Q}
\end{align*}
$$

Eq. (4.34) can be rearranged by static condensation as

$$
\begin{equation*}
\boldsymbol{M} \ddot{\boldsymbol{U}}+\boldsymbol{K}_{u u} \boldsymbol{U}+\boldsymbol{K}_{u \phi} \boldsymbol{\Phi}=\boldsymbol{F}-\boldsymbol{K}_{u \phi} \boldsymbol{K}_{\phi \phi}^{-1} \boldsymbol{Q} \tag{4.35}
\end{equation*}
$$

The actuator layer charge can be obtained by substituting Eqs. (4.31) and (4.32) in the second equation of the system (4.34)

$$
\begin{equation*}
\boldsymbol{Q}_{a}=\boldsymbol{K}_{\phi u}^{a}-G_{v} \boldsymbol{K}_{\phi \phi}^{a} \boldsymbol{K}_{\phi \phi}^{s^{-1}} \boldsymbol{K}_{\phi u}^{s} \dot{\boldsymbol{U}}_{s} \tag{4.36}
\end{equation*}
$$

Now, substituting Eqs. (4.36) and (4.33) in Eq. (4.35), the equation of motion is obtained:

$$
\begin{equation*}
\boldsymbol{M} \ddot{\boldsymbol{U}}+\boldsymbol{C} \dot{\boldsymbol{U}}+\boldsymbol{K}_{u u} \boldsymbol{U}=\boldsymbol{F} \tag{4.37}
\end{equation*}
$$

where \boldsymbol{C} is the active damping matrix computed by

$$
\begin{equation*}
\boldsymbol{C}=\boldsymbol{K}_{u \phi}^{a} \boldsymbol{K}_{\phi \phi}^{s^{-1}} \boldsymbol{K}_{\phi u}^{s} \tag{4.38}
\end{equation*}
$$

If the structural damping is considered in Eq. (4.37), it can be rearranged as

$$
\begin{equation*}
\boldsymbol{M} \ddot{\boldsymbol{U}}+\left(\boldsymbol{C}+\boldsymbol{C}_{S}\right) \dot{\boldsymbol{U}}+\boldsymbol{K}_{u u} \boldsymbol{U}=\boldsymbol{F} \tag{4.39}
\end{equation*}
$$

in which \boldsymbol{C}_{S} is the Rayleigh damping matrix which is computed assuming a linear combination of \boldsymbol{M} and $\boldsymbol{K}_{u u}$ [35]

$$
\begin{equation*}
\boldsymbol{C}_{S}=a_{S} \boldsymbol{M}+b_{S} \boldsymbol{K}_{u u} \tag{4.40}
\end{equation*}
$$

in which a_{S} and b_{S} are Rayleigh damping coefficients that can be determined from experiments.

4.4.2 Dynamic response

The equation of motion is solved by the iterative procedure of Newmark presented in [19]. When the current state of variables $\left(\boldsymbol{U}_{i}, \dot{\boldsymbol{U}}_{i}, \ddot{\boldsymbol{U}}_{i}\right)$ is known at $t=t_{i}$, a new state $\left(\boldsymbol{U}_{i+1}, \dot{\boldsymbol{U}}_{i+1}, \ddot{\boldsymbol{U}}_{i+1}\right)$ at $t=t_{i}+\Delta t$ is computed from
$\left(\frac{1}{\beta \Delta t^{2}} \boldsymbol{M}+\frac{\alpha}{\beta \Delta t}\left(\boldsymbol{C}+\boldsymbol{C}_{S}\right)+\boldsymbol{K}\right) \boldsymbol{U}_{i+1}=\boldsymbol{F}_{i+1}+\boldsymbol{M}\left[\frac{1}{\beta \Delta t^{2}} \boldsymbol{U}_{i}+\frac{1}{\beta \Delta t} \dot{\boldsymbol{U}}_{i}+\left(\frac{1}{2 \beta}-1\right) \ddot{\boldsymbol{U}}_{i}\right]$
$\dot{\boldsymbol{U}}_{i+1}=\left(1-\frac{\alpha}{\beta}\right) \dot{\boldsymbol{U}}_{i}+\left(1-\frac{\alpha}{2 \beta}\right) \Delta t \ddot{\boldsymbol{U}}_{i}+\frac{\alpha}{\beta \Delta t}\left(\boldsymbol{U}_{i+1}-\boldsymbol{U}_{i}\right)$
$\ddot{\boldsymbol{U}}_{i+1}=\frac{1}{\beta \Delta t^{2}}\left(\boldsymbol{U}_{i+1}-\boldsymbol{U}_{i}\right)-\frac{1}{\beta \Delta t} \dot{\boldsymbol{U}}_{i}-\left(\frac{1}{2 \beta}-1\right) \ddot{\boldsymbol{U}}_{i}$
where $\alpha=0.5$ and $\beta=0.25$.

Chapter 5

Numerical Results: Modal analysis

5.1 Laminated orthotropic plate

A laminated orthotropic piezoelectric plate is considered as first test-case of the formulation proposed in Chapter 4. The laminate is made of five layers which are perfectly bonded to each other. The top and bottom layers are made of PZT-4 piezoelectric material with the thickness of $h_{p}=0.1 h$ each. The three structural composite layers (graphite/epoxy) have equal thickness and have a cross-ply configuration $[0 / 90 / 0]$. The material properties are listed in Table 5.1. The plate is simply supported and short circuited $\Phi_{t}=\Phi_{b}=0$. Firstly, in Tables 5.2-5.10 a stability model assessment is carried out by comparing the first six natural frequencies of the plate with the exact solutions provided in [16]. The free vibration analysis is performed with ED, EDZ and LD theories and the expansion order of the potential N_{ϕ} is consider totally indipendent from the expansion order of the displacements N_{u} in order to investigate how N_{ϕ} affects the convergence rate to the exact solutions. The length to thickness ratio is set to $a / h=4$. Secondly, a convergence study on the first six natural frequencies is provided in Tables 5.145.15. Two different length to thickness ratios $a / h=4,50$ are considered. Tables 5.18-5.18 shows the first six natural frequencies of both mechanical and coupled case, computed with all the theories with $a / h=4,100 . \Delta$ denotes the natural frequency increment due to the electro-mechanical coupling and is defined as:

$$
\begin{equation*}
\Delta=\frac{\hat{\omega}_{\text {coupled }}-\hat{\omega}_{\text {uncoupled }}}{\hat{\omega}_{\text {uncoupled }}} \tag{5.1}
\end{equation*}
$$

Figure 5.1: Hybrid sandwich plate [PZT-4/0/90/0/PZT-4]

Table 5.1: Elastic, piezoelectric and dielectric properties of used materials

Property	PZT-4	G_{r} / E_{p}	SWCNT (300 K)	PmPV matrix
$E_{1}(G P a)$	81.3	132.38	5646.6	2.1
$E_{2}(G P a)$	81.3	10.756	7080.0	2.1
$E_{3}(G P a)$	64.5	10.756	7080.0	2.1
ν_{12}	0.329	0.24	0.175	0.34
ν_{13}	0.432	0.24	0.175	0.34
ν_{23}	0.432	0.49	0.175	0.34
$G_{23}(G P a)$	25.6	3.606	19944.5	0.7836
$G_{13}(G P a)$	25.6	5.6537	19944.5	0.7836
$G_{12}(G P a)$	30.6	5.6537	19944.5	0.7836
$e_{14}\left(C / m^{2}\right)$	12.72	0	0	0
$e_{25}\left(C / m^{2}\right)$	12.72	0	0	0
$e_{31}\left(C / m^{2}\right)$	-5.20	0	0	0
$e_{32}\left(C / m^{2}\right)$	-5.20	0	0	0
$e_{33}\left(C / m^{2}\right)$	15.08	0	0	1150
$\varepsilon_{11} / \varepsilon_{0}$	1475	3.5	2000	10
$\varepsilon_{22} / \varepsilon_{0}$	1475	3.0	2000	10
$\varepsilon_{33} / \varepsilon_{0}$	1300	3.0	2000	0
$\rho\left(K g / m^{3}\right)$	7600	1590	1400	0

Table 5.2: Stability model assessment, first six natural frequencies $\hat{\omega}=\omega / 100$ with ED theories for the simply-supported hybrid sandwich plate with $a / h=4$ and $N_{\phi}=1$

$N_{\phi}=1$								
	$\hat{\omega}_{1}$	$\hat{\omega}_{2}$	$\hat{\omega}_{3}$	$\hat{\omega}_{4}$	$\hat{\omega}_{5}$	$\hat{\omega}_{6}$	Ave. $\Delta \%$	Max $\Delta \%$
Exact [16]	57074.5	191301	250769	274941	362492	381036		
ED_{111}^{1}	74105.8979	196021.3374	266337.1465	375608.2780	479222.7800	700380.4385	31.86	83.81
ED_{221}^{1}	74105.8979	195859.5510	262204.0352	375608.2780	479222.7800	698485.3556	31.49	83.31
ED_{331}^{1}	61473.4164	195859.5510	262204.0352	286259.4171	393505.0426	698485.3556	18.44	83.31
ED_{441}^{1}	61465.9329	194604.1491	258178.6509	286473.7018	393324.6765	503759.7573	9.55	32.21
ED_{112}^{1}	69390.2286	196021.3374	266337.1465	373493.0501	459959.1230	700380.4385	29.47	83.81
ED_{222}^{1}	69390.2286	195859.5510	262204.0352	373493.0501	459959.1230	698485.3556	29.09	83.31
$\mathrm{ED}_{3}^{1}{ }^{1}$	58804.8481	195859.5510	262204.0352	282239.2607	371896.3518	698485.3556	16.42	83.31
ED_{442}^{1}	58804.6861	194608.1421	258102.7118	282261.0536	371892.6234	503049.3156	7.49	32.02
ED_{113}^{1}	69390.2286	196019.6456	265905.0854	373493.0500	411310.6474	459959.1230	16.68	35.84
ED_{223}^{1}	69390.2286	195824.5147	259534.2033	373493.0501	391089.3177	459959.1230	15.31	35.84
ED_{333}^{1}	58804.8473	195824.5147	259534.2033	282197.1300	371915.8351	391089.3984	2.79	3.49
$E \mathrm{ED}_{44}^{1}$	58804.4266	194482.2290	253872.0648	282248.7388	371889.5555	388690.7592	2.20	3.03
$E D_{114}^{1}$	69361.4935	196019.6456	265905.0800	373492.5531	411309.3285	459562.1612	16.66	35.84
ED_{224}^{1}	69361.4300	195824.5147	259534.2035	373492.5533	391089.3920	459562.7920	15.29	35.84
ED_{334}^{1}	58676.0567	195824.5147	259534.2029	281814.7058	371233.0035	391089.4338	2.70	3.49
ED_{444}^{1}	58676.1119	194591.7321	254667.5525	281818.8233	371130.6017	389231.8893	2.19	2.81

[^0]

28.7	67^{\prime}	0п01－690168	6708 ¢\％LIL\＆	てヶ9708818て		6907＇769ャ61	6616．8LL89	$\stackrel{\text { ¢¢ }}{\text { \％}}$（GG
79．8	6L＇z	1608．008768	L997987IL\＆	L6LL゙もて818を	9960＇98969\％	990ヶ．9z8961	7ヶ¢8．8TL89	${ }^{\text {¢ \％}}$ ¢ย
78：98	88＇91	890¢ $08969{ }^{\text {¢ }}$	Ł992．008768	2ヵ99\％z6ヶ¢ \％	LL60＇98969\％	990ヶ．9z8961	72888L869	${ }_{\text {²z }}^{\text {\％}}$（\％
18：98	「L＇91	8880．08969t	81820008Lt	9ち99\％z6ヶ¢L8	8806 LL6997	9t986 610961	L9t6 82869	${ }_{\text {TI }}^{2} \mathrm{CH}$
$90^{\circ} 8$	$87^{\prime} 7$	68L9 088068	1696868128	9061＇t9z78\％	7806 99689\％	689才＇8Lt76L	679181889	${ }_{8}^{8+1} \mathrm{CH}$
79\％	$88^{\prime} \mathrm{Z}$	18L2＇008668	0ちて8906ILE	ILLG＇0才てZ8Z	0260＇98969\％	9¢0才＇978961	¢¢L9：81889	${ }^{888} \mathrm{CT}$
18：98	$0 \downarrow$ ¢ ${ }^{\text {a }}$	8L9L $69669 \pm$	Ł069008768	も67I＇86ヶ\＆LE	6960 989697	990才＇988961	0†L9＇8Lも69	${ }_{\text {¢ \％za }}{ }^{\text {\％}}$
¢8：98	L2．91	8192．69669t	8991「で0¢Lt	66zT＇867¢L¢	てせI6 LI6997	9t98 610961	0 ∓ 29 ¢Lも69	${ }_{8}^{811} \mathrm{C}$（\％
70＇z8	$00^{\circ} \mathrm{L}$	980¢＇670809	1896 L06ILE	08L9 697887	8188＇L6089\％	Lんもで609761	97L゙81889	${ }_{\text {2\％}}^{\text {2\％}}$（\％
18：88	\＆「91	7L89＇68¢869	9829 906ILE	616\％＇しゅて\％8\％	モ880＇t07z97	7069 698961		${ }_{\text {\％\％}}^{\text {\％}}$（\％
T\＆＇88	00＇6z	7LE9＇684869	819269669t	キ6zT「86tele	モ880＇t07\％9\％	7069\％698961	0ஏL9 $81 \downarrow 69$	${ }^{\text {zzz }}$ \％${ }^{\text {\％}}$
18＇88	Lわ゙ 6 て	¢GLZ＇888002	8TGL 69669t	も67I＇86ヶ\＆LE	6108＇LE8997	L98t＇IZ0961	0†L9＇8Lも69	${ }_{\text {211 }}^{\text {\％}}$（\％
LZ＇78	99\％6	8898092809	L608＇878¢6\％	020z＇もんち98を	LZIL＇8LI89\％	0691＇も09761	0976 1 LLもL9	${ }_{2}^{\text {Lt }}$ OG
T\＆＇88		ZLE9＇687869	890\％ 909868	9089＇69798\％	モ880＇t07z97	2069\％698961	8969＇6Lもt9	${ }^{\text {¢ \％}}$（\％
18＇88	$6 \downarrow^{\prime}$ I	ZLE9＇684869	L878 9876L		モ880＇t07z97	2069＇698961	0197\％LILTL	${ }_{\text {²z }}^{\text {TH }}$
18＇88	98＇ 18	¢¢LZ＇888002	L878 9876Lも	キ9けで609¢LE	6108＇LE¢997	L98t＇IZ0961	0197でくしたく	${ }_{2}^{11} \mathrm{OH}$
		980188	乙6†て98	ゅ゙6もして	69209\％	L0¢L61	g＇tLOLS	70exg

\％$\nabla^{\text {xew }}$	\％$\nabla \cdot$＇əл ${ }^{\text {V }}$	${ }^{9} \mathrm{~m}$	${ }^{5}$	${ }^{5} \mathrm{~m}$	ε_{0}	${ }^{\text {m }}$	${ }^{1} \mathrm{~m}$	
$\tau={ }^{\phi} N$								

Table 5.4: Stability model assessment, first six natural frequencies $\hat{\omega}=\omega / 100$ with ED theories for the simply-supported hybrid sandwich plate with $a / h=4$ and $N_{\phi}=3$

$N_{\phi}=3$								
	$\hat{\omega}_{1}$	$\hat{\omega}_{2}$	$\hat{\omega}_{4}$	$\hat{\omega}_{5}$	$\hat{\omega}_{6}$	Ave. $\Delta \%$	Max $\Delta \%$	
Exact $[16]^{5} 57074.5$	191301	250769	274941	362492	381036			
ED_{111}^{3}	74117.2611	196021.4358	266337.8024	375609.4465	479236.8289	700388.2760	31.86	83.81
ED_{221}^{3}	74117.2611	195859.5904	262204.0404	375609.4465	479236.8289	698489.6390	31.49	83.31
ED_{331}^{3}	61479.6146	195859.5904	262204.0404	286259.1213	393505.6207	698489.6390	18.44	83.31
ED_{441}^{3}	61471.9611	194604.1729	258178.7170	286475.9281	393323.2446	503761.4767	9.55	32.21
ED_{112}^{3}	69413.6742	196021.4358	266337.8024	373493.1295	459959.7522	700388.2760	29.47	83.81
ED_{222}^{3}	69413.6742	195859.5904	262204.0404	373493.1295	459959.7522	698489.6390	29.10	83.31
ED_{332}^{3}	58818.5899	195859.5904	262204.0404	282241.3435	371905.8018	698489.6390	16.43	83.31
ED_{442}^{3}	58818.4292	194610.0679	258093.2206	282263.8187	371902.0685	503049.6747	7.50	32.02
ED_{113}^{3}	69413.6742	196019.8645	265917.9172	373493.1295	413043.4039	459959.7522	16.77	35.84
ED_{223}^{3}	69413.6742	195825.4056	259586.1198	373493.1295	392801.9334	459959.7522	15.40	35.84
ED_{333}^{3}	58818.5898	195825.4056	259586.1199	282244.1329	371905.1891	392802.0161	2.88	3.52
ED_{443}^{3}	58818.1469	194478.3788	253951.6203	282250.9981	371898.8807	390375.6033	2.28	3.05
ED_{114}^{3}	69373.9557	196019.8645	265917.9117	373492.5650	413042.0289	459580.2197	16.74	35.84
ED_{224}^{3}	69373.8799	195825.4056	259586.1200	373492.5653	392802.0094	459580.8401	15.37	35.84
ED_{334}^{3}	58713.8517	195825.4056	259586.1194	281825.2785	371253.9588	392802.0521	2.80	3.52
ED_{444}^{3}	58713.9162	194591.6096	254739.2456	281830.1418	371144.1310	390959.0008	2.29	2.87

[^1]

28.7	$87^{\prime} 7$	モ996．096068	9858＇8tILLE	z\＆Lz 088187	9L8868Lİg	\＆LZI＇Z6¢も6I	LZZ6．8LL89	${ }_{\text {Pro }}^{\text {¢ }}$ OG
79\％	6L＇z	7\％90 708768	8LI9687tLe	$6188 \cdot 98818 \%$	モ6It 989696	990ャ¢ 988 ¢6	Lぃ\％88L289	
18：98	L8＇91	9992．08969t	๖600＇ 708768	7999\％6ち\＆2\％	00zI 98969 \％	990¢．988961	0068 ¢ 8869	${ }_{\text {¢ }}^{\text {¢ }}$［1］
18：98	¢ $2 \cdot 91$	907\％ 08969 ¢		0999\％ 767828	LLL6：2L6997	9¢986610961	999682869	
90%	$87^{\prime} 7$	LIt9＇888068	0995668TLE	0996099zz8z	8LE8＇09689Z	0でだ8Lれt6I	268181889	${ }_{\text {¢ }}^{8 \pm \mathrm{F}} \mathrm{O}$
79．8	$88^{\prime} 7$	1910＇z08668	もLZ6＇も06ILE	6681＇もゅで88\％	66IL 98969\％	990٪＇9z8961	8689：81889	${ }_{\text {E }}^{88} \mathrm{E}$（TG
18：98	$0 \downarrow$ ¢ ${ }^{\text {a }}$	ZZ92 69669t	モ¢¢6＇ 08768	967I＇867\＆LE	86İ 98969 亿		てTL9＇8Lも69	${ }_{\text {¢ }}^{\text {¢ }}$ ¢ CH
18＇98	L2＇91	7Z9L 69669t	680ヵ－8t08Lt	9671－867\＆2\％	ZLI6 LL6997	9798＇610961	て「29 ¢Lt69	${ }_{5}^{8!} \mathrm{CH}$
70＇z8	$0 \mathrm{C}^{2} 2$	6701．0c0e0s	9096＇ 066 LLE	68L9． 797788	z8E\＆¢0189\％	7890＇809761	LLZヤ＇81889	$\stackrel{\square}{\text { \％}}$
L¢ 88	8\％＇91	0689＇684869	0899906ILE	9979 Lぃてz8\％	モ0ャ0＇ 076797	¢069＇698961	6689＊81889	
18． 88	00＇6z	0689＇68¢869	7Z92．69669t	9671－8678LE	モ0ฑ0＇t07z9\％	¢069 698961	7¢29 ELも69	${ }_{\text {zzz }}^{\text {zza }}$
18＇88	Lわ゙ 6 て	09L7＇888002	ZZ9L＇69669t	967I＇ $8678 L 8$	¡て08＇L8899\％	898ヤ＇${ }^{\circ}$ Z0961	てTL9＇8Lも69	
L7：78	$9^{9} 9^{6}$	L988＇192809	7687＇978868	0288＇697987	9812．8LI897	6zLI＇J09t6I	LZ90 ZLよt9	${ }_{\text {It }}^{\text {It }}$ OH
18\％8	モだ8I	0689＇68¢869	モロI8＇ 009868	8\＆700097987	モ0ฑ0＇ 0 07z9	¢069 698961	1819 62よt9	${ }_{\text {％}}^{\text {¢ }}$（GB
T\％＇88	$6 \downarrow^{\prime}$ IE	0689＇68¢869	6878 ${ }^{\circ} 98762 \pm$	997ぢ609¢LE	モ0ฑ0＇キ07z9\％	Ł069＇698961	U197\％LIṫL	${ }_{\text {Izzag }}$
18＇88	98＇ 18	09LZ 888002	6878 ${ }^{\circ} 98762 \square$	997た＇609928	Łて08＇L8¢99\％	898ヶ＇LZ0961	LI972LItL	
		980188	乙6ちて98	ゅも6たL	69209\％	208L6I	g＇tLOLS	［91］ұวех且

\％ $\mathrm{V}^{\text {xen }}$	$\% \nabla \cdot \partial \lambda \mathrm{~V}$	9	9 m	TM	${ }^{8} \mathrm{~m}$	${ }^{\text {a m }}$	${ }^{1} \times$	
$t={ }^{\phi} N$								

Table 5.6: Stability model assessment, first six natural frequencies $\hat{\omega}=\omega / 100$ with EDZ theories for the simply-supported

$N_{\phi}=1$								
	$\hat{\omega}_{1}$	$\hat{\omega}_{2}$	$\hat{\omega}_{3}$	$\hat{\omega}_{4}$	$\hat{\omega}_{5}$	$\hat{\omega}_{6}$	Ave. $\Delta \%$	Max $\Delta \%$
Exact [16]	57074.5	191301	250769	274941	362492	381036		
EDZ_{111}^{1}	63198.5291	195965.2576	266195.2458	298704.5651	427699.8535	455511.7257	10.92	19.54
EDZ_{221}^{1}	63198.5291	195721.4541	260861.0564	298704.5651	427699.8535	436972.9467	9.73	17.99
EDZ_{331}^{1}	60049.1222	195721.4541	260861.0564	284231.2261	390425.7237	436972.9460	6.22	14.68
EDZ_{441}^{1}	60049.0768	202608.4421	205792.3973	284231.5013	332979.5044	390420.8769	7.17	17.93
EDZ_{112}^{1}	60591.7886	195965.2576	266195.2458	293425.3742	404981.6474	455511.7257	8.79	19.54
EDZ_{222}^{1}	60591.7886	195721.4541	260861.0564	293425.3743	404981.6473	436972.9452	7.60	14.68
EDZ_{332}^{1}	57643.9335	195721.4541	260861.0564	279710.7652	369966.1081	436972.9460	4.30	14.68
EDZ_{442}^{1}	57643.9194	202404.5353	239286.2874	279710.5512	329197.9991	369966.0809	4.20	9.18
EDZ_{113}^{1}	60591.7885	195924.5307	265890.1994	293425.3742	404981.6472	410256.8443	6.79	11.72
EDZ_{223}^{1}	60591.7886	195710.4249	259524.2996	293425.3743	389487.1322	404981.6474	5.40	7.45
EDZ_{333}^{1}	57643.9407	195710.4249	259524.3011	279710.8463	369965.9743	389487.1721	2.13	3.49
EDZ_{443}^{1}	57643.7109	186624.5173	229167.7980	279710.7703	321125.9438	369969.7271	4.68	11.41
EDZ_{114}^{1}	60582.5701	195924.5310	265890.1970	293311.1818	404964.3277	410256.7593	6.78	11.72
EDZ_{224}^{1}	60582.6543	195710.4248	259524.3024	293313.7372	389487.2534	404963.4363	5.39	7.45
EDZ_{334}^{1}	57547.0221	195710.4247	259524.3045	279394.9219	369075.9734	389487.2813	2.05	3.49
EDZ_{444}^{1}	57546.9234	194430.8380	254668.5904	279394.1024	369072.3898	387722.4067	1.53	1.81

[^2]

ゅ！${ }^{\text {d }}$	79 ${ }^{\text {I }}$	8¢91＇t6L688	008ヶ＇891698		989¢＇68Lt¢	999c．ettr6	6eticgele	
L9\％ 8	L＇\％	76969．972068	L909＇960698	¢¢L801t6L	7891．02969\％	L89900LL961	8L09－8L9L9	${ }^{\text {8\％}}$ ZQ⿴囗
62.4	$9 ¢^{\circ} \mathrm{C}$	L8LI「996ヶ0巾	06069\％2068	6L9ヵ＇tL\＆\＆6z	6891． 02969 \％	8899\％012961	L¢96：00909	${ }^{\text {vzz }} \mathrm{Z} \mathrm{ZQ}{ }^{\text {a }}$
Z2．LI	¢8．9	888\％909 LIt		862も゙もLを¢6\％	80¢ヶ．906997	8901－9z6961	999600909	
te＇LI	2L＇も	98L6．926698	0298＇9990z\％	6Lもq＇ELL6LZ	9610＇6L767\％	ELEL＇09t985	ELIC $9 ¢ 929$	${ }_{8}^{8 \square} \mathrm{Z}$ ZGA
$\mathrm{LC}^{\prime} \mathrm{E}$	$07^{\prime} 7$	18L2．9tL068	L®80＇†L6698	0z02＇ELL6LZ	9TLI＇02969\％	もt99＇012961	6ILL＇99929	${ }^{88} \varepsilon_{\text {ZGU }}$
$6 L^{\circ} \mathrm{L}$	$\angle \mathrm{LG}$	9879．28670t	9782．9t2068	1820 87ヶ¢6\％	289102969\％	Lt99\％012961	1087＇90909	${ }_{\text {8zz }}^{\text {z }}$ ZGT
Z2．LI	98.9	02IC＇909LIt	9879．286п0才	1820 87ヶ¢6\％	679＋＇906997	0901＇976961	108ち「0909	
$07^{\prime} 6$	LZ＇t	9£¢\％＇tL6698	8げ6 781678	698\％¢1 L6L	0086＇ 187686	0¢61＇80才z0\％	0769 99929	
$89^{\prime \prime} \mathrm{J}$	L\＆＇\downarrow	9¢LZ＇もL698も	モぁ¢で「L6698	99Lgest 626	9L90＇t9809\％	L667＇LZL961	0802．99929	${ }^{\text {z8\％}}$ ZQU
$62^{\circ} 2$	LTG	9879．286ヶ0才	9782．9t2068		L891 029696	Lt9900L296	L08巿「¢0909	
99\％61	62．8	8062．07esett	9879．28670才	18L0 87te6z	¢070－96199\％	6188＇996961	108ち「0909	
16：21	LI＇L	9870＇Lてヤ068	8807＇ 286788	90L9． 187 ¢ 88	8986 $2 ⿰ ㇒ ⿻ 土 一$ 8907		$68788^{\circ} \mathrm{COO9}$	
$89^{\prime \prime} \mathrm{t}$	27．9	9¢LZ＇もL698币	8688997ヶ068	868て＇ 187 ¢ 8 \％	9L90＇t9809\％	L667＇LZL961	LZ88 ${ }^{\text {¢ }}$ ¢009	
6621	82＇6	89LZ＇†L698币	6¢09＊00LLZも	モ¢99＇t0 ${ }^{\text {c }}$	†L90＇t9809\％	L667＇LZL961	698L＇ 00789	${ }^{\text {ızz }} \mathrm{ZQG}$
99\％61	Z6＇01	8062＇07999t	6909．00LLても		¢070＇961997	6188996961	698L＇ 00789	${ }^{\text {r1t }} \mathrm{ZQQA}$
		980188	76†て9¢	โも6†Lて	69209\％	L0\＆161	9＇t2029	

\％$\nabla^{\text {xen }}$	\％$\nabla^{\prime 2}$ ว V	$9 \times$	${ }^{9} \mathrm{~m}$	${ }^{5}$	${ }^{8}$	z_{0}	${ }^{1} \mathrm{~m}$

 $\tau={ }^{\phi} N$

Table 5.8: Stability model assessment, first six natural frequencies $\hat{\omega}=\omega / 100$ with EDZ theories for the simply-supported

$N_{\phi}=3$								
		$\hat{\omega}_{2}$	$\hat{\omega}_{3}$	$\hat{\omega}_{4}$	$\hat{\omega}_{5}$	$\hat{\omega}_{6}$	Ave. $\Delta \%$	Max $\Delta \%$
$\mathrm{Exact} \mathrm{[16]}^{2}$	57074.5	191301	250769	274941	362492	381036		
EDZ_{111}^{3}	63204.7360	195965.3820	266196.0209	298704.5655	427700.5062	455520.7908	10.92	19.55
EDZ_{221}^{3}	63204.7360	195721.4999	260861.0697	298704.5655	427700.5062	436974.2785	9.73	17.99
EDZ_{331}^{3}	60054.8901	195721.4999	260861.0698	284231.3643	390427.2029	436974.2778	6.22	14.68
EDZ_{441}^{3}	60054.8459	202616.6481	205908.3947	284231.5074	332985.4968	390421.0449	7.17	17.89
EDZ_{112}^{3}	60605.4803	195965.3820	266196.0209	293428.0736	404987.5293	455520.7908	8.79	19.55
EDZ_{222}^{3}	60605.4803	195721.4999	260861.0698	293428.0736	404987.5293	436974.2770	7.61	14.68
EDZ_{332}^{3}	57656.7144	195721.4999	260861.0698	279713.5753	369974.4015	436974.2778	4.31	14.68
EDZ_{442}^{3}	57656.7007	202402.9022	239167.0428	279713.3526	329143.8457	369974.3774	4.21	9.20
EDZ_{113}^{3}	60605.4803	195925.1076	265906.4573	293428.0736	404987.5294	411607.4504	6.85	11.72
EDZ_{223}^{3}	60605.4803	195710.5650	259570.1776	293428.0736	390746.6096	404987.5293	5.47	7.79
EDZ_{333}^{3}	57656.7172	195710.5652	259570.1855	279713.6605	369974.2928	390746.6533	2.20	3.51
EDZ_{443}^{3}	57656.4366	186532.8123	229423.8995	279713.5894	320900.5197	369978.9103	4.69	11.47
EDZ_{114}^{3}	60600.9666	195925.1078	265906.4552	293314.4996	404965.1782	411607.3658	6.84	11.72
EDZ_{224}^{3}	60600.9666	195710.5648	259570.1827	293314.4997	390746.7843	404965.1782	5.46	7.79
EDZ_{334}^{3}	57578.6037	195710.5647	259570.1870	279410.6729	369096.1536	390746.8441	2.11	3.51
EDZ_{444}^{3}	57575.2686	194436.0311	254739.5909	279395.0747	369160.6618	389064.1778	1.61	2.11

[^3]

$62^{\circ} \mathrm{I}$	$9{ }^{1}{ }^{1}$	868\％＇860988	18ちで266898	L L8ャ゙90币6L	๖て¢て＇c02t¢		L才70－989 29	
L9\％	LI＇Z	9ちも8．97L068	9810 ¢60698	8676．80п62	0281．02969	Lt9900tLe6I	†L90669L9	
62： 2	97.9	7821－99600	828L＇97L068	866ぢキ！8\＆6z	0881．02969	879900LL961	999600909	
2L＇IL	¢8．9	E998 L09LIt	784．996п0¢			8201．976965	999600909	
Lt＇II	Z2＇も	1862＇SL6698	も669＇†68078	L9E9＇ELL6LZ	¢887＇LIL6z\％	L976 ${ }^{\text {¢ }}$ ¢981	9679 99929	
L9．8	${ }_{0} 7^{\prime} \mathrm{Z}$	L889 97L068	L980＇† 26698	8969 \＆L 62 Z	ZLLI 02969\％	0999\％0TL961	Ø07L－99929	${ }_{\text {88\％}}^{88} \mathrm{ZGG}$
62： 2	$2 \square^{\circ} \mathrm{C}$	868c＇28670才	†109 9†L068	9820 87ヶ¢6\％	69LI 029696	0999＇012961	808ち＇90909	
Z2＇IL	$98 \cdot 9$	F09t LO9LIt	ع6z9 28670 ¢	98L0 87ヶ¢6\％	EL9t＇906997	9201＇976961	808ち「0909	
$07^{\prime} 6$	Lでも	66LE＇t 26698	9t98＇tぁl6ze	0¢L8ELL6LZ	L067＇t9168\％	8688＇ $70 \not$ ¢70\％	200L＇99929	
$89^{\prime \prime} \mathrm{I}$	LE＇も	8LLでVL698t	6LLキ＇キL6698	ZILC＇ELL6LZ	8690＇ 198097	6667＇${ }^{\circ}$ ZL961	LELL＇99929	${ }_{\text {z8\％}}^{\text {\％\％}}$
$89^{\prime \prime} \mathrm{I}$	192	0LLZ＇VL698t	8679．L86ヶ0才	98L0 87t¢6\％	8690＇ 198097	666ち＊LZL96I	808†＇ 0909	${ }_{\text {zzz }}^{\text {żG日 }}$
99\％61	$08^{\circ} 8$	8062：07gcst	ع6z\％ 28670 ¢	L8L0 87ヶ¢6\％	6070 961997	0788＇996961	ع08ち「90909	
$06 \% 1$	2I＇2	ZてL「してฑ068	9688 986788	9619．18てゅ¢8	2618．028907	1668¢¢1970z		
$89^{\prime \prime} \mathrm{t}$	\％7＇9	8LLZ＇VL698t		ع901＇18てャ8\％	8690＇19809\％	666ち＇LZL961	8068 ${ }^{\text {cs009 }}$	
$66^{\circ} \mathrm{LI}$	8L＇6	18LでもL698t	7909．00LLてワ	9c99＇t0 2867	1020＇t9809\％	666ち＊LZL961	098L＇$\quad 0789$	
9961	Z601	8062．07999t	7909．00LLても	9¢99＇t0 ${ }^{\text {c }}$	6070 96199\％	0788＇996961	098L＇\quad 0789	
		980188	Z6ฑ798	โも6†Lて	69209z	L08L61	9＇tLOLS	

$\% \nabla \mathrm{xen}$	$\% \nabla \cdot$＇ли	${ }^{9}$	9	Pm	${ }^{8} \times$	${ }^{2} \times$	${ }^{1} \mathrm{~m}$	
								$\tau={ }^{\dagger} N$

Table 5.10: Stability model assessment, first six natural frequencies $\hat{\omega}=\omega / 100$ with LD theories for the simply-supported hybrid sandwich plate with $a / h=4$ and $N_{\phi}=1$

$N_{\phi}=1$								
	$\hat{\omega}_{1}$	$\hat{\omega}_{2}$	$\hat{\omega}_{3}$	$\hat{\omega}_{4}$				

[^4]

00°	$00^{\circ} 0$	0189＇980188	6L00＇68ち798	キL880066†L	0ち¢ぢ29209\％	8676008161	9L968L029	${ }_{8}^{\text {Prt }}$ GT
$00^{\circ} 0$	$00^{\circ} 0$	L6もて．980188	068ち「16ヶて98	¢880そ币6ワんて	8891－89209\％	も680＇ 108161	86968L0L9	${ }_{\text {¢ }}^{\text {¢ }}$（TT
$00^{\circ} 0$	$80^{\circ} 0$	LL9I＇z6II88	698z＇z98798	0ZLよ＇ELOCLZ	60ze．tllogz	9008 108161	2902 18029	$\stackrel{\text { vzz }}{\text { ET }}$
$69^{\prime} 7$	98．${ }^{\text {I }}$	L¢\＆\％ 690788	6699864298	ع998．L20z8\％	L867．6zzg9z	£9808888ャ61	0786 $22 I L 29$	
$00^{\circ} 0$	$00^{\circ} 0$	7602．980188	88t¢ 687 F 98	LGLも＇0767L	2797－29209\％	0096008161	699682029	${ }_{8}^{8+1} \mathrm{CT}$
$00^{\circ} 0$	$00^{\circ} 0$	FLLELEOL8E	6626＇${ }^{\text {L67798 }}$		0621－89209\％	9^{6880}＇ 08161	2896 82029	${ }_{8}^{88} \mathrm{ET}$
$0{ }^{\circ} \mathrm{O}$	$80^{\circ} 0$	LZLg＇76II88	8918 798798		8tZ9．tLLOGZ	9008＇ 0 OL61	2902＇18029	${ }_{z}^{8 z z} \mathrm{GT}$
$69^{\prime} 7$	98.1	ZL996990788	8869＊86LL98	6998＇LL0788	1808 67z99\％	モ980＇888761	0786 $22 I L C$	${ }_{8}^{81}{ }_{8} \mathrm{GT}$
$8^{\circ} 0$	1000	てセ00＇991188	8920 6Tgz98	09Lも 29672 ¢	1886＇18L096	86120018161	1960＇${ }^{\circ}$ LOLS	${ }_{2}^{201} \mathrm{CT}$
800	1000	9887＇991188	9800＇LZ9z98	†L98＇896tL	L6Lヵ＇78L09\％	LI98018161	9t01＇tLOLS	${ }_{\text {\％}}^{\text {\％}}$（TI
LI＇0	${ }^{\square 0} 0$	8081＇ 778188	L9L9＇t88798	0L9Z＇090¢LZ	1978＇98L09\％	6790＇LIE161	8978 ${ }^{\text {1 } 18029}$	${ }_{\text {zzz }}{ }^{\text {z\％}}$（1）
$69^{\prime} 7$	98^{\prime} I	9808991788	797¢＇108L98	L8L9＇LLOZ8\％	9728＇18z99\％	0¢tI＇888761	LZE6 22129	${ }_{2}^{211} \mathrm{CT}$
$26^{\text {I }}$	$7 \overbrace{}^{*} 0$	7セ70 28.8888	6989\％zLIE98	76IE 69092 L	9097＇28LI96	86LI＇ZIEL6I	LZ6t＇ESILS	${ }_{2}^{\text {Ltt }} \mathrm{CT}$
$26^{\text {I }}$	270	L798289888	L90\％ F LE98	LL02＇090¢LZ	8210．88LI96	LILEZIEI6I	0zog＇egtle	
$66^{\circ} \mathrm{I}$	セャ＇0	08L6＇809888	9802＇867898	2080＇89ISLZ	8L26 68LISG	ZLOg＇zIEL6I	6ILO＇ $79 \mathrm{TLS9}$	${ }_{\text {Izz }}^{\text {İ }}$
89^{7}	LL＇I	61889\％9688	968L 297898	8867＇291788	L69z＇97999\％	Ł769＇688761	2828 29829	${ }_{2}^{111} \mathrm{CT}$
		980188	乙6ヶて98	ゅも6もL	69209\％	L0\＆L61	9＇72029	

$\% \mathrm{Ve}_{\mathrm{N}}$	$\% \nabla \cdot{ }^{\text {¢ }} \mathrm{V}$	${ }^{9} \mathrm{~m}$	sm	TM	ε_{0}	z_{0}	${ }^{1} \mathrm{~m}$	
$\tau={ }^{\phi} N$								

hybrid sandwich plate with $a / h=4$ and $N_{\phi}=2$
Table 5．11：Stability model assessment，first six natural frequencies $\hat{\omega}=\omega / 100$ with LD theories for the simply－supported

Table 5.12: Stability model assessment, first six natural frequencies $\hat{\omega}=\omega / 100$ with LD theories for the simply-supported hybrid sandwich plate with $a / h=4$ and $N_{\phi}=3$

$N_{\phi}=3$								
	$\hat{\omega}_{1}$	$\hat{\omega}_{2}$	$\hat{\omega}_{4}$	$\hat{\omega}_{5}$				
Exact [16]	57074.5	191301	250769	274941	362492	381036		
LD_{111}^{3}	57257.8738	194839.5925	255646.2600	282167.4984	368457.7401	389525.3820	1.77	2.63
LD_{221}^{3}	57162.0723	191312.5013	251189.9718	275158.0303	363493.7106	388603.9787	0.44	1.99
LD_{331}^{3}	57153.5023	191312.3118	251188.0178	275060.7071	363174.5081	388537.3533	0.42	1.97
LD_{441}^{3}	57153.4930	191312.1794	251187.4605	275059.3192	363172.5379	388537.0449	0.42	1.97
LD_{112}^{3}	57177.9322	194838.1451	255231.8729	282071.6139	367801.5468	382165.3088	1.36	2.59
LD_{222}^{3}	57081.8466	191311.0629	250785.8261	275060.2670	362881.5787	381322.1814	0.04	0.11
LD_{332}^{3}	57074.1048	191310.8517	250782.4797	274958.8614	362521.0106	381166.2342	0.01	0.03
LD_{442}^{3}	57074.0955	191310.7193	250781.9284	274957.4760	362519.0788	381166.0048	0.01	0.03
LD_{113}^{3}	57177.9321	194838.0856	255229.3034	282071.3670	367798.5939	382059.6573	1.35	2.59
LD_{223}^{3}	57081.7067	191301.3011	250771.5256	275043.4736	362852.3168	381192.5721	0.03	0.10
LD_{333}^{3}	57073.9648	191301.0900	250768.1797	274942.1262	362491.9799	381037.3775	0.00	0.00
LD_{443}^{3}	57073.9570	191300.9505	250767.4650	274940.4753	362489.5488	381036.7094	0.00	0.00
LD_{114}^{3}	57177.9321	194838.0856	255229.2990	282071.3654	367798.5600	382059.2341	1.35	2.59
LD_{224}^{3}	57081.7067	191301.3011	250771.5216	275043.4722	362852.2869	381192.1577	0.0319	0.10
LD_{334}^{3}	57073.9604	191301.0898	250768.1695	274942.0385	362491.4390	381036.2491	0.00	0.00
LD_{444}^{3}	57073.9526	191300.9503	250767.4547	274940.3877	362489.0079	381035.5811	0.00	0.00

[^5]

$00^{\circ} 0$	$00^{\circ} 0$	L188．980188	6200 68ヶ798	LL88006FたL	LDCt L920g\％	8096008L61	979688L0L9	$\stackrel{\text { vtitat }}{\text { ¢ }}$
$00^{\circ} 0$	$00 \cdot 0$	L6もで980188	068ヶ＇16ヶて98	9880 $7 \downarrow 6 \downarrow 2$ 亿	9691－8920gz	8680＇ 108 L6L	7096－82029	$\stackrel{\text { 8\％}}{\text { ¢ }}$（TI
01．0	80.0	LLSI＇Z6LI88	698z＇z98798	てZLよ＇Etoclu	91ze＇tllogz	LIOE L0¢L6L	2902．18029	$\stackrel{\text { vzza }}{\text { ¢ }}$（1）
$69^{\prime} 7$	$98^{\prime} \mathrm{I}$	Lゅ\＆7＇690788	0099•86L 298	モ¢98＇LL0z8	0667＇67z¢9\％	9980 ${ }^{\circ} 888761$	LZ86 212129	$\stackrel{\text { ¢1 }}{\text { ¢ }}$（IT
$00^{\circ} 0$	$00^{\circ} 0$	7602．980188	88ち¢ 68ヶて98	¢GLも＇0才6tL	0997＇29209\％	9096008L61	02968L029	$\stackrel{\text { ¢п¢ }}{\text { ¢ }}$（IT
00°	00＊0	9LLE 280188	66L6 ${ }^{\text {L67Z98 }}$	797I＇そワ6たLて	26LI＇89209\％	0060＇ 108 L6L	8796\％ 82029	${ }_{\square}^{88} \mathrm{I}$ ¢T
01＇0	800	LZLg 761588	8918 798798	98Lよ＇$¢$ たOSLZ	99\％9＇tLLOCZ	LIO\＆L0\＆L6I	2904＊ 18029	$\stackrel{\text { ¢ ¢ }}{\text { ¢ }}$（TT
$69^{\prime} 7$	$98^{\prime} \mathrm{I}$	8L99 690788	6869＊862 998	0L98＇ L ［2787	†\＆0867z¢9\％	9980＇888761	LZE6 212129	
¢0＇0	10＇0	8700．991L88	8820 6 19798	09Lも゙ $2967 \angle Z$	5876＇18L09\％	86IL＇0tEL6L	C960 ${ }^{\circ} \mathrm{tLOLS}$	$\stackrel{\text { 2\％tat }}{\text { ¢ }}$
$80^{\circ} 0$	100	7ヶ¢て＇99โI88	9010＇LZ9\％98	†L98．8967L	L6L才＇ 782096	LIG80tet6I	8t01．tL029	${ }_{\square}^{\text {¿¢ }}$ ¢ CT
IT＇0	${ }^{10} 0$	¢181 778188	L8L9＇188798	0L97＇090¢LZ	1978＇98L09\％	6790＇tIEL6I	9978 ${ }^{18029}$	$\stackrel{\text { \％zz }}{\text { \％}}$（1）
$69^{\circ} 7$	98＇ 1	8808 ${ }^{\circ} 91788$	89才¢ ${ }^{\text {L L }}$ O8L98	68L9＇TLOZ87	6728＇ 187996	TStI＇88876	7Z86 LLILS	$\stackrel{\text { 21tat }}{\text { ¢ }}$
${ }^{26}{ }^{\text {I }}$	2ヶ0	67ฑ0 289888	6L89＇zLIE98	761E 6909LZ	909才＇L8LISZ	f6LI＇ZIEL6I	0¢67＇89ILS	$\stackrel{\text { Itit }}{\text { ¢ }}$（1）
$26^{\text {I }}$	て「0	8898 289888	1809．tLIE98	LL02＇090gLZ	8LI0＇88LITE	8LIE゙ZIEL6L	8zog＇catles	${ }_{\text {¢ }}^{\text {¢ }}$ ¢ CT
$66^{\text {I }}$	$セ^{\circ} 0$	L8L6＇809888	901L＇86ヶ¢98	8080 89ISLZ	8LL6＇68LISE	8L0¢ 7 IEL6I	EZLO＇z9ILS	$\stackrel{\text { tzzat }}{\text { ¢ }}$
797	L2＇I	0788 ¢ 9 c688	L0才L L 2 ¢¢898	サ86ぢ 291788	0097＇97999\％	9769＇688761	88L8 29729	$\stackrel{\text { It }}{\text { ¢ }}$（IT
		980188	乙6ฑて98	じ6ワL	69209\％	208L6I	9＇t2029	¥0exg

\％$\nabla_{\text {xen }}$	$\% \nabla \cdot$ ə V	9 m	sm	ron	ε_{0}	${ }^{\text {r m }}$	${ }^{1} \mathrm{~m}$	
								$\tau={ }^{\phi} N$

Table 5.14: Convergence study on the first six natural frequencies $\hat{\omega}=\omega / 100$ for the simply-supported hybrid Sandwich plate with $a / h=4$

$a / h=4$								
	$\hat{\omega}_{1}$	$\hat{\omega}_{2}$	$\hat{\omega}_{3}$	$\hat{\omega}_{4}$	$\hat{\omega}_{5}$	$\hat{\omega}_{6}$	Ave. $\Delta \%$	Max $\Delta \%$
Exact [16]	57074.5	191301	250769	274941	362492	381036		
LD4	57073.9526	191300.9503	250767.4547	274940.3877	362489.0079	381035.5811	0.00	0.00
LD3	57073.9648	191301.0900	250768.1797	274942.1262	362491.9799	381037.3775	0.00	0.00
LD2	57081.8463	191311.0629	250785.8261	275060.2670	362881.5767	381322.1808	0.04	0.11
LD1	57252.4975	194839.5803	255646.0517	282167.4738	368457.5514	389524.3101	1.77	2.63
EDZ3	57656.7172	195710.5652	259570.1855	279713.6605	369974.2928	390746.6533	2.20	3.51
EDZ2	60605.4801	195710.5641	259570.1587	293428.0734	390745.7346	404987.5286	5.47	7.79
EDZ1	63198.5291	195965.2576	266195.2458	298704.5651	427699.8535	455511.7257	10.92	19.54
ED4	58713.9221	194592.1273	254739.3875	281830.2732	371143.8485	390960.9564	2.28	2.87
ED3	58818.5898	195825.4056	259586.1199	282244.1329	371905.1891	392802.0161	2.88	3.52
ED2	69413.6740	195859.5902	262204.0384	373493.1294	459959.7518	698489.6372	29.10	83.31
ED1	74105.8979	196021.3374	266337.1465	375608.2780	479222.7800	700380.4385	31.85	83.81

[^6]

Table 5.15: Convergence study on the first six natural frequencies $\hat{\omega}=\omega / 100$ for the simply-supported hybrid sandwich
plate with $a / h=50$

Table 5.16: Coupling effect on the first six natural frequencies $\hat{\omega}=\omega / 100$ with ED theories for the simply-supported hybrid sandwich plate with $a / h=4$ and $a / h=100$

		$a / h=4$			$a / h=100$		
		coupled (SC)	uncoupled	$\Delta \%$	coupled (SC)	uncoupled	$\Delta \%$
ED4	$\hat{\omega}_{1}$	58713.9221	56939.2867	3.12	155.3185	146.8253	5.78
	$\hat{\omega}_{2}$	194592.1273	193118.9470	0.76	7847.0781	7800.0647	0.60
	$\hat{\omega}_{3}$	254739.3875	250329.3699	1.76	10750.8523	10484.9161	2.54
	$\hat{\omega}_{4}$	281830.2732	279663.2320	0.77	217208.5781	217196.7310	0.00
	$\hat{\omega}_{5}$	371143.8485	362994.4955	2.24	218408.7479	218393.1767	0.01
	$\hat{\omega}_{6}$	390960.9564	388144.2091	0.72	385725.9000	386390.7652	0.17
ED3	$\hat{\omega}_{1}$	58818.5898	57163.1434	2.90	155.3392	147.0295	5.65
	$\hat{\omega}_{2}$	195825.4056	194618.3471	0.62	7847.1666	7800.1711	0.60
	$\hat{\omega}_{3}$	259586.1199	254169.1651	2.13	10751.1371	10485.1325	2.54
	$\hat{\omega}_{4}$	282244.1329	279977.6950	0.81	217208.7749	217196.7545	0.00
	$\hat{\omega}_{5}$	371905.1891	363372.5578	2.35	218409.7552	218393.6229	0.01
	$\hat{\omega}_{6}$	392802.0161	390534.8377	0.58	388129.6691	386420.8898	0.44
ED2	$\hat{\omega}_{1}$	69413.6740	66641.6628	4.16	155.4498	147.1240	5.66
	$\hat{\omega}_{2}$	195859.5902	194618.5553	0.64	7847.4964	7804.4665	0.55
	$\hat{\omega}_{3}$	262204.0384	255320.1774	2.70	10753.8682	10508.7944	2.33
	$\hat{\omega}_{4}$	373493.1294	372521.4827	0.26	320462.8873	320453.8215	0.00
	$\hat{\omega}_{5}$	459959.7518	453187.4552	1.49	330617.3938	330608.7186	0.00
	$\hat{\omega}_{6}$	698489.6372	668362.3884	4.51	679909.3135	644125.8394	5.55
ED1	$\hat{\omega}_{1}$	74105.8979	73720.9288	0.52	172.9563	171.8841	0.62
	$\hat{\omega}_{2}$	196021.3374	194876.7410	0.59	7847.5058	7804.4814	0.55
	$\hat{\omega}_{3}$	266337.1465	259635.8978	2.58	10754.1390	10509.0805	2.33
	$\hat{\omega}_{4}$	375608.2780	375555.5069	0.01	320488.1367	320487.2236	0.00
	$\hat{\omega}_{5}$	479222.7800	478536.3310	0.14	330641.1352	330640.2137	0.00
	$\hat{\omega}_{6}$	700380.4385	669973.6977	4.54	679914.7177	644130.7562	5.55

$$
\Delta \%=\left|\frac{\hat{\omega}_{\text {coupled }}-\hat{\omega}_{\text {uncoupled }}}{\hat{\omega}_{\text {uncoupled }}}\right| \times 100 \quad 75
$$

Table 5.17: Coupling effect on the first six natural frequencies $\hat{\omega}=\omega / 100$ with EDZ theories for the simply-supported hybrid sandwich plate with $a / h=4$ and $a / h=100$

Table 5.18: Coupling effect on the first six natural frequencies $\hat{\omega}=\omega / 100$ with LD theories for the simply-supported hybrid sandwich plate with $a / h=4$ and $a / h=100$

		$a / h=4$			$a / h=100$		
		coupled (SC)	uncoupled	$\Delta \%$	coupled (SC)	uncoupled	$\Delta \%$
LD4	$\hat{\omega}_{1}$	57073.9526	55514.7764	2.81	155.2848	146.6802	5.87
	$\hat{\omega}_{2}$	191300.9503	189939.4848	0.72	7841.7120	7795.9804	0.59
	$\hat{\omega}_{3}$	250767.4547	246834.0821	1.59	10748.8484	10476.1621	2.60
	$\hat{\omega}_{4}$	274940.3877	272676.7516	0.83	208921.5919	208910.6773	0.00
	$\hat{\omega}_{5}$	362489.0079	355350.7482	2.01	209855.3115	209837.2685	0.01
	$\hat{\omega}_{6}$	381035.5811	379190.1485	0.49	378390.2280	378350.7473	0.01
LD3	$\hat{\omega}_{1}$	57073.9648	55514.7915	2.81	155.2848	146.6801	5.87
	$\hat{\omega}_{2}$	191301.0900	189939.6207	0.72	7841.7120	7795.9804	0.59
	$\hat{\omega}_{3}$	250768.1797	246834.6942	1.59	10748.8484	10476.1621	2.60
	$\hat{\omega}_{4}$	274942.1262	272678.4240	0.83	208921.6976	208910.7823	0.00
	$\hat{\omega}_{5}$	362491.9799	355352.7720	2.01	209855.6885	209837.6459	0.01
	$\hat{\omega}_{6}$	381037.3775	379192.1675	0.49	378390.6738	378351.1914	0.01
LD2	$\hat{\omega}_{1}$	57081.8463	55523.8953	2.80	155.2849	146.6802	5.87
	$\hat{\omega}_{2}$	191311.0629	189949.2767	0.72	7841.7120	7795.9804	0.59
	$\hat{\omega}_{3}$	250785.8261	246848.8669	1.59	10748.8484	10476.1621	2.60
	$\hat{\omega}_{4}$	275060.2670	272794.5064	0.83	209006.0233	208995.1025	0.00
	$\hat{\omega}_{5}$	362881.5767	355708.8005	2.02	209937.3849	209919.3148	0.01
	$\hat{\omega}_{6}$	381322.1808	379503.0350	0.48	378532.6039	378492.6851	0.01
LD1	$\hat{\omega}_{1}$	57252.4975	55754.8334	2.69	155.5084	146.9533	5.82
	$\hat{\omega}_{2}$	194839.5803	193420.5759	0.73	7841.9461	7796.2128	0.59
	$\hat{\omega}_{3}$	255646.0517	251327.1948	1.72	10749.0796	10476.3759	2.60
	$\hat{\omega}_{4}$	282167.4738	279928.7532	0.80	211932.0962	211919.3192	0.01
	$\hat{\omega}_{5}$	368457.5514	359977.4902	2.35	214106.0242	214088.2300	0.01
	$\hat{\omega}_{6}$	389524.3101	388091.4042	0.37	385093.0154	385058.8333	0.01

$$
\Delta \%=\left|\frac{\hat{\omega}_{\text {coupled }}-\hat{\omega}_{\text {uncoupled }}}{\hat{\omega}_{\text {uncoupled }}}\right| \times 100
$$

5.2 Sandwich Hybrid CNT-RC piezoelectric plate

In this section free vibration analysis of square simply supported CNT-RC plate, embedded with piezoelectric layers (PZT-4) at the top and bottom of free surfaces, is carried out. Short-circuit surface conditions are considered for the potential in the electro-mechanical case ($\Phi_{t}=\Phi_{b}=0$). Four different types of uniaxially aligned reinforcements are investigated in the analysis, including uniformly distributed UD-CNT and functinally graded (FG-X, FG-O and FG-V). Properties of single costituents of the composite CNT-RC plate are reported in Table 5.1. For all of the numerical examples proposed the material properties of the CNT-RC are those given by the extended Voigt's rule of mixtures Eq. 2.16 for the room temperature $\mathrm{T}=300 \mathrm{~K}$, with the efficiency parameters η_{1}, η_{2} and η_{3} related to the CNT volume fraction indices $V_{C N T}^{*}$ involved in the analysis [5]. Tables from 5.19 to 5.22 show solutions for the fundamental frequency parameter of simply supported and short-circuited hybrid CNT-RC piezoelectric plate by considering all the CNT distribution through the thickness and several values of the volume fraction indices $V_{C N T}^{*}=0.11, V_{C N T}^{*}=0.14$ and $V_{C N T}^{*}=0.17$. The dimensionless eigen-frequency parameter is defined as $\hat{\omega}=\left(\omega a^{2} / h\right) \sqrt{\rho_{m} / E_{m}}$. The length to thickness ratio of the plate is set to $a / h=20$ and two different thickness configurations are considered in the analysis $h_{p}: h_{c}: h_{p}=0.1 h: 0.8 h: 0.1 h$ and $h_{p}: h_{c}: h_{p}=0.2 h: 0.6 h: 0.2 h$, where h_{p} and h_{c} denote the thickness of piezoelectric layer and the thickness of CNT-RC core layer, respectively. Frequency parameters are computed by using different theories (ED and LD). The convergence study is carried out by comparing frequencies with respect to the results of Wu and Lin [17] and the relative errors are reported. Table 5.23 show the electro-mechanical coupling effect on the frequency parameters.

Figure 5.2: Hybrid sandwich plate [PZT-4/CNT-RC/PZT-4]

Table 5.19: ED solutions of frequency parameters for the simply supported sandwich [PZT-4/CNTRC/PZT-4] plates with different CNTs types, CNT voulme fraction $V_{C N T}^{*}$, length to thickness ratio $a / h=20$, and $0.1 h: 0.8 h: 0.1 h$

$V_{C N T}^{*}$	Theories	UD	FG-V	FG-O	FG-X
0.11	ED1	$\begin{aligned} & 23.366974 \\ & (25.1284 \%) \end{aligned}$	$\begin{aligned} & 23.098914 \\ & (25.4892 \%) \end{aligned}$	$\begin{aligned} & 23.024593 \\ & (26.9160 \%) \end{aligned}$	$\begin{aligned} & 23.708535 \\ & (23.9954 \%) \end{aligned}$
	ED2	$\begin{aligned} & 21.1304 \\ & (13.1519 \%) \end{aligned}$	$\begin{aligned} & 20.8268 \\ & (13.1459 \%) \end{aligned}$	$\begin{aligned} & 20.7457 \\ & (14.3544 \%) \end{aligned}$	$\begin{aligned} & 21.5108 \\ & (12.5014 \%) \end{aligned}$
	ED3	$\begin{aligned} & 19.2028 \\ & (2.8299 \%) \end{aligned}$	$\begin{aligned} & 19.0302 \\ & (3.3447 \%) \end{aligned}$	$\begin{aligned} & 19.0227 \\ & (4.8985 \%) \end{aligned}$	$\begin{aligned} & 19.3658 \\ & (1.2833 \%) \end{aligned}$
	ED4	$\begin{aligned} & 19.1963 \\ & (2.7950 \%) \end{aligned}$	$\begin{aligned} & 19.0240 \\ & (3.3517 \%) \end{aligned}$	$\begin{aligned} & 19.0159 \\ & (4.8198 \%) \end{aligned}$	$\begin{aligned} & 19.3590 \\ & (1.2476 \%) \end{aligned}$
	Wu and Lin [17]	18.6744	18.4071	18.1416	19.1205
0.14	ED1	$\begin{aligned} & 23.7892 \\ & (25.0181 \%) \end{aligned}$	$\begin{aligned} & 23.4381 \\ & (25.4036 \%) \end{aligned}$	$\begin{aligned} & 23.3613 \\ & (27.0842 \%) \end{aligned}$	$\begin{aligned} & 24.2135 \\ & (23.8733 \%) \end{aligned}$
	ED2	$\begin{aligned} & 21.6113 \\ & (13.5732 \%) \end{aligned}$	$\begin{aligned} & 21.2157 \\ & (13.5129 \%) \end{aligned}$	$\begin{aligned} & 21.1327 \\ & (14.9604 \%) \end{aligned}$	$\begin{aligned} & 22.0823 \\ & (12.9703 \%) \end{aligned}$
	ED3	$\begin{aligned} & 19.5490 \\ & (2.7353 \%) \end{aligned}$	$\begin{aligned} & 19.3541 \\ & (3.5522 \%) \end{aligned}$	$\begin{aligned} & 19.3211 \\ & (5.1056 \%) \end{aligned}$	$\begin{aligned} & 19.7319 \\ & (0.9463 \%) \end{aligned}$
	ED4	$\begin{aligned} & 19.5422 \\ & (2.6991 \%) \end{aligned}$	$\begin{aligned} & 19.3475 \\ & (3.5173 \%) \end{aligned}$	$\begin{aligned} & 19.3136 \\ & (5.0651 \%) \end{aligned}$	$\begin{aligned} & 19.7246 \\ & (0.9091 \%) \end{aligned}$
	Wu and Lin [17]	19.0286	18.6902	18.3826	19.5470
0.17	ED1	$\begin{aligned} & 24.2837 \\ & (19.7350 \%) \end{aligned}$	$\begin{aligned} & 23.8597 \\ & (20.5411 \%) \end{aligned}$	$\begin{aligned} & 23.7786 \\ & (22.7416 \%) \end{aligned}$	$\begin{aligned} & 24.7839 \\ & (17.8885 \%) \end{aligned}$
	ED2	$\begin{aligned} & 22.1474 \\ & (9.2019 \%) \end{aligned}$	$\begin{aligned} & 21.6711 \\ & (9.4840 \%) \end{aligned}$	$\begin{aligned} & 21.5832 \\ & (11.4095 \%) \end{aligned}$	$\begin{aligned} & 22.7017 \\ & (7.9845 \%) \end{aligned}$
	ED3	$\begin{aligned} & 20.5786 \\ & (1.4665 \%) \end{aligned}$	$\begin{aligned} & 20.2963 \\ & (2.5386 \%) \end{aligned}$	$\begin{aligned} & 20.2620 \\ & (4.5897 \%) \end{aligned}$	$\begin{aligned} & 20.8453 \\ & (0.8461 \%) \end{aligned}$
	ED4	$\begin{aligned} & 20.5705 \\ & (1.4265 \%) \end{aligned}$	$\begin{aligned} & 20.2887 \\ & (2.5002 \%) \end{aligned}$	$\begin{aligned} & 20.2531 \\ & (4.5436 \%) \end{aligned}$	$\begin{aligned} & 20.8365 \\ & (0.8876 \%) \end{aligned}$
	Wu and Lin [17]	20.2812	19.7939	19.3729	21.0232

$\Delta \%=\left|\frac{\hat{\omega}_{i}-\hat{\omega}_{W u}}{\hat{\omega}_{W u}}\right| \times 100$

Table 5.20: LD solutions of frequency parameters for the simply supported sandwich [PZT-4/CNTRC/PZT-4] plates with different CNTs types, length to thickness ratio $a / h=20$, and CNT volume fraction $V_{C N T}^{*}=0.11$

$V_{C N T}^{*}=0.11$					
$h_{p}: h_{c}: h_{p}$	Theories	UD	FG-V	FG-O	FG-X
$0.1 \mathrm{~h}: 0.8 \mathrm{~h}: 0.1 \mathrm{~h}$	LD1	$\begin{aligned} & 18.7800 \\ & (0.5660 \%) \end{aligned}$	$\begin{aligned} & 18.5255 \\ & (0.6434 \%) \end{aligned}$	$\begin{aligned} & 18.3132 \\ & (0.9461 \%) \end{aligned}$	$\begin{aligned} & 19.2095 \\ & (0.4655 \%) \end{aligned}$
	LD2	$\begin{aligned} & 18.7684 \\ & (0.5038 \%) \end{aligned}$	$\begin{aligned} & 18.5138 \\ & (0.5798 \%) \end{aligned}$	$\begin{aligned} & 18.3015 \\ & (0.8814 \%) \end{aligned}$	$\begin{aligned} & 19.1879 \\ & (0.3528 \%) \end{aligned}$
	LD3	$\begin{aligned} & 18.7684 \\ & (0.5038 \%) \end{aligned}$	$\begin{aligned} & 18.5076 \\ & (0.5461 \%) \end{aligned}$	$\begin{aligned} & 18.3015 \\ & (0.8814 \%) \end{aligned}$	$\begin{aligned} & 19.1879 \\ & (0.3528 \%) \end{aligned}$
	LD4	$\begin{aligned} & 18.7684 \\ & (0.5038 \%) \end{aligned}$	$\begin{aligned} & 18.5076 \\ & (0.5461 \%) \end{aligned}$	$\begin{aligned} & 18.3015 \\ & (0.8814 \%) \end{aligned}$	$\begin{aligned} & 19.1879 \\ & (0.3528 \%) \end{aligned}$
	Wu and Lin [17]	18.6744	18.4071	18.1416	19.1205
$0.2 h: 0.6 h: 0.2 h$	LD1	$\begin{aligned} & 17.4244 \\ & (0.7285 \%) \end{aligned}$	$\begin{aligned} & 17.3847 \\ & (0.7611 \%) \end{aligned}$	$\begin{aligned} & 17.3135 \\ & (0.7403 \%) \end{aligned}$	$\begin{aligned} & 17.5347 \\ & (0.7824 \%) \end{aligned}$
	LD2	$\begin{aligned} & 17.3967 \\ & (0.5685 \%) \end{aligned}$	$\begin{aligned} & 17.3715 \\ & (0.6802 \%) \end{aligned}$	$\begin{aligned} & 17.3057 \\ & (0.6952 \%) \end{aligned}$	$\begin{aligned} & 17.4952 \\ & (0.5555 \%) \end{aligned}$
	LD3	$\begin{aligned} & 17.3967 \\ & (0.5685 \%) \end{aligned}$	$\begin{aligned} & 17.3607 \\ & (0.6225 \%) \end{aligned}$	$\begin{aligned} & 17.3001 \\ & (0.6626 \%) \end{aligned}$	$\begin{aligned} & 17.4902 \\ & (0.5269 \%) \end{aligned}$
	LD4	$\begin{aligned} & 17.3967 \\ & (0.5685 \%) \end{aligned}$	$\begin{aligned} & 17.3607 \\ & (0.6222 \%) \end{aligned}$	$\begin{aligned} & 17.3001 \\ & (0.6626 \%) \end{aligned}$	$\begin{aligned} & 17.4902 \\ & (0.5269 \%) \end{aligned}$
	Wu and Lin [17]	17.2984	17.2534	17.1863	17.3986
$\Delta \%=\left\|\frac{\hat{\omega}_{i}-\hat{\omega}_{W u}}{\hat{\omega}_{W u}}\right\| \times 100$					

Table 5.21: LD solutions of frequency parameters for the simply supported sandwich [PZT-4/CNTRC/PZT-4] plates with different CNTs types, length to thickness ratio $a / h=20$, and CNT volume fraction $V_{C N T}^{*}=0.14$

$V_{C N T}^{*}=0.14$					
$h_{p}: h_{c}: h_{p}$	Theories	UD	FG-V	FG-O	FG-X
$0.1 \mathrm{~h}: 0.8 \mathrm{~h}: 0.1 \mathrm{~h}$	LD1	$\begin{aligned} & 19.1325 \\ & (0.5464 \%) \end{aligned}$	$\begin{aligned} & 18.8235 \\ & (0.7133 \%) \end{aligned}$	$\begin{aligned} & 18.5602 \\ & (0.9665 \%) \end{aligned}$	$\begin{aligned} & 19.6429 \\ & (0.4910 \%) \end{aligned}$
	LD2	$\begin{aligned} & 19.1159 \\ & (0.4590 \%) \end{aligned}$	$\begin{aligned} & 18.8009 \\ & (0.5925 \%) \end{aligned}$	$\begin{aligned} & 18.5549 \\ & (0.9374 \%) \end{aligned}$	$\begin{aligned} & 19.6234 \\ & (0.3913 \%) \end{aligned}$
	LD3	$\begin{aligned} & 19.1159 \\ & (0.4590 \%) \end{aligned}$	$\begin{aligned} & 18.8006 \\ & (0.5908 \%) \end{aligned}$	$\begin{aligned} & 18.5549 \\ & (0.9374 \%) \end{aligned}$	$\begin{aligned} & 19.6234 \\ & (0.3912 \%) \end{aligned}$
	LD4	$\begin{aligned} & 19.1159 \\ & (0.4590 \%) \end{aligned}$	$\begin{aligned} & 18.8006 \\ & (0.5908 \%) \end{aligned}$	$\begin{aligned} & 18.5549 \\ & (0.9374 \%) \end{aligned}$	$\begin{aligned} & 19.6234 \\ & (0.3912 \%) \end{aligned}$
	Wu and Lin [17]	19.0286	18.6902	18.3826	19.5470
$0.2 h: 0.6 h: 0.2 h$	LD1	$\begin{aligned} & 17.5809 \\ & (0.7091 \%) \end{aligned}$	$\begin{aligned} & 17.5342 \\ & (0.7980 \%) \end{aligned}$	$\begin{aligned} & 17.4694 \\ & (0.8837 \%) \end{aligned}$	$\begin{aligned} & 17.7099 \\ & (0.7430 \%) \end{aligned}$
	LD2	$\begin{aligned} & 17.5622 \\ & (0.6019 \%) \end{aligned}$	$\begin{aligned} & 17.5122 \\ & (0.6717 \%) \end{aligned}$	$\begin{aligned} & 17.4574 \\ & (0.8144 \%) \end{aligned}$	$\begin{aligned} & 17.6808 \\ & (0.5779 \%) \end{aligned}$
	LD3	$\begin{aligned} & 17.5622 \\ & (0.6019 \%) \end{aligned}$	$\begin{aligned} & 17.5048 \\ & (0.6294 \%) \end{aligned}$	$\begin{aligned} & 17.4523 \\ & (0.7852 \%) \end{aligned}$	$\begin{aligned} & 17.6808 \\ & (0.5779 \%) \end{aligned}$
	LD4	$\begin{aligned} & 17.5622 \\ & (0.6019 \%) \end{aligned}$	$\begin{aligned} & 17.5048 \\ & (0.6291 \%) \end{aligned}$	$\begin{aligned} & 17.4523 \\ & (0.7852 \%) \end{aligned}$	$\begin{aligned} & 17.6808 \\ & (0.5779 \%) \end{aligned}$
	Wu and Lin [17]	17.4572	17.3954	17.3164	17.5793

$$
\Delta \%=\left|\frac{\hat{\omega}_{i}-\hat{\omega}_{W u}}{\hat{\omega}_{W u}}\right| \times 100
$$

Table 5.22: LD solutions of frequency parameters for the simply supported sandwich [PZT-4/CNTRC/PZT-4] plates with different CNTs types, length to thickness ratio $a / h=20$, and CNT volume fraction $V_{C N T}^{*}=0.17$

$V_{C N T}^{*}=0.17$					
$h_{p}: h_{c}: h_{p}$	Theories	UD	FG-V	FG-O	FG-X
$0.1 \mathrm{~h}: 0.8 \mathrm{~h}: 0.1 \mathrm{~h}$	LD1	$\begin{aligned} & 20.3409 \\ & (0.2945 \%) \end{aligned}$	$\begin{aligned} & 19.8762 \\ & (0.4162 \%) \end{aligned}$	$\begin{aligned} & 19.5019 \\ & (0.6661 \%) \end{aligned}$	$\begin{aligned} & 21.1202 \\ & (0.4616 \%) \end{aligned}$
	LD2	$\begin{aligned} & 20.3301 \\ & (0.2414 \%) \end{aligned}$	$\begin{aligned} & 19.8664 \\ & (0.3664 \%) \end{aligned}$	$\begin{aligned} & 19.4977 \\ & (0.6446 \%) \end{aligned}$	$\begin{aligned} & 21.1052 \\ & (0.3903 \%) \end{aligned}$
	LD3	$\begin{aligned} & 20.3301 \\ & (0.2414 \%) \end{aligned}$	$\begin{aligned} & 19.8662 \\ & (0.3656 \%) \end{aligned}$	$\begin{aligned} & 19.4977 \\ & (0.6446 \%) \end{aligned}$	$\begin{aligned} & 21.1052 \\ & (0.3903 \%) \end{aligned}$
	LD4	$\begin{aligned} & 20.3301 \\ & (0.2414 \%) \end{aligned}$	$\begin{aligned} & 19.8662 \\ & (0.3656 \%) \end{aligned}$	$\begin{aligned} & 19.4977 \\ & (0.6446 \%) \end{aligned}$	$\begin{aligned} & 21.1052 \\ & (0.3903 \%) \end{aligned}$
	Wu and Lin [17]	20.2812	19.7939	19.3729	21.0232
$0.2 h: 0.6 h: 0.2 h$	LD1	$\begin{aligned} & 18.5712 \\ & (0.5495 \%) \end{aligned}$	$\begin{aligned} & 18.4709 \\ & (0.5628 \%) \end{aligned}$	$\begin{aligned} & 18.3973 \\ & (0.8308 \%) \end{aligned}$	$\begin{aligned} & 18.7701 \\ & (0.5472 \%) \end{aligned}$
	LD2	$\begin{aligned} & 18.5537 \\ & (0.4545 \%) \end{aligned}$	$\begin{aligned} & 18.4549 \\ & (0.4754 \%) \end{aligned}$	$\begin{aligned} & 18.3895 \\ & (0.7877 \%) \end{aligned}$	$\begin{aligned} & 18.7412 \\ & (0.3926 \%) \end{aligned}$
	LD3	$\begin{aligned} & 18.5537 \\ & (0.4545 \%) \end{aligned}$	$\begin{aligned} & 18.4427 \\ & (0.4090 \%) \end{aligned}$	$\begin{aligned} & 18.3857 \\ & (0.7668 \%) \end{aligned}$	$\begin{aligned} & 18.7412 \\ & (0.3925 \%) \end{aligned}$
	LD4	$\begin{aligned} & 18.5537 \\ & (0.4545 \%) \end{aligned}$	$\begin{aligned} & 18.4426 \\ & (0.4088 \%) \end{aligned}$	$\begin{aligned} & 18.3857 \\ & (0.7668 \%) \end{aligned}$	$\begin{aligned} & 18.7412 \\ & (0.3925 \%) \end{aligned}$
	Wu and Lin [17]	18.4698	18.3676	18.2458	18.6680
$\Delta \%=\left\|\frac{\hat{\omega}_{i}-\hat{\omega}_{W u}}{\hat{\omega}_{W u}}\right\| \times 100$					

Table 5.23: Coupled and Uncoupled solutions of frequency parameters for the simply supported sandwich [PZT-4/CNTRC/PZT-4] plates with different CNTs types, length to thickness ratio $a / h=20$, and CNT volume fraction

$V_{C N T}^{*}$	$h_{p}: h_{c}: h_{p}$		coupled (SC)	uncoupled	$\Delta \%$
0.11	$0.1 h: 0.8 h: 0.1 h$	UD	18.7684	17.8517	5.1351
		FG-V	18.5076	17.5742	5.3110
			FG-O	18.3015	17.3465

$$
\Delta \%=\left|\frac{\hat{\omega}_{\text {coupled }}-\hat{\omega}_{\text {uncoupled }}}{\hat{\omega}_{\text {uncoupled }}}\right| \times 100
$$

Chapter 6

Results: Dynamic Response and Active Control

6.1 Dynamic Response and Active Control

In this section the dynamic response of a simply supported piezoelectric FGCNTRC square plate with $a=b=20 m$, is analyzed. The thickness of CNT-RC core layer is $h_{c}=0.8 \mathrm{~m}$, while the thickness for each piezoceramic layer is $h_{p}=$ 0.1 m . The material properties of the plate are given the same as those in Table 5.1. Piezoelectric sensors and actuators are used to investigate the active vibration control of the plate. In vibration control analysis, the upper piezoelectric layer acts as actuators, while the lower one acts as sensors. The response of the plate is controlled using the dynamic velocity feedback control algorithm and a close loop. Four different types of uniaxially aligned reinforcements are investigated in the analysis, including uniformly distributed UD-CNT and functinally graded (FG-X, FG-O and FG-V). Two load cases are considered in this work. The plate is subjected to an harmonic load $F=F_{0} \sin (\Omega t)$ and to an impulsive load F_{0} which is suddenly removed, placed in the mid-point. The structural damping ratio for each mode is assumed to be 0.8% according with [19]. The mechanical deflection u_{z} is evaluated in the mid-point of the plate.

Figure 6.1: Forced response of the piezoelectric laminated UD-CNTRC plate with $G_{v}=$ 1.5×10^{-3} for the case $V_{C N T}^{*}=0.11$

Figure 6.2: Forced response of the piezoelectric laminated FG-X plate with $G_{v}=1.5 \times$ 10^{-3} for the case $V_{C N T}^{*}=0.11$

Figure 6.3: Forced response of the piezoelectric laminated FG-O plate with $G_{v}=1.5 \times$ 10^{-3} for the case $V_{C N T}^{*}=0.11$

Figure 6.4: Forced response of the piezoelectric laminated FG-V plate with $G_{v}=1.5 \times$ 10^{-3} for the case $V_{C N T}^{*}=0.11$

Figure 6.5: Dynamic deflection of the piezoelectric laminated UD-CNTRC plate for the case $V_{C N T}^{*}=0.11$

Figure 6.6: Dynamic deflection of the piezoelectric laminated FG-X plate for the case $V_{C N T}^{*}=0.11$

Figure 6.7: Dynamic deflection of the piezoelectric laminated FG-O plate for the case $V_{C N T}^{*}=0.11$

Figure 6.8: Dynamic deflection of the piezoelectric laminated FG-V plate for the case $V_{C N T}^{*}=0.11$

Figure 6.9: Effect of the velocity feedback control gain G_{v} on the dynamic response of the simply supported UD-CNTRC plate

Figure 6.10: Effect of the velocity feedback control gain G_{v} on the dynamic response of the simply supported FG-X plate

Figure 6.11: Effect of the velocity feedback control gain G_{v} on the dynamic response of the simply supported FG-O plate

Figure 6.12: Effect of the velocity feedback control gain G_{v} on the dynamic response of the simply supported FG-V plate

Chapter 7

Conclusions: Numerical Results and Discussion

7.1 Free Vibration Results

7.1.1 Laminated Orthotropic plate

Tables 5.2-5.10 show the first six natural frequencies of a square laminated orthotropic piezoelectric plate, as discussed in section 5.1. The analysis are performed with all the thoeries. The expansion orders $N_{\phi}, N_{u_{z}}$ and $N_{u_{x}}$ are consider totally indipendent in order to investigate the convergence to the exact solution. As can be observed, N_{ϕ} do not affect the rate of convergence to the exact solutions. Besides, dealing with ED theories, when the expansion order N_{u} overcomes the potential expansion order $N_{\phi}=4$ the solution stability is compromised. Tables 5.14-5.15 provide a convergence study on the first six natural frequencies with length to thickness ratios $a / h=4,50$. As expected, the LDN theories produce the best results. The ESL models with imposed zig-zag form EDZN lead in the most cases to a slight improvement compared to the EDN theories. More specifically, LD3 and LD4 theories lead to the exact solutions while ED4 and EDZ3 lead to an Average error $\Delta \%$ of less than 2.5% when the plate is thick $(a / h=4)$. Furthermore for LD theories, an increase of the expansion order has a very small effect. On the contrary ED theories are more sensible to the expansion order, especially when the plate is thick.

7.1.2 FG-CNTRC Piezoelectric plate

Convergence assessment and validation

As widely introduced in section 5.2, a convergence assessment of the models for the free vibration of a simply supported square CNT-RC piezoelectric plate is presented in Tables 5.19-5.22. It is clear that the LDN theories achieve the best level of accurancy and are in excellent agreement with the results of [17]. More specifically, the analysis performed with the LD4 theory leads to an error $\Delta \%$ on natural frequency parameter of less than 1%. On the other hand, the analysis performed with the ED4 theory leads to an average error of 3%.

Parametric study

Table 5.23 provides the parametric study, carried out to evaluate the influences of distribution pattern of CNT reinforcements, volume fraction of CNT and thickness configurations of the sandwich CNT-RC piezoelectric plate as well as the electromechanical coupling effect. The parametric study is performed by using the LD4 theory. As can be seen by comparing the four different types of CNT distributions through the thickness, the magnitude order of the frequency parameters is: FG-X $>$ UD $>$ FG-V $>$ FG-O-type. This order highlights the fact that the CNT reinforcements are more efficient when are distributed far from the mid-surface, enanching the overall stiffness of the CNT-RC plate. In all the cases, increasing the CNT volume fraction $V_{C N T}^{*}$ results in higher frequency parameter due to the enanchement of the stiffness of the plate. On the contrary, reducing the core thickness of the CNT-RC leads to a lower value of the frequency parameter, as expected. It is worth mentioning the electro-mechanical coupling effect by comparing the frequency parameter for the electro-mechanical case with the pure mechanical case. In general, the frequency parameters, which is a flexural mode, for the coupled case result higher than those of the uncoupled case. This phenomenon is compatible with all the results obtained in literature [18], [19] and [14]. In fact for the coupled case, due to the direct piezoelectric effect, when the plate oscillates, the electrical energy is converted to mechanical energy and the piezoelectric coupling matrix can be consider as an additional stiffness for the plate. Besides, when the mechanical stiffness of the plate is higher, the direct piezoelectric effect results in a lower electro-mechanical coupling in accordance with [14]. This trend can be seen by comparing the two thickness configurations of the sandwich plate. Increasing the thickness of the piezoelectric layers results in decreasing of the overall stiffness of the plate. Then, the natural frequency increment Δ, due to the direct piezoelectric effect, is more evident in thicker piezoelectric layers (case $\left.h_{p}: h_{c}: h_{p}=0.2 h: 0.6 h: 0.2 h\right)$. Instead it is observed that the higher CNT volume fraction leads to an higher stifness of the plate which results in lower value of the increment Δ. In particular, the FG-X CNT-RC plate with $V_{C N T}^{*}=0.17$ which results the stiffest plate, shows the lowest value of Δ.

7.2 Dynamic vibration control of FG-CNTRC Piezoelectric plate

Figures from 6.9 to 6.12 , show the effect of the velocity feedback gain G_{v} on the transient response of the mid-point for all CNT distributions. As can be seen, when the control system is inoperative $\left(G_{v}=0\right)$, the response decreases with respect to time due to the only structural damping effect. The decay of the response is faster when the Gain factor G_{v} increases and the control system results stable, as expected. In fact, the stability of the system is ensured by the active damping matrix which results always definite positive. Figures from 6.1 to 6.8 , show dynamic forced response of the mid-point of the plate. It can be seen that the amplitude of the center point deflection of the plate is reduced due to the active damping effect. Furthermore the graphs reflect the resonance phenomena of the plate, as expected when the plate is subjected to an armonic load.

Overall the vibration of the plate can be properly controlled and suppressed by using the velocity feedback control algorithm based on a closed loop and the Gain factor can be adeguately designed in order to satisfy constrains on the dynamic oscillations.

7.3 Future works

Dynamic analysis of CNT-Reinforced composite plate embedded with single piezoelectric patches at the top and bottom of free surfaces could be consider as a possible extension of this work. The analysis could be carried out in order to investigate how the placement of the patches affects the vibration control results and to find the optimal positions to suppress and control the first modes of the structure. A further possible extension could be place the piezoelectric sensor and actuator layers at the same side of the plate in order to evaluate the stability and the effectiveness of the control system [14]. Furtheremore two additional layers of FGMs $\left(\mathrm{Al} / \mathrm{Al}_{2} \mathrm{O}_{3}\right)$ could be integrated at the top and bottom of the plate to enanche thermal resistance of the structure.

Bibliography

[1] C. Soutis. Fibre reinforced composites in aircraft construction, Progress in Aerospace Sciences 41 (2005) 143-151.
[2] J.N. Reddy. Mechanics of laminated composite plates and shells, CRC press (2004) Chapter 1.
[3] Erasmo Carrera, Salvatore Brischetto and Pietro Nali. Plates and Shells for Smart Structures Classical and Advanced Theories for Modeling and Analysis, Chapter 1.
[4] A.Y.N. Sofla, S.A. Meguid, K.T. Tan, W.K. Yeo. Shape morphing of aircraft wing: Status and challenges, Materials and Design 31 (2010) 1284-1292.
[5] Fiorenzo A. Fazzolari. Thermoelastic Vibration and Stability of TemperatureDependent Carbon Nanotube-Reinforced Composite Plates, Composite structures (2018).
[6] Min-Feng Yu1, Oleg Lourie1, Mark J. Dyer, Katerina Moloni, Thomas F. Kelly, Rodney S. Ruoff1. Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science 28 Jan 2000: Vol. 287, Issue 5453, pp. 637-640.
[7] Gururaja Udupa,S.Shrikantha Rao, S.V. Gangadharan. Functionally graded Composite materials: An overview, Procedia Materials Science 5 (2014) 1291-1299.
[8] Fiorenzo A.Fazzolari. Sandwich Structures, Stability and Vibrations of Thin Walled Composite Structures 2017, Pages 49-90.
[9] M.M. Shahzamanian, B.B. Sahari, M. Bayat, F. Mustapha and Z. N. Ismarrubie1. Elastic Contact Analysis of Functionally Graded Brake Disks Subjected to Thermal and Mechanical Loads, International Journal for Computational Methods in Engineering Science and Mechanics, 14:10-23, 2013.
[10] Farhad Abad, Jafar Rouzegar. An exact spectral element method for free vibration analysis of FG plate integrated with piezoelectric layers, Composite Structures 180 (2017) 696-708.
[11] Fayaz R. Rofooei Ali Nikkhoo. Application of active piezoelectric patches in controlling the dynamic response of a thin rectangular plate under a moving mass, International Journal of Solids and Structures 46 (2009) 2429-2443.
[12] F. Moleiroa, A.L. Araújoa, J.N. Reddy. Benchmark exact free vibration solutions for multilayered piezoelectric composite plates, Composite Structures 182 (2017) 598-605.
[13] Zhu Su, Guoyong Jin, Tiangui Ye. Electro-mechanical vibration characteristics of functionally graded piezoelectric plates with general boundary conditions, International Journal of Mechanical Sciences, (2018) 42-53.
[14] B.A. Selim, L.W. Zhang and K.M. Liew. Active vibration control of CNTreinforced composite plates with piezoelectric layers based on Reddy's higherorder shear deformation theory, Composite Structures 163 (2017) 350-364.
[15] A. Robaldo, E. Carrera and A. Benjeddou. A unified formulation for finite element analysis of piezoelectric adaptive plates,Computers and Structures 84 (2006) 1494-1505.
[16] D. Ballhause, M. D'Ottavio, B. Kroplin, E. Carrera. A unified formulation to assess multilayered theories for piezoelectric plates, Computers and Structures 83 (2005) 1217-1235.
[17] Chih-Ping, Wu and Hong-Ru Lin. Three-dimensional dynamic responses of carbon nanotube-reinforced composite plates with surface-bonded piezoelectric layers using Reissner's mixed variational theorem-based finite layer methods, Journal of Intelligent Material Systems and Structures 2015, Vol. 26(3) 260-279.
[18] Free vibration of functionally graded carbon nanotube reinforced composite plates integrated with piezoelectric layers, Computers and Mathematics with Applications 72 (2016) 2433-2449.
[19] K. Nguyen-Quang, T. Vo-Duy, H. Dang-Trung, T. Nguyen-Thoi. An isogeometric approach for dynamic response of laminated FG-CNT reinforced composite plates integrated with piezoelectric layers, Comput. Methods Appl. Mech. Engrg. 332 (2018) 25-46.
[20] S. Y. Wang, S. T. Quek, K. K. Ang. Vibration control of smart piezoelectric composite plates, Smart Mater. Struct. 10 (2001) 637-644.
[21] X.Q. He, T.Y. Ng, S. Sivashanker, K.M. Liew. Active control of FGM plates with integrated piezoelectric sensors and actuators, International Journal of Solids and Structures 38 (2001) 1641-1655.
[22] Erasmo Carrera, Fiorenzo A. Fazzolari, Maria Cinefra. Thermal stress analysis of composite beams, plates and shells, cap.6, page 221.
[23] Hui-Shen Shen Zhen-Xin Wang. Assessment of Voigt and Mori-Tanaka models for vibration analysis of functionally graded plates, Composite Structures 94 (2012) 2197-2208
[24] Y.M. Ghugal and R.P. Shimpi.
A Review of Refined Shear Deformation Theories of Isotropic and Anisotropic Laminated Plates, Journal of Reinforced Plastics and Composites, Vol. 21, No. 9/2002.
[25] Erasmo Carrera, Fiorenzo A. Fazzolari, Maria Cinefra. Thermal stress analysis of composite beams, plates and shells, cap.4, page 97.
[26] J.N. Reddy. Mechanics of laminated composite plates and shells, CRC press (2004) Chapter 11 pag. 271.
[27] E. Carrera. Historical review of Zig-Zag theories for multilayered plates and shells, Appl Mech Rev 2003 56(3) 287-308.
[28] H. Murakami. Laminated composite plate theory with improved in-plane responses, Journal of Applied Mechanics, 53, 661-666, 1986.
[29] J.N. Reddy. Mechanics of laminated composite plates and shells, CRC press (2004) Chapter 12 pag. 730.
[30] Fiorenzo A. Fazzolari, Erasmo Carrera. Accurate free vibration analysis of thermo-mechanically pre/post-buckled anisotropic multilayered plates based on a refined hierarchical trigonometric Ritz formulation, Composite Structures 95 (2013) 381-402.
[31] Fiorenzo A. Fazzolari. Natural frequencies and critical temperatures of functionally graded sandwich plates subjected to uniform and non-uniform temperature distributions, Composite Structures Volume 121, March 2015, Pages 197-210.
[32] Fiorenzo A. Fazzolari, Erasmo Carrera. Coupled thermoelastic effect in free vibration analysis of anisotropic multilayered plates and FGM plates by using a variable-kinematics Ritz formulation, European Journal of Mechanics A/Solids 44 (2014) 157-174.
[33] Fiorenzo A. Fazzolari. A refined dynamic stiffness element for free vibration analysis of cross-ply laminated composite cylindrical and spherical shallow shells, Composites Part B: Engineering Volume 62, June 2014, Pages 143158.
[34] Fiorenzo A. Fazzolari, Erasmo Carrera. Free vibration analysis of sandwich plates with anisotropic face sheets in thermal environment by using the hierarchical trigonometric Ritz formulation, Composites Part B: Engineering Volume 50, July 2013, Pages 67-81.
[35] I. Chowdhury, S.P. Dasgupta. Computation of Rayleigh damping coefficients for large systems, Electron, J. Geotech. Eng. 8 (2003).

[^0]: $\Delta \%=\left|\frac{\hat{\omega}_{i}-\hat{\omega}_{\text {eract }}}{\hat{\omega}_{\text {exact }}}\right| \times 100$

[^1]: $\Delta \%=\left|\frac{\hat{\omega}_{i}-\hat{\omega}_{\text {exact }}}{\hat{\omega}_{\text {exact }}}\right| \times 100$

[^2]: $\Delta \%=\left|\frac{\hat{\omega}_{i}-\hat{\omega}_{\text {eract }}}{\hat{\omega}_{\text {exact }}}\right| \times 100$

[^3]: $\Delta \%=\left|\frac{\hat{\omega}_{i}-\hat{\omega}_{\text {eact }}}{\hat{\omega}_{\text {exact }}}\right| \times 100$

[^4]: $\Delta \%=\left|\frac{\hat{\omega}_{i}-\hat{\omega}_{\text {exact }}}{\hat{\omega}_{\text {exact }}}\right| \times 100$

[^5]: $\Delta \%=\left|\frac{\hat{\omega}_{i}-\hat{\omega}_{\text {exact }}}{\hat{\omega}_{\text {exact }}}\right| \times 100$

[^6]: $\Delta \%=\left|\frac{\hat{\omega}_{i}-\hat{\omega}_{\text {exact }}}{\hat{\omega}_{\text {exact }}}\right| \times 100$

