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Abstract

The aim of this thesis is to design a process for the automatic detection of engine

faults by analysing sound spectrograms. The designed technique mimics the man-

ual state-of-the-art analysis performed by domain experts. Each operation of our

method is performed automatically, without requiring domain experts intervention.

The manual process being replicated consists of analysing the spectrogram image

obtained from the sound emitted by the engine under inspection. This visualized

spectrogram allows highlighting engine faults, which occur with peculiar character-

istics that are well known by the experts. In particular, we focused on the detection

of a whistle called constant tone, which appears as a straight noisy line in the spec-

trogram. The inspection typically requires a visual analysis performed manually by

a domain expert.

The approach proposed in this thesis addresses automatically this operation by

means of image processing and machine learning techniques.

The results are evaluated comparing to the performances obtained with the man-

ual process, which is considered our benchmark. Our model is able to generate

high quality detections, which are also interpretable, as they are provided with the

spectrogram region where the problem occurs. We hope that this work will lead

a spectrogram analyst to speed up his work by automatizing steps that would be

otherwise performed manually.
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Chapter 1

Introduction

1.1 Objectives

The main objective in this thesis is to identify a specific noise signature in a

spectrogram, computed by a file audio. The audio track is the sound of an engine

car, recorded by a tool during an acceleration ramp. It is the input to our model.

The specific noise signature we want to find is a ”whistle” in a known frequency

range, called constant tone. This process already exists but every single step, from

the spectrogram analysis to the noise signature identification, is executed by a tool

that requires the intervention of domain experts.

Having big dataset and machine learning algorithms, will enable a technology

transfer for automatizing manual techniques. Predictive maintenance and automatic

diagnostics systems will ease analysis made by domain experts (e.g. mechanical,

engine manufacturers etc.).

Our work, in this thesis, aims to automatize the engine faults detection. In

particular, we focused on constant tone detection, having as output a percentage

which indicates its presence.
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1 – Introduction

1.2 Existing process

The process to detect engine faults we automatized, designed by domain experts,

can be summarized in four steps:

1. Spectrogram computation

2. Main order identification

3. Time to RPM conversion

4. Faults detection (e.g. constant tone)

Each step listed above has as input the output of the previous one. The audio track

is the input of the first step.

1.2.1 Spectrogram computation

Once the audio track is recorded, it is processed by industrial tool in order to

lay out a spectrogram chart. The purpose of generating a spectrogram is that it

makes easier identifying and evaluating the gravity of a problem by visual inspec-

tion. Indeed, acoustic perception is more sensitive and subjective. In addition,

spectrograms can reveal information which are more difficult to hear.

A spectrogram is computed by consecutive Fourier transforms using a sliding

window that selects for each Fourier transform a subset of samples in the original

signal.
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1 – Introduction

Figure 1.1: Fourier transformation process

Figure 1.1 shows the Fourier transforms process applied to an audio samples

(drawn through black points). Each red rectangle represents the filter window,

nperseg the number of samples per window and noverlap the number of samples

overlapped between adjacent windows.

Industrial tools allow Fourier transformation parameters to be set before obtain-

ing the spectrogram itself.

The result of the spectrogram is a two-dimensional graph having frequencies

[Hz] on x-axis and times [s] on y-axis. Moreover, the third dimension represented

by colour intensity, is the amplitude (S) of the signal.

Once the human ear can be modelled as a logarithmic listening device [1], am-

plitude is converted to decibel [dB], computing:

Sdecibel = log10

S

20 · 10−5

Finally, range of frequencies represented on the graph is reduced to the default range

[fmin, fmax] Hz where engine features and eventually problems are visible.
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1 – Introduction

Figure 1.2: Example of spectrogram produced by typical industrial tool

Figure 1.2 shows an example of spectrogram produced by an industrial tool, zoomed

on the area between [fmin, fmax] Hz, represented on x-axis. The bright lines in Figure

1.2, represent the engine orders. An engine order is a vibration and/or acoustic

response due to rotating components in the engine (e.g. crankshaft, toothed wheels,

gears etc.). Each order is generated by the rotation of a particular component.

Once the acceleration of these components changes, their response change too. The

brightest line in Figure 1.2, is the main order. It is brighter than others because it

is produced by the combustion of the crankshaft that will produce a more intense

response. Thanks to the formulas created by domain experts, the combustion order

can be just calculated by dividing number of cylinders by 2.
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1 – Introduction

1.2.2 Main order identification

The next step is to shift domain from time to RPM. However, to obtain this

conversion, the main order (what orders are described at Section 1.2.1) must be

identified and its trend must be traced through points. They have to be manually

drawn inside the main order itself.

Figure 1.3: Example of manually detected main order

Figure 1.3 shows how to trace points inside the main order, following its shape. For

what concerns the identification task, it is performed just knowing the number of

cylinders and, as a consequence, the main order number, computing the formula

explained in Section 1.2.1. Moreover, being the most intense one in magnitude,
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1 – Introduction

main order is clearly distinguishable than other orders.

1.2.3 Time to RPM conversion

Finally, industrial tool uses points tracked on main order, as described in Section

1.2.2, for performing the conversion from time to RPM domain. RPM stands for

revolution per minute and it represents the number of cycles computed by rotating

components of the engine per minute. The target of this conversion is to straighten

the main order and, as a consequence, all the orders. Indeed, an order linearly

increases in RPM for increasing frequency values, as demonstrated by the given

formula

RPM = fn ·
60

n

used for computing RPM value, having the frequency fn, where n is the main order

number.

(a) Time domain (b) RPM domain

Figure 1.4: Examples of time to RPM domain conversion

Figure 4.31 depicts a time to RPM conversion and how main order and orders in

general are straightened out in RPM domain than the time domain. The conver-

sion is necessary because the acceleration performed by a human in order to col-

lect the audio track, cannot be perfectly linear in the time domain, as Figure 4.31
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1 – Introduction

demonstrates. In addition, having linear orders, let domain experts to apply known

formulas, applicable only on RPM domain, to evaluate severity of engine faults, if

any.

1.2.4 Engine faults detection

The last step is to understand if there are any engine faults and in case analyse

them. In particular, constant tone is an unusual noise that is driven by the charging

system. This noise is almost constant in frequency but the frequency is not always

the same because it is in function of the temperature of the oil at which the mea-

surement is performed. The phenomena appears in known frequency ranges. Then,

operator, knowing constant tone characteristics, is able to detects it and analyse it

by marking its shape with the tool.

Figure 1.5: Example of constant tone

Figure 1.5 depicts how the constant tone, inside the red rectangle, appears in a
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1 – Introduction

spectrogram graph.
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Part II

Model implementation
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Chapter 2

Data Collection

In the actual state-of-the-art we cannot find a database that satisfies objectives

described in Section 1.1, so data had to be collected from scratch. After collecting the

audio tracks, each of them must be manually annotated with the engine informations

needed to train and test the process designed for this thesis.

2.1 Chosen tool for recording audio track

The choice of the tool used to collect data has been directed to smartphone mi-

crophones for two main reason. First, they fully satisfy the characteristics needed

to catch all the informations to be analysed, after converting it into related spectro-

gram. Secondly, they are available almost to everyone by now and, in addition, the

spread of smartphones all over the world is increasing every year.

2.2 Data collection process

The process made to collect input data requires two operators. Having a car with

known engine characteristics, such as the model and especially number of cylinders,

one operator, at the wheel, puts neutral gear and, from idle, speeds up to a default

11



2 – Data Collection

RPMmax value for a determinate interval of seconds. Meanwhile, the other operator

is recording, with a smartphone, the sound produced by the engine during the whole

acceleration, with the hood of the car opened so that the sound results clearer. When

the operator at the wheel terminates the acceleration, the other one has to stop the

recording.

In our research, in order to collect enough data for the model, we applied the

process just described to 10 different cars and for each one we have repeated the

process 5 times for a total of 50 files. Each repetition has been executed with different

durations for studying best duration time and seeing if other aspects, such as engine

heat, could influence measurements. Smartphones used for our experiments are one

Android and one iOS device, the two best-selling brands in the word, choosing best

recording quality for both devices.

2.3 Audio tracks characteristics

The audio collected characteristics can be summarized in the Table 2.1:

Android iOS
Codifier WAV WAV
Channel Mono Mono

Sampling [Hz] 44100 48000
Max time [s] 37 37
Min Time [s] 8 8
Avg Time [s] 24 24

Table 2.1: Audio collected characteristics

These chosen values guarantee a good quality and let engine faults be detected.

We recorded some audio for less and more time than indicated range in standard

procedure, in order to understand how the results change

12



2 – Data Collection

2.4 Spectrogram generation

The next step of analysis replicates the existing process described at Section

1.2.1.

First, to avoid microphone dependencies, the audio samples are normalized

samples = [x0, x1, ..., xN−1]

N = total number of samples

using the z-score function

zi =
xi − x
S

applied to each sample

xi, i = 0 ... N − 1

having the mean function

x =
1

N

N−1∑
i=0

xi

and the standard deviation

S =

∑N−1
i=0 (xi − x)

N − 1

.

Except this last operation, the existing process, described in Section 1.2, is repli-

cated as it is. In summary:

• consecutive Fourier transforms applied to recorded audio (choosing the same

parameters used for the existing process)

• the conversion of resulting spectrogram to decibel (dB), to enhance analysed

features

• frequencies window reduction to [fmin, fmax] Hz, to zoom on the area where

wanted features appear

13



2 – Data Collection

The Fourier transforms are performed by applying the Discrete Fourier Trans-

form (DFT)

X[k] =
N−1∑
n=0

x[n]W kn
N , k = 0, 1, ..., N − 1

to each subset of samples x[n] of length N , where WN = e−j(2π/N). For optimize the

DFT computation we applied the Fast Fourier Transform algorithm (FFT) [2].

The spectrogram computation generates a matrix and two vectors. The matrix,

representing the spectrogram image, contains a gray intensity value (i.e. from 0 to

255) for each pixel in position (x, y). Moreover, the first vector is the frequencies

vector contains for each x-coordinate of the image, the corresponding frequency

value, expressed in hertz (Hz). The other one is the time vector, contains for each

y-coordinate of the image the corresponding time value, expressed in seconds (s).

(a) Spectrogram by existing tool unfiltered (b) Spectrogram by our process unfiltered

Figure 2.1: Spectrograms comparison

Figure 2.1 depicts the comparison between the spectrogram obtained by our process

than by an industrial tool. The two spectrograms show the orders and engine faults

in the same way.
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Chapter 3

Data Labelling

3.1 LabelMe annotation tool

For evaluating the accuracy of our method in comparison with the existing one

and keeping track of all the known features of spectrogram described in Section 2.4,

we needed annotated images providing a ground truth. These have to be generated

with an annotation tool which allows user to add additional informations to images.

LabelMe [3] covers the purposes, is in fact a simple tool to build image databases,

based on annotations. It is possible to draw polygons on each image, characterizing

them with a name, attributes and different colours.

15



3 – Data Labelling

Figure 3.1: LabelMe tool

Figure 3.1 shows a screenshot of the tool and the main three sections used for

labelling each image.

The first section is the toolbar on the left, especially useful to draw polygons on

the image.

16



3 – Data Labelling

Figure 3.2: LabelMe tool - drawing toolbar

Starting from the top down of Figure 3.2, the first two buttons are used for zooming

respectively in out the image, to obtain more accuracy in the drawing phase, while

the third one is used for restoring the original size of the image. In order to draw

polygons, there are two options. The first one is the fourth button that allows

drawing polygons (pink and purple one in Figure 3.1) point by point, each one

connected with the previous one with a segment until the first point is selected and

polygon is closed. The second option is the fifth button used to draw rectangular

polygons (blue one in Figure 3.1) selecting just the top left and bottom right points

that define a rectangle in the image. The last button is useful to undo drawing

operations, step by step (e.g. deleting one by one the points defined for a polygon,

starting from the last to the first one).

17



3 – Data Labelling

The second main section in Figure 3.1 is the central part where there is the image

that needs to be labelled. After selecting one of the two options described before

for drawing polygons, the user can interact with the central image to build them.

Figure 3.3: LabelMe tool - labelled image

Figure 3.3 shows an example of image loaded and labelled by the tool. When a

polygon is drawn, a window appears in the image for inserting object name and

eventually attributes of polygon itself.

Figure 3.4: LabelMe tool - object name, attributes

18



3 – Data Labelling

Figure 3.4 shows the described window of the polygon having engine as object name

and cylinders # as attribute. After inserting at least the object name and clicking

on ”done”, the polygon is saved in a XML file and we can see its name appears in

the last main section on the right in Figure 3.1.

Figure 3.5: LabelMe tool - polygons summary

Here in fact, as Figure 3.5 depicts, there are all the polygons drawn down with their

names and eventually attributes. The tool allows the user to click on them and, as

result, it displays the window previously shown in Figure 3.4 of the corresponding

polygon, giving also the possibility to modify its name and attributes already chosen.

3.2 Annotated features

Each spectrogram is provided with the following annotations:

• engine type

• main order

• constant tone

19



3 – Data Labelling

Each of them is useful for training and test our process.

3.2.1 Engine

This annotation describes general features of the engine analysed with the spec-

trogram. It is represented with a rectangle (blue one in Figure 3.3) that covers the

significant part of the image, excluding the upper region where the engine RPMs

start decreasing and the lower region where the engine RPMs are constant. This is

done to evaluate the accuracy of the automatic detection of this main region of the

image.

This annotation includes also the number of cylinders of the engine in order to

obtain the main order number. This value is computed by dividing the number of

cylinders by 2. The number obtained is used in the time-to-RPM process, described

in Section 1.2.3. Applying the equation:

RPM =
60

n
· fn

where n is the main order number and fn is the frequency of order n, it is possible

to compute the RPM value of an order at a specific frequency.

3.2.2 Main order

The main order contour (pink polygon in figure 3.3) is annotated to evaluate

the accuracy of its identification. Indeed, its correct identification is necessary for

performing the time-to-RPM process.

3.2.3 Constant tone

This annotation is required for building a classifier that identifies constant tones

when there are present and test the accuracy of identification. An example of

annotation is the pink polygon in Figure 3.3, representing the constant tone.

20



3 – Data Labelling

3.3 XML format

Annotations created by drawing polygons are stored to file system in XML format

and, therefore, they can be automatically read and elaborated by our process.

Listing 3.1: LabelMe annotation

1 <annotation>
2 <f i l ename>engine1 . png</f i l ename>
3 <f o l d e r>spectrogram</f o l d e r>
4 <source > . . .</ source>
5 <object > . . .</ object>
6 <object > . . .</ object>
7 <object > . . .</ object>
8 <images ize > . . .</ images ize>
9 </annotation>

Listing 3.1 shows how XML is formatted. Each polygon is associated to an object

tag, whose most significant fields are: object name, such as main order, constant

tone and engine, that let our process automatically understand the kind of polygon

read and how process it; attributes, such as number of cylinders, which add extra

information to object name and, in the end, polygon which represents the annotation

points, expressed as x and y coordinate tags.

21



3 – Data Labelling

Listing 3.2: object tag

1 <object>
2 <name>engine</name>
3 <de le ted>0</de le ted>
4 <v e r i f i e d >0</v e r i f i e d>
5 <occluded>no</occluded>
6 <a t t r i bu t e s>c y l i n d e r s #</a t t r i bu t e s>
7 <parts > . . .</ parts>
8 <date>15−Sep−2018 20:44:11</ date>
9 <id>2</id>

10 <type>bounding box</type>
11 <polygon>
12 <username>anonymous</username>
13 <pt>
14 <x>0</x>
15 <y>38</y>
16 </pt>
17 <pt>
18 <x>682</x>
19 <y>38</y>
20 </pt>
21 <pt>
22 <x>682</x>
23 <y>218</y>
24 </pt>
25 <pt>
26 <x>0</x>
27 <y>218</y>
28 </pt>
29 </polygon>
30 </object>

Listing 3.2 shows an example of object tag created by drawing a polygon. The main

fields are: line 2, which describes the polygon name (”engine” in this example), line

6 which shows the cylinders attribute and line 11 that represents the polygon tag.

Inside it, line 13, 17, 21 and 25 display the points that establish the polygon. Each

of them is composed by x and y coordinates (e.g. lines 14 and 15) of the image

where that point can be found.
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Chapter 4

Base Model

4.1 Main order identification

Starting from the spectrogram representation described in Section 2.4, our pro-

cess mimics the process performed manually by domain experts. The first step of

this process is the main order identification. This operation, as described in Section

1.2.1, is based on the fact that the main order is the most intense order in the spec-

trogram and it is in a specific window, depending on known engine characteristics.

Indeed, these two conditions lead our procedure to correctly recognize it. Moreover,

the image must be first preprocessed to ease the identification phase, highlighting,

as much as possible, the main order and removing noise.

4.1.1 Image filtering

The image filtering is the process typically performed on images to reduce noise

and highlighting useful informations. Indeed, image filtering is the first step of our

preprocessing phase. Especially, we analysed in our experiments bilateral filter and

mean shift filter.
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4 – Base Model

Bilateral filter [4], is a technique implemented for smoothing images while pre-

serving edges (differently to a simpler Gaussian Filter). This aspect is important in

our case, for distinguishing the main order from the others. This algorithm changes

each pixel value by a weighted average of its neighbors. It depends only on two

parameters:

• d that indicates the diameter within considered a pixel a neighbour

• σ representing the intensity of the features to preserve

Figure 4.1: Example of bilateral filter window.

Figure 4.1 shows the fixed window of bilateral filter, represented with a red cir-

cle, having pixel p as center and all the pixels inside the window with diameter d

as neighbours. The key idea of this algorithm is that a pixel will affect another

pixel, if it is in a nearby area and it has a similar intensity value. The similarity

threshold between two pixels is defined by σ parameter. Higher values of d smooth

larger features while higher values of σ make widens and flattened images (intensity

approximately constant over all the image).

In our analysis, we investigated different values of d and σ to find the best

combination for our images. The set of considered values are:
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4 – Base Model

• d = [50, 150];

• σ = [5, 9].

(a)

(b)

Figure 4.2: Example of spectrogram filtered by bilateral filter with different value
of d and σ.

Figure 4.2 depicts how image changes combining different values of d and σ. Zoom-

ing on images processed by bilateral filter, we better noticed that the best trade-off

25



4 – Base Model

for the analysed values is d = 9 and σ = 50 because noise is reduced and, at the same

time, edges are still preserved. Combination d = 9 and σ = 150 preserves less the

edges, as we can notice in Figure 4.2 where the borders of the numbers representing

decibels are too smoothed. Instead, with d = 5 and any combination of σ, noise

is not properly removed, as we can notice in Figure 4.2. To further confirm this,

we investigated the colour histogram of images filtered with the parameters listed

before.

Figure 4.3: Histogram of images filtered by different d and σ values.

Histograms in Figure 4.3 show the distribution of the pixels over each gray scale

value. As expected, the right most image in Figure 4.3 presents a better smoothing

of the histogram peaks. Higher peaks (left most image in Figure 4.3) mean less

uniformity of gray scale in the image. Hence, from this analysis, we decided to

apply the bilateral filter with d = 9 and σ = 50 to the spectrograms generated as

explained in Section 2.4.
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4 – Base Model

(a) Original spectrogram (b) Filtered spectrogram

Figure 4.4: Example of spectrogram filtered by bilateral filter with d = 9 and σ = 50.

Figure 4.4 depicts how bilateral filter preserves edges and highlights the main order

by removing noise.

Besides the bilateral filter, we also analysed the effects of mean shift filter [5].

Both methods process both the spatial and colour intensity range domains. However,

while the bilateral filter exploits a static window in the two domains, the mean shift

window is dynamic as it moves in the direction of the maximum increase in the

density gradient. Hence, the mean shift filter is more suitable to the local structure

of the data. [6]

The parameters needed for mean shift filter are similar to the ones of bilateral

filter and, to choose the best combination, we adopted the same method for bilateral

filter. We analysed all the configurations from the Cartesian product between the

sets of values chosen for d and σ. The sets are:

• d = [1, ..., 50];

• σ = [10, ..., 50].

In order to choose the best combination, we inspected the most noisy images in our

dataset.

27



4 – Base Model

(a) Engine 2

(b) Engine 3

(c) Engine 4

Figure 4.5: Example of spectrograms affected by noise.

Figure 4.5 shows some example of noisy images (without applying mean shift filter).
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4 – Base Model

Noisy parts, marked with red circles, can affect negatively the main order identifica-

tion, especially when they are touching its shape. We observed that the combination

that better reduces noise, while preserving the quality of the main order, is d = 1

and σ = 30.

In general, our experiments confirmed a better attitude of mean shift filter than

bilateral filter to noise reduction thanks to its non static window.
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4 – Base Model

(a) Engine 2 bilateral filter, d = 9 and σ =
50.

(b) Engine 2 mean shift, d = 1 and σ = 30.

(c) Engine 3 bilateral filter, d = 9 and σ =
50.

(d) Engine 3 mean shift, d = 1 and σ = 30.

(e) Engine 4 bilateral filter, d = 9 and σ =
50

(f) Engine 4 mean shift, d = 1 and σ = 30.

Figure 4.6: Comparison between bilateral filter and mean shift.
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Indeed, Figure 4.6 depicts how the main order is finer approximated by mean shift.

Noisy regions, indicated in Figure 4.5, are more separated from the main order by

mean shift rather than bilateral filter. Hence, mean shift is confirmed as our final

choice for the image filtering process.

4.1.2 Normalization

The second phase of main order identification pipeline, is the normalization of

the image produced by the image filtering step, described in Section 4.1.1. The

main goal of this step is to obtain a common magnitude scale for all images and

then focus the analysis on relative magnitudes, instead of absolute scale values. This

operation helps to make our analysis independent of recording device. We adapted

the min-max normalization, as it allows our process to have a fixed range of the

resulting pixel values. It is defined as:

imagenorm =
imagefiltered −min(imagefiltered)

max(imagefiltered)−min(imagefiltered)
·M

where imagenorm is the normalized image, with values ranging from 0 to M (i.e. 255

for images with byte depth).

(a) Spectrogram filtered by mean shift d = 1
and σ = 30.

(b) Spectrogram normalized.

Figure 4.7: Example of normalization process
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Figure 4.7 demonstrates how normalizing the gray scale improves contrast, due to

a complete distribution of values along gray scale.

4.1.3 Discretization

Normalization phase just described in Section 4.1.2, assumes an important role

for the discretization step. Actually, the goal of this phase is to identify regions

characterized by a specified magnitude, especially the region where the main order

magnitude can be found. This is performed by exploiting the characteristic of main

order to be the most intense one in magnitude. Hence, normalization fits our aim

of isolating better the magnitude of main order from the others.

The discretization process reduces the cardinality of the possible pixel values.

This is helpful to reduce the high gray scale, that would be useless in the identifica-

tion phase.

To discretize the gray scale, we inspected two possible techniques: k equal-sized

partitions [7] or clustering [7]. The first approach is simpler but it is data indepen-

dent, unlike the second approach that is data dependent and more effective. For this

reason, our choice is to use clustering methods. Clustering algorithms aim to group

related objects, according to a particular distance metric. The clustering method

used in our work is K-means [7]. After discretization phase, the obtained gray scale

ranges are based on the distribution of the pixel intensities in the analysed image.

Considering that the main order to find is characterized by the highest intensity, it

can be found in the last cluster, which represents the most intense magnitude. The

gray scale of each pixel grouped in the last cluster is converted to the max intensity

of gray scale, in our case value 255, representing white colour. The other values

with lower intensities are replace with black pixels. This is done to have a binary

image, condition needed for the contour detection phase described later in Section

4.1.4. The pseudocode describing K-means is shown in Algorithm 1:
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Algorithm 1 K-means

Require: K value {number of clusters}
choose random K centroids
repeat

assign all gray values to the nearest K-th centroid
recompute centroid as the center of gravity of each cluster

until centroids moves less than epsilon or max number of iterations are reached

Clusters are groups of elements with similar features. In our case a cluster is a subset

of the gray scale range whose an element belongs to. Moreover, the centroids are

the points of reference that allow the algorithm to choose which cluster an element

belongs to. In our case, the centroid of a cluster is the average colour of its pixels.

To choose the value of K, we based on empirical analysis. Different values of K

are explored, combined with previous steps, for choosing a good K. Values analysed

are:

K = [5, 6, 7]

In most cases, all three values, seeing the last cluster, produce similar good

solutions. For this reason we focused on images where noise is stronger in order to

find the value of K less affected by noise.
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(a) K = 5

(b) K = 6

(c) K = 7

Figure 4.8: Spectrogram with strong noise, discretized with different K values.

Figure 4.8 shows a discretization example made on spectrograms with strong noise

(small horizontal white regions marked in red) on main order, with different values
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of K. When K = 5, the noise on the upper part of image, is still too evident.

Instead, when K = 7, the noise is reduced a lot, but the excessive discretization

impacts also on main order contour. Indeed, it presents a great hole in the middle

which splits it in two parts. Instead, for K = 6, the noise is reduced enough, the

holes are still present but they are smaller and the trend of the contour in that area

is clearer. Hence, we decided to choose 6 as best value. For what concerns values

smaller or bigger than the ones in the set of K analysed before, they would produce

respectively noisy (for having too gray scale value in one cluster) or too fine images

(that can cause more holes on the main order).

4.1.4 Contour detection

Having the discretizated image, the next step is to identify the contours of each

white region, where main order can appear in. To do that we exploited the im-

age processing algorithm called Suzuki85 [8]. Given as input the image previously

discretized, it produces a list of contours, each represented by a closed polygon

separated by other contour by black pixels. A contour is defined as an array of coor-

dinates (x, y). Approximating a polygon with consecutive segments, each coordinate

stored in the vector represents connection points between segments.
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(a) Binary image

(b) Points saved

Figure 4.9: Example of points saved by Suzuki85 algorithm

For example, considering the polygons in Figure 4.9 the algorithm will produce a

list of three contours

contours = [ply1, ply2, ply3]

each being a sequence of points

ply1 = [h0, h1, h2, h3, h4, h5, h6]

ply2 = [t0, t1, t2]

ply3 = [r0, r1, r2, r3]
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Joining the previous and next point in the sequence, the original contour can be

reconstructed. Each point represents a coordinate in the image, for example

h0 = (100, 30)

where 100 stands for x-coordinate and 30 for y-coordinate. By applying Suzuki85

algorithm to the discretized image, a set of contours is obtained. This set contains

the main order that must be selected in the next phase.
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(a) Original spectrogram

(b) Preprocessed spectrogram

(c) Discretized spectrogram

(d) Contours on original spectrogram

Figure 4.10: Example of find contour algorithm applied to a spectrogram
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Figure 4.10 depicts contours identification in a spectrogram, preprocessed by image

filtering (described in Section 4.1.1) and normalization (described in Section 4.1.2),

discretized (as described in Section 4.1.3) to obtain the binary image. Each contour

shown in Figure 4.10 with different colour, is saved in a list. The red contour is the

main order to be found in the next phase of the process.

4.1.5 Contours filtering

Contours saved, as described in Section 4.1.4, must be filtered in order to recog-

nize easily the main order contour. To do that, we studied the main order features.

Except for being the most intense in magnitude, it must be also inside a specific

frequency window, defined by both minimum value of RPM of the engine on idle and

maximum RPM of engine reached during the audio recording, described in Section

2.2. Given the typically minimum idle speed value of the engine hovers between

iddleRPMmin and iddleRPMmax, taking a margin for some exceptions below this

threshold, we considered iddleRPMmin−δ1 as minimum value for RPM. Instead, for

what concerns the maximum value, the process for recording engine sound described

in Section 2.2, expects to reach about RPMmax. Hence, taking again a margin for

inaccurate measures, we chose RPMmax + δ2 as maximum value for RPM. Finally,

the conversion for obtaining frequencies values from RPM is done reversing the

formula

RPM = fn ·
60

n

where fn is the frequency and n is the selected order. The reversed formulas become

fnmin = RPMmin ·
n

60

fnmax = RPMmax ·
n

60

whereRPMmin = iddleRPMmin−δ, RPMmax = RPMmax+δ2 and n = main order number.

Finding the left and right frequency window limits, each contour, to be a main order,

must be included in these limits.
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Moreover, to avoid noise points, selected contour must have an area ≥ 2. The

contour area is expressed as total number of pixels inside the contour. The described

process can be formalized with the Algorithm 2.

Algorithm 2 Filter Contours

Require: candidate contours and fnmin and fnmax
create empty list of filtered contour
for all contour ε candidate contours do
contourBottommostFrequency ⇐ bottommost frequency of contour
contourRightmostFrequency ⇐ rightmost frequency of contour
contourArea⇐ contour area
if contourBottommostFrequency > fnmin and contourRightmostFrequency <
fnmax AND contourArea > 2 then

add contour to filtered contour list
end if

end for
return filtered contours
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(a) Candidate contours

(b) Frequencies window

(c) Filtered contour

Figure 4.11: Example of contour filtering

Figure 4.11 shows all the steps of Algorithm 2 applied to an example image. Figure

4.11a shows all the contours found by the contour detection step, described in Section

4.1.4. Figure 4.11b depicts, the frequencies window, drawn with vertical red lines.

In the last picture, Figure 4.11c, it is shown how all the contours outside the window

are filtered. Small contours inside the window, near the right red line, with area less

than 2 pixels are also removed.
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Bottommost frequency of a contour is obtainable by taking the point of the

contour having the maximum y-coordinate and minimum x-coordinate in case of

same values of y. This reasoning assumes that the coordinate (0, 0) is located at

top-left corner of the image. Once obtained x value representing the bottommost

frequency position in image, it is converted in frequency by taking the value on the

vector of frequencies (described in Section 2.4) at position x. Similarly, rightmost

frequency of contour corresponds to its maximum x-coordinate. The corresponding

frequency is obtained, as for the bottommost one, accessing the vector of frequencies.

Bottommost frequency is compared to fmin because it represents the RPM speed

(RPMmin) when the manoeuvre starts, at idle time. We do not use the leftmost

frequency to avoid taking possible horizontal noise, such as in Figure 4.8. This one

could go beyond on the left than bottommost point and can be erroneously taken

as frequency at idle time. Instead, the rightmost frequency is compared to fmax

because it represents the maximum RPM speed reached during the acceleration

manoeuvre for recording the audio track. We do not use the topmost frequency to

avoid taking frequencies recorded at the end of the manoeuvre, when the engine

starts decelerating. Frequencies at that time, would be instead lower than the

RPMmax reached.

4.1.6 Max intensity selection

The aim of this section is to find the main contour among the filtered contours

described in Section 4.1.5. The criterion chosen to distinguish the main order from

the others is that, for definition, is the most intense in magnitude. Intensity of each

filtered contour must be evaluated and the maximum one should be chosen. To

achieve this task, we followed the following steps:

• a black image with the same size of original spectrogram is created for each

filtered contour
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• each contour is filled with the maximum gray scale value (i.e. 255 for byte-

depth images)

The result is a mask matrix, for each contour, having 0 outside analysed contour

and 255 inside it. By applying a bitwise and operator between the original image

and the mask, the result will be a matrix containing pixel intensities only where

contour is defined, otherwise 0.

Image =



25 127 135 156 201

34 112 131 122 222

44 112 166 122 214

54 112 154 163 201

111 137 125 113 180


Maskc =



0 0 0 0 0

0 0 255 0 0

0 255 255 255 0

0 255 255 255 0

255 255 255 255 255



MaskedImage = Image & Maskc =



0 0 0 0 0

0 0 131 0 0

0 112 166 122 0

0 112 154 163 0

111 137 125 113 180


Image is the spectrogram and Maskc is the mask for contour c.

Finally, the contour intensity is just the sum of all pixels values of the masked

matrix

MaskedImage =


p1,1 p1,2 · · · p1,c

p2,1 p2,2 · · · p2,c
...

...
. . .

...

pr,1 pr,2 · · · pr,c


Intesity =

r∑
i=0

c∑
j=0

MaksedImageij

where MaskedImage is the masked matrix.
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Using the sum operator, instead of the average intensity allows the process to

consider the area of contour meaningful to chose the main order. This avoids taking

small contour as main order, that could be just noise or small pieces of main order

shape, caused by holes after discetization phase.

At the end of this process, the contour with maximum intensity among filtered

contours is chosen and labelled as main order contour.

(a) Filtered contour

(b) Max intensity contour

Figure 4.12: Max intensity choice

Figure 4.12 shows with a yellow contour the selected main order. Since the small

blue contour has few pixels with maximum value (i.e. 255), if the algorithm took

into account just the average intensity instead of the sum, it would wrongly select

that contour as the main order.
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4.1.7 Main order parts merging

The discretization phase, described in Section 4.1.3, could introduce holes on the

main order, which would split it in distinct contours. This could happen due to a

non-homogeneous gray intensity of the whole main order.

Since our final aim is the constant tone identification, the RPM range of the

detected main order contour, must cover at least the range between idle speed

(RPMmin) and RPMmax that is the speed that must be reached during the recording

phase, described in Section 2.2. Indeed, in addition to select the contour having the

maximum sum of all pixels intensity, the process checks the range of RPM that it

covers. We decided to consider that the detected main order has not to be merged if

it covers at least the range [RPMmin, RPMmax] Hence, constant tones can be found

in this range if they are present, as pointed out by domain experts. Algorithm 3 for-

malizes the procedure for choosing whether the maximum intensity contour should

be merged with other contours, to obtain the main order.

Algorithm 3 Is max intensity to be merged

Require: max intensity contour and main order n and RPMmin and RPMmax
bottommostFrequency ⇐ bottommost frequency of max intensity contour
rightmostFrequency ⇐ rightmost frequency of max intensity contour
bottommostRPM = bottommostFrequency · 60/main order n
if bottommostRPM ≤ RPMmin and rightmostRPM ≥ RPMmax then

return false {contour not to be merged}
else

return true {contour to be merged}
end if

In Algorithm 3, bottommost frequency and rightmost frequency of max intensity

contour are computed in the same way done for Algorithm 2 in Section 4.1.5.

If the maximum intensity contour must be merged, other parts of main order

can be searched in contours filtered, as explained in Section 4.1.5. In order to

perform this operation, filtered contours are split into contours above and below
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the maximum intensity contour. Remembering that the (0, 0) coordinate is on top-

left position of the image, above contours have the bottommost y-coordinate smaller

than topmost y-coordinate of maximum intensity contour, while below contours have

the topmost y-coordinate below than the bottommost y-coordinate of maximum

intensity contour. Algorithms 4 and 5 explain more formally the selection of below

and above contours respectively.

Algorithm 4 Below contours

Require: filtered contours and max intensity contour
belowContours = empty list
maxContourBottommostY ⇐ bottommost y-coordinate of max intensity contour
for all contour ε filtered contours do
contourTopmostY ⇐ topmost y-coordinate of contour
if contourTopmostY > maxContourBottommostY then
belowContours.add(contour)

end if
end for
return belowContours

Algorithm 5 Above contours

Require: filtered contours and max intensity contour
aboveContours = empty list
maxContourTopmostY ⇐ topmost y-coordinate of max intensity contour
for all contour ε filtered contours do
contourBottomostY ⇐ bottommost y-coordinate of contour
if contourBottomostY < maxContourTopmostY then
aboveContours.add(contour)

end if
end for
return aboveContours
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Figure 4.13: Example of below contours each coloured in red. The maximum inten-
sity contour is shown in blue

Figure 4.14: Example of above contours each coloured in red. The maximum inten-
sity contour is shown in blue

Figure 4.13 and 4.14 depict the obtained lists of contours, drawn in red, respectively

below and above the max intensity contour shown in blue. Having the below list,

the algorithm as first step, sorts all below contours from top to bottom and creates

a chain of contours starting from the maximum intensity one. To do this, it joints

the contours starting from the first one of the sorted list. While building the chain,

for each contour of the list, it evaluates if its topmost y-coordinate is below than
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bottommost y-coordinate of last contour in the chain and if its bottommost x-

coordinate is on the left than bottommost x-coordinate of last contour in the chain.

This is done because each portion of the same order, should have an incremental

trend, given the acceleration performed when recording data. Hence, the starting

point of a contour to be added to the chain, has to be on the left side than the

starting point of upper contours belong to the same order.

Figure 4.15: Example of below contour

Figure 4.15 shows an example of a contour (in green) below the chain (in purple) for

which the algorithm decides whether it should be added. Green arrows represents

the constraints to be satisfied. This is repeated for all below contours. At the end,

the final chain will represent the below contours to be joined. Algorithm 6 shows

the complete procedure.
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Algorithm 6 Below chain

Require: below contours and max intensity contour
sort below contours from bottom to top
belowChain = empty list
belowChain.addTop(max intensity contour)
for all contour ε below contours do
contourTopmostY ⇐ topmost y-coordinate of contour
contourBottommostX ⇐ bottommost x-coordinate of contour
chainBottommostX ⇐ bottommost x-coordinate of chain
chainBottommostY ⇐ bottommost y-coordinate of chain
if contourTopmostY > chainBottommostY and contourBottommostX <
chainBottommostX then
belowChain.addBottom(contour)

end if
end for
return belowChain

For what concerns the above list, the algorithm as first step, sorts all the above

contours from bottom to top and creates a chain starting from the maximum inten-

sity contour, similarly to below contours. Then, starting from the first contour of

the sorted list, it evaluates if its bottommost y-coordinate is above than topmost

y-coordinate of last contour in the chain and if its rightmost x-coordinate is on the

right than topmost x-coordinate of last contour in the chain. This is done for the

same reason explained for below contours, taking into account the incremental trend

of an order, from the bottom to the top of the image.
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Figure 4.16: Example of above contour

Figure 4.16 shows an example of a contour (in green) above the chain (in purple)

and the way our algorithm decides if it is valid or not. If it is valid, it will be added

to the chain, otherwise not. This is repeated for all above contours and the final

chain represents the above contours to be joined to form the upper part of the main

order. The algorithm is formalized in Listing 7.

Algorithm 7 Above chain

Require: above contours and max intensity contour
sort above contours from top to bottom
aboveChain = empty list
aboveChain.addBottom(max intensity contour)
for all contour ε contours above do
contourBottommostY ⇐ bottommost y-coordinate of contour
contourRightmostX ⇐ rightmost x-coordinate of contour
chainTopmostX ⇐ topmost x-coordinate of chain
chainTopmostY ⇐ topmost y-coordinate of chain
if contourBottommostY < chainTopmostX and contourRightmostX >
chainTopmostX then
aboveChain.addTop(contour)

end if
end for
return aboveChain

Both chain lists created are then concatenated in order to obtain the final chain
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of contours to be merged.

The main contour may have a cut at the bottom, at the top or both of them.

Moreover, left and right points in the cut part/s to be merged must be decided.

Sorting the points of all contours counter-clockwise, left and right points in the

bottom cut are decided taking first the bottommost point. Then, the left point to

be merged will be the previous point than the bottommost one, if it is on the left

otherwise, the bottommost itself is chosen. Instead, right point will be the next point

than the bottommost one if it is on the right otherwise, the bottommost itself is

chosen. For what concern a top cut, the topmost point is taken and the left point to

be merged will be the next point than the topmost one, if it is on the left otherwise,

the topmost itself is chosen. Instead, right point will be the previous point than the

topmost one if it is on the right otherwise, the topmost itself is chosen. To know

where cuts are, the chain list of contours to be merged is sorted, top to bottom or

bottom to top. Taking for example the first sorting type, the first contour of the

sorted list will present a cut in the bottom part, the last on top part and if there

are other contours in the middle of the list, they will present cut in both parts.

Once deciding all the left and right points to be joined, the final merged contour

represents the whole main order, which will be used in the next phase of our process.
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(a) Chain lists to merge

(b) Chain list merged

Figure 4.17: Contours merged

Figure 4.17a shows the chain list of contours to merge, coloured with different

colours, while Figure 4.17b the final merged contour in blue. It reconstructs the main

order, solving the problem of interrupting holes created by discretization phase.

4.2 Anchors identification

Having completed the main order identification, the next step is to choose its

anchors, that are points typically drawn manually by domain experts, useful for the

time-to-RPM conversion. They must follow the trend of the main order, as shown

in Figure 1.3 of Section 1.2.2. To do that, our process exploits the main order

contour points obtained by the contour detection algorithm described in Section

4.1.4. Indeed, following the contour shape, they chase the variation of the main

order. Then, our process considers, as valid anchors, the right margin of the main
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order contour, starting from bottommost point and going to the topmost (counter-

clockwise order).

(a) (b)

Figure 4.18: Contour (a) to anchors (b)

However, before proceeding to time to RPM process, anchors must be processed to

remove useless segments and approximate the main order with the smallest set of

points.

4.2.1 First constant frequencies removal

The first points, starting from the bottommost point of the anchors, may repre-

sent constant frequencies, due to recording idle speed before the acceleration.

53



4 – Base Model

Figure 4.19: Constant anchors

As Figure 4.19 depicts, the first two anchors have the same x-coordinate, represent-

ing the idle speed. This area of the image is useless, because only points representing

an acceleration are meaningful for the conversion to RPM domain. Indeed, the con-

version will consist of straightening the main order shape, starting from those points.

For this reason, our procedure, scanning the anchors from bottom to top, removes

them until the next one has a different x-coordinate.
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(a) (b)

Figure 4.20: Constant anchors (a) removed (b)

For example, as shown in Figure 4.20, the first anchor is removed, because the anchor

after that one is on the same x-coordinate.

4.2.2 Anchors approximation

The anchors extracted from the right contour, chase its variations too finely, due

to the high number of points that follow the contour shape.
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(a) (b)

Figure 4.21: Right contour shape (a) zoomed (b)

For example, as Figure 4.21 shows, lines created by joining consecutive anchors

are collinear segments. Instead, a single diagonal line would better approximate

the acceleration phase, decrementing the number of vertices that depict the right

contour shape.
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Figure 4.22: Three collinear lines approximated with a single segment

Figure 4.22 clarifies with an example the approximation described before. Indeed,

the three collinear lines are approximated with just one diagonal line, the blue one

in the picture.

In order to perform this, we exploited the Douglas-Peucker Algorithm [9]. It is an

heuristic method that complies with our target, indeed it approximates a sequence

of points with a segment, starting from the first and ending to the last point of

that sequence. The criterion for deciding if a line approximates a set of points,

is an ε parameter, that indicates the minimum distance that a line must have to

approximate two points. If the line between the two extreme points has a distance

grater than ε, the algorithm will proceed recursively by including other intermediate

points in the approximation. For deciding ε parameter in our case, we adopted an

heuristic approach, trying different values. We established 1 as ε value. It gives a

good approximation without loosing the quality of the contour shape.
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(a) (b)

Figure 4.23: Anchors before (a) and after (b) approximation, with ε = 1

Figure 4.23 shows the reduction of points performed by Douglas-Peucker Algorithm

using ε = 1 and how approximating points are follow correctly the shape of the main

order.

4.2.3 Decrementing frequencies removal

The last anchors on the top of the image, may present segments increasing from

bottom-right to top-left. These lines represent a deceleration recorded during the

collection process described in Section 2.2. This could be happen by continuing

recording the engine sound for some moments after the acceleration is finished.

As said previously in Section 4.2.1, only anchors representing the acceleration are

meaningful for the conversion to RPM domain, therefore those anchors must be

removed.
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Figure 4.24: Anchors of the deceleration phase, highlighted with a red rectangle.

Anchors describing the deceleration phase, shown inside the red rectangle in Figure

4.24, must be recognized and removed. Sorting all anchors in a list from bottom to

top, in our process an anchor is considered as the starting point of deceleration phase

if the next two anchors are both on the left of their bottom anchors. When checking

the next two anchors, our process starts counting, skipping those which describe

vertical segment, as they do not represent a deceleration. This means selecting

either two consecutive lines increasing from bottom-right to top-left, skipping some

possible vertical segments between them, or a line increasing from bottom-right to

top-left just followed by a single vertical segment. Once the procedure finds the

staring anchor of deceleration phase, all the next one are deleted. The reason why

the procedure considers at least two anchors on the left and not just one is that

during the acceleration phase of the process for collecting data described at Section

2.2, the operator can involuntarily do a little deceleration, causing a small lines

increasing right to left. However, this line does not represent the phase to remove

that is when the operator take his foot off the gas. The only case when just one

anchor on the left is enough to stop the procedure is when it is the last one. In this

case just that anchor will be removed.
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(a) (b)

Figure 4.25: Example of anchors removed by the process

Figure 4.25 depicts examples of starting points of the deceleration phase (marked in

green) and anchors that will be removed (red points) by our process.

(a) (b)

Figure 4.26: Anchors representing deceleration zone removed by the process

The black anchor in Figure 4.26b represents the beginning of the deceleration.
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4.3 Time to RPM

Having the anchors extracted and processed, as described in Section 4.2, the

process must mimic the time to RPM process described in Section 1.2.3. In summary,

it consists in straightening the main order and, as a consequence, all the other orders,

to let domain experts apply known analyses, applicable only to RPM domain.

Therefore, our process exploits the anchors extracted so far. Since they represent

the main order trend, straightening anchors means, as a result, straightening also the

main order itself. Remembering that adjacent anchors can be seen as the starting

and ending point of a segment, accomplishing the alignment needs all segments

to have the same angular coefficient. In order to make this, the image is divided

in horizontal sections defined by the anchor positions. Each section represents a

time frame where the shape of the main order is approximately a straight line with

a specific angular coefficient. In our process, sections are reshaped vertically to

modify the angular coefficient of their associated main order segment. In this way

the time spent to perform the acceleration ramp inside each section is compressed

or extended.

Figure 4.27: Sections reshaping
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Figure 4.27 shows a piece of main order divided in sections, and how they must be

reshaped to obtain a straightened out line.

4.3.1 Target angular coefficient

To make all segments have the same angular coefficient, we analysed two possi-

bilities: decide a priori a value for all images or compute it ad hoc for each image.

The first approach is faster, not requiring any computation, but it can badly af-

fect the quality of images by stretching or compressing more or less than needed.

Instead, for what concerns the second approach, an easy method to minimize the

reshaping of images is to choose the mean of angular coefficients of all the segments,

defined by anchors, as target angular coefficient. Describing this with a procedure:

Algorithm 8 Target angular coefficient

Require: anchorsList
sum = 0
count = 0
for i = 0 to anchorsList.size− 2 do
anchorBottom⇐ anchorsList.get(i)
anchorTop⇐ anchorsList.get(i+ 1)
if anchorBottom.X /= anchorTop.X then
angularCoefficient = (anchorTop.Y −anchorBottom.Y )/(anchorTop.X−
anchorBottom.X)
sum = sum+ angularCoefficient
count = count+ 1

end if
end for
targetAngularCoefficient = sum/count
return targetAngularCoefficient

Then, Algorithm 8 is the approach chosen for our procedure.
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4.3.2 Conversion process

Once having target angular coefficient, described in Section 4.3.1, the main pro-

cess of time to RPM conversion consists in reshaping vertically each horizontal

section delimited by two adjacent anchors by inspecting their coordinates. Two

adjacent anchors can have the top x-coordinate:

• on the right than the bottom one

• on the same position

• on the left

Each case must be processed differently. Figure 4.28 depicts the three kind of seg-

ments that two anchors can generate.

(a) ai+1 on
right than ai

(b)
ai+1

on
same
x-
position
than
ai

(c) ai+1 on
left than ai

Figure 4.28: Type of segments obtained by different position of anchors

63



4 – Base Model

Starting from sections having the top anchors on the right, they suggest an

incrementing speed in a time frame.

(a) Section to reshape (time domain) (b) Section reshaped (RPM domain)

Figure 4.29: Example of section reshaping

Figure 4.29 shows a segment having the top point on the right, and how it must

be reshaped. In particular, the segment in RPM domain, between ai+1 and ai must

match the target angular coefficient (α) computed. Hence, the height of the reshaped

section will be in RPM domain:

RPM(ai+1)−RPM(ai) = α · (frq(ai+1)− frq(ai))

Continuing with the second type of section, having top anchors on the same x-

coordinate of the bottom one, it indicates a constant speed (or irrelevant variation,

approximated with a vertical line) in a time frame. These sections are meaningless

for straightening the main order, since the frequency actually remains constant in

time. Hence, our process completely compresses these vertical sections to 1 pixel

height.

Finally, top anchors on the left than the bottom one represent decrementing

speed in a time frame. These sections are also useless, as the previous sections,

because only increasing frequencies allow main order to be straightened out. How-

ever, differently from constant frequencies, compressing these sections to 1 pixel is

not enough. Indeed, also a portion of the next section having frequencies less than

frequency reached before the deceleration must be compressed.
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Figure 4.30: Compression due to decrementing speed

Figure 4.30 shows the section where frequencies decrease, between anchors ai and

ai+1, and the next increasing section, between anchors ai+1 and ai+2. The portion of

image to compress is included between ai and the light red anchor between anchors

ai+1 and ai+2. The light red anchor has the same x position of ai and selects the

point where the main order starts to increase again.

For reproducing these three methods on images, our process exploits the remap

function, available in image processing libraries. Remapping consists of deforming

an input image by stretching its pixels between some reference points, whose source

and target position is known. Pixels among reference points are computed with

linear interpolation. For example, if two reference points p1 and p2, taken at the

extreme horizontal positions of the image and on the same y-coordinate, were be

remapped in the target image on the same x-coordinates but on (y+ δ)-coordinate,

the portion of image under (y + δ) would be compressed if δ > 0, stretched up if

δ < 0, unchanged if delta = 0.

Therefore, a list sorted from bottom to top containing all the y positions of main
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order anchors is created:

ySource = [a0.y, ..., ai.y, ..., aN−1.y]

where ai.y is the y value of the anchor in position i and N the total number of

anchors. This is the list of the original position of pixels to remap. In addition, an

other list that contains the destination position of these pixels is created too. Its

first element is image.height− 1. It is the bottommost part of the image, having:

a0.y /= image.height− 1

due to first constant frequencies removal, described at Section 4.2.1. This let the

remap function cut the portion of image where frequency is constant in time. In-

stead, the next elements are computed as the sum of the previous one by a δ. Hence,

the destination list is:

yDest = [image.height−1, yDest.get(0)+δ1, ..., yDest.get(i)+δi+1, ..., yDest.get(N−2)+δN−1]

To decide the δ value, the process scans all the anchors, considering each section of

the image composed by two anchors at a time. Its value is based on the three kind

of section described before.

For sections having the top anchor on the right, δi+1 is computed as:

δi+1 = αtarget · (ai+1.x− ai.x)

where αtarget is the target angular coefficient described in Section 4.3.1, ai+1.x the x-

coordinate of the top anchor in the considered section analysed and ai.x the bottom

one.

For sections having the x coordinate of the top anchor on the same position than

the bottom one

δi+1 = 1

for compressing vertical segments to 1 pixel, as described previously in this section.
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Finally, for the last kind of section, having top anchor on the left of the bottom

one,

δi+1 = 1

as done for the previous type section. However, what changes here is the ySource

list. Once a section of this type is detected, between ai+1 and ai, the ySourcei+1 is

not equal to ai+1.y, but it will be:

ySourcei+1 = α · (ai.x− ai+1.x) + ai+1.y

where α is the angular coefficient of anchors ai+1 and ai+2 computed as:

α =
ai+2.y − ai+1.y

ai+2.x− ai+1.x
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Once having the two list ySource and yDest, the final step is to generate the

reference points for the remapping function by adding the horizontal extremes to

each ySourcei and yDesti coordinate. The result are two other lists such as:

pixelSource = [po0, ..., poi, ..., poN−1]

pixelDest = [pd0, ..., pdi, ..., pdN−1]

where

poi = [(0, ySource(i)), ((image.width− 1), ySource(i))]

pdi = [(0, yDest(i)), ((image.width− 1), yDest(i))]

Then, pixelSource and pixelDest are given to the remap function as reference

points. The Algorithm generates the remapped image, which represents the RPM

conversion. The described procedure for extracting reference points for the remap

function is summarized in Algorithm 9.
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Algorithm 9 Time to RPM

Require: anchorsList and alphaWanted and imageT ime
ySource = []
yDestination = []
pixelSource = []
pixelDestination = []
ySource.add(anchorsList.get(0))
yDestination.add(anchorsList.get(0))
for i = 0 to anchorsList.size− 2 do
anchorBottom⇐ anchorsList.get(i)
anchorTop⇐ anchorsList.get(i+ 1)
if anchorTop.X < anchorBottom.X then
alpha = (anchorsList.get(i+2).y−anchorTop.y)/(anchorsList.get(i+2).x−
anchorTop.x)
yNew = alpha · (anchorBottom.x− anchorTop.x) + anchorTop.y
ySource.add(yNew)

else
ySource.add(anchorTop.y)

end if
end for
for i = 0 to anchorsList.size− 2 do
anchorBottom⇐ anchorsList.get(i)
anchorTop⇐ anchorsList.get(i+ 1)
if anchorTop.X > anchorBottom.X then
delta = alphaWanted · (anchorTop.x− anchorBottom.x)
yDest = yDestination(i) + delta
yDestination.add(yDest)

else
delta = 1
yDest = yDestination(i) + delta
yDestination.add(yDest)

end if
end for
for i = 0 to yDestination.size− 1 do
pixelS = [(0, ySource.get(i).y), (imageT ime.width− 1, ySource.get(i).y)]
pixelD = [(0, yDestination.get(i).y), (imageT ime.width −
1, yDestination.get(i).y)]
pixelSource.add(pixelS)
pixelDestination.add(pixelD)

end for
imgRPM = remap(imageT ime, pixelSource, pixelDestination)
return imgRPM
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(a) Time domain spectrogram (b) RPM domain spectrogram

Figure 4.31: Example of time to RPM conversion

Figure 4.31 shows Algorithm 9 applied to a time domain spectrogram. As a result,

the main order and all the orders are straightened out due to remapping (Figure

4.31b).

4.3.3 Axes computation

After the spectrogram computation process, two lists are obtained. One contains

for each x-coordinate the corresponding frequency value (Hz) and one contains for

each y-coordinate the corresponding time value (s), as described at Section 2.4.

Once spectrogram is converted from time to RPM domain, the list of frequencies

is still valid, having just vertically scaling the image. Instead for what concern the

y-coordinates, they must indicate the RPM values. A new list containing for each

y-coordinate the corresponding RPM value must be created.

In order to perform this task, our process exploits the straightened out main

order. Knowing the αtarget and its bottommost point ((xbottom, ybottom)), the process

can compute for each y-coordinate the x-coordinate of the point defined by the

intersection of y-coordinate and the line passing through xbottom having αtarget as

angular coefficient.
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Figure 4.32: Example of intersection

Figure 4.32 depicts the point P, generated by the intersection between dotted red

line and y. The x-coordinate is computed with the formula:

x = xbottom +
y − ybottom
αtarget

Having this value, the frequency value (fx) of x-coordinate is simply taken by the

frequencies list mentioned before. Instead, the RPM value (RPMy) of y-coordinate

is obtained with the usual formula:

RPMy = fx ·
60

n

where n is the known main order number. This operation is performed for all y-

coordinates for creating the whole y-to-RPM list.
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Chapter 5

Constat tone detection

5.1 Introduction

In this chapter, we will present the way our process achieves the constant tone

detection, the main objective of this thesis work. In order to obtain this result, we

explore machine learning techniques [10]. These techniques aim to identify, analysing

selected features, regularities in data called patterns, which allow performing data

classification. Once having a set of data labelled with a class label, the classification,

through patterns, addresses the assignment of unlabelled data to the correct class.

Hence, translating this to our work means:

• extracting features from the labelled images, described in Chapter 3. In our

process, feature are obtained from all the contours present on those images.

However, as for the main order identification phase described in Section 4.1,

the images must be first preprocessed to ease the classification

• exploiting the extracted features to train a classification model

• testing trained model, thanks to the labelled contours, validating how the

model predicts a class label for a contour
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5.2 Image preprocessing

To have good quality patterns, data preprocessing is an essential operation. It

allows reducing the effect of noise that would negatively impact the result of the

classification.

As for easing the main order identification, described in Section 4.1, our process

performs the same step for preprocessing the images. In summary, it performs:

• image filtering by applying the mean shift filter described in Section 4.1.1. It

allows removing noise and highlighting useful informations, such as constant

tone contour

• min-max normalization technique to have a fixed range of the pixel values in

the image, useful also for the discretization step, as described in Section 4.1.2

• image discretization by using the K-means algorithm, described in Section

4.1.3. It reduces the cardinality of the possible pixel values, in K clusters.

However, for the main order identification, being the most intense element in

magnitude of the image, our process analyses only the last cluster, containing

the highest pixel values of the gray scale. Instead, for taking the feature of

more contours for our classification model and trying to include the constant

tone ones, our process does not select only the last cluster but a k-subset of

the last ones. This helps removing noise, present more in the first clusters,

and highlighting more intense contours, where constant tone can be present.

• find all the contours of the k-last clusters, by applying Suzuki85 [8] algorithm

described at Section 4.1.4, and save them in a set.

• filter found contours, based on a frequency window as performed for main

order identification, described at Section 4.1.4. Given the frequency range, es-

tablished by domain experts, in which constant tone appears is [fmin, fmax]Hz.
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Choosing a larger frequency range of [fmin+δmin, fmax+δmax]Hz, due to possi-

ble exceptions, our process considers only contours having leftmost frequency

point and rightmost one inside this threshold. Moreover, also contours having

area ≤ 2, are discarded, to remove noise.

5.3 Building the ground truth labels

Having the set of filtered contours, our process must label each of them. A

contour can be associated to a constant tone label (string ”CT”) or to a label that

represents the other contours (string ”OT”). In order to evaluate if a contour has

to be classified with the label ”CT” or ”OT”, we exploit constant tone contours,

labelled manually thanks to LabelMe tool, described at Section 3.1. Indeed, all the

contours of an image are scanned by our evaluation process and, for each of them,

it computes the intersection over union (IoU) between the analysed contour and

the constant tone contour taken from the annotated image. The intersection over

union between two contours is typically used as an evaluation metric to evaluate

the accuracy of an object detector. It is computed between two contours diving

their intersection area by their union area. It gives as result the percentage of the

accuracy.
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Figure 5.1: Intersection over union between two figures.

Figure 5.1 depict the intersection over union metric, where the upper blue area

represents the intersection, while the bottom one the union. A contour has to be

labelled as ”CT” if the result of the IoU with a manually labelled constant tone

is higher than 10% otherwise it is considered as ”OT”. Hence, at the end of this

labelling phase, every contour of all the images will be associated to a label. The

set of labelled contour built so far is considered as ground truth for training and

evaluating the classifier.

5.4 Feature extraction

Before proceeding to the classification process, a procedure to extract features

from a contour must be implemented. The extracted features must be chosen in

order to obtain valid patterns for discerning a constant tone from other contours.

Moreover, remembering that a constant tone is a noise almost constant in frequency,
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it typically appears as a vertical line, differently to orders that come out as lines

increasing from bottom-left to top-right, following the acceleration speed. Indeed,

the features extracted are related to contour shape, its frequency position and also

its intensity. Being noise, constant tone could also have an intensity different than

other contours have. The set of extracted features is:

• approximating rectangle height

• approximating rectangle width

• min(height, width) / max(heigh, width)

• contour area over approximated rectangle area

• atan2(y, x) (contour orientation)

• contour maximum pixel intensity

• contour intensity sum

• contour intensity average

• contour intensity average over approximated rectangle intensity average

where approximating rectangle is a rotated rectangle with minimum area enclos-

ing the contour as shown in Figure 5.2, while atan2(y, x) is the function

atan2(y, x) =



arctan( y
x
) if x > 0

arctan( y
x
) + π if x < 0 and y ≥ 0

arctan( y
x
)− π if x < 0 and y < 0

+π
2

if x = 0 and y > 0

−π
2

if x = 0 and y < 0

undefined if x = 0 and y = 0
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Figure 5.2: Example of x and y value, using the segment cutting the black contour.

Having a segment that cuts in half the contour, we choose as y value, the vertical

distance between the rightmost point and the leftmost one of that segments. More-

over, we chose as x value, the horizontal distance between the rightmost point and

the leftmost one of the same segment. Hence, feature(contour) procedure, having

as input a contour, will return as result all these features, stored in an array.

5.5 Classification process

Once having extracted the ground truth contours of all the images, the main

classification process consist in three main phases:

• choosing a classification algorithm that will perform the classification phase

• training the chosen classifier with a subset of images, using the ground truth

labelled contours

• testing the classifier with an other subset of images, different from the one

chosen for the training phase.
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5.5.1 Classification method

The classification method analysed is the Decision-tree [7]. It adopts a greedy

strategy based on a tree, as name could suggest. The tree is built, through the

training set, by Hunt’s algorithm [7].

Figure 5.3: Example of decision tree.

Figure 5.3 shows an example of a decision tree built based on features of the contours.

Each blue rectangle represents an intermediate node, containing the feature to be

analysed. Moreover, each intermediate node is split with two arrows, based on

feature values. Splitting can be performed by binary split, as made in Figure 5.3,

or by multi-way split, dividing values in many partitions. The last nodes in the tree

having no more children, shown in Figure 5.3 as black rectangles, are called leaf

nodes. They indicate the class label to be assigned to a contour, having the features

following that specific path. Hence, having an array of feature extracted from a

contour, our process visits the tree in order to assign a label to that contour. For
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example, given the tree of Figure 5.3, a contour will be classified with label ”OT” if

it has Feature1 ≥ x1, Feature2 < x2 and Feature3 ≥ x3.

The advantages of this method are:

• inexpensive to construct

• fast classification of record to be test

• good accuracy for simple data sets

Having a relative small data sets, we decided to choose this method to perform

the classification.

5.5.2 Training phase

As described in Section 5.5.1, a classifier needs a collection of labelled data,

defined as training set, in order to build the model. In our process, this set is

composed by a subset of our images, each of them associated to a list of ground

truth labelled contours, as described in Section 5.3. Moreover, labelled contours

must be processed before training the classifier. Firstly, the features described in

Section 5.4 must be extracted for each contour by feature(contour) procedure.

Secondly, once having all the features, they are normalized. This is an important

step useful to facilitate classification. Indeed, it reduces the cardinality of all the

attributes to a fixed range (e.g. [0, 1]), in order to avoid an attribute domain to be

dominant than others. For example, referring to our features, contour intensity sum

will have a variation scale higher than contour intensity average. This would cause

contour intensity sum feature to be dominant than contour intensity average if the

normalization has not been performed. Hence, in order to avoid that, our process

computes the z-score function, described in Section 2.4, as normalization function

applied to extracted features. Recalling it, its formula is:
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zi =
xi − x
S

where x represents the mean function and S the standard deviation. This normal-

ization function allows having data with zero main and unitary variance.

Only after performing the two operations just described, the decision tree is fit

with the training set in order to build our model.

5.5.3 Testing phase

In order to evaluate the classification model just created, an other subset of our

images must be chosen, different from that one used for the training phase described

in Section 5.5.2. It is called test set and it contains, such as for the training set,

labelled contours associated to each image. For each contour of the image to be

tested, our process performs the same steps used to process contours in the training

set:

• extract features from all the contours by feature(contour) procedure

• normalize them with z-score function, using the mean and the standard devi-

ation computed for normalizing training data

Then, the processed test set is given as input to the classification model, that will

return, as result, the predicted class labels for each contours inside the set. Finally,

our process is able to classify the global image as ”CT” if it contains at least one

contour labelled as ”CT” otherwise as ”OT”. This is done for all the images manu-

ally labelled and predicted by the decision-tree. The evaluation of the classification

is performed by the ground truth labels with the predictions. A confusion matrix

shows the distribution of the correct prediction across the different classes. It can

be obtained as:
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Predicted class

Actual class
Class=”CT” Class=”OT”

Class=”CT” TP FN
Class=”OT” FP TN

Table 5.1: Confusion matrix

In Table 5.1, TP, FN, FP and TN respectively mean true positive, false negative,

false positive and true negative. Starting from these values, the accuracy of a model

is defined as:

Accuracy =
Number of correctly classified objects

Number of classified objects
=

TP + TN

TP + TN + FP + FN

Other two important measures for evaluating the classification model are recall, that

is the percentage of correct predictions among objects with a specific actual class and

precision, that identifies the percentage of correct samples among those predicted

with a specific class. They are evaluated separately for each class (C) and they are

defined as:

Precision(p) =
Number of objects correctly assigned to C

Number of objects belonging to C
=

TP

TP + FP

Recall(r) =
Number of objects correctly assigned to C

Number of objects assigned to C
=

TP

TP + FN

All these formulas are used as evaluation criteria for establishing how good the

classification model is able to detect when a constant tone is present or not.

81



Chapter 6

Results

6.1 Evaluation of the main order identification

In Chapter 4, we described how, starting from a recorded file audio, our process

automatically obtains a spectrogram in frequency (x-axis) and RPM (y-axis) do-

main through intermediate steps. One of the most difficult and important steps for

obtaining a good result, is the main order identification. Its necessary to correctly

recognize its shape, characterized by the most intense in magnitude pixels in the

middle of the contour. Correctly including those pixels inside the found contour,

will be also needed for performing future analysis on RPM domain by known for-

mulas, especially to analyse a particular order n. Hence, we have to evaluate how

many of that pixels are included in our main order identification. For doing this, we

exploited the ground truth of the main order, found in Chapter 3. Then, the most

intense pixels must be extracted from either the ground truth and the main order

identified by our procedure. By extracting them, we isolate the contour from others,

by applying the same mask described in Section 4.1.6, that will produce a matrix

having only the pixel intensity of the contour isolated. Moreover, pixels constant in
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frequency in the bottom part of the image and pixels in the upper part represent-

ing the deceleration phase are not considered for the evaluation and they must be

discarded. The range [ylow, yup], where the most important part of the main order is

present, can be taken by the engine ground truth, described in Section 3.2.1. Then,

our procedure, analysing each matrix raw between position [ylow, yup], extracts the

x-coordinate of the most intense pixel of that raw. Performing this, we obtained a

list of coordinates (x, y) representing the set of most intense horizontal pixel for a

contour.

(a) Ground truth

(b) Most intense pixels

Figure 6.1: Example of most intense pixels inside the main order, drawn with red
colour, extracted from the ground truth.

Figure 6.1 depicts an example of the most intense pixels inside the main order

contour, drawn in red. The pixels are extracted from the inner part of the blue

contour, taking into consideration only the pixels inside the green rectangle.

Extracting these pixels from both the ground truth contour and that one iden-

tified by our procedure as main order, to evaluate the accuracy of identification we

performed the intersection over union (IoU), explained in Section 5.3, between the
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two set of pixels. IoU evaluates the accuracy of an object detector, having as output

the percentage of the accuracy (from 0 to 1). In the following, we present the result

obtained with our model for the main order identification phase, according to this

metric.

IoU value
Min 0.76
Max 1.0
Avg 0.96

Table 6.1: IoU statistics

Table 6.1 shows IoU statistics. We obtained an average value of 0.96 pixels matched

and minimum of 0.76, which means that in all images the main order is properly

recognized, with small errors. Indeed, Figure 6.2, shows an example where the

IoU presents a low value (i.e. 0.76). Despite being the minimum one, only a non

significant part of low main order is not caught well. Histogram in Figure 6.3 shows

the complete distribution of the IoU values for main order detection.
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(a) Ground truth

(b) Min IoU spectrogram

Figure 6.2: Spectrogram with minimum IoU.
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Figure 6.3: Distribution of the IoU values for the main order.

6.2 Evaluation of the constant tone detection

Constant tone detection, described in Chapter 5, performed by decision tree

algorithm, must be evaluated to understand the accuracy of the classification model.

In order to validate the model, training and test data must be split. The partitioning

technique chosen is the cross validation. It consists in:

• partitioning data into k disjoint subsets

• training on k-1 partitions

• testing the remaining one

Having a relative small dataset, we adopted a particular case of cross validation,

only appropriate for small dataset, called leave-one-out. It chooses the total number

of data as k. Moreover, in our case, each image of the dataset will be tested, having
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as training set the others. This guarantees a reliable accuracy estimation of the

model.

Then, we analysed the decision tree technique, comparing it with a more complex

model called random forest classifier [10]. It uses more than one decision tree

classifiers, each one fitted by a random subset of training set. The final class is

decided by combining the different results of each tree.

Moreover, we performed cross validation to the two methods by varying also the

max depth parameter of the trees. It indicates the upper limit for the longest path

(from the root to a leaf) reachable by a tree during its creation. Using the metrics

described in Section 5.5.3, the results of our analysis can be summarized with the

following tables.

Total number of images analysed = 50

Partitioning technique: leave-one-out

Table 6.2: Decision tree, max depth = 8

Predicted class

Acual
class

Class=”CT” Class=”OT”
Class = ”CT” 18 12
Class = ”OT” 5 15

Table 6.3: Random forest, max depth = 8

Predicted class

Acual
class

Class=”CT” Class=”OT”
Class = ”CT” 11 19
Class = ”OT” 2 18

Table 6.4: Decision tree, max depth = 10

Predicted class

Acual
class

Class=”CT” Class=”OT”
Class = ”CT” 17 13
Class = ”OT” 7 13
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Table 6.5: Random forest, max depth = 10

Predicted class

Acual
class

Class=”CT” Class=”OT”
Class = ”CT” 13 17
Class = ”OT” 1 19

Table 6.6: Decision tree, max depth = 12

Predicted class

Acual
class

Class=”CT” Class=”OT”
Class = ”CT” 18 12
Class = ”OT” 5 12

Table 6.7: Random forest, max depth = 12

Predicted class

Acual
class

Class=”CT” Class=”OT”
Class = ”CT” 14 16
Class = ”OT” 1 19

Table 6.8: Decision tree metrics

Accuracy Precision true Recall true Precision false Recall false

Max
depth

8 0.62 0.78 0.6 0.56 0.75
10 0.56 0.71 0.57 0.5 0.65
12 0.62 0.78 0.6 0.56 0.75

Table 6.9: Random forest metrics

Accuracy Precision true Recall true Precision false Recall false

Max
depth

8 0.67 0.85 0.37 0.49 0.9
10 0.73 0.93 0.43 0.53 0.95
12 0.73 0.93 0.47 0.54 0.95

Looking at these tables, random forest allow obtaining higher accuracy, thanks

to higher precision of the true class. Precision of the false class is not so good in

both approaches, due to higher number of images having a label ”CT” classified
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as ”OT”. However, we are able to detect correctly most of the samples, obtaining

accuracies till 73%.
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Chapter 7

Conclusions

7.1 Summary

The aim of this thesis was to develop a procedure for the automatic detection

of a specific noise signature in a spectrogram, obtained by a file audio recording a

car engine. This is the last operation of a standard process, manually performed

by domain experts. In the first part, we have presented this process and the main

challenges to deal with. The existing process can be split in two main parts. The

first one is related to the conversion, through intermediate steps, from the audio to

a spectrogram in the frequency and RPM domain. The default domain in frequency

and time, obtainable just performing Fourier transforms on recorded file audio, is

not enough. Indeed, after an engine fault is detected by a domain expert, already

developed formula can be applied to spectrogram in RPM domain, to understand

the gravity of the problem. Hence, even if an engine fault can be detected in time

domain, for evaluating its intensity, RPM domain is necessary. Then, in the second

part of the thesis, we dealt with the conversion from the audio to a spectrogram in

RPM domain. However, before proceeding with the task, a dataset must be created.

By the standard procedure, we collected 50 audio. To deal with the conversion
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from the collected audio to spectrograms in time domain we exploited the Fourier

transforms. Moreover, for what concern the time to RPM conversion, we handled

image processing techniques for emulating what the operators done manually thanks

to industrial tools. The resulting images have an appreciable quality, indicating the

achievement of an automatic conversion.

The second main part of the original process is the constant tone identification.

In the last chapters of the thesis, we presented our approach that consists in creating

patterns that try to automatically recognize the typical features of the constant tone

and detect its presence or absence. As a first approach, we performed this task on the

spectrogram in time domain by image processing and machine learning techniques.

The results provide a good quality of the detection. Shifting the detection on RPM

domain, we think to obtain also better result than time domain.

7.2 Future works

The quality of spectrogram RPM images are good, but industrial tools still

present a higher quality. A future work could be investigating a signal processing

technique, called zoom FFT, typically used to analyse a portion of a spectrum with

higher quality. Since we are interested only in the range [fmin, fmax]Hz, it could help

to improve the spectrogram quality in time domain and, as a consequence, obtain a

better quality in the conversion to RPM. An other improvement that would allow

having a better conversion from time to RPM, would be using the most intense pixels

inside the main order shape as the guideline for the conversion. Since we used the

right contour of the main order shape, it could be more affected by noise. An other

significant improvement will be collecting more data, that would expand knowledges

about the problems and will let us apply more complex machine learning techniques

based on larger amounts of data, such as neural networks. Once improving the

spectrogram in RPM, the detection can be performed directly on RPM domain in
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order evaluate also the intensity of the detected fault. Having also the evaluation of

gravity of the problem, the process could be shifted to a mobile environment. This

could be done by a client-server approach, where mobile environment acts as the

client, performing just the acquiring of the data, the conversion to the spectrogram

and send it to the server. Then, the server could analyse the spectrogram and answer

to the client indicating the percentage of an engine fault to be present or not. This

could also allow collecting a huge amount of data, useful for improving the whole

process.
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