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Summary

Smart structures have a wide range of potential applications in aerospace engi-
neering, such as vibration and noise suppression, shape adaption and aeroelastic
control of lifting surfaces. Piezoelectric materials are largely used as smart materi-
als due to the their capability to perform both as sensors and actuators. Composite
structures embedded with piezoelectric materials confer the low density, superior
mechanical and thermal properties of composite materials along with sensing and
vibration control.

The aim of this thesis is the study of the dynamic behaviour and vibration at-
tenuation of carbon nanotube reinforced composite (CNT-RC) plates, integrated
with piezoelectric layers at the bottom and top surfaces. Distribution of CNTs
reinforcement may be uniformly distributed (UD) or functionally graded (FG) ac-
cording to linear functions of the thickness direction. The material properties of
both matrix and CN'Ts are obtained through a modified rule of mixtures approach.
Plate is modeled acccording with the method of the power series expansion of the
displacement components and the electric potential. Primary variable’s expan-
sion order is considered as a free parameter of the model. Hamilton’s principle
is employed to derive the governing equations in their weak form. The latter are
written in terms of fundamental nuclei which are mathematically invariant with
respect to both the expansion order and the kinematic description of the unknows.
The free vibration analysis is carried out considering the full coupling between the
electrical and mechanical fields. The approximated solution is obtained by using
Ritz method based on highly stable trigonometric trial functions. Forced response
is obtained through the Newmark method considering various dynamic load cases.
The response of the plate is controlled through the dynamic velocity feedback con-
trol algorithm and a closed loop. The upper piezoelectric layer acts as actuators,
while the lower one acts as sensors.

Corvengence and accurancy of the proposed formulation is investigated comparing
results with those available in literature. The effect of significant parameters such
as volume fraction, CNTs distribution and boundary conditions, on the natural
frequencies and both uncontrolled and controlled response, is discussed.



Chapter 1

Introduction

1.1 Composite structures and their applications

In the last few decades the development of composite materials in structural ap-
plications has dramatically risen. Composite materials consist of a combination
of two or more materials that are mixed together in order to reach specific struc-
tural properties or give a new set of charateristics that neigther single costituents
could achieve on their own. Laminated composites, that show anisotropic prop-
erties, have completely changed the methodology of design and made possible a
wide range of new possibilities as materials for construction. Composites have
become especially attractive in the aerospace and aircraft sectors because of their
outstanding strength and stiffness-to-density ratios, corrosion resistance and supe-
rior physical properties compared to traditional isotropic materials. In fact, Fibre
reinforced plastics (CFRP) can and will in the future contribute more than 50%
of the structural mass of an aircraft [1|. As well as traditional composites, the so-
called smart structures has been developed in the last years, due to their potential
applications in aerospace industry, such as: monitoring of composites, suppression
of structural vibration, noise suppression, and surface morphing. An overview of
several structures and their appications, that are the aim of study in this thesis,
is described in this chapter.

1.1.1 Multilayered structures

The most common composite structure is made of a fibrous material embedded
in a resin matrix. For istance, Carbon fiber-reinforced plastic (CFRP) is a typi-
cal composite for structural applications in aerospace and automotive industries.
Fibers are the primary load carrying elements, and the matrix material has the
function of keeping the fibers together, acting as a load-transfer medium between
fibers, and protecting fibers from the external environment. The composite mate-
rial is strong and stiff only in the direction of the fibers. Geometrically, fibers have
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1.1 — Composite structures and their applications

near crystal-sized diameter and a very high length-todiameter ratio. Constituents
used in composites are either metallic or non-metallic. Fibers are commonly made
of organic materials such as glass, boron, and graphite. Fiber-reinforced compos-
ites for structural applications are often made in the form of a thin layer, called
lamina. A multilayerd plate is obtained by stacking uni-directional laminae until
specific mechanical properties are reached. The stacking sequence describes the
distribution of ply orientations through the laminate thickness. The lamination
scheme and material properties of individual lamina provide an added flexibility to
designers to tailor the stiffness and strength of the laminate to match the structural
stiffness and strength requirements [2].

Figure 1.1: Typical Multilayered structure

1.1.2 Sandwich structures

A Sandwich structure is a special class of composite, obtained by bonding two
thin and stiff face sheets to a lightweight and tick core. This kind of composite is
especially suitable in order to develop a lightweight structure with high in-plane
and flexural stiffness. Sandwich structures are used for producing boat hulls, car
hoods and other body part, aircraft panels ecc. The core supports the faces against
buckling and resists out-of-plane shear loads, while the skins carry all the bending
and in-plane loads. Commonly used materials for facings are composite laminates
and metals, while cores are made of metallic and non-metallic honeycombs, cellular
foams, balsa wood and trusses. The overall performance of sandwich structures
depends on the material properties of the constituents (facings, adhesive and core),
geometric dimensions and type of loading.

1.1.3 Functionally Graded Materials

While laminated composite materials provide the design flexibility to achieve desir-
able stiffness and strength through the choice of lamination scheme, the anisotropic
constitution of laminated composite structures often results in stress concentra-
tions near material and geometric discontinuities that can lead to damage in the
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1 — Introduction

Figure 1.2: Typical Sandwich structure

form of delamination, matrix cracking, and adhesive bond separation. Function-
ally graded materials are a class of composite, consisting of two or more different
constituents, designed to have a gradually varying spatial composition profile with
a corresponding continuous change in macroscopic properties |7]. The continuous
variation in properties of the material reduces thermal stresses, residual stresses,
and stress concentration factors. The gradual variation results in a very efficient
material tailored to suit the needs of the structure. FGMs are mainly constructed
to operate in high-temperature environments such as ultra-light and temperature-
resistant materials for space vehicles [9]. They are typically manufactured from
isotropic components such as metals and ceramics as they are mainly used as
thermal barrier structures in environments with severe thermal gradients [8]. The
concept of functionally graded materials was introducted first in Japan in the 80s
during a space project, in order to construct a thermal barrier capable of withstand-
ing a surface temperature of 2000 K and a temperature gradient of 1000 K across
a 10 mm section. Due to the high thermal stress, conventional thermal barrier
coating can easily peel off at the phase boundary. FGM offers an advantage since
the thermal stress distribution is smooth. The application of this new material is
increased over the years in the aerospace industry. Most aerospace equipment and
structures are made of functionally graded materials. These include, for istance,
the rocket engine components, the turbine wheels and the turbine blade coatings.

Metzl

FOGM Ceramic-Metal

Figure 1.3: Multilayered plate embedding a FGM layer
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1.1 — Composite structures and their applications

1.1.4 Carbon-Nanotubes

Carbon nanotubes (CNTs) are allotropes of carbon with a cylindrical nanostruc-
ture. Nanotubes have been constructed as hollows with length-to-diameter ratio
of up to 132 million, significantly larger than any other material. These cylindri-
cal carbon molecules have unusual properties that are valuable for nanotechnol-
ogy, electronics, optics, and structural applications. They are derived from the
grapheme sheets which are rolled at specific and discrete chiral angles. The com-
bination of the rolling angle and radius affect the nanotube properties. Carbon-
nanotubes exhibit outstanding mechanical, thermal and electrical properties and
they can be considered as a valid alternative to classical fiber reinforced compos-
ites. They have low density, high stiffness and strength aspect ratios [5]. It has
been shown that CN'Ts are very strong in the axial direction: Young’s modulus on
the order of 270-950 GPa and tensile strength of 11-63 GPa [6]. Dispersion of low
weight of graphene ( 0.02 wt.%) results in significant increases in compressive and
flexural mechanical properties of polymeric nanocomposites. Referring to their
electronic structure, they exhibit semiconducting, as well as metallic behavior and
thus cover the full range of properties important for technology.

Figure 1.4: Single-walled Carbon nanotube

1.1.5 Piezoelectric materials

Research on piezoelectricity started in 1880 when Jaques and Pierre Curie dis-
covered that some kind of crystals were able to generate electric charges under
mechanical loads. A charge is generated when molecular electrical dipoles are
caused by a mechanical loading: this is called the direct effect (sensor configura-
tion). Conversely, when an electric charge is applied, a slight change occurs in
the shape of the structure: that is called the inverse effect (actuator configura-
tion). Thus, piezoelectric materials can be used at the same time as actuators and
sensors, obtaining the so-called self-sensing piezoelectric actuator |3]. The most
common piezoelectric materials are the piezoceramic barium titanate (BaTiOj)
and piezo lead zirconate titanate (PZT). The crystal lattice of piezoelectric mate-
rials is the face-centered cubic (FCC). Metallic atoms are located at the vertex of
the cube, while oxygen atoms are located at the center of the faces. Due to the
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1 — Introduction

slightly shift of an havier atom to positions with less energy, the crystal lattice
undergoes deformation. On the other hand, when an elctric field is applied to the
structure, the central atom can exceed the potential energy and move to a lower
energy configuration. The rupture of symmetry causes the generation of an electric
dipole as shown in Figure 1.5.

/| /| :

® pb
® TiZr -
° 0,

Figure 1.5: Piezoceramic cell before and after polarization

This phenomenon occurs only when piezoeletric material has a temperature lower
than the so called Curie temperature. In fact, due to high thermal agitation the
piezoelectric effect disappears. To obtain the piezoelectric effect, piezoceramic
material must be subjected to a poling process: It is heated above the Curie
temperature and then subjected to an intense electric field during thermal cooling.
So all the dipoles are oriented in the same direction and the material obtains
a permanent polarization. An Hysteresis curve for polarization of piezoelectric
material is shown in Figure 1.6. The piezoelectric layers considered in this work
are polarized through the thickness-direction.

Remanent polarization

®p

Figure 1.6: Poling of piezoelectric materials: Hysteresis of polarization P
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1.1 — Composite structures and their applications

Applications of smart structures

Piezoelectric materials are of great interest when designing smart structures, which
are systems that are able to sense and react to their environment, through the in-
tegration of various elements, such as sensors and actuators. Smart structures that
use discrete piezoelectric patches or layers to control the response of a structure
have been of considerable interest in recent years. Thanks to the improvement of
modern software, it is possible to model coupled thermo-mechanical-electrical sys-
tems and to obtain mutual relations between piezoelectric actuator voltages and
system response. So by integrating these models into a closed-loop control system,
active control can be achieved. Main current and potential applications of smart
structure are mentioned:

Structural health monitoring

By embedding sensors in some critical locations of a structural system, it is possi-
ble to measure the strain field in order to identify potential damage and mantain
structural safety and reliability. Self-diagnostic plays a crucial role in the aeronau-
tical and space industry, where sensing the strain field of some relevant structural
subcomponents helps in the conduction of an appropriate maintenance program
and in avoiding crack propagation. Self-diagnostic is particular relevant for com-
posites whose the failure prediction is still a challenging task. The monitoring
process is performed by measuring the dynamic response from an array of sensors,
properly located on the structural system. The measurements are recorded and by
a statistical analysis it is possible to extract damage-sensitive features to determine
the current state of system health. This concept is widely applied in civil engineer-
ing to various forms of infrastructures, ranging from bridges to skyscrapers. The
most well-known examples refer to the remote monitoring of bridge deflections,
mode shapes, and the corresponding frequencies [3].

Vibration control

Piezoelectric sensors and actuators are employed for vibration damping, atten-
uation and suppression. They are used to reduce noise and improve the comfort
of vehicles, such as cars, trucks, and helicopters. Piezoelectric materials are also
effective in passive damping: a part of the mechanical energy introduced into the
structural system is converted into electrical energy, according to the piezoelectric
effect. Piezoelectric passive damping devices are commonly embedded in high-
performance sports devices, such as tennis rackets, baseball bats, and skis. Due
to their high strain sensitivity (Sirohi and Chopra 2000), piezoelectric sensors and
actuators are easily employed for vibration damping/attenuation /suppression (In-
man et al. 2001). The same technique is often employed in spacecraft carrying
equipment in a pure operational dynamic environment. Active vibration control is
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1 — Introduction

usually applied in engineering practice in order to suppress dangerous vibrations
over a certain range of frequencies, as in the case of helicopter blades (Chopra
2000).

Shape morphing

In the aeronautics field, shape morphing has been used to identify those aircraft
wings that undergo certain geometrical changes to enhance or adapt to their mis-
sion profiles [4]. In fact, commercial aircraft have to satisfy increasing efficiency
requirements and reduce emissions. The means that can be employed to vary the
shape of the wing are quite challenging and can vary in complexity, depending on
which properties have to be modified: sweep angle, profile, aspect ratio, etc. A
smart flexible wing that would be able to perform proper shape changes, without
movable rigid parts as flaps, slats, ailerons, and spoilers, would lead to a reduction
in drag, weight, and overall system complexity.

sensor

Amplifier

actuator

Figure 1.7: Sensor-Actuator network for a plate
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1.2 — Overview on free vibration analysis and control of composite piezoelectric plates

1.2 Overview on free vibration analysis and con-
trol of composite piezoelectric plates

A brief literature review on free vibration analysis and control of composite piezo-
electric plates is reported. Fayaz R. Rofooei and Ali Nikkhoo derived the govern-
ing differential equation of motion for an un-damped thin rectangular plate with
a number of bonded piezoelectric patches on its surface and arbitrary boundary
conditions, by using Hamilton’s principle [11]. F. Moleiroa, A.L. Aratijoa and J.N.
Reddy provided a new Benchmark 3D exact free vibration solutions for two dif-
ferent piezoelectric multilayered plates, using piezoelectric polymer polyvinylidene
fluoride (PVDF) as material and considering three sets of electrical boundary con-
ditions and three different aspect ratios [12]. Zhu Su, Guoyong Jin and Tiangui Ye
investigated the dynamic characteristic of functionally graded piezoelectric plates
with different boundary conditions through an unified approach on the basis of first
order shear deformation theory. A modified Fourier series is employed in this work,
to describe both diplacements and electric potential [13|. Farhad Abada and Jafar
Rouzegar used the spectral element method (SEM) for free vibration analysis of
FG plate with two piezoelectric layers embedded to the upper and lower surfaces.
A first-order shear deformation theory is employed and governing equations are de-
rived by Hamilton’s principle and Maxwell’s equation. One of the most interesting
features is that the number of elements required for getting an acceptable accuracy
of results is much lower than FEM [10]. B.A. Selim, L.W. Zhang and K.M. Liew
used a novel element-free IMLS-Ritz model, based on Reddy’s higher order shear
deformation theory to study the free vibration and active control of FG-CNTRC
plates with piezoelectric layers [14]. A. Robaldo, E. Carrera and A. Benjeddou
presented new finite elements for the dynamic analysis of piezolaminated plates
based on the principle of virtual displacement (PVD) and an unified formula-
tion. The full coupling between electric and mechanical field is considered. Both
equivalent single layer (ESL) and layer wise model are employed for displacement
variables, while a layer wise description is assumed for the electric potential [15].
D.Ballhause, M.D’Ottavio, B.Kroplin and E. Carrera propose a unified formulation
for the electro- mechanical analysis of multilayered plates embedding piezo-layers
to assess multilayered theories for piezoelectric plates [16]. Chih-Ping, Wu and
Hong-Ru Lin developed a unified formulation of finite layer methods based on the
Reissner’s mixed variational theorem for the dynamic analysis of simply supported,
functionally graded carbon nanotube-reinforced composite plates embedded with
piezoelectric layers, considering closed and open-circuit surface conditions. The
elastic displacement, transverse shear and normal stress, electric potential, and
normal electric displacement components are considered as primary variables of
the formulation [17]. Y. Kiani analyzed free vibration behavior of carbon nanotube
reinforced composite, embedded with two piezoelectric layers at the bottom and
top surfaces. The displacement field is apporximated according to the first order
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1 — Introduction

shear deformation plate theory and the electric potential across the piezoelectric
thickness is emplyed to be linear. Distribution of CNTs through the thickness
of the plate may be functionally graded (FG) or uniformly distributed (UD). The
complete set of motion and Maxwell equations of the system are obtained according
to the Ritz formulation suitable for arbitrary in-plane and out-of-plane boundary
conditions. Close circuit and open circuit boundary conditions on the free surfaces
of piezoelectric layers are studied. Chebyshev polynomials are assumed as trial
functions in Ritz approximation. frequencies and mode shapes are obtained by
solving the eigenvalue system. It is shown that, fundamental frequency of a closed
circuit plate is always higher than a plate with open circuit boundary conditions
[18]. K. Nguyen-Quang, T. Vo-Duy, H. Dang-Trung and T. Nguyen-Thoi proposed
an isogeometric approach for the dynamic response of carbon nanotube reinforced
composite (CNTRC) plates integrated with piezoelectric layers. The displacement
field is approximated to the higher-order shear deformation theory (HSDT) using
the formulation based on Non-Uniform Rational B-Spline (NURBS) basis func-
tions, while a linear function through the thickness of each piezoelectric sub-layer
is employed for the electric potential. The single-walled carbon nanotubes (SWC-
NTs) are assumed to be uniformly distributed (UD) or functionally graded (FG)
distributed along the thickness direction. The active control of the plate is based on
a velocity feedback control algorithm through a closed-loop control with piezoelec-
tric sensors and actuators [19]. S. Y. Wang, S. T. Quek and K. K. Ang investigated
the effect of the stretching-bending coupling of the piezoelectric sensor/actuator
pairs on the system stability of smart composite plates. An isoparametric finite
element is formulated and the classical negative velocity feedback control method
is assumed for the active vibration control analysis of composie plates embedded
with distribuited piezoelectric sensors and actuators [20]. X.Q. He, T.Y. Ng, S.
Sivashanker and K.M. Liew developed a finite element formulation basend on the
classical laminated plate thoery for the shape and vibration control of FGM plates
integrated with piezoelectric sensors and actuators. A constant velocity feedback
control algorithm is used for the active control of the dynamic response of the
FGM plate through closed loop control. Both static and dynamic response are
analyzed for an FGM plate of aluminum oxide/Ti-6A1-4V material composition.
The effect of the volume fractions and the influence of feedback control gain are
examined for static and dynamic responses of the plates [21].
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Chapter 2

Constitutive equations

2.1 Equations of Elasticity

2.1.1 Laminate Reference system

The reference system adopted for the plate has the x and y axes which identifies
the plate mid-surface 2 and the z axis is orthogonal at both as shown in the figure
2.1.

2.1.2 Generalized Hooke’s law

The linear constitutive model for infinitesimal deformation is referred to as the
generalized Hooke’s law. Stress components are assumed to be linear functions of
the strain components and the material coefficients that specify the constitutive
relationship between the stress and strain components are assumed to be constant
during the deformation. The most general form of the constitutive equations for
an elastic material, which does not have a residual stress state oy, is given as [25]

[011] [Cii Cia Ciz Cuy Cis Cig Jen]
022 Oy O Oy Oy Cos O €22
033 _ C31 Oz Csg Csy Oz Csg €33 (2 1)
T23 Cn Ci Cuz Cu Cys Cyg 23 '
T13 Cs1 Csa Cs3 Csy Css Csg 713
L 733 [Ce1 Ce2 Cez Ces Cgs Ceel 712

where Cj; are the elastic coefficients, o; are the 6 indipendent components of the
stress tensor and ¢; are the 6 indipendent components of the strain tensor expressed
in the the engineering notation. The elastic matrix [C] must be symmetric by
virtue of the assumption that the material is hyperelastic. Thus, there are 21
independent stiffness coefficients for the most general anisotropic material.
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2 — Constitutive equations

layer reference surface €2,

h k
Y- h/2
e z, .
plate reference surface €2 k=2 7 e y
Z, k
CeZiTTTTTT P CZZZk/hk
bottom

Figure 2.1: Coordinate system of a plate

Isotropic materials

When there exist no preferred direction in the materials (i.e., the material has
infinite number of planes of material symmetry), the number of independent elastic
coefficients reduces to 2. Such materials are called isotropic. For isotropic material
we have that the stress-strain relations take the following form [2]

(022 ] [C11 Cho 0 0 Ciz Ca] [e€us]
Oyy 012 022 0 0 0 0 Eyy
Ozy | _ 0 0 066 0 0 0 Yy
x| | O 0 0 Cu O 0 Yez (2.2)
Tyz 0 0 0 0 055 0 ’sz
| T2z [ Ciz Caz O 0 0 Cs3] Leésd

with

Cii=Cp==0=A+2u
Cia=0Cyx=C3=2A (2.3)
Cuy = Cs5 = Cg6 = |1
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2.1 — Equations of Elasticity

and

E
ST
(2.4)

Ev

(I+v)(1—2v)

i and A are referred to as Lamé constants, E indicates the Young’s modulus, G is
the transverse shear modulus and v the Poisson’s ratio.

Orthotropic materials

When three mutually orthogonal planes of material symmetry exist, the number
of elastic coefficients is reduced to 9 and such materials are called orthotropic. The
stress-strain relations for an orthotropic material takes the form [25]

[011] [C11 Cho 0 0 Ciz Cas] [en]
0929 012 022 O O 0 0 €929
012 0 0 066 0 0 0 €12 <2 5)
T13 B 0 0 0 044 0 0 Y13 ’
T23 0 O O 0 055 0 Y23
| T33 ] 1Ciz3 Ca3 0O 0  Cs3] [733]
with
1 — va3so V91 — V3123 V12 + V32l/13
Cn=EB—222 0,=p2"2"2_p, 2175270
11 1 A , U2 1 A 2 A
Coo — E 1 — 13031 Co—E V31 — V21132 —E V13 + Viale3
22 Q—A , L13 1—A 3—A
2.6)
1 — viav0y V3p — V1231 Vo3 + V2113 (
Css=F3—— (Cys=FK ——"""" =F3— -
33 3 A , Lag 1 A 3 A
Cu = Gag , Cs5 = G13, Cgs = G2
A =1 — vy9V91 — Vaglsg — V31113 — 2V12V30113
The nine independent material coefficients for an orthotropic material are
B\, Ey, B3, G2, Gi3, Gas, V12, V13, V23 (2-7)
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2 — Constitutive equations

where Ey, Es, E3 are Young’s moduli in 1, 2 and 3 material direction respectively,
v;; is Poisson’s ratio, defined as the ratio of transverse strain in the jth direction
to the axial strain in the ith direction when stressed in the ith direction, and Gasg,
(G13, G12 are shear moduli in the 2-3, 1-3, and 1-2 planes, respectively.

2.1.3 Characterization of a Unidirectional Lamina

A unidirectional fiber-reinforced lamina is considered as an orthotropic material
whose material symmetry planes are parallel and transverse to the fiber direc-
tion. The material coordinate axis | is taken to be parallel to the fiber, the 2-axis
transverse to the fiber direction in the plane of the lamina, and the 3-axis is per-
pendicular to the plane of the lamina. The orthotropic material properties of a
lamina are determined either by suitable laboratory tests or through the theoret-
ical approach, called micromechanics approach. The moduli and Poisson’s ratio
of a fiber-reinforced material can be expressed in terms of the moduli, Poisson’s
ratios, and volume fractions of the constituents [2]

Ey=Epvr+ Envy , Vie = ViU + Uy Uy

2.8
E/E,, GG (28)

B Efvm —I—Em’l)f ’ 12 vam—l-Gme

Es

where the subscripts m and f indicate matrix and fiber rispectively. F; is the
longitudinal modulus, Fj is transverse modulus, 15 is the major Poisson’s ratio,
and G2 is the shear modulus.

Coordinate Transformations

The constitutive relations for an orthotropic material were written in terms of the
stress and strain components that are referred to a coordinate system that coincides
with the principal material coordinate system. In general the coordinate system
used in the problem formulation, does not coincide with the principal material
coordinate system. Furthermore, composite laminates have several layers, each
with different orientation of their material coordinates with respect to the laminate
coordinates. Thus, there is a need to establish transformation relations among
stresses and strains in one coordinate system to the corresponding quantities in
other coordinate system. These relations can be used to transform constitutive
equations from the material coordinates of each layer to the coordinate used in the
problem description. Beginning from the stress and strain vector written in both
coordinate systems
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2.1 — Equations of Elasticity

1, 2, 3 Principal material axes

X%, y, Zz Laminate reference axes

3=z y

Figure 2.2: Reference system

_011_ _611- _sz_ _Exm_
022 €22 Oyy €yy
012 Y12 Ozy Vzy
o, = R , o= , €= (2.9)
013 Y13 Ogz Yz
023 Y23 Oyz Vyz
| 033 | €33 | 022 | €22

the relation that links stress and strain components in the two different reference
systems can be written as

o=To,
(2.10)
€,=TTe
where the rotation matrix 7" is given as
cos(f)? sin(0)? — sin(20) 0 0 07
cos(6)? sin(f)? sin(26) 0 0 0
sin(6) cos(§) —sin(f)cos(f) cos(6)? —sin(h)> 0 0 0
T = 0 0 0 cos(f) —sin(d) 0
0 0 0 sin(f) cos(f) 0
0 0 0 0 0 1
) (2.11)

Thus, by substituting Eq. (2.5) in Eq.(2.10) the constitutive equation, referred to
the (x,y,2z) reference system, are obtained

o=To, =TC,eE, =TC,T e (2.12)
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2 — Constitutive equations

Finally assuming

_C:n (?12 0 0 013 ~23
Cia Cy ~O 0 0 0
~ 0 0 Cg O 0 0
C=1TC,T" = 66 2 2.13
0 0 0 Cyu ~0 0 ( )
0 ~O 0 0 Css ~O
Cis Cy O 0 0 Cssl
Hooke’s law becomes
o=Ce (2.14)

2.2 Constitutive equations for FGMs

2.2.1 Material properties of FG-CNT reinforced composite
plates

The FG-CNTRC plates are composed of a mixture of CNTs and the polymeric
matrix. It is assumed that CNTs are (10,10) armchair single-walled carbon nan-
otubes (SWCNT) and the matrix is supposed to be isotropic and homogeneous.
Four types of linear distributions of CNTs through the thickness are considered,
including a uniformly distributed (UD) and three different functionally graded
(FG), as shown in the Table 2.1

Table 2.1: Volume fraction of CNTs as a function of thickness coordinate

CNTs Distribution Vent(2)

UD CNTRC VéanT
2z
FG-V CNTRC Vénr (1 + %>
2|2|
FG-O CNTRC 2VEaNT 1 — e
2|2|
FG-X CNTRC QVSNTT
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2.2 — Constitutive equations for FGMs

c
)
1
D
<

FG-X FG-0
Figure 2.3: CNTs Distributions
where
« WCONT
Venr = PCNT _ WONTPCNT (2.15)
WeNT + -
m Pm

is the CNTs volume fraction, woyt is the mass fraction of the carbon nanotube
in the composite plate, p,, and pcyr are the densities of the matrix and carbon
nanotube, respectively. The quantities Vonyr and V,, represent the volume fraction
of the CNTs and the polymeric matrix, respectively, and they are related by the
equation Vonr(z) + Vin(z) = 1. The structure of the carbon nanotube strongly
influences the overall properties of the composite. Several micromechanical mod-
els have been developed to predict the effective material properties of CNTRCs.
They can be defined eighter by using the extended Voigt’s rule of mixtures or
Mori-Tanaka micromechanical model [23]. According to the rule of mixtures, the
effective material properties can be expressed as follows [5]:

Ey = 771VCNTE1C1NT + VB

M2 _ Vovr Ve
Eyy EGNT  E,

s _ Venr | Vo (2.16)
G12 102NT Gm

CNT
vig = Vonrviy -+ Vinlm

p = Venrtpent + Vipm
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2 — Constitutive equations

Where EGNT | EGNT GENT ) vGNT and ponr are the Young’s modulii, the shear
modulus, the Poisson’s ratio and the density of the SWCNTs, respectively. E,,,
G, v and p,, are the material properties for the isotropic matrix. The efficiency
parameters 71, 7o and 73 are introduced in the equations to take into account the
size dependent material properties of the plate. These parameters are chosen to
equal the obtained values of Young modulus and shear modulus from the present
modified rule of mixtures with the results obtained according to the molecular
dynamics approach (MD).

Constitutive relations

The 3D constitutive equations for FG-CNT can be written as

o=C(z)e (2.17)

Where C is the constitutive matrix

_CH(Z) 012(2) 0 0 013(2) 023(2’)_
012<Z> CQQ(Z) 0 0 0 0

co=1 5 o N om0 o 219
_013<Z> 023(2) 0 0 0 ng(Z)

2.3 Constitutive equations for piezoelectric mate-
rials

The general coupling between the mechanical, electric, and thermal fields can
be established using thermodynamical principles and Maxwell’s relations. For this
purpose, it is necessary to define a Gibbs free-energy function G and a thermopiezo-
electric enthalpy density H

G(Eij, E,L', 0) = O'ijeij — EzDZ — 770
(2.19)
H(Eij, EZ‘, 0, 191) = G(Eij, EZ', 9) — F(ﬁl)

where o;; and ¢;; are the stress and strain components,F; is the electric field
vector, D; is the electric displacement vector, n is the variation in entropy per
unit of volume, and 6 is the temperature considered with respect to the reference
temperature Ty. F'(¢;) is the dissipation function which depends on the spatial
temperature gradient 1J; and in the most general case is given as:

26



2.3 — Constitutive equations for piezoelectric materials

where k;; is the symmetric, positive, semi-definite conductivity tensor, 7y is a
thermal relaxation parameter and h; is the temporal derivative of the heat flux h;.
The thermal relaxation parameter is usually omitted in the proposed multifield
problems. The thermopiezoelectric enthalpy density H can be expanded in order
to obtain a quadratic form for a linear interaction:

1
H(eij, Ei, 0,9;) = §Qz‘jkz€ij€kz — eijk€ij B — Nijeiz0

(2.21)
1 1 1
- §€szkEz — prlol — 5)(92 - §/€iﬂ9ﬂ9j

where ;i is the elastic coefficient tensor considered for an orthotropic material
in the problem reference system. e;;, are the piezoelectric coefficients and € are
the permittivity coefficients.\;; are thermo-mechanical coupling coefficients, p; are
the pyroelectric coefficients, and x = pC, /Ty, where p is the material mass density,
C, is the specific heat per unit mass, and T} is the reference temperature. For the
piezoelectricity problems, the thermal contributions are not considered and the
piezoelectric enthalpy density H coincides with the Gibbs free-energy function G.
Hence, equation 2.21 can be rewritten as

1 1
H(e;, E;,0,0;) = §Qz‘jkl€ij€kl — eir€ij By — §€szkEl (2.22)
The constitutive equations are obtained by considering the following relations:
OH OH
ii=—  Dp=——"X 2.23
i c%ij F 8Ek ( )

The constitutive equations for the electromechanical problem are obtained by
considering Eq.(2.22) and Eq. (2.23)

Oi5 = Qijklﬁkl - eijkEk
(2.24)
Dy, = ejreij + el

Considering a generic multilayered structure, equations 2.24 can be written in
their vectorial form in the reference system (x,y,z) as

of — QFe" — T EF
(2.25)
DF — ebek 1 FEF
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2 — Constitutive equations

Where the strain and stress component vectors are

_ _k K
U.Z’Z' exx
Oyy Eyy
o

ok — Y : el — Vey
UZ‘Z /Y$Z
Oyz Vyz
_JZZ _GZZ_

E " D"
E*=|E,| , D*=|D,
E. D,

(2.26)

(2.27)

The elastic coefficients matrix Q* of Hooke’s law in the problem reference system

for an orthotropic material is:

[Q11 Q12 Qi3 0 0 Qis]"

Q2 Q2 Q3 0 0 Q

Q" — Quz Q23 Q33 0 0 Qs
0 0 0 Qu Qs O
0 0 0 Qs Q55 O

[ Q16 Q2 Q36 0 0 Qg

The matrix €* of the permittivity coefficients has 3 x 3 dimensions:

k
en €12 0
€k = [E12 E&22 0
0 0 £33

The piezoelectric coefficients matrix e* has 3 x 6 dimensions:

0 0 0 ey e 01°

ek = 0 0 0 €24 €95 0
ez1 e e 0 0 es
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Chapter 3

Plate structural models

3.1 2D structural theories

The exact closed-form solution of the fundamental equations of continuum me-
chanics is generally available only for a few sets of geometries and boundary con-
ditions. In most cases approximated solutions are required to solve the general 3D
problem. This has brought, over the years, to the development of a large amount
of structural theories in order to reduce the 3D problem to a 2D or 1D problem.
The choice to reduce the 3D problem is strongly related to the geometric dimen-
sions of structural element that has to be analyzed. There are two main approach
to derive structural theories:

e The asymptotic method

o The axiomatic method

The aziomatic method is based on the establishment of a number of hypoth-
esis that cannot be proved mathematically. Thus, it is possible to reduce the
mathematical complexity of the 3D elasticity differential equations. This method
provides a new set of governing equations that can be solve in a comfortable man-
ner, and sometimes under specific iphotesis, the equations can be easily solved in
the close-form. The asymptotic method introduced a geometric parameter in the
governing equations that in the case of a 2D theory could be the ratio between
the thickness and the length of a plate. One of the advantages by adopting this
approch is that all the terms in the equations which multiply the geometric param-
eter by exponents that are lower or equal to n are preserved for a given value of the
exponent. So all the terms have the same order of magnitude and th 2D solution
approaches to the 3D solution when the parameter tends to zero. Despite this
method provides a control on the effectiveness of each term in the equations, the
development of asymptotic theories are generally more difficult than the axiomatic
theories.
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3 — Plate structural models

3.1.1 Plate reference system

Plates are defined as 2D structural elements with a small thickness A compared to
the planar dimensions a and b. Due to this geometric assumption, it is possible to
reduce 3D problem to a 2D one. The reference system assumed for the plate has
the x and y axes which identify the plate mid-surface ) and the z axis is orthogonal
at both as shown in the figure 3.1.

Figure 3.1: Coordinate system of a plate

3.1.2 The Unified approach for the displacement field

Dealing with a two-dimensional axiomatic theory, in the most general case the un-
known displacements can be expressed as a series expansion through the tickhness
coordinate. By the Unified Formulation, introduced by Carrera, the displacemnt
field of a 2D structural problem can be expressed as [25]:

u=F.(2)u(r,y) 7=01,.....N (3.1)

Where F;(z) are generic functions of the plate-thickness coordinate, u,(x,y) is the
vector of the unknow diplacements referred to the mid-surface of the plate €2, and
N is the order of expansion that can be arbitrarily chosen. Thus, by expanding the
displacement field at any desired order, is possible to include a great number of 2D
theories, from classical to advanced theories. For example, considering a Taylor-
like polynomial expansion the displacement field assumes the following explicit
form:



3.2 — Classical plate theories

3.2 Classical plate theories

Dealing with the displacement formulation, since the late 19th century many plate
theories have been developed, such as those proposed by Kirchhoff and Reissner-
Midlin, see [24]. A brief review of these classical models along with the complete
linear expansion are described in this section.

3.2.1 Classical plate theory

In the framework of the Unified Formulation, the Kirchhoff plate theory, referred
as Classical Plate Theory (CPT), can be considered as particular case of the N =
1 model by using a Taylor-like polynomial expansion. The displacement field is
expressed as:

ux(l‘y Y, 2) = UI()(JZ, y) + Zua:l(xa y)
uy (2, Y, 2) = uyo(7,y) + 2 uy (2, y) (3.3)
u(2,y, 2) = ux0(z, y)

The CPT is derived from the following a-priori assumptions:

1. segments normal to the mid-surface of the plate remain straight after defor-
mation. Thus, the in-plane displacements are assumed to be linear along z as
follows:

(3.4)

2. segments normal to the mid-surface of the plate remain normal after defor-
mation. This assumption implies that the shear deformations v,. and v, . are
neglected:

Yoz = Uzz + Ug,» = Uz0,z + Ugp1 = 0= Upl = — U202 (3 5)
Vyz = Uzy + Uy = Usoy + Uyt = 0= Uyr = —Us0y

3. the tickness remains constant after deformation. The out-of-plane deforma-
tion €, is neglected:

€1z =Uy, =0 (3.6)
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3 — Plate structural models

Thus, the aforementioned ipothesis can be resumed in the following displacement
model:

ux(‘ra Y, Z) = umO(xyy) - ZUZO,w(xv y)
uy($7 Y, Z) - uy()(xJ y) - Zuzo,y(x, y) (37)
uz($>y72) = u20<x7y)

CPT presents three unknown variables (w0, w0, u.0) and the relations amongst
them have been derived from kinematic ipothesis. According to the kinematics
hypotheses, CPT takes into account the in-plane strains only and neglects the
cross-sectional shear deformation phenomena. Figure 3.4 shows the typical distri-
bution of displacement components according to CPT: linear for u, and u, and
constant for uz. The physical meaning of the derivatives of transversal displace-
ment, u,, and u,,, is also represented.

X//

Z u,

Figure 3.2: Kinematics of Kirchhoff plate model

3.2.2 First order shear deformation theory

The first order shear deformation theory (FSDT) is considered as an extesion of
the classical plate theory and it is based on Reissner-Midlin ipothesis. The second
assumption of Kirchhoff hypothesis is removed, thus the shear deformation is taken
into account:

Yz = Uzz + Uy z = U0, + ¢x
Vyz = Uzy + Uy z = Uz0y + Oy
32
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Where ¢, and ¢, are the rotation functions. According to Reissner-Midlin ipoth-
esis, the displacement field can be resumed in the form:

ux(x,y, Z) = u$0<x7y) - Z(bI(xu y)
uy(x,y, Z) = uyo(mv y) - Z¢y(x>y) (3'9)

Uz(l', Y, 2) = Uzo(l', y)

The unknows increase from to 3 to 5 (uz, Uy, Us0, Pz, ¢y). Dealing with thin
plates, when the in-plane characteristic dimension to thickness ratio is on the order
50 or greater the shear effect disappears and the rotation functions ¢, and ¢,
approach the respective slopes of the transverse deflections w0, and u.o,. Figure
3.3 shows the typical distribution of displacement components according to FSDT.
Also the physical meaning of the rotations, ¢, and ¢,, is represented.

Figure 3.3: FSDT kinematics

3.2.3 The complete linear expansion case N=1

Considering the complete linear expansion case, the plate model has 6 displace-
ment variables: three constant (N=0) and three linear (N=1). Thus, the displace-
ment field assumes the following form:

Ux(l’, Y, Z) - ufEO(I7 y) + Zuiﬂl(xa y)
uy (7, Y, 2) = uyo(r,y) + zuy1 (2, ) (3.10)
UZ(ZL', Y, Z) = uzO(xa y) + Zuzl(‘ra y)
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3 — Plate structural models

Strain components are obtained by substituting the displacement field in the ge-
ometrical relations:

€z = Ugx = Ug0,x +z Uz,
Eyy = Uyy = Uyoy T 2 Uyl y

€rz = Uz z = Uzl (311)

Vay = Uy + Uy = Ugoy + Uyox + 2 (Ue1y + Uy1 o)
VX2 = Uy + Uy = Uyl + Uz00 + 2 Uz1

VTYzZ = Uy~ + Uz y = Uyl + Uz0,y + ZUzy

The adoption of the complete linear expansion (N=1) is necessary to introduce
the through-the-thickness stretching of the plate, given by €,,. This model leads
to a constant distribution along the tickness of the strain component €,, and a
linear distribution of other strain components. The thickness stretching cannot be
neglected when the plate is relatively thick.

3.3 Higher order theories

The classical plate models are not able to account for many higher-order effects,
such as the second-order out-of-plane deformations. The limitations of these mod-
els stimulated the development of higher order shear deformation theories (HSDT),
to include the effect of cross sectional warping and to get the realistic variation
of the transverse shear strains and stresses through the thickness of plate. Fur-
ther refinements of FSDT are known as Higher-Order Theories (HOT). In general,
higher-order theories are based on displacement models of the following type:

Uz‘(l’,’y,Z) :U()(I,y)+ZU1($,y)+22U2(l’,y>+ """ _'_ZNU“N(J;?y) (312)

3.3.1 Reddy’s higher-order shear deformation theory

Reddy proposed a third-order plate theory based on the same assumptions as the
classical and first-order plate theories, except that the assumption on the straight-
ness and normality of a transverse normal after deformation is removed by expand-
ing the displacements w,, u, as cubic functions of the thickness coordinate [26]. The
displacement field is obtained by imposing traction-free boundary conditions on
the top and bottom faces of the laminate (oy.(z,y, £h/2) = 0,.(x,y, £h/2) = 0):
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3.3 — Higher order theories

4
ux(xvya Z) = umﬂ(ma y) + qux(wa y) - ﬁ23(¢x + uzO,x)

4
Uy (2, Y, 2) = uyo(x,y) + 2 ¢y(z,y) — Wzg@y + Uz0,y) (3.13)

u,(z,y,2) = uy(z,y)

Where w0, uyo, Uz0, ¢, and ¢, are the unknow variables.

Z,Uu,
X, ux
U.0x
|
CPT !
— d)x |
FSDT |
uzO,x

HOT

z0,x

Figure 3.4: Deformation of a transverse normal according to the classical, first order,
and third-order plate theories
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3.4 Theories on Multylayered structures

Multilayered structures exhibit higher transverse shear and transverse normal flex-
ibilities with respect to in-plane deformability along with a discontinuity of the
mechanical properties in the thickness direction. These features require the dis-
placement field and the transverse stresses to satisfy some conditions, summarized
with the acronym C?: the displacement field u should be able to describe sudden
changes of slope in correspondence of layer interfaces. This is known as the zig-zag
effect (2Z). Although in-plane stresses o, can be discontinuos, the Cauchy theo-
rem demands the continuity of the transverse stresses o,. The fulfilment of the
CY%-Requirements is a crucial point in the development of any theory suitable for
multilayered structures.

3.4.1 77 theories

The extension of CLT, FSDT and HOT to multilayered plates doesn’t permit the
C§-requirements to be fulfilled. Refined theories have therefore been introduced to
resolve this problem. These types of theories are referred to as Zig-Zag theories.
The idea behind zig-zag theories is that a certain displacement model is assumed
in each layer and then compatibility and equilibrium conditions are used at the
interface to reduce the number of unknown variables. Lekhnitskii was the first to
propose a Zig-Zag theory, which was obtained by solving an elasticity problem in-
volving a layered beam. An independent manner of formulating zig-zag plate/shell
theories has been provided in the by Reissner. His formulation permits to satisty,
completely and a priori, the C%-Requirements by assuming two indipendent fields
for diplacements and transverse stresses [27].

3.4.2 ESL models

The theories mentioned in the previous sections consider a number of unknown
variables that is independent of the number of constitutive layers N1. These all
are known as Equivalent Single Layer Models (ESL). Although these kinematic
theories can describe transverse shear and normal strains, including transverse
warping of the cross-section, their approach is kinematically homogeneous in the
sense that the kinematics is insensitive to individual layers, unless zig-zag models
are used. In the most general case, ESL models appear in the following form:

uw(l‘yya Z) = qu(xvy) + Zua:l(xa y) + 2 Uzz(%y) + o + Z uacN<xay)
wy (7, Y, 2) = uyo(x,y) + 21 (7,y) + 22 upo (v, y) + oo + 2N uyn(z,y)  (3.14)
Uz(ﬂf, Y, Z) = uzO(xay) + Zuzl(xa y) + 2z Uz2($>y) + o + ZN uzN(xvy)

where N is the order of the Taylor-like polynomial expansion. These higher-order
theories are denoted by acronyms ED1, ED2,ED3,...., EDN.
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ED1 ED3 X,y

Wiya—

Figure 3.5: Linear and cubic Equivalent single layer expansions

3.4.3 Murakami’s zig-zag function

For an ESL theory, the ZZ form of the displacements can be reproduced by intro-
ducing the Murakami’s function which is able to describe the zig-zag effect [28].
He modified the FSDT theories according to the following model:

Ux(l', Y, Z) = UIO(ma ?J) + Zu:r:l(xa y) + (_1)kauxZ

uy (2,9, 2) = tyo (2, y) + 2wy (2, y) + (=1)* Geuyz (3.15)

UZ(Z', Y, Z) = uzo((E, y)
Where the subscript Z is referred to murakami’s function and ¢, = 2z;/hy is the
non-dimensioned layer coordinate. The exponent k changes the sign of the zig-zag
term in each layer. With the addition of the ZZ function, the discontinuity of
the first derivative of the displacement variables can be reproduced through the

thickness direction. Transverse normal strain/stress effects can be included in the
displacement field, leading to:

ux(xu Y, Z) = ua:O(xa y) + Zuzl(x7 y) + (_1)kaUxZ
uy(x, Y, Z) = Uyo(l’, y) + Zuyl(xa y) + (_1)kauyZ (316)
uz<x7y7 Z) = uz(](mu y) + Zuzl(x7y> + (_1)ka:uzZ

Where

Fo=1 Fi=2 Fy=F;= (1), 7=0,1.2 (3.17)

This model is denoted by the acronym EDZ1, in which Z is referred to the inclusion
of murakami’s function in the displacement field. Higher-order models take the
following form:
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UI(ZL‘, Y, Z) = ua:O(:L‘ay) + Zuxl(xvy) + . + ZN uxN(xvy) + (_1)k€kumZ
wy (7,9, 2) = Uyo (2, y) + 2y (2,9) + oo + 2N uyn (@, y) + (= 1) Guyz - (3.18)
UZ(ZE, Y, Z) = uzO(‘r7 y) + Zuzl(x7 y) + . + ZN uzN(xv y) + (_1)kC/€uzZ

That in compact form can be written as:

u=uy+ (-1 Guy + 2" u, = Fu, 7=01,....,N,Z (3.19)

Where N is the order of expansion, thus:

Fo=1, Fi=2 F=22. Fy=2" F;= (-1 (3.20)
These higher-order theories are denoted by acronyms EDZ1,EDZ2, EDZ3,..., EDZN.

Figure 3.6: Cubic case of Murakami’s zig-zag function

3.4.4 Layer Wise models

In all equivalent single-layer laminate theories, it is assumed that the displace-
ments are continuous functions of the thickness coordinate. Hence, the transverse
stresses at the interface of two layers, are discontinuous. For thin laminates the
error introduced due to discontinuous interlaminar stresses can be negligible. How-
ever, for thick laminates, the ESL theories can give erroneous results for all stresses,
requiring a more accurate approach to include the ZZ effect. By introducing the
Layer Wise theories, is possible to obtain a detailed response of individual layer
which is considered as an independent plate. The layer wise approach constists of
the use of special higher-order theories at layer level which leads to an increase in
the number of unknows in the solution process, and consequently to an higher com-
putational cost of the analysis. The compatibility of the displacement components,
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3.4 — Theories on Multylayered structures

corresponding to each interface, is then imposed as a constraint. The thickness
variation of the displacement components in each layer can be defined eighter in
terms of lagrangian interpolation functions [29] or, more preferred, in terms of
Legendre polynomials. For the linear expansion case, the following displacement
field is employed:

ulP (2, y, 2) = Fi(Gul (z,y) + Fo(Guly) (z,y)
ulP(,y, 2) = F(G)uly (2,9) + Fy(Gouly (2, y) (3.21)
uP (2, y, 2) = F(Guly (z,y) + Fo(Gu'y (z, y)

The subscripts t and b denote values related to the top and bottom layer-surface,
respectively. These two terms consist of the linear part of the expansion. The
thickness functions F,((x) have now been defined at the k-layer level:

R+ h R —-P
2 2

Where P; = P;((x) is the Legendre polynomial of the j-order defined in the (-
domain —1 < ( < 1. The first five Legendre polynomials are:

Ey (3.22)

7Fb

3¢—1 , 5 . 3¢ 15¢ 3
9 » 43 y 14 3 4 + 3 (3 3)

PBh=1,P=G, b=

The chosen functions have the following interesting properties:
1: F=1 F,=0; F.=0;
Co = P b (3.24)
—1: F,=1, F, =0; F, =0;

That permits to have interface values as unknown variables, avoiding therefore
the inclusion of constraint equations to impose C§-requirements. Higher-order
layer-wise theories are written by adding higher-order terms:

ul) (z,y, 2) = Ful® + Fbugz) + qu;’;) +..+ FNugﬁ\)[

xt
ulP(2,y,2) = Faly + Fuly) + Fouly + .. + Fyuly (3.25)
()

u,(zk)(xa Y, Z) = Ftu,(zli) -+ Fbugz) -+ FQUS? + ..+ FNuzN
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3 — Plate structural models

Where

F,=P.—P._,, r=23,..N (3.26)
In a compact form the displacement field is given as follows:
u® = Fu® + Fu + Fu® = Fu®, 1 =400, r=23,.,N  (3.27)

T

These higher-order expansions have been denoted by the acronyms LD2,LD3,...,LDN.

LD1 LD3 X,y

Figure 3.7: Linear and cubic Layer-wise expansions
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Chapter 4

Theoretical Formulation

4.1 Geometric and constitutive relations in electro-
mechanical problems

The features of multilayered composite plates geometry are shown in the figure
4.1. In the most general case the plate is composed of N; layers which can be made
of any kind of materials (piezoelectric or purely elastic). The integer k, used as
superscript or subscript, identifies the layer number which starts from the bottom
of the plate. The plate middle surface 2 coordinates are indicated by = and y
while z is the thickness coordinate. 2, denotes the k-layer surface domain. z;
denotes the local thickness coordinate of each layer. According to the classical
nomenclature used in literature, the length of the plate in the x and y direction
is indicated by a and b, respectively, while h and h; denote the plate and layer
thicknesses. (j is the dimensionless local layer-coordinate. A, denotes the k-layer
thickness domain. Symbols without the k subscript or superscripts refer to the
whole plate.

The notation for the displacement and electric field vectors u* and E* are given
as

E
ub = |u,| , EF=|E, (4.1)
E

Consistently to the reference coordinate system the stress and strain vectors o*

and € are indicated as follows
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plate reference surface €2

layer reference surface €2,

_____________ AZe
k=2
A%
k=1 T TTTTTTT
bottom

hk
o | hy2
y
(=27 /h,

Figure 4.1: Multilayered composite plate geometry

The strain-displacement relations are

e’ = Du*

42

where D is a differential matrix operator, defined as follows

(4.3)
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- _
20 0
o)
0 2 0
5 o 0
D= ! (4.4)
0 0
- 0 &
0 0
[0 0 £

The electric field E* is defined as the gradient of the electric potential ®*

9
ox

EF=— | L | @ = D,o" (4.5)
0
0z

In the laminate reference system, the constitutive equations for the kth layer take
the following form

of — CFeb — o EF
(4.6)
DF = efed + eFE*

where o* is the stress tensor, € is the linear strain tensor, C* is the matrix of
the elastic moduli and is given as

Chy Crp Cig 0 0 C]”
Cia Cyp Cy 0 0 Co
Cie Cp Ces 0 0 Csg

0 0 0 Cu Cs O
0 0 0 Cyp Cs55 O
[C13 Coz Cz6 0 0 O

C* (4.7)

e’ is the matrix of the piezoelectric constants and assumes the following form

0 0 0 €14 €15 0 ¥

=10 0 0 ey e3 0 (4.8)
€31 ez e33O 0 es6
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D¥ is the vector of the electric displacement and €* is the permittivity matrix and
is given as
k
enn €12 0
€k = [E12 €E92 0 (49)
0 0 £33

4.2 Approximations of the mechanical displacement
field and electric potential

As mentioned in Section 3.4 the unknown variables u* and ®* can be expressed
as a set of thickness functions that only depend on the thickness coordinate z and
the associated variable depending on the in-plane coordinate z and y. The dis-
placement field is assumed by using a generalized expansion that allows to develop
both equivalent single layer and layer-wise analyses. Instead the approximation
of the potential is restricted only to layer-wise formulation. In fact, due to the
significant differences of the electric properties of each layer, the ESL description
for the potential is not appropriate to cover these high gradients [16]. The most
general displacement field and electric potential assume the following explicit form

[5]

! (4.10)

Ok (z,y,2,t) = ZFT¢ xy,t)

T¢—

where I, , Fy, , F, and F. are the thickness functions. According to this ap-
proach, the governing dlﬁerentlal equations can be written in terms of fundamental
nuclei, which are mathematically invariant with respect to both the expansion or-
der and the kinematic description of the unknows. The expansion order of the
potential Ny is totally indipendent from the expansion of the displacement N,,
even if the two orders can be the same. In this case the superscript Ny is omitted
in the analysis.
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4.3 — Hamilton’s principle

4.3 Hamilton’s principle

Hamilton’s principle (HP) is assumed to derive the governing equations of the
electro-mechanical problem in their weak form [33]. The approximated solution is
then obtained by using the Hierarchical Trigonometric Ritz Formulation (HTRF)
[31]. In its most general form HP can be written as

to
/ SLFdt =0 (4.11)
t1

where 0 is the variational operator, ¢; and ¢, are the initial and the generic instant
of time. LF is the Lagrangian for the kth layer and assumes the following form
[30]

ck=1F 11" (4.12)
where T* is the kinetic energy and II”* is the total potential energy which includes

strain energy, dielectric energy and the external work by point-loads.

T+ =2 / ok ik dvE
Vk

P
1 T 1 T T
k _ 17k k k _ k k k k k k k k
" =U% + Uk +V _§/va otdvt—3 | EYDrav - uy B,

p=1
(4.13)
Substituting Eq. (4.12) in Eq. (4.11), HP becomes:
to to
5/ H’fdt—(s/ TFdt =0 (4.14)
t1 t1

where the variational form of the kinetic and potential energy can be rearranged

as
b / Tk dt = / / PFsur ik avhar
Vlc

to to to P
5 / I* dt = / / et ot avtdt — / / JEF DFdvtdt — > sul FE
t1 t1 Vk t1 Vk p=1

(4.15)
By coupling (4.6) in Eq. (4.14) HP becomes
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to
/ / (0" Che" — 5" " E* — E" eFe" — §EV P EF) dv*dt
Vk

P to
— Y oul Y+ / / (pFout" @) dvEdt =0
p=1 t1 vk

(4.16)

subtituting Eq. (4.3), (4.5) in Eq. (4.16) the variational form of Eq. (4.11) can
be expressed in terms of the unknown variables u* and ®*

to
/ / (ou* D"C*Du* — su*’ D"e" D, " — 5 D! e Du*
Vk

P ts
— 68" D}.e* D, ") dVidt — ) dup Fp, + / / (phout" @) dVtdt =0
—1 t1 Vk

(4.17)

4.3.1 The Hierarchical Ritz Formulation

In the variational form of (4.17), the mechanical displacement field and electric
potential field are unknown functions. To solve these unknowns numerically, it is
necessary to use efficient numerical methods to approximate the mechanical dis-
placement field and electric potential field. In this work the Hierarchical Trigono-
metric Ritz Formulation (HTRF) [34] is employed to derive the GDEs in their
weak form. In the Ritz method the displacement vector u* and the potential ®*
are expressed in series expansion and assume the following explicit form [32].

N Ny,
fL’ ' Yy %y t Z Z LBTu,cZ

Nuy

:U Y, 2, t Z Z yTuyl

=1 Tuy—l

N Ny,

(x,y,2,t) Z Z ZTuzl

i=1 7y, =1

N Ny

Mla,y, z,t) = qu)wl

Z1T¢1

) Fr, (2) Ve, (7, y)
) Fr, (2) ¥y, (2, 9)
(4.18)

Tuz( )ZZJZZ(SC y)

), (%, y)

where A indicates the order of expansion in the Ritz approximation, Uy, ;, Uyra,is

Uzruzia (I)

T
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4.3 — Hamilton’s principle

are the Ritz functions appropriately selected with respect to the features of the
problem under investigation. Convergence to the exact solution is guaranteed
if the Ritz functions are admissible functions in the used variational principle.
Highly stable trigonometric functions are assumed as trial functions. The harmonic
assumptions used for the displacements and the electric potential are

MY mmx nmwy
= 3 S () 2
Yy = f: i&n(mmlc) COS(H_Z?J)
men ’ (4.19)
S 3 oG
b= 23 (2 (52

It is known that in Ritz family methods, adoption of a shape function depends
only on the essential boundary conditions. In this case on each edge of the plate
either electric potential and the displacements should be equal to zero to satisfy
simply supported condition and grounded condition, respectively. The armonic
displacement and potential field of Eq. (4.18) can be expressed in a compact way
as

u’“—F\If Uk
(4.20)
= T¢w¢z T¢’L
Where:
Usr,.i Yy, 00 F,. 0 0
Ut = U | W, =0 v, 0| F=|0 F, 0 (4.21)
Uz’f:‘l'u 7 0 0 ¢zi 0 0 FTuz

4.3.2 Fundamental Nuclei

Substituting Eq. (4.20) in Eq. (4.17), the variational form of the total potential
energy and the kinetic energy become
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" = §U*~ / / (F,v,,)]"C"DF, ¥, dA,dU,
Qk Ak

T T k:T .
— SU~ /Qk /Ak (F. W, Dy Fi iy, dArdQ @, ;
T
_6‘1%,1/9 / (D, ., € DF, W, dAdQUY,
k

— 5ok, / / Dy Frths, ) " Dye Fo iy, dApd, 0%,
Qk

T
—oU" Z F,,%,.,F,

TF = —5U* / / (F,®,)" (F,,,)] dAduU
Q J Ay

The compact form of Eq. (4.22) is

5Hk _ 5UkTKkTsUUk + é‘UkTKkTSZJ(I)k

547
+ (SCI)EwZKkTSUUk + 5(I>¢U1Kk7—8”(1)’;¢] . 5UfiTFS]

0T* = —5UL, MFITk,

the Ritz primary fundamental nuclei are obtained:

KFrsii — / / [D(F.W,)|]"C*DF.W¥,, dA.d,
Q J A

K7 = - / / [D(F,®,,)| " D,.F, v, dAxdQ,
Q. J AL

K[ = — / / [DyeFr,bs,) € DF, W, dAydSy,
Q. J AL

szbsjj = _/ /A [DpeFryt06,] € Dy Fy by, dARdQY,
Qp, k

AgFTSi / / o (Fo,) (FoW,,)] dAydQy,
Qk Ak

(4.22)

(4.23)

(4.24)

where M*7% is the mass fundamental nucleus, K*7* is the stiffness fundamental
nucleus, K ];;5” and Kfj;s” are the piezoelectric and permettivity fundamental

nuclei respectively.
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Table 4.1: Dimensions of the fundamental nuclei

Fundamental Nucleus Dimension
KFrsii [3 x 3]
K 3 x 1]
K [1x 3]
K7 [1x 1]
MNFkTsii 3 % 3]

The explicit forms of the secondary stiffness, piezoelectric, permettivity and mass
fundamental nuclei are following reported:

TS o k
K e = Cf F

Tug

/Ak<

Fsuw) dZ] [/Q (¢xi,mwxj,x) ko

+ CF,
+ C¥F,
+ CE,

+ CE

/A,f

/Ak<
/Ak<
/Ak<

F. F.

Tug ~ Sug

F.

Tug

F. F.

Tug Sug

F.

Tug
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)dz

)dz

/Qk(%’“%cj,y) A,
/Qk(%,-,ywmm) A,

/ (et ) 4
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Tug Su k
Kuz‘ay Y = 016

/A (F F,,) dz] [ /Q k (ot ) 4%

+ Of2 / (me Fsuy) dz / (¢mi,r¢yj,y> dS2y,
Ay Q

+ C(?G / (me Fsuy) dz / (77Z):ci,y1/}yj,;t) ko
Ay Q

+ 056 / (me FSuy) dz / (77Z)xi,y¢yj,y) koz
Ay Q

+ 04]1€5 / (FTuz,stuy,z> dZ] [/ (@/}xﬂz)yj) ko
Ay Q

e / (. .F, ) d / (02, ) A
Ak Qk

K5 = Ck

Uz Uy

+ Cfg / (Fruz Fsuz,z) dz / (wxi,xwz]) ko
Ak Qk

| [ (PP || [ () don
Ak Qk

/A k(FTuy Fsuz)dz] [ /Q k (Ut ) %

Tuqy Su k
Kuy:”{Lz T = 016

+ CfQ / (me st) dz / (¢yi,y¢mj,x) Sy,
Ay Q

+ Cgﬁ / (me FSuz) dz / (¢yi,x¢xj,y) ko
A Qp

+ 056 / (me st) dz / (¢yi,y¢mj,y) ko
Ay Qp

+ 041;35 / <F’7'uy,Z suz,z) dZ] [/ (¢yz¢x3) ko
L Ay Qi
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Tuqy Su k
K“y?{iy ' = 026

/A k(me F,,) dz] [ /Q k (Vg yy; ) ko]

+ 052 / (me Fsuy) dz / (wywy@%ﬁy) dS2y,
Ay Qp

+ Cgﬁ / (F’Tuy Fsuy) dz / (wyi,y¢yj,x) ko
Ay Q

+ 0536 /A (F'ruy Fsuy) dz / (%i,y%,-,y) ko
k Qp

+C¥, / (Fr,, :Fi,, 2) dz] [ / (tytby, ) AU
Ak Qk

Tuqy Su k
KUszMZ F = 045

/A k(FTuy’ZFS“Z)dZ] [ /Q k(%i%ﬁz) 0,

+ Czlf4 / (FTuy7ZFSuz) dz / (Wy, ¥z, ,) dS2
Ay Qp

+ C§6 / (FTuy Fsuz,z) dz / (wyi,xwz]-) ko:
Ap Qp

+ 053 /A (FTuy Fsuz,z) dZ / (?/)yi,y%sz) koz
k Qp

Tuy Sugy — (YK
K% = Cgy

Uz Uy

/A k (Fr. F, 2) dz] [ /Q k (V2 2¥a;) ko]

+ Czlf5 / (sz FSum ,z) dz / (wzi,ywxj> ko
Ay Q

+ CfS / (FTuz ,ZFSuz) dz / (1/&1@/)%@) ko
Ag Qp

+ C;fﬁ / (sz ,stuz) dz / (¢Zi,¢)xj,y) ko
L Ay Qp
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Tuy Su k
Kuzzy Y = 045

+Ck,
+ Ck,

+ Ck,

TuySuy, — 1k
K% = Cy;

Uz Uz

+Ck,
+ CE
+ Ck,

+ Ck,

Tux3¢ _ k
Kum = €3

k
+ €36

k
+ ey

+ €y

/Ak<

/A (FroFu) dz] [ /Q () a0
X

F., F.

Tug

F,, F.

S¢,2

[ BBl | [ () i
Ay 1L Qp i
/ (FTuz ,stuy) dz / (¢Ziwyj7$) ko
Ay i Qp i
/ (FTuz ,stuy) dZ / (¢Ziwyj,y) ko
Ak 1L Qp i
/ (FTuz Fsuz) dz] / (Qﬁzhy@bzﬁm) 2y,
Ay | Qp
/ (sz Fsuz) dz / (¢Zi,y¢z]-,y) dSdy,
Ay 1L Qp ]
/ (Fruz Fsuz) dz / (wzi,mwzj',a:) ko
Ay 1L Qp i
/ (FTuz Fsuz) dz / (wzi,mwzj',y) ko
Ag 1L Q.

/ <¢$i,y¢¢j) ko
Q,

/ (o, ) %
Qf

/ <¢$iw¢j 7y) ko:
Qf
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K;—:éw = €§2 / (me Fs¢,z> dZ] [/ (djyi,yl/}fbj) ko]
Ay, o
+ 6156 / (me Fs¢,z> dz / (¢yi7$¢¢j> Sy,
L Ak - - Qk -
+ 61{35 / (me,stqb) dz / (¢yz ¢¢j7z) 2y,
L Ak - - Qk -
| [ (PP || [ @) don
L Ak - . Qk -
KZZ;% = ek, / (Fy,. Fl,)dz [/ (V2.0 0) A
Ak Qk
by [ F P e | [ i)
- Ak - Qk -
syl [ (E B || [ W don
L Ak 4 L Qe .
+ 6155 / (F‘Fuz FS¢) dz / (%i,y%j,y) ko
L Ak - L Qk -
+ e§3 / (F‘ruz,zFS¢,z) dz] [/ (djzz'waﬁj) dS2y,
L Ak Qk a
KqTSZs% = b, / (F, Fs,)dz [/ (Vg,2Vg;.2) A
Ay Q
+ 5?2 / (FT¢FS¢) dz / (¢¢i7$¢¢j7y) 2y,
- Ak - - Qk -
v | [ (LR | [ o) o
L A n Qi .
byl [ (LR | [ (o) do
. Ak - Qk -
+ 6’i’f?, / (FT¢,ZFS¢,Z) dZ] [/ (wqﬁiwqﬁj) dSdg
L Ay Qp h
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Mz =t [ (B EL) || [ ) a0
Ak Qk

Mq:yiij” =" / (FTuy Fsuy)dz / (wy¢¢yj) A2y, (4.25)
Ak | Qk
Mz =M [ (F R || [ )0
| Ak ] Qp
4.3.3 Weak form of the governing equations
The minimization of the total energy of Eq. (4.14) leads to the equation:
SITF — 6T% = 0 (4.26)

Now coupling Eq. (4.26) with Eq. (4.23) and considering that virtual variations
are independent and arbitrary, the discrete form of two set of governing differential
equations in terms of fundamental primary nuclei are obtained:

5UkT . MkTsij Uk KkTS'ij Uk KkTszj (I)k — st
Ti 547
5 kT . KkTSij Uk KkTs’Lj k (427)
ot KT k=0

Once the fundamental nuclei have been assembled at structure level as widely
discussed in [32], the governing equations take the following form:

MU + K, U+ K, ®=F

(4.28)

where U and ® are the vectors of the unknown degrees of freedom related to the
elctro-mechanical problem.

4.3.4 Free vibration problem

The free-vibration response of the multilayered plate, by assuming a simple ar-
monic expansion of the variables in the time domain U = Ue™!, ® = dei!, leads
to the following eigenvalues problem:

(K?, —w*M)U =0 (4.29)

where K is the stiffness matrix, obtained applying the static condensation pro-
cedure [30]. This procedure requires to solve the second equation of the system in
Eq. (4.27) which leads to the expression:
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K;, = K. — KK, K, (4.30)

The static condensation has been computed for different advanced theories. Eq.
(4.29) is associated to the natural frequencies of an open circuit (OC) plate inte-
grated with piezoelectric layers. On the other hand, dealing with a closed circuit
condition (CC), it is assumed that piezoelectric layers are grounded and the elec-
tric potential at the free surfaces is identically zero. Therefore, for closed circuit
condition, natural frequencies are obtained by set to zero the potential degrees of
freedom at the top and bottom surfaces.

— —
Closed-Circuit Open-Circuit
+ A RO + Al RT®
Cl)ﬁ [=®/R > @ Cbﬁ I=®/R —+> 0
B! B

Figure 4.2: Electrical boundary conditions

4.4 Dynamic response and Active vibration con-
trol of CNT-RC plates with piezoelectric sen-
sor and actuator layers

A laminated FG-CNTRC plate, embedded with piezoelectric layers at the bottom
and top surfaces as shown in 4.4, is considered in this section. The top layer
is a piezoelectric actuator denoted with subscript a and the bottom layer is a
piezoelectric sensor labeled with subscript s.

Piezoelectric Actuator Actuator input
® 0 00 00 00 0000000 00 0 A
® 0 00 060 060000 00 0
0 00 0600 000
e e 00
. Controller
o o 00
e 00 000000 A
0 00 060 00000 00 0
® O 00 060 00 000 00 00 00 0
Piezoelectric Sensor Sensor output

Figure 4.3: A schematic diagram of a FG-CNTRC plate with integrated piezoelectric
sensors and actuators
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4.4.1 Velocity feedback control algorithm

The distributed piezoelectric sensing layer monitors the structural oscillation due
to the direct piezoelectric effect and the distributed actuator layer suppresses the
oscillation via the converse piezoelectric effect. The velocity feedback control ap-
proach is employed for the active vibration control of each functionally graded
CNTRC plate which can give a velocity component by using an appropriate elec-
tronic circuit [14]. When applying any external mechanical force, the composite
plate undergoes deformation. Due to this deformation, a sensor output voltage is
generated and is sent to the controller. The latter amplifies the sensor voltage and
sends it to the actuator as input voltage. Due to the converse piezoelectric effect,
stress and strains are generated. A resultant force, which actively suppresses and
controls the vibration, is generated. The constant gain velocity feedback G, is
used to couple the input actuator voltage vector ®, and the output sensor voltage
as follows

o, = G, (4.31)

Qa D,

h, :;: actuator layer %

h FG-CNTRC layer controller

hp:i: sensor layer ﬁi D, =G, O
Qs D

Figure 4.4: Close-loop control diagram

When there is no external charge @, the output voltage from the piezoelectric
layer is obtained from the second equation of the system (4.28) as

571 S
®, = -K;, K; U (4.32)
The sensor charge caused by deformation is given as

Q. =-K;,U, (4.33)

When an electric charge Q occurs as external load, Eq. (4.28) become

MU + K,,U + K, ;,®=F
K, U+ Kg® =Q
56

(4.34)
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Eq. (4.34) can be rearranged by static condensation as

MU+ K, U+K,®=F—-KK, Q (4.35)

The actuator layer charge can be obtained by substituting Eqs. (4.31) and (4.32)
in the second equation of the system (4.34)

Q.= K., - G KK, K;,U, (4.36)

Now, substituting Eqs. (4.36) and (4.33) in Eq. (4.35), the equation of motion is
obtained:

MU +CU + K,,U = F (4.37)

where C' is the active damping matrix computed by

C=K.,K;, K3, (4.38)

If the structural damping is considered in Eq. (4.37), it can be rearranged as

MU + (C+Cs)U + K, U =F (4.39)

in which Cy is the Rayleigh damping matrix which is computed assuming a linear
combination of M and K, [35]

Cs=asM +bsK,, (4.40)

in which ag and bg are Rayleigh damping coefficients that can be determined from
experiments.

4.4.2 Dynamic response

The equation of motion is solved by the iterative procedure of Newmark presented
in [19]. When the current state of variables (U;, U;, U;) is known at ¢t = t;, a new

state (U1, UZ+1, Ul+1) at t = t; + At is computed from

1
(5At2M * ﬁAt<C + Cs) + K) Unp=F.,1+M

1 1 1
arUit gt <%—1>U]
Ui = <1 - %) U, + (1 . %> AtU; + BM(Ui+1 ~U)

. 1 1 . 1
U,=——U —U)——U,— | —-1|U;
+1 ﬁAt2< +1 ) BAt (2B >
(4.41)
where o = 0.5 and [ = 0.25.
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Chapter 5

Numerical Results: Modal
analysis

5.1 Laminated orthotropic plate

A laminated orthotropic piezoelectric plate is considered as first test-case of the
formulation proposed in Chapter 4. The laminate is made of five layers which are
perfectly bonded to each other. The top and bottom layers are made of PZT-4
piezoelectric material with the thickness of h, = 0.1h each. The three structural
composite layers (graphite/epoxy) have equal thickness and have a cross-ply con-
figuration [0/90/0]. The material properties are listed in Table 5.1. The plate is
simply supported and short circuited &, = &, = 0. Firstly, in Tables 5.2-5.10 a
stability model assessment is carried out by comparing the first six natural fre-
quencies of the plate with the exact solutions provided in [16]. The free vibration
analysis is performed with ED, EDZ and LD theories and the expansion order of
the potential Ny is consider totally indipendent from the expansion order of the
displacements N, in order to investigate how N, affects the convergence rate to
the exact solutions. The length to thickness ratio is set to a/h = 4. Secondly, a
convergence study on the first six natural frequencies is provided in Tables 5.14-
5.15. Two different length to thickness ratios a/h = 4,50 are considered. Tables
5.18-5.18 shows the first six natural frequencies of both mechanical and coupled
case, computed with all the theories with a/h = 4,100. A denotes the natural
frequency increment due to the electro-mechanical coupling and is defined as:

A — djcoupled - wuncoupled (51)

Wuncoupled
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Figure 5.1: Hybrid sandwich plate |[PZT-4/0/90/0/PZT-4]|

Table 5.1: Elastic, piezoelectric and dielectric properties of used materials

Property PZT-4 Gr/Ep SWCNT (300 K) PmPYV matrix
E; (GPa) 81.3 132.38 5646.6 21
Eo (GPa) 81.3 10.756 7080.0 2.1
E3 (GPa) 64.5 10.756 7080.0 2.1
via 0.329 0.24 0.175 0.34
V13 0.432 0.24 0.175 0.34
Va3 0.432 0.49 0.175 0.34
Ga3 (GPa)  25.6 3.606 19944.5 0.7836
Gi3 (GPa) 256 5.6537 19944.5 0.7836
Gi12 (GPa)  30.6 5.6537 19944.5 0.7836
e1q (C/m?) 12.72 0 0 0

eas (C/m?)  12.72 0 0 0

ez1 (C/m?) -5.20 0 0 0

ess (C/m?) -5.20 0 0 0

es3 (C/m?)  15.08 0 0 0
c11/%0 1475 3.5 2000 10
£22/€0 1475 3.0 2000 10
£33/€0 1300 3.0 2000 10

p (Kg/m3) 7600 1590 1400 1150
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5 — Numerical Results: Modal analysis

Table 5.3: Stability model assessment, first six natural frequencies @ = w/100 with ED theories for the simply-supported

hybrid sandwich plate with a/h =4 and N, = 2

Ny, =2
n s w3 o ws @6 Ave. A%  Max A%
Exact [16]  57074.5 191301 250769 274941 362492 381036
ED?,, 7A117.2610  196021.4357  266337.8019  375609.4464  479236.8287  700388.2754  31.86 83.81
ED2,, 7A117.2610  195859.5902  262204.0384  375609.4464  479236.8287  698489.6372  31.49 83.31
ED2,, 61479.5963  195859.5902  262204.0384  286259.5305  393505.2063  698489.6372  18.44 83.31
ED2,, 61471.9260  194604.1590  258178.7127  286474.2070  393323.3097  503760.3583  9.55 32.21
ED?,, 69413.6740  196021.4357  266337.8019  373493.1204  459959.7518  700388.2754  29.47 83.81
ED2,, 69413.6740  195859.5902  262204.0384  373493.1204  459959.7518  698489.6372  29.10 83.31
ED2,, 58818.5754  195859.5902  262204.0384  282241.2919  371905.6785  698489.6372  16.43 83.31
ED2,, 58818.4126  194609.2471  258097.2818  282263.6780  371901.9534  503049.5085  7.50 32.02
ED2,, 69413.6740  196019.8645 265917.9142  373493.1204  413042.1563  459959.7518  16.77 35.84
ED2,, 69413.6740  195825.4056  259586.0969  373493.1294  392800.6904  459959.7518  15.40 35.84
ED2,, 58818.5754  195825.4056  259586.0970  282240.5711  371906.3240  392800.7731  2.88 3.52
ED2,, 58818.1649  104478.4689  253956.9032  282251.1905  371898.9691  390380.6789  2.28 3.06
ED?,, 69373.9451  196019.8645 265917.9088  373492.5645 413040.7813  459580.0338  16.74 35.84
ED2,, 69373.8872  195825.4056  259586.0971  373492.5647  392800.7664  459580.5068  15.38 35.84
ED2,, 58713.8342  195825.4056  259586.0965 281824.7197  371236.2657  392800.8091  2.79 3.52
ED2,, 58713.9199  194592.2069  254768.4518  281830.2642  371143.8029  391069.1040  2.29 2.87

A% =

Wezact

Wi—Wezact

| x 100
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5 — Numerical Results: Modal analysis

Table 5.5: Stability model assessment, first six natural frequencies @ = w/100 with ED theories for the simply-supported

hybrid sandwich plate with a/h =4 and N, =4

Ny=4
n s w3 o ws @6 Ave. A%  Max A%
Exact [16]  57074.5 191301 250769 274941 362492 381036
ED?,, 7A117.2611  196021.4358  266337.8024  375609.4465  479236.8289  700388.2760  31.86 83.81
ED%,, 7A117.2611  195859.5904  262204.0404  375609.4465  479236.8289  698489.6390  31.49 83.31
ED,, 61479.6131  195859.5904  262204.0404  286260.0233  393504.8144  698489.6390  18.44 83.31
ED%,, 61472.0527 194604.1720  258178.7135  286469.3870  393326.4392  503761.3867  9.55 32.21
ED?,, 69413.6742  196021.4358  266337.8024  373493.1295  459959.7522  700388.2760  29.47 83.81
EDL,, 69413.6742  195859.5904  262204.0404  373493.1205  459959.7522  698489.6390  29.10 83.31
ED,, 58818.5899  195859.5904  262204.0404  282241.6256  371905.6530  698489.6390  16.43 83.31
ED%,, 58818.4271  194608.0532  258103.3332  282262.5139  371901.9605 503050.1049  7.50 32.02
ED?,, 69413.6742  196019.8645 265917.9172  373493.1205  413043.4039  459959.7522  16.77 35.84
ED,, 69413.6742  195825.4056  259586.1198  373493.1295  392801.9334  459959.7522  15.40 35.84
EDi,, 58818.5808  195825.4056  259586.1199  282244.1899  371904.9274  392802.0161  2.88 3.52
EDY,, 58818.1897  194478.4420  253960.8373  282250.9660  371899.1560  390383.6447  2.28 3.05
EDY,, 69373.9556  196019.8645 2659179117  373492.5650  413042.0284  459580.2205  16.74 35.84
EDL,, 69373.8900  195825.4056  259586.1200  373492.5652  392802.0094  459580.7565  15.37 35.84
EDi,, 58713.8241  195825.4056  259586.1194  281825.2319  371239.6178  392802.0522  2.79 3.52
ED%,, 58713.9221  194592.1273  254739.3875  281830.2732  371143.8485  390960.9564  2.28 2.87

A% =

Wezact

Wi—Wezact

| x 100
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5 — Numerical Results: Modal analysis

Table 5.7: Stability model assessment, first six natural frequencies
hybrid sandwich plate with a/h =4 and N, = 2

@ = w/100 with EDZ theories for the simply-supported

Ny, =2
n s w3 o ws @6 Ave. A%  Max A%
Exact [16]  57074.5 191301 250769 274941 362492 381036
EDZ2,, 63204.7359  195965.3819  266196.0204  298704.5654  427700.5059  455520.7908  10.92 19.55
EDZ2,, 632047359  195721.4997  260861.0674  298704.5654  427700.5059  436974.2763  9.73 17.99
EDZ2,, 60054.8821  195721.4997  260861.0675 284231.2808  390426.3398  436974.2756  6.22 14.68
EDZ2,, 60054.8289  202611.3453  205847.9858  284231.5106  332087.2083  390421.0486 17.91
EDZ2,, 60605.4801  195965.3819  266196.0204  293428.0734  404987.5286  455520.7908  8.79 19.55
EDZ2,, 60605.4801  195710.5641  259570.1587  293428.0734  390745.7346  404987.5286  5.47 7.79
EDZ2,, 57656.7080  195721.4997  260861.0675 279713.5755  369974.2544  436974.2756  4.31 14.68
EDZ2,, 57656.6920  202403.1940  239231.9800  279713.3359  320132.9448  369974.2345  4.21 9.20
EDZ2,, 60605.4801  195925.1060 2659064529  293428.0734  404987.5285 411606.5170  6.85 11.72
EDZ2,, 60605.4801  195710.5641  259570.1587  293428.0734  390745.7346  404987.5286  5.47 7.79
EDZ2,, 57656.7119  195710.5644  259570.1716  279713.7020  369974.0847  390745.7781  2.20 3.51
EDZ2,, 57656.5413  186460.7373  229279.0195  279713.5419  320665.3670  369976.9736  4.72 11.54
EDZ2,, 60600.9666  195925.1063  265906.4508  293314.4798  404965.1564 411606.4323  6.84 11.72
EDZ2,, 60600.9641  195710.5638  259570.1639  293314.4619  390745.9090  404965.1731  5.46 7.79
EDZ2,, 57578.6073  195710.5637  259570.1682  279410.3753  369095.5061  390745.9692  2.11 3.51
EDZ2,, 57575.1159  194443.5566  254739.4685  279394.6321  369163.4800  389191.1643  1.62 2.14

A% =

Wezact

Wi—Wezact

| x 100
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5 — Numerical Results: Modal analysis

Table 5.9: Stability model assessment, first six natural frequencies @ = w/100 with EDZ theories for the simply-supported

hybrid sandwich plate with a/h =4 and N, =4

Ny=4
n s w3 o ws @6 Ave. A%  Max A%
Exact [16]  57074.5 191301 250769 274941 362492 381036
EDZ4,, 632047360  195965.3820  266196.0209  298704.5655  427700.5062  455520.7908  10.92 19.55
EDZ4,, 632047360  195721.4999  260861.0701  298704.5655  427700.5062  436974.2781  9.73 17.99
EDZi,, 60054.8908  195721.4999  260861.0698  284231.1063  390423.9537  436974.2778  6.22 14.68
EDZ4,, 60054.8423  202613.3991  205870.8197  284231.5196  332086.8395  390421.1122 17.90
EDZ4,, 60605.4803  195965.3820  266196.0209  293428.0737  404987.5293  455520.7908  8.80 19.55
EDZ4,, 60605.4803  195721.4999  260861.0698  293428.0736  404987.5293  436974.2770  7.61 14.68
EDZ4,, 57656.7131  195721.4999  260861.0698  279713.5712  369974.4119  436974.2778  4.31 14.68
EDZ4,, 57656.7007  202402.8893 2391644901  279713.3750  320144.3645  369974.3799  4.21 9.20
EDZ4,, 60605.4803  195925.1076  265906.4573  293428.0735  404987.5293  411607.4504  6.85 11.72
EDZi,, 60605.4803  195710.5650  259570.1759  293428.0736  390746.6014  404987.5293  5.47 7.79
EDZ4,, 57656.7404  195710.5650  259570.1772  279713.6958  369974.0861  390746.6387  2.20 3.51
EDZ4,, 57656.6295  186434.9267 229117.2884  279713.5351  320894.6944  369975.7981  4.72 11.47
EDZ4,, 60600.9666  195925.1078  265906.4546  293314.4996  404965.1782  411607.3653  6.84 11.72
EDZ%,, 60600.9666  195710.5648  259570.1830  293314.4998  390746.7873  404965.1782  5.46 7.79
EDZ4,, 57579.0674  195710.5647  259570.1870  279403.9498  369093.0186  390746.8445  2.11 3.51
EDZ4,, 57585.0247  194140.7846 2547052324  279406.4871  368997.2431  386098.4398  1.45 1.79

A% =

Wezact

Wi—Wezact

| x 100
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5.1 — Laminated orthotropic plate
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5 — Numerical Results: Modal analysis

Table 5.11: Stability model assessment, first six natural frequencies @ = w/100 with LD theories for the simply-supported

hybrid sandwich plate with a/h =4 and N, = 2

Ny, =2
n s w3 o ws @6 Ave. A%  Max A%
Exact [16]  57074.5 191301 250769 274941 362492 381036
LD2,, 57257.8737  194839.5924  255646.2507  282167.4983  368457.7395  389525.3819  1.77 2.63
LDZ,, 57162.0719  191312.5012  251189.9718  275158.0302  363493.7086  388603.9780  0.44 1.99
LDZ,, 57153.5020 191312.3117  251188.0178  275060.7071 3631745061  388537.3527  0.42 1.97
LDZ,, 57153.4927  191312.1793 2511874605  275059.3192  363172.5359  388537.0442  0.42 1.97
LD2,, 57177.9321  194838.1450  255231.8726  282071.6137  367801.5462  382165.3086  1.36 2.59
LDZ,, 57081.8463  191311.0620  250785.8261  275060.2670  362881.5767  381322.1808  0.04 0.11
LDZ,, 57074.1045 191310.8517 2507824797  274958.8614  362521.0086  381166.2336  0.01 0.03
LD2,, 57074.0951  191310.7193  250781.9284  274957.4760  362519.0768  381166.0042  0.01 0.03
LD2,, 57177.9320  194838.0854  255229.3031  282071.3669  367798.5938  382059.6572  1.35 2.59
LD2,, 57081.7057  191301.3006 2507715248  275043.4734  362852.3168  381192.5721  0.03 0.10
LD2,, 57073.9637  191301.0895  250768.1790  274942.1259  362491.9799  381037.3774  0.00 0.00
LD2,, 57073.9559  191300.9500  250767.4642  274940.4751  362489.5488  381036.7094  0.00 0.00
LD2,, 57177.9320  194838.0854  255229.2987  282071.3653  367798.5599  382059.2341  1.35 2.59
LDZ,, 570817057  191301.3006  250771.5209  275043.4720  362852.2869  381192.1577  0.03 0.10
LDZ,, 57073.9593  191301.0894  250768.1688  274942.0383  362491.4390  381036.2491  0.00 0.00
LDZ,, 57073.9515  191300.9498  250767.4540  274940.3874  362489.0079  381035.5810  0.00 0.00

A% =

Wezact

Wi—Wezact

| x 100
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5.1 — Laminated orthotropic plate
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5 — Numerical Results: Modal analysis

Table 5.13: Stability model assessment, first six natural frequencies @ = w/100 with LD theories for the simply-supported

hybrid sandwich plate with a/h =4 and N, =4

Ny =4
& 2 3 @ s o Ave. A% Max A%

Exact [16]  57074.5 191301 250769 274941 362492 381036

LD?,, 57257.8738  194839.5925 255646.2600 282167.4984  368457.7401  389525.3820 1.77 2.62
LD%,, 57162.0723 1913125013 2511899718  275158.0303  363493.7106  388603.9787  0.44 1.99
LD, 57153.5023 191312.3118  251188.0178  275060.7071  363174.5081 388537.3533  0.42 1.97
LD%,, 57153.4930 1913121794 2511874605 275059.3192  363172.5379  388537.0449  0.42 1.97
LD%,, 57177.9322  194838.1451  255231.8729  282071.6139  367801.5468 382165.3088 1.36 2.59
LD, 57081.8466  191311.0629 250785.8261  275060.2670  362881.5787  381322.1814  0.04 0.11
LD, 57074.1048  191310.8517 2507824797 274958.8614  362521.0106 381166.2342  0.01 0.03
LD, 57074.0955 191310.7193 2507819284  274957.4760 362519.0788  381166.0048  0.01 0.03
LD, 57177.9321  194838.0856  255229.3034  282071.3670  367798.5939  382059.6573  1.35 2.59
LD, 57081.7067 191301.3011 2507715256 275043.4736  362852.3168 381192.5721  0.03 0.10
LD, 57073.9648  191301.0900 2507681797 274942.1262  362491.9799  381037.3775  0.00 0.00
LD, 57073.9570  191300.9505 2507674650 274940.4753  362489.5488  381036.7094  0.00 0.00
LDY,, 57177.9321  194838.0856 2552292990  282071.3654  367798.5600  382059.2341  1.35 2.59
LD, 570817067 1913013011 2507715216 275043.4722  362852.2869 3811921577  0.03 0.10
LD, 57073.9604  191301.0808  250768.1695 274942.0385  362491.4390  381036.2491  0.00 0.00
LD, 57073.9526  191300.9503 2507674547 274940.3877  362489.0079  381035.5811  0.00 0.00

A% = |LizLesact | 5 100

Wezact
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5.1 — Laminated orthotropic plate
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5 — Numerical Results: Modal analysis

Table 5.15: Convergence study on the first six natural frequencies @ = w/100 for the simply-supported hybrid sandwich

plate with a/h = 50

a/h = 50

CQH CQM &m &» n@m &m Ave. Dﬁu Max Dﬁo
Exact [16] 618.118 15681.6 21492.8 209704 210522 378104
LD4 618.1043  15681.5458  21492.5789  209704.0828  210522.2329  378104.4048  0.00 0.00
LD3 618.1043  15681.5458  21492.5789  209704.2461  210522.5579  378104.9863  0.00 0.00
LD2 618.10563  15681.5458  21492.5790  209788.3688  210605.3868  378278.3540  0.02 0.05
LD1 619.0220 15683.4178  21494.4314  212810.9560  214690.3703  384953.0613 0.91 1.98
EDZ3 618.3814  15687.0501  21496.5094 212012.8112  216749.3787  386101.5399 1.04 2.96
EDZ2 619.0455  15693.5478  21496.5144  222042.1743  262302.7327  429559.1567  7.39 24.60
EDZ1 688.0640 15693.6372  21498.4563  222201.5611  262434.3395  429719.3585  9.28 24.66
ED4 618.4637  15693.5245  21497.7823  218019.2079  218997.3898  385648.9017  1.69 4.02
ED3 618.5502  15694.2317  21500.0619  218018.3434  219002.5507  388109.7374 1.80 4.03
ED2 620.2993  15694.8760  21505.2370  320858.9291  331281.1194 679987.9466  31.78 79.84
ED1 689.8670  15694.9515  21507.4033  320954.6225 331380.8063 680009.5086  33.68 79.85

A% = |Li=Lesact | % 100

Wezact
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5.1 — Laminated orthotropic plate

Table 5.16: Coupling effect on the first six natural frequencies @ = w/100 with ED
theories for the simply-supported hybrid sandwich plate with a/h = 4 and

a/h = 100
a/h =4 a/h =100

coupled (SC)  uncoupled A% coupled (SC)  uncoupled A%

ED4 @ 58713.9221 56939.2867 3.12 155.3185 146.8253 5.78
wo  194592.1273 193118.9470  0.76 7847.0781 7800.0647 0.60

ws  254739.3875 250329.3699 1.76 10750.8523 10484.9161 2.54

ws  281830.2732 279663.2320  0.77 217208.5781 217196.7310  0.00

ws  371143.8485 362994.4955  2.24 218408.7479 218393.1767  0.01

we  390960.9564 388144.2091 0.72 385725.9000 386390.7652  0.17

ED3 @ 58818.5898 57163.1434 2.90 155.3392 147.0295 5.65
w2 195825.4056 194618.3471  0.62 7847.1666 7800.1711 0.60

ws  259586.1199 254169.1651  2.13 10751.1371 10485.1325 2.54

Wy 282244.1329 279977.6950 0.81 217208.7749 217196.7545  0.00

ws  371905.1891 363372.5578  2.35 218409.7552 218393.6229  0.01

we  392802.0161 390534.8377  0.58 388129.6691 386420.8898  0.44

ED2 @ 69413.6740 66641.6628 4.16 155.4498 147.1240 5.66
w2 195859.5902 194618.55653  0.64 7847.4964 7804.4665 0.55

w3  262204.0384 255320.1774  2.70 10753.8682 10508.7944 2.33

Wy 373493.1294 372521.4827  0.26 320462.8873 320453.8215  0.00

ws  459959.7518 453187.4552  1.49 330617.3938 330608.7186  0.00

we  698489.6372 668362.3884  4.51 679909.3135 644125.8394  5.55

ED1 @, 74105.8979 73720.9288 0.52 172.9563 171.8841 0.62
w2 196021.3374 194876.7410  0.59 7847.5058 7804.4814 0.55

ws  266337.1465 259635.8978  2.58 10754.1390 10509.0805 2.33

ws  375608.2780 375555.5069  0.01 320488.1367 320487.2236  0.00

ws  479222.7800 478536.3310 0.14 330641.1352 330640.2137  0.00

we  700380.4385 669973.6977  4.54 679914.7177 644130.7562  5.55

A% — |Wcoupled—wunuoupled| X 100 75

Wuncoupled



5 — Numerical Results: Modal analysis

Table 5.17: Coupling effect on the first six natural frequencies & = w/100 with EDZ
theories for the simply-supported hybrid sandwich plate with a/h = 4 and

a/h = 100
a/h=4 a/h =100
coupled (SC)  uncoupled A% coupled (SC) uncoupled A%
EDZ4 @ 57585.0247 56004.1835 2.82 155.3103 146.8172 5.78
ws  194140.7846 193045.5801  0.57 9028.1864 7798.5358 15.77
ws  254705.2324 250278.9961  1.77 11422.7968 10476.8747 9.03
wa  279406.4871 276872.5801  0.91 99733.4355 211511.4983  52.85
ws  368997.2431 361485.9774  2.08 99733.4355 215775.6740  53.78
we  386098.4398 386590.2057  0.13 211527.0479 384883.3594  45.04
EDZ3 @ 57656.7172 56185.1779 2.62 155.3285 147.0212 5.65
w2 195710.5652 194566.6773  0.59 7843.5789 7798.6434 0.58
ws  259570.1855 254146.8380  2.13 10749.3416 10477.0948 2.60
Wy 279713.6605 277078.0626  0.95 211527.6590 211511.6725  0.01
ws  369974.2928 361938.8579  2.22 215791.9741 215775.7522  0.01
we  390746.6533 388737.7370  0.52 386107.4111 384911.6749  0.31
EDZ2 @; 60605.4801 59073.6908 2.59 155.3707 147.0597 5.65
Wy 195965.3819 194594.9664  0.70 7846.8424 7803.9407 0.55
w3  266196.0204 254975.9700  4.40 10749.3468 10478.3042 2.59
ws  293428.0734 290390.6244  1.05 221516.9683 221499.8172  0.01
ws  404987.5286 395729.7279  2.34 261492.5647 261478.8186  0.00
we  455520.7908 436929.2236  4.25 429558.9614 428945.3271  0.14
EDZ1 @ 63198.5291 63030.6094 0.27 172.8467 171.7729 0.62
w2 195965.2576 194876.7406  0.56 7846.8536 7803.9538 0.55
w3 266195.2458 259606.4802  2.54 10749.5892 10478.5173 2.59
wyg  298704.5651 298461.1021  0.08 221557.5866 221555.2405  0.00
ws  427699.8535 426409.5804  0.30 261525.0359 261523.1462  0.00
we  455511.7257 455468.4938  0.01 429599.0590 428984.4909 0.14

A% — ‘wcuupled_wuncuupled‘ X 100 76
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5.1 — Laminated orthotropic plate

Table 5.18: Coupling effect on the first six natural frequencies @ = w/100 with LD
theories for the simply-supported hybrid sandwich plate with a/h = 4 and

a/h = 100
a/h =4 a/h = 100

coupled (SC)  uncoupled A% coupled (SC)  uncoupled A%

LD4 @&, 57073.9526 55514.7764 2.81 155.2848 146.6802 5.87
w2 191300.9503 189939.4848 0.72 7841.7120 7795.9804 0.59

ws  250767.4547 246834.0821  1.59 10748.8484 10476.1621 2.60

Wy 274940.3877 272676.7516  0.83 208921.5919 208910.6773  0.00

ws  362489.0079 355350.7482  2.01 209855.3115 209837.2685  0.01

we  381035.5811 379190.1485  0.49 378390.2280 378350.7473  0.01

LD3 @ 57073.9648 55514.7915 2.81 155.2848 146.6801 5.87
w2 191301.0900 189939.6207 0.72 7841.7120 7795.9804 0.59

ws  2b50768.1797 246834.6942  1.59 10748.8484 10476.1621 2.60

Wy 274942.1262 272678.4240 0.83 208921.6976 208910.7823  0.00

ws  362491.9799 355352.7720  2.01 209855.6885 209837.6459  0.01

we  381037.3775 379192.1675  0.49 378390.6738 378351.1914  0.01

LD2 @, 57081.8463 55523.8953 2.80 155.2849 146.6802 5.87
w2 191311.0629 189949.2767  0.72 7841.7120 7795.9804 0.59

ws  250785.8261 246848.8669  1.59 10748.8484 10476.1621 2.60

Wy 275060.2670 272794.5064  0.83 209006.0233 208995.1025  0.00

ws  362881.5767 355708.8005  2.02 209937.3849 209919.3148  0.01

we  381322.1808 379503.0350 0.48 378532.6039 378492.6851  0.01

LDl @, 57252.4975 55754.8334 2.69 155.5084 146.9533 5.82
w2 194839.5803 193420.5759  0.73 7841.9461 7796.2128 0.59

ws  255646.0517 251327.1948  1.72 10749.0796 10476.3759 2.60

Wy 282167.4738 279928.7532  0.80 211932.0962 211919.3192  0.01

ws  368457.5514 359977.4902  2.35 214106.0242 214088.2300 0.01

we  389524.3101 388091.4042  0.37 385093.0154 385058.8333  0.01

A% — |Wcoupled—wunuoupled| X 100 77
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5 — Numerical Results: Modal analysis

5.2 Sandwich Hybrid CNT-RC piezoelectric plate

In this section free vibration analysis of square simply supported CNT-RC plate,
embedded with piezoelectric layers (PZT-4) at the top and bottom of free surfaces,
is carried out. Short-circuit surface conditions are considered for the potential in
the electro-mechanical case (&, = ®, = 0). Four different types of uniaxially
aligned reinforcements are investigated in the analysis, including uniformly dis-
tributed UD-CNT and functinally graded (FG-X, FG-O and FG-V). Properties of
single costituents of the composite CNT-RC plate are reported in Table 5.1. For
all of the numerical examples proposed the material properties of the CNT-RC
are those given by the extended Voigt’s rule of mixtures Eq. 2.16 for the room
temperature T = 300K, with the efficiency parameters 7, 7o and n3 related to the
CNT volume fraction indices V%, involved in the analysis [5]. Tables from 5.19 to
5.22 show solutions for the fundamental frequency parameter of simply supported
and short-circuited hybrid CNT-RC piezoelectric plate by considering all the CNT
distribution through the thickness and several values of the volume fraction indices
Viny = 0.11, Viyy = 0.14 and Vg, = 0.17. The dimensionless eigen-frequency
parameter is defined as @ = (wa®/h)\/pm/FEm- The length to thickness ratio of the
plate is set to a/h = 20 and two different thickness configurations are considered
in the analysis h;, : he : by = 0.1h : 0.8h : 0.1h and hy, : h. : h, = 0.2h : 0.6k : 0.2,
where h, and h. denote the thickness of piezoelectric layer and the thickness of
CNT-RC core layer, respectively. Frequency parameters are computed by using
different theories (ED and LD). The convergence study is carried out by compar-
ing frequencies with respect to the results of Wu and Lin [17] and the relative
errors are reported. Table 5.23 show the electro-mechanical coupling effect on the
frequency parameters.

.

L <Db= (0]

a

Figure 5.2: Hybrid sandwich plate [PZT-4/CNT-RC/PZT-4|
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5.2 — Sandwich Hybrid CNT-RC piezoelectric plate

Table 5.19: ED solutions of frequency parameters for the simply supported sandwich

|PZT-4/CNTRC/PZT-4] plates with different CNTs types, CNT voulme
fraction V{yr, length to thickness ratio a/h =20, and 0.1 h: 0.8 h: 0.1 h

Vinr  Theories UD FG-V FG-O FG-X
0.11  ED1 23.366974  23.098914  23.024593  23.708535
(25.1284 %)  (25.4892 %)  (26.9160 %)  (23.9954 %)
ED2 21.1304 20.8268 20.7457 21.5108
(13.1519 %) (13.1459 %)  (14.3544 %)  (12.5014 %)
ED3 19.2028 19.0302 19.0227 19.3658
(2.8299 %) (3.3447 %)  (4.8985 %)  (1.2833 %)
ED4 19.1963 19.0240 19.0159 19.3590
(2.7950 %) (3.3517 %)  (4.8198 %)  (1.2476 %)
Wu and Lin [17]  18.6744 18.4071 18.1416 19.1205
0.14  ED1 23.7892 23.4381 23.3613 24.2135
(25.0181 %)  (25.4036 %)  (27.0842 %)  (23.8733 %)
ED2 21.6113 21.2157 21.1327 22.0823
(13.5732 %)  (13.5129 %)  (14.9604 %)  (12.9703 %)
ED3 19.5490 19.3541 19.3211 19.7319
(2.7353 %) (3.5522 %)  (5.1056 %)  (0.9463 %)
ED4 19.5422 19.3475 19.3136 19.7246
(26991 %) (3.5173 %)  (5.0651 %)  (0.9091 %)
Wu and Lin [17]  19.0286 18.6902 18.3826 19.5470
0.17  ED1 24.2837 23.8597 23.7786 24.7839
(19.7350 %)  (20.5411 %)  (22.7416 %)  (17.8885 %)
ED2 22.1474 21.6711 21.5832 22.7017
(9.2019 %) (9.4840 %)  (11.4095 %)  (7.9845 %)
ED3 20.5786 20.2963 20.2620 20.8453
(1.4665 %)  (2.5386 %)  (4.5897 %)  (0.8461 %)
ED4 20.5705 20.2887 20.2531 20.8365
(1.4265 %) (2.5002 %)  (4.5436 %)  (0.8876 %)
Wu and Lin [17]  20.2812 19.7939 19.3729 21.0232

A% — |sz'i_L:JWu
@Wu

x 100
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Table 5.20: LD solutions of frequency parameters for the simply supported sandwich
[PZT-4/CNTRC/PZT-4] plates with different CNTs types, length to thick-
ness ratio a/h = 20, and CNT volume fraction V¢, = 0.11

Vgnr = 0.11
hp:he:hy Theories UD FG-V FG-O FG-X
01lh:08h:01h LDI 18.7800 18.5255 18.3132 19.2095
(0.5660 %)  (0.6434 %)  (0.9461 %)  (0.4655 %)
LD2 18.7684 18.5138 18.3015 19.1879
(0.5038 %)  (0.5798 %)  (0.8814 %)  (0.3528 %)
LD3 18.7684 18.5076 18.3015 19.1879
(0.5038 %)  (0.5461 %) (0.8814 %)  (0.3528 %)
LD4 18.7684 18.5076 18.3015 19.1879
(0.5038 %)  (0.5461 %)  (0.8814%)  (0.3528 %)
Wu and Lin [17] 18.6744 18.4071 18.1416 19.1205
02h:06h:02h LD1 17.4244 17.3847 17.3135 17.5347
(0.7285 %)  (0.7611 %)  (0.7403 %)  (0.7824 %)
LD2 17.3967 17.3715 17.3057 17.4952
(0.5685 %)  (0.6802 %)  (0.6952 %)  (0.5555 %)
LD3 17.3967 17.3607 17.3001 17.4902
(0.5685 %)  (0.6225 %)  (0.6626 %)  (0.5269 %)
LD4 17.3967 17.3607 17.3001 17.4902
(0.5685 %)  (0.6222 %)  (0.6626 %)  (0.5269 %)
Wu and Lin [17]  17.2984 17.2534 17.1863 17.3986
A% = |@i=2wu] x 100
WWu
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5.2 — Sandwich Hybrid CNT-RC piezoelectric plate

Table 5.21: LD solutions of frequency parameters for the simply supported sandwich
[PZT-4/CNTRC/PZT-4] plates with different CNTs types, length to thick-
ness ratio a/h = 20, and CNT volume fraction V¢, = 0.14

Vg =0.14
hp : he by Theories UD FG-V FG-O FG-X
01h:08h:01h LDI1 19.1325 18.8235 18.5602 19.6429
(0.5464 %)  (0.7133 %)  (0.9665 %)  (0.4910 %)
LD2 19.1159 18.8009 18.5549 19.6234
(0.4590 %)  (0.5925 %)  (0.9374 %)  (0.3913 %)
LD3 19.1159 18.8006 18.5549 19.6234
(0.4590 %)  (0.5908 %)  (0.9374 %)  (0.3912 %)
LD4 19.1159 18.8006 18.5549 19.6234
(0.4590 %)  (0.5908 %)  (0.9374 %)  (0.3912 %)
Wu and Lin [17]  19.0286 18.6902 18.3826 19.5470
0.2h:06h:02h LDI1 17.5809 17.5342 17.4694 17.7099

(0.7091 %)  (0.7980 %)  (0.8837 %)  (0.7430 %)

LD2 17.5622 17.5122 17.4574 17.6808
(0.6019 %)  (0.6717 %)  (0.8144 %)  (0.5779 %)

LD3 17.5622 17.5048 17.4523 17.6808
(0.6019 %)  (0.6294 %)  (0.7852 %)  (0.5779 %)

LD4 17.5622 17.5048 17.4523 17.6808
(0.6019 %)  (0.6291 %)  (0.7852 %)  (0.5779 %)

Wu and Lin [17] 17.4572 17.3954 17.3164 17.5793

A% = |2 | x 100
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Table 5.22: LD solutions of frequency parameters for the simply supported sandwich
[PZT-4/CNTRC/PZT-4] plates with different CNTs types, length to thick-
ness ratio a/h = 20, and CNT volume fraction V¢, = 0.17

Vgnr = 0.17
hp:he:hy Theories UD FG-V FG-O FG-X
01lh:08h:01h LDI 20.3409 19.8762 19.5019 21.1202
(0.2945 %)  (0.4162 %)  (0.6661 %)  (0.4616 %)
LD2 20.3301 19.8664 19.4977 21.1052
(0.2414 %)  (0.3664 %)  (0.6446 %)  (0.3903 %)
LD3 20.3301 19.8662 19.4977 21.1052
(0.2414 %)  (0.3656 %)  (0.6446 %)  (0.3903 %)
LD4 20.3301 19.8662 19.4977 21.1052
(0.2414 %)  (0.3656 %)  (0.6446 %)  (0.3903 %)
Wu and Lin [17]  20.2812 19.7939 19.3729 21.0232
02h:06h:02h LD1 18.5712 18.4709 18.3973 18.7701
(0.5495 %)  (0.5628 %)  (0.8308 %)  (0.5472 %)
LD2 18.5537 18.4549 18.3895 18.7412
(0.4545 %)  (0.4754 %)  (0.7877 %)  (0.3926 %)
LD3 18.5537 18.4427 18.3857 18.7412
(0.4545 %)  (0.4090 %)  (0.7668 %)  (0.3925 %)
LD4 18.5537 18.4426 18.3857 18.7412
(0.4545 %)  (0.4088 %)  (0.7668 %)  (0.3925 %)
Wu and Lin [17]  18.4698 18.3676 18.2458 18.6680
A% = |@i=2wu] x 100
WWu
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5.2 — Sandwich Hybrid CNT-RC piezoelectric plate

Table 5.23: Coupled and Uncoupled solutions of frequency parameters for the simply
supported sandwich [PZT-4/CNTRC/PZT-4] plates with different CNTs
types, length to thickness ratio a/h = 20, and CNT volume fraction

Vinr  hpihe:hy CNTs Type coupled (SC) uncoupled A%
0.11 01h:08h:01h UD 18.7684 17.8517 5.1351
FG-V 18.5076 17.5742 5.3110
FG-O 18.3015 17.3465 5.5053
FG-X 19.1879 18.3183 4.7472
0.11 02h:06h:02h UD 17.396744 16.440726 5.8149
FG-V 17.3607 16.3729 6.0329
FG-O 17.3001 16.2853 6.2313
FG-X 17.4902 16.6123 5.2848
0.14 01lh:08h:01hR UD 19.1159 18.2192 4.9217
FG-V 18.8006 17.8870 5.1072
FG-O 18.5549 17.6215 5.2967
FG-X 19.6234 18.7721 4.5351
0.14 02h:06h:02h UD 17.5622 16.6302 5.6042
FG-V 17.5048 16.5428 5.8156
FG-O 17.4523 16.4622 6.0142
FG-X 17.6808 16.8286 5.0642
0.17 01h:08h:01h UD 20.3302 19.4142 4.7177
FG-V 19.8663 18.9353 4.9167
FG-O 19.4978 18.5507 5.1055
FG-X 21.1053 20.2249 4.3527
0.17 02h:06h:02h TUD 18.5537 17.6029 5.4012
FG-V 18.4426 17.4633 5.6082
FG-O 18.3857 17.3770 5.8048
FG-X 18.7412 17.8743 4.8503

A% — |a}coibp£ed_‘;)’u7Lcoupled| X 100

Wuncoupled
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Chapter 6

Results: Dynamic Response
and Active Control

6.1 Dynamic Response and Active Control

In this section the dynamic response of a simply supported piezoelectric FG-
CNTRC square plate with a = b = 20m, is analyzed. The thickness of CNT-RC
core layer is h, = 0.8 m, while the thickness for each piezoceramic layer is h, =
0.1m. The material properties of the plate are given the same as those in Table
5.1. Piezoelectric sensors and actuators are used to investigate the active vibration
control of the plate. In vibration control analysis, the upper piezoelectric layer
acts as actuators, while the lower one acts as sensors. The response of the plate
is controlled using the dynamic velocity feedback control algorithm and a close
loop. Four different types of uniaxially aligned reinforcements are investigated
in the analysis, including uniformly distributed UD-CNT and functinally graded
(FG-X, FG-O and FG-V). Two load cases are considered in this work. The plate is
subjected to an harmonic load F' = Fysin(€Qt) and to an impulsive load Fy which
is suddenly removed, placed in the mid-point. The structural damping ratio for
each mode is assumed to be 0.8 % according with [19]. The mechanical deflection
u, is evaluated in the mid-point of the plate.
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Figure 6.1: Forced response of the piezoelectric laminated UD-CNTRC plate with G, =
1.5 x 1073 for the case Vv, = 0.11
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Figure 6.2: Forced response of the piezoelectric laminated FG-X plate with G, = 1.5 X
10~* for the case Vi, = 0.11
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Figure 6.3: Forced response of the piezoelectric laminated FG-O plate with G, = 1.5 x
107 for the case Vi = 0.11
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Figure 6.4: Forced response of the piezoelectric laminated FG-V plate with G, = 1.5 x
107 for the case Vi = 0.11
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Figure 6.5: Dynamic deflection of the piezoelectric laminated UD-CNTRC plate for the
case Viyr = 0.11
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Figure 6.6: Dynamic deflection of the piezoelectric laminated FG-X plate for the case
Vénr =0.11
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Figure 6.7: Dynamic deflection of the piezoelectric laminated FG-O plate for the case
Véyr =0.11
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Figure 6.8: Dynamic deflection of the piezoelectric laminated FG-V plate for the case
Véyr =0.11
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Figure 6.11: Effect of the velocity feedback control gain G, on the dynamic response of
the simply supported FG-O plate
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Figure 6.12: Effect of the velocity feedback control gain G, on the dynamic response of
the simply supported FG-V plate
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Chapter 7

Conclusions: Numerical
Results and Discussion

7.1 Free Vibration Results

7.1.1 Laminated Orthotropic plate

Tables 5.2-5.10 show the first six natural frequencies of a square laminated or-
thotropic piezoelectric plate, as discussed in section 5.1. The analysis are per-
formed with all the thoeries. The expansion orders Ny, N, and N, are consider
totally indipendent in order to investigate the convergence to the exact solution.
As can be observed, Ny do not affect the rate of convergence to the exact solutions.
Besides, dealing with ED theories, when the expansion order N, overcomes the
potential expansion order N, = 4 the solution stability is compromised. Tables
5.14-5.15 provide a convergence study on the first six natural frequencies with
length to thickness ratios a/h = 4,50. As expected, the LDN theories produce the
best results. The ESL models with imposed zig-zag form EDZN lead in the most
cases to a slight improvement compared to the EDN theories. More specifically,
LD3 and LD4 theories lead to the exact solutions while ED4 and EDZ3 lead to an
Average error A% of less than 2.5 % when the plate is thick (a/h = 4). Further-
more for LD theories, an increase of the expansion order has a very small effect.
On the contrary ED theories are more sensible to the expansion order, especially
when the plate is thick.
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7.1.2 FG-CNTRC Piezoelectric plate

Convergence assessment and validation

As widely introduced in section 5.2, a convergence assessment of the models for
the free vibration of a simply supported square CNT-RC piezoelectric plate is
presented in Tables 5.19-5.22. It is clear that the LDN theories achieve the best
level of accurancy and are in excellent agreement with the results of [17]. More
specifically, the analysis performed with the LD4 theory leads to an error A% on
natural frequency parameter of less than 1%. On the other hand, the analysis
performed with the ED4 theory leads to an average error of 3 %.

Parametric study

Table 5.23 provides the parametric study, carried out to evaluate the influences of
distribution pattern of CN'T reinforcements, volume fraction of CNT and thickness
configurations of the sandwich CNT-RC piezoelectric plate as well as the electro-
mechanical coupling effect. The parametric study is performed by using the LD4
theory. As can be seen by comparing the four different types of CNT distribu-
tions through the thickness, the magnitude order of the frequency parameters is:
FG-X > UD > FG-V > FG-O-type. This order highlights the fact that the CNT
reinforcements are more efficient when are distributed far from the mid-surface,
enanching the overall stiffness of the CNT-RC plate. In all the cases, increas-
ing the CNT volume fraction V{y, results in higher frequency parameter due to
the enanchement of the stiffness of the plate. On the contrary, reducing the core
thickness of the CNT-RC leads to a lower value of the frequency parameter, as ex-
pected. It is worth mentioning the electro-mechanical coupling effect by comparing
the frequency parameter for the electro-mechanical case with the pure mechani-
cal case. In general, the frequency parameters, which is a flexural mode, for the
coupled case result higher than those of the uncoupled case. This phenomenon is
compatible with all the results obtained in literature [18], [19] and [14]. In fact
for the coupled case, due to the direct piezoelectric effect, when the plate oscil-
lates, the electrical energy is converted to mechanical energy and the piezoelectric
coupling matrix can be consider as an additional stiffness for the plate. Besides,
when the mechanical stiffness of the plate is higher, the direct piezoelectric ef-
fect results in a lower electro-mechanical coupling in accordance with [14]. This
trend can be seen by comparing the two thickness configurations of the sandwich
plate. Increasing the thickness of the piezoelectric layers results in decreasing of
the overall stiffness of the plate. Then, the natural frequency increment A, due to
the direct piezoelectric effect, is more evident in thicker piezoelectric layers (case
hy : he : hy, = 0.2h : 0.6k : 0.2h). Instead it is observed that the higher CNT
volume fraction leads to an higher stifness of the plate which results in lower value
of the increment A. In particular, the FG-X CNT-RC plate with Viy, = 0.17
which results the stiffest plate, shows the lowest value of A.
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7.2 Dynamic vibration control of FG-CNTRC Piezo-
electric plate

Figures from 6.9 to 6.12, show the effect of the velocity feedback gain G, on the
transient response of the mid-point for all CNT distributions. As can be seen,
when the control system is inoperative (G, = 0), the response decreases with re-
spect to time due to the only structural damping effect. The decay of the response
is faster when the Gain factor GG, increases and the control system results stable,
as expected. In fact, the stability of the system is ensured by the active damp-
ing matrix which results always definite positive. Figures from 6.1 to 6.8, show
dynamic forced response of the mid-point of the plate. It can be seen that the
amplitude of the center point deflection of the plate is reduced due to the active
damping effect. Furthermore the graphs reflect the resonance phenomena of the
plate, as expected when the plate is subjected to an armonic load.

Overall the vibration of the plate can be properly controlled and suppressed by
using the velocity feedback control algorithm based on a closed loop and the Gain
factor can be adeguately designed in order to satisfy constrains on the dynamic
oscillations.

7.3 Future works

Dynamic analysis of CNT-Reinforced composite plate embedded with single piezo-
electric patches at the top and bottom of free surfaces could be consider as a
possible extension of this work. The analysis could be carried out in order to
investigate how the placement of the patches affects the vibration control results
and to find the optimal positions to suppress and control the first modes of the
structure. A further possible extension could be place the piezoelectric sensor and
actuator layers at the same side of the plate in order to evaluate the stability and
the effectiveness of the control system [14|. Furtheremore two additional layers
of FGMs (Al/Al,O3) could be integrated at the top and bottom of the plate to
enanche thermal resistance of the structure.
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