

Politecnico Di Torino

Mechatronics Engineering

Master’s Degree Thesis

Development of a demonstrator for
automatic test execution using LabVIEW

and XML-RPC server

Student: Joshua COUTURIER
Academic supervisor: Marco GHIRARDI
Company tutor: Olivier ALQUIER

September 2018

Credits

I wish to take this opportunity to thank all those who contributed to the success of my

thesis, and who helped me in the realization of my project.

I would like to thank my tutor Olivier ALQUIER, head of the "automatic test" activity

within Assystem Technologies, for his hospitality, his pedagogy and his investment in

the realization of my thesis, as well as his advice on personal and professional plans.

Then, I thank David CORAIN, technical manager, and Ivan LEFRANÇOIS, director of

the agency Systems Engineering, for having welcomed me and allowed me to

realize this thesis.

Without forgetting to thank the whole « automatic test » team, including Pierre

CHAUMONT, Jonathan MASSON, Franck LEGAL and Frédéric FACCHETTI, for training

me to the job of tester, and for taking time to explain their activities with pedagogy

and attention.

Finally, I would like to thank all the Assystem Technologies employees with whom I

have worked, including Sébastien ANSCIEAU, for their expertise, their team spirit, their

patience and their knowledge.

Content

Introduction ... 1

I) Company presentation ... 2

1) History .. 2

2) Organization ... 4

3) Key numbers and values ... 5

II) Automatic testing context ... 6

1) Need to automate tests .. 6

2) Solution .. 7

III) Realization of a demonstrator ..10

1) Needs Analysis and Specifications ..10

2) Selected tool ...11

3) Development and integration of a new brick ..13

a) Structure ..13

b) Operations ..14

c) XML-RPC server ...18

d) Configurable ...19

4) Deployment and results ..20

5) Challenges and difficulties ...24

IV) Complementary activities ..25

1) Validation of GTA ..25

2) Training ...25

3) Writing of documentation ..26

V) Conclusion ...27

Appendixes ..28

A. Xml configuration file ...28

B. Gantt diagram ..29

C. Poster ..29

D. Developer guide ..31

 Introduction

1

Introduction

As part of my mechatronics engineering master’s degree at Politecnico di Torino, I

realized my 6 month thesis by integrating the company Assystem Technologies in

Toulouse, France. As an international engineering and innovation consulting group,

Assystem Technologies assists major industrialists in the various stages of their projects.

During this thesis, I joined the "automatic test" team, which is in charge of the

deployment and monitoring of automatic tests. Their main customer, Airbus,

adopted a few years ago a test automation policy that reflects the progress of

technology and industrialization.

Airbus uses a software suite for automatic testing that allows you to write and

execute ground test procedures. The benefits of tests automation are the

exploitation of downtimes and the increase of the reproducibility of tests, thus a

reduction of cost thanks to a better efficiency.

GTA (Generic Tool for Automation) is one of the software used on Airbus test

benches for writing and executing test procedures, as well as generating a report. It

makes it possible to communicate with the different tools of the test benches (robot

arm, image recognition ...). It is developed by Airbus India, which relies on the

support and expertise of Assystem Technologies. Indeed, the team that I integrated

had previously developed an automation software, since 2014, called GENESTIC

(GENEric Software for Test Automation).

Today, Assystem Technologies does not have the intellectual property of this

automation project, and therefore can only use this software suite (GTA) in

connection with Airbus, although having many skills and knowledge on it.

My mission was therefore to develop an automated test demonstrator, relying on the

skills of Assystem Technologies, which will export the capabilities of the company to

other customers than Airbus.

The first part of the report is dedicated to Assystem Technologies: its history,

organization and key figures.

The second part presents the definition and the stakes of the automatic tests, in

particular the system tests and the functionalities of the GTA software.

The third part details the realization of my mission, that is to say the realization of the

demonstrator: from the analysis of needs to the results obtained.

Finally, the last part describes the other activities carried out during the thesis, namely

the introduction to the job of tester, the various trainings carried out, and the writing

of documentation.

 I. Company presentation

2

I) Company presentation

1) History

"Assystem Technologies specializes in product engineering and post-development

services, innovation and digital transformation consulting, and quality assurance.

Assystem Technologies is distinguished by its high level of technical know-how and

proven expertise in complex and critical systems, on behalf of industrial customers

operating in the aerospace, defense, automotive and transportation sectors"-

Generic presentation template from Assystem Technologies.

Historically focused on nuclear power, Assystem Technologies has diversified in favor

of the aerospace, automotive and new technologies sectors. Gradually, it has grown

internationally. The history of the society can be divided into five main periods:

o From 1966 to 1995, the nuclear years:

In 1966 the company ATEM was created, specialized in the organization of the

commissioning of industrial units (nuclear, iron and steel ...).

A few years later, in 1989, Alphatem, a subsidiary of Cogema dedicated to nuclear

power, was also created.

Then in 1995, the two companies ATEM and Alphatem merged to give birth to the

company Assystem. At this time, Assystem's business is nuclear-centric and the

company is listed on the stock market.

o From 1996 to 2003, diversification:

In this period, Assystem is evolving and expanding its business sectors through

takeovers and mergers of companies.

Indeed, in 1996, Assystem bought the company Studia aerospace and automobile.

Then, in 2003, the company enters the sectors of new technologies by merging with

the company Brime Technologies.

o From 2005 to 2010, international development:

After having diversified, Assystem very quickly understood the need to open up to

new countries and therefore started an expansion abroad.

In 2005, Assystem acquired the British engineering group Inbis, SKI and Atena (a

subsidiary of the German company MTU Aero Engines).

In February 2008, Atena and Silver Software merged to create Silver Atena (a

company specializing in the design of critical-security electronic and computer

systems).

In 2010, the strategic alliance "n.triple.a" was set up with the British company Atkins to

serve the market of emerging countries in nuclear engineering.

o From 2011 to 2017, new growth in energy and embedded systems:

In recent years, Assystem focused more on energy, embedded systems and

digitalization sectors, acquiring numerous companies.

In 2011, it acquired the German company Berner & Mattner, specialized in

embedded systems.

 I. Company presentation

3

In 2012, Assystem acquired the MPH family group, which specializes in petroleum and

natural gas engineering.

Finally, in 2016, Assystem acquired ENVY (a Turkish company specializing in the

energy and transport sectors), Onyx Promavi (a French company specializing in the

environment, transport and energy sectors, and defense), Aerotec Concept (a

player in the aircraft and helicopter modification and adaptation market) and Batir

Group (nuclear civil engineering).

The figure 1 summarizes the history of Assystem from 1996 to 2016 (in French):

Figure 1: Assystem Technologies’ past

o Since 2017, Assystem Technologies has become independent:

In September 2017, Assystem sells to private investment firm Ardian 60% of its

outsourced R&D division Global Product Solutions.

In February 2018, Assystem Technologies successfully completes its takeover bid of

the SQS Group, a leading player in digital transformation and quality assurance, with

more than 8,000 employees.

This acquisition led to the creation of Assystem Technologies, consisting of a part of

Assystem, and SQS. The other part of Assystem became Assystem energy &

infrastructure.

 I. Company presentation

4

In April 2018, Assystem Technologies successfully completed the acquisition of Stirling

Dynamics Limited ("Stirling") and consolidated its position as a leading international

partner for aerospace and marine industry players.

Today, Assystem Technologies' teams assist major industrialists from different sectors

to reduce the costs and deadlines of their projects, to optimize their development,

manufacturing and marketing processes, and to make possible design and

production of innovations all over the world.

2) Organization

After refocusing the company on Assystem's nuclear side and selling its GPS division

to Ardian investment company, Olivier Aldrin took over the presidency of the new

Assystem Technologies group.

Figure 2 below details the overall organization of the company.

My internship took place in the France Sud-Ouest Region, in Toulouse, within the

Systems Business Unit, in the digitalization part. I was part of the team of the

automatic test, composed of 5 people when I arrived.

Figure 2 : Assystem Technologies organizational chart

Direction

Purchases
Human

ressources
Mobility & work

environment

France Paris France Sud-Ouest

BU
Engineering

BU Aerospace &
Manufacturing

BU in-service &
Custumer support

BU Systems

Test bench &
Microwave
Engineering

Devt Systems &
Support

Physics Domain
Systems

Engineering

Digitalization

Big Data Test auto Innovation

Products Quality process

Sud Aviation
Services

ATHOS

France
Régions

Juridic &

Insurance

Quality &
Secutrity

Technologies &
Information

systems
Controlling

 I. Company presentation

5

3) Key numbers and values

Although originally nuclear-centric, Assystem Technologies has diversified over time

and currently has a broad range of skills. Today, it is independent of the historical

energy section, but remains focused on many areas, namely:

• Aerospace

• Automotive

• Defense

• Rail

• Industry

• Naval

• Space

For major domains, Figure 3 details the main clients:

Figure 3 : Main clients

In 2016, Assystem had close to 12,500 employees (including 4,500 in the current

Assystem Technologies) in 20 countries, with a turnover of 950 million euros.

In 2017, Assystem Technologies had more than 14,000 employees in 25 countries and

a turnover of more than 1 billion euros.

In terms of values, the company is committed to recruiting at least as many women

as school promotions allow, and a significant number of people with disabilities. This is

why Assystem Technologies is part of the "women of energy" network and has set up

the "handicap" mission. With these commitments, the company reaches a rate of

22% of women in new hires and more than 3% of its employees are disabled.

Finally, the values of Assystem Technologies are Respect, Resilience, Perennial

Performance, Responsibility, and the Spirit of Entrepreneurship. Its vision is growth

afterwards, that is to say, development driven by innovation and global

cooperation, articulated around strong human values.

 II. Automatic testing context

6

II) Automatic testing context

1) Need to automate tests

In today's industry, performance measurements are made throughout the life cycle

of a product through testing means. These can be used to fine-tune certain settings,

to ensure compliance with specifications, to carry out maintenance operations or to

understand possible malfunctions.

For the aerospace industry, with every new standard delivery, testers often have to

repeat the same test procedures. As long as they are systematic, repetitive and

automatable, it is preferable to use the automation of tests. The stakes of this new

activity are important: they make it possible to gain in efficiency, in coverage of

tests, in quality and in reproducibility. And let's not forget that automated tests can

also be launched at night, saving time and reducing delivery times.

Quite simply, during the automation of the tests, a sequence of commands is

executed to control various tools / instruments of a test bench, and a check of the

status of each one is done, which indicates its good behavior or not.

The Airbus group has been updating its methods for about 5 years, to test its avionics

and aircraft systems. We are mainly talking about "integration" tests, which consist in

integrating the equipment to be tested into a "complete airplane" environment and

observing its behavior. To test avionics systems, the Airbus Group performs two types

of tests: flight tests (40%) and ground tests (60%). Concerning the ground tests,

depending on the number of real / simulated elements, different test methods are

used:

• Test benches: these are the test facilities that contain the most simulated

elements. They can only test a few avionics systems

• Simulators: they consist of a real cockpit, and several real avionics systems.

They also present a simulated part (aerodynamic engines, APU, air sampling,

landing gear ...)

• Iron bird: it is a steel tubular structure receiving all the electrical and hydraulic

systems and subsystems of the aircraft at scale 1, which allows in particular to

represent the actual loss of loads of the aircraft

Figure 4 illustrates these different test means.

 II. Automatic testing context

7

Figure 4 : testing facilities (top FIB2 NEO test bench, lower left A350 simulator and right A350 iron bird)

To obtain a major gain in productivity, this automation requires a certain rigor to

anticipate each step of the flight and the possible reactions of the avionics systems

concerned. Each instruction must be detailed to be transmitted by computer. The

initial preparation is therefore slightly longer than for manual tests, for which only the

main steps are written.

Despite these shortcomings, the advantages of automating tests are very important

and this modernization represents a major challenge for aeronautical testing.

2) Solution

Since 2013, the test automation policy at Airbus has evolved. During its first steps, in

2013, Airbus relied on Assystem which was developing GENESTA (GENEric Software for

Test Automation), still present on some test benches. This software enables the writing

of test procedures, the compilation of executable scripts on Airbus test benches, as

well as the automatic generation of a test report.

Faced with the success of GENESTA, Airbus decided to develop its own automatic

test software in its Indian subsidiary, GTA (Generic Tool for Automation), and

delegated its follow-up to Assystem Technologies.

To date, GTA is used on twenty benches, by a community of more than 100 testers.

Its history is presented in figure 5 which follows (in French).

 II. Automatic testing context

8

Figure 5 : Beginnings and development of GTA from 2013 to 2017

Today, GTA allows:

✓ The writing of test procedures, in a simple and understandable way by the

users

✓ The generation of an SCXML file which is a language understandable by the

various tools of the test bench, describing the instructions written in the

procedure

✓ Writing a log file that lists the different stages of the test and the tool returns

✓ The generation of a test report in Word format, readable and understandable,

to determine the correct functioning or not of the test, according to a status

OK or KO

The tools are driven by various XML-RPC servers. That is, they use a Remote Procedure

Call (RPC) protocol, which makes it possible to call a function on a remote server

from any system connected to the network. The operation of this type of server will

be detailed later. Among the controllable tools, we find:

• The BIS-G (Generic System Integration Benchmark) server that serves as a

communication interface with the bench. It centralizes the data of real and

simulated elements, connects equipment and manages communications

• The BITE Logger and the Flight Warning Computer (FWC) Logger which are

software for generating log files containing messages from the simulated

MCDU and FWC

• OneClick which is a tool whose role is to start the machines, to launch the

various software, to load a test configuration and to launch a simulation

• The Interactive Controller that manages the user interactions (display

messages on the screen)

• Image recognition (IRT) which aims to check if a message is displayed on

the cockpit screens

 II. Automatic testing context

9

• The robot arm, which is a tool for replacing manual actions (pressing a

button, moving the levers, adjusting the rotary knobs, etc.) by automated

actions

Figure 6 details the communication links between GTA and the various tools:

Figure 6 : Global architecture of the software suit

The growing demand to integrate GTA on new benches requires the installation of

GTA and the training of new users, which are mostly conducted by the automated

testing team. In addition, it is in charge of the validation of the good behavior of

GTA, and the continuous improvement of the software (technically realized by Airbus

India).

As we can see in Figure 6, the communication between the software and the tools

via the XML-RPC server is a strong point that allows a great efficiency and ease of

development which reflects the success of GTA. This is why we will retain this

communication solution via XML-RPC server for later.

 III. Realization of a demonstrator

10

III) Realization of a demonstrator

1) Needs Analysis and Specifications

As seen in Figure 6 above, Assystem Technologies is only partially involved in the GTA

project because it does not hold the intellectual property, but it allows the export of

skills in the project at Airbus.

The idea of my internship is to be able to detach ourselves from the GTA solution of

Airbus, to create a sequencer which Assystem Technologies would be the owner. The

GANTT diagram in Appendix B details the major steps that were necessary for the

development of this sequencer.

Firstly, I had to analyze the GTA software in details, in order to highlight the various

integrated functions, and the needs it responds to. I then spent a few days reading

the documentation on the software, understanding the context, and getting trained

on its use by the team. I had access to both user-driven technical documentation

and internship reports from previous years.

Then, my first initiative was to list the different possibilities of the software in order to

compare them with the possible solutions of a sequencer. I then realized a table

listing all the possible functionalities of GTA, simplified in figure 7.

Element concerned Functionalities

General ✓ Importing databases and tools

✓ Exporting a report in Word format

Header ✓ Customization of the header

✓ Adding or removing fields

Document Viewer ✓ Tree view of different types of data

✓ Editing and quick search of elements

Editor ✓ Visualization of the procedure being edited

✓ Add an action, a check or a comment

✓ Features built into Action are:
• [set] a parameter

• [print] a message

• [title] to structure the procedure

• [condition] of the action

• [manual action] to indicate to the operator to act

• [call] an already existing element

• [wait]

• [external tool] to control tools

✓ Features built into Check are:
• [value] for a parameter

• [FWC warning]

• [BITE message]

Result ✓ Find a log, a procedure or a sequence

✓ Visualize the log

Editor Tool Bar ✓ Quick navigation bar

✓ Includes most functions in shortcuts

Figure 7: Simplified version of the main functionalities of GTA

 III. Realization of a demonstrator

11

It was clear then that the main axes of realization of the demonstrator had to focus

on a solution integrating:

• Importing a database of tools and functions

• Writing a procedure / test sequence in a structured way

• The ability to save created items for reuse

• Execution of the test by a sequencer

• Communication via an XML-RPC server with tools

• A reading of the returns and measurements on each tool

• The generation of a report readable by a lambda user

2) Selected tool

Once the test needs analysis and the demonstrator specifications were done, I

turned to existing software solutions that would make my project possible. I first

studied a sequencer from National Instruments, called TestStand; but then I realized

that it did not necessarily correspond to our needs, especially due to its complexity.

In the end, after talking about my project around me, I realized that another team at

Assystem Technologies was working on a sequencer that already integrated some of

our needs. Their software was coded under LabVIEW, so modular and deployable

without a license. The C.E.D.M (Design / Studies / Development / Methods) team in

question is working on the development of test benches and test facilities under

LabVIEW among others. Their software already allowed:

✓ Writing a procedure / test sequence in a structured way

✓ The ability to save created items for reuse

✓ Execution of the test by a sequencer

Although it lacked the integration of an XML-RPC server, making it possible to send

commands to each tool, and the generation of a clear report, the software suited

our primary needs. The major advantage of this solution is that Assystem

Technologies is the owner of this software, and masters its development. Figure 8

summarizes in schematic form the objectives and the development choices

described.

Figure 8: Summary of the choices of development

GTA

• Specific base

• Intellectual property of
Airbus

LabVIEW

• Generic solution

• Free and unrestrained
deployment

Integrating a brick with
an XML-RPC server

 III. Realization of a demonstrator

12

During my internship I could have support and training of the C.E.D.M. team on their

solution, which allowed me to integrate my own needs in their software. It was also

necessary to strengthen my knowledge of LabVIEW programming.

The first version of the software I was able to access was an old project for a certain

client. In Figure 9, we can see the main menu in question, where each element is

then detailed.

Figure 8: Main menu of the Assystem technologies software

From then on, it was a question of taking in hand the technological bricks which

constituted this software, and to integrate a new XML-RPC brick in order to be able

to communicate with our tools. Thanks to my table of the functionalities of GTA, I was

able to determine the points to work on and those already present.

Main window to execute and
visualize procedures live

Visualize Log files and generate a
report

Manual control of tools

Verify the presence of tools

Define real and simulated objects

Configure the tools HMI

Create or edit a sequence from tests

Create tests with different functions
and tools

 III. Realization of a demonstrator

13

3) Development and integration of a new brick

a) Structure

The software was fully developed under LabVIEW 2016 initially, and then updated to

version 2017. LabVIEW has the advantage of being a platform for designing

measurement and control systems based on a National Instruments graphical

development environment, relatively easy to handle, and well documented.

The main structural features of the "Assystem Technologies software" are:

• The many subVIs are loaded dynamically at launch, and communicate with

each other

• Each brick is defined as a driver of the main program. The name of files and

folders can be important to tell the program where to look for relevant VIs

• Data exchange is done through LabVIEW classes (lvclass), or controls (ctl)

• Drivers are considered either as a command or as a measure

• The HMI of each driver (VI) communicates with the main program through

an ATP

The general diagram in Figure 10 shows all the drivers present in the software (for

now). We will only focus on the XML-RPC brick that is being developed (in the

middle).

Figure 10: Main structure with the other drivers

Main LabVIEW sequencer

 III. Realization of a demonstrator

14

As for my XML-RPC brick, once completed, it had the structure visible in Figure 11.

Figure 11: Structure of the XML-RPC brick

The HMI folder contains the two main VIs that allow communication with the main

program, and the display of the HMI.

The subVIs folder contains all subVIs that are useful for brick operation, categorized

by features.

The last folder contains the information and VIs of the XML-RPC object class.

b) Operations

The operation of each VI is detailed in the XML-RPC brick developer guide (in order

to continue the development of the software), of which the summary is presented in

Appendix C.

Here we will detail the structure of the main VI of the tool, that is to say the

"HMI_Measurement_12 (XML-RPC) .vi". Here is a table that summarizes the inputs and

outputs of the VI:

The following figure shows the simplified structure of the VI, which we will then detail.

Input Output

Configuration Configuration out

IHM control? TAG

Editor mode? Value

 Output results

 III. Realization of a demonstrator

15

Figure 12: Simplified HMI block diagram

The case structure box at the bottom left controls the information to be sent

(Configuration or IHM parameters) according to the selected subVI or HMI mode.

HMI mode is used in Manual mode and in Test editor mode, while subVI mode is used

when executing sequences. In subVI mode, as can be seen in figure 13, the

(previously registered) configuration is sent to the program.

The case structure in the middle left allows us to initialize the parameters and controls

useful to the execution of the VI: it is the INIT step. It is called only once in the first call

of the VI. As can be seen in Figure 14, it is composed of four sub-VIs which allow

respectively to reset the origin of the window, to activate the controls, and to

initialize the XML-RPC class to extract the configuration array.

Figure 13: SubVI mode case structure

 III. Realization of a demonstrator

16

The structure box at the top left allows us to reset all HMI indicators every time we

open the window, except in editor mode, because we might need to reopen the VI

to modify the entered values. In Figure 15, we see that the different elements are

reset thanks to Property Nodes, when we are not in Editor Mode.

Then, the left part of the flat sequence is relative to the update of the HMI. It fills the

strings and combo box of the indicator "IHM parameters", with the good values it

finds in the configuration array, and which are updated dynamically. We can see in

figure 16 an extract of this part of the flat sequence.

Figure 14: Init step case structure

Figure 15: Reset case structure

Figure 16: Extract of the HMI update

 III. Realization of a demonstrator

17

In Figure 17 we see the details of the previous sub-VI to fill the combo box with

existing functions, specific to the chosen tool. When "Tool" changes its value in "IHM

parameters", the "Input Array" configuration array is scanned to extract the functions,

when the tool corresponds. Then we extract the functions to the correct column (2),

and we eliminate the empty boxes. Finally we fill the combo Box "Function" with the

Property Node, passing by the argument "Strings []" (possible values of the combo

box).

Finally, the right part of the flat sequence allows us to send the data to the tools

thanks to the XML-RPC server. This is used when you press Send in manual mode, or in

sequencer mode (shown in logic at the bottom of Figure 18). When we are in the

right mode, we see that we enter the True structure box, where we send the

previously restructured information in XML format, via the "Server post" subVI, and we

treat the information received with the "output message filter".

At that moment, the information entered in the HMI is sent via the XML-RPC server.

Figure 17: Populate functions subVI

Figure 18: Driver Functions

 III. Realization of a demonstrator

18

c) XML-RPC server

The server is the main element allowing the communication between the software

and the tools (of a test bench for example).

XML-RPC is a Remote Procedure Call (RPC) protocol, which allows you to call a

function on a remote server from any system (Windows, Mac OS X, GNU / Linux),

across a network, and with any programming language.

It allows a client to call functions, with their arguments, on a remote server

(designated by a URI), and receive structured data in return. The data is transferred

through the HTTP protocol and structured by the XML standard. That's why we use a

"format to XML" subVI before sending.

XML-RPC is designed to allow complex data structures to be transmitted, executed,

and returned very easily. This is why Airbus mainly uses this technology on its test

benches, and we will also use it to control our tools.

This explains the logo on the button of the technological brick, which I realized in flat

design:

Figure 19: Logo of the XML-RPC brick

Thus, for each tool that one wants to use, it is enough to assign it an XML-RPC server

with the list of functions and arguments that it can execute, as well as the returns.

And on the client side, here the software, just send commands to the right tool. To

distinguish them from each other, we use a specific URI (Uniform Resource Identifier),

which consists of an IP (example: 127.0.0.1 in localHost) and a port number

(example: 8003). See Figure 20 for the server summary.

Figure 20: Server operation

Client

PC1 | IP1 | URI1 PC2 | IP2 | URI2

Server Tool A
P
I

HTTP

Network

 III. Realization of a demonstrator

19

d) Configurable

One of the great advantages of the developed brick is the ability to easily add new

tools to pilot. By adding a configuration file and 3 lines to an INI file, we can pilot a

new tool immediately. This allows a great flexibility and speed of deployment

because it is not necessary to recode the software every time you want to add a

tool.

First, the INI file is used to define the IP and the port of each tool, as previously

described. Figure 21 shows an example of an INI file that allows to control a tool

called "demonstrator".

Figure 21: Classical initialization file

Then the configuration file in XML format defines the functions, arguments and returns

of the tool. Appendix A shows an example of a configuration file for the

demonstrator tool.

This tool is a LED with a color and a text display.

By reading the XML file, we can see the tool includes:

• A "change_color" function, with the arguments "black; white; red; green; blue"

• A "change_text" function that takes as argument a string

• Four different returns: ID, color, text and result

Since reading a file of this type is not native in LabVIEW, I have developed a brick for

reading and saving data in an array. The following figure 22 gives us a global idea of

the behavior and links between the developed VIs.

In terms of LabVIEW programming, XML configuration files are read at initialization,

and the data is placed in an array.

All you have to do is have the XML configuration file path (automatically defined in

the software) as an input, and as an output you have an array containing the data

of all the files.

 III. Realization of a demonstrator

20

Figure 22: Structure of the VIs which read the configuration files

The main steps of the "Populate from XML config" VI are:

• Initialize arrays and variables, and fill in an array with the path names of

each tool

• For each tool / path, initialize the parameters, before filling the sub-arrays

with the functions and definitions

• Use Xpath to locate specific portions of data in the file

• Optimize arrays to be as small as possible, without empty rows or columns

• Some arguments are renamed to allow sorting later

• Send the data to the output configuration array

Thanks to this set of VIs, one can have access to the functions and arguments of the

tools that one wants to control, by simply putting their configuration file, in XML

format, in a specific folder. This is a very simple and generic way, which makes it

possible not to have to recode the software for every new tool that one would like to

add.

4) Deployment and results

Before being able to deploy the software, it had to be updated to the new version

(done post-report) that is based on LabVIEW 2017, and then purified of names and

references to old projects for clients, and finally modernize the brick in flat design.

 III. Realization of a demonstrator

21

For my XML-RPC brick, Figure 23 shows the pre-deployment HMI enhancement

before testing: from LabVIEW 2016 to 2017 in flat design, for a more modern look.

Figure 23: Old (left) and new (right) HMI

As can be seen in the previous figure 23, the XML-RPC brick is very easy to use:

1. We select the tool we want to control

2. We choose the function we want to send

3. Choose the parameters from the list that loads dynamically

4. Save the parameters for the test, or send them directly to the tool

Now, taking a step back, like the table in Figure 7, here is the list of major features of

the software deployed:

Element concerned Functionalities

Sequencer ✓ Execution of a sequence

✓ Play, Pause, Stop button

✓ Detailed visualization of the execution for each step

✓ Shortcuts to some drivers

✓ Open the report

Logs ✓ View log in "hist" format

Manual Mode ✓ Quick access banner to certain drivers

✓ Manually control the tools

Resource Test ✓ Check the correct operation of the drivers

✓ Indicate whether or not a device is simulated

Drivers HMI Settings ✓ Restore the parameters of an HMI

Sequence Editor ✓ Creating a sequence from the list of tests that exist

✓ Adding information about the sequence

Test Editor ✓ Editing a test

✓ Possibility to add:
• a description

• an order

• a measure

• a wait

• an audit

• a label

• a data storage / reading

• a goto

Figure 21: Simplified list of the main functionalities of the Assystem Technologies sequencer

 III. Realization of a demonstrator

22

In order to test the good behavior of my software and the XML-RPC communication,

I used at the beginning a LED tool presented in III.3.d. It was developed by a former

trainee, and could simply change color and text.

I then decided to develop my own test tool in order to try my software and to be

able to show the operation and the results in a visual way. So I choose to create a

"game" developed with Pygame on Python.

The game's interface, visible in Figure 25, is a white grid of 20 pixels by 20 pixels. The

idea is to be able to send commands to the interface, via the XML-RPC server, to be

able to draw on it. My first example of drawing made with the sequencer is Mario:

Figure 25: Example of a drawing with the Pixel Draw tool

This tool, developed with the Pygame module, has an XML-RPC server, whose client is

the LabVIEW software. This server hosts a list of functions, detailed in the following

table, that it executes when it receives the command:

Function Effect

Clear (clear) Reinitializes the grid to blank

Draw (column, row, color) Colors a pixel at the given position (column,

row), and at the given color (chosen from a

predefined list)

Stop (stop) Stops and closes the game

 III. Realization of a demonstrator

23

Thanks to my LabVIEW software, I can create a sequence composed of many

commands, which allow to draw something, and to check if each pixel is well

displayed. The following figure 26 gives an idea of part of the test I did to draw Mario.

Figure 26: Example of a sequence for the Pixel draw tool

Following the execution of this test thanks to the sequencer, we obtained the result in figure 25, and a

report, automatically generated, visible in the following figure 27:

Test Action Comment Status

Initialization OK

 Sequence Initialization Sequence Initialization OK OK

Draw_Mario OK

 Pixel_Draw : clear(blank) Server Return : Column= NONE ; Row= NONE ; Color= NONE; Result= OK OK

 Pixel_Draw : draw(7 2 RED) Server Return : Column= 7 ; Row= 2 ; Color= RED ; Result= OK ; OK

 Pixel_Draw : draw(8 2 RED) Server Return : Column= 8 ; Row= 2 ; Color= RED ; Result= OK ; OK

 Pixel_Draw : draw(9 2 RED) Server Return : Column= 9 ; Row= 2 ; Color= RED ; Result= OK ; OK

 Pixel_Draw : draw(10 2 RED) Server Return : Column= 10 ; Row= 2 ; Color= RED ; Result= OK ; OK

 Pixel_Draw : draw(11 2 RED) Server Return : Column= 11 ; Row= 2 ; Color= RED ; Result= OK ; OK

 Pixel_Draw : draw(6 3 RED) Server Return : Column= 6 ; Row= 3 ; Color= RED ; Result= OK ; OK

 Pixel_Draw : draw(7 3 RED) Server Return : Column= 7 ; Row= 3 ; Color= RED ; Result= OK ; OK

 Pixel_Draw : draw(8 3 RED) Server Return : Column= 8 ; Row= 3 ; Color= RED ; Result= OK ; OK

Figure 27: Generated report from the previous sequence

 III. Realization of a demonstrator

24

The report is the key element for analyzing the results. It testifies the good behavior or

not of the procedure, thanks to the global and individual statutes. It is also possible to

check the status of each step live, during the execution of a sequence.

The report takes each step of the written sequence, and indicates the return of the

server for the command sent, as well as the status. A sequence can be composed of

several tests, and for each test we note its global status according to the OK or KO of

each step in the test.

The user notices here that the sequence was successful (OK).

5) Challenges and difficulties

Before I started developing an XML-RPC brick, I had to identify the best software for

the task. Initially, my internship was based on the development of a brick under

TestStand. This software is a configurable and modular test sequencer, distributed by

National Instruments since 1999.

Its recognition and the fact that it has enough online documentation makes

TestStand an attractive software. I then spent about 2 weeks getting to know

TestStand through many tutorials, from beginner to advanced, and then another two

weeks trying to develop the XML-RPC brick. The GANTT chart in Appendix B details

this planning.

Although the features of the sequencer were advanced and optimized, TestStand

did not really suit our needs. The biggest negative points that emerged are:

• Software complexity hindering development

• The fact that the writing of a procedure is not very intuitive and is not made

to be modified often

• To deploy the software it is necessary that the "client" also obtains a

relatively expensive TestStand License

On the plus side, TestStand is very efficient at running sequences, even in parallel,

and for writing very complete reports.

After taking all these parameters into account, and following a discussion with the

team of Assystem Technologies who developed the home sequencer, it was

decided to work with them to integrate an XML-RPC brick. The big advantages of

this solution are:

• Support and simplicity of software and LabVIEW

• The fact that the software is owned by Assystem Technologies

• Simplicity and cost-free software deployment, coded in LabVIEW

Even if the software is not complete in terms of functionality, it is easy enough to add

some, and allows a good basis for a demonstrator.

 IV. Complimentary activities

25

IV) Complementary activities

During my internship I was able to participate in several activities and trainings that

allowed me to develop my knowledge and be aware of the professions that

surround me. Appendix B gives all the details under a GANTT chart.

1) Validation of GTA

A major role of the automatic test team is the validation of the GTA software, so that

the developers of Airbus India have a return on the development of their software. It

is a question of making sure of the good behavior of the new functionalities and of

the non-regression of the old functionalities of GTA. Validation is somehow part of the

debug / test of the software, in which I was able to take part. Each point to be

tested is listed, and distributed among the members of the team, who verify and

attest to the good functioning (OK) or not (KO) of the points to be tested.

During my internship, I participated in the validation of the v22 version of GTA,

delivered in May. I detected minor HMI issues in the menus, as well as more important

issues related to new "ignore" and "undo / redo" functions that were not fully

developed. The problems were present in conditional if or while loops. I then

described my observations to the team and a member of Airbus India so that he

could correct the software before delivery to the customer on the test benches.

These validation steps allowed me to better understand the job of tester, and to

deepen my knowledge of automatic tests, in parallel with my training at GTA upon

my arrival.

2) Training

During my experience, I benefited from several trainings, allowing me to better

understand the professional world in which I worked, and the roles of innovation and

quality in the engineering profession.

My first training was an introduction to the cockpit and piloting on a flight simulator.

The simulator in question, visible in figure 28 was made by an Assystem Technologies

team, mainly allowing training in flight. In fact, the testers are required to perform

flight maneuvers on the Airbus test equipment, whose sessions are sometimes

expensive and difficult to obtain. The Assystem Technologies flight simulator thus

makes it possible to train to maneuvers of various aircraft (including A320 and A380),

ensuring full efficiency of testers during test slots on the customer site. As part of my

team, it helps to prepare for the writing of procedures for the tests to be performed.

For my part, I learned about all the elements that constitute a cockpit, as well as their

usefulness, then I took part in an actual practice on the simulator, where I was able

to practice the take-off and landing of an A380, following specific instructions. I will

remember the complexity of a cockpit in terms of instruments and buttons, but the

simplicity in terms of maneuvers.

 IV. Complimentary activities

26

Figure 28 : Home-made flight simulator

Then, I had the opportunity to participate in a training called "Successful

innovation project", presented by my tutor. It persuaded me that innovation is a

major issue in the engineering profession, where we are all actors, and especially

that it exists in different forms. I realized that today, innovation is not an option, but a

necessity to be and above all to remain competitive on projects. It is pursued by

everyone, so it is important to always keep a head start to avoid being swallowed by

competitors. Also, market analysis and communication are major steps to promote

and realize your project.

Finally, during my last "Quality awareness 2018" training we discussed the

evolutions EN9100: 2016 / ISO 9001: 2015, and we made a few reminders on the

processes of Sales and Realization.

3) Writing of documentation

A very important part when developing a program is the documentation. It allows

new users to take ownership of the software to understand how to develop it, or just

how to use it.

So I realized 3 different documentations:

• How to install the software? - Installation guide

• How to use the software? - User guide

• How to modify and develop the software? -Developer guide

Appendix D is the Developer Guide for the XML-RPC Brick, that I wrote, which details

the structure and operation of each VI in the tool, as well as instructions for further

development.

I also created a poster that sums up my whole thesis, visible in Appendix C, which

was used to present my internship to my French engineering school.

 V.Conclusion

27

V) Conclusion

These 6 months of thesis spent in the "automatic test" team of Assystem Technologies

in Toulouse allowed me to carry out my project. My mission was to develop a generic

demonstrator of automatic tests, in order to deviate from the specific solutions used,

of which Assystem Technologies does not hold the intellectual property.

The software developed with the help of another team of the company, meets the

objectives and needs defined. It is coded under LabVIEW, and thus allows a license-

free deployment, without any intellectual property rights constraints.

The XML-RPC brick allows remote communication with any tool that has a server.

And adding new tools to the software is very easy: just add a configuration file in XML

format.

For example, I was able to create and configure my own tool, developed with

Python.

In terms of technical enrichment, I was able to acquire a lot of knowledge in

LabVIEW and Python programming, but also on the operation and the usefulness of

a sequencer in the aeronautics world for example. It also allowed me to learn about

XML and how an XML-RPC server works.

I also conducted training that allowed me to better understand the professional

world around me, and the innovative aspects of the engineering profession, but also

the job of tester.

From a personal point of view, this internship allowed me to gain autonomy and

technical expertise, since I was working independently on a new project. I also

developed my decision making and my teamwork. And above all, I was able to

enrich my technological curiosity by working in a professional environment

surrounded by interesting people, who brought me new ideas.

This professional experience led me to use and enhance the knowledge acquired

during my years of training in engineering school. Assystem Technologies allowed me

to assume the duties and responsibilities of a mechatronics engineer.

28

Appendixes

A. Xml configuration file

<?xml version="1.0"?>
<GENERIC_TOOL name="Demonstrator" toolDisplayName="LED Demonstrator">

<HMI hasActionOnFail="0" hasTimeout="1" hasComment="1" hasDumpList="0"/>
<functions type="STATIC">

<function name="change_color" toolId="Demonstrator" argList=""
functionDisplayName="Change the LED color" toolType="Tool">

<arguments>
<argument name="color" type="string"
HMILabel="color" mandatory="yes" searchType=""
defaultValue="" cond=""
values="black;white;red;green;blue" constValue=""/>

</arguments>
<returns>

<return name="ResultStruct" type="struct"/>
</returns>

</function>
<function name="change_text" toolId="Demonstrator" argList=""
functionDisplayName="Change text" toolType="Tool">

<arguments>
<argument name="text" type="string" HMILabel="Text"

mandatory="yes" searchType="" defaultValue="" cond=""
values="" constValue=""/>
</arguments>
<returns>

<return name="ResultStruct" type="struct"/>
</returns>

</function>
</functions>

<definitions>
<data name="ResultStruct" type="struct">

<attributes>
<attribute name="ID" type="int" trueCond="" returnCode="no"
occurence="" waitUntil="no" falseCond=""/>
<attribute name="color" type="string" trueCond=""
returnCode="no" occurence="" waitUntil="no" falseCond=""/>
<attribute name="text" type="string" trueCond=""
returnCode="no" occurence="" waitUntil="no" falseCond=""/>
<attribute name="result" type="string" trueCond="OK"
returnCode="true" occurence="1" waitUntil="yes"
falseCond="KO"/>

</attributes>
</data>

</definitions>
</GENERIC_TOOL>

file:///C:/Fichiers_F5X/CONF_Drivers/XML_RPC_1/Demonstrator.xml
file:///C:/Fichiers_F5X/CONF_Drivers/XML_RPC_1/Demonstrator.xml
file:///C:/Fichiers_F5X/CONF_Drivers/XML_RPC_1/Demonstrator.xml
file:///C:/Fichiers_F5X/CONF_Drivers/XML_RPC_1/Demonstrator.xml
file:///C:/Fichiers_F5X/CONF_Drivers/XML_RPC_1/Demonstrator.xml
file:///C:/Fichiers_F5X/CONF_Drivers/XML_RPC_1/Demonstrator.xml
file:///C:/Fichiers_F5X/CONF_Drivers/XML_RPC_1/Demonstrator.xml
file:///C:/Fichiers_F5X/CONF_Drivers/XML_RPC_1/Demonstrator.xml
file:///C:/Fichiers_F5X/CONF_Drivers/XML_RPC_1/Demonstrator.xml
file:///C:/Fichiers_F5X/CONF_Drivers/XML_RPC_1/Demonstrator.xml
file:///C:/Fichiers_F5X/CONF_Drivers/XML_RPC_1/Demonstrator.xml
file:///C:/Fichiers_F5X/CONF_Drivers/XML_RPC_1/Demonstrator.xml
file:///C:/Fichiers_F5X/CONF_Drivers/XML_RPC_1/Demonstrator.xml

29

B. Gantt diagram

Here I present the Gantt diagram of the implementation activities of the software. It

sums up the main tasks I planned and worked on during my thesis. As we can see, I

had many meetings with different people to acquire new knowledge, and to explain

my project. I also spent most of my time on the development of the XML-RPC brick

and its HMI.

Tasks Steps
March April May June July August

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Formation Automatic testing

 Flight simulator

 Quality norms

 Innov'Lab

 Innovation

Team work Debriefing

 Validation

Meetings Tutor

 CEDM team

SW Needs analysis

 TestStand formation

 TestStand adaptation

 Home-made sequencer formation

 XML-RPC brick development

 Documentation

 Flat design

 Python tool

Explaining for future
development

Academic Report writing

 Poster

 Presentation

Figure 29: GANTT diagram

C. Poster

The following poster I designed sums up my whole thesis and was used to present my

internship to my French engineering school. I presented it in front of two professors

and two people from my company, as well as random students who were interested

in my project. Everybody was very happy about the job I had accomplished.

30

31

D. XML-RPC Developer guide

The Developer Guide for the XML-RPC Brick details the structure and operation of

each VI in the tool, as well as instructions for further development.

I wrote it so that people can continue to work on the project with a detailed

explanation of what has already been implemented.

2018

COUTURIER Joshua

Assystem France

31/08/2018

XML-RPC Tool Developer Guide

Table of content
Introduction ... 1
1. Structure ... 1
2. Configuration .. 1

2.1. .INI file ... 1
2.2. XML files .. 1
2.3. Populate from XML configuration files ... 4

2.3.1. Main VI ... 4
2.3.2. Get XML files list (SubVI).vi .. 5
2.3.3. Get XPath node (SubVI).vi .. 5
2.3.4. Clean string (SubVI).vi ... 6
2.3.5. Populate definition array (SubVI).vi ... 6
2.3.6. Populate function array (SubVI).vi ... 6
2.3.7. Reshape array (SubVI).vi ... 7
2.3.8. Resize functions (SubVI).vi .. 7
2.3.9. Resize definitions (SubVI).vi .. 7
2.3.10. Rename for combo (SubVI).vi .. 7

3. XML-RPC class ... 7
3.1. XML-RPC.ctl ... 7
3.2. INIT.vi ... 8
3.3. XML-RPC_main.vi ... 8
3.4. Read config cluster.vi .. 8

4. Tool setup ... 8
4.1. Global drivers .. 8
4.2. Manual mode drivers .. 9

5. HMI .. 9
5.1. TypeDef_XML-RPC_clt_config.ctl .. 9
5.2 ATP_Measurement_12.vi ..10
5.3 IHM_Measurement_12.vi..10

5.3.1 HMI interface ...10
5.3.2 HMI modes ..11
5.3.3 Block diagram template ..12
5.3.4 INIT step ..13

5.3.4.1 TOOLS_Reset_All_Panes_Origin.vi ... 13

5.3.4.2 CTL_Enable_ALL_VI_CTLs.vi .. 13

5.3.5 HMI update ..13
5.3.5.1 Populate_tools (SubVI).vi .. 13

5.3.5.2 Populate_functions (SubVI).vi ... 13

5.3.5.3 Populate_Argument(s) (SubVI).vi ... 14

5.3.5.4 Coordinates to Index.. 14

5.3.5.5 Populate_comboBoxes (SubVI).vi ... 14

5.3.6 Driver functions ...14
5.3.6.1 Get type (SubVI).vi ... 14

5.3.6.2 Format to XML (SubVI).vi .. 15

5.3.6.3 Multi-output message filter (SubVI).vi ... 15

5.3.6.4 Values_for_tag (SubVI).vi ... 15

6 Report generation ..16
6.1 Report_populate_LOG_array(SubVI).vi..17
6.2 Report_add_test_line(SubVI).vi ..18
6.3 Report_Test_Status(SubVI).vi ...18
6.4 Report_Create_XLS(SubVI).vi ...18

7 More ..18

Introduction
The XML-RPC Tool is a driver added to the main sequencer software. Combined, they allow
us to write procedures for specific XML-RPC based tools, execute them, and generate a
report to be read by the user. The software allows to send commands specific to each tool
(defined in XML configuration files), which include functions and arguments. The software
communicates with the tools via an XML-RPC server, for a given IP and port (defined in the
initialization file).

1. Structure

To help situate the developer, the figure 1 presents the tree views of the XML-RPC tool
folders and files. The main paths for working on the XML-RPC tool are:

 C:\WORK\Séquenceurdémo\MAIN_SW_SPECIFIC\Drivers\XML-RPC for the main
VIs

 C:\Fichiers_Demo_sequenceur_LV2017\CONF_Drivers\XML_RPC for the config
files

 C:\Fichiers_Demo_sequenceur_LV2017\Admin\XLS LOGs for the generated report
files

Figure 1: Structure of the project under LabVIEW and Windows

The main file/VI is IHM_Measurement_12(XML-RPC).vi. Most of the other VIs are subVIs of
this one, where some of them are placed in the folder named as the specific function they
serve.

2. Configuration

Configuration files are placed in “\CONF_Drivers\XML_RPC_1”. They include an INI file to
define server properties, and XML files specific to each tool to be used.

2.1. .INI file

The INI file path is automatically read by the software. For it to be read correctly,
[configuration] and [Parameters] have to be present for structure. This file is read by the INIT
VI from the XML-RPC class.
For each new tool, we have to add 3 lines to the INI file:

• Tool\ToolfFileName = … the name of the tool as displayed in the name of the related

xml file
• Tool\IP = … the IP of the server
• Tool\Port = … the port of the server

The figure 2 gives us the basic example of the XML-RPC initialization file.

Figure 2: Typical initialization file

The important information is the IP and port numbers, which give the address of the server
of each tool.

2.2. XML files

The XML files define every possible function and values understood by a tool. They allow a
generic initialization of every tool in a configuration file, without having to modify the
software code for every new tool added. The power of these files relies on the simplicity to
access information, knowing the relevant XML tag.
The important tags, visible in figure 3, present in every XML for every tool, are:

➢ The main « GENERIC_TOOL » one,
➢ « HMI » which allows to define parameters specific to the conditions of the test

(timeout, action on fail, comment, dump list),
➢ « functions » which englobes the definitions of all the tools functions,
➢ N tags « function » where N is the number of functions. Inside of this one, we have a

tag « arguments » which lists the arguments of every function, and a tag « returns »
which describes the parameters sent back by the function,

➢ « definitions » describing the returns and transitions,
➢ X tags « data » where X is the number of returns. Inside, we find a tag « attributes »

giving the details about the parameters of the return structure and its transitions.

Figure 3: XML configuration file skeleton

Of course it is necessary to add description tags and values inside every previous tag.
The following tables give more details (behavior in GTA).

<GENERIC_TOOL>

Parameters Values

name Name of the tool used for the command

toolDisplayName Name of the tool used for the HMI

<HMI>

Parameters Values

hasActionOnFail “1” or “0”. If “1” displays a zone allowing to choose what

happens after the action fails (« continue » or « stop »)

hasTimeout “1” or “0”. If “1” displays a zone allowing to set a timeout

hasComment “1” or “0”. If “1” displays a zone allowing to add a comment

hasDumpList “1” or “0”. If “1” adds the parameter to the « Dump list ». This

list allows to print the values of all the parameters contained,

at the end of the test

<function>

Parameters Values

name Name of the function

functionDisplayName Name of the function to display in HMI

toolId ID used by scheduler.

argList List of the names of the arguments wished to be displayed

in HMI. If nothing is detailed in « argList », they are all

displayed

<argument>

Parameters Values

name Name of the argument

HMILabel Name of the argument to display in HMI

type Type of data taken by the argument, namely :

• string

• int

• float

• boolean

searchType Name of the database in which a search has to be done. In

the HMI, a new window opens when we want to give a value

to the argument

defaultValue Default value we give

values List of the values that the argument can take. In the HMI,

these values are displayed in a drop down list

constValue Constant value to be assigned

cond Name of the parameter on which the condition depends.

The values linked to this condition have to be inserted in the

« values » option

mandatory « yes » or « no ». If « no », the user doesn’t have to give a value

to the argument. By default it is necessary to fill in all the

arguments

<return>

Parameters Values

name Name of the variable in which we wish to stock the return of

the function

type Type of return. Often of type « struct »

<attribute>

Parameters Values

name Name of the attribute where we stock the return value of the

function

type Type of the attribute, namely :

string

int

float

boolean

trueCond Value to which we want to compare the attribute to during

the transition. For example, if it is « OK », we will go to the next

step if the attribute’s value is also « OK ».

returnCode « true » or « false ». If « true », the attribute’s value will be used

for testing the transition

There are many examples which can be used as templates in the config file path.

2.3. Populate from XML configuration files

This part details the “Populate from XML config.vi”. It allows extracting the relevant

information for all the tools, to a big array. At this stage, everything is imported, but it

is not all used later on.

The next figure shows the hierarchy of the VIs and SubVIs, around the “populate from

XML config” VI.

Figure 4: Structure of VIs for populating from XML configuration

2.3.1. Main VI

The output array is technically a 1D array of clusters of strings and 2D arrays of strings,

as seen in figure 5.

Input Output

Configuration files path Final array

Figure 5: Output array structure

Each row of the output array will be specific to a tool, whose name will be displayed

in the “tool” string. Then the “Functions” and “Definitions” array respectively contain

all the properties of the tool, such as functions, arguments and values. It is a

representation, in an array, of the XML files described previously.

The main steps of this VI are:

• We initialize the arrays and values, and populate the array of configuration

files path.

• For every different tool, we initialize the runtime parameters, before

populating the definitions and functions arrays

• We use Xpaths to find the specific data, which are hard-coded in the

populate VIs

• A reshape and resize step allows to modify the arrays so that we do not have

any blank rows or columns

• We rename arguments and values for later use in the HMI

• We finally bundle all this data in the final output array

Now we can get into the details of every subVI used in this main one.

2.3.2. Get XML files list (SubVI).vi

Lists the XML files present in the specified configuration folder, into an array of paths.

2.3.3. Get XPath node (SubVI).vi

Input Output

Configuration files path Array of paths for each file

Input Output

Configuration file path Array of nodes described by the Xpath

Xpath string

Gets all the nodes which are described in the input Xpath, and returns them in an

array. XPath (XML Path Language) is a query language for selecting nodes from an

XML document.

Examples:

• //GENERIC_TOOL/functions/function/@functionDisplayName refers to the

value of the “function display name” in that specific path of tags.
• //GENERIC_TOOL/definitions/data[@name="ResultStruct"]/@type refers to the

type of the data, whose name is “ResultStruct”.

2.3.4. Clean string (SubVI).vi

Keeps the value of the string which is in between quotation marks.

2.3.5. Populate definition array (SubVI).vi

For each input function of the For loop, get the values of the attributes given in the

list of Xpaths, and populate the definitions array. At the same time, count the

number of attributes found, and the number of columns written, to be used when

reshaping the array later on.

2.3.6. Populate function array (SubVI).vi

For each input function of the For loop, get the values of the arguments given in the

Xpaths, and populate the functions array. At the same time, count the number of

arguments found, and the number of columns and rows written, to be used when

reshaping the array later on. And add a row to the array only for every new

argument.

Input Output

A string in between quotation mark “…” The string which was inside

Input Output

Array of data names found by Xpath

Configuration file path

Empty definitions array: Def

Number of attributes in definitions

Number of columns in definitions array

Input Output

Array of function names found by Xpath

Empty functions array: Func

Number of columns in functions array

Number of arguments in functions array

Number of rows in functions array

Configuration file path

2.3.7. Reshape array (SubVI).vi

Delete empty rows and columns of the array to make it as small as possible.

2.3.8. Resize functions (SubVI).vi

Resize the display of the functions array in the output array, to the smallest array

including all the data.
2.3.9. Resize definitions (SubVI).vi

Resize the display of the definitions array in the output array, to the smallest array

including all the data.
2.3.10. Rename for combo (SubVI).vi

Rename the argument column, to have “function.argument”, and for every value

rename it to: “function.argument.value”. This allows us to update the HMI values

easily.

3. XML-RPC class

3.1. XML-RPC.ctl

The control is the main element of the class: it contains the data exchanged; it is

composed of:

• The “addresses” array which contains the IP and port of every different tool. It

is obtained from the .ini file described earlier.

• The array populated with the XML config files, containing all the different

properties and functions of each tool.

Input Output

Array Array reshaped

Input Output

Functions array: Func

Functions array reference in output Array

Input Output

Definitions array: Def

Definitions array reference in output Array

Input Output

Output array Modified output array

3.2. INIT.vi

This VI is used to initialize the previous control. One part of it uses the “populate from

XML config” VI to populate the array of data in the main program, and the other

part reads and gets the data from the .INI file, by reading sections and keys of the

file.

3.3. XML-RPC_main.vi

This program is the key component to allow the XML-RPC communication. First,

according to the tool used, it creates the proper address with an IP and a port. Then

it sends the input XML string via HTTP, and gets a response back, which is output.

The “HTTP Post” VI is native to LabVIEW; thanks to a given URL it is possible to send a

message through the server. The message we send has an HTML format, to be able

to be understood by the tools.

3.4. Read config cluster.vi

This is a simple program that unbundles the configuration cluster in the XML-RPC class

to the output. It is done here, simply because it cannot be done in the main VI.

4. Tool setup

4.1. Global drivers

Path in project: Drivers/_Commun/GLOBAL_DRIVERS_Objects.vi

This VI is defined as a global variable, which allows to declare the resources

available for the software. Each resource corresponds to an object of the class for

the type of equipment.

The name of the resource has to correspond to the name of the configuration folder;

in our case “XML_RPC_1”.

We simply need to add the object class for the driver we want to use.

Input Output

XML-RPC class in XML-RPC class out

Input Output

XML-RPC class in XML-RPC class out

XML string Response body

Tool used

Input Output

XML-RPC class in XML-RPC class out

 Configuration cluster

4.2. Manual mode drivers

Path in project: Drivers/_Commun/DRIVERS_ManualMode.vi

This VI allows us to customize the tools available in the Manual mode bar. For the

XML-RPC tool, the button was designed and placed in

Custom_control/Control_PageView, as seen in the next figure.

Figure 6: New button design

The next figure shows us the flat design button of the XML-RPC tool, when normal

(left) and pushed down (right).

Notice that label names are very important for each button: they have to redirect to

the ATP/HMI in question. For a measure: “ MEAS_ “, and for a command “CMD_ “;

followed by the unique number of the driver. In our case, the XML-RPC tool is a

measure, indexed with the number 18, is the label is “Meas_18”.

5. HMI

5.1. TypeDef_XML-RPC_clt_config.ctl

This control is a key element to transfer data from the HMI to the ATP, and save the

parameters in a variable. It is, visible in figure 8, a cluster composed of:

• A “Tool” comboBox

• A “Function” comboBox

• An “Argument(s)” array with a string with the name of a parameter, next to a

comboBox with its possible values.

Figure 7: Tool button design

Figure 8: TypeDef cluster

5.2 ATP_Measurement_12.vi

The ATP is just a step from the main control to the HMI. It gets the data from the HMI,

processes it and makes it available for other VIs. It also allows us to write a comment

in the report thanks to the ATP_comment VI, which writes in a string the information

sent back from the tools.

ATP_comment.vi :

5.3 IHM_Measurement_12.vi

5.3.1 HMI interface

This is the main VI for the XML-RPC tool, which is also where the HMI is defined as seen

on the next figure.

Input Output

step_STATUS in step_STATUS out

Editor mode boolean value

Input Output

Configuration Configuration out

IHM control? TAG

Editor mode? Value

 Output results

Figure 9: HMI of the XML-RPC tool

On the left side we can spot the typeDef control, which is the “IHM parameters” in

the program.

On the right side we have three buttons:

• “Refresh arguments” allows to update the list of functions or Arguments when

a new tool or function is chosen (if not done automatically).

• “Save command” allows to save the chosen configuration before sending it

to the tool or writing it on the test procedure.

• “Send”, which is only available in Manual Mode, allows to send the desired

parameters to the chosen tool.

•

5.3.2 HMI modes

The program is built to have a different behavior for three different modes, which are

controlled thanks to two Booleans: “IHM control?” and “Editor Mode?” which are

both False by default. The following table defines which mode we are in, according

to these Booleans:

 Editor Mode IHM control

Manual mode
Editor

Sequencer

• The Manual mode allows us to choose and send directly the command to the

tool by clicking on send.

• The Editor mode is useful to create a step for a test in a procedure.

• The Sequencer mode executes the procedures without showing the HMI.

5.3.3 Block diagram template

As for the block diagram behind the HMI, the template/very simplified version looks

like this:

Figure 10: Block diagram template of the XML-RPC tool

 The bottom left case structure controls the information to send (Configuration control

or IHM parameters), depending if we are in sub-VI or HMI mode. The HMI mode is

used for Manual mode and when creating a test, whereas the sub-VI mode is used

when a sequence is executed.

The middle left case structure allows us to initialize all the parameters and controls

useful for the execution of the VI: it is called the INIT step. It is called only once during

the first call, then we just reinject the same data to the program.

The top left case structure allows us to reset all the HMI indicators to blank, so they

can be refreshed with new input values. It is done every time the VI is called, except

in Editor Mode, because when we reopen the VI, we want the previously chosen

values to be displayed.

The flat sequence is divided in two parts:

• The HMI update one, which allows to update the data in the strings and

combo boxes of the “IHM parameters” indicator of the HMI.

• The “driver functions” one, which allows to send the data to the tools via the

XML-RPC server. It is only activated in sequencer mode or when we press

“Send” in manual mode.

5.3.4 INIT step

5.3.4.1 TOOLS_Reset_All_Panes_Origin.vi

This simple VI allows to reset the origin of all panes on the screen for display. Present

for each driver.

5.3.4.2 CTL_Enable_ALL_VI_CTLs.vi

Here, we get the list of all controls on the front pane, to initialize them. Also present

for each driver.

5.3.5 HMI update

5.3.5.1 Populate_tools (SubVI).vi

This simple VI gets the name of all the tools referenced in the configuration array,

and populates the combo box of the HMI for the user to choose the desired one to

work with.
5.3.5.2 Populate_functions (SubVI).vi

When a tool is selected, this VI updates the function combo box to the list of

functions available for the chosen tool. It gets its data from the input array and is

triggered when the tool combo box changes value.

Input Output

Origin

Input Output

VI Refnum VI Refnum out

Set Default? (F)

Input Output

Tool ComboBox reference

Config Array

Input Output

Function ComboBox in

IHM Parameters

Input array

5.3.5.3 Populate_Argument(s) (SubVI).vi

This VI allows to populate the strings in the Argument(s) array: for the chosen

function, it finds all the possible arguments, and writes their name in the HMI array (as

well as resizing it).

It finds the relevant argument name thanks to the populate_IDs (SubVI), which looks

in the Input array for the data. The IDs in question are “function.argument”.

Also, a similar VI populates the values of the related combo boxes with the default

value of the argument (if it has one), thanks to the populate_defaults (SubVI).

5.3.5.4 Coordinates to Index

Here, we get the row selected in the array, based on the mouse location. So the

program knows which row of the array with the argument names we are in, to be

able to update the related combo box dynamically.

5.3.5.5 Populate_comboBoxes (SubVI).vi

Depending on where the mouse is when we click, only the relevant values of the

argument will appear.

In reality, every combo boxes have all the values listed in them, but we only show the

ones related to the desired argument.

5.3.6 Driver functions

5.3.6.1 Get type (SubVI).vi

Input Output

Argument(s) reference

IHM parameters reference

Function

Input array

Input Output

Coordinates Vertical in Range?

Array ref

Input Output

Function Argument specific Values

Array of all values

IHM Parameters

Input Output

IHM parameters Types array

 Array in

This VI looks for the type of the arguments in the IHM parameters. It outputs all the

types in an array that is read later on when transforming the data to an XML format.

5.3.6.2 Format to XML (SubVI).vi

This VI transforms the input set of function and values to an XML string format

readable by the tools.

The next figure gives us an example of the XML string in question:

<methodCall>

<methodName> Function name </methodName>

<params>

<param>

<value><string> First value </string></value>

<value><string> Second value </string></value>

</param>

</params>

</methodCall>

Figure 11: Output XML string

5.3.6.3 Multi-output message filter (SubVI).vi

Here, we read through the XML body that we got back from the XML post (XML-

RPC_main.vi), and look for all the returns of the tool. These returns can be values of a

parameter of the tool, and also the status of the tool and received command.

5.3.6.4 Values_for_tag (SubVI).vi

Once we have finished choosing all the IHM parameters for a test, this VI creates a

TAG to write in the report, which gives:

-the tool’s name

-the function’s name

-the values’ name(s)

In this format: Tool.Function(Values)

Input Output

Method name XML string

 Values

Input Output

Return XML body Output results

Input Output

Tool TAG

Function

Values Array

Loop?

6 Report generation

The report generation is an important step for the user: it allows him to read the

procedure he has written, and to determine whether steps were OK or KO during

execution.

It is done in the HIST_Read-Write_File VI (situated in C:\WORK\TAES_F5X\

MAIN_SW_GENERIC\FilesIO\HIST_Read-Write_File.vi). By default the software

generates its own report with a .hist extension, but the next figure shows us the part of

the program allowing us to generate the excel report.

Figure 12: XLS report generation

The report is composed of a header detailing the characteristics of the test; followed

by a table where we can see the procedure we have executed, and the result and

status of each step as in the following example:
Test Action Comment Status

Sequence Initialization

OK

Sequence Initialization Sequence Initialization OK OK

Test folder\French_Flag

OK

Demonstrator : change_color(green) Server Return : green OK

Wait (1,00s) 1,00s wait done OK

The figure 13 details the dependencies of the Excel generation set of VIs (placed in

HIST_Read-Write_File).

Figure 13: Structure of VIs for XLS report generation

6.1 Report_populate_LOG_array(SubVI).vi

From the HIST_Read-Write_File VI, we obtain an array containing several elements in

a specific format. Our aim is to extract specific data to a 2D array, to be able to use

it later one. Namely, we are interested in:

• The TEST_Index, which is the number of the test

• The TEST_STATUS’s current step, which is the name of the current test (Test)

• The Step_STATUS’s status (Status) & Current Step (Action) & Comment

(Comment)

Input Output

Sequence LOG (write mode) LOG array

 Index change array

6.2 Report_add_test_line(SubVI).vi

This VI allows modifying the appearance of the LOG array: each test is regrouped,

thanks to the index array, and the left column only shows once the name of the test

as a title on one empty line.

6.3 Report_Test_Status(SubVI).vi

Here, we simply check the global status of each test and write it down. The idea is a

test is OK only if all the steps are OK, else it is KO.

6.4 Report_Create_XLS(SubVI).vi

This VI uses functionalities included in LabVIEW to populate an excel file with the

input LOG array, and save it. We use an excel file as a template for the header and

the table titles.

7 More

For information about the software itself, see with the C.E.D.M. Team at Assystem

Technologies. It is easily made possible to add new tools/drivers to this main software.

Input Output

LOG array in LOG array rearranged

Index change array

Input Output

LOG array rearranged LOG array rearranged and with status

Input Output

Report file path in

Template file path

Final LOG array

Abstract

Assystem Technologies is an international engineering and innovation consulting

group, which assists major industrialists in the various stages of their projects. I realized

my thesis in Toulouse, France, with the "automatic test" team. They mainly work for

the customer Airbus on the support and validation of a sequencer, performing test

procedures on aeronautical systems test benches.

During my time in Assystem Technologies, the aim of my work was to propose

innovative solutions for the Assystem Technologies sequencer technology, in order to

implement a prototype which can be shown as a demonstrator to the company

customers, detaching from the current specific Airbus implementation. The current

sequencer was developed under LabVIEW by a team in the company, and the

challenge of my internship was the integration of an XML-RPC server to pilot new

generic tools, such as a robot arm and an image recognition software.

The benefits of the proposed implementation are the simplicity and effectiveness of

the XML-RPC server, handling the communication between the software and the

tools.

Final output of the internship was a generic software, which is now Assystem

Technologies' property, that allows writing procedures, executing them, and

generating a user-readable report.

Keywords: demonstrator, test procedure, sequencer, XML-RPC server, LabVIEW,

generic

		Politecnico di Torino
	2018-10-03T12:58:34+0000
	Politecnico di Torino
	Marco Ghirardi
	S

