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Abstract

Robotics for agriculture can be considered a very recent application of one of
the most ancient and important sectors, where the latest and most advanced
innovations have been brought.
Over the years, thanks to continous improvement in mechanization and au-
tomation, crop output has extremely increased, enabling a large growth in
population and enhancing the quality of life around the world. Both these
factors, as a consequence, are leading to a higher demand for agriculture and
forestry output.
Precision agriculture defined as the correct management of crops for increas-
ing its productivity and maximizing harvest, is considered the answer to this
issue. As a matter of fact, thanks to the development of portable sensors, the
availability of satellite images and the use of drones, the collection of data is
allowing a vast development in this field.
This thesis adresses in general robotics for agriculture in the form of a so-
lution to be applied in order to improve robot mobility, in particular auto-
mated path planning in vineyards, by proposing a method to classify different
parcels which make up the vineyard and to assign a precise task to the ter-
restrial unmanned robot.
The first part discusses how to generate a canopy segmentation from the
mask obtained by processing images taken from unmanned aerial vehicles
(UAVs). The developed algorithm is based on multiple steps: a first cluster-
ing of the mask is performed to identify each vine row, then a Least Squares
regression is applied in order to be used in the following clustering step to
detect each parcel which composes the map. Finally a recombination of the
vine rows is carried out for the purpose of avoiding the problem of missing
plants and defective rows.
The second part focuses its attention on the development of a path planning
algorithm that can be integrated in every environment: it combines the A*
search algorithm and path smoothing by exploiting the Gradient Descent
algorithm.
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The last part addresses the issue of applying the path generation in order
to cover the desired parcel with the cooperation of both path planning and
clustering.
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Introduction

Overview and Motivations
Since the end of the second industrial revolution, robotics and automation
have lead to significant improvements on agriculture with particular attention
to:

• Precision agriculture, which could be defined according to [18] as “the
site specific management of crops heterogeneity both at time and spatial
scale in order to enhance the efficiency of agricultural inputs to increase
yield, quality and sustainability of production”

• Auto-guidance on field crop machinery, which today can drive down a
field with an accuracy unattainable by human drivers

• Machines that harvest fruits and vegetables for processing (e.g., tomato
paste and orange juice).

In order to ensure an increase in productivity, scientific researches have now
drawn their attention to the development of the next generation of sensing,
mobility and manipulation technologies.
Sensing refers to the acquisition of different information such as crop temper-
ature, humidity, pH, wetness, image, range, which precedes the combination
and analysis of the data for specific aims. A possible application could be the
vineyard detection from grey-scale unmanned aerial systems images, which
can be used to extract features from the map in question [5].
Mobility describes several stages of vehicle automation that allows to op-
timize field coverage and minimizing fuel consumption without any human
assistance (e.g. driverless tractors). More recently, auto-guidance has started
to migrate to orchard vehicles as well, although due to poor satellite reception
under thick canopies, automated vehicles need to be equipped with suitable
devices that enable (semi-) autonomous seeding, spraying, mowing, weed re-
moval, harvesting, and animal feeding, among other operations. Key element
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in mobility is the sensor-based perception, provided by GPS/GNSS, inertial
units, cameras, lidars, radars, etc. These sensors are not to be confused with
those described in the previous paragraph, although there certainly are situ-
ations where a sensor can perform double duty of sensing for decision making
and for navigation.
Manipulation is related to diverse actions carried out directly on the crop, in-
cluding pruning, thinning, harvesting, fruit-gathering, etc.. In this case more
advanced sensor-based perception technologies are necessary rather then mo-
bility.
For long time the interests of agricultural research have been to follow well-
defined traffic lanes with the purpose of minimizing damages on soil and
plant growth. The introduction of automation and control technology has
facilitated agricultural machine systems to follow paths spatially and tempo-
rally, especially by exploiting automated path planning to further optimize
field work.

When robots have to achieve tasks that are too difficult to indicate the
proper actions for all possible cases, it is necessary that they can perform
themselves the most suitable solution to accomplish the task. In order to
perform their action line adequately, robots require to think about the ac-
tions they are planning on executing, their future consequences and the side
effects, whether they can be performed taking into account the different cir-
cumstances that may occur, and other situations. This requires that robots
have an explicit representation of aspects of their environment to reason
about. As a consequence it is necessary to know where the representation
comes from, namely the generation and maintenance in real time of the en-
vironment, or at least some part of it based on past information collected by
sensors, is an important aspect to take into account.

With Shakey the robot [21], robots started to be provided with reasoning
capacities in order to make decisions about their own actions. This is why
planning was one of the first research topics in Artificial Intelligience.
To design a planning system it is necessary to reach some targets by finding
a solution to three main questions:

• World representation

• Actions representation

• Plan search process guidance
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To answer these questions, the planning system should face the constraints
imposed by the real world considering at the same time all the issues above-
mentioned.
Therefore, the work developed here aims to find a possible solution able to
link the recognition of the environment with the path plan which the UGV
will use to explore it and eventually to interact with it.

Objectives
In order to correctly design a navigation algorithm, the following objectives
are fixed:

• Analyze the concepts and the already developed techniques for both
path planning and agricultural field assessment.

• Define the principal characteristics of path planning algorithms

• Evaluate the used algorithm paying particular attention to the trade-off
between safe trajectories and optimal solution in terms of journey and
computational time.

• Develop an algorithm for identification of parcels starting from a previ-
ously processed digital image of the agricultural environment

• Implement path planning in the identified parcels

• Test the realized algorithm for different environment configurations, to
assess the reliability of the method to give conclusions and suggestions
for future development.
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Chapter 1

Path Planning - Theory

The representation of the environment through a model is of fundamental
importance for the development of various applications of mobile robot sys-
tems. Thanks to this, robot can adjust its decisions according to the world it
is facing every second. To create environment models from sensor data there
are various issues to deal with. Firstly the models must be such that they
can be used effectively by other actors of the system, such as path planners.
Second, the models should be developed as consistent as possible to the field
of application, in this case the type of environment that is studied. This
means that a general representation for mobile robots does not exist and
each case requires a personalised approach.
Lastly, the adaption of uncertainty coming from both sensor data and the
robot’s state estimation system must be considered. Relevant meaning in
the model representation and construction has the latter point, considering
that sensor readings of distances are accumulated with respect to the same
reference frame. Hence it is very likely that position estimates are affected
by errors due to drift.
Historically, researchers’ efforts were put on robots operating in indoor en-
vironments with the advantage that the world can be depicted as vertical
structures on reference ground planes. As a result the world can be described
as a two-dimensional (2-D) grid and uncertainty in the measurements and in
the robot’s pose can be modeled by means of probabilities of occupancy in
the grid rather than binary occupied/empty flags [20].
With continued progress on different technological aspects of mobile robot
systems such as sensing ( e.g., threedimensional laser range scanners and
stereo vision), and mechanical and controls, it became possible to develop
robots for operations in unstructured, natural terrain. In these situations,
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1 – Path Planning - Theory

data cannot be properly applied in a 2-D grid, and environments need a
significant magnitude of geometric elements. In most case where there is
a reference ground plane, it is still correct a 2.5-D grid representation, in
which each cell contains the elevation of the terrain at that location [16].
Despite their large usage, the main problems related to this approach are
that it is not a compact representation and that it is difficult to integrate
uncertainty in the representation. The most significant limitation of eleva-
tion maps has become more evident in recent years as applications of aerial
data, which involves overhanging structures such as tree canopies. This has
led to the development of three-dimensional (3-D) representations, such as
point clouds, 3-D grids, and meshes, which increase the problem complexity
with the introduction of the third dimension.
Agricultural researchers are nowadays working over 3-D structures and prob-
abilistic representations of 3-D data. Because of the wide amount of data
involved, it is necessary to process the data depending on the application. At
a first stage, processing involves classifying the points into classes that are
relevant to navigation tasks, such as disciminating between vegetation and
ground, extraxting walls, tree surfaces, etc.. Then a second level of represen-
tation can be identified with the work of extracting part of the environments
that are considered landmarks of interest (e.g. roads). Finally, the extrac-
tion and representation of the objects in the environments is carried out (e.g.
natural obstacles).

In order to talk about motion planning, it is necessary to underline the
hypothesis that the knowledge of a global and accurate map of the environ-
ment is crucial to develop consistent algorithms. Furthermore the considered
system is a set of equations that does not explain exhaustively the entire
physical system: the presence of uncertainties in the world or system mod-
eling is not considered.
Such hypotheses are basically very strong. For this reason research in obsta-
cle avoidance has been done in parallel in a realistic manner. The problem
here is to consider simpler systems with respect to their geometric shape and
integrate sensor-based motions to face the physical issues of a real system
navigating in a real world.
Obstacle avoidance directs its attention to resolve the problem about navi-
gating toward a goal in an unknown environment when the obstacles to evade
have just been detected in real time.

The goal of this chapter is to deepen the aspects related to pathfinding,
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1 – Path Planning - Theory

once the environment model has been properly studied and chosen, and then
to propose an algorithm to extract a continous path.

1.1 World and Terrain Models for Natural
Environments

Occupancy grid maps, are a probabilistic approach to represent environment
developed in the 1980s by Movarec and Elfes [20]. They are an approxima-
tive technique where each cell of a discrete grid corresponds to the posterior
probability that it is occupied by an obstacle. The advantage of occupancy
grids is related to the fact that they do not depend on any predefined features
and they provide the capability to represent unknown areas. The latter is
of great importance in exploration tasks. Their disadvantage lies in possible
discretization errors and the high memory requirements.
This solution cannot completely satisfy environment model requirements,
such as information about terrain and elevation. From [28], where Thrun
makes a full environment modeling analysis with emphasis on probabilistic
techniques, it is possible to obtain a taxonomy in different directions. As a
matter of fact, in order to be able to obtain a good environment model, it is
necessary to introduce purely geometric models, such as elevation grid, 3-D
grid, etc., and then add low level attributes in a cost map.
Assuming to represent the terrain as a funcion h = f(x, y), where x and y
are the coordinates of a reference place and h is the respective elevation. A
natural representation is a digital elevation map which stores the value of h
at discrete locations (xi, yi).
The most direct use of elevation maps is to compute traversability costs at
each cell of the grid. A possible cost can be calculated, for example, by con-
sidering the local slope and 3-D texture of the terrain [6]. It is not easy task
to express the exact relation between the costs and the elevation value stored
in the grid. For this reason, recent researches has focused their attention on
obtaining cost maps directly from observations.
An example of such a combination of grid representation and dynamic plan-
ner is the A* algorithm, which will be treated in depth in continuing this
chapter.
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1 – Path Planning - Theory

1.2 Pathfinding

Many problems in robotics deal with finding a path through a graph. A sim-
ple example of such problems can be navigation through a maze. They have
usually been set about in two possible ways, called in [10] mathematical and
heuristic approach. The mathematical typically deals with the properties of
abstract graphs and with algorithms that assign an regular analysis of nodes
of a graph in order to compute a minimum cost path.
The latter typically uses special knowledge about the domain of the prob-
lem to be able to improve the computation efficiency of solutions of graph-
searching problems. The idea developed by Hart, Nilsson and Raphael in
their work is to use “together the above two approaches by describing how
information from a problem domain can be incorporated in a formal math-
ematical approach to a graph analysis problem. It also presents a general
algorithm which prescribes how to use such information to find a minimum
cost path through a graph. Finally, it proves, under mild assumptions, that
this algorithm is optimal in the sense that it examines the smallest number
of nodes necessary to guarantee a minimum cost solution”.

1.3 Algorithm for Finding Minimum Cost Paths

The aim is to find an optimal path from the start to a goal node. From the
starting node, the algorithm will generate some part of the subgraph, apply-
ing repeatedly the successor operator Γ. If Γ is applied to a node, then it has
been expanded. To collect the minimum cost path from start to each node
encountered, each time the node is expanded, each successor node n is stored
with both the cost of getting to it by the lowest cost path encountered until
then and a pointer to the predecessor of n along that path. At some stage
the algorithm ends at some goal node t, and no more nodes are expanded.
It is now possible to reconstruct a minimum cost path from start to t simply
by retracing the steps through the pointers.
The algorithm is defined admissible if an optimal path is ensured for any δ
graph. In the next section, the A* algorithm will be proposed and demon-
strated that, under mild assumption, it uses the information contained in the
graph in an optimal way, expanding the smallest number of nodes needed to
guarantee finding an optimal path.
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1.3.1 A* - Algorithm Description
In order to expand the fewest possible nodes, it is necessary that the search
algorithm chooses constantly and properly the next node to expand, in such
a way that as less time as possible is devoted to wasting efforts.
At the same time, if it continues to ignore nodes that might be on an optimal
path, it will sometimes not be able to find such a path becoming not admis-
sible. To help in the decision of the next node to be expanded an evaluation
function f̂(n) is computed for any node n, so that the available node having
the smallest value f̂ is the node to be expanded next. The search algorithm
can be described as follows.

Search Algorithm A*

1. Mark start “open” and calculate f̂(start)

2. Select the open node n whose value of f̂ is smallest. Resolve ties arbi-
trarily, but always in favour of any node n ∈ T

3. If n ∈ T , mark n “closed” and terminate the algorithm

4. Otherwise, mark n closed and apply the successor operator Γ to n. Cal-
culate f̂ for each successor of n and mark as open each successor not
already marked closed. Remark as open any closed node n and for each
f̂(ni) is smaller now than it was when n, was marked closed. Go to step 2.

The Evaluation Function

For any subgraph Gs and any goal set T , let f(n) be the actual cost of an
optimal path constrained to go through n, from start to a preferred goal node
of start. Note that f(s) = h(s) is the cost of an unconstrained optimal path
from start to a preferred goal node of start. In fact, f(n) − f(start) for
every node n on an optimal path, and f(n) > f(s) for every node n not on
an optimal path. Therefore, although f(n) is not known a priori, it seems
reasonable to use an estimate of f(n) as the evaluation function f̂(n). It is
possible to write f(n) as follows:

f(n) = g(n) + h(n) (1.1)
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1 – Path Planning - Theory

where g(n) is the actual cost of an optimal path from start to n, and h(n)
is actual cost of an optimal path from n to a preferred gole node of n. If g
and h are known, they can be added to form an estimate of f. Let ĝ(n) be
an estimate of g(n). An obvious choice for g(n) is the cost of the path from
start to n having the smallest cost so far found by the algorithm.
Consider the subgraph shown in figure 1.1. It consists of a start node start
and three nodes, n1, n2 and n3. The arcs are shwon with arrowheads and
costs. Let us trace how algorithm A* proceeded in generating this subgraph.
Starting with start, n1 and n2 successor are obtained. The estimates ĝ(n1)
and ĝ(n2) are then 3 and 7, respectively.
Suppose A* expands n1 next with successors n2 and n3. At this stage ĝ(n3) =
3 + 2 = 5, and ĝ(n3) is lowered to 3 + 3 = 6 because a less costly path to it
has been found. The value of ĝ(n1) remains equal to 3. Next an extimate
ĥ(n) of h(n) must be computed. It depends on information coming from
the problem domain, which usually consists of finding a minimum cost path
through a graph with “physical” information.

Figure 1.1

Limitation of Subgraphs by Information from the Problem

Often the information about the constraints of the set of possible subgraphs
to each node is given.
When a real problem is modeled by a graph, each node of the graph corre-
sponds to some state in the problem domain. The algorithm A * is actually
a family of algorithms; the choice of a particular function ĥ selects a partic-
ular algorithm from the family. The function ĥ can be used to tailor A* for
particular applications.
The choice ĥ = 0 corresponds to the case of knowing, or at least of using,
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absolutely no information from the problem domain. Assuming to have a
graph which models the connection between cities with roads, this would
correspond to assuming a priori that any city may be an arbitrarily small
road distance from any other city regardless of their geographic coordinates.
Knowing the nature of Euclidean space, the information about ĥ(n) is in-
creased from 0 to

√
x2 + y2 (where x and y are the magnitudes of the dif-

ferences in the x, y coordinates of the node n and its closest goal). The
algorithm would then still find the shortest path, but would do so by ex-
panding, typically, considerably fewer nodes. In fact, A * expands no more
nodes than any admissible algorithm that uses no more information from the
problem domain.
In general the h function must be an admissible heuristic, therefore it must
not overestimate the distance to the goal. For example, for application of
pathfinding, it might represent the straight-line distance to the goal, that
is physically the smallest possible distance between any two points or nodes
[22].
The time complexity of the algorithm depends on the heuristic function h. In
the worst case, the number of nodes expanded is exponential in the length of
the solution (the shortest path), but it is polynomial when the search space
is a tree, there is a single goal state, and the heuristic function h meets the
following condition:

----h(n)− ĥ(n)
---- = O(log ĥ(n)) (1.2)

This means that the error of h will not grow faster than the logarithm of ĥ
that returns the true distance from the node to the goal.

1.3.2 A* - Properties
To summarize A* has the following properties:

• It is complete: it will always find a solution if it exists

• It can use a heuristic to significantly speed up the process

• It can have variable node to node movement costs. This enables things
like certain nodes or paths being more difficult to traverse.

• It can search in many different directions if desired
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1.3.3 A* - Pseudocode

In 1.1 is described the pseudocode of the A* algorithm presented in 1.3.1,
while the entire code can be found in Appendix A.
The goal node is denoted by node_goal and the source node is denoted by
node_start. There are two lists: OPEN and CLOSED.
OPEN consists on nodes that have been visited but not expanded, meaning
that successors have not been explored yet. This is the list of pending tasks.
CLOSED consists on nodes that have been visited and expanded (successors
have been explored already and included in the open list).

1.4 Trajectory Modification

In the previous section there has been talk about finding paths. The objective
now is to transform these paths into actual motion commands, in particular
it will be proposed an algorithm to generate smooth paths.
Considering that the planning takes place in a discrete world, having a path
like in figure 1.2 has lots of disadvantages. In fact, due to their mechanical
constraints it is not recommended in robots to take 90◦ or in general a sharp
turn. For this reason the actual motion requires that the robot stops, makes

Figure 1.2

a turn and then goes again. The question is whether is it possible to generate
a smooth path starting for example from the blue line in figure 1.2.
The path generated in blue is specified as a sequence of points, each of which
is defined as Xi with 2 dimensional coordinates.
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Algorithm 1.1 A* search
1: Put node_start in the OPEN list with
f(node_start)← h(node_start)

2: while OPEN list not empty do
3: Take from the OPEN list the node node_current with the lowest

f(node_current)← g(node_current) + h(node_current)
4: if node_current = node_goal then
5: Solution found
6: break
7: end if
8: Generate each state node_successor that comes after

node_current
9: for node_successor of node_current do

10: successor_current_cost ← g(node_current) +
w(node_current, node_successor)

11: if node_successor is in OPEN list then
12: if g(node_successor) ≤ successor_current_cost then
13: continue to line 26
14: end if
15: else if node_successor is in CLOSED list then
16: if g(node_successor) ≤ successor_current_cost then
17: continue to line 26
18: end if
19: Move node_successor from the CLOSED list

to the OPEN list
20: else
21: Add node_successor to the OPEN list
22: h(node_successor) ← heuristic distance to node_goal
23: end if
24: g(node_successor)← successor_current_cost
25: Set the parent of node_successor to node_current
26: end for
27: Add node_current to the CLOSED list
28: end while
29: if node_current /= node_goal then
30: exit with error the OPEN list is empty
31: end if

12



1 – Path Planning - Theory

Smoothing Algorithm - Description

Initially the variable Yi are created with the same value of Xi 1.3, which
represent the non-smooth locations that the planner has found.

Yi = Xi (1.3)

Then two criteria are assumed to be minimized: in the first the error of the
i-th original point with the i-th smooth point,

min[(Xi − Yi)2] (1.4)

while in the second the distance between consecutive smooth points.

min[(Yi − Yi+1)2] (1.5)

The minimization has no effect if only the first criterion is applied, in fact
in such a way we obtain again the origal path. On the other hand no path
is obtained if only the second criterion is considered: it asks that all the Yi
are as similar as possible, which means that a single point is obtained if all
the Yi are the same. It is easy to note that these two criteria are in conflict
to each other. By minimizing both at the same time a sort of weigth α is
introduced in 1.5, which smooths the path in accordance to its value: the
stronger it is, the smoother the path is. On the contrary, the smaller α, the
more the original path is retained.

To optimize the two criteria the idea is to apply the Gradient Descent,
which is a first-order iterative optimization algorithm for finding a minimum
of a function.
It is based on the observation that if the multivariable function F (x) is defined
and differentiable in a neighborhood of a point a, then F (x) decreases fastest
if one goes from a in the direction of the negative gradient of F at a, −∇F (a)
as shown in figure 1.3. It follows that, if

an+1 = an − γ∇F (an) (1.6)

For γ small enough, the F (an) ≥ F (an+1). With certain assumptions of
the function F and particular choices of γ convergence to a local minimum

13



1 – Path Planning - Theory

Figure 1.3

can be guaranteed. In the case treated in this section, the function to be
minimized with 1.6

Yi = α(Xi − Yi)2 + β(Yi − Yi+1)2 + β(Yi − Yi−1)2 (1.7)

In this function the previous Yi−1 and the following Yi+1 position are taken
into account to determine the next actual position of Yi. By applying the
Gradient Descent the following function is obtained

Yi = Yi + α(Xi − Yi) + β(Yi+1 + Yi−1 − 2Yi) (1.8)

Where α(Xi − Yi) means that a small step is always taken in the direction
of minimizing the error in 1.4.
In the last term of the equation β(Yi+1 + Yi−1 − 2Yi), the old Yi variable is
retained moving slightly in the direction of Yi+1 and Yi−1 away from Yi by
combining the step on the left and on the right and realizing that this occurs
twice. As a matter of fact, through the optimization Yi should be as close to
Yi−1 and simultaneously be as close to Yi+1.
In Appendix A can be found the code relative to the path smoothing which

14
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is explained in the pseudocode 1.2.
In figure 1.4 are represented some significant examples of trajectory modi-

Algorithm 1.2 Path smoothing
1: newpath ← path
2: change ← tolerance
3: while change ≥ tolerance do
4: change ← 0
5: for Yi of newpath and Xi of path do
6: v ← Yi
7: Yi ← Yi + α(Xi − Yi) + β(Yi+1 + Yi−1 − 2Yi)
8: change ← |v − Yi|
9: end for

10: end while

fication obtained tuning the weight values α and β.
It can be noted that in figure 1.5 the algorithm behaves strangely, as proof
of the fact that a tuning did before is necessary in order to avoid such per-
formance. This problem is linked to the optimization of both the criteria 1.4
and 1.5.
For instance, in figure 1.6 it is possible to see the algorithm applied to the
figure 1.2 with parameter α and β set both to 0.5.
In the next chapter the path planning algorithm will be exploited and

customized in order to obtain an adequate result for our applications.
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(a) α = 0, β = 0 (b) α = 1, β = 0

(c) α = 1, β = 1 (d) α = 0, β = 0.5

(e) 0.1 ≤ α ≤ 0.5, 0.1 ≤ β ≤ 0.5

Figure 1.4
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Figure 1.5: α = 0.8, β = 0.6

Figure 1.6
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Chapter 2

Path Planning - Application

In this chapter some changes will be applied to the Path Planning algorithms,
in order to deal with real world situations, both for indoor and for outdoor
environments.

All the algorithms were built using Python 2.7.15 and performed on an
Intel(R) Core(TM) i7-4700U CPU at 2.40 GHz with 8 GB of RAM memory.

2.1 Indoor Navigation
The idea is to generate a path to be followed in such a way that the robot
does not collide with an obstacle of the environment.
Starting from the assumption that the provided map is of good quality, which
also means that the map has a good resolution, it is possible also to define
a more restrictive and safer path, although it cannot be always optimal in
terms of covered distance.
The figure 1.2 shows that no constraints were applied to the robot in terms
of distance from obstacles, and as a consequence, when the path is smoothed
it is necessary to take into account a possible collision with obstacles as
in figure 2.1. Some tactics can be adopted in order to improve the robot
behaviour:

1. Add more movements in the search algorithm

2. Set a safety distance from the obstacles

3. Set appropriate values of the parameters α and β.
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Figure 2.1

To add more movements means to have a more dense network of connections
for each node, which can be translated in our domain as more freedom of
movement. At the same time extending the range of proximity the algorithm
will check if all the connections of the node are expandable, imposing conse-
quently a higher safety distance.

1 a = self.robotx

2 b = self.roboty

3 for i in range(len(delta)):

4 x2 = x + self.step ∗ delta[i][0]

5 y2 = y + self.step ∗ delta[i][1]

6 if x2 >= 0 and x2 < self.dimx and y2 >= 0 and y2 < self.dimy:

7 if x2− a >= 0 and x2 + a < self.dimx and y2− b >= 0 and y2 + b < self.dimy:

8 truth_table = numpy.array(self.grid[x2− a: x2 + a, y2− b: y2 + b] == 0)

9 obstacle = False

10 if not truth_table.all():

11 closed[x2][y2] = 1

12 else:

13 obstacle = True

14 closed[x2][y2] = 1

These adjustments have been implemented in the code above. The variable
delta represents all the possible directions that the robot can take, while in
lines 4 and 5 self.step is used to increase robot movement in all the directions.
From line 7 to 14 the algorithm checks whether the robot can find obstacles
in its path considering its dimensions defined in lines 1 and 2.
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It is important to underline that, in order to improve time performances of
the algorithm, the Numpy library has played a crucial role. As a matter of
fact, lines 8 and 10 have substituted many lines of code.

2.1.1 The Work Environment

To develop and test the algorithm, firstly a simulated indoor environment has
been created in the rooms of Politecnico di Torino; to represent a generic maze
some polystyrene panels of dimension 1m x 0.5m x 10cm have been exploited
as shown in fig. 3.2, then the map was generated using the TurtleBot3 Waffle
(fig.2.3), a small, programmable, ROS-based mobile robot able to map the
environment using a 360 Laser Distance Sensor LDS-01 (fig.2.4), a 2D laser
scanner capable of sensing 360 degrees that collects a set of data around the
robot.
In Table 2.2 and Table 2.2 are reported respectively the specifications of the
TurtleBot3 Waffle and the LDS sensor.

Figure 2.2: Environment test for Path Planning
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Figure 2.3: The TurtleBot3 Waffle

Figure 2.4: 360 Laser Distance Sensor LDS-01

Items Specifications
Operating supply voltage 5V DC ±5%

Light source Semiconductor Laser Diode(λ=785nm)
LASER safety IEC60825-1 Class 1

Current consumption 400mA or less (Rush current 1A)
Detection distance 120mm 3,500mm

Interface 3.3V USART (230,400 bps) 42bytes per 6 degrees
Ambient Light Resistance 10,000 lux or less

Sampling Rate 1.8 kHz
Dimensions 69.5(W) X 95.5(D) X 39.5(H)mm

Mass Under 125g

Table 2.1: Laser Distance Sensor specifications
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Maximum translational velocity 0.26 m/s
Maximum rotational velocity 1.82 rad/s (104.27 deg/s)

Maximum payload 30kg
Size (L x W x H) 281mm x 306mm x 141mm

Weight (+ SBC + Battery + Sensors) 1.8kg
Threshold of climbing 10 mm or lower

Expected operating time 2h
Expected charging time 2h 30m

SBC (Single Board Computers) Intel® Joule™ 570x
MCU 32-bit ARM Cortex®-M7 with FPU

(216 MHz, 462 DMIPS)
Actuator Dynamixel XM430-W210

LDS(Laser Distance Sensor) 360 Laser Distance Sensor LDS-01
Camera Intel® Realsense™ R200

3 Axis Accelerometer
IMU 3 Axis Gyroscope

3 Axis Magnetometer
3.3V / 800mA

Power connectors 5V / 4A
12V / 1A

Expansion pins GPIO 18 pins
Arduino 32 pin

Peripheral UART x3, CAN x1, SPI x1, I2C x1,
ADC x5, 5pin OLLO x4

Dynamixel ports RS485 x 3, TTL x 3
Programmable LEDs User LED x 4

Board status LED
Status LEDs Arduino LED

Power LED
Buttons and Switches Push buttons x 2, Reset button x 1,

Dip switch x 2
Battery Lithium polymer 11.1V

1800mAh/19.98Wh 5C
PC connection USB

Power adapter (SMPS) Input : 100-240V,
AC 50/60Hz, 1.5A @max
Output : 12V DC, 5A
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Table 2.2: TurtleBot3 Hardware specifications

2.1.2 Path Plan
From figure 2.2 it has been extracted the digital map in figure 2.5.

Figure 2.5

The next step is to test if it is possible to find a path given arbitrary
initial and ending points. Figure 2.6(a) represents the raw path of the robot,
however it can be noticed that it cannot be a possible solution due to its
proximity to the obstacles. For this reason, as explained previously, a safety
distance has been integrated in the code. The result can be seen in the 2.6(b),
where the blue line always keeps a distance greater than robots dimensions
from the obstacles.

(a) Unsafe path estimation (b) Safe path estimation

Figure 2.6

Once the path has been estimated, it is necessary to smooth it in order to
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allow the robot to cover an easier trajectory. The solution proposed in figure
2.7 has parameters value α = 0.2 and β = 0.8, which by trial and error best
satisfies the requirements, imposing a safety distance to the robot.

Figure 2.7: Final path plan
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Chapter 3

Rows Clustering

Unmanned aerial vehicles (UAVs) have recently begun being applied to preci-
sion agriculture. This is a new development and results are still preliminary,
albeit very promising and capable to supplement or even substitute satellites
and aircrafts in agriculture remoting sense [12], namely collecting visual and
sensors data about vigour of the plantation, canopy, water and plant stress
in order to assess the field condition through photogrammetry.
The purpose of this chapter is not to deal with raw images taken from UAVs,
but with previously elaborated ones [5] [24], in order to detect and select
different parcels belonging to the same field.
All the algorithms were built using Python 2.7.15 and performed on an In-
tel(R) Core(TM) i7-4700U CPU at 2.40 GHz with 8 GB of RAM memory.

3.1 Introduction
The reason behind this algorithm is to create a way of automatically identify
from a piece of land specific indipendent parcels, in which the Unmanned
Ground Vehicle (UGV) can navigate in accordance with the user’s wishes.

Since the vegetation type explored by the drone can be any, a generic ap-
proach has been followed to develop the algorithm. However it is necessary
to have a pre-processed map where all the vegetation is defined with a digital
value, i.e. everything that represents vegetation is coloured by a black pixel,
whereas free space corresponds to a white pixel.
There are no constraints related to map resolution, except the fact that the
vegetation must be distinguishable with respect to the free space where the
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robot can move.

3.2 The Workflow

In order to better elucidate the steps performed by the algorithm, the fol-
lowing workflow has been created.

Rows detection

First­order row
approximation

Parcel clustering

Clustering error
correction

Defective rows
correction

Figure 3.1: Algorithm Workflow
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3.3 The Work Environment
To develop and test the algorithm, firstly various simulated environments
have been created in the rooms of Politecnico di Torino; to represent a generic
canopy some polystyrene panels of dimension 1m x 0.5m x 10cm have been
exploited as shown in fig. 3.2, then the map was generated using the Turtle-
Bot3 Waffle (fig.2.3), a small, programmable, ROS-based mobile robot able
to map the environment using a 360 Laser Distance Sensor LDS-01 (fig.2.4),
a 2D laser scanner capable of sensing 360 degrees that collects a set of data
around the robot.
In Table 2.2 and Table 2.2 are reported respectively the specifications of the
TurtleBot3 Waffle and the LDS sensor.

Figure 3.2: Example of simulation environment test

3.4 Rows Detection
The first part of the algorithm deals with the detection of the rows that com-
pose the vegetation represented by binary image, in which to the potential
row pixels is assigned 1 and the background pixels is assigned 0.
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In this way, along the image entensive groups of “1s” representing the canopy
rows, while the “0s” the background can be identified.
Each group of interconnected “1s” is called cluster. The task of recognizing
and labelling the interconnected pixels is performed through the first devel-
oped algorithm. The clusters are labelled with an increasing number, which
when the algorithm ends identifies also the number of clusters.
If all the clusters are correctly separated each of them should represent one
canopy row.

3.4.1 Findrows Algorithm
The algorithm is based on the idea of visiting all the matrix map using a
sliding window: starting from the first pixel in the upper left to the last pixel
on the bottom right. The sliding window is defined with a proper width
called ρ, which depends on the type of vegetation we are interested to deal
with.
In a first moment the window will translate only along an horizontal line
until a black pixel is found. Then the search in all the directions of contigous
black pixels starts, and when a new black pixel is found, it becomes a visited
pixel. It will fill a list called OPEN, which includes all that pixels visited but
not yet expanded.
A matrix called CLOSED is exploited, to represent the map as a False Posi-
tive, where all background points are identified as foreground, and vice versa.
As the map is explored this matrix will be filled with “1s”, helping the algo-
rithm in two main purposes:

1. The same pixel cannot belong to two different clusters

2. The algorithm, as a consequence, will not visit the same pixel again
terminating its operation in less time

The output of this first step will be a list of labeled clusters, which will be
widely used in the next computations.
As can be noticed, this algorithm requires a threshold value for ρ which is
set in order to take into account the possibility of having different distances
in accordance to the plantation, as can be easily guessed for example talking
about cornfields, where corn rows are closer to each other with respect to
vineyards, where vine rows are much more distant. Due to this reason it
is very important, before clustering, to choose the right value of the sliding
window’s width.
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In 3.1 is proposed the pseudocode of the algorithm in order to better under-
stand the code steps in Appendix B.

Figure 3.3: The images show the row detection applying two different slinding
window sizes: the picture at the top represents the correct points clustering.
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Algorithm 3.1 Findrows
1: Input: Binary map matrix
2: Set a value to ρ according to vegetation characteristics
3: Create an empty list OPEN
4: Create the CLOSED list as False Positive of the initial matrix
5: for line of map matrix do
6: while column ≤ total columns in map matrix do
7: while black_pixel not found do
8: if pixel = 1 and not yet visited then
9: black_pixel found

10: start_pixel ← black_pixel
11: Set start_pixel as visited in CLOSED list
12: Set start_pixel not yet expanded in OPEN list
13: else
14: Increment column
15: end if
16: end while
17: while OPEN list not empty do
18: Remove the first black_pixel from OPEN list and

set it as next to be explored
19: for any pixel distant less than ρ from next do
20: if pixel = 1 and not yet visited then
21: Set pixel as not yet expanded in OPEN list
22: Set pixel as visited in CLOSED list
23: end if
24: end for
25: end while
26: Increment column
27: Store all black_pixels in CLUSTER list
28: Label the CLUSTER with a number
29: Store the CLUSTER in CLUSTERS
30: end while
31: end for
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3.5 First-order Row Approximation
At this stage, analysing the content of the previous section, it can be noticed
that a recurring problem occurs between consecutive clusters: the elements
stored in a cluster are not a complete row but part of the original one. This
fact can be attributed to missing plants in the rows or even a defective row,
as can be seen for example in figure 3.4.
On the other hand, dealing with more than one parcel per map, it may

Figure 3.4: Gaps between consecutive rows are highlighted with squared
boxes

occur that two of them are separated by a narrow path where the farmer
or the vehicle have the possibility to pass. For this reason the problem is
twofold: how to recombine only the segments that effectively belong to the
same row?
In order to answer this question further steps of the algorithm need to be in-
vestigated. For the moment, it is possible to state that the linear regression,
which will be treated in this section, is at the base of future discussions.
The idea is to perform the linear regression of every row, finding the line that
best fits each cluster, that is to say it is necessary to find for every detected
cluster, a line that best fits the distributed points within it.
For this case theOrdinary Least Squares method has been chosen to parametrize
each of the rows identified in the previous section. Ordinary Least Squares is
one of the most well known methods of linear regression. The OLS determines
the parameters of a linear function given a set of variables: it minimizes the
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sum of the squares of the differences between the observed dependent vari-
able in the given dataset and those predicted by the linear function.

Consider an overdetermined system

nØ
j=1

Xijθj = yi i = 1,2, . . . ,m (3.1)

of m linear equations in n unknown coeffcients, β1, β2, . . . , βn, with m ≥ n,
which can be rewritten as

Xθ = y (3.2)

where

X =


X11 X12 . . . X1n
X21 X22 . . . X2n
... ... . . . ...

Xm1 Xm2 . . . Xmn

 (3.3)

θ =


θ1
θ2
...
θn

 (3.4)

y =


y1
y2
...
ym

 (3.5)

The goal is to find if possible the values of n parameters θ1, θ2, . . . , θn which
best fit the equations, in the sense of solving the quadratic minimization
problem

θ̂ = arg min
θ∈Rn

J(θ) (3.6)

where the objective function J(θ) is given by

J(θ) =
mØ
i=1

-------yi −
nØ
j=1

Xijθj

-------
2

=ëy−Xθë2 (3.7)
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which corresponds to the non-zero error. Provided that the n columns of the
matrix X are linearly independent, this minimization problem has a unique
solution given by the result of the normal equations

(XTX)θ̂ = XTy (3.8)

The estimate of the parameters θ is obtained by the Least Squares estimate:

θ̂ = (XTX)−1XTy (3.9)

As the canopy rows are, generally, disposed as straight lines, the most
recurrent form for y is a first order polynomial:

y(x) = mx+ q (3.10)

where m stands for the gain and q for the offset.
The error is computed only in the vertical axis and then can be passive of
error if the points are spread around the vertical axis. Due to the limitation of
the model, if the points to be approximated are distributed along a vertical
line and the variance occurs mainly in the horizontal direction, the OLS
will not perform a good parametrization of the model. The problem occurs
mainly because the OLS is designed to fit points with varancies in the vertical
direction, i.e. the y-axis. Given a dataset where the data points are spread
along the vertical direction, the variance is in general found in the x variable
and not in y, therefore the equations on which the function relies are the
opposite to what was hyphotetized before. Processing the dataset directly
using the OLS method returns lines for each row that do not correspond to
a correct parametrization. In order to solve this problem, before projecting
the data points into the OLS space, a rotation of 90 degrees was applied to
the clusters which presented such Verticality, defined as follows:

V erticality = σY
σX

(3.11)

where σY and σX represent respectively the standard deviation of Y and X
data points. When the data points variance is more spread along the x-axis
with respect to the y-axis, the Verticality is much higher than the unity. This
parameter could be very useful when dealing with long rows like in the case
study. The procedure ensures that all the rows are correctly linearized. It is
important to notice that if the rows are horizontally oriented, the rotation
does not need to be applied.
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Figure 3.5: Rows parametrized using the OLS method. The wrong approxi-
mation in upper image is corrected in the lower image.

The figure 3.5 illustrates the differences between the parametrization per-
formed using OLS of the same row before and after the rotation is applied.
Notice that when the parametrization is performed on vertically oriented
rows the results are far from the expected. On the contrary, when rows are
horizontally oriented the OLS performs an optimal approximation.
To improve performance in terms of computational time, during the im-
plementation in Python environment, the Scikit-Learn library has been ex-
ploited, in particular the LinearRegression method. Below it is possible to
have a sight of the code.

1 from sklearn.linear_model import LinearRegression

2 regressor = LinearRegression()
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3 coeffs = []

4 for cluster in clusters:

5 x = []

6 y = []

7 xv = []

8 yv = []

9 for i in range(len(cluster)):

10 x.append(cluster[i][0])

11 y.append(cluster[i][1])

12 xv.append(−cluster[i][1])
13 yv.append(cluster[i][0])

14 coef = np.polyfit(x, y, 1)

15 x = np.reshape(x, (−1, 1))
16 y = np.reshape(y, (−1, 1))
17 stDevX = np.std(x)

18 stDevY = np.std(y)

19 verticality = stDevY / stDevX

20 isVertical = verticality > 1.5

21 regressor.fit(x, y)

22 if (isVertical):

23 coef = np.polyfit(xv, yv, 1)

24 regressor.fit(−y, x)
25 x_hat = regressor.predict(−y)
26 else:

27 regressor.fit(x, y)

28 y_hat = regressor.predict(x)

As output, the coefficients for a polynomial of degree n that best fits the y
data are returned. Those coefficients define the line that best fits the n data
points passed as input for the OLS function. At the end, the identifications
of each parameter are stored as well as the extreme points and the mean
point of the parametrization line. These data will be exploited later in the
next steps of the algorithm presented in the next chapter.
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Figure 3.6

Figure 3.7
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Figure 3.8

Figure 3.9
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Figure 3.10

Figure 3.11

38



3 – Rows Clustering

Figure 3.12

Figure 3.13
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Figure 3.14

Figure 3.15
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Figure 3.16

Figure 3.17
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Chapter 4

Parcel Clustering

As anticipated in the previous chapter, once all the rows have been identi-
fied, they need to be separated and grouped in parcels. For this reason it is
necessary to find a criterion which can be used to properly correlate only the
rows of the same parcel, avoiding as much as possible errors.

An in-depth analysis of the various clustering algorithms present in liter-
ature has been carried out. In parallel, particular attention has been given
to the implementation, which has further narrowed down potential solution.
The biggest problem encountered is related to the fact that the number of
parcels within a field is not known a priori, unless the final user provides
this information to the algorithm. However, the idea behind this work is to
produce a platform as autonomous as possible and at the same time general
purpose, meaning that the human intervention should be limited to a small
number of actions related mostly to initial settings.
For this reason the simpler algorithms or very hardware-demanding, such as
K-means or DBSCAN, have been discarded [30] [11] [29].
The author has decided to focus his efforts on studying and implementing
clustering through the Dirichlet Process model, which will be explained to
the reader in this chapter.

4.1 Dirichlet Mixture model
Starting from the point made at the end of the previous chapter, it is now the
moment to think about the use of the lines approximation with the Ordinary
Least Squares method. Considering two parcels separated by a free space
of higher dimension with respect to the inter-rows distance belonging to the
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same parcel. Furthermore, assuming they are oriented differently and the
rows have similar orientation between them, it is possible to the human eye
to distinguish them without any kind of problem. The idea is to use their
slope to identify them uniquely. The result will be a collection of slopes close
to each other if they belong to the same parcel (fig. 4.1).
For this reason the slope of the rows can be considered a good feature,

Figure 4.1: Example of data collection distribution

which enables the clustering process. Due to the presence of different slopes,
the resulting statistical distribution of angular coefficient will be in general
multimodal (fig. 4.2). The assumption that all the data are generated from a

Figure 4.2: Example of a multimodal distribution

mixture of finite number of distributions with unknown parameters(fig. 4.3)
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allows to introduce the core of the clustering, the Dirichlet Process.

Figure 4.3: Multimodal distribution composition

Introduction
In parametric modeling, it is assumed that data can be represented by models
using a fixed, finite number of parameters. Examples of parametric models
include clusters of K Gaussians and polynomial regression models. In many
problems, determining the number of parameters a priori is difficult; for ex-
ample, selecting the number of clusters in a cluster model, the number of
segments in an image segmentation problem, the number of chains in a hid-
den Markov model, or the number of topics in a topic modelling problem
before the data is seen can be problematic.
In nonparametric modeling, the number of parameters is not fixed, and often
grows with the sample size. Kernel density estimation is an example of a non-
parametric model. In Bayesian nonparametrics, the number of parameters
is itself considered to be a random variable. One example is to do cluster-
ing with k-means (or mixture of Gaussians) while the number of clusters k
is unknown. Bayesian inference addresses this problem by treating k itself
as a random variable. A prior is defined over an infinite dimensional model
space, and inference is done to select the number of parameters. Such models
have infinite capacity, in that they include an infinite number of parameters
a priori; however, given finite data, only a finite set of these parameters will
be used. Unused parameters will be integrated out.
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Mixture Model Example
An example of a parametric model is the mixture model of K Gaussians with
finite number of parameters:

p(x1, . . . , xN | π, {µk}, {Σk}) =
NÙ
n=1

KØ
k=1

πkN (xn | µk,Σk) (4.1)

Adopting a Bayesian approach, each parameter would be given a prior dis-
tribution and integrated out:

p(x1, . . . , xN) = (4.2)Ú
· · ·

Ú 3 NÙ
n=1

KØ
k=1

πkN (xn | µk,Σk)
4
p(π)p(µ1:K)p(Σ1:K) dπdµ1:KdΣ1:K

It is best to choose conjugate prior distributions to simplify posterior in-
ference. For the Gaussian parameters, the Gaussian and inverse Wishart
distributions are the conjugate distributions for the mean and co-variance
respectively. For the mixture weights, the conjugate is the Dirichlet distri-
bution.

The Dirichlet Distribution
The Dirichlet distribution is a distribution over the (K-1)-dimensional sim-
plex; that is, it is a distribution over the relative values of K components,
whose sum is restricted to be 1. It is parameterized by a K-dimensional
vector (α1, . . . , αK), where αk ≥ 0 ∀k and Σkαk > 0. Its distribution is
given by:

π = (π1, . . . , πK) ∼ Dirichlet(α1, . . . , αK) =
rK
k=1 Γ(αk)

Γ
1qK

k=1 αk
2 KÙ
k=1

παk−1
k (4.3)

If π ∼ Dirichlet(α1, . . . , αK) then πk ≥ 0 ∀k and Σkαk = 1. The expectation
of the distribution is:

E[(π1, . . . , πK)] = (α1, . . . , αk)
Σkαk

(4.4)

45



4 – Parcel Clustering

Figure 4.4: Density of the 3-component Dirichlet distribution for different
parameter settings.

Figure 4.4 shows how the density of a Dirichlet distribution over 3 compo-
nents varies for different settings of its scaling parameters α. Note that as the
parameter values become larger, the distribution becomes more concentrated
at the extremes (i.e. it is more likely that one component take on value 1
and the rest value 0). Furthermore, different values for the parameters can
skew the distribution.

Conjugacy with the Multinomial Distribution
It can be shown that the Dirichlet distribution is the conjugate of the Multi-
nomial distribution. If π ∼ Dirichlet(α1, . . . , αK) and xn ∼ Multinomial(π)
are indipendent and identically distributed samples, then:

p(π | x1, . . . , xn) ∝ p(x1, . . . , xn | π)p(π) (4.5)

=
3 rK

k=1 Γ(αk)
Γ

1qK
k=1 αk

2 KÙ
k=1

παk−1
k

41 n!
m1! . . .mK !π

m1
1 . . . πmK

K

2

∝
rK
k=1 Γ(αk +mk)

Γ
1qK

k=1 αk +mk

2 KÙ
k=1

παk+mk−1
k

=Dirichlet(α1 +m1, . . . , αK +mK)

(4.6)

Where mk represent the counts of instances of xn = k in the data set.
The Dirichlet distribution can be viewed as a distribution over finite-dimensional
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distributions; that is, it is a distribution over parameters for the Multino-
mial distribution, where each sample from the Dirichlet distribution can be
regarded as a Multinomial distribution. Furthermore, it is possible to asso-
ciate each component with a set of parameters. In the case of a Gaussian
mixture model, these parameters would be the mean and covariance of each
cluster. It is necessary therefore to define a prior distribution over Gaussians.
In the Bayesian setting, these parameters are themselves random variables.
In a Bayesian finite mixture model, a Gaussian prior is combined over the
centroid locations of clusters with a Dirichlet prior over the cluster weights.

Other Properties of the Dirichlet Distribution
The Dirichlet distribution satisfies the coalesce rule:

(π1 + π2, π3, . . . , πK) ∼ Dirichlet(α1 + α2, α3, . . . , αK) (4.7)

The Dirichlet distribution also satisfies the expansion or combination rule,
which allows us to increase the dimensionality of a Dirichlet distribution.
Note that the Dirichlet distribution over the 1-dimensional simplex is simply
the Beta distribution. Let (π1, . . . , πK) ∼ Dirichlet(α1, . . . , αK) and θ ∼
Beta((α1b, α1(1 − b)) for 0 < b < 1. Then one dimension of the Dirichlet
distribution can be split into two dimensions as follows:

(π1θ, π1(1− θ), π2, . . . , πK) ∼ Dirichlet(α1b, α1(1− b), α2, αK) (4.8)

More generally, if θ ∼ Dirichlet(α1b1, α1b2, . . . , α1bN) and Σibi = 1, then:

(π1θ1, . . . , π1θN , π2, . . . , πK) ∼ Dirichlet(α1b1, . . . , α1bN , α2, αK) (4.9)

Finally, The Dirichlet distribution also satisfies the renormalization rule. If
(π1, . . . , πK) ∼ Dirichlet(α1, . . . , αK) then:

(π2, . . . , πK)qk
k=1 πk

∼ Dirichlet(α2, . . . , αK) (4.10)

Constructing an Infinite-Dimensional Prior
In problems such as clustering, the number of clusters is not known a priori.
When defining a prior for the mixture weights,a distribution that allows an
infinite number of clusters is needed, so that it will be always possible to
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have more clusters than needed in any given problem. An infinite mixture
model has the form:

p(x1 | π, {µk}, {Σk}) =
∞Ø
k=1

πkN (xn | µk,Σk) (4.11)

Therefore it is preferred to use a prior that has properties like that of
the Dirichlet distribution (such as conjugacy with the Multinomial), but
is infinite-dimensional. To define such a distribution, let consider the fol-
lowing scheme. Begin with a two-component Dirichlet distribution, with
scaling parameter α divided equally between both components, for the sake
of symmetry:

π(2) = (π(2)
1 , π

(2)
2 ) ∼ Dirichlet(α2 ,

α

2 ) (4.12)

Then, split off components according to the expansion rule:

θ
(2)
1 , θ

(2)
2 ∼ Beta(α2 ·

1
2 ,
α

2 ·
1
2) (4.13)

π(4) = (θ(2)
1 π

(2)
1 , (1− θ(2)

1 )π(2)
1 , θ

(2)
2 π

(2)
2 , (1− θ(2)

2 )π(2)
2 ) ∼ Dirichlet(α4 ,

α

4 ,
α

4 ,
α

4 )

By repeating this process, the final distribution is such that:

π(K) ∼ Dirichlet
1 α
K
, . . . ,

α

K

2
(4.14)

In the limit as K goes to infinity, the prior over an infinite-dimensional space
is obtained. In practice all these components will never be used, but only
the components which reflect the data.

4.2 Dirichlet Process
Let the base measure H be a distribution over some space Ω(for example, a
Gaussian distribution). Let:

π ∼ lim
K→∞

Dirichlet
1 α
K
,
α

K

2
(4.15)

For each point in this Dirichlet distribution, it is possible to associate a draw
from the base measure:

θk ∼ H fork = 1, . . . ,∞ (4.16)
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Then:
G =

∞Ø
k=1

πkδθk (4.17)

is an infinite discrete distribution over the continous space Ω. It can be
written as a Dirichlet Process:

G ∼ DP(α,H) (4.18)
Samples from the Dirichlet Process are discrete. The point masses in the re-
sulting distribution are called atoms; their positions in Ω are drawn from the
base measure H, while their weights are drawn from an infinite-dimensional
Dirichlet distribution. The concentration parameter α determines the distri-
bution over atom weights; smaller values lead to sparser distributions, with
larger weights on each atom.

A Dirichlet Process is a unique distribution over probability distributions
on some space such that for any finite partition A1, . . . , AK of Ω, the total
mass assigned to each partition is distributed according to:

(P (A1), . . . , P (AK)) ∼ Dirichlet(αH(A1), . . . , αH(AK)) (4.19)
Note that H may be un-normalized. Furthermore, a cumulative distribution
function G, on possible worlds of random partition follows a Dirichlet Process
if for any measurable finit partition (φ1, φ2, . . . , φm):

(G(φ1), . . . , G(φm)) ∼ Dirichlet(αG0(φ1), . . . , αG0(φm)) (4.20)
where G0 is the base measure and α is the scale parameter.

Conjugacy
Let A1, . . . , AK be a partition of Ω, and let H be a measure on Ω. Let P (Ak)
be the mass assigned by G ∼ DP(α,H) to partition Ak, then:

(P (A1), . . . , P (AK)) ∼ Dirichlet(αH(A1), . . . , αH(AK) (4.21)
Focusing on an observation in the J th segment(of fraction), then:

(P (A1), . . . , P (Aj), . . . , P (AK) | X1 ∈ Aj) ∼ (4.22)
Dirichlet(αH(A1), . . . , αH(Aj) + 1, . . . , αH(AK))

Since this must be true for all possible partitions of Ω, this is only possible
if the posterior gor G is given by:

G | X1 = x ∼ DP
1
α + 1, αH + δx

α + 1
2

(4.23)
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Predictive Distribution
The Dirichlet distribution can be a prior for mixture models, thus the Dirich-
let Process could be further used to cluster observations. A new data point
can either join an existing cluster or start a new cluster. Assume H is a
continuous distribution on Ω, which are the parameters of modeling the ob-
served data points. Once a first data point is available, it is possible to start
a new cluster with a sampled parameter θ1. Now, the parameter space can
be split in two: the singleton θ1, and everything else. Let π1 be the atom at
θ1. The combined mass of all the other atoms is π∗ = 1− π1, and

prior : (π1, π∗) ∼ Dirichlet(0, α) (4.24)

posterior : (π1, π∗) | X1 = θ1 ∼ Dirichlet(1, α) (4.25)
Integrating out π1

P (X2 = θk | X1 = θ1) =
Ú
P (X2 = θk | (π1, π∗))P ((π1, π∗) | X1 = θ1) dπ1

=
Ú
πkDirichlet(1, α) dπ1 (4.26)

= EDirichlet(1−α)[πk]

=


1

1+α if k = 1
α

1+α for new k.

This basically tells that with probability 1
1+α , the parameter θ stays in the

old cluster and with probability α
1+α it starts a new cluster. If a new cluster

is chosen to be started a new parameter θ2 ∼ H is sampled. Let π2 be the
size of the atom at θ2, and

posterior : (π1, π2, π∗) | X1 = θ1, X2 = θ2 ∼ Dirichlet(1,1, α) (4.27)

By integrating out π = (π1, π2, π∗)

P (X3 = θk | X1 = θ1, X2 = θ2) =

=
Ú
P (X3 = θk | π)P (π | X1 = θ1, X2 = θ2) dπ

= EDirichlet(1,1,α)[πk] (4.28)

=


1

2+α if k = 1
1

2+α if k = 2
α

2+α for new k.
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In general, if mk is the number of times Xi = k occur, and K is the total
number of observed values:

P (Xn+1 = θk | X1 = θ1, . . . , Xn) =
Ú
P (Xn+1 = θk | π)P (π | X1, . . . , Xn) dπ

(4.29)
= EDirichlet(m1,...,mk,α)[πk]

=


mk

n+α if k ≤ K
α

n+α for new cluster.

which gives a simple closed-form predictive distribution for the next obser-
vation. Such a predictive distribution is especially useful for sampling and
inference in Dirichlet Processes. Note that this distribution has a “rich-get-
richer” property; clusters with more observations are more likely to have new
observations.
However, there is always the possibility of seeing a novel observation, with
controlling the tendency to initiate a new cluster.

Useful Metaphors
Several useful metaphors exist for helping to understand the Dirichlet Pro-
cess.

Pòlya Urn Process: Consider an urn with a black ball of mass α. Itera-
tively sample balls from the urn with probability proportional to their mass.
If the ball is black, return it to the urn, choose a previously unseen color, and
add a unit mass ball of that color to the urn. If the ball is colored, return it
an another unit mass ball of the same color to the urn.

Chinese Restaurant Process: Consider a Chinese restaurant with in-
finitely many tables. As customers enter, they may sit at an occupied table
with probability proportionate to how many customers are already seated
there, or they may sit at an unoccupied table with probability proportionate
to α. Also, at each table, a dish is selected and shared by the customers
seated there; this is analogous to a draw θ from the base measure H. From
this example it is possible to see that the distribution does not depend on the
ordering in which the customers arrived; this is the property of exchangeabil-
ity. This way, each customer can be treated indepdendently, as if they were
the last to arrive; this is a useful property for Gibbs sampling in Dirichlet
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Processes.

Stick-breaking Process: Consider a stick of unit length. Iteratively
sample a random variable bk from Beta(1, α) and break off a fraction of bk of
the stick. This is the weight of the kth atom. Sample a location for this atom
from the base measure H and repeat. This will give an infinite number of
atoms, but as the process continues, the weights of the atoms will decrease
to be negligible. This motivates truncation approximations, in which the full
Dirichlet Process is approximated using a finite number of clusters.

4.3 Clustering Implementation
Once defined and understood the meaning of the Dirichlet Process, it is
possible to apply this kind of clustering to the map which represents the en-
vironment. Since it is a prior probability distribution on clusterings with an
infinite, unbounded, number of partitions, it suits the purposes of this work.
To do the partitioning the already mentioned Python library Scikit-learn [23]
has been used, in particular the sklearn.mixture.BayesianGaussianMixture
class, which allows to infer an approximate posterior distribution over the
parameters of a Gaussian mixture distribution as reported in the documen-
tation. The effective number of components can be inferred from the data.
This class implements two types of prior for the weights distribution: a fi-
nite mixture model with Dirichlet distribution and an infinite mixture model
with the Dirichlet Process. In practice Dirichlet Process inference algorithm
is approximated and uses a truncated distribution with a fixed maximum
number of components (called the Stick-breaking representation). The num-
ber of components actually used almost always depends on the data.
Its most important parameters are the following:

• The number of mixture components: depending on the data and the
value of the weigth concentration prior, it is likely that the model decides
not to use all components. As a consequence the number of effectively
used components will be always smaller than that set

• The covariance type, which takes into account the covariance matrix of
the components

• The maximum number of iterations to be performed

• The type of the weight concentration prior: it can be either a Dirichlet
Process or a Dirichlet Distribution
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• The prior on the covariance distribution (Wishart)

• The convergence threshold: the iterations will stop when the lower
bound average gain on the likelihood (of the training data with respect
to the model) is below this threshold.

Considering the fact that no information is given in advance, and being an
unsupervised clustering, the most generic parameteres have been set.
As first attempt, the algorithm tried to do the clustering using as feature
only the information about the slope of the rows.
Nevertheless, at first hand it seems that this feature is not enough restrictive
to bind together the right rows, as figure 4.5 illustrates.
This can be confirmed by the fact that when the absolute value of the slopes

Figure 4.5: Clustering with only the information about the slope

of distinct parcels are visibly different the algorithm works better. To solve
this problem a further feature must be included, which can correlate the rows
according to their mutual position. A possible solution could be to pick from
each row the coordinates of its mean point, in such a way that distant mean
points are unlikely to be recognized as part of the same cluster.
By introducing this new feature, it is possible to appreciate the improvements
in the results: in figure 4.6 the clustering has been performed significantly
better. Appendix C shows the entire code implementation.
However, some imperfections are still present, basically due to the rows di-
mension. In fact, very small rows, due to their round shape, have the incon-
venience to be linearized with lines completely different from the others. As
a consequence, their clustering results even more difficult.
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Figure 4.6: Rows clustering of different environment configurations
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4.4 Clustering Error Correction
This section will address the problem of clustering imperfections in parcels.
In order do identify the rows to whom it was assigned from the previous
algorithm an incorrect label, corresponding to the parcel that specific row
should belong, it is necessary to find a criterion which can operate locally.
In other words, each row must be treated as a single unit with its charac-
terising label and the only entities able to confirm its belonging to the right
group are its neighbours.
To apply this principle the Cluster Correction algorithm has been developed,
which is explained in the following by means of the flowchart in figure 4.7.
Due to its complexity and length, it was decided not to report all the code
in the Appendix D, but only some significant parts. The basic principle of
the algorithm is the following. It continues recursively to do the following
operations until no more changes in the map are defined:

1. It looks, starting from the mean of the cluster, in the four directions until
it finds a neighbour. In the case that no neighbour is reached in a precise
direction, this will not be considered and a label None is assigned.
The search process is done by extending the approximating line from
the row’s extremes until the neighbour is reached, concerning upper and
lower neighbours, while to look to the right and the left the perpendicular
to the approximating line is expanded until the neighbour is met.

2. Once the neighbours are detected, it is performed a count of how many
times each label related to the neighbours occurs and then they are
sorted in decreasing order.

3. In case the row’s label is different from that of the neighbours and at
least two of them out of four have a different label, then the change is
applied.

Once all the parcels are identified, the only thing left is the analysis of con-
secutive rows in order to be merged in one cluster before the final clustering.
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Figure 4.7: Cluster Correction flowchart
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4.5 Defective Rows Correction
To complete the row detection, a recombination of the clusters is needed, in
some cases, to deal with the problem of missing plants and defective rows.
Indeed, a good number of short clusters of interconnected pixels were identi-
fied as being a segment, even if they should be part of a more extended row.
The Defective Rows Correction in Appendix E is then called to solve those
small misclassifications. The operations performed are described in the
flowchart in figure 4.8.
The connection of two contiguous rows is done in the following steps:

1. The approximating line is extended from the row’s extremes until the
neighbour is reached.

2. The neighbour and the connecting points are integrated in the main row.

3. The neighbour row is removed from the list of rows of the cluster.

The figure 4.9 illustrates the impact of the function in the final clustering
and labelling of the rows.
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label ≤ labels ?

row ≤ rows ?

YES

1. Group rows according to the label 
2. Increment label  

label_upper_neighbour = label_row  
? 

label_lower_neighbour = label_row  
? 

1. Connect lower_neighbour with
row 

2. Append points of
lower_neighbour and the
connecting line to the row
points list

3. Remove lower_neighbour from
cluster

Increment row

1. Connect upper_neighbour with
row 

2. Append points of
upper_neighbour and the
connecting line to the row
points list

3. Remove upper_neighbour from
cluster

YES

YES

YES

Figure 4.8: Defective Rows Correction flowchart
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Figure 4.9: Recombination of consecutive rows with inner holes
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Chapter 5

Navigation in Agricultural
Environment

The objective of this chapter is to connect the work presented previously.
Once the information about the environment have been corretly acquired
and post-processed, it is necessary to exploit them in order to create a path
plan for the robot able to cover all the rows within the same parcel.
Considering the proposed path planning algorithm, it can be noted that the
desired route is not actually the one which goes from the starting point to the
arrival in the suboptimal way generated from the A* represented in figure
5.1, but rather the one which allows to cover all the rows.
For this reason, the robot needs to receive some “checkpoints” along the

Figure 5.1

path between the starting position and the goal, that it must reach to be
able to proceed. In this way a path to be covered is guaranteed.
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5.1 Steps Generation
A possible solution to this problem is to exploit once again the structure of
the environment, namely the line which best approximates the row and the
distance between two close rows. With these information it is possible to
create a grid that contains the parcel, whose dimensions must be such that
the robot can navigate free of incident. Hence a safety distance must be
included when it is built.
The desired steps will be the intersection of the lines which compose the grid
in figure 5.2, which is created with the following criteria:

1. The rows are extended in both directions until the blue dots at least the
dimensions of robot in such a way the A* can perform the curve without
too much trouble

2. From the points determined in the previous step, the average point is
computed(red dots), meaning that when the robot will end to perform
the curve, it will lie exactly in the middle of the two rows.

3. Once the inner lines have been found, to enclose the parcel the external
points are determined by extending the line which best fits the last red
point with the blue one.

Figure 5.2: Red(inner steps) and green(external steps) define the grid
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The flowchart in figure 5.3 will better elucidate the what previously ex-
plained.
All the procedure will also facilitate the task of the robot in the research of
the path. In particular its main concern will be to find an available path
between the rows. The parameter ρ defined in the flowchart describes the
desired distance which the robot must take from the row. In Appendix F it
is possible to view the code.

5.2 Steps Coverage
Once the steps are defined, it is still necessary to define the order in which
the robot must cover them. For this reason a simple sorting function has
been developed. According to the needs it can be used either to cover all the
parcels which compose the map or only the single parcel.
It is based on the following principle. The data structure of the steps to
be covered is such that for each row there is a vector which contains upper
point and lower point, which are originally ordered according to the rows’
allocation. Then the function is made up of these items:

1. From the starting point of the robot look at the external step points,
referred to the first and last row that compose the parcel and find which
one is closer in Euclidian distance to it

2. Sort the just found upper and lower external points belonging to the
closest row to the start according to their Euclidian distance from it and
assign as next starting point the farthest one

3. Repeat the process iteratively for each row in the parcel.

If there is the necessity to make the coverage of the whole map the same
algorithm needs a further iteration. The developed code is proposed below.

1 def dist(x, y):

2 d = (x[0]− y[0]) ∗∗ 2 + (x[1]− y[1]) ∗∗ 2
3 return d

4

5 path = [start]

6 next = start

7 for label, steps in clusters_goals.iteritems():
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8 distance_from_last = dist(start, steps[−1][0])
9 distance_from_first = dist(start, steps[0][0])

10 if distance_from_first > distance_from_last:

11 steps.reverse()

12 for step in steps:

13 step.sort(key=lambda x: (x[0]− next[0]) ∗∗ 2 + (x[1]− next[1]) ∗∗ 2)
14 path.append([int(step[0][0]), int(step[0][1])])

15 next = [step[1][0], step[1][1]]

16 path.append(next)

17 start = next

At this point it is possible to deploy the Path Planner to the obtained steps.
Figure 5.4 represents the path generation on a single parcel while 5.5 on the
entire map when it is desired.
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Figure 5.3: Steps generation flowchart
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Figure 5.4

Figure 5.5
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Chapter 6

Experimental Results and Con-
clusion

This section presents the obtained results of the work evaluated on a part
of a real agricultural environment map taken by a UAV, as represented in
figure 6.1.

Figure 6.1: Environment Map

Firstly in figure 6.2 all the rows that compose the parcels were identi-
fied and represented with different colours in order to distinguish from each
other. It can be seen that also small segments have been correctly detected
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to be stand-alone clusters. Then the best line approximation for each row

Figure 6.2: Rows Detection

was found and coloured in black in figure 6.3.

Figure 6.3: Rows Linearization
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After this first preliminary processes, the parcels were recognized by means
of the clustering Dirichlet Process. From figure 6.4 it is possible to notice
that some misclassifications are present. In general they are correlated to
small segments at the extremes of the parcels or in cases where two contigu-
ous rows are split by missing plants or defects in the map.
To find a solution to this problem the Cluster Correction algorithm has been
applied, obtaining finally the clustering in figure 6.5, where some errors still
persist in particular when the row has a circular shape. In this case the
linearization made through the OLS algorithm is not able to guarantee an
adequate approximation.

Figure 6.4: First Clustering. In red are framed the errors due to the clustering

At this stage, when the clustering has been performed, it is possible to
recombine that segments of row which present defects. The figure 6.6 il-
lustrates the impact of the Defective Rows Correction function, whereas in
figure 6.7 it is possible to appreciate the final map which will be used by the
robot.
Once the final map is obtained it can be used to find the steps (fig. 6.8)

which allow the path planner to compute iteratively the robot route (fig.
6.9).
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Figure 6.5: Clustering Correction. Persisting errors framed in red

Figure 6.6: Defective Rows Correction
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Figure 6.7: Final Map

Figure 6.8: Step points for the path planner
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Figure 6.9: Parcel coverage
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6.1 Conclusion and Future Work
The experimental results presented in this last chapter show that the work
as a whole presents some weaknesses when dealing with environments that
deviate significantly from the ones used in the development phase, which
can be considered ideal cases where imperfections in parcels are due mainly
to the presence of small areas where plants miss or defects in the image
reconstruction.
For this reason the work developed can be considered a good starting point
for a further researches, trying to understand how to remove the errors that
come out when important environmental changes occur in the map.
Besides, it is of great importance, once all the path plan has been defined,
to deploy these information in the robot in such a way that it can cover the
desired environment. To do this, the future work has already been defined,
consisting predominantly of developing all motion controls which will allow to
obtain a Motion Plan, and equally important being able to localize the robot
in the environment in order to apply the just mentioned motion commands.
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Appendix A

A*

1 from copy import deepcopy

2 import numpy

3

4 class A_star():

5

6 def __init__(self, grid, goal, init, robot_dim): # semiaxis dimensions

7

8 self.dimx = len(grid)

9 self.dimy = len(grid[0])

10 self.grid = grid

11 self.goal = goal

12 self.init = init

13 self.robotx = robot_dim[0]

14 self.roboty = robot_dim[1]

15 self.cost = [1, 1, 1, 1, 1.4, 1.4, 1.4, 1.4]

16 self.step = 1

17 self.reduction = 1

18 self.path = []

19

20 def heuristic(self):

21 h = [[self.dimx− 1 for col in range(self.dimy)] for row in range(self.dimx)]

22 x_init = self.goal[0]

23 y_init = self.goal[1]

24 if x_init >= self.dimx or y_init >= self.dimy:

25 print "Goal out of limit"

26 time.sleep(1)

74



A – A*

27 sys.exit(1)

28 else:

29 h[x_init][y_init] = 0

30 for x in range(self.dimx):

31 for y in range(self.dimy):

32 h[x][y] = round(math.sqrt((x− x_init) ∗∗ 2 + (y− y_init) ∗∗ 2), 2)
33 return h

34

35 def search(self):

36 delta = [[−1, 0], # go up

37 [0, −1], # go left

38 [1, 0], # go down

39 [0, 1], go right

40 [−1,−1], # go up left
41 [−1, 1 ], # go up right
42 [ 1, −1], # go down left
43 [ 1, 1 ]] # go down right

44 closed = numpy.full((self.dimx, self.dimy), 0)

45 closed[self.init[0]][self.init[1]] = 1

46 expand = [[−1 for col in range(self.dimy)] for row in range(self.dimx)]
47 action = [[−1 for col in range(self.dimy)] for row in range(self.dimx)]
48 obstacle = False

49 a = self.robotx

50 b = self.roboty

51 x = self.init[0]

52 y = self.init[1]

53 g = 0

54 heuristic = self.heuristic()

55 h = heuristic[x][y]

56 f = g + h

57 openm = [[f, g, h, x, y]]

58 found = False # flag that is set when search is complete

59 resign = False # flag set if we can’t find expand

60 count = 0

61 while not found and not resign:

62 if len(openm) == 0:

63 resign = True

64 return "Fail"

65 else:
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66 openm.sort()

67 openm.reverse()

68 nextp = openm.pop()

69 x = nextp[3]

70 y = nextp[4]

71 g = nextp[1]

72 expand[x][y] = count

73 count += 1

74 if x == self.goal[0] and y == self.goal[1]:

75 found = True

76 else:

77 for i in range(len(delta)):

78 x2 = x + self.step ∗ delta[i][0]

79 y2 = y + self.step ∗ delta[i][1]

80 if x2 >= 0 and x2 < self.dimx and y2 >= 0 and y2 < self.dimy:

81 if x2− a >= 0 and x2 + a < self.dimx and y2− b >= 0 and y2 + b

< self.dimy:

82 truth_table = numpy.array(self.grid[x2− a: x2 + a, y2− b:

y2 + b] == 0)

83 obstacle = False

84 if not truth_table.all():

85 closed[x2][y2] = 1

86 else:

87 obstacle = True

88 closed[x2][y2] = 1

89 if closed[x2][y2] == 0 and not obstacle:

90 g2 = g + self.step ∗ self.cost[i]

91 h2 = heuristic[x2][y2]

92 f2 = g2 + h2

93 openm.append([f2, g2, h2, x2, y2])

94 closed[x2][y2] = 1

95 action[x2][y2] = i

96 path = []

97 x = self.goal[0]

98 y = self.goal[1]

99 while x != self.init[0] or y != self.init[1]:

100 x2 = x− self.step ∗ delta[action[x][y]][0]

101 y2 = y− self.step ∗ delta[action[x][y]][1]

102 path.append([x, y])

76



A – A*

103 x = x2

104 y = y2

105 for i in range(len(path)):

106 n = i

107 self.path.append(path[n])

108 return self.path

109 def smooth(self, weight_data=0.2, weight_smooth=0.8, tolerance=0.000001):

110 path = []

111 for i in range(len(self.path)/self.reduction):

112 n = i ∗ self.reduction

113 path.append(self.path[n])

114 newpath = deepcopy(path)

115 change = tolerance

116 while change >= tolerance:

117 change = 0.0

118 for i in range(1, len(path)− 1):

119 for j in range(len(path[0])):

120 v = newpath[i][j]

121 newpath[i][j] += weight_data ∗ (path[i][j]− newpath[i][j]) +

weight_smooth ∗ (
122 newpath[i + 1][j] + newpath[i− 1][j]− 2.0 ∗ newpath[i][j])

123 change = abs(v− newpath[i][j])

124 self.newpath = newpath

125 return newpath
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Findrows

1 import numpy as np

2 matr = np.load(’map.npy’)

3 closed = np.full((len(matr), len(matr[0])), 1, dtype=np.uint8)

4 x = []

5 y = []

6 xw = []

7 yw = []

8 print type(matr)

9 map = np.empty_like(matr, dtype=np.uint8)

10 for i in range(len(matr)):

11 for j in range(len(matr[0])):

12 if matr[i][j] == 1:

13 closed[i][j] = 0

14 elif matr[i][j] == 0:

15 closed[i][j] = 1

16 delta = [[−1, 0], # go up

17 [0, −1], # go left

18 [1, 0], # go down

19 [0, 1], # go right

20 [−1,−1], # go up left

21 [−1, 1], # go up right

22 [1, −1], # go down left

23 [1, 1]] # go down right

24 ro = 1

25 start = [0, 0]

26 clusters = []
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27 open = []

28 for i in range(len(matr)):

29 j = 0

30 found = False

31 while j < len(matr[0]):

32 while not found and j < len(matr[0]):

33 if matr[i][j] == 1 and closed[i][j] == 0:

34 found = True

35 start = [i, j]

36 closed[start[0]][start[1]] = 1

37 open.append(start)

38 else:

39 j += 1

40 cluster = []

41 while len(open) > 0:

42 next = open.pop()

43 cluster.append(next)

44 x = next[0]

45 y = next[1]

46 for r in range(1, ro + 1):

47 for a in range(len(delta)):

48 x2 = x + r ∗ delta[a][0]

49 y2 = y + r ∗ delta[a][1]

50 if x2 >= 0 and x2 < len(matr) and y2 >= 0 and y2 < len(matr[0]):

51 if matr[x2][y2] == 1 and closed[x2][y2] == 0:

52 open.append([x2, y2])

53 cluster.append([x2, y2])

54 closed[x2][y2] = 1

55 j += 1

56 found = False

57 if len(cluster) > 1:

58 clusters.append(cluster)
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Parcel Clustering

1 import numpy as np

2 from sklearn.mixture import BayesianGaussianMixture as DP

3

4 data = []

5 k = 0

6 for cl in clusters:

7 xx = []

8 yy = []

9 for i in range(len(cl[1])):

10 xx.append(cl[i][0])

11 yy.append(cl[i][1])

12 data.append([coeffs[k], sum(yy) / len(yy), sum(xx) / len(xx)])

13 k += 1

14 data = np.array(data)

15 data = data.reshape(−1, 3)
16 clf = DP(n_components=len(data), n_init=len(data), covariance_type=’full’, tol=1e−12,
17 weight_concentration_prior_type=’dirichlet_process’)

18 clf.fit(data)

19 labels = clf.predict(data)

20 nw_clusters = []

21 for j in range(len(labels)):

22 nw_clusters.append([labels[j], clusters[j]])
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Cluster Correction

1 import numpy as np

2 from copy import copy

3 from sklearn.linear_model import LinearRegression

4 from collections import Counter

5

6 def dist(x, y):

7 d = (x[0]− y[0]) ∗∗ 2 + (x[1]− y[1]) ∗∗ 2
8 return d

9 for i in range(len(clusters)):

10 clusters_neighbours[i] = [[0, 0, 0, 0], [None, None, None, None], [None, None, None, None

], [0, 0], False, [0, 0]]

11 ### FIND CLUSTERS NEIGHBOURS AND THEIR LABELS

12 changed_labels = [0]

13 count = 0

14 start_time = time.time()

15 new_clusters = copy(clusters)

16 count = 0

17 while len(changed_labels) > 0:

18 changed_labels = []

19 clusters = copy(new_clusters)

20 index = 0

21 if count == 0: ##DO THIS ONLY ONCE

22 xx = []

23 yy = []

24 for cluster in new_clusters:

25 for i in range(len(cluster[1])):
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26 xx.append(cluster[1][i][0])

27 yy.append(cluster[1][i][1])

28 cluster_mean = np.mean(cluster[1], axis=0)

29 clusters_neighbours[index][3] = [float(cluster_mean[0]), float(cluster_mean[1])]

30 clusters_neighbours[index][5] = coef

31 coeff_perpendicular = −1.0 / coef[0]
32 q = cluster_mean[1]− coeff_perpendicular ∗ cluster_mean[0] # y = y0− mx0 + mx

−−> q = y0 + mx0
33 new_zero = False

34 exceeded_up = False

35 x_up = int(cluster_mean[0])

36 y_up = int(cluster_mean[1])

37 up_extension = [0, 0]

38 up_distance = 0

39 upper_limit = [0, 0]

40 lower_limit = [0, 0]

41 right_limit = [0, 0]

42 left_limit = [0, 0]

43 sign = np.sign(coef[0])

44 if sign < 0:

45 xmax = min(xx)

46 xmin = max(xx)

47 else:

48 xmax = max(xx)

49 xmin = min(xx)

50 yn = coef[0] ∗ xmin + coef[1]

51 initial_point = [xmin, yn]

52 new_one = False

53 x = xmin

54 finished = False

55 while not new_one:

56 if sign > 0:

57 x +=−1
58 else:

59 x−=−1
60 yn = coef[0] ∗ x + coef[1]
61 x = int(x)

62 y = int(yn)

63 if x > 0 and x < len(map) and y > 0 and y < len(map[0]):
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64 if map[x][y] == 1:

65 new_one = True

66 finished = True

67 lower_limit = [x, y]

68 else:

69 pass

70 else:

71 new_one = True

72 yn = coef[0] ∗ xmax + coef[1]

73 initial_point = [xmax, yn]

74 new_one = False

75 x = xmax

76 sign = np.sign(coef[0])

77 finished = False

78 while not new_one:

79 if sign > 0:

80 x += 1

81 else:

82 x−= 1
83 yn = coef[0] ∗ x + coef[1]
84 x = int(x)

85 y = int(yn)

86 if x > 0 and x < len(map) and y > 0 and y < len(map[0]):

87 if map[x][y] == 1:

88 new_one = True

89 upper_limit = [x, y]

90 finished = True

91 else:

92 pass

93 else:

94 new_one = True

95 new_zero = False

96 exceeded_right = False

97 x_right = int(cluster_mean[0])

98 right_start = [0, 0]

99 right_distance = 0

100 while not new_zero:

101 x_right += 1

102 y_right = int(x_right ∗ coeff_perpendicular + q)
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103 if x_right > 0 and x_right < len(map) and y_right > 0 and y_right < len(map

[0]):

104 if map[x_right][y_right] == 0:

105 new_zero = True

106 right_start = [x_right, y_right]

107 else:

108 pass

109 else:

110 new_zero = True

111 exceeded_right = True

112 if not exceeded_right:

113 new_one = False

114 exceeded_right = False

115 while not new_one:

116 x_right += 1

117 y_right = int(x_right ∗ coeff_perpendicular + q)

118 if x_right > 0 and x_right < len(map) and y_right > 0 and y_right < len(

map[0]):

119 if map[x_right][y_right] == 1:

120 new_one = True

121 right_limit = [x_right, y_right]

122 right_distance = dist(right_start , right_limit)

123 else:

124 pass

125 else:

126 new_one = True

127 exceeded_right = True

128 new_zero = False

129 exceeded_left = False

130 x_left = int(cluster_mean[0])

131 left_start = [0, 0]

132 left_distance = 0

133 while not new_zero:

134 x_left−= 1
135 y_left = int(x_left ∗ coeff_perpendicular + q)

136 if x_left > 0 and x_left < len(map) and y_left > 0 and y_left < len(map[0]):

137 if map[x_left][y_left] == 0:

138 new_zero = True

139 left_start = [x_left, y_left]
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140 else:

141 pass

142 else:

143 new_zero = True

144 exceeded_left = True

145 if not exceeded_left:

146 new_one = False

147 exceeded_left = False

148 while not new_one:

149 x_left−= 1
150 y_left = int(x_left ∗ coeff_perpendicular + q)

151 if x_left > 0 and x_left < len(map) and y_left > 0 and y_left < len(map

[0]):

152 if map[x_left][y_left] == 1:

153 new_one = True

154 left_limit = [x_left, y_left]

155 left_distance = dist(left_start , left_limit)

156 else:

157 pass

158 else:

159 new_one = True

160 exceeded_left = True

161 limits = [upper_limit , lower_limit , left_limit , right_limit]

162 clusters_neighbours[index][0] = limits

163 if count >= 0:

164 limits = clusters_neighbours[index][0]

165 row_found = False

166 rows = []

167 for limit in limits:

168 if limit == [0, 0]:

169 vine_rows.append(’None’)

170 finished = False

171 k = 0

172 while k < len(clusters) and not finished:

173 row = clusters[k][1]

174 label = clusters[k][0]

175 j = 0

176 row_found = False

177 while j < len(row) and not row_found:
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178 point = row[j]

179 j += 1

180 for i in range(len(limits)):

181 if point == limits[i] and not row_found:

182 clusters_neighbours[index][1][i] = k

183 clusters_neighbours[index][2][i] = label

184 rows.append(label)

185 row_found = True

186 k += 1

187 ### CHANGE POSSIBLE ERRORS IN LABELS

188 counted_labels = Counter(clusters_neighbours[index][2]).most_common()

189 most_common_label = (0, 0)

190 second_most_common_label = (0, 0)

191 i = 0

192 found = False

193 while i < len(counted_labels) and not found:

194 if counted_labels[i][0] != None:

195 most_common_label = counted_labels[i]

196 found = True

197 else:

198 pass

199 i += 1

200 found = False

201 while i < len(counted_labels) and not found:

202 if counted_labels[i][0] != None:

203 second_most_common_label = counted_labels[i]

204 found = True

205 else:

206 pass

207 i += 1

208 if most_common_label[1] > 1:

209 if most_common_label[1] > second_most_common_label[1]:

210 if cluster[0] != most_common_label[0]:

211 cluster[0] = most_common_label[0]

212 changed_labels.append([most_common_label , cluster_mean])

213 else:

214 pass

215 elif most_common_label[1] == second_most_common_label[1] and

clusters_neighbours[index][4] == False:
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216 clusters_neighbours[index][4] = True

217 right_limit = clusters_neighbours[index][0][3]

218 left_limit = clusters_neighbours[index][0][2]

219 mean = clusters_neighbours[index][3]

220 right_distance = dist(right_limit , mean)

221 left_distance = dist(left_limit , mean)

222 if right_distance < left_distance:

223 right_neighbour = clusters_neighbours[index][1][3]

224 label_neighbour = clusters_neighbours[index][2][3]

225 second_neighbour = clusters_neighbours[right_neighbour][1][3]

226 label_second_neighbour = clusters_neighbours[right_neighbour][2][3]

227 if label_neighbour == label_second_neighbour:

228 cluster[0] = label_neighbour

229 changed_labels.append([label_neighbour , mean])

230 else:

231 pass

232 else:

233 left_neighbour = clusters_neighbours[index][1][2]

234 label_neighbour = clusters_neighbours[index][2][2]

235 second_neighbour = clusters_neighbours[left_neighbour][1][2]

236 label_second_neighbour = clusters_neighbours[left_neighbour][2][2]

237 if label_neighbour == label_second_neighbour:

238 cluster[0] = label_neighbour

239 changed_labels.append([label_neighbour , mean])

240 else:

241 pass

242 else:

243 pass

244 index += 1
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Defective Rows Correction

1 new_map = np.zeros_like(map)

2 labels_value = np.unique(clusters[:, 0])

3 labeled_clusters = {}

4 for label in labels_value:

5 labeled_clusters[label] = []

6 index = 0

7 for cluster in clusters:

8 labeled_clusters[cluster[0]].append(index)

9 point_connection[index] = [[], []] # up, down

10 index += 1

11 new_clusters = copy(clusters)

12 for key, val in labeled_clusters.items():

13 for value in val:

14 row = clusters_neighbours[value]

15 coef = row[5]

16 sign = np.sign(coef[0])

17 upper_neighbour = row[1][0]

18 label_upper_neighbour = row[2][1]

19 lower_neighbour = row[1][1]

20 label_lower_neighbour = row[2][0]

21 if len(clusters[value][1]) > 100:

22 if upper_neighbour in val and upper_neighbour != value \

23 and abs((coef[0]− clusters_neighbours[upper_neighbour][5][0])/ coef[0])

< 0.3:

24 xmax = 0

25 if sign < 0:
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26 xmax = min(clusters[value][1])[0]

27 else:

28 xmax = max(clusters[value][1])[0]

29 yn = coef[0] ∗ xmax + coef[1]

30 initial_point = [xmax, yn]

31 plt.plot(xmax, yn, ’b.’)

32 new_one = False

33 x = xmax

34 finished = False

35 connectionx = []

36 connectiony = []

37 while not new_one:

38 if sign > 0:

39 x += 1

40 else:

41 x−= 1
42 yn = coef[0] ∗ x + coef[1]
43 connectionx.append(x)

44 connectiony.append(yn)

45 new_clusters[value][1].append([x, yn])

46 x = int(x)

47 y = int(yn)

48 if x > 0 and x < len(map) and y > 0 and y < len(map[0]):

49 if map[x][y] == 1:

50 new_one = True

51 upper_limit = [x, y]

52 else:

53 pass

54 else:

55 new_one = True

56 new_clusters[value][1] = new_clusters[value][1] + new_clusters[

upper_neighbour][1]

57 new_clusters[upper_neighbour][1] = []

58 point_connection[value][0] = [connectionx , connectiony]

59 plt.scatter(connectionx , connectiony , color=’r’)

60 if lower_neighbour in val and lower_neighbour != value \

61 and abs((coef[0]− clusters_neighbours[lower_neighbour][5][0])/ coef[0]) <

0.3:

62 xmin = 0
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63 coef = vine_row[5]

64 sign = np.sign(coef[0])

65 if sign < 0:

66 xmin = max(clusters[value][1])[0]

67 else:

68 xmin = min(clusters[value][1])[0]

69 yn = coef[0] ∗ xmin + coef[1]

70 initial_point = [xmin, yn]

71 plt.plot(xmin, yn, ’g.’)

72 connectionx = []

73 connectiony = []

74 new_one = False

75 x = xmin

76 finished = False

77 while not new_one:

78 if sign > 0:

79 x +=−1
80 else:

81 x−=−1
82 yn = coef[0] ∗ x + coef[1]
83 connectionx.append(x)

84 connectiony.append(yn)

85 new_clusters[value][1].append([x, yn])

86 x = int(x)

87 y = int(yn)

88 if x > 0 and x < len(map) and y > 0 and y < len(map[0]):

89 if map[x][y] == 1:

90 new_one = True

91 lower_limit = [x, y]

92 else:

93 pass

94 else:

95 new_one = True

96 new_clusters[value][1] = new_clusters[value][1] + new_clusters[lower_neighbour

][1]

97 new_clusters[lower_neighbour][1] = []

98 point_connection[value][1] = [connectionx , connectiony]

99 plt.scatter(connectionx , connectiony , color=’r’)
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Steps generation

1 def lin_dist(x, y):

2 d1 = abs(x[0]− y[0])

3 d2 = abs(x[1]− y[1])

4 return d1, d2

5 def line(p0, p1):

6 x0 = p0[0]

7 x1 = p1[0]

8 y0 = p0[1]

9 y1 = p1[1]

10 xx = [x0, x1]

11 yy = [y0, y1]

12 coef = np.polyfit(xx, yy, 1)

13 slope = coef[0]

14 intercept = coef[1]

15 return slope, intercept

16 def line_simmetry(p, m, q):

17 x1 = p[0]

18 y1 = p[1]

19 x0 = (−2∗ m ∗ q + x1− x1 ∗ m ∗∗ 2 + 2 ∗ m ∗ y1) / (1 + m ∗∗ 2)
20 y0 = (2 ∗ q + 2 ∗ m ∗ x1− y1 + y1 ∗ m ∗∗ 2) / (1 + m ∗∗ 2)
21 return [x0, y0]

22 def axial_simmetry(p1, p2):

23 x1 = p1[0]

24 y1 = p1[1]

25 mx = p2[0]

26 my = p2[1]
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27 x0 = 2 ∗ mx− x1

28 y0 = y1

29 return [x0, y0]

30 labels, indexes = np.unique(clusters[:,0], return_inverse=True)

31 labeled_clusters = {}

32 for label in labels:

33 labeled_clusters[label] = []

34 i = 0

35 for index in indexes:

36 if len(clusters[i][1]) > 0:

37 labeled_clusters[labels[index]].append(clusters[i][1])

38 i += 1

39 ro = 4

40 goals = []

41 q = 0

42 m = 0

43 for label, cluster in labeled_clusters.iteritems():

44 cluster_limits = []

45 for row in cluster:

46 x = []

47 y = []

48 upper_limit = [0,0]

49 lower_limit = [0,0]

50 for point in row:

51 x.append(point[0])

52 y.append(point[1])

53 if (isVertical):

54 regressor.fit(−y, x)
55 x_hat = regressor.predict(−y)
56 plt.plot(x_hat, y, ’k’)

57 if sign < 0:

58 xmax = min(x_hat)

59 ymax = y[x_hat.tolist().index(xmax)]

60 xmin = max(x_hat)

61 ymin = y[x_hat.tolist().index(xmin)]

62 else:

63 xmax = max(x_hat)

64 ymax = y[x_hat.tolist().index(xmax)]

65 xmin = min(x_hat)

92



F – Steps generation

66 ymin = y[x_hat.tolist().index(xmin)]

67 Dx = xmax− xmin

68 Dy = ymax− ymin

69 slope = Dy/Dx

70 intercept = ymax− slope ∗ xmax

71 coef[0] = slope

72 coef[1] = intercept

73 else:

74 regressor.fit(x, y)

75 y_hat = regressor.predict(x)

76 if sign < 0:

77 xmax = min(x)

78 ymax = coef[0] ∗ xmax + coef[1]

79 xmin = max(x)

80 ymin = coef[0] ∗ xmin + coef[1]

81 else:

82 xmax = max(x)

83 ymax = coef[0] ∗ xmax + coef[1]

84 xmin = min(x)

85 ymin = coef[0] ∗ xmin + coef[1]

86 slope = coef[0]

87 intercept = coef[1]

88 initial_point = [xmin, ymin]

89 stop = False

90 x = xmin

91 y = ymin

92 finished = False

93 if not isVertical:

94 while dist(initial_point , [x,y]) < ro ∗∗ 2 and not stop:
95 if sign > 0:

96 x +=−1
97 else:

98 x−=−1
99 yn = slope ∗ x + intercept
100 x = int(x)

101 y = int(yn)

102 if x > 0 and x < len(map) and y > 0 and y < len(map[0]):

103 pass

104 else:
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105 stop = True

106 lower_limit = [x, y]

107 else:

108 x = xmin

109 y = ymin− ro

110 lower_limit = [x, y]

111 initial_point = [xmax, ymax]

112 stop = False

113 x = xmax

114 y = ymax

115 finished = False

116 if not isVertical:

117 while dist(initial_point , [x, y]) < ro ∗∗ 2 and not stop:
118 if sign > 0:

119 x += 1

120 else:

121 x−= 1
122 yn = slope ∗ x + intercept
123 x = int(x)

124 y = int(yn)

125 if x > 0 and x < len(map) and y > 0 and y < len(map[0]):

126 pass

127 else:

128 stop = True

129 upper_limit = [x, y]

130 else:

131 x = xmax

132 y = ymax + ro

133 upper_limit = [x, y]

134 cluster_limits.append([upper_limit , lower_limit])

135 clusters_goals = []

136 for j in range(len(cluster_limits)− 1):

137 xm = (cluster_limits[j][1][0] + cluster_limits[j + 1][1][0]) / 2.0

138 ym = (cluster_limits[j][1][1] + cluster_limits[j + 1][1][1]) / 2.0

139 xM = (cluster_limits[j][0][0] + cluster_limits[j + 1][0][0]) / 2.0

140 yM = (cluster_limits[j][0][1] + cluster_limits[j + 1][0][1]) / 2.0

141 limits = [[xM, yM], [xm, ym]]

142 clusters_goals.append(limits)

143 if len(clusters_goals) > 1:
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144 first = [int(clusters_goals[0][0][0]), int(clusters_goals[0][0][1])]

145 second = [int(clusters_goals[1][0][0]), int(clusters_goals[1][0][1])]

146 m, q = line(first, second)

147 stop = False

148 x = first[0]

149 y = first[1]

150 initial_point = [x, y]

151 finished = False

152 limit = []

153 if abs(m) < 3:

154 while dist(initial_point , [x, y]) < dist(first, second) and not stop:

155 x−= 1
156 yn = m ∗ x + q
157 x = int(x)

158 y = int(yn)

159 limit = [[x, y]]

160 else:

161 x = first[0]

162 y = first[1]

163 limit = [[x,y]]

164 first = [int(clusters_goals[0][1][0]), int(clusters_goals[0][1][1])]

165 second = [int(clusters_goals[1][1][0]), int(clusters_goals[1][1][1])]

166 m, q = line(first, second)

167 stop = False

168 x = first[0]

169 y = first[1]

170 initial_point = [x, y]

171 finished = False

172 if abs(m) < 3:

173 while dist(initial_point , [x, y]) < dist(first, second) and not stop:

174 x−= 1
175 yn = m ∗ x + q
176 x = int(x)

177 y = int(yn)

178 limit.append([x, y])

179 else:

180 x = first[0]

181 y = first[1]

182 limit.append([x, y])
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183 clusters_goals.reverse()

184 clusters_goals.append(limit)

185 clusters_goals.reverse()

186 first = [int(clusters_goals[−1][0][0]), int(clusters_goals[−1][0][1])]
187 second = [int(clusters_goals[−2][0][0]), int(clusters_goals[−2][0][1])]
188 m, q = line(first, second)

189 stop = False

190 x = first[0]

191 y = first[1]

192 initial_point = [x, y]

193 finished = False

194 limit = []

195 if abs(m) < 3:

196 while dist(initial_point , [x, y]) < dist(first, second) and not stop:

197 x += 1

198 yn = m ∗ x + q
199 x = int(x)

200 y = int(yn)

201 limit = [[x, y]]

202 else:

203 x = first[0]

204 y = first[1]

205 limit = [[x, y]]

206 first = [int(clusters_goals[−1][1][0]), int(clusters_goals[−1][1][1])]
207 second = [int(clusters_goals[−2][1][0]), int(clusters_goals[−2][1][1])]
208 m, q = line(first, second)

209 stop = False

210 x = first[0]

211 y = first[1]

212 initial_point = [x, y]

213 finished = False

214 if abs(m) < 3:

215 while dist(initial_point , [x, y]) < dist(first, second) and not stop:

216 x += 1

217 yn = m ∗ x + q
218 x = int(x)

219 y = int(yn)

220 limit.append([x, y])

221 else:
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222 x = first[0]

223 y = first[1]

224 limit.append([x, y])

225 clusters_goals.append(limit)

226 else:

227 line_limits = cluster_limits[0]

228 m, q = line([int(line_limits[0][0]), int(line_limits[0][1])], [int(line_limits[1][0])

, int(line_limits[1][1])])

229 if abs(m) < 3:

230 up = line_simmetry(clusters_goals[0][0], m, q)

231 down = line_simmetry(clusters_goals[0][1], m, q)

232 else:

233 up = axial_simmetry(clusters_goals[0][0], line_limits[0])

234 down = axial_simmetry(clusters_goals[0][1], line_limits[1])

235 clusters_goals.append([up, down])

236 clusters_goals.reverse()

237 line_limits = cluster_limits[1]

238 m, q = line([int(line_limits[0][0]), int(line_limits[0][1])], [int(line_limits[1][0])

, int(line_limits[1][1])])

239 if abs(m) < 3:

240 up = line_simmetry(clusters_goals[1][0], m, q)

241 down = line_simmetry(clusters_goals[1][1], m, q)

242 else:

243 up = axial_simmetry(clusters_goals[1][0], line_limits[0])

244 down = axial_simmetry(clusters_goals[1][1], line_limits[1])

245 clusters_goals.append([up, down])

246 goals.append([label, clusters_goals])

247 for i in range(len(goals)):

248 for j in range(i + 1, len(goals)):

249 for k in range(len(goals[i][1])):

250 for l in range(len(goals[j][1])):

251 for m in range(2):

252 for n in range(2):

253 d = dist(goals[i][1][k][m], goals[j][1][l][n])

254 if d <= (2 ∗ ro) ∗∗ 2:
255 mean = np.mean([goals[i][1][k][m], goals[j][1][l][n]], axis = 0)

256 goals[i][1][k][m]= [mean[0], mean[1]]

257 goals[j][1][l][n]= [mean[0], mean[1]]
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