
POLITECNICO DI TORINO  

Corso di Laurea Magistrale 

Ingegneria per l’Ambiente e il Territorio 

 
Use of variable intensity LED illuminator to 

optimize microalgal growth in a planar 

photobioreactor 

A.A. 2017/2018 

Relators:                                                                                Student: 

Prof. Vincenzo Andrea Riggio                                             Sara Fantini 

Prof.ssa Deborah Panepinto 

Prof.ssa Mariachiara Zanetti 

 



Politecnico di Torino 
A.A. 2017/2018 

 

2 | P a g .  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Politecnico di Torino 
A.A. 2017/2018 

 

3 | P a g .  
 

 

Climate change is real. 

The science is compelling. 

And the longer we wait, 

the harder the problem will be to solve. 

(John Forbes Kerry) 
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ABSTRACT 

The possible use of microalgae as a new alternative for biogas upgrading has already been 

discussed in various precedent studies. Apart from this, microalgae have numerous 

applications, that make their cultivation economically advantageous. So, the purpose of this 

work is to identify the best microalgal accretion conditions, using an experimental planar 

photobioreactor and LEDs with variable intensities as light source. Two different illumination 

intensities were used during the experiment: 33 and 57 PAR. Observing trends of pH, CO2, 

oxygen, nitrates and temperature, it is possible to monitor microalgal production and 

respiration. Furthermore, a correlation between optical density (OD) and light intensity was 

found, in order to evaluate microalgae growth under specific light conditions. So, given the 

biomass growth curve as a function of time, it is possible to perform a proportion to identify 

the value of the optical density resulting from the application of a luminous intensity of 1 PAR. 

This could be used in the future to proportionally calibrate the light intensity related with 

biomass density of PBR.  

According to what has been identified in the literature, this type of research is absolutely 

innovative: in fact, it is difficult to find other experiments in which LEDs have been used, 

achieving the results obtained in this research. Moreover, in the consulted articles, no feedback 

was found regarding the correlation between light intensity and optical density: this is therefore 

the most important result of the whole work; it constitutes a fundamental starting point for 

future researches. 
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1. INTRODUCTION 

During the second half of the 20th century, a rapid growth caused some changes about 

the utilization of raw materials. In particular, a new importance was given to petroleum and 

natural gases, to the detriment of hard coal. However, it is clear that all these materials are 

limited and not renewable resources. Non-uniform distribution of these sources caused geo-

political problems too. The exhaustion of raw materials provoked several crises in the past, 

because of the dependence of economical world on oil. Moreover, the use of petroleum and 

natural gases provokes unwanted effects, such as acid rains and global warming, with 

consequences like climate change. At last, transport and energy producing industry are the main 

responsible of greenhouse gas emissions in the European Union: they produce, respectively, 

more than 20% and 60% on the total of these emissions. One of the most important greenhouse 

gasses is carbon dioxide, CO2. 

In the last years, global attention focused exactly on the problem linked to CO2 emissions. 

In order to reduce this gas emission, and to limit its consequences, several technologies have 

been developed. Although these technologies may be different, they are based mostly on carbon 

capture and sequestration.  

1.1 Microalgae CO2 bio-fixation  

There are many techniques for CO2 sequestration, that can be classified in three main 

categories: physical, chemical, and biological. The first one refers to the processes that inject 

highly concentrated CO2 into deep ocean, aquifers or depleted oil/gas wells. On the other hand, 

chemical fixation involves CO2 immobilization using adsorption material, followed by alkaline-

mediated neutralization leading to the formation of carbonates or bicarbonates (Zhou et al, 

“Bio-mitigation of carbon dioxide using microalgal systems: Advances and perspectives”). 

Among biological techniques, microalgae-based sequestration system has an increasing role: it 

is estimated that producing 100 tons of microalgal biomass fixes roughly 183 tons of carbon 

dioxide. (Razzak et al, “Integrated CO2 capture, waste water treatment and biofuel production 

by microalgae culturing - A review”). In fact, microalgae can sequester low concentration CO2 

from air, or high concentration from CO2 from point and stationary sources, such as coal 

burning power plants. Moreover, microalgae are able to fix CO2, simply using sunlight, with a 

photosynthetic efficiency that is 10 – 50 times higher than terrestrial plants (Zhou et al. “Bio-
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mitigation of carbon dioxide using microalgal systems: Advances and perspectives”). All the 

main advantages and advantages of this system are reported below: 

 

Category Method Mechanism Prospects Disadvantages 

Biological 

Microalgae-

based 

sequestration 

Utilization of 

CO2 via 

microalgal 

photosynthesis 

1)  High photosynthetic 

efficiency 

1) Sensitive to toxic substances 

in exhaust gases 

 

2) Efficient in low-

concentration CO2 

sequestration 

2) Not very cost-effective for 

photobioreactors construction 

and algal biomass harvesting 

 

3) Faster sequestration 

rate than higher plants 

 

 

4) Do not compete with 

crops for arable land 

 

5) Co-production of food, 

feed, fuel, fine chemicals, 

etc. 

 
 

Table 1: Advantages and disadvantages of microalgae for CO2 sequestration 

The main sources of carbon dioxide emission can be classified as stationary, mobile or 

natural. Among the stationary ones, industrial processes play a central role. The ones that most 

contribute to increasing atmospheric CO2 concentrations are the electrical energy generating 

plants (such as carbon and fossil fuel power plants, whose flue gases can be treated by 

microalgae) (Yun et al., 1997), hydrogen and ammonia production plants, cement factories and 

kilns, and fermentative and chemical oxidation processes. The gas extracted from wells can be 

treated too. CO2 emissions are also generated in residences, buildings and commercial 

complexes, but also by passenger and cargo transport, including cars, trucks, buses, planes, 

trains and ships. Moreover, human and animal metabolism, plant and animal degradation and 
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volcanic and oceanic activities too, contribute in CO2 increasing. However, the use of 

microalgae-based sequestration system is restricted just to the industrial stationary emissions.   

Another way for decrease the use of petroleum is its substitution. In many applications it 

is possible the use of biofuels: biogas is one of the most interesting one. Biogas is one of the 

main products of anaerobic digestion, made by methanogen or anaerobic organisms. With the 

term biogas we refer to a mixture of gas, produced from organic matter (like agricultural waste, 

plant material, green or food waste) in the absence of oxygen. Biogas can be used like biofuel, 

in many applications, like electricity production on sewage works, gas-grid injection or in 

transport. Biogas is roughly 55% methane, 45% carbon dioxide with trace elements of H2S: so, 

it is inadequate for use in machinery. For this reason, it is necessary a process of purification, 

composed by subsequent steps, to obtain a final, clean biomethane. This process is called biogas 

upgrading. Its purpose is the elimination of every trace of hydrogen sulphide (because it can 

destroy mechanisms), water and particulate (if present), and carbon dioxide. The biogas CH4 

concentration should be upgraded to at least 90% (vol.%) to meet the standard for vehicles 

engine and natural gas pipe line systems. Many biogas upgrading techniques have been used in 

the past, such as absorption of liquids with physics/chemical adsorbent, membranes separation, 

pressure swing adsorption, and cryogenic separation. Although these methods are acceptable at 

biogas upgrading process, they usually need high costs and also consume a relative high 

quantity of energy during treating process. Most of these techniques also need complex 

operating systems, and produce undesirable end products, that require other processes or give 

secondary pollution. Furthermore, using these techniques, the CO2 removed from the raw 

biogas, is normally discharged into the atmosphere, as greenhouse gas. In addition, most of 

these methods need a preventive H2S removal.  

In order to manage all these limitations, it is possible to upgrade biogas using microalgae, 

thanks to their photosynthetic CO2 reduction capacity. In fact, when microalgae are used for 

biogas upgrading, the photosynthesis can convert CO2 present in raw biogas, into biomass and 

oxygen.  

1.2 Microalgae: description and classification 

Microalgae, or microphytes, are microscopic algae, typically found in freshwater and 

marine systems, living in both the water column and sediment (Thurman, H. V. (1997).  

Introductory Oceanography. New Jersey, USA: Prentice Hall College). Microalgae can exist 

individually, in chains or in groups. They do not have roots, stems or leaves. 

https://en.wikipedia.org/wiki/Freshwater
https://en.wikipedia.org/wiki/Water_column
https://en.wikipedia.org/wiki/Sediment
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Microalgae can perform photosynthesis process: they result really important for life on 

Earth, because it is estimated that they produce approximately half of the atmospheric oxygen, 

using at the same time the greenhouse gas carbon dioxide. This last gas is used by microalgae 

for their photoautotrophic growth (Gustaaf Hallegraeff, 2013). 

Because of the different species, microalgae are classified in groups based on different 

characteristics. First of all, they cover a large range of sizes: from a few micrometres, to a few 

hundred micrometres. They have a huge morphological variation, such as round, oval, 

cylindrical, and fusiform cells, as well as projections like thorns, cilia, etc. The biodiversity of 

microalgae is enormous: it has been estimated that about 200.000-800.000 species exist, but 

only about 50.000 of these species are actually described (Starckx, Senne - 31 October 2012 

- A place in the sun - Algae is the crop of the future, according to researchers in Geel Flanders 

Today, Retrieved 8 December 2012). Most of these microalgae species produce products 

like carotenoids, antioxidants, fatty acids, enzymes, polymers, peptides, toxins and sterols.  

Algae are usually found in damp places or bodies of water; they can be situated both in 

terrestrial and aquatic environments. Algae require three important components to grow, 

exactly like plants: light, water and carbon dioxide.  

These organisms can be classified in four main types, easily discernible by colour: 

• diatoms (Bacillariophyceae); 

• green algae (Chlorophyceae); 

• blue-green algae, also called cyanobacteria (Cyanophyceae); 

• golden algae (Chrysophyceae). 

In particular, diatoms, green and golden algae are the most diffused ones (Talebi et al. 2014; 

Quinn et al. 2014). 

Microalgae are primitive organisms, with a simple cellular structure, but they have an 

interesting property: their surface to volume ratio is normally very large. So, they have the 

ability to uptake a bigger amount of nutrients (Sheehan et al. 1998a, b). The photosynthetic 

process is similar to the land-plants’ one, but, due to the simple cellular structure, they are more 

efficient in the transformation of solar energy in biomass (Carlsson et al. 2007; Chisti 2007). 

Moreover, another study affirms that phototrophic microalgae can convert solar energy to 

chemical energy with a greater efficiency (10-50 times) than land plants (Zhou et al. “Bio-

mitigation of carbon dioxide using microalgal systems: Advances and perspectives”).  

Carbon, nitrogen, phosphorus and sulphur are the main components of microalgae (Chisti, 

2007; Tsai et al. 2011; Zeng et al. 2011). Obviously, it is impossible to find a general molecular 

https://en.wikipedia.org/wiki/Biodiversity
http://www.flanderstoday.eu/current-affairs/place-sun
https://en.wikipedia.org/wiki/Carotenoid
https://en.wikipedia.org/wiki/Antioxidant
https://en.wikipedia.org/wiki/Fatty_acid
https://en.wikipedia.org/wiki/Enzyme
https://en.wikipedia.org/wiki/Polymer
https://en.wikipedia.org/wiki/Peptide
https://en.wikipedia.org/wiki/Toxin
https://en.wikipedia.org/wiki/Sterol
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formula, because of the different species; neither their chemical composition is a constant, 

because it varies over a large range. However, a minimal nutritional requirement can be 

estimated using a molecular formula of the microalgal biomass: CO0.48H1.83N0.11P0.01 (Chisti, 

2007; Putt et al. 2011). Nitrogen is the critical factor for the growth and lipid content regulation 

of microalgae. Phosphorus, although required in small amounts, must be supplied in excess as 

it complexes with metal ions (Chisti, 2007). Microalgae can use light and nutrients from their 

environment, thereby they can optimize the efficiency of utilization for their growth and 

survival. Moreover, they are extremely resilient microorganism, so, a single species can 

undergo various metabolism, depending on the available nutrients for growth (Amaro et al, 

2011). 

1.3 Microalgae: applications 

Algae can be used in several sectors, with different applications. In fact, they contain 

numerous compounds that can be harnessed for commercial use:  

Pigments/Carotenoids 

B-Carotene, astaxanthin, lutein, 

zeaxanthin, canthaxanthin, chlorophyll, 

phycocyanin, phycoerythrin, fucoxanthin 

Polyunsaturated fatty acids (PUFAs) 
 

DHA(C22:6), EPA(C20:5), 
ARA(C20:4), GAL(C18:3) 

Vitamins 
 

A, B1, B6, B12, C, E, biotin, 
riboflavin, nicotinic acid, pantothenate, 

folic acid 
 

Antioxidants 
 

Catalases, polyphenols, superoxide 
dismutase, tocopherols 

 

Other 
 

Antimicobial, antifungal, antiviral 
agents, toxins, aminoacids, proteins, sterols, 

MAAs for light protection. 
 

 

Table 2: Useful substances in microalgae 

The potential of microalgae is high, because of their more efficient utilization of light 

energy as compared with higher plants. The first use of microalgae by humans dates back 2000 

years to the Chinese, who used Nostoc during famine. However, the principal microalgal 
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technologies began only in the middle of the last century. Nowadays, there are several 

commercial applications of microalgae. 

1.3.1  Microalgae for human food 

Microalgae are a rich source of carbohydrates, protein, enzymes and fibres, as well as 

many vitamins, like A, C, B1, B2, B6, and minerals, like potassium, iron, magnesium and 

calcium. Because of their composition, they are used like major source of food in many Asian 

countries, like Japan, China and Korea. Some of the most known algae, used like food, are the 

green algae Chlorella Vulgaris, Dunaliella Salina and the cyanobacteria Spirulina Maxima. 

Instead, Spirulina Platensis is a blue-green alga, and it is gaining worldwide popularity as a 

food supplement. It has been shown to be an excellent source of proteins (Colla et al., 2007), 

polyunsaturated fatty acids (Sajilata, 2008), pigments (Rangel-Yagui et al., 2004; Madhyastha 

and Vatsala, 2007), vitamins and phenolics (Colla et al., 2007; Ogbonda et al., 2007).  

Moreover, some species of microalgae contain big amounts of carotene and beta carotene. 

The latter one is used like food colouring, food additive and to improve the health and fertility 

of grain-fed cattle. It was announced recently, by the National Cancer Institute, that Beta 

Carotene is anticarcinogenic; other studies have found that Beta Carotene is effective in 

controlling cholesterol and in reducing risks of heart disease. These new findings make Beta 

Carotene much more valuable and are likely to increase the demand for the product 

(Commercial and industrial applications of micro algae, Indira Priyadarshani and Biswajit 

Rath). 

1.3.2 Microalgae for cosmetics 

Every kind of algae has a typical pigment, normally used to control cell growth and check 

the trophic level of water. Components of algae are used in cosmetic field like thickening 

agents, water-binding agents and antioxidants. Microalgae extracts can be mainly found in skin 

care, sun protection and hair care products. The most successful species are Arthrosphira and 

Chlorella (Stolz and Obermayer, 2005).  

1.3.3   Microalgae and high-value molecules 

Microalgae can be a very interesting natural source of new compounds, which can be 

used as functional ingredients. In fact, some microalgae live in complex habitats submitted to 
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extreme conditions (for example, changes of salinity, temperature, nutrients, UV-Vis 

irradiation, etc.), and so they must adapt rapidly to the new environmental conditions to survive. 

In this way they produce many secondary (biologically active) metabolites, which cannot be 

found in other organisms.  

Moreover, marine microalgae are recognised as an important renewable source of 

bioactive lipids, and they contain a big amount of polyunsaturated fatty acids (PUFA): it was 

established that they are effective in preventing or treating several diseases. 

1.3.4  Microalgae and biofuels 

Microalgae have long been recognized as potentially good sources for biofuel production 

because of their high oil content and rapid biomass production. Algae offer many advantages: 

• They can theoretically produce 1000-4000 gallon/acre/yr: this measure is higher than 

soybeans and other oil crops; 

• Algae do not compete with traditional agriculture, because they are not traditional foods. 

Moreover, they can be cultivated in large open ponds or in closed photobioreactors 

located on non-arable land too; 

• They can grow in a wide variety of climate and water conditions, and can utilize and 

sequester CO2 from many sources; 

• Finally, they can be processed into a broad spectrum of products, including biodiesel 

via trans-esterification, green diesel and gasoline replacements via direct catalytic 

hydrothermal conversion, and catalytic upgrading, and bioethanol via fermentation, 

methane via anaerobic digestion, heat via combustion, bio-oil and biochar via 

thermochemical conversion, and high protein animal feed. 

1.3.5    Microalgae in environmental applications 

Microalgae have many applications in environmental biotechnology, especially for 

bioremediation, bioassay and biomonitoring of environmental toxicants. First of all, they can 

be used for wastewater: its discharge contains several contaminants into the aquatic ecosystems. 

The high rate algae pond (HRAP) system has been shown to be an efficient system to treat 

wastewater. This system consists of shallow pond mixed by paddle-wheels to enhance nutrient 

transfer and photosynthetic efficiency to optimise algal growth. 
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In addition, immobilised microalgae are useful for enhance the efficiency in the removal 

of environmental contaminants. In particular, Chlorella Vulgaris and Scenedesmus Obliquus 

have been shown to be efficient in removing nitrogen and phosphorus from urban wastewater. 

Other studies have demonstrated that microalgae can be used as bioassay organisms, to assess 

the toxicity of pollutants such as heavy metals, pesticides and pharmaceutical (Biotechnological 

applications of microalgae, Wan-Loy Chu).  

1.3.6   Other applications 

Often, microalgae are employed in agriculture as biofertilizers and soil conditioners. In 

fact, the majority of cyanobacteria are capable of fixing atmospheric nitrogen; they also play 

an important role in maintenance and build-up of soil fertility.  

Algal organisms are rich source of biologically active primary and secondary metabolites, 

that can have a potential interest in the pharmaceutical industry (Rania and Hala, 2008). Many 

strains of cyanobacteria are known because they produce intracellular and extracellular 

metabolites, with different biological activities, such as antialgal, antibacterial, antifungal and 

antiviral activity. 

Microalgae are often used as aquaculture feed, in particular for the culture of larvae and 

juvenile shelland finfish. 

1.4  Thesis structure  

This work starts with an introduction, containing a brief description of microalgae and all 

the possible application of microalgae. The second chapter contains information about the state 

of the art.  In the first part LED illumination field is treated, while in the second part different 

types and forms of photobioreactors are listed. The third chapter is about methods and materials 

used during experiments. It contains a brief description of all instruments and machinery used. 

In Chapter 4 all the results are reported, in form of graphics, tables and formulas. The thesis 

ends with Chapter 5, containing the discussion of results and conclusions of the entire work.  
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2. STATE OF THE ART 

This chapter is divided into two parts: the first one is about state of the art of LED 

illumination. So, it contains a brief introduction of this kind of light source and its working 

modes, and all the information about its effects on algal growth. The second part treats state of 

the art of photobioreactors: it contains a description of all the major forms of these reactors. 

The chapter ends with a list of study cases realized in the past with photobioreactors. 

2.1 LED illumination 

Microalgae are photoautotrophic organisms, so they can use light as their only energy 

source in photoautotrophic conditions. This means that they can produce complex organic 

compounds from simple substances, using light as energy source. So, because microalgae cells 

absorb light photons as nutrients, then wavelength, light intensity and all the other light 

characteristics are fundamental parameters in microalgal growth. In this study, LED 

illumination was used, because it has specific narrow bands which can produce cost effective 

irradiance, and this is the ideal spectral for microalgal growth.  

2.1.1 LED description 

LEDs, light-emitting diodes, are solid-state semiconductors and they can produce light 

with a fine emission peak. They consist of a positive layer and a negative layer. Depending on 

the materials of these layers, electrons have different energies, and so different wavelengths. 

Because of these characteristics, distinct fragments of photosynthetically active region (PAR, 

that is the spectral range of solar radiation, generally between 400 and 700 nm, that 

photosynthetic organisms can use during the process of photosynthesis) can be studied in 

independent way. Thus, every specific photosynthetic response of different organisms can be 

analysed: in fact, the main absorption peak in the PAR depends on the particular chlorophyll 

and carotenoid contents of the specific specie examined (Shulze et al., 2014).  

The positive layer has an excess of electron holes in the valence band, while the negative 

one has an excess of electrons in the conduction band. When a suitable voltage is applied, 

electrons are able to recombine with electron holes; in this way energy is produced in the form 

of photons, which are released between these two semiconductors layers. Generally, the 

material used in LEDs is Aluminium-Gallium-Arsenide (AlGaAs). Depending on the different 

https://en.wikipedia.org/wiki/Nanometer
https://en.wikipedia.org/wiki/Photosynthesis
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wavelengths involved, LEDs produce several colour lights. So, light emitted from this device 

depends on the type of semiconductor material used for the layers. For example, using Gallium-

Arsenide, it is possible to produce infrared light. Using Gallium and Phosphorus produces red 

or green light, while Gallium-Arsenide-Phosphorus give a red or yellow light, and so on.  

LEDs generally need low voltage and current. Moreover, the total power output is 

normally lower than other light sources. Finally, the time response is very low too, generally 

about 10 ns. 

2.1.2 Comparison with other artificial light sources 

Photoautotrophic growth of microalgae needs several important elements, such as 

nutrients (like nitrogen and phosphorus), CO2 and a light source. Light source can be natural, 

from solar radiation, or artificial. Artificial light can provide a better regulation of the 

photosynthetic photon flux density (PPFD), photoperiod and light spectra in microalga 

production. An important type of artificial light, mostly used in the past, is the fluorescence 

lamp (FL). These lamps have a wider emission spectrum than LEDs have. Thus, LEDs are long-

lasting (about 50000 hours), mercury-free and fast responding (nanosecond scale). Hence, 

LEDs can be used to adjust the biochemical composition of biomass. LEDs have dimensions 

of several millimetres, so they can be assembled to form many lamp configurations, such as 

panels, strips, cylinders or small spheres (Heining et al. 2014). For this reason, LEDs result 

more flexible than fluorescent lamps in the photobioreactor illumination field. Furthermore, 

they need a less complex equipment to generate collimated light, then FLs, which requires 

instead larger size and does not allow downscaling of the illuminated area. When electric 

current is converted to light in LEDs and FLs, energy losses occur, due to thermal dissipation 

and inward light reflection and reabsorption. This obviously constitutes a problem, because it 

is a loss of efficiency. Reduction of this inefficiency has resulted in higher power conversion 

efficiency (PCE) for LEDs (up to 50%) compared to gas-discharge lighting technologies, such 

as FLs (about 30%). Up until now, primarily LEDs and fluorescence lamps were used as 

artificial light sources.  

An alternative and innovative way of PAR generation could be organic light emitting 

diodes, that can emit monochromatic light, or they can be multilayer devices containing red, 

green and blue organic emitters. Its emission spectrum, light extraction efficiency (various 

recent studies demonstrate that it can arrive until 80%) and intensity of emitted light depend on 

the applied voltage and the composition of the organic layers (Krujatz et al., 2016). 
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2.1.3 Effects of light on algal growth  

As mentioned above, algae need a light source for their growth. However, every specie 

of microalgae needs a different type of light, according, mainly, on its pigments content. To 

maximize photosynthetic efficiency, every photon emitted from a light source should be 

captured by the photosynthetic apparatus of microalga. In order to achieve this condition, light 

source should have a complete spectral matching with the photosynthetically active spectrum 

(PAS). So, in order to choose the correct light for the culture, consecutive steps must be 

followed: 

1) find the major pigments for the algae strain; 

2) choose a light that emits radiation in correct range to be absorbed by the pigments in the 

algae; 

3) set up this light next to the tank. 

Microalgae can absorb, from the PAR, different wavelengths of light, depending on the 

types of pigments that they contain.  Some of the most important pigments are: 

• Chlorophyll-a- All plants, algae, and bacteria; 

• Chlorophyll-b- Chlorophytes and land plants; 

• Carotenoids- In all plants and algae; 

• Phycoerythrin- Red algae (Porphyridium, Rhodomonas); 

• Phycocyanin- Cyanobacteria (spirulina, Arthrospira). 

 

 
Figure 1: Pigments absorption spectrum (algaeresearchsupply.com) 
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The last diagram explains how a coloured light is absorbed by a particular pigment: for 

example, green light is generally not absorbed by Chlorophyll a and b and carotenoids, whereas 

it is absorbed by Phycoerythrin, the red pigment (red is the complementary colour of green). 

So, for the growth of green microalgae, green lamps are not advised.  

Photosynthetic organisms, like microalgae, can use, in the process of photosynthesis, a 

spectral range (wave band) of radiation from 400 to 700 nm (PAR), which corresponds to the 

visible spectrum. In fact, light sources with a wavelength higher than 750 nm have a too low 

energy content to mediate chemical change; energy absorbed in this wave band can only be 

converted to heat. Further, wavelength radiation below 380 nm have such a high energy content 

that it ionizes the molecules and consequently can be quite destructive to living biological 

systems. So, PAR is a measure of the energy of solar radiation intercepted by chlorophyll a and 

b, and it is concentrated in red and blue bands, with maximum peaks at 430 and 680 nm.  The 

number of photons at blue or red wavelength that can be captured by a molecule of chlorophyll 

in microalgae depends on the cellular architecture, pigment conformation and chloroplast 

arrangement. In the recent years, Keeling affirmed that microalgae prefer red (660 nm) or blue 

(420-470 nm) light to grow. In fact, red light is fundamental for the growth of chlorophytes, so, 

photons with wavelengths of 660-680 nm produce the highest quantum efficiency in most plants 

and algae which contain chlorophyll a and/or b. Then, efficiency decreases when wavelengths 

become higher. Kim et al. found that changing the ratio between red and blue light affected 

nutrient utilization more than biomass production: this is due to increased enzyme activity. 

Furthermore, Mohsenpour and Willoughby found that also green light is fundamental, because 

it can induce pigmentation in algae. 

Regarding white light LEDs, it is important to say that true white-light-emitting LEDs are 

not available. In fact, this kind of device is difficult to build because LEDs typically emit one 

wavelength, whereas white does not appear in the spectrum of colours; instead, to obtain white 

colour, a mixture of wavelengths is needed. So, in order to create white LEDs a simple trick is 

used: several coloured LEDs are mixed to create a spectral power distribution that is perceived 

by the eye as white. 

https://www.lrc.rpi.edu/programs/nlpip/lightinganswers/led/whiteLight.asp
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Figure 2: Typical white led spectrum (algaeresearchsupply.com) 

While blue and red lights are suboptimal for mass cultivation of microalgae, warm white 

and yellow lights are fundamental to obtain highest areal productivity in culture growth. Yan et 

al. realized an experiment for the photosynthetic CO2 uptake by microalgae for biogas 

upgrading, using various light wavelength and intensities. They used three different 

monochromatic LEDs, red, blue and white respectively. As a result, white light wavelength was 

better than other two monochromatic LEDs for biogas upgrading, because it achieved 

significantly higher microalgae growth dry weight and removal efficiency of biogas CO2 than 

the rest of the monochrome LED light wavelengths treatments.  In fact, white spectrum covered 

the ones of blue and red, so it showed a mixed effect of the complete light spectrum on 

microalgae.  

 

 

 

 



Politecnico di Torino 
A.A. 2017/2018 

 

20 | P a g .  
 

2.2 Algae cultivation systems 

Microalgae can be cultivated in open, inexpensive, systems, like natural ponds, circular 

ponds with a rotating arm, raceway ponds and lakes, or in closed systems, generally called 

photobioreactor (PBR).  

2.2.1 Open ponds 

Open ponds can be categorized into two groups: natural waters, such as lakes and lagoons, 

and artificial ponds. Usually, algae grow in cultivation called “raceway ponds”, in which algae, 

water and nutrients circulate around a racetrack. Paddlewheels provide the flow, while algae 

remain suspended in the water and they are circulated back on a regular frequency. These ponds 

are usually shallow, because algae need to be exposed to sunlight, which can penetrate the pond 

water only to a limited depth. The systems usually work in a continuous mode, and the feed is 

added in front of paddlewheel.  

 

 
 

Figure 3: Schematic raceway ponds 

 



Politecnico di Torino 
A.A. 2017/2018 

 

21 | P a g .  
 

 
 

Figure 4: Picture of open system raceway (Source: Mission 2014) 

 

The major advantages of open ponds are their cheapness and simplicity: they require only 

a trench or pond, and they have the largest production capacities relative to other systems of 

comparable costs. For these reasons, open ponds present low production costs and low 

operating costs. 

On the other hand, open systems do not offer control on temperature and lighting, so, for 

example, growing season depends on location and often it is limited to warmer months. 

However, the biggest disadvantages include uneven light intensity, evaporative losses, diffusion 

of CO2 to the atmosphere, and they also need large areas. Furthermore, many predators can 

contaminate cultivations. Consequently, commercial production of algae in open culture 

systems is reserved to only those organisms that can survive and grow under extreme 

conditions.  

In order to solve these problems, researchers have tried for closed ponds. Here, 

environments are kept under control. Their cost is higher than open ponds, but they are less 

expensive than photobioreactors. Closed ponds consist in coverage the pond with a translucent 

or transparent barrier, using materials like plexiglass.  

2.2.2 Photobioreactors 

Photobioreactor is a closed and illuminated culture container, realized for controlled 

biomass production. So, these systems have not direct exchange of gases or contaminants with 

external atmosphere. They have high cost, but many advantages too: 

• They minimize contamination, and allow axenic cultivation of algal monoculture; 

• Photobioreactors better control key parameters, such as pH, temperature, light, CO2 

concentrations and so on; 
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• They offer less CO2 losses, and prevent water evaporation; 

• PBRs permit higher cell concentration than open systems. 

Moreover, closed PBRs also provide reproducible cultivation conditions, a good heat 

transfer control, a better flexible technical design and, finally, a better product quality. Closed 

PBRs have a productivity limited by various design features, but, regardless of different 

designs, PBRs need to work under suitable illumination conditions, with an optimised surface 

area to volume ratio, adequate mass transfer properties and a correct dark/light cycle. 

Furthermore, every PBR type is mainly composed by four phases: solid algal cells, a liquid 

growth medium, gaseous H2 product and the superimposed light radiation field.  

The critical parameters of all types of PBRs are light intensity, wavelength, temperature, 

agitation and mixing, and nutrient delivery and dilution. A collection system is required, in 

order to measure H2 production, the algal growth, the dissolved oxygen concentration (it is 

necessary to understand if the ambient is anaerobic) and the uptake rates of fundamental 

nutrients.  

Below, several designs of photobioreactors realized and developed for algal production 

are described. 

Vertical tubular PBR 

It is constituted by a vertical transparent tubing, in order to allow light penetration. At the 

bottom of the reactor an air sparge system is placed: it transforms sparged gas into tiny bubbles.  

This system allows overall mixing, mass transfer of CO2 and it also removes O2 produced 

during photosynthesis. Vertical tubular photobioreactors can be divided into two main groups: 

bubble column and airlift reactor, according to the specific mode of liquid flow. 

The first one is a cylindrical device, with height greater than twice the diameter. Its capital 

cost is low, and it has high surface area to volume ratio, lack of moving parts, good heat and 

mass transfer, efficient release of O2 and residual gas mixing. Photosynthesis efficiency 

depends on gas flow rate, that depends, in turn, on the light/dark cycles.  
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Figure 5: Ecoduna’s world-patented vertical photobioreactor constructed with glass tubes (Source: schott.com) 

 

Air lift reactors are realized with two interconnecting zones. One of the tubes is used for 

gas mixture sparging, and it is called riser. The other region does not receive the gas, and it is 

called downcomer. These systems can exist into two main forms: external or internal loops. In 

the first one, riser and downcomer are physically separated by two different tubes, while in the 

internal one these regions are separated by a split-cylinder or a draft tube. 

 

 
 

Figure 6: Different types of air lift PBR 
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Within this category of PBR, rectangular airlift photobioreactors are proposed too. Their 

main advantages are the optimal mixing conditions and the high photosynthetic efficiency. On 

the other hand, they are very complex, and it is difficult their scale-up. 

 

Flat panel PBR 

The flat panel is a cuboidal reactor, usually made by glass, polycarbonate, plexiglass, etc. 

The most important characteristic of this device is its surface area to volume ratio, that is the 

highest among all PBRs. This property leads to the best photosynthetic efficiencies observed 

for any PBR. Normally, flat panel reactors are vertical, with the light source incident on the 

reactor from one side. The region immediately adjacent to reactor illuminated surface is a photic 

zone: here, light saturation, and so photoinhibition of algal growth and H2 production processes, 

often occurs. Moreover, increasing the distance from this photic zone, energy available to algal 

cells rapidly decreases. Flat panel reactors are subject to moderately low mass transfer rates, 

because the light path, that is the space between panels, is very limited, and this characteristic 

decreases the clearance efficiency of the dissolved O2 produced by photosynthesis. In order to 

obtain an optimal algal growth, a good O2 diffusion rate through the reactor is necessary. 

Agitation system is provided by bubbling air, introduced through perforated tube or by rotating 

it through a mechanical motor.  

On the other hand, flat panel reactors have some disadvantages, such as the scaling-up 

requirements (many compartments and support materials are necessary), the difficulty in 

controlling system temperature, the possibility of algal cells fouling on the internal wall of 

reactors, and, finally, the incompatibility with some algal species. An example of these 

photobioreactors was built up by Barbosa et al, made of polycarbonate and with a surface area 

to volume ratio of 0.34 cm-2. It was illuminated by 10 fluorescent tubes, with a total light 

intensity of 1000 µmol photons m-2s-1. This model was modified by Zhang, who introduced 

baffles for the improvement of mixing and agitation. Other engineering modification were 

added by Iqbal, who improved, in this way, mixing rate, while escape corners were eliminated. 

Tredici and Zittelli realized a flat horizontal panel divided into five channels, with two 

plexiglass manifolds at the top and at the bottom. Surface area to volume ratio became 40 m2. 

During the cultivation of Chlorella Sorokiniana a flat panel with short path length was used: 

submitting these algae to high irradiance conditions, volumetric productivity obtained was 12.2 

g L-1d-1.  
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Figure 7: Front and side view of the flat PBR 

 

Another example is the study of H2 production, done using the green alga Chlamydomas 

reinharditii, realized by Tamburic et al. In fact, algae have the capacity to harness sunlight to 

photosynthetically produce molecular hydrogen from water. This process is totally carbon 

neutral, and it also allows carbon dioxide sequestering and biomass accumulating during algal 

growth. During this study, a one-litre vertical flat plan PBR was used. Non-heating illumination 

was provided by a panel of LEDs, while reactor body was realized by two compartments made 

by transparent polymethil methacrylate sheets:   
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Figure 8: Novel dual-compartment vertical flat-plate reactor design (left: exploded view; right: assembled view) 

Horizontal tubular photobioreactor 

They consist in horizontal reactors with several forms, from the tubular to the loop shape 

one, from the α-shape to the parallel set of tubes. Its shape assumes a fundamental role, because 

it establishes its orientation towards sunlight. For this reason, every form of horizontal PBR has 

a different light conversion efficiency. However, photosynthetic efficiency and volumetric 

productivity are normally higher than those of flat panel bioreactor. On the other hand, their 

biggest disadvantage is the very high energy consumption: it has a value of 2000 Wm-3, while 

bubble column and flat panel photobioreactors have value of about 50 Wm-3. They need high 

energy input because it is necessary to reach high linear velocities, in order to achieve turbulent 

conditions with sufficient short light/dark cycle.  

 
Figure 9: Working of horizontal tubular PBR 
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Figure 10: Horizontal tubular PBR (Picture source: algarefinery.com) 

Helical PBR 

Helical photobioreactor is realized with a coiled and transparent small tube, which is 

flexible too, and a degassing system, that can be separated or attached. Culture must arrive to 

the degassing unit, through the tube; to do this, a centrifugal pump is used. Several studies were 

conducted within this field, using different algal species. Carbon dioxide and algal volume can 

be injected from the top to the bottom, or, vice versa, from the bottom to the top: with last 

method photosynthetic efficiency is higher than the first one.  

The scale-up of these systems can be done simply adding light harvesting unit, but the 

big amount of energy required by centrifugal pump makes this device really expensive, and so 

it does not cover an important role on the commercial market.  

Morita, Watanabe and Saiki gave a conical shape to the helical PBR, and their study 

showed that a conical angle of 60° increased photo-receiving area and photosynthetic 

productivity by a factor of two. (Morita et al., Investigation of photobioreactor design for 

enhancing the photosynthetic productivity of microalgae, 2000). Cone shape has the big 

advantage of light harvesting efficiency, with the same shape and occupied area of the helical 

one. Moreover, they need less energy and present fewer mechanical stresses imposed to algal 

cells. The scale-up of these systems is obtained increasing the number of light harvesting units, 

but in this way, obviously, energy losses increase too, because of the complicated path that the 

flow must take. 
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Figure 11: Helical PBR 

Stirred tank PBR 

Stirred tank reactors are the most popular kind of reactors. They are transformed in 

photobioreactors simply adding, externally, fluorescent lamps or optical fibres. Impeller, with 

different shapes and dimensions, is necessary, in order to provide mechanical agitation, while 

baffles are used in order to reduce vortex formation. Air, enriched with CO2, is bubbled from 

the bottom of the reactor, and it constitutes the source of carbon needed by microalgae for their 

growth. The biggest disadvantage of this system is its low surface area to volume ratio, that 

means low light harvesting efficiency. In order to solve this problem, optical fibres were used 

too, but they had another disadvantage, that is hindrance in the mixing pattern.  

 

Figure 12: Stirred tank PBR 
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Final considerations about PBRs 

In order to take advantages of one kind of PBR, and overcome disadvantages of another 

one, hybrid type PBRs were realized. One example is given by Fernandez et al., who used 

integrated airlift system and external tubular loop placed horizontally in a thermostatic pond of 

water. While external loop controls the temperature of the culture and gives high surface area 

to volume ratio, airlift system is used as degassing unit, where other probes can be introduced, 

in order to control other process parameters too. In this way, culture variables could be better 

controlled, while productivities became higher and power consumption decreased (Fernandez 

FGA, Sevilla JMF, Perez JAS, Grima EM, Chisti Y. Airlift driven external loop tubular 

photobioreactors for outdoor production of microalgae: assessment of design and performance). 

Key parameters of photobioreactor are light distribution, mass transfer, shear stress, 

scalability and biology of algae cells. At the moment, none of the single bioreactor mentioned 

satisfies all these requirements. Hybrid reactors seem to be a good option, because they 

demonstrate to be useful in mass production of algae, as compared to single bioreactors. In the 

future, several studies may be made to combine different kinds and shapes of bioreactors, in 

order to realize appropriate bioreactors for mass algal culture. 

 
Figure 13: Advantages and limitation of the principal PBR types 

 

2.3 LED technologies applied to commercial algae cultivation  

In the past, public and verifiable information about applications of LEDs in microalgae 

cultivation was scarce. However, at the moment, thanks to the increasing interest in microalgal 

research, a few cultivation systems have become commercially available. Some examples are 

reported below. 
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• Labfors 5 Lux Flat Panel photobioreactor (INFORS HT, Bottmingen, 

Switzerland) has a total working volume of 1.8 L. It is created as a narrow flat 

panel airlift photobioreactor, with an optical light path of 20 mm. This reactor has 

an automatic temperature-control system, and it is illuminated from one side by a 

LED panel, with 260 high-power LEDs having a warm-white emission spectrum. 

Moreover, it presents a light intensity of up to 2400 μmol photons m−2 s−1 (Apel 

and Weuster-Botz 2015). In particular, this PBR system can be used to improve 

process parameters, such as the triacylglycerol accumulation in Scenedesmus 

obliquus (Breuer et al. 2014). 

• The photobioreactor FMT 150 series (PSI, Brno, Czech Republic) is available 

with a flat-vessel volume of 0.4, 1.0, and 3.0 L. It enables tight process control 

achieved by multiple sensors too, for example temperature, pH, O2, and CO2. The 

optical density (OD) is recorded in real time at 680 and 720 nm by two far red 

LEDs and a photodiode. The illumination, in the standard version, is realized by 

either a white-red LED panel or a blue-red LED panel, with emission peaks at 450 

and 620 nm, respectively. The maximal light intensity is 1500 μmol photons 

m−2s−1, but an upgraded version provides intensities up to 3000 μmol photons 

m−2s−1 (Nedbal et al. 2008).  

• PSI offers the Multi-Cultivator MC 1000, which consists of eight cultivation tubes 

with 85 mL culture volume each. This LED presents a warm-white or cool-white 

illumination too, that can be adjusted individually for each tube. It can reach 

photon flux densities of up to 900 μmol photons m−2s−1. A water bath surrounds 

all the eight tubes; its aim is to control the temperature, maintaining it constant.  

• Phenometrics (Lansing, USA) offers PBR101, created for the simulation of 

environmental conditions and optimization of open ponds. In this case, the 

working volume is 0.45 L, while illumination is obtained by a single high-power 

white LED, placed in the top, with a spectrum comparable to sunlight. Its 

intensities exceed 3000 μmol photons m−2s−1. 

 

 

 

 



Politecnico di Torino 
A.A. 2017/2018 

 

31 | P a g .  
 

3. METHODS AND MATERIALS 

This chapter is aimed at giving information about all the procedures, instruments, 

equipment and materials used during the execution of experiment.  

3.1 Microalgae and nutrients 

The selected strain used for this study is Scenedesmus Obliquus (SAG 276-3a), that is 

a green microalgae species of the genus Scenedesmus, notable for the genetic coding of 

its mitochondria, whose habitat is typically the freshwater. They have a typical shape, similar 

to an eye. This microalga was selected on the basis of precedent studies in this context 

(Franchino et al., 2013).  

       

Figure 14: a) On the left, view under a microscope with 100X; b) On the right, view under 1000X magnification 

         

In literature, Scenedesmus Obliquus was already used in several studies, with different 

aims. The main titles and results are reported below: 

• “Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and 

biodiesel production”, by Ho et al. Scenedesmus obliquus was cultivated via a two-stage 

system with 10% CO2, to mitigate CO2 emissions and simultaneously produced biodiesel. 

As a result, the biomass productivity was 292.50 mg L-1 d-1, lipid productivity 78.73 mg 

L-1 d-1, while CO2 consumption rate was 549.90 mg L-1 d-1.  

https://en.wikipedia.org/wiki/Green_algae
https://en.wikipedia.org/wiki/Scenedesmus
https://en.wikipedia.org/wiki/Mitochondria
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• “CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella 

pyrenoidosa in response to different CO2 levels”, by Tang et al. In this study, 

Scenedesmus obliquus and Chlorella pyrenoidosa were cultivated with 0.03%, 5%, 10%, 

20%, 30%, 50% CO2. These microalgae could grow at 50% CO2 (>0.69 g L-1), while 

grew well (>1.22 g L-1) under CO2 concentrations ranging from 5% to 20%. However, 

these microalgae strains had best growth potential at 10% CO2. 

• “Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in 

a three-stage serial tubular photobioreactor”, by De Morais and Costa. During this 

experiment Scenedesmus obliquus and Spirulina were cultivated at 30◦C in a 

temperature-controlled three-stage serial tubular photobioreactor. The resistance of these 

organisms to limitation and excess of carbon dioxide was calculated too. Finally, this 

study achieved the capacity of the system to fix this greenhouse gas. 

• “Photobioreactor strategies for improving the CO2 fixation efficiency of indigenous 

Scenedesmus obliquus CNW-N: Statistical optimization of CO2 feeding, illumination, and 

operation mode”, by Ho et al. Statistical experimental design and bioreactor strategies 

were applied to improve CO2 fixation ability of Scenedesmus obliquus. Under the optimal 

conditions, the highest biomass productivity (1030.2 mg L-1 d-1), photosynthesis 

efficiency (10.45%), and CO2 fixation rate (1782.3 mg L-1 d-1), gained during this study, 

were higher than almost all the values reported in other studies. 

 
Microalgae use nutrients for their growth. In particular, during this experiment, it was 

used BG-11 medium for their cultivation. BG-11 medium is a solution of distilled water and 

different chemicals, used like nutrients by microalgae. The following Table 3 reports BG-11 

medium composition: 

 

Compound Concentration (g/l) Stock Solution 

NaNO3 (Sodium Nitrate) 1.5 200X 

K2HPO4 (Dipotassium Hydrogen 
Phosphate) 

0.04 1000X 

MgSO4 ∙ 7H2O (Magnesium Sulfate 
Heptahydrate) 

0.075 1000X 

CaCl2 (Calcium Chloride) 0.036 1000X 

C6H8O7 (Citric Acid) 0.006 1000X 

Na2CO3 (Sodium carbonate) 0.02 1000X 

Solution 1 

Solution 2 
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Before reaching photobioreactor, microalgae must undergo a long growth period, which 

can last many weeks. They arrive in laboratory like slant cultures, and they are subjected to 

light, to a temperature of 20-25°C, until the entire surface of agar (on which they are disposed) 

is fully covered by microorganisms. At that point, algae are inoculated inside 400 ml glass 

bottle, containing 100 ml of BG-11 medium. This bottle is fixed to an orbital shaker with 150 

rpm rotation speed, and it is illuminated by lamps, as visible in the picture below.  

 
Figure 15: Orbital shaker 

After two weeks, volume is doubled, and an air sparging system is added. Then, 

microalgae go to a centrifugation process, with 4000 rpm for five minutes. The product of this 

phase is newly inoculated, inside six bottles. In this way, the total volume is six-times higher 

C6H11FeNO7 (Ferric Ammonium 
Citrate) 

0.006 1000X 

C10H14N2Na2O8 ∙ 2H2O (Na2EDTA) 0.001 1000X 

H3BO3 (Boric Acid) 2.86×10-3 

1000X 

MnCl2 ∙ 4H2O (Manganese Chloride 
Tetrahydrate) 

1.81×10-3 

ZnSO4 ∙ 7H2O (Zinc Sulfate 
Heptahydrate) 

0.222×10-3 

MoNa2O4 ∙ 4H2O (Molibdenum 
Sodium Oxide) 

0.39×10-3 

CuSO4 ∙ 5H2O (Copper Sulfate 
Pentahydrate) 

0.079×10-3 

Co(NO3)2 ∙ 6H2O (Cobalt Nitrate 
Hexahydrate) 

0.049×10-3 

Table 3: BG-11 medium composition 

Solution 3 

Solution 4 
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than the first one, and it is high enough to be inoculated inside the column, after the necessary 

period of growth.  

The column, a tube made of polycarbonate, is the last phase before the introduction into 

the photobioreactor. This column is illuminated too, and it permits further algae’s growth. 

Carbon dioxide is introduced inside column, both in form of air and in pure form. Only five of 

the six bottles are inoculated inside column, while the other one is used for others centrifugation 

processes.  

After an opportune period of growth, microalgae can be transferred into the flat panel. 

3.2 Photobioreactor system 

The system in which microalgae grow is composed principally by two parts: a planar 

photobioreactor and a tank. Microalgae’s growth occurs in the first one, while tank is necessary 

for mixing microalgal volume with nutrients and to wash dissolved oxygen produced during 

microalgae photosynthesis, and for control all the process variables.  

3.2.1 Description of the system 

The circulation of liquids under pressure inside the panel is allowed by a system, object 

of a patent, that allows to realize a hydraulic circuit inside the honeycombed panel. This system 

generates a hydraulic seal with the internal sectors of the panel, which can be used to generate 

a serpentine hydraulic circuit. 

To guarantee the tightness between the two parts of the sealing and connecting mechanism, the 

two parts are coupled to each other through a particular geometry. Then, these parts are 

assembled in the panel, thus connecting the two channels of the panel. All these details were 

realized with plastic polymers, having a transparent matrix. 

The main apparatuses are: 

• Apparatus for exposure of culture liquids to light 

It is mainly constituted by a transparent plastic honeycomb panel and sealing systems. 

During their passage in this apparatus, microalgae follow the paths obtained with the use of the 

sealing and connection systems between an alveolar element and the following one. While they 

pass, they are irradiated by the light coming from the outside, absorbing the energy necessary 

to carry out the internal chemical reactions, indispensable to the assimilation of the carbon 
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dioxide and its subsequent transformation into other types of molecules. Because of the 

possibility of providing circuits composed of a considerable number of channels, microalgae 

can be exposed to light for a significant amount of time. Consequently, the amount of light they 

can receive for each complete cycle of the system is maximized. 

• Liquid handling device 

The movement of the liquid is necessary to ensure the entire population of microalgae the 

same exposure to the light, a constant accessibility to the nutrients and a good mixing of liquids: 

so, the parameters should have a range of gradients the most reduced possible, within the whole 

system. Furthermore, the correct circulation speed of the culture liquids, within the system, 

reduces the risk of superficial adhesion of the organisms to the walls of the panel (fouling) and 

reduces the risk of formation of agglomerations of various kinds. In fact, fouling involves a 

reduction in the amount of light available for microalgae, and requires subsequent mechanical 

and/or chemical cleaning of the channels; these consequences can be considerably reduced 

choosing a correct speed of the liquid, according to the microalgae growth.  

The pumps for moving liquids are chosen according to the amount of liquid that must be 

moved, but the choice must be made in order not to damage the cells too, when the speed 

imposed on the liquid becomes relevant. So, the choice of the pump is not based only on its 

mechanical or volumetric performance, but also considers that the liquid power transfer system 

does not cause excessive damage to the cells. The correct choice of liquid handling device also 

allows to reduce energy consumption related to the circulation of liquids inside the system.  

• Nutrient administration apparatus 

This apparatus is fundamental to provide the organisms with all the substances necessary 

for their physiological needs. So, it is necessary when cultivation systems require periodic or 

occasional reintegration of substances essential for the growth and maintenance of cells. It is 

simply constituted by a tank. The nutrients, in liquid form, can be directly inserted into the 

apparatus and properly mixed. Then, they can go into circulation inside the system. 

 

In order to improve the efficiency of the system, liquids can be distributed by plastic 

pipes. Their main characteristics are flexibility and transparency. The flexibility allows a 

simpler connection and reduces the load losses due to changes in direction, that would occur 

with the use of more rigid materials.  
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Moreover, a degassing apparatus is fundamental for microalgae cultivation. In fact, 

degassing is a process that removes a part of the oxygen produced by the organisms during 

photosynthesis from the culture liquid, necessary because this gas, in too high concentrations, 

has an inhibiting effect on growth. Because of the simplicity of our system, nutrient 

administration apparatus was used also as a degassing apparatus, by arranging suitable openings 

through which the liquid comes into direct contact with the external environment, uniformizing 

its pressure with the surrounding one.  

An inoculation apparatus of gaseous substances was needed too. The main gaseous 

substance administered is the carbon dioxide, required for the metabolic processes of the 

photosynthetic organisms, assuring them the carbon necessary for the synthesis of the 

substances necessary for their survival and growth. Carbon dioxide is also fundamental to limit 

the phenomena of contamination by aerobic and anaerobic microorganisms, which cannot 

survive in environments with high percentages of CO2. 

The entire system of circulation of liquids and cultivation of microalgae was controlled 

through a system of monitoring of production parameters. This makes it possible to have all the 

data available to analyze the growth process of the organisms, and to evaluate the effectiveness 

of the changes, made during the cultivation phase, in order to program the future evolutions. 

The control allows corrective actions too, that can be carried out if there are changes in the 

parameters that go beyond the limits imposed. For example, the measurement of oxygen 

concentration allows to evaluate if the degassing systems are properly calibrated and if their 

functioning is correct, while measurements of pH allow to hypothesize the amount of nutrients 

present in the culture medium, assessing the rate of absorption by microalgae. 

3.2.2 How it works 

The culture liquid, consisting of water, microalgae and a solution of macro and 

micronutrients, is inserted into the nutrient administration apparatus, that is, in the case under 

examination, a simple tank. When the amount of liquid inside the tank reaches the set value (in 

this case, 80 L), the liquid handling apparatus is activated, and this device pumps the culture 

liquid inside the distribution apparatus. In this way, culture solution starts circulating inside the 

panel.  

The liquid inside the panels follows the pre-established paths, created using the 

connection devices between the alveolar elements of the polycarbonate. These paths are chosen 

with the aim of maximizing light exposure time and reducing load losses, with the consequent 
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energy consumption connected to them. In addition to the path established within the various 

elements of the panel, another factor that maximizes light exposure is the high surface/volume 

ratio that flat panel photobioreactor allows to obtain. 

At the end of this phase of exposure to light, the liquid is newly sent to the starting tank, 

where degassing phase occurs, and so a part of the oxygen produced during photosynthesis is 

released.  

This regime corresponds to the cultivation and growth phase of microalgae, in which they 

use the elements dissolved in the liquid as nutrients, and synthesize them in substances 

necessary for their metabolism, thanks to the energy received through the light that irradiates 

them. 

3.2.3 Technical drawings 
 

 

 
Figure 16: Schematic perspective representation of the embodiment of the apparatus, with two panels for the culture 

of microalgae and a bi-emissive optical illuminator 

Where: 

• 100’ is the equipment for the cultivation of photosynthetic organisms 

• 20 and 30 are the panels containing photosynthetic microorganisms 

 

 

100’ 
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Figure 17: Schematic perspective representation of a bi-emissive optical illuminator according to the embodiment 

illustrated in Figure 16 

 
Where: 

1. optical guide 

2. plurality of LEDs 

3. a pair of profiles to dissipate the thermal energy generated by the LEDs 

4. regulation and control framework 

5. plurality of shielded cables 

6. pair of supports for centering the optical guide 

7. a pair of uprights to ensure the rigidity of the device for artificial lighting 

8. closing caps to close the uprights 

9. power supply system 

10. bi-emissive optical device for artificial lighting. 

 
 
 

Microalgae introduced into the panel come from precedent tuning tests. So, at the moment 

of the inoculation, they had an optical density of about 1.178. As a start point, the expected OD 

10 
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should be about 0.25 - 0.3, so, a simple proportion is performed to determine which microalgal 

volume must be inoculated to reach this OD value as follow: 

50 L : 1.178 = X : 0.3  X = 12.7 L 

Where: 

 50 L is the volume of microalgae coming from the precedent tuning tests; 

 1.178 is the OD value previous to the inoculum; 

 0.3 is the expected OD value; 

 X is the microalgal volume necessary to reach the expected OD. 

 

 
Figure 18: Microalgae inoculation into the PBR 

The panel configuration of this experiment has a capacity of 80 L, constituted thus by 

12.7 L of microalgal volume, 640 mL of nutrients (400 mL of solution 1, 80 mL of solutions 2, 

3, 4) and water, until the volumetric capacity of the system is reached. 
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Figure 19: Completed inoculation, off LEDs 

The illumination system is constituted by six LED arrays, of which three in the superior 

part, and three in the inferior part of the photobioreactor. On every array, several types of LEDs 

are collocated. All these LEDs are governed by a controller, through different channels. During 

this experiment, only channel 5 and 10 had a non-zero value, because just white LEDs were 

used. The controller can supply LEDs with a minimum power of 0 to a maximum of 255; during 

the first part of our experiment, a power of 147 was provided to the LEDs. When microalgae 

growth assumed a constant trend, and no more growing, illumination conditions were changed, 

and supplied power became 255. Moreover, the lighting supplied had, in the first period, an 

intensity of 33 PAR, while this value increased to 57 in the second period. As already 

mentioned, PAR is the photosynthetically active radiation, which coincides, in this specific case 

(thanks to the spectroradiometer used, Oxycian PLA20, a device designed to measure the 

spectral power distribution of a source), with the micromoles of photons per square meter per 

second. Therefore, this quantity describes the flow of photons supplied to the microalgae.  



Politecnico di Torino 
A.A. 2017/2018 

 

41 | P a g .  
 

 
 

Figure 20: Three days after inoculation, LEDs are on 

 

 
 

Figure 21: PBR after 36 days from the beginning of the experiment 

 

These two precedent pictures clearly show microalgae growth: their colour, after 36 days 

from the start of the experiment, became darker compared to the beginning, and also fouling 

appeared, creating darker areas attached to the internal walls of the PBR. Fouling is mainly due 

to microalgae deposition or death.  
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The photobioreactor consumes 64 W when illumination system has an intensity of 33 

PAR and only white LEDs are lit up, while it consumes 106 W when intensity has a value of 

57 PAR. Instead, the electronics consumes about 44 W. The LED technology used guarantees 

a life expectancy of about 50,000 hours. 

3.3 Data Collection 

This paragraph is aimed at describing the main procedures developed during the 

experiment, in order to obtain the results reported in Chapter 4.  

3.3.1 Growth Rate 

Growth rate is measured in two different ways, linked to each other. The first measure is 

the absorbance (or optical density OD), a quantity used to describe the transmission of light 

through a specific liquid. In fact, optical characteristics of microalgae are fundamental 

parameters for analysing light field distribution in photobioreactors (PBRs). Moreover, when 

microalgae cells grow, their optical properties vary with growth time, because of the 

accumulation of pigment and lipid, cell division and metabolism. The optical density is 

described by Beer-Lambert law, which defines it as a logarithmic ratio between the light 

intensity incident on the liquid (IIN) and the light transmitted through the liquid (IOUT): 

𝑂𝑂𝑂𝑂 =  −log10
𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂
𝐼𝐼𝐼𝐼𝐼𝐼

 

Optical density was measured by a UNICAM Helios-γ spectrophotometer, that is an 

instrument capable of performing quali-quantitative analysis using a light source. The 

spectrophotometer uses the characteristic of light to be absorbed, at different frequencies, by 

chemical or biological substances.  
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Before measuring the absorbance of the sample, it is necessary to perform a blank 

test under the same conditions, omitting only the algal sample. Then, this last is introduced 

inside a cuvette, a small tube-like container (volume of 4 ml) with straight sides and a square 

cross section, made of a clear, transparent material such as plastic. Cuvette is then introduced 

inside the spectrophotometer, where a beam of light passes through the sample within the 

cuvette, to measure the absorbance of algal sample. Samples have normally several dilutions: 

pure sample, 50%, 25% and 12.5% (diluted with distilled water), and all these samples are 

duplicated. Dilution factor depends on the optical density of algal sample: when OD was low, 

pure sample, 50% and 25% dilutions were used. When OD became higher, with values of about 

1.5, each sample was much more diluted, because microalgae shadow each other, and this badly 

affects the measure. Moreover, if absorbance values are higher than unit value, the line of the 

measure is not linear, and, so, measure is not reliable anymore. Measures are made at two 

different wavelengths: 

• 680 nm (red), which is one of the two peaks of absorbance of cholorophyll-a (the other 

one is 430 nm, blue) 

• 800 nm, in order to give an information about algal turbidity. 

 

 
 

Figure 22: Spectrophotometer and cuvettes 

 

http://context.reverso.net/traduzione/inglese-italiano/blank+test
http://context.reverso.net/traduzione/inglese-italiano/blank+test
https://en.wikipedia.org/wiki/Absorbance
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The second quantity used for measure microalgal growth is dry weight, a measurement 

of the mass of microalgae when completely dried. Different strategies were used to find this 

quantity, often used together for make a comparison.  

a – Crucibles and fan-assisted oven 

This method is quite simple: three crucibles are filled up with a 10 ml volume of algal 

broth, they are weighted, using an analytical balance, (whose degree of precision of the decimal 

figures is 5) and then introduced into a fan-assisted oven, which reaches 105°C (378 K). These 

crucibles remain into the oven for at least 24 h. At the end of this period, crucibles are 

introduced inside a desiccator, a sealable enclosure containing desiccants, used for protect algae 

within crucibles from humidity. Here, crucibles cool down and, finally, they are removed and 

newly weighted, with the same balance.  

                            

Figure 23: a) On the left, fan-assisted oven, b) On the right, analytical balance 

       

Figure 24: Desiccator with crucibles 

 

 

https://en.wikipedia.org/wiki/Desiccant
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b – Standard method 

Microalgal volume (usually 10 ml) is poured on a paper filter (mesh 0.45 µm), which 

retains the microalgae and lets the excess water pass. Filters are rinsed with an excess of 

distilled water, before being dried; in this way, filter only contains microalgae, while salts are 

“washed away”. This process is done with the help of a vacuum pump, that aspires more water, 

and a Buchner funnel. Then, exactly like crucibles, filters are introduced in to the oven. After 4 

hours they are removed and weighted, with analytical balance. This method is particularly 

indicated when algal broth contains a big amount of salts (contained in nutrients), that can affect 

dry weight if measured with classic method of crucibles.  

      

Figure 25: Paper filter and Buchner funnel 

c – Thermal balance 

Microalgal volume (usually 10 ml) is poured on a paper filter inside a support, which is 

introduced inside a thermal balance. This instrument is used for the determination of the 

moisture content of sample, and it also provides the weight of sample after drying. At the 

beginning of the measurement, the moisture analyser determines the weight of the sample, 

which is heated until about 105°C (378 K) and the moisture vaporizes. During the drying 

process, the instrument continuously determines the weight of the sample and displays the 

reduction in moisture. When drying is finished, it is possible to see results in terms of moisture 

content and/or dry weight of algal sample. 
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Figure 26: Thermal balance 

Although these methods are all generally valid, in the case under examination the most 

valid method was the one with the crucibles, which was used for dry mass determinations.  

3.3.2 Nitrate measurement  

Nitrates measurements were made with NANOCOLOR® Nitrati Z colorimetric test, 

whose measuring range is between 0.5 - 5.0 mg/L NO3
-.  

       
Figure 27: NANOCOLOR® Nitrati Z colorimetric test 

A standard certified liquid, with nitrates concentration of 1000 g/l, was used. It was 

diluted 1:10, to obtain a stock solution with a concentration of 100 mg/l; from this stock 

solution, four standard volumes were obtained, and used for draw calibration line, through Beer-

Lambert law, which relates light attenuation to the characteristics of the solution through which 

the light is passing.  
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Using angular coefficient of this line, microalgal samples can be analysed. Samples were 

taken from the tank, connected with PBR system, centrifugated with 10.000 rpm velocity and 

finally filtrated with a siring filter with pore size of 0.45 µm. Siring filter was used to minimize 

interferences, due principally to organic colloids, humic acids, oxidizing and reducing 

substances. Samples were further diluted with a factor of 400, to achieve significant results. 
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4. RESULTS AND DISCUSSION 

4.1 Parameters trends 

The most relevant parameters regulating microalgal growth are nutrients quality and 

quantity, pH, CO2, turbulence and temperature. Turbulence is provided by a pump, which 

allows a continuous mixing. All the other parameters, and oxygen too, have been continuously 

monitored by a measurement line, through several probes, placed inside the tank. So, during all 

the period of the experiment, it was possible to collect all these measures. Then, these data were 

reported on an Excel sheet, creating different graphs, each one showing the trend of the 

mentioned parameters, as a function of time.   

Carbon dioxide trend 

 

Figure 28: CO2 as a function of time 

The graph shows the average trend of CO2 dissolved in water; so, it describes the quantity 

of available carbon dioxide within the system. It does not give information about carbon dioxide 

consumption, because separate tests are needed for evaluate this measure. On horizontal axis 

time is reported, measured in days, while on the vertical one CO2 concentration is described, in 

mg/l.  
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Carbon dioxide is furnished by a tank, with a constant flow, comprised between 1.5 and 

2.5 l/min. It is reasonable to distinguish three main phases, in which carbon dioxide trend is 

almost constant. In the first period, CO2 values are around 80 mg/l, in the second 73 mg/l, while 

in the third, and last, period it is higher than the previous ones, around 97 mg/l. This is probably 

due to probe position: while in the first two periods it was inside the tank of the system, in the 

last period it was on the higher part of the tank, so the measure of available carbon dioxide was 

higher. As the graph shows, the only negative peak occurred on days 14 and 15, but this is 

simply due to the end of CO2 tank, occurred during weekend. When the new carbon dioxide 

tank was introduced, CO2 concentration newly started its growth. 

Nitrates trend 

 

Figure 29: Nitrate concentration as a function of time 

 

The graph shows the nitrates (NO3
-) concentration trend, as a function of time, within 

photobioreactor system. On the horizontal axis there is the time, measured always in days, while 

nitrates concentration is placed on the vertical axis, measured in g/l. These measures were made 

in a shorter period than the one of the experiment: in the first period, no instruments were 

available for this measure, while in the last period, some errors occurred with the kit used. This 

is clearly showed in the graph: while in the first period nitrates trend decreased, because of 

nutrients consumption by microalgae, in the second period this decrease did not happen, while 
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errors on measures increased. On day 18, a minimum nitrates concentration was reached, so, a 

new bottle of nutrients was added. This obviously provoked a rapid increase in nitrates 

concentration: the result is a positive peak, on day 20, in which nitrates concentration reached 

its higher value, equal to 1.84 mg/l.  

Oxygen trend 

 

Figure 30: Oxygen concentration as a function of time 

         The graph shows the oxygen production curve, that describes the quantity of oxygen 

within photobioreactor system, produced by microalgae during their photosynthesis. On the 

axis there are time (on the horizontal one), measured in days, and oxygen concentration (ppm, 

on the vertical one). While carbon dioxide is consumed by microalgae during photosynthesis, 

oxygen is produced. Because of the oxygen production, this kind of photosynthesis is also called 

“oxygenic”: in this process water is the electron donor and, after hydrolysis, it releases oxygen. 

This can be described through a general equation: 

H2O + CO2 + photons  [CH2O]n + O2 

Oxygen monitoring started on day 17. As the graph shows, in fact, the values before of 

this data are affected by many errors, and they are very different from the ones of the second 

period. From day 17, a probe with optical revelation was installed, and from this point oxygen 

concentration values became constant, with a value around 8.70 ppm, even if they undergo a 
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slow decrease, which becomes more evident from the 37th day, when illumination conditions 

changed, and light intensity increased.  

Temperature and pH trends  

 

Figure 31: pH as a function of time 

 

Figure 32: Temperature as a function of time 

The graphs show temperature and pH trends as function of time. So, time is reported on 

the horizontal axis, while temperature (measured in °C) and pH are on the vertical ones. The 
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pH range for most cultured algal species is between 7 and 9, with the optimum range being 8,2 

- 8,7. In the case under examination, pH does not undergo particular variations: it remains 

roughly constant, comprised in a range between 6.5 and 7. Moreover, pH is influenced by CO2: 

on day 15 a positive peak occurs, because of the total absence of CO2. When CO2 is newly 

introduced, pH returns to the previous values. 

On the other hand, temperature undergoes some variations, but it remains substantially 

included in an interval around the temperature of 25°C. So, temperature was not limiting in 

microalgal growth.  

4.2 Growth trends 

4.2.1 Optical densities vs. Time 

The growth of an axenic culture of microalgae is generally characterized by five phases. 

The first one is the lag or induction phase, in which cell density has a little increase. This phase 

is due to the physiological adaptation of the cell metabolism to growth. To follow, there is the 

exponential phase: here, the cell density increases as a function of time t according to a 

logarithmic function: 

Ct = C0.emt 

where Ct and C0 are the cell concentrations at time t and 0, respectively, and m = specific 

growth rate. The latter is mostly dependent on algal species, light intensity and temperature. In 

the third phase declining growth rate occurs: cell density starts to slow down when nutrients, 

light, pH, carbon dioxide or other physical and chemical factors begin to limit growth. The 

following one is the stationary phase, in which the limiting factor and the growth rate are 

balanced: cell density becomes roughly constant. The fifth and last phase is the “crash phase”, 

or death: cell density rapidly decreases, while the culture eventually collapses.  
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Figure 33: Microalgae growth curve 

This graph shows the growth rate curve of Scenedesmus Obliquus. On horizontal axis 

time is reported, measured in days, while on the vertical one the optical density (OD) is 

reported, both at 680 and at 800 nm. 

Microalgae growth is mainly described by the curve at 680 nm. On the first day of the 

experiment, microalgae, nutrients and water were introduced into the tank, linked to the PBR. 

Power supplied to the LEDs was 147, while a 33 PAR intensity value was established. In this 

experiment, lag phase did not occur. In fact, as the graph shows, optical density immediately 

started its growth in exponential way. But the other phases too are not well represented: 

microalgal growth has continued for much longer than expected, so, the third and the fourth 

phases do not appear on the graph. In fact, the values have never stopped increasing, at most, 

they remained constant, but this is probably due to the lack of algae mixing and their deposit 

on the walls (fouling). Nutrients, which should have been added when the curve had become 

constant, were actually added on the 18th day of the experiment, when the trend was still 

growing. The addition of nutrients did not result in any substantial change in the trend, which 

remained approximately unchanged. At the 36th day of the experiment, the curve suffered a 

decrease for the first time, therefore, another bottle of nutrients was added: this addition did not 

provoke a significant increase; for this reason, illumination conditions were changed, setting 

the power and intensity values respectively to 255 and 57 PAR. Increasing the light did not 

produce the expected effects: trend did not increase in a significant way, while a lag phase 

occurred.   
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The curve at 800 nm describes turbidity into microalgal samples. As the graph shows, the 

two curves are almost parallel; therefore, as the microalgal growth increases, the turbidity also 

increases, in an almost proportional way. Moreover, this curve is mostly linear, similar to a 

straight line. 

Exponential phase lasted about 13 days. After this period, optical density at 680 nm 

continued its growth, but more linearly. The higher value reached by this quantity, during the 

exponential period, was 1.547, while the higher value reached during the entire experiment 

period, was 3.293, on day 39. So, at the end of the experiment, a value greater than twice the 

maximum obtained at the end of the exponential growth period was reached. Therefore, this 

underlines that microalgae growth has not respected the five stages of growth, but, on the other 

hand, they have grown more than expected, reaching higher values than those of previous 

experiments. 

A second important result is related to the light intensity used. The experiment foresaw 

reaching high microalgal densities increasing the light intensity from 33 to 57 PAR. Instead, 

increasing light did not provoke significant effect, but, on the contrary, it has simply confirmed 

the previous lag phase, in which optical densities remained roughly constant, around a value of 

3,2 (at 680 nm). But this result is still positive, because the expected values have in any case 

been reached, but with a lower light intensity. As a consequence, consumption and therefore 

energy costs were lower: it is reasonable to state that the expected results have been achieved 

in conditions of energy efficiency.  

 

4.2.2 Dry weight vs. Time 

Dry weights were calculated though crucibles and oven method. With this method, the 

measurements obtained have been largely influenced by the presence of salts. In fact, BG-11 

medium contains a big amount of salts, and every addition of nutrients provoked a sharp 

increase of dry weights. So, these measurements are overestimated, and especially the highest 

values obtained are not truly indicative of the real dry weights, but they are nevertheless a useful 

index to understand the microalgal growth. 

Moreover, these quantities are useful for the calculation of specific growth rate, which is 

a measure of how fast microalgae grow, through the following formula: 
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𝜇𝜇 =
ln (𝑥𝑥(𝑡𝑡1)

ln (𝑥𝑥(𝑡𝑡0)�

𝑡𝑡1 − 𝑡𝑡0
 

Where x(t1) and x(t0) are dry weights calculated on days t1 and t0. The most suitable 

periods on which to calculate the growth rate are those far from the addition of nutrients, and 

with a dry weight trend proportional to the OD one. For these reasons, two periods were chosen: 

the first from day 11 to day 15, the second one from day 29 to day 34. Another key parameter, 

necessary to understand microalgal growth, is the overall biomass productivity, which can be 

calculated via the following equation: 

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =
∆𝑥𝑥
∆𝑡𝑡

 

Where ∆𝑥𝑥 is the variation of biomass concentration (mg L-1) within a cultivation time of 

∆𝑡𝑡 (D). 

Growth rates and overall biomass productivities were calculated in both the periods, and 

reported in Table 4: 

Period (days) Growth Rate (D-1) Overall Biomass Productivity (g L-1 D-1) 

From day 11 to day 15 0,094043 0,099553 

From day 29 to day 34 0,067538 0,366858 

 

Table 4: Growth rate and overall biomass productivities 

As shown in the table, the highest value of specific growth rate was obtained in the first 

period; in particular, this value was reached at the peak of the exponential growth, described 

through OD curve. On the other hand, the highest overall biomass productivity was reached 

during the second period. During these two periods, about 7.96 and 29.35 g of microalgae were 

produced, respectively, in one day, within the photobioreactor system. 

As mentioned above, increasing light did not produce any significant effect, neither 

regarding to dry weight. 

 

4.2.3 Correlation OD – light intensity 

In this experiment, only two light intensities were used: the first one of 33 PAR, and the 

second one, 57 PAR. However, before setting the light to 33 PAR, microalgae were subjected 

to a light intensity of about 12 PAR, in order not to create in them an excessive stress, linked to 

the sudden intense lighting. As already mentioned, 57 PAR light intensity did not provoke any 
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effect on microalgal growth, but, instead, it just provoked a lag phase. So, an intensity value of 

33 PAR, applied for 34 days, was considered a limiting factor for microalgal photosynthetic 

growth. Therefore, considering only the period in which the luminous intensity was 33 PAR, it 

is possible to obtain an increasing curve, whose trend is approximately linear, and it is possible 

to find its equation.  

 
 

Figure 34: Optical densities at 680 nm as a function of time 

 
On the other hand, it would be interesting to identify a relationship between the light 

intensities (PAR) and the OD values obtained. Considering the maximum value reached with 

the use of 33 PAR, equal to 3.26, it is possible to establish a proportion: 

33 PAR : 3.26 = 1 PAR : F 

F = 0.100 

Where F is the value of the optical density resulting from the application of a luminous 

intensity of 1 PAR. 

This result could be useful for identifying what is the optical density resulting from a 

given value of light intensity applied, expressed in PAR, simply multiplying this intensity by 

the factor 0.100. 

On the other hand, if the objective is to reach a certain optical density value, then, it is 

sufficient to multiply this value by the reciprocal of F. This last method was applied to the 
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optical densities resulting from this experiment: each OD value, obtained at 33 PAR, was 

multiplied by 1/F, to identify the light intensities required to obtain it. The results are reported 

on the graph below: 

 
Figure 35: Correlation OD and light intensities 

In this way, to reach the OD values obtained by this test, it may be possible to use less 

than 33 PAR.  

Through this method, a linear correlation between optical densities, found during this 

experiment, and light intensities, measured in PAR, was found. It would be interesting to make 

a step test, in which light intensity does not assume a constant value, but increases by successive 

steps, until 33 PAR value is reached. In this way, the experiment would last the same period, 

but, because light intensities would be lower than the one used, also energy consumption would 

be lower. Such a similar experiment would take to comparable results, but with lower costs, 

than the ones of this thesis work. 
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5. Conclusions 

The principal purposes of this thesis work were mainly two. The first one was to indagate 

microalgal growth under specific conditions, using LED illumination and monitoring all the 

process parameters; the second purpose was to individuate coefficients that will be used in the 

future to proportionally calibrate the light intensity related with biomass density of PBR.  

Regarding the first aim, this thesis work produced different results than expected. In fact, 

the starting idea was to increase the light intensity from 33 to 57 PAR, observing the consequent 

growth, and obtaining high OD values. Indeed, the increase in light intensity did not produce 

significant increase in OD, but, on the contrary, it led to a lag phase and a substantial stop in 

microalgae growth. On the other hand, the expected OD values were in any case achieved, but 

using a lower light intensity than the expected one, equal to 33 PAR. This is an important goal 

in terms of energy efficiency. By observing just the two periods chosen, between days 11-15 

and 29-34, it was possible to obtain indicative values of the specific growth rate and the overall 

biomass productivity, which reached higher values than those expected.  

It is possible to make a comparison between the results obtained and the ones found in 

literature, in several articles. Considering the period from day 29 to day 34, overall biomass 

productivity reached a very high value. This value, equal to 0.367 gL-1d-1, is higher than those 

found, for example, by Thiansathit and Ho in their researches, "The kinetics of Scenedesmus 

obliquus microalgae growth utilizing carbon dioxide gas from biogas” (2015) and 

"Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel 

production" (2010) respectively. In fact, in the first article, a biomass productivity equal to 

0.145 gL-1d-1 was achieved, using fluorescent lamps, whose intensities were 80 µmol s-1m-2. 

Instead, in the second reported research, a value of 0.293 gL-1d-1 was obtained, using tungsten 

filament lamps, having an intensity of 60 µmol s-1m-2. In the case under examination, a higher 

productivity was achieved, using, for more, LEDs, whose consumption is lower than other light 

sources, with lower intensity. In fact, using only white LEDs, the photobioreactor consumes 64 

W when light intensity is equal to 33 PAR, while it consumes 106 W when intensity is 57 PAR. 

Instead, the electronics consumes about 44 W. A comparison has been done, using both LEDs 

illumination and neon lamps, and light intensities equal to 33 and 57 PAR. Regarding neon 

lamps, two configurations were used: the first, with 3 neon lamps (58 W each), and a light 

intensity of 33 PAR, the second with 5 neon lamps (58 W each), and a light intensity of 57 

PAR. Results are reported below: 
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Light Source       3 Neon 5 Neon LED     LED 

PAR 33 57 33 57 

Electric consumption (W)         174         290 64 106 

Biomass growth in 5 days (%) 43  66  
 

Table 5: Comparison between different light sources 

 

Table 5 shows that, under the same conditions of light intensities, LED system consumes 

very less than traditional illumination system. Moreover, this reduction does not provoke a 

reduction in biomass production, because LED system, in 5 days of observation, produces more 

biomass then the traditional system. This comparison has been done using only white light, 

because traditional neon systems do not allow to influence spectrum composition. 

Regarding the second purpose, it was possible to find the optical density produced by the 

application of 1 PAR. Through this proportion, it would be possible, established an optical 

density value, to find the light intensity necessary to obtain it. On the other hand, it would be 

also possible to find the optical density resulting by the application of a given value of light 

intensity, measured in PAR. Because these results are theorical, it would be interesting to 

perform step tests, in which different values of increasing light intensity would be used, to 

observe the effects of each successive step of light increase. If the results are satisfactory, it 

means that the results obtained by immediately setting the value of 33 PAR could be reachable 

also with variable, but minor, intensities. Obviously, this would comport a lower energy 

consumption, and, consequently, lower costs. 

So, the use of LEDs has proved to be very effective, both because they have allowed to 

achieve very high growth values, and because this objective has been achieved with a rather 

low light intensity. This led to lower consumption than expected. Finally, the use of LEDs 

illuminator has led to better results than the use of simple neon lamps. 

The most important results of this thesis work are the unexpected growth values under 

the illumination conditions imposed. This experiment could be the first step in a series of tests 

aimed at increasing microalgae under conditions of ever better energy efficiency. The 

maximum OD value achieved, equal to 3.26, and energy conditions make this system optimal 

for microalgal growth. The use of LEDs illumination makes this system suitable for a scale-up 

too. In fact, the only precedent realization of a similar system was realized in 2013, to carry out 

various activities, but only six months later was decided to return to the research and 
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development phase. The reason was mainly economic: photobioreactor was illuminated by 

neon lamps, whose energy consumption were too high.  

To have more scientific correctness, this experiment will surely be repeated in the future, 

to verify the results obtained. Other experiments involving the use of neon lights are planned, 

to make a more accurate comparison with LED illumination. As already mentioned, it would 

be interesting to perform a step test, to assess if the theoretical results obtained with this work 

are also valid from the experimental point of view. 

In the last decades, numerous steps have been taken in the world of microalgae. Now that 

the results of climate change are increasingly evident, it is essential to continue to deepen 

research in this field. Before microalgae can be used on a large scale, a long research phase is 

still required, more researches, more experiments must be conducted in order to identify the 

best conditions for their cultivation, both physically and biologically, and economically. When 

the best solution will be identified, microalgae could contribute significantly to the abatement 

of the carbon dioxide emitted, at least from the main stationary sources. 
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