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Chapter 1: Introduction 

 

 

1.1 Abstract 

Unmanned Aerial Vehicles (UAVs) can accomplish many tasks as surveillance or 

search and rescue tasks and have many operating advantages compared to manned 

aircraft. UAVs’ flight performance is affected by exogenous disturbances and additive 

noise, existing in a real operative environment. Dealing with always more demanding 

requirements of flight maneuvers, a robust Model Predictive Control (MPC) approach 

is proposed, which is able to handle external disturbances (as gusts or wind 

disturbances) and parametric uncertainties (as variations in mass, flight conditions or 

payload). 

In this work, it is first considered a classical MPC design [1] [2]. A cost function 

and state and control constraints are built for the inner loop dynamics (pitch, roll and 

airspeed) and for the altitude outer loop. A PID control regulates the heading variation 

(navigation outer loop). MPC law is based on an optimization problem, which at each 

sampling time aims to find the optimal control sequence that minimizes some function 

and satisfies some constraints; only the first element of the predicted optimal control 

sequence is applied to the plant. To obtain a feasible problem it is necessary to choose 

accurately tuning parameters. 

An interesting variation of classical MPC is the Tube-based Robust MPC 

(TBMPC) [1], which lets to deal with external bounded disturbances and parametric 

uncertainties with the same computational efficiency of a classical MPC and 

guarantees to respect hard constraints. In the TBMPC, a linear nominal system is taken 

into account and it represents a nominal dynamic of the system with no disturbances 

and uncertainties. The discrepancy between nominal and actual system lets to define 

the error dynamics. The TBMPC algorithm consists of an offline part and an online 

part. In the offline part a feedback gain matrix is evaluated in order to stabilize error 

dynamics and to define tightener constraint sets for nominal states and inputs. The 

advantages of using this kind of controller are twofold: (i) low computational effort, 

so this controller can be implemented on an on-board controller, (ii) guarantee of 
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robustness of the control system, able to handle variations of the system and to 

represent a realistic environment. 

The key feature of this proposed approach is the real-time implementability, with 

a time-varying control law and, as said before, a feedback gain evaluated offline. 

Moreover, tightened state and control constraints are computed. In the online part a 

classical MPC optimization problem is solved at each sampling time, a nominal input 

is derived and then corrected according to the gain feedback matrix and the actual 

error. A Linear Matrix Inequality (LMI) approach is applied to the state feedback 

stabilization, to reduce the computational effort, guaranteeing the stability and 

improving real-time implementability. 

 

1.2 Motivation and Objectives 

With Unmanned Aerial Vehicle we refer to an aircraft, which can fly 

autonomously or be piloted remotely without a human pilot on board [3]. The most 

common configuration for an UAV is the aerodyne, which generates dynamically 

aerodynamic forces to provide lift through rotary wings, for example quadrotor 

configuration, or fixed wings. 

UAV operates as flying platform in a bigger system, called Unmanned Aerial 

System (UAS), which consists mainly of Unmanned Aircraft (UA), which includes 

Guidance, Navigation and Control systems, take-off and landing device and payloads, 

Ground Control Station (GCS), which is the human-machine interface that allows to 

the operator to overview the UA behavior, and Data Link, which provides 

communications between UA and GCS. 

In this work a focus on Unmanned Aircraft and especially on the UA Control 

System is given. The main advantage of UAVs is that they can perform all those 

missions, which could be dangerous for humans. They can accomplish the so-called 

“Dull, Dirty and Dangerous” missions, so those missions which require long time, such 

as surveillance or monitoring operations, or which take place in hazardous 

environment for the crew’s health or which are unsafe for the pilot’s life. 

UAVs have a wide variety of possible applications, such as goods delivery [4], 

terrain mapping [5] and building inspection [6]. For these reasons, UAVs development 

is nowadays of interest. In order to accomplish the required task, it is necessary that 

UAV must track precisely the desired trajectory and be stable. These key features can 
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be achieved through a good control system design, which has to take into account that 

additive noise in the realistic environment may affect the flight performance. 

Proportional Integrative Derivative controllers (PIDs) are adopted in the most 

commercial autopilots, as it is explained in [7]. PID controllers are computationally 

efficient, easy to understand, to tune and they provide good control, but because they 

are non-model based, they do not guarantee optimality and cannot handle system 

uncertainties, external noise and at the same time take constraints into account. 

Indeed, if some changes in the UAV dynamics occurs or the UAV operates in 

presence of ground effect or aerodynamic perturbations, the PID parameters needs to 

be tuned again. In [8] a robust PID controller is proposed for uncertain systems, but it 

does not deal with state and control constraints. 

In the recent past, model-based optimal methodology has found many practical 

applications for multivariable control problems. In practical applications there are 

many problematics related to a proper dynamic response and to the presence of 

disturbances in the operational environment. Moreover, it is often required that the 

system respects defined states and/or inputs constraints during its dynamic evolution. 

The computational complexity of solving an optimization problem online has always 

been the main problem, which has limited the application field only to slow and simple 

dynamic systems. 

Nowadays, powerful and efficient processors are available in the market and let 

to use these methodologies also in real-time applications. In a theoretically way, two 

Robust Model Predictive Control approaches are presented in [9], where the 

importance of robustness is discussed, but the real-time application to an UAV system 

is only marginally considered. 

In [10] a switching Model Predictive Control for an unmanned quadrotor 

helicopter flying in presence of bounded disturbances, but constraints are not taken 

into account. 

In [11] different methods are proposed for MPC real-time implementation for 

UAVs, but only for trajectory tracking, which is usually characterized by a slow 

dynamic. 

A possible MPC strategy, which lets to obtain a robust MPC, consists of 

computing a trajectory of an undisturbed system by a classical MPC and applying an 

additional control law to maintain the perturbed system trajectory within a “tube”, 
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whose center coincides with disturbance free system [12]. This technique requires a 

priori knowledge of the bounded disturbances. 

Therefore, the aim of this work is to employ a Model Predictive Control law [1] 

[2] to a fixed-wing Unmanned Aerial Vehicle, focusing on the real-time 

implementability of MPC-based controllers for inner loop dynamics, which is usually 

fast, and then to upgrade this control with a Tube-Based Robust Model Predictive 

Control [1], which lets to handle uncertainties and external disturbances. 

In this work it is designed a Tube-based MPC for the inner loop on roll and pitch 

attitude and for the outer loop on altitude for trajectory, including atmospheric 

disturbances (i.e. additive noise) and model uncertainties (variations on speed 𝑉 and 

mass 𝑚). 

This approach maintains the same computational efficiency of a conventional 

Model Predictive Control and at the same time guarantees robustness to disturbances 

and respect of constraints. To this end, the Tube-based Model Predictive Control is 

based on two systems: the nominal one, which is a linear undisturbed system and 

whose behavior is the center of the “tube”, and the disturbed one, which is subjected 

to uncertainties and additive disturbance and whose behavior is ensured to be within 

the “tube”. 

Its algorithm, as discussed in [1], is split in two parts: the offline part, in which a 

feedback gain matrix is evaluated, taking model uncertainties into account, and 

constraint sets are defined, in order to guarantee that uncertain system response will 

be within a “tube” around the nominal system, and the online algorithm, which consists 

of controlling the nominal system through a classical MPC scheme and correcting the 

disturbed system input in a proper way. The outer loop on heading for trajectory is 

controlled by a PID. 

The mini-UAV MH850 [13] has been chosen for testing this advanced control 

technique and the developed Tube-based MPC should be implemented in a custom-

made autopilot, produced in the Department of Mechanical and Aerospace 

Engineering of Politecnico di Torino [14]. The guidance algorithm adopted in this 

work is described in detail in [15]. In order to simulate the UAV dynamic behavior in 

Simulink, a mathematical model has been built, comprehensive of nine first order 

differential equations, as described in [16]. 
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1.3 Overview 

The objective of this work is to verify the real-time implementability of the 

proposed controller, to implement it onboard. In the remaining part of the first chapter 

an introduction in MPC and Tube-Based MPC will be done. An example of “Receding 

Control Horizon” procedure [17] will be presented. 

Since the dynamic system in this work is simulated in a virtual world, an UAV 

[13] mathematical model is described in second chapter. Firstly, useful reference 

frames, such as North-East-Down, air trajectory and body reference frames, are 

defined and then relations among variables in different reference frames are presented. 

Secondly, a classical aircraft nonlinear model is written through nine first order 

differential equations [16]. To deal with a linear control problem, the nine differential 

equations are linearized and two state-space models in continuous time [18] are 

derived. This procedure lets to decouple equations between longitudinal and lateral-

directional planes. These two linear continuous time models are then discretized by a 

zero-order hold method [19]. 

The stability problem for a general dynamic system is discussed through the 

equilibrium point definition and the equilibrium stability [18]. The Lyapunov direct 

method is proposed to draw conclusions about stability of an equilibrium point [18]. 

This method conducts often to deal with Linear Matrix Inequality problem [20] and 

some “tricks” are suggested to rewrite an apparently nonlinear matrix inequality as a 

LMI [21]. Finally, these concepts are applied to a linear time independent state-space 

model. 

In the third chapter a deeper description of Model Predictive Control is presented 

[2] and a general formulation of optimization problem is given [1]. To understand how 

to explicit the cost function dependency on the current state of the system and on the 

predicted optimal control sequence, a problem without constraints is encountered and 

a method to derive the unknown optimal control sequence is proposed. 

States and inputs constraints are then introduced and a procedure to write them as 

inequalities referred to the unknown optimal control sequence is explained. Some 

considerations are taken into account building the optimization problem cost function, 

in order to obtain a convex quadratic problem [22]. 

For the stability analysis a Lyapunov direct method, after some important 

definitions about positively invariant sets are given [23], is considered. Choosing 
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different terminal weighting matrix and terminal constraint set, stability is guaranteed. 

Three methods are proposed: 

1. “Zero terminal constraints” [24], which imposes that terminal state constraints 

are null. 

2. “Terminal weighting matrix” [25], which considers nonnull terminal constraint 

sets, but terminal weighting matrix is derived by discrete time Lyapunov 

equation. 

3. “Invariant terminal set” [1], which considers a positive invariant set containing 

the origin and the terminal weighting matrix calculated as solution of the 

Algebraic Riccati equation. 

In the fourth chapter the problem of handling uncertainties and external 

disturbances is addressed and an introduction in robust controller is provided. An 

extension of conventional Model-Predictive Control is proposed: Tube-Based Robust 

Model Predictive Control [1]. 

Firstly, it is presented the offline algorithm, which ensures stability controlling the 

dynamic system. To do that some important definitions about robust positively 

invariant set [23], minimal robust positively invariant set [26] and about set operations, 

such as Minkovski set addition [27] and the Pontragyn set difference [28]. To evaluate 

the gain feedback matrix, an LMI problem is solved using MATLAB in combination 

with the optimization toolbox YALMIP [29]. 

In the fifth chapter the MATLAB/Simulink model is described with more focus. 

A general description of initial condition evaluation is given and the main boxes in 

Simulink model are presented. This model has been then tested through different 

waypoints and paths. Three possible paths are considered and each can be considered 

a possible flight mission. 
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Chapter 2: Unmanned Aerial Vehicle Dynamic Model 

 

 
In this chapter, as already explained in Introduction, the mathematical model of 

the considered system and the reference frames are described. The mini-UAV 

considered in this study is the MH850 (see Figure 2.1). It is a fixed-wing aircraft with 

tailless configuration, electric propulsion and without rudder. 

 

 
Figure 2.1 - Mini-UAV MH850 

Technical features can be seen in the following list collected by [13]: 

• Wingspan: 850 𝑚𝑚; 

• Weight: 1000 𝑔; 

• Payload (excl. batteries): 100𝑔; 

• Airspeed: 7.5 ÷ 20 𝑚/𝑠; 

• Range: 250 ÷ 5000 𝑚; 

• Endurance: 45 𝑚𝑖𝑛 @ 13.5 𝑚/𝑠 . 

The Model Predictive Control design is based on a mathematical model of the 

plant. A complete nonlinear model, as defined in [16], is a set of nine equations 

describing the forces, moments, angles and angular speeds which characterize the 

flight condition of the aircraft. The MH850 aircraft is able to perform autonomous 

flight thanks to the on-board installation of an autopilot. In this design, a custom-made 

autopilot, produced in the Department of Mechanical and Aerospace Engineering of 

Politecnico di Torino [14] (see Figure 2.2), is considered. 
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Figure 2.2 - Autopilot board 

The key aspects of this autopilot are an open architecture and the possibility to be 

reprogrammed in flight and real time telemetry. Sensors include GPS, barometric 

sensor, differential pressure sensor and three-axis gyros and accelerometers. The CPU 

is the ATXMEGA256A3U-3U model with 256Kb flash memory and 16Kb of RAM. 

A Radiomodem Xbee Pro S1 is used for the communication link between the Ground 

Control Station (GCS) and the autopilot. To validate the real-time effectiveness of the 

proposed controller in HIL simulations, hardware constraints are included. The 

hardware constraints are related to a commercial board (the XMOS XK-1A board) 

because of its characteristics and potentialities (i.e. flash memory of 128 Kb and a CPU 

clock of 20 MHz) similar the microcontroller, that is installed on the MH850. The 

XMOS XK-1A is a low-cost development board produced by XMOS Ltd 

(www.xmos.com), and it is characterized by the multi-core multi-thread processor 

XS1-L1 which is able to perform several real-time tasks. Its parallel computing ability 

is essential for unmanned applications where high-level tasks (for instance the control 

logic) have to be combined with low level assignments (such as I/O). A detail of the 

HIL cables connection and of the board is represented in Figure 2.3. 

 

http://www.xmos.com/
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Figure 2.3 - HIL connections 

In this chapter assumptions and reference frames to build the model are described. 

 

2.1 Reference frames 

The purpose of this section is to define the typical coordinate frames used to 

describe UAV model motion. Every reference frame has its origin and a set of three 

orthogonal axis which create a right-hand system. In this section four reference frames 

are described: 

• Earth reference frame. 

• North-East-Down reference frame. 

• Air Trajectory reference frame. 

• Body reference frame. 

 

2.1.1 The Earth reference frame 

The origin of this reference frame is at the center of the Earth and the axes can be 

defined in the following way: 

• 𝑍𝐸 axis has South-North direction. 

• 𝑋𝐸 and 𝑍𝐸 lie on the equatorial plane. 

• Greenwich Meridian belongs to the plane defined by 𝑋𝐸 and 𝑍𝐸. 

This reference frame is not fixed but rotates with an angular speed equal to Ω𝐸. 

Since Earth spins around its rotation axis and rotate around the Sun, it follows that 

Earth reference frame is not inertial. In this case, the assumption of flat and non-

rotating earth is made. This assumption is realistic for UAV applications. A 

representation of this reference frame is shown in Figure 2.4. 
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Figure 2.4 - Scheme of Earth reference frame 

 

2.1.2 North-East-Down reference frame 

It is also called NED reference frame and its origin coincide with the aircraft 

center of mass. The axes have the following properties: 

• 𝑍𝑉 axis direction is along the local gravity accelerator vector; 

• 𝑋𝑉 and 𝑌𝑉 axes lie in a plane parallel to the Earth tangent plane and the distance 

between the two planes is equal to the flight altitude. 

This reference frame is adopted in guidance and navigation algorithm. The vehicle 

trajectory [𝑥 𝑦 ℎ]𝑇 is derived by the integration of each component of the total airspeed 

𝑉 along NED axes ([𝑉𝑁 𝑉𝐸  𝑉𝐷]𝑇). A representation of this reference frame is shown in 

Figure 2.5. 

 

 
Figure 2.5 - Scheme of NED reference frame 

 

𝑋𝐸 

 𝑍𝐸 Ω𝐸 

𝐺𝑅𝐸𝐸𝑁𝑊𝐼𝐶𝐻 𝑀𝐸𝑅𝐼𝐷𝐼𝐴𝑁 

𝐸𝑄𝑈𝐴𝑇𝑂𝑅 

𝑌𝐸 

 𝑋𝐸 

 𝑌𝐸 

𝑍𝐸 Ω𝐸  

𝐺𝑅𝐸𝐸𝑁𝑊𝐼𝐶𝐻 𝑀𝐸𝑅𝐼𝐷𝐼𝐴𝑁 

𝐸𝑄𝑈𝐴𝑇𝑂𝑅 

 𝑍𝑉 

𝑋𝑉 
 𝑌𝑉 
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2.1.3 Air Trajectory reference frame 

The Air Trajectory axes are also said wind axes and their origin is the aircraft 

center of mass. The main properties are: 

• 𝑋𝑊 axis has the same direction of the airspeed 𝑉 

• 𝑍𝑊 axis lies in the vehicle plane of symmetry and its direction is from upper to 

lower surface of wing airfoil. 

This reference frame is not used in this study (see Figure 2.6). 

 
Figure 2.6 - Trajectory representation and wind axes 

 

2.1.4 Body reference frame 

Any set of axes, whose origin is fixed in the rigid body, are named Body Axes. 

The origin is usually located at the aircraft center of mass. Generally, 𝑋𝐵 and 𝑍𝐵 axis 

lie in the aircraft plane of simmetry, 𝑍𝐵 is directed from upper to lower surface of wing 

airfoil. We can also describe the following: 

• Principal axes of inertia: body axes are directed along principal axes of inertia. 

The main advantage frame is that the “mixed” inertial terms 𝐽𝑥𝑧, 𝐽𝑥𝑦 and 𝐽𝑦𝑧 

are null with respect to principal axes of inertia (𝐽𝑥𝑧 = 𝐽𝑥𝑦 = 𝐽𝑦𝑧 = 0). 

• Stability axes: 𝑋𝐵 axes direction coincides with the projection of 𝑉 in the plane 

symmetry at the starting condition. 

The vector [𝑢 𝑣 𝑤]𝑇 has as element the components of total airspeed 𝑉 along 

respectively 𝑋𝐵, 𝑌𝐵 and 𝑍𝐵. The relation between velocity components in NED 

reference frame and velocity components in body reference frame is the following: 

 

𝑉𝑁 = 𝑢 cos 𝜃 sin𝜙 + 𝑣(sin𝜙 sin 𝜃 cos𝜓 − cos𝜙 sin𝜓)

+ 𝑤(cos𝜙 sin 𝜃 cos𝜓 + sin𝜙 sin𝜓) 

𝑉𝐸 = 𝑢 cos 𝜃 sin𝜓 + 𝑣(sin𝜙 sin 𝜃 sin𝜓 + cos𝜙 cos𝜓)

+ 𝑤(cos𝜙 sin 𝜃 sin𝜓 − sin𝜙 cos𝜓) 

(1) 

Center of mass 
trajectory 

 𝑪𝑮 

 𝑋𝑊 

 𝑌𝑊 

 𝑉𝐸 

𝑪𝑮 

Center of mass trajectory 

 𝑋𝑊 

 𝑍𝑊 

 

𝑉  
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𝑉𝐷 = 𝑢 sin 𝜃 + 𝑣 cos 𝜃 sin𝜙 + 𝑤 cos𝜙 cos 𝜃 

where [𝜙 𝜃 𝜓]𝑇 are the Euler angles, which represent the vehicle orientation, i.e. 

the body axes orientation, with respect to the NED reference system, and they are 

respectively roll angle, pitch angle and yaw angle. 

In this section it is also important to define aerodynamic angles such as angle of 

attack 𝛼 in longitudinal plane and sideslip angle 𝛽 in lateral-directional plane. The 

angle of attack 𝛼 is the angle between null lift axis (𝑐𝐿 = 0) and airspeed direction. If 

𝑋𝐵 axis is parallel to the null lift axis, then the angle of attack 𝛼 is also the angle 

between 𝑋𝐵 axis and airspeed direction. Otherwise a constant angle is present between 

𝑋𝐵 axis and null lift axis and the angle between airspeed direction and 𝑋𝐵 axis will be 

equal to the sum of angle of attack and the constant angle. Sideslip angle 𝛽 represent 

the angular deviation of airspeed with respect to 𝑋𝐵 axis in lateral-directional plane. 

The angle between total airspeed 𝑉 and horizontal line is the slope angle and its name 

is 𝛾. In Figure 2.7 aerodynamic angles are shown. 

 
Figure 2.7 - Angle definition in Body axes 

 

Assuming that 𝑋𝐵 axis has the same direction of null lift axis, it is possible to 

decompose total airspeed 𝑉 along the three body axes as follows: 

 

 

𝑢 = 𝑉 cos 𝛼 cos 𝛽 

𝑣 = 𝑉 sin 𝛽 

𝑤 = 𝑉 sin 𝛼 cos 𝛽 

(2) 
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2.2 Nonlinear Model 

The model, which describes the aircraft’s dynamic, consists of nine non-linear 

equations [16]. These equations are formulated in Body Reference Frame, whose 

origin is the aircraft center of mass. 

The body is supposed to be rigid and the Earth flat and non-rotating. These 

assumptions meet Mini-UAV’s operating conditions. The UAV’s non-linear 

mathematical model is made of 3 force equations, 3 moment equations and 3 kinematic 

equations. 

The force equations are: 

 

 

𝑢̇ =
𝐹𝑋
𝑚
+ 𝑞𝑤 − 𝑟𝑣 + 𝑔 ⋅ sin 𝜃  

𝑣̇ =
𝐹𝑌
𝑚
− 𝑝𝑤 + 𝑟𝑢 − 𝑔 ⋅ cos 𝜃 ⋅ sin𝜙 ,  

𝑤̇ =
𝐹𝑍
𝑚
+ 𝑝𝑣 − 𝑞𝑢 − 𝑔 ⋅ cos 𝜃 ⋅ sin𝜙  

(3) 

 

where 𝑚 is he aircraft mass, considered constant, [𝑢 𝑣 𝑤]𝑇 are the components of 

the speed 𝑉 along respectively the axes 𝑋𝐵, 𝑌𝐵 and 𝑍𝐵, [𝑝 𝑞 𝑟]𝑇 are the angular speeds 

and [𝐹𝑋 𝐹𝑌 𝐹𝑍]𝑇 the components of the total force acting on the aircraft. These forces 

are evaluated at each sampling time. The force components along 𝑋𝐵 and along 𝑍𝐵 

axis depends on attack angle 𝛼, nondimensional pitch rate 𝑞̂, elevon deflection 𝛿𝑒 and 

throttle position 𝛿𝑡ℎ (𝐹𝑋 = 𝑓𝑥(𝛼, 𝑞̂, 𝛿𝑒 , 𝛿𝑡ℎ), 𝐹𝑍 = 𝑓𝑧(𝛼, 𝑞̂, 𝛿𝑒 , 𝛿𝑡ℎ)). The force 

component along 𝑌𝐵 is related with sideslip angle 𝛽, nondimensional roll rate 𝑝̂ and 

nondimensional yaw rate 𝑟̂ (𝐹𝑌 = 𝑓𝑦(𝛽, 𝑝̂, 𝑟̂)). The moment equations are: 

 

 

𝑝̇ =
𝐿

𝐽𝑥
+
[𝐽𝑥𝑧(𝑟̇ + 𝑝𝑞) + 𝑞𝑟(𝐽𝑦 − 𝐽𝑧)]

𝐽𝑥
 

𝑞̇ =
𝑀

𝐽𝑦
+
[𝐽𝑥𝑧(𝑟

2 + 𝑝2) + 𝑝𝑟(𝐽𝑧 − 𝐽𝑥)]

𝐽𝑦
 , 

𝑟̇ =
𝑁

𝐽𝑧
+
[𝐽𝑥𝑧(𝑝̇ − 𝑝𝑞) + 𝑝𝑞(𝐽𝑥 − 𝐽𝑦)]

𝐽𝑧
 

(4) 
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where 𝐽𝑖 is the moment of inertia about i-axis with 𝑖 = 𝑥, 𝑦, 𝑧, 𝑥𝑧. The inertia terms 

𝐽𝑥𝑦 and 𝐽𝑦𝑧 are null because, vehicle mass distribution is symmetrical about 𝑋𝐵𝑍𝐵 

plane. The vector [𝐿 𝑀 𝑁]𝑇 represents the roll, pitch and yaw moment and is built at 

each sampling time. The roll and yaw moments depend on sideslip angle 𝛽, 

nondimensional roll rate 𝑝̂, nondimensional yaw rate 𝑟̂ and aileron deflection 𝛿𝑎 (𝐿 =

𝑓𝑙(𝛽, 𝑝̂, 𝑟̂, 𝛿𝑎), 𝑁 = 𝑓𝑛(𝛽, 𝑝̂, 𝑟̂, 𝛿𝑎)). The pitch moment is function of attack angle 𝛼, 

nondimensional pitch rate 𝑞̂ and elevon deflection 𝛿𝑒 (𝑀 = 𝑓𝑚(𝛼, 𝑞̂, 𝛿𝑒)). The forces 

and the moments in the 6 degree of freedom equation of motions are derived through 

aerodynamic derivatives included in a database. The aircraft attitude is described by 

the Euler angles [𝜙 𝜃 𝜓]𝑇, whose variation is defined by the kinematic equations: 

 

 

𝜙̇ = 𝑝 + 𝑞 ⋅ sin𝜙 ⋅ tan 𝜃 + 𝑟 ⋅ cos𝜙 ⋅ tan 𝜃 

𝜃̇ = 𝑞 ⋅ cos 𝜙 − 𝑟 ⋅ sin 𝜙 

𝜓̇ = 𝑞 ⋅
sin𝜙

cos 𝜃
+ 𝑟 ⋅

cos𝜙

cos 𝜃
 

(5) 

 

These 9 equations are coupled and nonlinear and that makes difficult to treat the 

control topic. To make the problem more manageable a linearization under certain 

assumption is done. 

 

2.3 Equations of Motion Linearization 

In order to decouple longitudinal and lateral-directional planes, the equations of 

motion linearization is applied. The reference flight condition is an airspeed of 

13.5 𝑚/𝑠 and at an altitude of 100 𝑚. In these conditions the trim angle of attack is 

𝛼0 = 6.12
° and, assuming a horizontal flight, the trim pitch angle 𝜃0 = 6.12°. From 

linearization is obtained a state-space model for longitudinal and lateral-directional 

planes as the following: 

 

 {
𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)
 (6) 

 

This is a classical linear state-space model in continuous time [18], where the 

system matrix 𝐴 ∈ ℝ𝑛,𝑛, the input matrix 𝐵 ∈ ℝ𝑛,𝑚, the output matrix 𝐶 ∈ ℝ𝑝,𝑛 and 
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matrix 𝐷 ∈ ℝ𝑝,𝑚, with 𝑛 the number of state variables, 𝑚 the number of inputs and 𝑝 

the number of outputs. In this case the 𝐶 matrix is always an identity, the matrix 𝐷 is 

equal to zero, because it is assumed that there is no relation between output and input, 

and the number of inputs is the same of the number of outputs (𝑛 = 𝑚). This state-

space model is said time independent, because the matrices 𝐴, 𝐵, 𝐶 and 𝐷 do not vary 

in the time. Indeed, in this study only one equilibrium condition is evaluated. If more 

equilibrium conditions would be considered, new matrices 𝐴, 𝐵, 𝐶 and 𝐷 should be 

calculated. In some cases, state variables and control variables can be subjected to 

constraints, so we have 𝑥 ∈ 𝕏 and 𝑢 ∈ 𝕌, with the state constraint set 𝕏 ⊂ ℝ𝑛 and the 

control constraint set 𝕌 ⊂ ℝ𝑚. 

The discrete-time state-space model is: 

 {
𝑥(𝑘 + 1) = 𝐴𝑑𝑥(𝑘) + 𝐵𝑑𝑢(𝑘)

𝑦(𝑘) = 𝐶𝑑𝑥(𝑘) + 𝐷𝑑𝑢(𝑘)
, (7) 

where 𝑘 ∈ ℤ+. In the following part the matrix for longitudinal and lateral-

directional planes are reported. These matrices are built in continuous time and then 

they are converted to discrete time assuming a zero order hold [19] on the inputs. 

 

2.3.1 Longitudinal plane 

For longitudinal plane it is added a fifth equation, which is related to the altitude. 

In this case there are five state variables and two control variables: 

𝑥 = {

𝑢
𝛼
𝜃
𝑞
ℎ

} 𝑢 = {
𝛿𝑡ℎ
𝛿𝑒
} 

where 𝛿𝑡ℎ is the throttle and 𝛿𝑒 is the elevon deflection angle. The state matrix 𝐴 

is: 

A =

[
 
 
 
 
 
 
 

𝑋𝑢  𝑋𝛼 −𝑔𝑐𝑜𝑠(θ0) 0 0

𝑍𝑢
𝑈0 − 𝑍𝛼̇

𝑍𝛼
𝑈0 − 𝑍𝛼̇

−
𝑔𝑠𝑖𝑛(θ0)

𝑈0 − 𝑍𝛼̇

𝑍𝑞 + 𝑈0

𝑈0 − 𝑍𝛼̇
0

0 0 0 1 0

𝑀𝑢 +
𝑀𝛼̇𝑍𝑢
𝑈0 − 𝑍𝛼̇

𝑀𝛼 +
𝑀𝛼̇𝑍𝛼
𝑈0 − 𝑍𝛼̇

−
𝑔𝑠𝑖𝑛(θ0)𝑀𝛼̇

𝑈0 − 𝑍𝛼̇
𝑀𝑞 +

𝑀𝛼̇(𝑍𝑞 + 𝑈0)

𝑈0 − 𝑍𝛼̇
0

0 −𝑈0 𝑈0 0 0]
 
 
 
 
 
 
 

 

The control matrix 𝐵 is: 
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𝐵 =

[
 
 
 
 
 
 
1 0

0
𝑍𝛿𝑒

𝑈0 − 𝑍𝛼̇
0 0

0 𝑀𝛿𝑒 +
𝑀𝛼̇𝑍𝛿𝑒
𝑈0 − 𝑍𝛼̇

0 0 ]
 
 
 
 
 
 

 

 

2.3.2 Lateral-directional plane 

For lateral-directional plane it is not considered the yaw angle 𝜓, because its 

control is separated by the rest of dynamics and it is accomplished by a PID controller. 

State and control vectors are: 

𝑥 = {

𝑣
𝑝
𝑟
𝜙

} 𝑢 = {𝛿𝑎} 

Where 𝛿𝑎 is the aileron deflection angle and it is the unique input in lateral-

directional dynamic. The state matrix 𝐴 is: 

𝐴 =

[
 
 
 
 Yv   𝑌𝑝  Yr − 𝑈0  g

Lvd  Lpd   Lrd   0

Nvd  Npd Nrd 0

1  0  0 0]
 
 
 
 

The control matrix 𝐵 is: 

𝐵 =

[
 
 
 
𝑌𝑑𝑎
𝐿𝑑𝑎𝑑
𝑁𝑑𝑎𝑑
0 ]
 
 
 
 

As can be seen in lateral-directional plane the only control surface is the aileron, 

because of the tailless configuration. 

 

2.4 Stability problem 

In this section an overview about stability problem is proposed. First a definition 

of equilibrium point is given, then the different kinds of stability for equilibrium points 

are illustrated and finally Lyapunov direct method is described. The reference used in 

this section is [18]. 

It is considered the following LTI system described by state space representation 

in continuous time 𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), 𝑥 ∈ ℝ𝑛, 𝑢 ∈ ℝ𝑚. 
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2.4.1 Equilibrium solution and stability 

A solution 𝑥 of the dynamic system is defined as equilibrium solution 𝑥𝑒, if in 

presence of the constant input 𝑢(𝑡) = 𝑢𝑒 and the initial condition 𝑥(0) = 𝑥𝑒, it results 

that the solutions for all following time are equilibrium solutions: 𝑥(𝑡) = 𝑥𝑒 ∀𝑡 ≥ 0. 

In this case the input 𝑢𝑒 is said equilibrium input, the output 𝑦𝑒 equilibrium output 

and the couple (𝑥𝑒 , 𝑢𝑒) equilibrium point. An equilibrium point (𝑥𝑒 , 𝑢𝑒) for a generic 

dynamic system such as 𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) satisfies the condition 𝑓(𝑥𝑒 , 𝑢𝑒) = 0. 

For a linear dynamic system with an invertible state matrix 𝐴 the following relation 

between equilibrium state and equilibrium output is valid: 

𝑥𝑒 = −𝐴
−1𝐵𝑢𝑒 

Once an equilibrium solution 𝑥𝑒 is found, it must be understood if it is stable or 

not. To do that, it is necessary to introduce a small initial perturbation near the 

equilibrium solution 𝑥𝑒 and to observe if the system evolves near the equilibrium 

solution 𝑥𝑒 or not. Supposing that an equilibrium solution of a generic dynamic system 

𝑥𝑒 = 𝜙(𝑡, 𝑡0, 𝑥𝑒 , 𝑢𝑒) and the perturbed solution is 𝑥𝑝(𝑡) = 𝜙(𝑡, 𝑡0, 𝑥0, 𝑢𝑒), where 𝑥0 

is the perturbed initial condition in some neighborhood of 𝑥𝑒, and studying the 

perturbed evolution, it is possible to understand if the equilibrium point is: 

• Stable if the perturbed solution evolves in a bounded neighborhood of 𝑥𝑒: 

 

∀ε > 0, ∃ δ = δ(ε) > 0  |  ∀x0:  ‖x0 − xe‖ ≤ δ ⇒  ‖xp(t) − xe‖ ≤ ε,

∀t ≥ 0 

• Asymptotically stable if the perturbed solution tends to 𝑥𝑒 for t→∞: 

 

lim
t→∞

‖xp(t) − xe‖ = 0 

• Unstable if the perturbed solution evolves far away from 𝑥𝑒. 

Considering the perturbed solution 𝑥𝑝 = 𝜙(𝑡, 𝑡0, 𝑥0, 𝑢𝑒) of a generic dynamic 

with constant input 𝑢𝑒 and perturbed initial condition 𝑥𝑒, it is possible to define for 

asymptotically stable equilibrium point a domain of attraction 𝑆(𝑥𝑒 , 𝑢𝑒) =

{𝑥0 : lim
𝑡→∞

‖𝜙(𝑡, 𝑡0, 𝑥0, 𝑢𝑒) − 𝑥𝑒‖ = 0}. 

Roughly speaking, the domain of attraction of the equilibrium point (𝑥𝑒 , 𝑢𝑒) is a 

set of initial condition 𝑥0 in the equilibrium state neighborhood 𝑥𝑒, for which the 
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definition of asymptotical stability is valid. Furthermore, if 𝑆(𝑥𝑒 , 𝑢𝑒) = ℝ𝑛, the 

equilibrium point (𝑥𝑒 , 𝑢𝑒) is globally asymptotically stable. 

As example of asymptotical stability in real world, it is likely a two degrees of 

freedom pendulum. Its dynamic is described by two second order differential 

equations. If a reference system is centered in the pendulum quiet position, the origin 

(0,0) is an equilibrium point. The equilibrium point is asymptotically stable. If any 

initial position and initial speed is applied to the system within the circle centered in 

the origin with radius equal to the limb length, the perturbed solution will tend to the 

equilibrium point (0,0) for 𝑡 → ∞. The trajectory of a perturbed solution is shown in 

Figure 2.8. 

 
Figure 2.8 - Asymptotic stability for a two degree of freedom pendulum 

 

2.4.2 Lyapunov stability direct method 

The Lyapunov direct method provides a sufficient condition for stability. If a 

function 𝑉(𝑥), which satisfies some requirements, is found, some conclusions about 

stability can be done. The main advantage of this method is that conclusion about 

stability can be drawn without solving the differential state equation.  

Lyapunov function should be defined as a once differentiable function 𝐶1 in a 

domain 𝒳 ⊂ ℝ𝑛: 𝑉(𝑥): 𝒳 → ℝ 𝑎𝑛𝑑 𝑉(𝑥) ∈ 𝐶1. 

Something about the stability of the equilibrium point 𝑥𝑒 can be said, if a function 

𝑉(𝑥) positive definite or negative definite in 𝑥𝑒 is found. 𝑉(𝑥) is said: 

• Positive definite in 𝑥𝑒 ∈ 𝒳 if the following conditions are satisfied: 

o 𝑉(𝑥𝑒) = 0 

o It exists a neighborhood 𝐼𝛿 = {𝑥: ‖𝑥 − 𝑥𝑒‖ ≤ 𝛿} of 𝑥𝑒 such that: 
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𝑉(𝑥) > 0 ∀𝑥 ∈ 𝐼𝛿 , 𝑥 ≠ 𝑥𝑒  

• Positive semi-definite in 𝑥𝑒 ∈ 𝒳 if the following conditions are satisfied: 

o 𝑉(𝑥𝑒) = 0 

o It exists a neighborhood 𝐼𝛿 = {𝑥: ‖𝑥 − 𝑥𝑒‖ ≤ 𝛿} of 𝑥𝑒 such that: 

𝑉(𝑥) ≥ 0 ∀𝑥 ∈ 𝐼𝛿 , 𝑥 ≠ 𝑥𝑒  

• Negative definite in 𝑥𝑒 ∈ 𝒳 if the following conditions are satisfied: 

o 𝑉(𝑥𝑒) = 0 

o It exists a neighborhood 𝐼𝛿 = {𝑥: ‖𝑥 − 𝑥𝑒‖ ≤ 𝛿} of 𝑥𝑒 such that: 

𝑉(𝑥) < 0 ∀𝑥 ∈ 𝐼𝛿 , 𝑥 ≠ 𝑥𝑒  

• Negative semi-definite in 𝑥𝑒 ∈ 𝒳 if the following conditions are satisfied: 

o 𝑉(𝑥𝑒) = 0 

o It exists a neighborhood 𝐼𝛿 = {𝑥: ‖𝑥 − 𝑥𝑒‖ ≤ 𝛿} of 𝑥𝑒 such that: 

𝑉(𝑥) ≤ 0 ∀𝑥 ∈ 𝐼𝛿 , 𝑥 ≠ 𝑥𝑒  

Furthermore, if 𝑉(𝑥) is positive definite function in 𝑥𝑒, then 𝑉(𝑥) admits local 

minimum. Similarly, if 𝑉(𝑥) is negative definite function in 𝑥𝑒, then 𝑉(𝑥) admits local 

maximum. 

Let now consider a generic dynamic system 𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) with an 

equilibrium point in 𝑥𝑒, which is contained in the domain 𝒳 ⊆ ℝ𝑛. If there exists a 

class 𝐶1 function 𝑉(𝑥), which is positive definite in 𝑥𝑒 and such that the first derivative 

𝑉̇(𝑥) is: 

• semi-negative definite in 𝑥𝑒 ∈ 𝒳, then the equilibrium point 𝑥𝑒 is stable. 

• negative definite in 𝑥𝑒 ∈ 𝒳, then the equilibrium point 𝑥𝑒 is asymptotically 

stable. 

• positive definite in 𝑥𝑒 ∈ 𝒳, then the equilibrium point 𝑥𝑒 is unstable. 

The first derivative 𝑉̇(𝑥) can be calculated as: 

𝑉̇(𝑥) =
𝑑𝑉(𝑥)

𝑑𝑡
=
𝑑𝑉(𝑥)

𝑑𝑥

𝑑𝑥(𝑡)

𝑑𝑡
=
𝑑𝑉(𝑥)

𝑑𝑥
𝑓(𝑥, 𝑢𝑒)  

As example of this method application, let consider the linear system 𝑥̇ = 𝐴𝑥. As 

Lyapunov function attempt it is used the following one: 

𝑉(𝑥) =
1

2
𝑥𝑇𝑃𝑥 

Where 𝑃 is supposed to be a symmetrical positive definite matrix, so 𝑉(𝑥) is 

positive definite. It must be studied the first derivative of this function: 
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𝑉̇(𝑥) =
𝑑𝑉(𝑥)

𝑑𝑥

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑥𝑇𝑃𝑥̇ = 𝑥𝑇𝑃𝐴𝑥 =

1

2
(𝑥𝑇𝑃𝐴𝑥 + 𝑥𝑇𝑃𝐴𝑥)  

Since 𝑥𝑇𝑃𝐴𝑥 = (𝑥𝑇𝑃𝐴𝑥)𝑇 = 𝑥𝑇𝐴𝑇𝑃𝑥, it follows: 

𝑉̇(𝑥) =
1

2
[𝑥𝑇(𝑃𝐴 + 𝐴𝑇𝑃)𝑥] 

In order to have asymptotic stability this function must be negative (𝑉̇(𝑥) < 0). 

This condition is satisfied if and only if the matrix (𝑃𝐴 + 𝐴𝑇𝑃) is negative definite: 

𝑃𝐴 + 𝐴𝑇𝑃 ≺ 0 

The unknown term is the matrix 𝑃, which has to be determined with respect to the 

hypotheses. Let now consider a linear system with some inputs 𝑥̇ = 𝐴𝑥 + 𝐵𝑢. If a 

feedback control law such as 𝑢 = 𝐾𝑥 is introduced, then the dynamic system can be 

rewritten as: 

𝑥̇ = (𝐴 + 𝐵𝐾)𝑥 

The feedback matrix 𝐾 must be chosen in order to stabilize the system. To do a 

suitable choice of it, a linear matrix inequality problem [20] can be built as follows: 

𝑃(𝐴 + 𝐵𝐾) + (𝐴 + 𝐵𝐾)𝑇𝑃 ≺ 0 

Where the unknown matrices are 𝑃, which is symmetric and positive definite, and 

𝐾. It is now demonstrated how to make this inequality explicitly bilinear [21]. Because 

the inverse of 𝑃 matrix is also positive definite, it is a valid procedure to multiply from 

right and from left the inequality with matrix 𝑃−1: 

𝑃−1[(𝐴 + 𝐵𝐾)𝑇𝑃 + 𝑃(𝐴 + 𝐵𝐾)]𝑃−1  ≺ 0 

𝑃−1𝐴𝑇 + 𝑃−1𝐾𝑇𝐵𝑇 + 𝐴𝑃−1 + 𝐵𝐾𝑃−1  ≺ 0 

It is possible now to rename the following matrices as: 

𝑋 = 𝑃−1 

𝑌 = 𝐾𝑃−1 = 𝐾𝑋 

Lyapunov LMI can be rewritten as 𝐴𝑋 + 𝑋𝐴𝑇 + 𝐵𝑌 + 𝑌𝑇𝐵𝑇 ≺ 0, where 𝑋 ≻ 0. 

This inequality is now linear and can be solved with standard methods for LMIs. 

For a discrete time, linear time invariant system 𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘)) if 

there exists an equilibrium point 𝑥𝑒, contained in a domain 𝒳 ⊆ 𝑥ℝ𝑛, and if there 

exists a class 𝐶1 function 𝑉(𝑥(𝑘)), which is positive definite in 𝑥𝑒 ∈ 𝒳 such that 

 Δ𝑉(𝑥) = 𝑉(𝑥(𝑘 + 1)) − 𝑉(𝑥(𝑘)) = 𝑉(𝑓(𝑥(𝑘), 𝑢𝑒)) − 𝑉(𝑥(𝑘)) < 0 (8) 

in the equilibrium point 𝑥𝑒, then the equilibrium is asymptotically stable and 𝑉(𝑥) 

is said Lyapunov function. If the closed loop discrete time, linear time independent 
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system 𝑥(𝑘 + 1) = (𝐴 + 𝐵𝐾)𝑥(𝑘) is considered and the function 𝑉(𝑥) = 1

2
𝑥𝑇𝑃𝑥 is 

tried as Lyapunov function, then inequality (8) can be rewritten as: 

Δ𝑉(𝑥) =
1

2
[𝑥(𝑘 + 1)𝑇𝑃𝑥(𝑘 + 1) − 𝑥(𝑘)𝑇𝑃𝑥(𝑘)]

=
1

2
𝑥(𝑘)𝑇[(𝐴 + 𝐵𝐾)𝑇𝑃(𝐴 + 𝐵𝐾) − 𝑃]𝑥(𝑘) < 0 

Therefore, if a matrix 𝐾, which makes the equilibrium point asymptotically stable, 

is searched, the following matrix inequality has to be satisfied: 

(𝐴 + 𝐵𝐾)𝑇𝑃(𝐴 + 𝐵𝐾) − 𝑃 ≺ 0 

 

2.4.3 Stability of LTI system 

It is now considered a linear time independent system such as (6). The eigenvalues 

of state matrix 𝐴 are denoted with 𝜆𝑖(𝐴), 𝑖 = 1, … , 𝑛. The LTI system is: 

• Asymptotically stable if and only if: 

o ℝ𝑒(𝜆𝑖(𝐴)) < 0, 𝑖 = 1,… , 𝑛 

• Internally stable if and only if:  

o ℝ𝑒(𝜆𝑖(𝐴)) ≤ 0, 𝑖 = 1,… , 𝑛 and 𝜇′ (𝜆𝑗(𝐴)) = 1 𝑤𝑖𝑡ℎ ℝ𝑒 (𝜆𝑗(𝐴)) =

0 1 

• Unstable if and only if: 

o ∃𝑖: ℝ𝑒(𝜆𝑖(𝐴)) > 0 or 

o ℝ𝑒(𝜆𝑖(𝐴)) ≤ 0, 𝑖 = 1,… , 𝑛 and 𝜇′ (𝜆𝑗(𝐴)) > 1 𝑤𝑖𝑡ℎ ℝ𝑒 (𝜆𝑗(𝐴)) = 0 

A discrete time linear system, such as (7), is said asymptotically stable if and only 

if all the eigenvalues of the state matrix 𝐴𝑑 lie strictly inside the unit circle in the 

discrete complex plane. 

 

2.4.4 Control of LTI system 

Control systems can be divided in two categories: open-loop and closed-loop 

systems [30]. In the first one the control action does not depend on the system output. 

This kind of control is applied to those systems whose response is well known and is 

                                                 
1 𝜇′(⋅) is the geometric multiplicity. 
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not subjected to stability problems. In Figure 2.9 an example of this configuration is 

given. 

 
Figure 2.9 - Open-loop control system 

In a closed-loop control system, or also called feedback control system, the control 

action depends on the system output. A feedback is introduced, in order to permit the 

output to be compared with the input to the system. This kind of control is used when 

the controlled system has a response, which is not well known, is unstable and/or 

operates in presence of disturbance or uncertainties. In Figure 2.10 the scheme of a 

closed-loop control is represented. 

 
Figure 2.10 - Closed-loop control system 

Let now consider a system written in state space formulation such as (6). The 

eigenvalues of the state matrix 𝐴 determine the dynamic behavior of the system. If a 

stable system has to be controlled, an open-loop configuration can be adopted and the 

response would be acceptable. Otherwise, if an unstable system has to be controlled, 

it is possible to modify the eigenvalues of matrix 𝐴 by considering an input which 

depends on the state variables: 

𝑢(𝑡) = −𝐾𝑥(𝑡) 

This means to introduce a feedback in the control and to choose a closed-loop 

control. The LTI system can written as: 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) = (𝐴 − 𝐵𝐾)𝑥(𝑡) 

The stability of LTI system depends now on the eigenvalues of the matrix (𝐴 −

𝐵𝐾). The wanted answer of the system can be achieved hereby by a suitable choice of 

the matrix 𝐾. An arbitrary assignment of the eigenvalues of the matrix (𝐴 − 𝐵𝐾) 

through the choice of the matrix 𝐾 ∈ ℝ𝑚,𝑛 is possible if and only if: 

𝝆(𝑀𝑅) = 𝝆([𝐵 𝐴𝐵 …𝐴
𝑛−1𝐵]) = 𝑛 

Where 𝝆(⋅) returns the rank of argument matrix and 𝑀𝑅 is the controllability 

matrix. If 𝝆(𝑀𝑅) = 𝑛 the couple (𝐴, 𝐵) is said controllable. 

Control System Plant 𝑢 𝑦 

Control 
System 

Plant 𝑢 𝑦 
+ 
− 

𝑒 𝑟𝑒𝑓 
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In the further part of this work, it will be always considered a closed-loop 

configuration, because the UAV system, as it has been described previously, operates 

in presence of disturbance and uncertainties and it is unstable. 
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Chapter 3: Model Predictive Control 

 

 
Model Predictive Control is basically a method to control dynamic system solving 

an optimization problem. At each sampling time a finite horizon optimal control 

problem, where the actual state is the initial state, is solved on-line and an optimal 

control sequence is derived. Only the first element of this latter sequence is applied to 

the plant. The prediction horizon is then shifted and the problem is again solved with 

the new state of the system as initial state. Hence the optimization problem solution is 

a function of the current state of the system. This procedure is also known as “Receding 

Control Horizon”. 

In Figure 3.1 it is drawn an example of this method inspired by [17]. At starting 

instant 𝑡 the optimization problem is solved with initial state 𝑥(𝑡) until the final instant 

𝑡 + 𝑁𝑝 (blue curve); in this horizon it is applied to the system the optimal control 

sequence 𝒖∗(𝑡) = {𝑢∗(𝑡), 𝑢∗(𝑡 + 1), … , 𝑢(𝑡 + 𝑁𝑝)}, drawn in orange. The first 

element of this latter sequence 𝑢∗(𝑡) is applied to the plant until the next sampling 

time and a new state is reached by the system. At the next sampling time, the new state 

become the current one, the prediction horizon is shifted and the starting instant is 

updated to be 𝑡 + 1. Now the last instant in prediction horizon is 𝑡 + 𝑁𝑝 + 1. The 

procedure is repeated. 

 
Figure 3.1 - Predicted state and control throughout the prediction horizon [17] 

At each sampling time a mathematical optimization problem must be solved; this 

computational complexity represents the main limitation of MPC compared to PID 

controller. For this reason, in the past the most successful field for MPC was in the 

process industry, where the dynamic is quite slow and ensuring the satisfaction of hard 

Shifted Prediction Horizon Prediction Horizon 
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constraint is essential. Nowadays, due to the development of increasingly fast and 

energy-efficient processors, application of MPC law can spread also for dynamic 

system with smaller time constants. 

Model Predictive Control uses a dynamic model to forecast system behavior and 

to produce the best control action in order to optimize the forecast [1]. The main goal 

of a classical model predictive control is to find an optimal control sequence, which 

minimizes a cost function over a prediction horizon [2]. In this study a discrete time 

formulation will be considered for a linear time independent system: 

𝑀: {
𝑥(𝑘 + 1|𝑘) = 𝐴𝑥(𝑘|𝑘) + 𝐵𝑢(𝑘|𝑘)

𝑦(𝑘|𝑘)  = 𝐶𝑥(𝑘|𝑘) 
 , 𝑥(𝑘) ∈ ℝ𝑛, 𝑢(𝑘) ∈ ℝ𝑚,

𝑦(𝑘) ∈ ℝ𝑝 

where 𝑘 ∈ ℤ+ represents the actual instant and 𝑥(𝑘 + 𝑖|𝑘) is the 𝑖𝑡ℎ ahead state 

prediction step. The horizon prediction 𝑁𝑝 should be chosen in order to define a cost 

function 𝐽(𝑈(𝑘), 𝑥(𝑘|𝑘)):  

𝐽(𝑈(𝑘), 𝑥(𝑘|𝑘)) = ∑ 𝐿(𝑥(𝑘 + 𝑖|𝑘), 𝑢(𝑘 + 𝑖|𝑘 ))

𝑁𝑝−1

𝑖=0

+Φ(𝑥(𝑘 + 𝑁𝑝|𝑘)) 

where 𝐿(⋅) is a per-stage weighting function and Φ(⋅) is the terminal state 

weighting function. It has to be noted that the cost function 𝐽(⋅) depends only on the 

current state 𝑥(𝑘|𝑘), that is known, and on the control sequence 𝑈(𝑘) =

[𝑢(𝑘|𝑘), 𝑢(𝑘 + 1|𝑘),… , 𝑢(𝑘 + 𝑁𝑐 − 1|𝑘)]𝑇, that has to be derived via the 

optimization problem. A control horizon 𝑁𝑐 smaller or equal than prediction horizon 

𝑁𝑝 can be chosen. If 𝑁𝑐 < 𝑁𝑝: 

𝑢(𝑘 + 𝑖|𝑘) = 𝑢(𝑘 + 𝑁𝑐|𝑘), 𝑁𝑐 ≤ 𝑖 ≤ 𝑁𝑝 − 1. 

The functions 𝐿(⋅) and Φ(⋅) are quadratic: 

𝐿(𝑥, 𝑢) = 𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢 Φ(𝑥) = 𝑥𝑇𝑃𝑥 

Where 𝑄, 𝑅 and 𝑃 are symmetric and positive definite: 𝑄 = 𝑄𝑇 ≽ 0, 𝑅 = 𝑅𝑇 ≽

0, 𝑃 = 𝑃𝑇 ≽ 0. 

Functions 𝐿(⋅) and Φ(⋅) can be written as follows: 

 

𝐿(𝑥, 𝑢) = ‖𝑄𝑥‖𝑝 + ‖𝑅𝑢‖𝑝 Φ(𝑥) = ‖𝑃𝑥‖𝑝 

with 𝑝 = 1, … ,∞. Finally, the optimization problem can be formulated as 

follows: 
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 𝒫𝑁𝑝(𝑥):

{
 
 
 

 
 
 

min
𝑈(𝑘)

𝐽(𝑥(𝑘|𝑘), 𝑈(𝑘))

𝑠. 𝑡.
𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘))

𝑈(𝑘) ∈ 𝕌
𝑥(𝑘 + 𝑖|𝑘) ∈ 𝕏, 𝑖 = 1, . . . , 𝑁𝑝 − 1

𝑥(𝑘 + 𝑁𝑝|𝑘) ∈ 𝕏𝑓 ⊂ 𝕏

 (9) 

where 𝕌 is the input constraint set, 𝕏 is the state constraint set and 𝕏𝑓 is the 

terminal state constraint set. The problem 𝒫𝑁𝑝(𝑥) is solved by the minimizing control 

sequence 𝑈0(𝑘) = [𝑢0(𝑘|𝑘),  𝑢0(𝑘 + 1|𝑘), . . . , 𝑢0(𝑘 + 𝑁𝑐 − 1|𝑘)]
𝑇. 

The cost function minimum is denoted by 𝐽0(𝑥(𝑘|𝑘)) = 𝐽0(𝑥(𝑘|𝑘), 𝑈0(𝑘)). 

Summarizing the procedure: 

1. Get the state 𝑥(𝑘|𝑘); 

2. Solve the optimization problem 𝒫𝑁𝑝(𝑥) and get optimal control sequence 

𝑈0(𝑘); 

3. Apply to the plant only the first element of the optimal control sequence 

𝑢0(𝑘|𝑘); 

4. 𝑘 = 𝑘 + 1 and go to step 1. 

 

3.1 Linear MPC without constraints 

In this paragraph it is considered the same linear, discrete time, time invariant 

system 𝑀 of the last section with 𝑛 state variables, 𝑚 inputs and 𝑝 outputs. 

Furthermore, it is assumed that the prediction horizon is equal to the control horizon 

(𝑁𝑝 = 𝑁𝑐) Considering a quadratic cost function: 

𝐽(𝑈(𝑘), 𝑥(𝑘|𝑘)) = ∑ 𝐿(𝑥(𝑘 + 𝑖|𝑘), 𝑢(𝑘 + 𝑖|𝑘 ))

𝑁𝑝−1

𝑖=0

+Φ(𝑥(𝑘 + 𝑁𝑝|𝑘)) = 

= ∑ 𝑥(𝑘 + 𝑖|𝑘)𝑇𝑄𝑥(𝑘 + 𝑖|𝑘) + 𝑢(𝑘 + 𝑖|𝑘)𝑇𝑅𝑢(𝑘 + 𝑖|𝑘)

𝑁𝑝−1

𝑖=0

+ 𝑥(𝑘 + 𝑁𝑝|𝑘)
𝑇
𝑃𝑥(𝑘 + 𝑁𝑝|𝑘) 

= ∑  ‖𝑥(𝑘 + 𝑖|𝑘)‖𝑄
2 + ‖𝑢(𝑘 + 𝑖|𝑘)‖𝑅

2

𝑁𝑝−1

𝑖=0

+ ‖𝑥(𝑘 + 𝑁𝑝|𝑘)‖𝑃
2

 

This quadratic cost function will be reformulated in order to explicit its 

dependence on the control sequence 𝑈(𝑘) and the actual state 𝑥(𝑘|𝑘). It can be noticed 
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that the state 𝑥(𝑘 + 𝑖|𝑘) at 𝑖𝑡ℎ step is only function of the control sequence and the 

actual state: 

𝑥(𝑘 + 𝑖|𝑘) = 𝐴𝑖𝑥(𝑘|𝑘) +∑𝐴𝑖−𝑗−1𝐵𝑢(𝑘 + 𝑗|𝑘)

𝑖−1

𝑗=0

, 𝑖 = 1,… ,𝑁𝑝 

The latter equation can be rewritten in vectorial form 𝑋(𝑘) = 𝒜𝑥(𝑘|𝑘) + ℬ𝑈(𝑘), 

where 𝑋(𝑘) is the predicted state sequence 𝑋(𝑘) = [𝑥(𝑘 + 1|𝑘), … , 𝑥(𝑘 + 𝑁𝑝|𝑘)]
𝑇
∈

ℝ𝑛𝑁𝑝 and the matrices 𝒜 and ℬ are constructed as follows: 

𝒜 = [

𝐴
𝐴2

⋮
𝐴𝑁𝑝

] ℬ =

[
 
 
 
 

𝐵 0 0 … 0
𝐴𝐵 𝐵 0 … 0
… … … … 0

𝐴𝑁𝑝−2𝐵 𝐴𝑁𝑝−3𝐵 … 𝐵 0
𝐴𝑁𝑝−1𝐵 𝐴𝑁𝑝−2𝐵 … 𝐴𝐵 𝐵]

 
 
 
 

 

where 𝒜 ∈ ℝ𝑛𝑁𝑝,𝑛 and ℬ ∈ ℝ𝑛𝑁𝑝,𝑚𝑁𝑝. Defining the matrix of the weight for 

states 𝒬 and control variables ℛ: 

𝒬 =

[
 
 
 
 
𝑄 0 0 … 0
0 𝑄 0 ⋱ 0
⋮ ⋱ ⋱ ⋱ 0
0 0 ⋱ 𝑄 0
0 0 … 0 𝑃]

 
 
 
 

∈ ℝ𝑛𝑁𝑝,𝑛𝑁𝑝 ℛ =

[
 
 
 
 
𝑅 0 0 … 0
0 𝑅 0 ⋱ 0
⋮ ⋱ ⋱ ⋱ 0
0 0 ⋱ 𝑅 0
0 0 … 0 𝑅]

 
 
 
 

∈ ℝ𝑚𝑁𝑝,𝑚𝑁𝑝 

The cost function can be now rewritten as 𝐽(𝑈(𝑘), 𝑥(𝑘|𝑘)) = 𝑋(𝑘)𝑇𝒬𝑋(𝑘) +

𝑈(𝑘)𝑇ℛ𝑈(𝑘). 

Writing the predicted state sequence as function of the actual state and of the 

control sequence: 

𝐽(𝑈(𝑘), 𝑥(𝑘|𝑘))

= 𝑥(𝑘|𝑘)𝑇𝒜𝑇𝒬𝒜𝑥(𝑘|𝑘) + 2𝑥(𝑘|𝑘)𝑇𝒜𝑇𝒬ℬ𝑈(𝑘) + 𝑈(𝑘)𝑇(ℬ𝑇𝒬ℬ

+ ℛ)𝑈(𝑘) 

Assuming that: 

𝐻 = 2(ℬ𝑇𝒬ℬ + ℛ) 

𝐹 = 2𝒜𝑇𝒬ℬ 

𝐽 ̅ = 𝑥(𝑘|𝑘)𝑇𝒜𝑇𝒬𝒜𝑥(𝑘|𝑘) 

where 𝐻 is positive definite and 𝐽 ̅is a known constant term, which depends only 

on the actual state, cost function can be finally be written as function of 𝑥(𝑘|𝑘) and 

𝑈(𝑘): 

𝐽(𝑈(𝑘), 𝑥(𝑘|𝑘)) =
1

2
𝑈(𝑘)𝑇𝐻𝑈(𝑘) + 𝑥(𝑘|𝑘)𝑇𝐹𝑈(𝑘) + 𝐽 ̅
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To solve the optimization problem 𝒫𝑁𝑝(𝑥), this cost function must be minimized. 

From the first derivative of the cost function: 
∂J

𝜕𝑈
= 𝐻𝑈(𝑘) + 𝑥(𝑘|𝑘)𝑇𝐹 

The necessary minimum condition is ∂J
𝜕𝑈
= 0. The optimal control sequence is: 

𝑈0(𝑘) = −𝐻−1𝐹𝑇𝑥(𝑘|𝑘) = −𝐾𝑥(𝑘|𝑘) 

where matrix 𝐾 corresponds to a state feedback matrix. An appropriate choice of 

matrix 𝑄, 𝑅 and 𝑃 guarantees asymptotic stability. 

 

3.2 Linear MPC with constraints 

In real operative cases, most of the times optimization problem 𝒫𝑁𝑝(𝑥) is 

subjected to constraints on state variables and on control variables. In this section it is 

examined how to deal with constraints. It is considered always the same linear, discrete 

time, time invariant system 𝑀 with 𝑛 states, 𝑚 inputs and 𝑝 outputs. It is assumed that 

every input has upper and lower saturation constraints and that control horizon is equal 

to the prediction horizon 𝑁𝑝. 

 

3.2.1 Input saturation constraints 

The input vector is a column vector (𝑢(𝑘|𝑘) ∈ ℝ𝑚) and the control sequence too 

(𝑈(𝑘) ∈ ℝ𝑚𝑁𝑝). In the following example the same constraints are imposed at every 

sample time. 

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘|𝑘) ≤ 𝑢𝑚𝑎𝑥 

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘 + 1|𝑘) ≤ 𝑢𝑚𝑎𝑥 

⋮ 

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘 + 𝑁𝑝 − 1|𝑘) ≤ 𝑢𝑚𝑎𝑥 

These inequalities can be rewritten as follows: 

𝑢(𝑘|𝑘) ≤ 𝑢𝑚𝑎𝑥 

𝑢(𝑘 + 1|𝑘) ≤ 𝑢𝑚𝑎𝑥 

⋮ 

𝑢(𝑘 + 𝑁𝑝 − 1|𝑘) ≤ 𝑢𝑚𝑎𝑥 

−𝑢(𝑘|𝑘) ≤ −𝑢𝑚𝑖𝑛 

−𝑢(𝑘 + 1|𝑘) ≤ −𝑢𝑚𝑖𝑛 
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⋮ 

−𝑢(𝑘 + 𝑁𝑝 − 1|𝑘) ≤ −𝑢𝑚𝑖𝑛 

Utilizing matrix formulation, these inequalities can be expressed as: 

[𝐼] [

𝑢(𝑘|𝑘)
⋮

𝑢(𝑘 + 𝑁𝑝 − 1|𝑘)
] ≤ 𝑊𝑈𝑚𝑎𝑥

 

−[𝐼] [

𝑢(𝑘|𝑘)
⋮

𝑢(𝑘 + 𝑁𝑝 − 1|𝑘)
] ≤ 𝑊𝑈𝑚𝑖𝑛

 

where 𝐼 ∈ ℝ𝑚𝑁𝑝,𝑚𝑁𝑝 is an identity, 𝑊𝑈𝑚𝑎𝑥 = [𝑢𝑚𝑎𝑥, 𝑢𝑚𝑎𝑥 , … , 𝑢𝑚𝑎𝑥]
𝑇 ∈ ℝ𝑚𝑁𝑝 

and 𝑊𝑈𝑚𝑖𝑛
= [−𝑢𝑚𝑖𝑛, − 𝑢𝑚𝑖𝑛, … , −𝑢𝑚𝑖𝑛]

𝑇 ∈ ℝ𝑚𝑁𝑝. These inequalities can be finally 

written as linear inequalities: 

𝐿𝑈𝑈(𝑘) ≤ 𝑊𝑈 

where: 

𝐿𝑈 = [
𝐼
−𝐼
] ∈ ℝ2𝑚𝑁𝑝,𝑚𝑁𝑝 𝑊𝑈 = [

𝑊𝑈𝑚𝑎𝑥

𝑊𝑈𝑚𝑖𝑛

] ∈ ℝ2𝑚𝑁𝑝 

 

3.2.2 State constraints 

In the following section it is considered any kind of linear state constraints, not 

only saturation constraints: 

𝐿1𝑥(𝑘 + 1|𝑘) ≤ 𝑊1 

⋮ 

𝐿𝑖𝑥(𝑘 + 𝑖|𝑘) ≤ 𝑊𝑖 

⋮ 

𝐿𝑁𝑝𝑥(𝑘 + 𝑁𝑝|𝑘) ≤ 𝑊𝑁𝑝 

where 𝐿𝑖 ∈ ℝ
𝑛,𝑛 and 𝑊𝑖 ∈ ℝ

𝑛 with 𝑖 = 1,… ,𝑁𝑝. Remembering that 

𝑥(𝑘 + 𝑖|𝑘) = 𝐴𝑖𝑥(𝑘|𝑘) + ∑ 𝐴𝑖−𝑗−1𝐵𝑢(𝑘 + 𝑗|𝑘)𝑖−1
𝑗=0 , 𝑖 = 1,… ,𝑁𝑝, it is possible to 

write state constraints as: 

[

𝐿1 … 0
⋮ ⋱ ⋮
0 … 𝐿𝑁𝑝

] [
𝐵 … 0
⋮ ⋱ ⋮

𝐴𝑁𝑝−1 … 𝐵
] [

𝑢(𝑘|𝑘)
⋮

𝑢(𝑘 + 𝑁𝑝 − 1|𝑘)
]

≤ − [

𝐿1 … 0
⋮ ⋱ ⋮
0 … 𝐿𝑁𝑝

] [
𝐴
⋮
𝐴𝑁𝑝

] 𝑥(𝑘|𝑘) + [

𝑊1

⋮
𝑊𝑁𝑝

] , 
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which can be rewritten as 𝐿𝑥ℬ𝑈(𝑘) ≤ −𝐿𝑥𝒜𝑥(𝑘|𝑘) +𝑊𝑥, where 𝐿𝑥 ∈ ℝ𝑛𝑁𝑝,𝑛𝑁𝑝 

and 𝑊𝑥 ∈ ℝ𝑛𝑁𝑝. As it can be noticed, the state constraints depend on the actual state 

of the system; hereby at each step the right side of the last inequality changes. After 

posing 𝐿𝑋 = 𝐿𝑥ℬ ∈ ℝ
𝑛𝑁𝑝,𝑚𝑁𝑝 and 𝑊𝑋 = −𝐿𝑥𝒜𝑥(𝑘|𝑘) +𝑊𝑥 ∈ ℝ

𝑛𝑁𝑝, this inequality 

is compacted as 𝐿𝑋𝑈(𝑘) ≤ 𝑊𝑋. Rearranging both input and state constraints it is 

possible to write: 

𝐿𝑈(𝑘) ≤ 𝑊 

where 𝐿 = [𝐿𝑈, 𝐿𝑋]
𝑇 ∈ ℝ(2𝑚+𝑛)𝑁𝑝,𝑚𝑁𝑝 and 𝑊 = [𝑊𝑈,𝑊𝑋]

𝑇 ∈ ℝ(2𝑚+𝑛)𝑁𝑝. 

 

3.2.3 Quadratic Programming Solution 

Optimization problem for Model Predictive Control is the following: 

 

min
𝑈(𝑘)

𝐽(𝑈(𝑘), 𝑥(𝑘|𝑘))

= min
𝑈(𝑘)

1

2
𝑈(𝑘)𝑇𝐻𝑈(𝑘) + 𝑥(𝑘|𝑘)𝑇𝐹𝑈(𝑘) + 𝐽 ̅

𝑠. 𝑡. 

𝐿𝑈(𝑘) ≤ 𝑊 

(10) 

Matrix 𝐻 is said the Hessian of quadratic programming. If 𝐻 is positive definite, 

the quadratic problem is convex [22]. 

To solve this problem in MATLAB/Simulink, it is given the instruction 

quadprog, which solves the optimization constrained problem through an interior-

point method [31]. 

 

3.3 Stability analysis for linear MPC 

Stability must be ensured for a closed loop system based on receding horizon 

principle. In this chapter Lyapunov direct method is invoked to draw conclusions about 

stability. The optimal cost function 𝐽0(𝑥(𝑘), 𝑈(𝑘)) is taken as candidate as Lyapunov 

function for asymptotic stability. Stability must be guaranteed over an infinite horizon. 

Because a finite future horizon is considered, some methods are used to choose 

appropriate weighting on the terminal state Φ(⋅) and an appropriate terminal constraint 

set 𝕏𝑓. In this section the general formulation of the optimization problem 𝒫𝑁𝑝(𝑥), 

written as in (9), is studied. 

Some definitions are useful for the following discussion: 
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• Feasible initial set: the set 𝕊𝑁𝑝 is the set of initial states 𝑥0 ∈ 𝕏 for which there 

exist feasible state and control sequences for 𝒫𝑁𝑝(𝑥). 

• Positively invariant set [23]: a set 𝕊 ∈ ℝ𝑛 is said positively invariant for the 

closed loop system 𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘)), where 𝑢(𝑘) = 𝒦(𝑥(𝑘)), if 

𝑓 (𝑥(𝑘),𝒦(𝑥(𝑘))) ∈ 𝕊 for all 𝑥(𝑘) ∈ 𝕊. 

In other words, if the initial state 𝑥0 belongs to the feasible initial set 𝕊, which is 

also positively invariant, all the future state will be contained in the set 𝕊, too. In the 

following methods a linear time independent, discrete time state-space, defined in (7), 

is adopted. Only in this section control horizon is not the same as prediction horizon. 

The first method, proposed in [24], is the zero terminal constraints. The 

optimization problem 𝒫𝑁𝑝(𝑥) can be rewritten as: 

 

𝒫𝑁𝑝(𝑥):

{
 
 
 
 

 
 
 
 
𝑚𝑖𝑛
𝑈(𝑘)

𝐽(𝑥(𝑘|𝑘), 𝑈(𝑘)) = ∑  ‖𝑥(𝑘 + 𝑖|𝑘)‖𝑄
2 + ‖𝑢(𝑘 + 𝑖|𝑘)‖𝑅

2

𝑁𝑝−1

𝑖=0

𝑠. 𝑡.
𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘))

𝑈(𝑘) ∈ 𝕌

𝑥(𝑘 + 𝑖|𝑘) ∈ 𝕏, 𝑖 = 1, . . . , 𝑁𝑝 − 1

𝑢(𝑘 + 𝑖|𝑘) = 0,   𝑖 = 𝑁𝑐, … , 𝑁𝑝 − 1

𝑥(𝑘 + 𝑁𝑝|𝑘) = 0

 

 

Supposing that the optimal control sequence, which makes the cost function 

minimum at time 𝑘, is 𝑈0(𝑘|𝑘) = [𝑢0(𝑘|𝑘), 𝑢0(𝑘 + 1|𝑘),… , 𝑢0(𝑘 + 𝑁𝐶 − 1|𝑘)] and 

the corresponding state sequence is 𝑋0(𝑘|𝑘) = [𝑥(𝑘|𝑘), 𝑥(𝑘 + 1|𝑘), … , 𝑥(𝑘 + 𝑁𝑝 −

1|𝑘), 0], then the Lyapunov function candidate is 𝑉(𝑥(𝑘|𝑘)) = 𝐽(𝑈0(𝑘|𝑘), 𝑥(𝑘|𝑘)). 

The control law 𝑢0(𝑘|𝑘) is applied and at the following sampling time 𝑘 + 1 it is 

supposed to use the nonoptimal control sequence 𝑈1(𝑘 + 1|𝑘 + 1) = [𝑢0(𝑘 +

1|𝑘), 𝑢0(𝑘 + 2|𝑘),… , 𝑢0(𝑘 + 𝑁𝐶 − 1|𝑘), 0], which has the same predicted control 

laws of the instant 𝑘; the subsequent state sequence is 𝑋1(𝑘 + 1|𝑘 + 1) =

[𝑥(𝑘 + 1|𝑘), 𝑥(𝑘 + 2|𝑘),… , 𝑥(𝑘 + 𝑁𝑝|𝑘), 0]. The resulted cost function can be 

written as: 

𝐽(𝑈1, 𝑥(𝑘 + 1|𝑘 + 1)) = 𝐽(𝑈
0, 𝑥(𝑘|𝑘)) − 𝑥𝑇(𝑘|𝑘)𝑄𝑥(𝑘|𝑘) − 𝑢𝑇(𝑘|𝑘)𝑅𝑢(𝑘|𝑘) 
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Since 𝑈1 is not the optimal control, it follows that 𝐽(𝑈1, 𝑥(𝑘 + 1)) ≥

𝐽(𝑈1
0, 𝑥(𝑘 + 1)), where 𝑈1

0 = [𝑢1
0(𝑘 + 1|𝑘 + 1), 𝑢1

0(𝑘 + 2|𝑘 + 1),… , 𝑢1
0(𝑘 +

𝑁𝐶|𝑘 + 1)] is the optimal control sequence. At the instant 𝑘 + 1 the Lyapunov 

function candidate will be 𝑉(𝑥(𝑘 + 1|𝑘 + 1)) = 𝐽(𝑈10(𝑘 + 1|𝑘 + 1), 𝑥(𝑘 + 1|𝑘 +

1)), if the optimal control sequence is introduced. Since the cost function is positive 

definite, it follows that the equilibrium is asymptotically stable if and only if the 

Lyapunov function increment Δ𝑉(𝑘) is negative: 

Δ𝑉(𝑘) = 𝑉(𝑥(𝑘 + 1|𝑘 + 1)) − 𝑉(𝑥(𝑘|𝑘))

= 𝐽(𝑈1
0(𝑘 + 1|𝑘 + 1), 𝑥(𝑘 + 1|𝑘 + 1)) − 𝐽(𝑈0(𝑘|𝑘), 𝑥(𝑘|𝑘))

≤ 𝐽(𝑈1, 𝑥(𝑘 + 1|𝑘 + 1)) − 𝐽(𝑈
0(𝑘|𝑘), 𝑥(𝑘|𝑘))

= −𝑥𝑇(𝑘|𝑘)𝑄𝑥(𝑘|𝑘) − 𝑢𝑇(𝑘|𝑘)𝑅𝑢(𝑘|𝑘) < 0 

This result shows that asymptotic stability is guaranteed with the zero terminal 

constraint. 

The second method considers the terminal state nonnull and an appropriate 

terminal weighting matrix must be determined [25]. The optimization problem 𝒫𝑁𝑝(𝑥) 

can be rewritten as: 

 

𝒫𝑁𝑝(𝑥):

{
 
 
 
 

 
 
 
 
𝑚𝑖𝑛
𝑈(𝑘)

𝐽(𝑥(𝑘|𝑘), 𝑈(𝑘)) = ∑  ‖𝑥(𝑘 + 𝑖|𝑘)‖𝑄
2 + ‖𝑢(𝑘 + 𝑖|𝑘)‖𝑅

2

𝑁𝑝−1

𝑖=0

+ ‖𝑥(𝑘 + 𝑁𝑝|𝑘)‖𝑃
2

𝑠. 𝑡.
𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘))

𝑈(𝑘) ∈ 𝕌
𝑥(𝑘 + 𝑖|𝑘) ∈ 𝕏, 𝑖 = 1, . . . , 𝑁𝑝 − 1

𝑢(𝑘 + 𝑖|𝑘) = 0,   𝑖 = 𝑁𝑐, … , 𝑁𝑝 − 1

 

 

The terminal weighting matrix 𝑃 is chosen as solution of the discrete time 

Lyapunov equation: 

𝐴𝑇𝑃𝐴 + 𝑄 = 𝑃 

To derive the Lyapunov function increment Δ𝑉(𝑘) a similar procedure as in the 

first method is followed; the only difference this time is that the state sequence at time 

𝑘 + 1 is 𝑋1(𝑘 + 1|𝑘 + 1) = [𝑥(𝑘 + 1|𝑘), 𝑥(𝑘 + 2|𝑘), … , 𝑥(𝑘 + 𝑁𝑝|𝑘), 𝑥(𝑘 + 𝑁𝑝 +

1|𝑘)]. The Lyapunov function increment can now be written as: 



33 

 

Δ𝑉(𝑘) = 𝑉(𝑥(𝑘 + 1|𝑘 + 1)) − 𝑉(𝑥(𝑘|𝑘))

= 𝐽(𝑈1
0(𝑘 + 1|𝑘 + 1), 𝑥(𝑘 + 1|𝑘 + 1)) − 𝐽(𝑈0(𝑘|𝑘), 𝑥(𝑘|𝑘))

≤ 𝐽(𝑈1, 𝑥(𝑘 + 1|𝑘 + 1)) − 𝐽(𝑈
0(𝑘|𝑘), 𝑥(𝑘|𝑘))

= −𝑥𝑇(𝑘|𝑘)𝑄𝑥(𝑘|𝑘) − 𝑢𝑇(𝑘|𝑘)𝑅𝑢(𝑘|𝑘)

+ 𝑥𝑇(𝑘 + 𝑁𝑝|𝑘)(𝑄 − 𝑃)𝑥(𝑘 + 𝑁𝑝|𝑘)

+ 𝑥𝑇(𝑘 + 𝑁𝑝 + 1|𝑘)𝑃𝑥(𝑘 + 𝑁𝑝 + 1|𝑘)

= −𝑥𝑇(𝑘|𝑘)𝑄𝑥(𝑘|𝑘) − 𝑢𝑇(𝑘|𝑘)𝑅𝑢(𝑘|𝑘) +𝑀𝑘 

where 𝑀𝑘 collects the state vectors in instants 𝑘 + 𝑁𝑝 and 𝑘 + 𝑁𝑝 + 1. It is now 

necessary to demonstrate that the system is asymptotically stable if and only if 

Δ𝑉(𝑘) < 0, hereby if 𝑀𝑘 ≤ 0. Since 𝑥(𝑘 + 𝑁𝑝 + 1|𝑘) = 𝐴𝑥(𝑘 + 𝑁𝑝|𝑘), it follows: 

Mk = 𝑥
𝑇(𝑘 + 𝑁𝑝|𝑘)(𝑄 − 𝑃)𝑥(𝑘 + 𝑁𝑝|𝑘) + 𝑥

𝑇(𝑘 + 𝑁𝑝 + 1|𝑘)𝑃𝑥(𝑘 + 𝑁𝑝 + 1|𝑘)

= 𝑥𝑇(𝑘 + 𝑁𝑝|𝑘)(𝑄 − 𝑃)𝑥(𝑘 + 𝑁𝑝|𝑘)

+ (𝐴𝑥(𝑘 + 𝑁𝑝|𝑘))
𝑇

𝑃 (𝐴𝑥(𝑘 + 𝑁𝑝|𝑘))

= 𝑥𝑇(𝑘 + 𝑁𝑝|𝑘)(𝐴
𝑇𝑃𝐴 + 𝑄 − 𝑃)𝑥(𝑘 + 𝑁𝑝|𝑘) = 0 

The third presented method is the one used in this thesis. The optimization 

problem 𝒫𝑁𝑝(𝑥) is modified as it follows: 

 

𝒫𝑁𝑝(𝑥):

{
 
 
 
 

 
 
 
 
𝑚𝑖𝑛
𝑈(𝑘)

𝐽(𝑥(𝑘|𝑘), 𝑈(𝑘)) = ∑  ‖𝑥(𝑘 + 𝑖|𝑘)‖𝑄
2 + ‖𝑢(𝑘 + 𝑖|𝑘)‖𝑅

2

𝑁𝑝−1

𝑖=0

+ ‖𝑥(𝑘 + 𝑁𝑝|𝑘)‖𝑃
2

𝑠. 𝑡.
𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘))

𝑈(𝑘) ∈ 𝕌
𝑥(𝑘 + 𝑖|𝑘) ∈ 𝕏, 𝑖 = 1, . . . , 𝑁𝑝 − 1

𝑢(𝑘 + 𝑖|𝑘) = −𝐾𝐿𝑄𝑥(𝑘 + 𝑖|𝑘),   𝑖 = 𝑁𝑐, … , 𝑁𝑝 − 1

𝑥(𝑘 + 𝑁𝑝|𝑘) ∈ Ω𝐿𝑄 ⊃ 0

 

 

Where Ω𝐿𝑄 is the positive invariant terminal set and it contains the origin. The 

feedback matrix 𝐾𝐿𝑄 and the terminal weighting matrix 𝑃 are the solution of the 

algebraic Riccati equation (ARE): 

𝑃 = 𝑄 + 𝐴𝑇(𝑃 − 𝑃𝐵(𝑅 + 𝐵𝑇𝑃𝐵)−1𝐵𝑇𝑃)𝐴 

Where the feedback matrix 𝐾𝐿𝑄 = −(𝑅 + 𝐵𝑇𝑃𝐵)−1𝐵𝑇𝑃. 
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Chapter 4: Tube-Based Robust Model Predictive Control 

 

 
A classical Model Predictive Control approach is not always suitable for systems, 

such as UAV, which operates in an environment subjected to disturbances and noise. 

A different approach is necessary in order to meet hard constraint requirements and to 

guarantee robustness to exogenous disturbances. A Model Predictive Control variant 

is the Tube-based Model Predictive Control, which can control system that are 

uncertain. As uncertain system it is meant a system, whose actual behavior is not 

identical to the predicted behavior of the nominal system. Tube-based MPC [1] ensures 

that a dynamic system subjected to a bounded disturbance respects the imposed 

constraints. It is obvious that a disturbance is always assumed to be bounded, because 

it is impossible to guarantee stability with unbounded disturbances. 

 

4.1 Overview 

There are many MPC extensions, which let to obtain a Robust MPC, able to handle 

both uncertainties and hard constraints. One of the most attractive control methods for 

practical applications is Tube-Based Robust MPC [1], which is able to meet hard 

constraints in presence of random bounded noise and uncertainties. This approach 

provides robustness to disturbance with the same computational efficiency of a 

classical MPC. Indeed, the online procedure consists of solving a quadratic 

optimization problem in the same way as Model Predictive Control. The main strength 

of this procedure is that the problems of constraint requirements and external 

disturbances are treated separately. 

In this case two systems are considered in parallel: the nominal system and the 

disturbed system. The first one is a system written as a linear discrete time state-space, 

which models the undisturbed dynamic of the system. The second one is the actual 

system, which is subjected to uncertainties and external disturbances and it is requested 

that it respects some state and control constraints. During the simulation these two 

systems run in parallel and provide respectively the system state without disturbances 

and the actual system state. A conventional Model Predictive Control operates on the 

nominal system and the nominal optimal control sequence is elaborated as a function 
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of the current nominal state. The inputs furnished to the nominal system are not the 

same of the actual system. The actual system inputs are derived as a function of the 

nominal control and the error, defined by the discrepancy between the actual and the 

nominal state. The error dynamic can be obtained by the actual and nominal dynamics. 

In order to stabilize error dynamic, it is necessary to make the state matrix eigenvalues 

real part negative through the introduction of a feedback gain matrix. This matrix is 

defined by an offline procedure, which consists of solving a Linear Matrix Inequality 

problem. Once the feedback gain matrix is derived, it is possible to define some 

tightened nominal state and control constraint sets, with which it is ensured that the 

original constraints for the actual system are respected also in presence of external 

noise. Since it is impossible to control a system affected by unlimited disturbances, it 

follows that disturbances must be bounded. Under these hypotheses a “tube” can be 

built. The center of the “tube” consists of the nominal state variables. Tube-based MPC 

ensures that the actual state variables never exceed the limits imposed by the “tube” 

constructed around nominal states. The section of the “tube” depends on the feedback 

gain matrix and on the disturbance boundaries. In Figure 4.1 it is shown an example 

of nominal and actual state sequence at the current time 𝑘. 

 

 
Figure 4.1 - Outer-bounding tube representation at the k-th time step over a prediction horizon of N 

The black points are the nominal states throughout the prediction horizon 𝑁𝑝 and 

the black dashed line represents their trajectory. The tube is defined by the black 

𝑥1(𝑘) 

𝑥2(𝑘) 

𝑖 = 0 

𝑖 = 1 

𝑖 = 𝑁𝑝 − 1 

𝑖 = 𝑁𝑝 

𝑧𝑘𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 

𝑥𝑘𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 
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rectangles around the nominal states. Tube-based MPC ensures that the actual states 

never go out the boundaries specified by the rectangles. 

In this section it is considered a system with parametric uncertainties and subject 

to an additive disturbance 𝑤, which satisfies constraint 𝑤 ∈ 𝕎 where 𝕎 ⊂ ℝ𝑛. 

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘)) + 𝑤 , 

where disturbed state 𝑥(𝑘) is constrained to belong to the set 𝕏 ⊂ ℝ𝑛 and the 

control must belong to the set 𝕌 ⊂ ℝ𝑚. The nominal system simulates undisturbed 

system dynamic, runs together actual system and lets to define the discrepancy 

between where the system should be if it would operate in a world without 

uncertainties and disturbances and where actually it is. Nominal state is described by: 

𝑧(𝑘 + 1) = 𝐴𝑧(𝑘) + 𝐵𝑣(𝑘) , 

where 𝑧(𝑘) and 𝑣(𝑘) are optimal solutions for zero disturbance and are 

respectively constrained to the sets ℤ ⊂ 𝕏 and 𝕍 ⊂ 𝕌. Hence, nominal states and 

controls are subjected to tightener constraints compared to the disturbed system. In 

this way the uncertain system trajectories can lie always within the “tube” around the 

predicted nominal trajectory and it is guaranteed that the original constraints are 

respected by uncertain system. 

A conventional Model Predictive Control is applied to the nominal system and for 

each sampling time a nominal control 𝑣(𝑘) is elaborated. Actual control can be derived 

at each step as a function of the nominal control 𝑣(𝑘) and of the discrepancy between 

actual and nominal state: 

𝑢(𝑘) = 𝑣(𝑘) + 𝐾(𝑥(𝑘) − 𝑧(𝑘)) 

This control feedback can be adequate at least when 𝑓(⋅) is linear. The linear-time 

feedback controller 𝐾 is chosen to ensure that the deviation of uncertain system from 

the nominal one is bounded. Since the matrix 𝐾 can be determined offline, it follows 

that Tube-based MPC has the same order of complexity as the conventional one. The 

Tube-based MPC efficiency is due to the constrained control problem separation from 

uncertainties handling problem. A standard Quadratic Program can be fast solved with 

standard mathematical optimization algorithms. The resulted computational efficiency 

makes Tube-based MPC interesting also for dynamical system with high sampling 

frequencies. 
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This kind of control succeeds only when assumptions are satisfied and the 

disturbances not exceed the imposed bounds. Robustness is guaranteed only for the 

specified uncertainties. 

 

4.2 Problem statement and control strategy 

Let define a linear-time independent, discrete time state-space model subjected to 

a persistent disturbance: 

 𝑥(𝑘 + 1) = 𝐴𝑑𝑥(𝑘) + 𝐵𝑑𝑢(𝑘) + 𝑤(𝑘) (11) 

Let refer to this system as uncertain system, where 𝑥(𝑘) is the state vector, 𝑢(𝑘) 

is the control vector and 𝑤(𝑘) the additive disturbance. In this section 𝑘 constitutes 

the actual time and it is a positive integer (𝑘 ∈ ℤ+). The controlled system is required 

to satisfy the following constraints: 

𝑥(𝑘) ∈ 𝕏, 𝑢(𝑘) ∈ 𝕌 

where 𝕏 is a subset of ℝ𝑛 and 𝕌 is a subset of ℝ𝑚. Furthermore, to obtain a robust 

control with respect to additive noise 𝑤(𝑘), it is necessary that the disturbance is 

bounded. Indeed, the disturbance 𝑤(𝑘) belongs to 𝕎, which is a subset of ℝ𝑛. The 

central trajectory of the tube corresponds to the predicted behavior of the nominal 

system, which is defined as: 

𝑧(𝑘 + 1) = 𝐴𝑑𝑧(𝑘) + 𝐵𝑑𝑣(𝑘) 

As it can be seen, nominal system is the undisturbed system, for which 

mathematical optimization problem is solved. To ensure the respect of uncertain 

system’s constraints, it is required that nominal state and control variables meet 

tightener constraints. Indeed, it is requested that the state vector 𝑧(𝑘) belongs to a set 

ℤ, which is a subset of previous defined set 𝕏, and that the control vector 𝑣(𝑘) belongs 

to a set 𝕍, where 𝕍 ⊂ 𝕌. 

The two defined systems will not evolve in the same way. The actual state 𝑥(𝑘) 

will be deviated from the nominal state 𝑧(𝑘). To quantify this deviation, it is defined 

an error at the 𝑖𝑡ℎ steps ahead 𝑘: 

𝑒(𝑖|𝑘) = 𝑥(𝑖|𝑘) − 𝑧(𝑖|𝑘) 

This error is necessary to apply a correction to the nominal optimal control 𝑣(𝑘), 

which it is calculated without considering disturbances and taking into account the 

nominal state of the system 𝑧(𝑘) and not the actual one 𝑥(𝑘). The actual optimal 

control is derived by the following relation: 
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 𝑢(𝑖|𝑘) = 𝑣(𝑖|𝑘) + 𝐾(𝑥(𝑖|𝑘) − 𝑧(𝑖|𝑘)) (12) 

where 𝐾 is a feedback matrix chosen off-line in order to guarantee stability. How 

to choose it, it will be explained in the following part. Doing the difference between 

uncertain system and nominal system, it can be obtained the error dynamic: 

𝑥(𝑘 + 1) − 𝑧(𝑘 + 1) = 𝐴𝑑(𝑥(𝑘) − 𝑧(𝑘)) + 𝐵𝑑(𝑢(𝑘) − 𝑣(𝑘)) + 𝑤(𝑘) 

 𝑒(𝑘 + 1) = (𝐴𝑑 + 𝐵𝑑𝐾)𝑒(𝑘) + 𝑤(𝑘) (13) 

The error dynamic depends on the stability of the matrix 𝐴𝐾 = 𝐴𝑑 + 𝐵𝑑𝐾. A 

correct choice of feedback matrix 𝐾 makes the matrix 𝐴𝐾 robustly stable. The stability 

analysis is treated in the next section. 

 

4.2.1 Optimal control problem statement 

The classical optimization problem is solved for the nominal system through an 

optimization window 𝑁𝑝 and a control horizon 𝑁𝑐 = 𝑁𝑝: 

𝐽(𝑉(𝑘|𝑘), 𝑍(𝑘|𝑘))

= ∑ (𝑧(𝑘 + 𝑖|𝑘)𝑇𝑄𝑧(𝑘 + 𝑖|𝑘) + 𝑣(𝑘 + 𝑖|𝑘)𝑇𝑅𝑣(𝑘 + 𝑖|𝑘))

𝑁𝑝−1

𝑖=0

+ 𝑧(𝑘 + 𝑁𝑝|𝑘)
𝑇
𝑃𝑧(𝑘 + 𝑁𝑝|𝑘) 

where 𝑉(𝑘|𝑘) is the nominal optimal control sequence over a 𝑁𝑝 prediction 

horizon and 𝑍(𝑘|𝑘) is the nominal predicted trajectory. The state and control weight 

matrices 𝑄 ∈ ℝ𝑛,𝑛 and 𝑅 ∈ ℝ𝑚,𝑚 are both positive definite whereas the terminal state 

weight matrix 𝑃 ∈ ℝ𝑛,𝑛 is the solution of the discrete Algebraic Riccati equation. 

Finally, optimization problem is defined as: 

 

min
𝑉(𝑘)

𝐽(𝑉(𝑘), 𝑍(𝑘)) 

𝑠. 𝑡.  𝑧(0|𝑘) = 𝑥(0|𝑘) 

𝑧(𝑖|𝑘) ∈ ℤ, 𝑖 ∈ [1, 𝑁 − 1] 

𝑣(𝑖|𝑘) ∈ 𝕍, 𝑖 ∈ [0, 𝑁 − 1] 

𝑧(𝑁|𝑘) ∈ ℤ𝑓 

(14) 

As it can be seen, it is imposed that nominal initial state is equal actual initial state 

and a terminal set ℤ𝑓 is defined as subset of ℤ. 
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4.2.2 Stability analysis 

Stability analysis is performed to choose a suitable state feedback controller 𝐾 

which stabilizes error dynamic. The matrix 𝐾 is chosen such that 𝐴𝐾 = 𝐴 + 𝐵𝐾 is 

Hurwitz. There exists a 𝑃̃ ∈ ℝ𝑛,𝑛 such that 

(𝐴𝑑(𝑞) + 𝐵𝑑(𝑞)𝐾)
𝑇𝑃̃(𝐴𝑑(𝑞) + 𝐵𝑑(𝑞)𝐾) − 𝑃̃ ≼ 0, 𝑃̃ ≻ 0 

And the feedback gain matrix 𝐾 stabilizes the system with respect to parametric 

uncertainty 𝑞. These uncertainties are due to differences between the mathematical 

model and the actual dynamic, neglected nonlinearities and reduced-order model 

approximations. The Edge Theorem, which is an extension of the Karitonov’s theorem, 

is employed to affirm that the stability of a polytope of polynomials 𝑃̂ is ensured by 

the stability of its one-dimensional exposed edge polynomials. The family 𝑃̂ is defined 

as it follows: 

𝑃̂ = {𝑝(𝑠, 𝑞) = 𝑎0(𝑞) + 𝑎1(𝑞)𝑠 + ⋯+ 𝑎𝑛−1(𝑞)𝑠
𝑛−1 + 𝑠𝑛: 𝑎𝑖(𝑞)

= 𝑎𝑖0 +∑𝑎𝑖𝑘𝑞𝑘, 𝑞 ∈ 𝐵𝑞 , 𝑖 = 0,… , 𝑛 − 1

𝑙

𝑘=1

} 

where 𝐵𝑞 contains affine functions of the uncertain vector 𝑞 = [𝑞1, … , 𝑞𝑙]. 

 𝐵𝑞 = {𝑞 ∈ ℝ𝑙|𝑞𝑖 ∈ [𝑞𝑖
−, 𝑞𝑖

+], 𝑖 = 1,… , 𝑙} (15) 

The family 𝑃̂ is Hurwitz if and only if all edges of 𝑃̂ are Hurwitz. In the same way 

the family of 𝑃̃ is Hurwitz if all the vertexes are stable. Therefore, the state and control 

matrices for the biggest parametric uncertainties are built as the following 𝐴𝑑− =

𝐴(𝑞−), 𝐴𝑑+ = 𝐴(𝑞+), 𝐵𝑑− = 𝐵(𝑞−) and 𝐵𝑑+ = 𝐵(𝑞+). The following LMIs system is 

solved to obtain the feedback gain matrix 𝐾 which stabilizes the system with respect 

to the uncertainties 𝑞 ∈ 𝐵𝑞. 

{
 
 

 
 (𝐴𝑑

+ + 𝐵𝑑
+𝐾)𝑇𝑃̃(𝐴𝑑

+ + 𝐵𝑑
+𝐾) − 𝑃̃ ≼ 0

(𝐴𝑑
+ + 𝐵𝑑

−𝐾)𝑇𝑃̃(𝐴𝑑
+ + 𝐵𝑑

−𝐾) − 𝑃̃ ≼ 0

(𝐴𝑑
− + 𝐵𝑑

+𝐾)𝑇𝑃̃(𝐴𝑑
− + 𝐵𝑑

+𝐾) − 𝑃̃ ≼ 0

(𝐴𝑑
− + 𝐵𝑑

−𝐾)𝑇𝑃̃(𝐴𝑑
− + 𝐵𝑑

−𝐾) − 𝑃̃ ≼ 0

 

Before to proceed with the calculation of the tightened constraint sets 𝕍 and ℤ, it 

is necessary to introduce some important concepts: 

• Robust positively invariant set [23]: a set Ω is said to be robust positively 

invariant (RPI) for the system 
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𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘),𝑤(𝑘)) 

If for all 𝑥(0) ∈ Ω and 𝑤(𝑘) ∈ 𝕎 the solution 𝑥(𝑘) ∈ Ω for all 𝑘 ∈ ℤ+. 

The set Ω is also minimal positively invariant set for the system if it is 

contained in every closed RPI set of the system [26]. 

• The Minkovski set addition [27] between given two sets 𝒜 ⊆ ℝ𝑛 and ℬ ⊆ ℝ𝑛 

is defined by 

𝒜⊕ℬ = {𝑎 + 𝑏|𝑎 ∈ 𝒜, 𝑏 ∈ ℬ} 

• The Pontragyn set difference [28] between given two sets 𝒜 ⊆ ℝ𝑛 and ℬ ⊆

ℝ𝑛 is defined by 

𝒜⊖  ℬ = {𝑐 ∈ ℝ𝑛|𝑎 + 𝑏 ∈ 𝒜,∀ 𝑏 ∈ ℬ} 

Once feedback gain 𝐾 is found, it is possible to calculate the minimal robust 

positive invariant set 𝑆𝑘(∞) for the disturbed system 𝑥(𝑖 + 1|𝑘) = 𝐴𝑑𝑥(𝑖|𝑘) +

𝑤(𝑖|𝑘), 𝑤 ∈ 𝕎: 

 𝑆𝑘(∞) =∑𝐴𝐾
𝑗
𝕎

∞

𝑗=0

 

If the matrix 𝐴𝐾 is stable, then 𝑆𝑘(∞) exists and it is positive invariant for the 

disturbed system (13). Therefore if 𝑒(𝑘) ∈ 𝑆𝑘(∞), it implies that 𝑒(𝑘 + 1) ∈ 𝑆𝑘(∞) 

for all 𝑤 ∈ 𝕎 [28]. This operation is a summation of Minkovski sets addition. The 

tighten constraint sets are derived by: 

 
ℤ ⊆ 𝕏⊖ 𝑆𝑘(∞) 

𝕍 ⊆ 𝕌⊖  K𝑆𝑘(∞) 
(16) 

 

4.2.3 Overall TRMPC algorithm 

The algorithm to build a Tube-based Robust Model Predictive Control can be 

divided in two parts: 

• Offline procedure, which consists of solving a Linear Matrix Inequality 

problem, in order to obtain a suitable feedback matrix 𝐾 and then the tightened 

constraints for nominal states and inputs. 

• Online procedure, which consists of solving at each sampling time an 

optimization problem for the nominal state-space model and then deriving the 

disturbed system input, correcting the nominal control input in function of the 

error between nominal and actual dynamic. 
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Offline procedure can be summarized in the following steps: 

1. Define uncertainty set 𝐵𝑞 as in (15) 

2. Build the couple (𝐴𝑖 , 𝐵𝑖) for each 𝑖𝑡ℎ vertex with respect to uncertainties 𝑞 

3. Build 𝑠𝑦𝑠𝑖 = 𝐴𝑋 + 𝑋𝐴𝑇 + 𝐵𝑌 + 𝑌𝑇𝐵𝑇 ≺ 0 for each 𝑖𝑡ℎ vertex, where 𝑋 =

𝑃̃−1 and 𝑌 = 𝐾𝑃̃−1 = 𝐾𝑋 

4. Solve [𝑋 ≻ 0, 𝑠𝑦𝑠𝑖 ≺ 0] for each 𝑖 

5. Derive 𝑃̃ = 𝑋−1 and 𝐾 = 𝑌𝑋−1 

6. If 𝐴 + 𝐵𝐾 is stable, go to the next step; otherwise go to step 1 and consider 

other uncertainties 𝑞 

7. Evaluate the tightened constraint sets ℤ and 𝕍 for the nominal system as in (16) 

In this study to solve the algorithm step 4, it is used MATLAB in combination 

with the optimization toolbox YALMIP [29]. Once offline procedure is completed and 

the feedback gain matrix 𝐾 and the tightened constraint sets ℤ and 𝕍 are evaluated, it 

is possible to apply the online procedure, which is computational efficient as 

conventional MPC algorithm. The Online procedure is defined by the following steps: 

1. At current time 𝑘 𝑥(0|𝑘) = 𝑥(𝑘|𝑘) 

2. Set 𝑧(0|𝑘) = 𝑥(𝑘|𝑘) 

3. Solve (14) and get the optimal control sequence for nominal system 𝑉0(𝑘|𝑘) 

4. Apply to the nominal system only the first element of the optimal control 

sequence 𝑣0(𝑘|𝑘) 

5. Evaluate 𝑥(𝑘|𝑘) and apply to the actual plant the corrected control 𝑢(𝑘|𝑘) 

according to (12) 

6. 𝑘 = 𝑘 + 1 and go to step 3. 
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Chapter 5: Simulation Results 

 

 
The design of a Model Predictive Controller is presented in this section. The UAV 

nonlinear dynamic is simulated trough the implementation of nonlinear equations of 

motion (3), (4) and (5) presented in section Nonlinear Model. These equations are 

collected in a box which receive as input the control variables, derived in MPC box, 

and as output the system state. A guidance algorithm is implemented in order to guide 

the UAV towards predefined waypoints and to provide some references such as 𝑢𝑟𝑒𝑓, 

ℎ𝑟𝑒𝑓 and 𝜓𝑟𝑒𝑓, which must be followed by the system. This latter task is accomplished 

by the Model Predictive Controller, which has as inputs the references and as outputs 

the commands to be applied on the control surfaces and on the throttle. The only state 

variable controlled by a PID is the heading angle ψ for the outer navigation loop. 

Furthermore, a linear Model Predictive Controller is adopted; therefore, longitudinal 

and lateral-directional planes are studied independently and two Model Predictive 

Controller are designed. In Figure 5.1 it is shown a simplified scheme of the model. 

 

 
Figure 5.1 - Scheme of the controller proposed in this work 

Several paths are considered in order to test the effectiveness of the tuning in both 

controllers. Since the MPCs are linear and so built with the linearization of the 

equation of motions around an equilibrium point defined by airspeed 𝑈0 = 13.5 𝑚/𝑠 

and altitude ℎ = 100 𝑚, it follows only the waypoint position and initial UAV 

orientation are changed. 

The Tube-based Model Predictive Control version is described by the almost same 

model. A disturbance is introduced in the nonlinear model and two linear state-space 
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models beside the disturbed nonlinear model are adopted to describe the nominal 

system dynamics in longitudinal and lateral-directional plane. 

 

5.1 MATLAB/Simulink Model description 

The dynamic model is divided in two parts: 

1. MATLAB part: the initial conditions are elaborated and all constants, tuning 

parameters, constraints, waypoints position and many others are defined. A 

focus on initial condition determination will be given. Once the simulation has 

run, the postprocessing is done in MATLAB. 

2. Simulink part: it is where the simulation takes place and it will be described 

more in details. The Simulink part is considered, since the connection with the 

hardware board will be done with a Simulink interface. 

 

5.1.1 Initial Condition Evaluation 

The initial conditions are obtained with a numerically derived database. Starting 

altitude and airspeed are given. Vehicle’s aerodynamic characteristics are known for 

some altitudes; if the initial altitude is not one the known ones, a linear interpolation 

between two known conditions is done. Once the aerodynamic derivatives are 

calculated for the current altitude, initial attack angle 𝛼 is searched. Assuming 

horizontal flight as initial condition, lift coefficient can be evaluated as: 

(𝐶𝐿)0 =
𝑚𝑔

1
2𝜌𝑈0

2𝑆
 

An iterative procedure is conducted, in order to derive the angle of attack 𝛼 and 

aerodynamic derivatives of that flight condition. The angle of attack 𝛼 is varied from 

its minimum value 𝛼𝑚𝑖𝑛 and its maximum value 𝛼𝑀𝐴𝑋 with a small increment Δ𝛼. An 

attempt of lift coefficient 𝐶𝐿𝑡𝑟𝑦 is guessed as function of attack angle 𝛼. 

𝐶𝐿𝑡𝑟𝑦 = 𝐶𝑋 sin 𝛼 − 𝐶𝑍 cos 𝛼 

If the initial lift coefficient value is between two guessed lift coefficients, a linear 

interpolation is done, else the angle of attack is incremented of Δ𝛼 and the procedure 

is repeated. After the angle of attack is established, all the other aerodynamic 

characteristics are derived. A summary of this procedure is drawn in the following 

flow chart (see Figure 5.2). 
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Figure 5.2 - Flow chart of initial condition determination 

5.1.2 Simulink Model 

Simulation takes place in this environment. Several blocks are defined as it can be 

seen in Figure 5.3. Even if it cannot be seen all these blocks are connected through 

labels. The solver adopted in this simulation is ode3 which has a third order accuracy 
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and implements the Bogacki-Shampine integration technique. The time step is chosen 

to be fixed and equal to 0.01𝑠. 

 
Figure 5.3 - Simulink model of the system 

The most important blocks are: 

1. The orange box in Figure 5.3  “Scopes+cmd”, in which the two MPC 

controllers are implemented. The inputs of this block are the outputs of 

“Guidance” block and represent the reference values of 𝑢𝑟𝑒𝑓, ℎ𝑟𝑒𝑓 and 𝜓𝑟𝑒𝑓, 

which are necessary to follow the right predefined path. The outputs are the 

commands, which are elaborated by the MPC controllers and must be 

employed to maintain a stable flight. Inputs and outputs are generated with a 

sample time of 0.01𝑠. Only MPC blocks work with a ten times slower sample 

time (0.1𝑠). This choice was made thinking about a possible future 

implementation in an embedded system. In this case the processor needs to 

have enough time to compute the optimization problem at each sampling time. 

2. Within “Nonlinear MH850 model”, the masked box in Figure 5.3, are 

implemented the six degree of freedoms equation of motions. This block is a 

mathematical representation of the real system and it is solicited at every 

sampling time with new commands, coming from the “Scopes+cmd” block. 

The outputs are then reworked in “State definition” block. 

3. The “States definition”, the light blue box in Figure 5.3, block computes 

relevant variables (such as angle of attack, indicated airspeed, etc.) from state 

data. Within this block equations (1) and (2) are written and conversion among 

reference frames is done. This is a useful task because in “Guidance” block 

NED-reference frame is adopted. 
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4. Within “Guidance” block, the green one in Figure 5.3, the guidance algorithm 

is implemented. This block ensures that all waypoints are reached and provides 

the reference signals to the control block. In this block some flag variables are 

defined such as flags which indicates toward which waypoint the UAV is 

aiming or which maneuver must be done in order to maintain the UAV in the 

ideal trajectory. The guidance algorithm adopted in this study is described in 

details in [15], in which some simplifying hypotheses are made to take into 

account the flash memory limitation of the on-board microcontroller. A given 

set of waypoints is considered, with assigned North, East and altitude 

coordinates. This set of waypoints includes the starting point, which is the point 

where the UAV finishes its climb and the autonomous flight starts. The starting 

point and all waypoints are assumed to be at the same altitude; thus, a 2D path 

is considered. A trajectory smoother, that renders the assigned trajectory 

kinematically feasible in terms of speed and turn rate constraints, is 

implemented. 

 

5.2 Model Predictive Control simulation results 

Three tests are conducted, to verify the flight performance. In each test a different 

path and a different initial position is given. Initial airspeed is 𝑈0 = 13.5 𝑚/𝑠 and 

initial altitude is ℎ0 = 100 𝑚. Absence of wind or external disturbance is assumed. In 

the following tests the initial UAV orientation is the same of the arrow that connect 

the first waypoint with the second one. This means that 𝑋𝐵 axis at the beginning of 

simulation has the same direction of the straight line which connects the first waypoint 

with the second one. 

The following results are obtained through the simulation and tuning parameters, 

collected in Table 1. 
Table 1 - MPC simulation and tuning parameters 

Parameters Value 
System sample time [𝑠] 0.01 

MPC sample time [𝑠] 0.1 

Prediction horizon (𝑁𝑝) 10 

𝑑𝑖𝑎𝑔(𝑄𝑙𝑜𝑛) [2, 120, 10, 1, 0.01] 

𝑑𝑖𝑎𝑔(𝑅𝑙𝑜𝑛) [0.07, 0.02 ] 
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𝑑𝑖𝑎𝑔(𝑄𝑙𝑎𝑡) [1, 100, 10, 120] 

𝑅𝑙𝑎𝑡 104 

 

5.2.1 Diamond path 

The first test is conducted with five waypoints. The first one coincides with initial 

position and the others are placed in four imaginary diamond vertexes. The simulation 

is conducted for 200𝑠, which is enough to cover more than one lap. The ideal path, 

which the UAV should follow is shown in Figure 5.4. 

 
Figure 5.4 - Ideal trajectory diamond path 

Firstly, it is considered the longitudinal plane, secondly the lateral-directional 

plane and finally the overall trajectory. 

In longitudinal plane there are two inputs, throttle 𝛿𝑡ℎ and elevon deflection 𝛿𝑒, 

and five state variables, longitudinal velocity 𝑢, attack angle 𝛼, pitch angle 𝜃, pitch 

rate 𝑞 and altitude ℎ, in the dynamic systems. Reference signals, generated directly by 

the guidance algorithm, are explicitly provided for longitudinal speed and for altitude. 

For the other variables the reference value is implicitly zero. The inputs assigned 

during the maneuver are in Figure 5.5. The blue curve represents the value of the input 

variable in trim condition, the orange one is the actual value. 



48 

 

 
Figure 5.5 - Longitudinal plane inputs time history 

As it can be seen, there are fluctuations in the first seconds of simulation, because 

the Model Predictive Controller is looking for the equilibrium condition. In less than 

ten seconds the trim condition is reached. These oscillations could cause many 

problems in a real system and usually inputs are forced to maintain the trim values for 

the first instants. In this case they are due to the nonlinearities contained in “Nonlinear 

MH850 Model”. The elevon oscillation amplitude is limited to a maximum value of 

about −0.2°, whereas the throttle one is quite large and reaches almost the 100% of 

the throttle range. For the remaining simulation time there are some periodic amplitude 

variations, which correspond to right turning, once a waypoint is reached. The most 

important state variables in longitudinal plane are longitudinal velocity and altitude, 

for which a reference tracking is done, as in Figure 5.6. 

 
Figure 5.6 – Longitudinal airspeed and altitude time history 

It can be noticed that these variables are subjected to some small oscillations as 

the inputs. The reference tracking is acceptable for the altitude, whereas it is a little bit 
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inaccurate for the longitudinal velocity. During the maneuvers a higher airspeed is 

demanded, but the actual longitudinal airspeed is subjected to some oscillations. 

Anyway, after every turning the values come back to the original ones. The remaining 

longitudinal state variables are presented in Figure 5.7. 

 
Figure 5.7 - Longitudinal state variables time history 

Angle of attack 𝛼 and pitch angle 𝜃 run quite quickly after the respective trim 

values, whereas pitch rate 𝑞 is almost always null. The fact that angle of attack 𝛼 

decreases and the height increases during every turning can be surprising. If a positive 

pitch rate is imposed during this maneuvers, a vertical airspeed is generated and this 

induces a decreasing on the angle of attack from the point of view of the wing leading 

edge. 

For lateral-directional plane only the inner loop is controlled by a MPC law. The 

outer navigation loop is regulated by a PID controller, which has as input the heading 

orientation error and produces as output the reference roll angle 𝜙𝑟𝑒𝑓. The control in 

this plane is not a trivial problem for this UAV, because there does not exist a rudder 

or a vertical surface to control the yaw angle 𝜓 and rate 𝑟. Indeed, the aileron surfaces 

have the task to control also the rotation and rotational speed around 𝑍𝐵 axis. The 

aileron deflection is shown in Figure 5.8. 
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Figure 5.8 - Aileron time history 

Because the initial condition is a horizontal straight flight, it follows that the 

aileron trim value 𝛿𝑎𝑡𝑟𝑖𝑚  is null. In this graph it can be seen quite well that the 

commands are constants for 0.1𝑠. The ailerons are deflected every time the UAV needs 

to turn. Checked maneuvers are performed, so after the first positive deflection other 

corrective maneuvers are necessary. Ailerons are almost always activated because they 

have to accomplish also rudder tasks. The most important state variables controlled in 

this plane are roll angle 𝜙 and yaw angle 𝜓, whose dynamic response to this input is 

shown in Figure 5.9. The reference value 𝜓𝑟𝑒𝑓 for yaw angle is provided directly by 

guidance algorithm and the reference signal 𝜙𝑟𝑒𝑓 is derived by a PID controller from 

the discrepancy between the actual value 𝜓 and the reference one. 

 
Figure 5.9 - Heading and roll angle time history 
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The yaw angle 𝜓 runs after the reference value 𝜓𝑟𝑒𝑓 quite slowly, but after a small 

overshoot it settles precisely to the reference value. When the vehicle must turn, a very 

high roll angle reference 𝜙𝑟𝑒𝑓 is given and the saturation constraint is activated. During 

the maneuvers, the actual roll angle 𝜙 has a small overshoot, with which it reaches the 

saturated reference value, and then settles on a smaller value than the reference one. 

However, when the maneuvers are completed, the roll angle follows precisely the 

reference. In Figure 5.10 the other state variables of lateral-directional plane are 

included. 

 
Figure 5.10 - Lateral-directional plane variable states time history 

In every turning the UAV rotates in positive sense around axis 𝑋𝐵 and 𝑍𝐵. The 

aileron deflection affects firstly roll angular speed 𝑝, which has almost the same 

evolution of the aileron. The first command has a strong effect on roll angular speed 𝑝 

and yaw angular speed 𝑟. The corrective control restores the condition of horizontal 

straight flight. 

The trajectory on the North-East plane is shown in Figure 5.11. Black dots identify 

the five waypoints. 
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Figure 5.11 - Diamond path 

In the first lap the first turning is accomplished in a larger space compared to the 

other maneuvers because the heading variation in the first maneuver is bigger than in 

the others. Once the UAV has completed a lap, the trajectories of the following laps 

coincide. A three-dimensional trajectory representation is made in Figure 5.12. 

 
Figure 5.12 - UAV 3D trajectory 

Small altitude oscillations can be seen at the beginning of the simulation and every 

time a maneuver is undertaken. 

 

5.2.2 Octagonal path 

The second path is chosen to be octagonal. The UAV departs from the first 

waypoint and then completes a lap following the remaining waypoints. Once it is come 

to the ninth waypoint, the guidance algorithm provides the reference signals to reach 
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the second waypoint and to begin a new lap. This path and the corresponding 

waypoints are shown in Figure 5.13. 

 
Figure 5.13 - Octagonal ideal path 

The simulation is stopped after 200𝑠, which is enough time to complete one lap. 

To cover this path, the longitudinal inputs are shown in Figure 5.14. 

 
Figure 5.14 - Longitudinal inputs 

As it can be seen, the constraints are respected with a certain margin for both 

throttle 𝛿𝑡ℎ and elevon 𝛿𝑒. Smaller oscillations than the previous case occur in both 

control variables during the maneuvers, because a smaller variation of heading is 

requested and smoother turn are undertaken. The longitudinal airspeed 𝑢 and the 

altitude response are plotted in Figure 5.15. 
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Figure 5.15 - Longitudinal airspeed and altitude response 

In this case the reference tracking is precise and the variables do not deviate never 

significantly to the reference values. The other longitudinal states are reported in 

Figure 5.16. 

 
Figure 5.16 - Longitudinal states time history 

As it can be seen, the maneuvers cause small variation in longitudinal states, 

whose evolution is widely within the constraints. The aileron evolves as it is shown in 

Figure 5.17. 



55 

 

 
Figure 5.17 - Aileron time history 

As it can be noticed, the first turn requires a heading variation bigger than the 

others, hence the aileron deflection is larger for the first maneuver. In Figure 5.18 the 

heading angle 𝜓 and the roll angle 𝜙 evolution as consequence of the aileron deflection 

is shown. 

 
Figure 5.18 - heading and roll angle time history 

The reference tracking is precise for the heading angle, whereas for the roll angle 

a small delay in running after the reference value is there. In this latter case the 

saturation constraint is activated during every turning. In the first maneuver the roll 

angle has the time to reach saturated reference value, whereas in the following turning 

the reference is changed rapidly and cannot be reached by the actual roll angle peak. 

For the straight flight between two turns the reference tracking is satisfactory and 

precise. In Figure 5.19 the other lateral-directional states are reported. 
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Figure 5.19 - lateral-directional states time history 

Lateral-directional airspeed reveals some oscillations during the maneuvers, 

which are damped to a null value in the straight flight. All these control and state 

response are related to the trajectory shown in Figure 5.20. 

 
Figure 5.20 - Octagonal two-dimensional trajectory 

Once the first lap is covered and the third waypoint is reached, the UAV follows 

almost the same trajectory of the first lap. In the trajectory is plotted in a three-

dimensional space. 
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Figure 5.21 - Octagonal 3D trajectory 

 

5.2.3 “Snake” path 

The third chosen path could be considered the most realistic one, because it 

represents a possible flight mission to accomplish to surveillance or monitoring tasks. 

 
Figure 5.22 - Ideal “snake path” 

Once the waypoint 8 is reached, the UAV aims again towards the waypoint 1. In 

this case the UAV initial position is not the origin of the reference system, but it 

coincides with point with coordinates (−300 𝑚,−200 𝑚). Simulation time is set to 

be 250 𝑠. It is interesting to notice that in this path some left turns are there. The 

longitudinal inputs are plotted in Figure 5.23. 
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Figure 5.23 - Longitudinal inputs time evolution 

As it can be expected, even if the turns are not all in the same direction, the 

longitudinal input is the same. Because the turns cause a bigger variation in heading 

angle, the corrective actions of the longitudinal inputs are wider. The longitudinal 

system response to these control actions are plotted in Figure 5.24. 

 
Figure 5.24 - Longitudinal airspeed and altitude time history 

The reference tracking is satisfactory for the straight flight, whereas the 

longitudinal airspeed averagely decreases during the maneuvers, because a small 

increasing in altitude occurs. In Figure 5.25 the other longitudinal states are shown. 
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Figure 5.25 - Longitudinal states time history 

The variables follow well the respective reference values and, as it can be 

envisaged, their variations during the maneuvers is always in the same direction and 

with the same amplitude. The aileron deflection assigned for the lateral-directional 

plane is shown in Figure 5.26. 

 
Figure 5.26 - Aileron time history 

In this case the first four maneuvers are applied in alternate direction. They have 

the same amplitude modulus and cause oscillations with the same amplitude modulus. 

In Figure 5.27 it is shown the effect that this input has to the heading angle and to the 

yaw angle. 
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Figure 5.27 - Heading and yaw angle time history 

The yaw reference tracking is precise for straight flight, whereas during the 

maneuvers it shows some overshoot, which almost reaches the saturation constraint. It 

can be also noticed a small delay, while the reference changes. In Figure 5.28 the other 

later-directional states are plotted. 

 
Figure 5.28 - Lateral-directional states time history 

The two-dimensional trajectory is plotted in Figure 5.29. 
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Figure 5.29 - Two-dimensional “Snake” trajectory 

Finally, the three-dimensional “snake” trajectory is represented in Figure 5.30. 

 
Figure 5.30 - 3D “snake” trajectory 

 

5.3 Tube-based Model Predictive Control simulation results 

Before to present the simulation results, it is important to understand which 

changes have been made in the model to extend the Model Predictive Control to a 

Tube-based Model Predictive Control. As described in Chapter Chapter 4:, a 

conventional Model Predictive Control is applied to the nominal linear system, which 

runs in parallel to the disturbed UAV nonlinear model. The MPC elaborates the 

nominal system inputs, from which the inputs for the disturbed system are derived in 

relation to the discrepancy between disturbed states and nominal states. A scheme of 

this algorithm is shown in Figure 5.31, where the disturbed state 𝑥 is the Tube-based 
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MPC input, the nominal state 𝑧 is the MPC input, the nominal control 𝑣 is the MPC 

output and the uncertain system control 𝑢 is the Tube-based MPC output. 

 
Figure 5.31 - Tube-based MPC scheme 

Nominal system and nonlinear disturbed system are initialized with the same 

states, hence the initial error is imposed to be null and no corrections are applied to the 

nominal control 𝑣, which is also equal to the disturbed state control 𝑢 at the beginning 

of simulation. Moreover, only the Model Predictive Control block work at a sample 

time of 0.1𝑠, whereas the nominal system evolution and the correction of the control 

action are derived every 0.01𝑠. 

The feedback gain matrix 𝐾 is evaluated through the procedure described in 

section 4.2.2, in order to make the matrix 𝐴𝐾 = 𝐴 + 𝐵𝐾 Hurwitz. Small uncertainties 

are introduced in the system, in order to build an LMI problem. 3% uncertainty for 

airspeed 𝑉 and 1% for mass are adopted. After solving two LMIs system for 

longitudinal and for lateral-directional plane, two feedback gain matrices are derived 

for both planes and the resulting matrix 𝐴𝐾 eigenvalues are reported in Table 2. 
Table 2 - matrices 𝑨𝑲𝒍𝒐𝒏 and 𝑨𝑲𝒍𝒂𝒕 eigenvalues 

Matrix Eigenvalues Eigenvalues 
modulus 

𝐴𝐾𝑙𝑜𝑛 = 𝐴𝑙𝑜𝑛 + 𝐵𝑙𝑜𝑛𝐾𝑇𝐵𝑀𝑃𝐶𝑙𝑜𝑛 𝜆1 = 0.7478 |𝜆1| = 0.7478 

𝜆2 = 0.8805 |𝜆2| = 0.8805 

𝜆3 = 0.9331 |𝜆3| = 0.9331 

𝜆4 = 0.9790 + 0.0196𝑖 |𝜆4| = 0.9792 

𝜆5 = 0.9790 − 0.0196𝑖 |𝜆5| = 0.9792 

𝐴𝐾𝑙𝑎𝑡 = 𝐴𝑙𝑎𝑡 + 𝐵𝑙𝑎𝑡𝐾𝑇𝐵𝑀𝑃𝐶𝑙𝑎𝑡  𝜆1 = 0.7754 + 0.5229𝑖 |𝜆1| = 0.9352 

𝜆2 = 0.7754 − 0.5229𝑖 |𝜆2| = 0.9352 

𝜆3 = 0.9502 + 0.0877𝑖 |𝜆3| = 0.9542 

𝜆4 = 0.9502 − 0.0877𝑖 |𝜆4| = 0.9542 
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Since we are dealing with discrete time state space system, it follows that both 

longitudinal and lateral-directional dynamics are now asymptotically stable thanks to 

the gain feedback matrix 𝐾. Indeed, matrices 𝐴𝐾𝑙𝑎𝑡  and 𝐴𝐾𝑙𝑜𝑛  eigenvalues are strictly 

inside the unit circle in the discrete complex plane (see section 2.4.3). 

Two nominal systems and two Model Predictive Controller are defined for 

longitudinal plane and for lateral-directional plane. Atmospheric turbulence is 

modeled as additive disturbances. New tuning parameters have been chosen, in order 

to guarantee a good reference tracking also in presence of additive disturbance (see 

Table 3). 
Table 3 - TBMPC simulation and tuning parameters 

Parameters Value 
System sample time [𝑠] 0.01 

MPC sample time [𝑠] 0.1 

Prediction horizon (𝑁𝑝) 10 

𝑑𝑖𝑎𝑔(𝑄𝑙𝑜𝑛) [100, 2500, 2000, 50, 100] 

𝑑𝑖𝑎𝑔(𝑅𝑙𝑜𝑛) [80,200] 

𝑑𝑖𝑎𝑔(𝑄𝑙𝑎𝑡) [50, 103, 10, 4700] 

𝑅𝑙𝑎𝑡 50 

[𝑤𝑢 𝑤𝛼 𝑤𝜃 𝑤𝑞 𝑤ℎ] [10−2 10−6 10−6 10−6 10−3] 

[𝑤𝑣 𝑤𝑝 𝑤𝑟 𝑤𝜙] [10−2 10−6 10−6 10−6] 

 

5.3.1 Diamond path 

The first test in presence of disturbance is conducted on the same path and 

waypoints presented in Figure 5.4. As in the previous case, firstly longitudinal results 

are presented and then lateral-directional. Finally, the actual trajectory in two and three 

dimensions is shown. The longitudinal inputs are plotted in Figure 5.32. 
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Figure 5.32 - Longitudinal inputs 

For the elevon response some oscillations occur in the first five seconds of 

simulation, but they are acceptably within the imposed constraints. As it can be seen, 

there are throttle oscillations in the first instants of simulation. After less 5 seconds, 

the controller has found the trim condition, which is followed well by the actual 

throttle. Moreover, the throttle constraints are respected during the rest of the 

simulation. In Figure 5.33 it is shown a detail of throttle evolution during the first turn, 

which is the most critical one. 

 
Figure 5.33 - Throttle evolution during the first turn 

The longitudinal airspeed and the altitude responses to these inputs are shown in 

Figure 5.34. 
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Figure 5.34 - Longitudinal airspeed and altitude 

The reference tracking is good for both longitudinal airspeed and altitude. In this 

case an altitude decreasing appears during every right turn. Consequently, the 

longitudinal airspeed increases during the maneuvers. The other state variables are 

shown in Figure 5.35. 

 
Figure 5.35 - Longitudinal states evolution 

As it can be noticed, the angle of attack 𝛼 and the pitch angle 𝜃 run quickly after 

their respective trim value, whereas the pitch rate 𝑞 is nonnull only during the 

maneuvers. The lateral-directional input is shown in Figure 5.36. 
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Figure 5.36 - Aileron time history 

The control in this plane is activated only during turning. After every turn small 

oscillation occur. The heading and yaw angle response is represented in Figure 5.37. 

 
Figure 5.37 - Heading and yaw angle evolution 

Even if some disturbances are present, the yaw angle 𝜙 runs after its reference 

value 𝜙𝑟𝑒𝑓, commanded by a PID controller, quite precisely and always respecting the 

imposed constraints. The other lateral-directional state variables are presented in 

Figure 5.38. 
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Figure 5.38: Lateral-directional states evolution 

Even if some oscillation occurs, these variables become null in a quite short time. 

The actual trajectory and the waypoints are shown in Figure 5.39. 

 
Figure 5.39 - Two-dimensional trajectory 

As it can be seen, the first turn requires more time to be completed, because the 

heading variation is bigger compared to the other turns. The trajectory in a three-

dimensional space is presented in Figure 5.40. 
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Figure 5.40 - 3D trajectory 

A small altitude reduction is caused by the maneuvers. However, the control 

action rapidly corrects this reduction after the maneuvers. The presence of additive 

disturbances does not cause important variations from the undisturbed case. This result 

demonstrates the robustness of Tube-based MPC. 

 

5.3.2 Octagonal path 

The second simulation path chosen is an octagonal trajectory, as shown in Figure 

5.13. The UAV has to have good robust control, in order to complete the frequent turns 

in presence of disturbance. The inputs in longitudinal plane are assigned as plotted in 

Figure 5.41. 

 
Figure 5.41 - Longitudinal inputs 
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Excluding the initial oscillations, which are within the imposed boundaries, the 

elevon presents a good dynamical behavior. It follows the reference value during 

straight flight and deviates slightly only during the maneuvers. In the first instants of 

simulation, a critical throttle behavior appears. Both upper and lower throttle bounds 

are widely exceeded in the first steps of simulation. This behavior is due to a very high 

initial throttle level in nominal system and consequently also in the nonlinear model. 

Indeed, the initial condition of null error between the two systems is imposed. The 

control action is hence the same for linear and nonlinear system in the first step. As 

the discrepancy between the two systems grows, the gain feedback stabilizing action 

has effect and the throttle runs correctly after the trim value. During the maneuvers, 

some oscillation occurs, but always widely within the imposed constraints, as it can be 

seen in Figure 5.42. 

 
Figure 5.42 - Throttle evolution detail during a maneuver 

It is important to notice that throttle constraints are respected for the rest of 

simulation, even in presence of disturbance. The longitudinal airspeed and the altitude 

respond to these control actions as shown in Figure 5.43. 

 
Figure 5.43 - Longitudinal airspeed and altitude time history 
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Throttle beginning oscillations reflect on longitudinal airspeed oscillations, but its 

short duration does not affect the stability of the system. Indeed, after few seconds the 

longitudinal airspeed tracks correctly its reference. The altitude evolution is precise 

and shows a small decrease only during the maneuvers. The other longitudinal states 

are reported in Figure 5.44. 

 
Figure 5.44 - Longitudinal states evolution 

Angle of attack 𝛼 and pitch angle 𝜃 run perfectly after their respective trim value 

and they show some limited small oscillations at the beginning of simulation. The pitch 

rate 𝑞 is null in the straight horizontal flight and is positive during the maneuvers. 

Some fluctuation exists at the first instants of the simulation. In the lateral-directional 

plane the aileron deflection reported in Figure 5.45 is assigned. 

 
Figure 5.45 - Aileron time history 
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No critical fluctuations exist at the beginning of the simulation and the aileron is 

not deflected in the horizontal flight. A quite strong action, followed by some 

corrective action, is given during the maneuver, in order to reach the desired value of 

heading and roll angle. These variables are shown in Figure 5.46. 

 
Figure 5.46 - Heading and yaw angle evolution 

An overdamped behavior is shown in roll angle during the maneuvers. While the 

roll reference is saturated during the maneuvers, the actual value does not reach the 

desired value. Furthermore, a delay is shown in following the reference. The other 

lateral-directional variables are plotted in Figure 5.47. 

 
Figure 5.47 - Lateral-directional states evolution 

The lateral airspeed 𝑣 goes never away from the null value during the flight 

between two waypoints, but it shows some damped oscillations during the turns. The 
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roll rate 𝑝 response is precise, not fluctuating and fast. The yaw rate 𝑟 becomes nonnull 

only during the maneuvers. When the reference yaw angle 𝜓𝑟𝑒𝑓 is reached, the yaw 

rate is again suppressed. The two-dimensional trajectory is represented in Figure 5.48. 

 
Figure 5.48 - Two-dimensional disturbed octagonal trajectory 

Comparing Figure 5.20 with Figure 5.48, it is possible to notice the effect of the 

disturbance on the trajectory. As it can be seen, the trajectory between the first and the 

second waypoint is not perfectly straight, but a small correction is needed in order to 

maintain the UAV in the correct way. The resulting three-dimensional trajectory is 

reported in Figure 5.49. 

 
Figure 5.49 - Three-dimensional octagonal disturbed trajectory 
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5.3.3 “Snake” path 

A “snake” path is now considered in presence of additive disturbance. The ideal 

path is the one reported in Figure 5.22. Throttle and elevon deflection are assigned as 

shown in Figure 5.50. 

 
Figure 5.50 - Longitudinal inputs 

Elevon deflection evolution is satisfactory and it never steps away from trim 

value, neither during the maneuvers. The control action is independent from the 

direction of the turn. Throttle presents a critical behavior in first steps of simulation, 

when it exceeds both upper and lower bounds. After about 5 𝑠, the throttle settles on 

the trim value and its response become precise and satisfactory. The constraints are 

respected during every maneuver. As example it is taken the first turn (see Figure 

5.51). 

 
Figure 5.51 - Throttle evolution detail during a maneuver 

As it can be seen, even if additive disturbance exists in this simulation, throttle 

never exceeds the lowest value of 0.15 and the biggest value of 0.8. Longitudinal 

airspeed and altitude response to these inputs is shown in Figure 5.52. 
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Figure 5.52 - Longitudinal airspeed and altitude evolution 

The same beginning oscillations as in the previous cases occur, but they are 

damped in few seconds and do not compromise the quality of the control. Airspeed 

increases slightly during the maneuvers, because of an altitude reduction. In Figure 

5.53 the longitudinal states are plotted. 

 
Figure 5.53 - Longitudinal states time history 

The angle of attack 𝛼 does not manifest any oscillation before settling to its trim 

value, whereas the pitch angle 𝜃 fluctuates without exceeding the constraints before 

reaching its trim value. The pitch rate 𝑞 presents some fluctuations, which are quickly 

damped, and settles to the null value. During the maneuvers pitch angle and angle of 

attack decrease and cause an altitude reduction. The lateral-directional input assigned 

in this path is reported in Figure 5.54. 
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Figure 5.54 - Aileron evolution 

In this case the first four turns are in alternate directions. Because of the lateral 

wind disturbance, it is interesting to notice that in this case the right turns require a 

bigger aileron deflection than the left turns. This different control action reflects on the 

roll angle 𝜙 as it can be seen in Figure 5.55. 

 
Figure 5.55 - Heading and yaw angle evolution 

Even if the required heading variation Δ𝜓 = 𝜓 − 𝜓𝑟𝑒𝑓 is the same for every 

maneuver, the yaw angle response is not the same for the right and the left turn because 

of the presence of disturbance. In right turns the maximal heading angle is about 37°, 

whereas in the left turns the maximal heading angle is about 33°. This not symmetrical 

behavior in lateral-directional plane can be also seen in Figure 5.56. 
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Figure 5.56 - Lateral-directional state evolution 

The lateral airspeed 𝑣 presents positive deviation bigger than the negative. Indeed, 

the maximal lateral airspeed is about 0.4 𝑚/𝑠 and the minimal is about −0.33 𝑚/𝑠. 

The roll rate 𝑝 shows bigger positive variations than the negative as well as the yaw 

rate 𝑟. The two-dimensional trajectory is plotted in Figure 5.57. 

 
Figure 5.57 - “Snake” disturbed two-dimensional trajectory 

The trajectory does not coincide to the undisturbed one, in Figure 5.29, because 

of the disturbance. The effect of a nonsymmetrical aileron control action can be seen 

in Figure 5.57, the right turns have a smaller turning radius than the left ones. Anyway, 

the Tube-based Model Predictive Control provides a robust control against the external 

noise and lets to the UAV to accomplish the assigned task. The three-dimensional 

disturbed “snake” trajectory is plotted in Figure 5.58. 
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Figure 5.58 - Three-dimensional disturbed “snake” trajectory 
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Chapter 6: Conclusions 
In this chapter the main conclusions are drawn about this work and possible future 

works are suggested to improve model performance and confidence. 

 

6.1 Conclusion 

The aim of this work is to develop a model-based control, able to handle with 

uncertainties and exogenous disturbance and to be implementable in a real-time 

application, such as an UAV. 

Starting from a database containing physic and aerodynamic properties of the 

mini-UAV MH850, a mathematical model is built to simulate the UAV dynamic 

behavior and to develop a suitable Tube-based Model Predictive Controller for the 

system. To simplify the problem, a linearization of the nonlinear equation of motions 

is done and decoupled linear equations of motion are derived. 

Firstly, two Model Predictive Controllers are elaborated based on the two UAV 

linear models, one for the longitudinal plane dynamics and the other for the lateral-

directional plane dynamics. In the longitudinal plane five state variables are 

considered, in order to control both airspeed and altitude. In the lateral-directional 

plane only the inner loop is controlled by a Model Predictive Controller, whereas the 

outer navigation loop is controlled by a PID. 

In view of a future hardware real-time implementation, Model Predictive 

Controllers work with a slower sample time compared to the dynamic time constant. 

These controllers are validated through three tests conducted on the model in three 

different paths. 

It is successfully demonstrated the MPC implementability in real-time 

applications with respect to constraint sets. Indeed, no critical responses have been 

revealed in the simulations and both state and control constraints are always respected. 

Secondly, these controllers are extended to Tube-based Model Predictive 

Controllers, which ensure the hard constraints, the robustness and real-time 

implementability with almost the same computational effort than a conventional 

Model Predictive Control. 

Three tests are conducted on three different paths in presence of disturbance. Only 

the throttle presents a critical behavior in the first instants of the simulation, but after 

about 5 𝑠 it settles on its trim value. The other variables evolve within the imposed 
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boundaries and in general have a satisfactory dynamic response. Thanks to these tests, 

also the robustness of this approach is successfully demonstrated. 

Definitely, it is proven, how Tube-based Model Predictive Control is a good 

approach in real-time applications, such as UAV, and to those systems, which must 

evolve within hard constraints and are subjected to uncertainties and exogenous 

disturbance. 

 

6.2 Possible future works 

During this work several areas, which need to be considered in further researches 

or studies, are emerged. Further studies can be conducted in order to: 

1. Improve the tuning parameters for both MPC and Tube-based MPC, in order 

to delete the starting oscillations, which occur to many variables and are 

especially critical for the throttle, with the final goal to obtain a flyable 

controller. 

2. Consider more than one flying condition. 

3. Improve the disturbance modeling. Disturbance are now considered only as 

additive disturbance for each body axes, a more realistic disturbance model 

could be necessary. 

4. Improve sensors modeling and simulate their disturbed dynamic, too. 

5. Implement the flyable controller on autopilot board described at the beginning 

of Chapter Chapter 2: for the Hardware -In-the-Loop and experimental 

validation. 

These further works could let to obtain a more realistic simulation environment, 

where it could be possible to experiment new control methodologies, as well as to have 

an experimental validation of this controller. 
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