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Summary

This thesis presents an efficient algorithm by combining symbolic dynamics
and brain-inspired hyperdimensional (HD) computing for both seizure onset
detection and identification of ictogenic (= seizure generating) brain regions
from intracranial electroencephalography (iEEG). Moreover, the simplicity
of the algorithm eases its implementation on an embedded AI computing
device platform (e.g. the NVIDIA Jetson TX2 Module) for long term op-
eration.

The proposed algorithm provides: (1) a unified method for both learn-
ing and classification tasks with end-to-end binary operations; (2) one-shot
learning from seizure examples; (3) linear computational scalability to any
number of electrodes; (4) generation of transparent codes with interpretable
features; (5) a simple embedded implementation which is fast and energy
efficient.

The algorithm first transforms iEEG time series from each electrode into
symbolic local binary pattern codes from which a distributed representation
of the brain state of interest is constructed across all the electrodes and over
time in a hyperdimensional space. Such holographic representation is used to
quickly learn from seizures, detect their onset, and identify the spatial brain
regions that generated them. Moreover, HD computing is characterized by
one-shot or anyway fast learning, making it a prime candidate for utilization
in such a domain with a typical low quantity of training data.

I assess the performance of the proposed algorithm on two different
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dataset: (1) the first contains 99 short-time iEEG recordings from 16 drug-
resistant epilepsy patients being implanted with 36 to 100 electrodes; (2)
the second is composed by 18 long-time recordings from 18 drug-resistant
epilepsy patients: a total of 2656 interictal hours and 120 seizures are con-
tained in the recordings. All the patients come from the epilepsy surgery
program of the Inselspital Bern.

On the first dataset, for the majority of the patients (10 out of 16), our
algorithm quickly learns from one or two seizures and perfectly (100%) gen-
eralizes on novel seizures using k-fold cross-validation. For the remaining
six patients, the algorithm requires three to six seizures for learning. Our
algorithm surpasses the state-of-the-art including deep learning algorithms
by achieving higher specificity (94.84% vs. 94.77%) and macroaveraging ac-
curacy (95.42% vs. 94.96%), and 74× lower memory footprint, but slightly
higher average latency in detection (15.9 s vs. 14.7 s).

On the second dataset,the algorithm learns from one or two seizures
and achieves 0.0 false detection rate for all the patients. The state-of-the-
art achieves again lower latency in detection (12.8 s vs. 17.3 s), but higher
false detection rate (0.31 f/h)

Moreover, the algorithm can reliably identify (with a p-value < 0.01)
the relevant electrodes covering an ictogenic brain region at two levels of
granularity: cerebral hemispheres and lobes.

Finally, the algorithm shows 15× gain in execution time and 18× gain in
energy consumption with respect to the state-of-the-art competitors, when
implemented on the NVIDIA TX2 platform.
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Chapter 1

Introduction

Epilepsy is a severe and prevalent chronic neurological disorder affecting
0.6–0.8% of the world’s population [1]. One third of epilepsy patients con-
tinue to suffer from seizures despite best possible pharmacological treat-
ment [2]. For these patients with so-called drug-resistant epilepsy [3] effi-
cient algorithms are urgently required to detect the onset of seizures and
ultimately identify the ictogenic (i.e. seizure-generating) brain regions for
possible surgical removal [4, 5].

This procedure has to be done extremely accurately, because the du-
ration of intracranial EEG recordings is limited—typically to 1 to 3 weeks
[6]—to minimize the discomfort for the patient. Thus there are most often
only a few seizures recorded in the epilepsy monitoring unit.

Different alternatives have been explored in the past [7], using move-
ment based systems [8] or heart rate [9]. Despite the presence of many
techniques, intracranial electroencephalography (iEEG) currently provides
the best spatial resolution and the highest signal-to-noise ratio (SNR) of
electrical brain activity recordings.

Recent studies have shown successful application of machine learning
methods [10–15] using iEEG signals to detect two distinct states of brain
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1 – Introduction

activity in patients with epilepsy, i.e., interictal (= between seizures) and
ictal (= during seizures). These methods are based on extracting useful fea-
tures followed by traditional supervised machine learning methods (such as
support vector machines [11,14], Bayesian analysis [15], and artificial neural
networks [11]), and more recently deep learning algorithms [12, 13]. These
methods are however seriously challenged by the need to reliably detect
seizures from a small number of examples. This is due to the patient-specific
nature of seizure dynamics (i.e. activity patterns at onset, propagation and
termination of seizures), and to the inherent asymmetry in the iEEG record-
ing, namely that the ratio of interictal to ictal segments is typically very
large [14,16].

In addition, these conventional methods face other important challenges
including:

1. The outcome of their learning is often a “black box” that is not trans-
parent to an expert neurologist, hence cannot be analyzed for better
diagnosis, e.g., preciseley delineating the ictogenic brain regions.

2. Their high computational complexity and memory demands render
them unsuitable for real-time detection on resource-limited wearable
or implantable devices.

3. Their offline and slow (iterative) training time prevent them from
online and incremental learning from new seizure occurrences, hence
they cannot be quickly adapted to new dynamics.

4. They operate with few electrodes, e.g. 6 [15], 16 [14], and 22 [13]
electrodes. However, a larger number of electrodes is mandatory to
properly assess the spatio-temporal evolution and spreading of epilep-
tic seizures [5,17,18] and to properly identify the borders of the seizure
onset zone for surgical resection [19].

Furthermore, recent studies have demonstrated that iEEG recordings
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from outside the seizure onset zone provide important information
about seizure generalization [20] and thus might be helpful to prevent
its occurrence and thereby decrease the risk for sudden unexcpected
death [21].

Despite the impressive results shown (1̃00% accuracy) from some of these
works [11,12], they are tested on the same dataset [22]. The dataset is com-
posed by 500 segments of 23.6 seconds of single channel recording, extracted
from ictal or interictal periods of 3 epilepsy patients and 2 healty people.
This dataset shows important limitations:

1. single channel recordings, i.e. I consider only the channels nearer to
the seizure onset, neglecting all the farer ones: however, the location
of the Seizure Onset Zone is not always available before the starting
of the alghoritm training;

2. the 23.6 seconds segments are totally inside interictal or ictal periods,
losing the natural transition between the two states;

3. the time covered from 100 interictal segments is 3̃9 min, which is too
low to assess the specificity of a real time working algorithm: 99% of
Specificity involves more than 1 false detection/hours.

In this work I will introduce two novel dataset to better test the seizure de-
tection algorithms, with multi channel recording and many hours of record-
ing.

One promising option is computing with simple linear binary codes to
avoid otherwise expensive operations such as costly floating-point arith-
metic. Combining methods from symbolic dynamics and information theory
is a computationally efficient approach. At its core it consists of analyzing
the occurrence of patterns and even bears similarity to classical visual EEG
interpretation [23].

In this thesis, I propose a new algorithm to address the aforementioned
challenges by the following contributions:
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1 – Introduction

1. I propose a single algorithm for both learning and classifica-
tion tasks by jointly exploiting symbolic dynamics and brain-
inspired vector-symbolic architectures. The proposed algorithm
combines methods from symbolic dynamics [23–25] (Section 1.2.2) and
brain-inspired computing [26] (Section 1.1) that supports one-shot or
few-shot learning, i.e. the ability to learn object categories from one
or few examples. Symbolic dynamics models a dynamical system by
a discrete space consisting of sequences of abstract symbols, each of
which corresponds to a state of the system. At the heart of this new
algorithm is a brain-inspired vector-symbolic computational theory
called hyperdimensional (HD) computing [26] that learns quickly by
computing with random vectors in a very high dimensionality, also re-
ferred to as hypervectors. My proposed algorithm consists of analyzing
the occurrence of symbols or patterns—that even bears similarity to
classical visual EEG interpretation [23]—followed by one-/few-shot
learning. First, as an elegant symbolization method, I exploit local
binary patterns (LBP) [25] to map a sequence of iEEG samples into
a small bit string as a symbol. Second, these symbols are projected
into an HD space that enables reliably combining them over time and
across electrodes to encode a compact representation (i.e., a prototype
vector) for one-shot learning from the state of interest. Further, I use
the same algorithm for both learning and classification tasks: the al-
gorithm initially learns from few ictal or few interictal segments by
writing the corresponding prototype vector (ictal or interictal) into
an associative memory, and then classifies new segments based on
Hamming distance among these two learned prototype vectors.

2. The algorithm is simple, computationally scalable, and op-
erates with end-to-end binary operations: (i) For every iEEG
electrode, the LBP feature extractor directly transforms the time se-
ries into symbols as bit strings with limited length. (ii) HD computing

4



then projects the symbols to an HD space and computes a distributed
long binary vector that encodes occurrences of the symbols among all
electrodes (an approximation method to encode histograms of sym-
bols). (iii) The training and classification are performed by simply
bundling and comparing the binary vectors. (iv) The classification
decision is followed by a patient-dependent voting to reduce the false
alarms. Further, the computational complexity of the algorithm lin-
early scales for any number of input electrodes. This scalability pro-
vides a universal interface to homogeneously cover all patients with
different numbers of implanted electrodes (e.g. 36 to 100) and seizure
dynamics. The concurrent use of LBP and HD computing enables end-
to-end execution of my algorithm with simple binary codes to avoid
otherwise expensive operations such as costly floating-point arithmetic
(Section 2.1).

3. One-shot learning and comparison during short time record-
ings. I provide a dataset from 16 drug-resistant epilepsy patients that
contains 99 iEEG recordings, each one consisting of a 3 minutes in-
terictal (i.e. immediately pre-ictal) segment and the ictal segment
followed by a 3 minutes postictal segment (Section 4.1). Using this
dataset, I compare my algorithm with the state-of-the-art methods us-
ing the LPB with a linear support vector machine, or a fully connected
neural network [11], as well as deep learning algorithms [12, 13] (Sec-
tion 4.2.1). My algorithm quickly learns from one seizure (for eight pa-
tients), or two seizures (for two more patients), and perfectly (100%)
generalizes on detecting novel seizures with k-fold cross-validation.
For the remaining six patients, the algorithm requires 3–6 seizure ex-
amples for learning. Overall, my algorithm surpasses the state-of-the-
art methods: compared to [12], it achieves higher specificity (94.84%
vs. 94.77%) and macroaveraging accuracy (95.42% vs. 94.96%), and
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1 – Introduction

a 74× lower memory footprint. My algorithm has slightly higher av-
erage latency in detection (15.9 s vs. 14.7 s), but it can raise an alarm
in the first 8% of the ictal window. We also provide the public access
to the code of my algorithm and the anonymized dataset with links
provided in the papers that will follow.

4. One-shot learning and comparison during long time record-
ings. I provide a second dataset with 2656 hours of recording from
18 drug-resistant epilepsy patients that contains 120 seizures. A sin-
gle recording for each patient is provided, with marked begin and
end of the seizures. Using this second dataset, I provide the same
comparisons in terms of sensitivity, false detection x hour and delay
(Section 4.2.2). My algorithm quickly learns from one seizure or two
seizures, and achieves an ideal 0.0 false detections on 3̃000 hours of
interictal period. Overall, my algorithm surpasses the state-of-the-art
methods: compared to SVM [11], it achieves lower false detections
(0.0 f/h vs. 0.32 f/h) and higher sensitivity (87.7% vs. 83.5%), but
higher latency in detection (17.2 s vs. 12.8 s).

5. My algorithm produces transparent codes for identifying
seizure-generating brain regions. Due to the well-defined set of
arithmetic operations with inverses in HD computing, the learned pro-
totype vectors—i.e. the binary codes derived from the iEEG record-
ings during the ictal and interictal brain states—are transparent and
analyzable with interpretable features. My algorithm identifies the ic-
togenic brain regions by measuring the relative distances between the
learned prototypes that are produced from different electrodes (Sec-
tion 2.2). Such identification is done at two levels of spatial resoultion,
the cerebral hemispheres and lobes, with p-value < 0.01 (Section 4.3).
This takes the application of my algorithm beyond the traditional
scope of seizure onset detection by automatically identifying ictogenic
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1.1 – Hyperdimensional Computing

brain regions that can provide more accurate data to better target sur-
gical resection and thus potentially improve post-surgical seizure con-
trol. It enables post-translational support for clinical decision making,
and is in sharp contrast to those machine learning methods that only
produce “black boxes.”

Furthermore, the algorithm is truly scalable and provides a simple inter-
face (with minimal number of parameters) to universally operate with all
patients having 24 to 128 electrodes implanted.

Finally, I show the ease of implementation of my algorithm on an em-
bedded platform, the NVIDIA Jetson TX2. The algorithm has been written
using CUDA Toolkit 8.0 GA1 together with C code, to fully parallelize the
binary operations on the GPU of the TX2. The algorithm has been tested on
the TX2 platform, and compared to the state-of-the-art-methods in terms
of time and energy: the HD implementation is 15× faster than competi-
tors and achieve 17× gain in energy consumption for the classification of a
window of 0.5 seconds.

1.1 Hyperdimensional Computing

The human brain consists of billions of neurons, glial cells, and synapses,
suggesting that large circuits are fundamental to its computational power.
Hyperdimensional (HD) computing [26] explores this idea by computing
with random vectors in a very high dimensionality (d), also referred to as
hypervectors. To represent basic items, or symbols, HD computing starts
by selecting a set of atomic vectors: d-dimensional (pseudo)random vectors
with independent and identically distributed (i.i.d.) components. This thus
conforms to a holographic or holistic representation: the encoded informa-
tion is distributed equally over all the d components such that no component
is more responsible to store any piece of information than another hence
maximizing robustness. When the dimensionality is in the thousands, e.g.
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1 – Introduction

d=10,000, it yields a huge number of nearly orthogonal atomic vectors (see
Section 1.1.1). This lets HD computing to combine two atomic vectors into a
new complex fixed-width vector using well-defined vector-space operations
(Section 1.1.2), while keeping the information of the two atomic vectors
with high probability [27]. Hence, it is also called holographic reduced rep-
resentations (HRRs) meaning that the reduced (fixed-width) descriptions
have less information about components than the full descriptions [28] This
overall provides a novel perspective on data representations and associated
operations with unique features in terms of robustness and speed of learn-
ing [29–37].

Learning and classification with HD computing is composed of three
main steps:

1. mapping symbols to atomic high-dimensional vectors;

2. combining atomic vectors with well-defined arithmetic operations in
an encoder to produce composite structural vectors;

3. storing/updating (i.e., learning) these vectors inside an associative
memory and finally comparing with query vectors (i.e., inference).

HD computing begins with selecting a set of random high-dimensional vec-
tors (with i.i.d. components) to represent basic objects. They serve as
atomic vectors and are used as building blocks to construct representations
of more complex objects. To generate these atomic vectors, I use random
d-dimensional vectors of equally probable 1s and 0s, i.e., dense binary ele-
ments of {0, 1}d. Nevertheless, bipolar components, i.e. +1 and −1 could
be used with the same results; in this work I will use always dense vectors,
i.e. with 50% distribution of 1 and 0, with respect to sparse vectors, where
number of 1 is lower than number of 0 [38].

These vectors are stored to a so-called item memory (IM), i.e. a symbol
table or dictionary of vectors defined in the system. In my seizure detection
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1.1 – Hyperdimensional Computing

system, the names of electrodes and the LBP codes are the basic symbols.
The IM assigns a random orthogonal vector to every symbol.

Here, I focus on two main operations of HD computing for encoding
with the atomic vectors: bundling and binding. Bundling, or addition,
of binary vectors [A + B + . . .] is defined as the componentwise majority
with ties broken at random. Binding is defined as the componentwise XOR
(⊕). Both operations produce a d-bit vector with an important distinction:
bundling produces a vector that is similar to the input vectors, whereas
binding produces a dissimilar vector.
Hence, bundling is well suited for representing sets, and can combine field/
value bindings to produce a larger structure (e.g., record or tuple). Repre-
sentations of such composite structures are constructed directly from rep-
resentations of the atomic vectors by applying these operations without
requiring any learning for the encoder.

The output vector of the encoder is then fed into an associative memory
(AM) for training and inference. During training the output vector of the
encoder is stored in the AM as a learned pattern. During inference the
output of the encoder is compared with the learned patterns. Comparison
is based on a distance metric over the vector space. The AM uses Hamming
distance, defined as the number of different components of two binary vec-
tors. In the following I better explain the Hamming distance (Section 1.1.1)
and the HD operations (Section 1.1.2)

1.1.1 Measure of Similarity

Let us consider d-dimensional binary random vectors1 of equally probable
1s and 0s, i.e., dense binary elements of {0, 1}d. Using this dense binary
code (aka binary spatter code [39]), the similarity between two vectors is

1In the thesis, I use capitalized italic letters to indicate vectors that can also appear
with a subscript and superscript.
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1 – Introduction

defined by the Hamming distance as the number of components at which
they differ. To express the distance on a real scale of 0 to 1, I divide the
Hamming distance by d denoted as:

∆(X, Y ) : {0,1}d × {0,1}d → [0,1]. (1.1)

In high dimensions, e.g. d ≥ 1000, most points are d/2 bits apart from
each other, which yields a normalized Hamming distance of ∆ ≈ 0.5, and
stands for two nearly orthogonal vectors [40]. This stems from the binomial
distribution for p = 1/2 and n = d, where d/2 is the mean. Correlated
vectors yield ∆ ≈ 0 whereas ∆ ≈ 1 implies anti-correlation [26].

HD computing begins by randomly generating a set of atomic vectors
that represent basic items in the cognitive system. The atomic vectors
are nearly orthogonal to each other, and are stored in a so-called item
memory (IM). The IM is like a symbol table or dictionary of the items
defined in the system, and stays fixed throughout the computation. In my
seizure detection system, the LBP codes and the names of electrodes are
the basic items (or symbols) that are assigned to the atomic vectors. These
atomic vectors, inside the IM, are used as building blocks from which more
complex vectors are constructed. Such complex vectors stand for a concepts
or percepts. For a complex vector is composite in nature, it can be very
similar to other complex vectors with similar composition and structure [41].

1.1.2 Main operations

In this section all the operations that has been used to create composite
hypervectors will be described [26].

• Similarity: is an operation that returns a scalar value from two vec-
tors. It is based on the distance, hamming distance for the binary
version of vectors, cosine similarity for bipolar vectors.
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1.1 – Hyperdimensional Computing

– Cosine Similarity: for bipolar vectors I adopt a slightly dif-
ferent metric of the one exposed in Section 1.1.1, based on the
componentwise multiplication:

Cosine Similarity =
qD

i=1 Ai × Bi

ëAë × ëBë
. (1.2)

The codomain of the function is [−1,1], where −1 is linked to
A = not(B), 1 to A = B and 0 to cosine similarity of two random
orthogonal vectors.

• Addition (Bundling): is an operation on two or more vectors that
yield a vector: S = [A + B + · · · + C], where [. . . ] indicates the
normalization of the sum, used to represent S in the binary space. The
addition is done componentwise with ties broken at random. Taken a
single component of S:

Si =
nØ

i=0
Vi (1.3)

and considering the bipolar case to ease the understanding, I can
identify 3 cases:

Si =


1, if qn

i=0(Vi = 1) <
qn

i=0(Vi = −1)

0, if qn
i=0(Vi = 1) = qn

i=0(Vi = −1)

−1, if qn
i=0(Vi = 1) >

qn
i=0(Vi = −1)

(1.4)

Zeros are assigned pseudo-randomly to 1 or −1 to mantain the bipolar
domain. The sum vector will be similar to all the added hypervectors.

Example 1 For the addition of two elements is very simple to demon-
strate: fixed the value of the first vector A, 50% of the components of
B will be equals by probability to the one of A and the other 50% will
generate ties: breaking them randomly, S will be 75% similar to A.
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1 – Introduction

The same holds for B.
Furthermore, the bundling is commutatibe and approximately invert-
ible, but not associative.

Example 2 There is a specific case in which this statement is not
valid: if more than one half of the vectors added are equals, all the
information about the other vectors is lost. In figure 1.1 is reported
the cosine similarity for the sum of 3 hypervectors, showing in the left
part the problem aforementioned.

A    B A    B  C

A

B

S

A

B

C

S

1

1

1

0.01

0.01

0.01

1

1

10.002

0.002

0.008

0.0080.01

0.01

0.49 0.50 0.50

Figure 1.1: In each square, the respective cosine similarity is showed. The
hypervectors A, B and C are generated randomly, with a cosine similarity
Ä 0. On the left, I have S = [A + A + B], that will result in S ≡ A,
because more than the half of hypervectors added are equal. On the right,
S = [A + B + C]: the similarity between each component vector and the
composite S is higher than the random (i.e. > 0).

• Multiplication (Binding): is an operation on two vectors that yield
a vector. P = A⊕B or P = A×B, depending on the space in which I
am working; both the operations are done componentwise. Conversely
to the addition, it generates a third vector that is orthogonal to the

12



1.1 – Hyperdimensional Computing

factors. The multiplication is normally used to link two objects in a
composite structure. The most important properties are listed here
(in the bipolar domain):

– I = A × B;

– P = A × B =⇒ A = P × B , B = P × A;

– C = A × B + C × D =⇒ C × A = B + noise = B1, i.e. I can
recover a noisy version of B in a composite vector, created with
addition and multiplications.

• Permutation: is a unary operation on a vector that yield a vector,
that is pseudo-orthogonal to the previous one, B = ρA, where ρ is the
rotation of one position of the vector. To obtain back A from B, I
apply the inverse permutation. This operator is crucial when storing
sequences, where I want to disitnguish a-b-c from b-a-c. Permutation
preserves distances.

• Normalization: converts an intermediate result of an operation into
an element of the space over which the operations are defined. If
I work in the binary space, the addition of two vectors has to be
normalized by a threshold function to make it binary; in the bipolar
space, a simple sign operation is applied to return to the target space.

These three operations are combined to encode structures such as vari-
able/value records, sequences, and sets.

1.1.3 Histogram Recall

I describe how the HD operations can be applied to encode histograms.
The aim is to store an approximated version of a histogram in HD space to
save memory and ease computation with only binary components. Below,
I illustrate an example to better explain the procedure.

13
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Figure 1.2: Pearson coefficient between exact histograms and their ap-
proximated HD versions. The procedure consists of the following steps:
(1) creation of Gaussian and uniform distribution from an alphabet with
m symbols where m ∈ {16,64,126,256,512}; (2) association of a random
atomic vector to every symbol; (3) creation of the histogram vectors H for
a window of 512 symbols by bundling their corresponding atomic vectors;
(4) computing the similarities between H and the the atomic vectors; (5)
Plotting Pearson correlation between similarities and the exact counts.

(a) H = [ A + A + A + B + C ] (b) H = [ A + A + B + B + C ]

1 - Δ 1 - Δ

A B         C

3
2

1

A B         C

3
2

1

Figure 1.3: Similarity between three atomic vectors and two different
encoded histograms. (a) symbol A occurs more than 50% of time, whereas
(b) no symbol occurs more than 50% of time.

I use the LBP codes as basic symbols, and their counts in a 1 s window
(i.e. 512 symbols) as a histogram. First, the LBP codes are mapped into
atomic vectors through the IM. Then, the atomic vectors generated during
the 1 s window are bundled to produce a complex vector (H) representing
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1.2 – Encodings and preprocessing

the histogram. In this way, the histogram of LBP codes is holistically rep-
resented in a single binary vector H. The original LBP distribution can
be recalled by comparing H with the individual atomic vectors. For every
symbol, I compute the similarity as 1 − ∆ that recovers the count of the
symbol. The set of the computed similarities represents the approximated
histogram.

Fig. 1.2 shows the Pearson correlation coefficient between the similarity
values (extracted from the approximated histograms) and the exact count
of the symbols in the histograms. I consider five alphabets with different
sizes of 16, 64, 128, 256, and 512 symbols. I use two different distributions
to generate histograms from these alphabets for a window of 512 symbols:
a Gaussian distribution to mimic polarized ictal histograms, and a uniform
distribution to mimic randomly distributed interictal histograms. The ex-
periments are repeated for vectors while varying the dimension (d). Using
a d > 2000 with the 64-symbol alphabet, a Pearson correlation > 0.9 is
observed for both distributions. The Pearson correlation further grows to-
ward 1 with larger d. However, if a single symbol occurs more than 50%
of the total symbols inside the histogram, the encoded H is a copy of that
specific symbol (Fig. 1.3). This is due to the characteristics of the bundling
operation (majority sum): if several copies of any vector are included in the
bundling, then the resultant vector is closer to the dominating vector than
to other vectors.

1.2 Encodings and preprocessing

The preprocessing stage is necessary in every machine learning algorithm.
In fact, the data are almost never suitable for a classification problem. The
data could be categorical, numerical, mixed or visual: in all the cases the
data has to be encoded in the features space, that the learning algorithm
will use to train.
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In the case of a numerical signal pattern, as the iEEGs, you could learn
sequence of raw numbers, or extrapolate informations from them; some
typical futures are time and spatial correlation, frequency of the signal,
power density, time reversability, and entropy of the signal.

In the next sections I will explain the different type of future extractor
that my algorithms exploit.

1.2.1 Directed Horizontal Visibility Graphs

The directed horizontal visibility graphs (dHVG) [42] are used for mapping
a time series such as iEEG signal into a network, well represented by the
connection matrix. In figure 1.4 I illustrate the construction of the con-
nection matrix for a short, artificially generated signal: it is composed by
y1,2,...7 = [5 2 6 5 4 6 7]. In the visibility graphs domain, each point is
mapped into a node: two nodes i and j are connected if there is no data
point between them that is higher of yi or yj . Putting in a mathematical
way I have:

ni,j =

1, if min(yi, yj) > yn ∀i < n < j

0, if ∃ n | yn > min(yi, yj)
(1.5)

As we can see from figure 1.4, the superdiagonal is always at one, since
there are no point in between ti and ti+1.

This mapping technique has been demonstrated to be useful in the epi-
lessy domain, to recognize epileptogenic brain regions [42], and to detect
the seizure onset [42, 43]. In fact, this type of mapping perfectly encodes
the time irreversability [44], pronounced in iEEG signals during the ictal
stages.
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1.2 – Encodings and preprocessing

Figure 1.4: The procedure to construct the dHVG matrix is simple: let’s
take a single time sample and compare it to all the successive ones: if
there is no points in between with value higher than the one of the two
time samples under analysis, a link is drawn (continue raw in left graph);
otherwise, a continue horizontal line can’t be drawn between the two time
samples, because there is an higher yi in between. Hence, there is no link
between the two points.

1.2.2 Local Binary Pattern Encoding

A class of data-analysis methods is referred to as symbolization, which
describes the process of transforming raw experimental measurements into
a series of discrete symbols.

Symbolization is particularly interesting for EEG analysis, because as
recent experience has clearly demonstrated, it faithfully preserves dominant
dynamical signal characteristics while significantly increasing the efficiency
of detecting and quantifying information contained in real-world time se-
ries [45].
Symbolization may be efficiently achieved by mapping a sequence of iEEG
samples into a bit string, i.e. a one-dimensional local binary pattern (LBP) [25].
A LBP code reflects relational aspects between consecutive values of the
original iEEG signals only, but not the values themselves.

Computing a LBP code is simple:
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Figure 1.5: On the left the connection matrix for the interictal signal
shown above, on the right for an ictal signal. In both the connection matrix
the superdiagonals have been removed; in fact, since I want to compare the
two connection matrix, is meaningless to keep a constant bias.

1. decide the number of points of the string of LBP (l);

2. the iEEG signal samples are converted into a bit string depending on
the sign of the temporal difference of adjacent samples, di = pi −pi+1;

3. a LBP code of length l is associated with every sampling point by
concatenating its bit with the successive l − 1 bits, calculated with
sign of temporal difference;

4. the LBP code in base 10 is computed.

LBPc =
l−1Ø
i=0

s(di)2i (1.6)
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1.2 – Encodings and preprocessing

where

s(x) =

1, if x ≥ 0

0, Otherwise
(1.7)

Fig. 1.6 shows the composition of a LBP code. Fig. 1.7A show 30 seconds
of multichannels recording.

Fig. 1.7B show examples of LBP code with l = 5. Fig. 1.7C illustrates
how histograms of LBP codes differ between interictal and ictal states.
During the interictal state the LBP codes are well distributed over almost
all the possible codes. In contrast the ictal window has a predominant
portion of a single LBP code and many LBP codes are missing due to the
typically slow and asymmetric oscillations evolving during seizures.

3  69   38  51   64  30 66 -31  13  13  -34

1 0    1     1   0

if d(i) > 0 1 else 0
Apply temporal
difference to raw iEEG

Am
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[m
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40
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itu
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[m
V] 40

-20

Figure 1.6: Starting from the raw iEEG signal I evaluate the temporal
difference; later I construct the Local Binary Pattern code of 1 and 0, de-
pending if differences is positive or negative.

Local Gradient Pattern Encoding

The Local Gradient Patterns are a different type of signal pattern encoding,
that similary to the LBP one, try to encode the short-time and long-time
dynamics of the signal. The LGP has been successfully applied in face
detection [46] and, in the version that I am going do describe, in seizure
detection [11]. The same considerations of LBP holds. The LGPs are
computed as follows:

1. decide the number of points of the string of LGP (m);
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Figure 1.7: A) iEEG signals before (interictal) and after (ictal) seizure
onset. The blue dotted line marks seizure onset as determined by the visual
inspection of an expert (K.S.). B) Zoomed in iEEG signals: (1) during
the interictal state: the LBP codes are well distributed over almost all
the possible codes; (2) during the ictal state, the strongly time-irreversible
signals have a predominant portion of a single LBP code; examples of their
LBP codes of l=6 are drawn. C) The corresponding histograms of the LBP
codes inside the 0.5 s windows in B.

2. for each point Sc, divide the m in m/2 forward points and m/2 back-
ward points;

3. compute the gradient for each of that point as gi = |Pi − Sc|

4. compute the mean gradient

gavg = 1
m

m−1Ø
i=0

gi (1.8)
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1.2 – Encodings and preprocessing

5. compute the gradient code as gci = gi − gavg.

6. compute the value in base 10 as for the LBP encoding.

Figure 1.8 shows the full procedure.

Figure 1.8: Shows all the step for the construction of LGP code for a
single time sample Sc.

1.2.3 Short Time Fourier Transform

The short-time Fourier transform (STFT) [47], is a Fourier-related trans-
form used to determine the frequency content of local sections of a signal
as it changes over time. In practice, for computing the STFT you divide a
whole time signal into shorter segments of equal length and then compute
the Fourier transform separately on each segment. This give you the fre-
quency components of the signal over time, in each single window.
In the continuous-time domain, the function to be transformed is multiplied
by a filter window, which is nonzero for different segment every time and
the Fourier transform is applied on this resulting function. The formula to
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be applied is:

STFT{x(t)}(τ, ω) ≡ X(τ, ω) =
Ú ∞

−∞
x(t)ω(t − τ)e−jωtdt (1.9)

where ω(t) is the time window and x(t) the signal to be transformed.
In the discrete time case, the samples are divided in chunks and each chunk
is Fourier transformed and added to a matrix, with time on raws and fre-
quency on columns. This is expressed as:

STFT{x[n]}(m, ω) ≡ X(m, ω) =
∞Ø

n=−∞
x[n]ω[n − m]e−jωn (1.10)

with ω(t) conitnuous and x[n] the quantized and discretized signal.
In the figure 1.9 is reported the spectrogram of a single channel of a Patient:
in the left part we can see the signal in the interictal stage, caracterized by
low frequency components; in the righ part a seizure is shownwith increasing
of the frequency higher components.

1.3 Spatial analysis of the brain

In a field where one third of the patient show seizure despite of optimal
medical treatment, and where the surgery is the only alternative, the de-
tection of the part of the brain from which the seizure start is crucial [5].
By now, using intracranial electroencephalography (iEEG), or any other di-
agnostic technique, the so-called epileptogenic zone (EZ), i.e. neuroanatom-
ical areas that are necessary and sufficient to produce seizures, cannot be
identified and completlely mapped.

One important challenge in this direction is to locate the seizure onset
zone (SOZ, i.e the area where the the first EEG ictal changes are recorded),
used in place of the EZ [48]. This could help the doctors in the decision of
the resected brain tissue (RBT), depending both from the SOZ and from
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1.3 – Spatial analysis of the brain

Figure 1.9: In the upper part of the figure the raw iEEG signal of 3 minutes
of interictal period with the ictal transcation (Seizure Onset) is reported.
In the lower part, the spectrogram of the short-time fourier trasform is
computed and plotted. On the x-axis we have the time, on the y-axis the
frequency component. A color much similar to yellow indicates an higher
value of STFT. During Seizures we can see a clear increasing of the frequency
of the signal.

the function of the tissue that they are going to remove, to avoid lost of
abilities of the patient.
Looking to post-surgical follow-up, if the patient achieves long-term seizure
freedom after epilepsy surgery, the clinicians assess that critical parts of
SOZ/EZ have been included in the RBT.

To date, the clinical interpretation of iEEG recordings is based on expert
visual analysis, with problems regarding time and expert-specific interpreta-
tion. Thus, an automated method to identify the SOZ could be of particular
interest in this tricky field.

In my thesis I will propose an algorithm to identify the SOZ hemisphere
of belonging and a possibility to go in a finer grain detection, with the
identification of the SOZ.
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1.3.1 Statistic

Here I will give the basic concepts of statistic applied to biological and life
sciences [49].

At the end of this section, you should be able to understand all the
test used and to interpretate their results: all these tests have been used to
statistically identify the SOZ or the hemisphere of it. The input data are
taken from an algorithm that we will describe after.

In the following, I give a brief introduction about the main concepts to
understand the statistical tests:

• Null hypothesis: it is the hypothesis tested. The test could result in a
statistically significant refuse of that hypothesis or not: it is important
to underline that the acceptance of the null hypothesis could be caused
by its truth or simply by the lack of data to demonstrate that is wrong.

• Alternative hypothesis: is the hypothesis that is confirmed by a refuse
of the null hypothesis. It could be identified as the logical negation of
the null hypothesis.

• ρ value is used to assess the significance of the test. The test will
tell us to refuse the null hypothesis and use the alternative one if the
ρ value is near to 0. Higher value of ρ value will indicate that the null
hypothesis holds. By convention, the ρ value is set to 0.05 or 0.01
before performing the test to decide which level of confidence we have
to accept: in this case, the experiment refuses the null hypothesis with
a confidence level of 95%/99%.

Levene’s test

The Levene’s test is used to assess the difference of variances for a coefficient
calculated for two or more groups. This test is necessary to verify some
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1.3 – Spatial analysis of the brain

assumptions done in other tests, like t-test, that could assume different or
equal variances of the groups.

It test the null hypothesis that the population variances are equal. The
result is expressed through the ρ value. Before performing the test you
have to choose a value of it: for example, accepting with a ρ value < 0.05,
involves a level of confidence of 95%. Values of ρ near to 0 implies to refuse
the null hypothesis, i.e. the homogeneity of the variance. In other words,
ρ value Ä 0 implies that the two variance are different.

t-Student test

The t-student test gives us information about the mean of a population
normally distributed.

There are mainly two types of t-test:

• one-sample t-test compares the mean of a sample population to an
hypothetical constant mean; this test is used for abnormal detection.
A researcher maybe interested in comparing the body temperature
(37◦) with the body temperature of people affected by pneumonia:
it will than compare its samples with the mean body temperature of
37◦. A ρ value < 0.01 tells the researcher that there is a statistically
significant difference;

• two-sample t-test compares the means of two populations against
each other to determine if they are different. Returning to the previous
example, I want to assess if there is a different body temperature
between healty patient and patient with pneumonia. The ρ value is
used also here to assess the difference between the two means: the
null hypothesis is mean of first group equals to the other mean.

The last important distinction in t-test is between one-tailed and two-tailed
(figure 1.10), used respectively when you know which mean is the higher
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and when you don-t know it. For my experiments in the spatial domain I
use two-samples two-tailed t-test.

Figure 1.10: On the left, the one-tailed t-test: I take only the right part of
the distribution (i.e. the t-student distribution): in this case we should be
already familiar with the populations, knowing which one has higher mean.
On the right, the two-tailed version, where we test the difference of the two
means, without any knowledge a priori of them.

Mann-Whitney test

This test is made in alternative to the two-samples t-test, since it is the not
parametric version. When the assumption of normality of the input groups
doesn’t hold this test has to be used to assess the difference between the
means of the tow input groups.

This test needs only the independence of samples: if the distribution is
normal, its efficiency is around 95%. All the considerations made for the
t-test are identical.

One-way Anova test

One-way analysis of variance (one-way Anova) is used to compare means of
two or more samples (using the F distribution). In particular, it is used in
place of the t-student for the case of at least three groups. The One-way
Anova makes the assumption that the groups are normally distributed and
the variances of each group are equals.
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1.3 – Spatial analysis of the brain

The Anova tests the null hypothesis that samples in all groups are drawn
from populations with the same mean values.

To do this, the Anova exploits different estimation of the variances: if
the group means are drawn from populations with the same mean values,
the variance between the group means should be lower than the variance of
the samples, following the central limit theorem.

Nevertheless, the One-way Anova has again a ρ value as output: using
it we can understand if all the groups have the same mean or not, but we
can’t infer on which are the groups with different means.

Hence, if the result of Anova refuses the null hypothesis, we need further
tests to understand the groups with higher or lower means.

Kruskal-Wallis test

The Kruskal-Wallis test is a non-parametric method for testing whether
samples originate from the same distribution. It is used for comparing two
or more independent samples of equal or different sample sizes.

As the One-Way Anova test extends the t-test, it has the same role for
the Mann-Whitney test. A significant Kruskal-Wallis test indicates that at
least one population is stochastically different from the others. The test
does not identify which is this group or how many distributions are used to
drawn the input samples. For analyzing the specific population pairs you
need further tests.

Since it is a non-parametric method, the Kruskal-Wallis test does not
assume a normal distribution of the populations, unlike the analogous one-
way analysis of variance.

The null hypothesis in that case, is that the medians of all groups are
equal, and the alternative hypothesis is that at least one population median
of one group is different from the population median of at least one other
group.

27



1 – Introduction

Bonferroni test

The Bonferroni test is used to compare multiple groups in statistical analysis
and is made usually after a One-Way Anova: if the Anova refuses the null-
hypothesis we know that at least one group have different mean with respect
to the others, but we don’t know which one. The bonferroni test takes all
the input group and perform pairs-comparison of the mean of each group:
the output is a matrix, with all the ρ values for all the possible pairs. Thus,
we can identify groups that are stochastically different from all the other
groups.
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Chapter 2

Algorithm

In this chapter, I will explain in details the whole architecture of my algo-
rithm that exploits only binary operations to achieve very high accuracy
with a low power consumption and a small memory footprint.

I use almost the same algorithm for both the datasets(Section 4.1) for
seizure detection task (Section 2.1). For the SOZ identification (section
2.2), I integrate some statistical analysis to the codes extracted with the
Seizure detection algorithm.

2.1 Seizure detection

The LBP feature extractor and HD computing are combined to quickly
learn from ictal iEEG to then detect further seizures.

My proposed algorithm uses LBP codes to directly symbolize the iEEG
signal of an electrode. Then a composite d-dimensional binary represen-
tation is constructed to capture the statistics of the LBP codes across all
electrodes and over time. The final classification is followed by simple post-
processing as shown in Fig. 2.1.
Overall, I am going to present a method for efficient seizure detection,

with end-to-end binary operations:
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2 – Algorithm

Figure 2.1: Binarized seizure processing chain: (1) Feature extraction
generates a 6-bit LBP code for each electrode and projects these codes
into d-dimensional space; (2) HD processing constructs vector H, which
represents the histogram of 0.5 s recording; (3) As postprocessing, a simple
patient-dependent majority voting decides based on the last 10 labels; for
the long time recordings a validation of that window as been added to reduce
the false alarms.

1. the Feature extractor immediately transforms the iEEG signal in bi-
nary symbols, avoiding the high power consumption that could de-
rive by computing with floating point arithmetic. There are others
very popular feature extractor in this field, like wavelet transforma-
tions [50–52] or stft [13], but they are all based on floating point
operations.

2. the classifier, again, is very simple and built with binary operations:
it projects the LBP in the hyperspace (i.e. binary space in 10k dimen-
sions) and perform classification using something that is very similar
to the the nearest mean, using a specific metric in that hyperspace.

3. the Postprocessing is composed by two different parts: a simple ma-
jority on a big time-window and a validation of that window. I will
explain in details in the section 2.1.3.
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2.1 – Seizure detection

The timing of the algorithm is very simple, and all the operations are exe-
cuted in parallel fashion (see figure 2.2):

• a window of 6 samples is used to construct the LBP for every time
sample: the overlap is maximal, sample by sample;

• all LBP for a window of 0.5 seconds (1 second for the long time al-
gorithm) are accumulated and used by the classifier. This window
is sliding with no overlap for the short recordings and with a 50%
overlap for the long time ones.

• a final window of 5 seconds is used for Postprocessing, with maximal
overlap with respect to the output of the classifier, i.e. sliding of 0.5
seconds at the time.

2.1.1 Preprocessing and LBP Feature Extraction

The first step is to extract the electrical activity of the brain: in the sec-
tion 4.1 we will see in details how electrodes are used for this task and how
the process of extraction works.
For my purpose, the iEEG signals are converted from the analog domain
by a 16-bit ADC, filtered by a fourth order Butterworth filter between 0.5
and 150Hz, and downsampled to 512Hz.
All the recordings on which I work are multi-channel and constructed with
this procedure.
A LBP code with l = 6 is computed for every sampling point. The LBP
code considers six consecutive samples, and moves by one sample. My LBP
code generates 2l different symbols that are fed into the next stage for learn-
ing and classification: it is important to notice that a lot of that codes are
never generated and the total size of the alphabet is less than 2l. Using
larger code sizes impairs its applicability to non-stationary signals and la-
tency of classification. Using smaller ones reduce too much the number of
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Figure 2.2: iEEG signal of a single channel. In green the window of
points used to construct a single LBP symbol, shifted of 1 sample at a
time (256 symbols inside a window of 0.5 seconds); in red the 0.5 seconds
not-overlapping window used to construct the histogram; in blue the bigger
time-window (5 seconds length, 0.5 seconds shifting) used to compute the
final prevision.

extracted features.
The code size determines also the minimum size of following statistical
analysis window: the size of such window should be large enough such that
all symbols can at least theoretically occur once [23]. Hence an analy-
sis and classification window of 0.5 s (containing 256 samples) is sufficient
(256 > 26). So, the function of the first block is to convert an input scalar
value to a string of 6 bits, i.e. the LBP code. After that, HD comput-
ing first projects the LBP codes to the high-dimensional space via an Item
Memory (IMLBP) : the IM is a matrix of dimension 64 × d, where d is the
dimension of the hyperspace composed by binary orthogonal vectors, one
for every to every LBP code, i.e., C1⊥C2 . . . ⊥C64. The matrix is directly
indexed by the LBP code: the results is the projection of each symbol in
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2.1 – Seizure detection

Figure 2.3: In this stage I extract from each electrode the LBP code and
the electrode name (i.e. the ID). After that, I project them in the hyper-
space through two item memories properly constructed.

an 10k-dimensional vector, suitable for the next step of the architecture.
To combine these vectors across all electrodes, HD computing generates a
spatial record (S), in which an electrode name is treated as a field, and its
LBP code is treated as the value of this field.
Another IMELEC is used to map the name of electrodes to orthogonal vec-
tors: E1⊥E2 . . . ⊥En for a patient with n electrodes. In this case the dimen-
sion of the item memory is linearly dependent from the number of channel
of the patient.
We can conclude that this stage of the algorithm transforms n scalar val-
ues in n value-hypervectors,that represent the scalar points inside their
sequences and n key-hypervectors, that are used to encode the name of the
different channels.
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Figure 2.4: Starting from the hypervectors of name and values of elec-
trodes, the classifier construct S: this hypervector encodes the spatial in-
formation among all the electrodes. After that, all the S in a window of
0.5 sec are added and the histogram H is created. Finally, there is a split:
during the training phase all this H will contribute to construct the AM;
conversely, during the test, the classifier gives an initial label to the window.

2.1.2 HD Learning and Classification

In this second stage I work on the output of the previous block to produce
an initial classification of the iEEG.
In the HD space there is the possibility to exploit the multiplication (sec-
tion 1.1.2) to store data and keys in the same location.

Example 3 Takes A = 10 and B = 20. I associate two hypervectors to
the two values V 1, V 2 and two to the names A, B. In the traditional way
of computing, the two values are stored in different locations that could be
indexed by the name of the variables. In the HD paradigm, we store all in
a single hypervector S = A × V 1 + B × V 2 and we recover the two values
by multiplication with A and B.

The example 3 allows to bind the name of each electrode (Ej | j ∈ [1, n])
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to its corresponding code (Ci | i ∈ [1,64]).
The spatial record (S) is then constructed by bundling these bound vectors
using majority gates: S = [E1 ⊕ Ci + E2 ⊕ Ci + ... + En ⊕ Ci]. In other
words, I obtain n bound vectors and I add them together summing and
comparing componentwise the n bits through a majority gate: hence, there
are d majority gates working on n inputs.
Vector S is computed for every new sample, and represents the spatial in-
formation about the LBP codes of all electrodes. S takes place of the vector
of features in the hyperspace: we have a single hypervector of binary values
instead of a vector of scalars representing the features.

The next step is to compute the histogram of LBP codes for a mov-
ing window of 0.5 s (1 s for long time recording). This window size should
be large enough to theoretically permit at least a single occurrence of all
possible LBP codes [23, 24]. The window of 0.5 s contains 256 LBP codes
constructed with maximal overlap. To have a high probability that every
code occurs inside this window, we should hold 256 > 2l+1, hence l < 7.
To estimate the histogram of LBP codes inside this window, a multiset of
temporally generated S vectors is computed as H = [S1 +S2 + ...+S256]. A
majority gate is applied in the temporal domain through accumulation (i.e.,
componentwise addition) of St vectors t ∈ {1, ...,256}, that are produced
within the window, and then thresholding at half.

We observe that the interictal and ictal states show different distribu-
tions of LBP codes inside the window: during a interictal segment, we have a
nearly random signal, with a well distributed count histogram; conversely,
during a seizure we typically observe rhythmic signals, i.e., slow and of-
ten temporally asymmetric oscillations, which yield polarized histograms as
demonstrated in Fig. 1.7 of section 1.2.2.
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This shows that the distribution of LBP codes, not necessarily their se-
quence, is an important indicator to distinguish ictal vs. interictal states.
So I can get rid of the distribution in time of the S, simply adding them.
From a theoretically point of view, the histograms features of the LBP
give a good classification because intrinsically encode two properties of the
seizures:

1. time irreversability [42]: as said when talking about dHVG, this be-
havior is typical of ictal periods. A high quantity of symbols Í111111Í

with respect to Í000000Í encodes perfectly this feature: in fact, since
the first LBP code encode the monotonic increasing of the signal and
the second the monotonic decreasing, the high imbalance of the two
means that the signal is not symetric for which it concern the time;

2. entropy [23]: I introduce here this new concept, the permutational
entropy of the signal, expressed as

H = −
NØ
i

pi × log2pi (2.1)

where i goes over all the possible local binary pattern codes and pi is
the probability that the target code appears in a target time window.
A variation of thie entropy, mainly due to more rithmic signals, has
been demostrated to be correlated with the seizure events: of course
storing the whole histogram will be more than enough to catch this
variation in the entropy.

Back to the HD computing, the high-dimensional space can naturally en-
codes such histograms in H by accumulating and thresholding the spatial
vectors. To assess the similarity of real histogram with H, I compare the last
one with all symbols inside IMLBP and calculate the normalized Hamming
distance as relative frequency of the symbol. The reconstructed histograms

36



2.1 – Seizure detection

Figure 2.5: Three windows are first encoded using LBP (l = 5) and then
recalled through HD; all the correlations, in interictal and ictal periods are
so high.

achieve a Pearson correlation coefficient > 0.9 compared to the exact his-
tograms. Some examples from single channels during ictal and interictal
periods are shown in figure 2.5
The output of HD encoding is vector H, which is updated every 0.5 s.
Now, the classifier is divided, depending on the function that is performing:

1. during the training I use the H vector to build the Associative Mem-
ory containing two prototype vectors representing ictal and interictal
labels.
To train the interictal prototype, all H vectors computed over an inter-
ictal window of 40 s are accumulated (summed), and then thresholded
(binarized) to be stored in the AM. Correspondingly an ictal proto-
type vector is generated from a smaller window of 10–30 s depending
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on seizure duration. If more than one seizure is used to train, I gen-
erate a prototype for each seizure and then I compose them together
by addition, having again a single vector to store in the AM.

2. For classification, a newly computed H vector is compared to every
prototype of the AM using normalized Hamming distance to deter-
mine its label. Exactly as in the nearest mean algorithm, the nearer
prototype to the query H gives its label to it.
Also here, it has to be highlighted the simplicity of classification:
rather than using multiple floating point operations as done in deep
learning, a componentwise ⊕ and a scalar comparison are enough.

2.1.3 Postprocessing

Figure 2.6: Both windows of postprocessing of the algorithm: the left
one, a majority on the last ten samples, is used for both the datasets; the
validation postprocessing has been added to avoid a high number of false
detections.

The last part of the algorithm postprocesses the labels produced by the
HD classifier every 0.5 s.
The goal is to reduce the number of false detection during the interictal
period: in fact, rising too many alarms could increase too much the level
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of anxiety of the patient and the negative effects would be higher that the
benefit that a device implementing this algorithm could offer.
It defines a window of 5 s (shifting of 0.5 s at a time) where a final deci-
sion is made based on the last 10 labels collected from the HD classifier.
Nevertheless, the reliability of these labels is used to validate the window
of prediction. Let’s distinguish this two type of postprocess:

• the first one, the only used for the short recording dataset, is a simple
majority window: seizure onset is detected only if the number of ictal
labels in the last 10 samples is equal or higher than a predefined
patient-specific threshold (tp1) where tp1 ∈ [8,10] (figure 2.6, left).
This window is used to discard all false seizures that could randomly
arise from the very noisy EEG signal.

• the second, identified as Validation postprocess (figure 2.6, right) has
been added to further reduce the number of false alarm in long time
recordings: taking the similarity between the query and both the
prototypes, I can calculate the reliability as

Reliability = |∆(H, AM1) − ∆(H, AM2)|. (2.2)

The window is validated (i.e. could be predicted as ictal) only if this
value is higher than a second patient-specific threshold (tp2).
Forcing this validation means to predict a seizure only if I am so
sure that is happening, i.e. the H is very similar to the correct AM
prototype.

The window size chosen provides a trade off between the delay of detec-
tion and false alarms.

Overall, my algorithm has four parameters: the size of LBP code, the
duration of the two windows, d, and the 2 threshold tp1 and tp2 . Only the
last parameter, the thresholds, is patient-dependent, whereas the others are
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fixed for all patients. Nevertheless, to reduce the memory load d can be
adjusted to the individual patient depending on the number of electrodes
and seizure dynamics. In the chapter Results I will tune this dimension d to
the minimum patient-specific, with whom the performances are maintained.

I observe that the algorithm works with d = 10,000 for all patients.
For some patients it may even be reduced to 1000 without impairing its
performance, but with a big gain in power and memory footprint.

2.1.4 Patient specific application: spatial Item memory

Figure 2.7: Represent the cosine similarity (or normalized hamming dis-
tance, for binary vectors) computed with vectors inside different item mem-
ories. From left to right: Random item memory, with all the hyper-
vectors orthogonal to each other, Sandwich item memory, where each
hypervector is similar to the two neighbors, the one before and the one
after, but orthogonal to all the others, and Continuous item memory,
that well represent a range of values: each hypervectors is more similar to
the immediately neighbors and less to more distant ones.

The algorithm described in the previous sections is very general: no
assumption has been made on the position of the electrodes: each element
has been assumed to be equally distant to each other.
However, this assumption doesn’t reflect reality: when the electrodes are
implanted in the brain, you know which is more near or more distant. Fur-
thermore, these implanted electrodes are divided in strips/grids and you
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can keep trace of this information.
This fact could impact the performances because successive seizures in time
could be recorded by very near channels: if I keep trace of the position of
the electrodes, I will detect them to be very similar.

Example 4 Let’s assume that you have a prototype, composed of 2 val-
ues (i.e. two orthogonal hypervector) linked to the respective channels, i.e.
prototype = A × V 1 + B × V 2 and a query, query = A × V 3 + B × V 1, and
you want to compare them with cosine similarity. The new vector will be

S = prototype × query

= V 1 × V 3 + V 2 × V 1 + A × B × V 2 × V 3 + A × B

= noise + noise + noise + A × B

(2.3)

where noise points to new random and orthogonal hypervectors. It is now
easy to see that if A and B are ortogonal, I totally lose the fact that V1 was
in two near channels; conversely, if A and B have some similarity, I can
mantain this information. In the former, S would be a vector with equal
number of 1 and 0. In the latter, S has an higher quantity of 1.

It is obvious from example 4 that keeping trace of position of channels is
fundamental to increase the performances of a patientspecific algorithm.
Let’s understand how this can be exploited in the HD computing, analyzing
different type of IM (figure 2.7):

• random item memory: this is the one currently implemented; all
hypervectors are orthogonal with each other and no information is
assumed on the spatial proximity;

• sandwich item memory: this type of IM models the hypervectors
before and the one after as nearer to the target hypervectors and all
the others at the same distance. This configuration can catch all the
equal signals showed on the 2 neighbor channels: if the prototype has
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a target signal on channel 4 and the query has it on channl 3 or 5,
this memory will catch it;

• continuous item memory: is the last ’straightforward’ solution;
the similarity of two hypervectors is directly proportional to their
distance inside the IM. This relation well encode a set of items equally
distributed on a straight line.

Starting from this initial configurations, I propose a possible solution to
create a patient specific item memory: I extend the concept of sandwich
memory, making bigger zone of similarity based on the continuous IM.
In figure 2.8 we can see an example: this memory encode an artificial situa-
tion, where we have 50 electrodes in the brain composed by five 6-electrode
strips, one 8-electrode strip and one composed by 12 electrodes (a strip is
a set of electrodes disposed in a straight line).
In a possible future implementation on a patient, this adjustment could
significantly increase the sensitivity of the algorithm.

Figure 2.8: IM designed to encode the similarity between electrodes in
five 6-electrodes strips, one 8-electrods strip and a 12-electrode one.
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2.2 – Seizure Onset Zone identification

2.2 Seizure Onset Zone identification

Figure 2.9: Grid and strip electrodes. After surgical implantation, the
electrical activity is recorded through the blu pins on wires that comes out
from the heads. Patient with this type of electrodes are under constant
monitoring.

In this section, I present the main contribution of the thesis for identi-
fication of ictogenic brain regions. In a field where one third of the patient
show seizure despite of optimal medical treatment, and where the surgery
is the only alternative, the detection of the part of the brain from which the
seizure start is crucial [5]. Precise identification of ictogenic brain regions
followed by surgical resection often improves seizure control and can even
eliminate the occurrence of seizures completely [5].

By now, using intracranial electroencephalography (iEEG), or any other
diagnostic technique, the so-called epileptogenic zone (EZ), i.e. neuroanatom-
ical areas that are necessary and sufficient to produce seizures, cannot be
identified and completlely mapped. An important practical challenge is that
with presurgical iEEG recordings (or any other current diagnostic method)
the brain tissue of the so-called “epileptogenic zone”, i.e. neuroanatomical
areas that are necessary and sufficient to generate epileptic seizures, can-
not be mapped directly and completely. Therefore, in clinical practice, the
seizure onset zone/"ictogenic zone" (SOZ, i.e. the area where the first ictal
iEEG signal changes are recorded), is used as a proxy for the epileptggenic
zone [53].

To date, this practice is done by the clinical interpretation of iEEG
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recordings, mostly based on visual analysis, that is time-consuming and
may yield high variability: using the iEEG coming from the implantation
of grid and strip (figure 2.9) electrodes, they record the electrical activity
over the brain of the patient and select the channels (electrodes) which show
an emphatic ictal behavior.

This demands an algorithm that can learn transparent codes from the
iEEG recordings, hence the codes are analyzable to locate the SOZ. HD
computing produces such codes with interpretable features due to its well-
defined set of arithmetic operations with inverses. In the following, I de-
scribe my algorithm that can automatically identify the SOZ at two levels
of spatial resolution: the cerebral hemispheres and lobes.

2.2.1 Hemishpere identification
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Figure 2.10: Number of electrodes implanted in left (black) and right
cerebral hemisphere (blue).

Fig. 2.10 shows the number of electrodes implanted in the left or right
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Figure 2.11: Electrodes’ scores of P2, generated by four subsequent
seizures. Considering only the first seizure (the first row of scores) is suffi-
cient for the algorithm to identify the correct hemisphere. The red squares
mark the electrodes in the SOZ. The box-plot of scores is shown in Fig. 2.12.
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Figure 2.12: Box plot with scores of P2 by supplying all four seizures. On
each box, the central mark indicates the median, and the bottom/top edges
of the box indicate the 25th/75th percentiles. The dotted line extends to
the most extreme data points not considering outliers. Outliers are marked
with ’*’.

cerebral hemispheres. As shown, for 11 patients out of 16, the clinical
experts have no initial are uncertain whether the seizures start from the left,
from the fight or from both cerebral hemispheres and hence the number of
electrodes implanted into both hemispheres is almost equal. My first aim
here is to identify the location of SOZ at the spatial scale of hemispheres.
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My proposed algorithm is mainly based on the seizure onset detection
algorithm (Section 2.1) followed by statistical hypothesis testing. The al-
gorithm first generates two sets of ictal (P S

j ) and interictal (P I
j ) prototypes

for every electrode j by bundling the vectors representing the LBP symbols
(Ci

w,t) extracted from the related segments:

P S
j = [

Ø
w∈ictal

[
Ø

t∈window

Ci
w,t]] | i ∈ [1,64] j ∈ [1, n]

P I
j = [

Ø
w∈interictal

[
Ø

t∈window

Ci
w,t]] | i ∈ [1,64] j ∈ [1, n]

Note that the prototypes are computed solely for the relevant electrode. For
example, for the ‘electrode 1’, one prototype vector (P I

1 ) is associated with
the interictal segment, and another prototype with the ictal segment (P S

1 );
if the algorithm requires more ictal examples multiple ictal prototypes will
be generated (one per ictal example). As is immediately apparent, when
two different electrodes k and l continuously receive the same input stimuli,
their corresponding encoded prototypes are identical, i.e., P I

k = P I
l and

P S
k = P S

l .

Then, the algorithm computes at least one score doe every electrode j as
the normalized Hamming distance between its related prototypes (∆(P I

j , P S
j )):

the larger the identification score, the closer the proximity of the electrode
to the SOZ. When the two prototypes encode iEEG segments with very
similar dynamics (i.e. the same distribution of Ci), they yield a ∆ ≈ 0.
Conversely, a ∆ ≈ 0.5 implies no correlation between the two prototypes
due to a different distribution of the Ci. In other words, a ∆ ≈ 0 indicates
that the electrodes are not involved in the seizure activity whereas an in-
creasing value of the score suggests an increasing proximity of the electrodes
to the SOZ. Fig. 2.11 shows an example of the scores computed for each
electrode from four seizures of P2.

46



2.2 – Seizure Onset Zone identification

Finally, the algorithm incorporates statistical analysis with the com-
puted scores of individual electrodes for identifying the seizure-generating
hemisphere. The electrodes are divided into two groups, i.e. electrodes in
the right hemisphere and electrodes in the left hemisphere. Subsequently,
I use the Kolmogorov-Smirnov test to assess the distribution of the scores.
Since the distribution is normal, I perform a t-Student test to determine if
the two groups of scores are significantly different from each other. If the
result of the test is statistically significant, i.e., the resulting p-value of the
test is lower than 0.01, I accept it, and identify the hemisphere with highest
score as the ictogenic one. Fig. 2.12 shows an example of the box-plot of the
scores for P2, clearly indicating that the left hemisphere is ictogenic with
p=6.7e-27.

If the result of test is not significant (p ≥ 0.01), I reject it; this means
that the algorithm requires more ictal segments to be able to infer the
hemisphere correctly, hence I supply more seizure examples. For each ictal
segment a separate prototype will be generated that effectively increases
the number of scores per electrode and therefore the significance of the test.
Therefore, my algorithm keeps computing the ictal prototypes and related
scores over time until p < 0.01. For most of the patients a single ictal
segment is sufficient (see Table 4.8).

Let’s briefly summarize the full procedure: (1) I created the scores in
the aforementioned way; (2) I visually define the normality of the data and
I use the Levene’s test to see if the variance of the data for the two score is
equal; (3) using a t-student test with α = 0.01 I compare the two means of
the right hemisphere electrode scores and of the left hemisphere electrode
scores to assess if one of them have a score that is reliable higher with
respect to the other.

47



2 – Algorithm

2.2.2 Channels identification

Here, my aim is to further investigate the location of SOZ at the spatial
resolution of cerebral lobes. I straightforwardly extend my proposed al-
gorithm (Section 2.2.1) by dividing the electrodes into a larger number of
groups (hence using a finer spatial resolution), and accordingly invoke a
proper statistical testing method. Since the generation of prototypes and
computation of scores are the same as in the previous section, here I present
the statistical analysis only.

First, the electrodes are divided into different groups according to the
lobes that they cover. However, the exact electrode’s membership in the
lobes is not available, hence I use strips/grids (series of close electrodes)
as a proxy. The strips with 6 or less electrodes are associated to a single
group whereas the strips with 8 or more electrodes are divided into two
different groups. Then, one-way ANOVA test (with Bonferroni post-hoc
test) is performed to determine if at least one group of scores (i.e. one lobe)
is significantly different from the others.

I use all the available ictal segments to compute the scores for this fine-
grained identification.
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Chapter 3

State of the art

In this chapter, I introduce to the reader the main competitors in this field:
till now, there are many algorithms in the litreature, but almost any of them
have been validated on a large dataset to assess their real performance in
detecting seizures without rising continuous false alarms.
The majority of the seizure detection techniques [11,12,54,55] achieves very
high results (near to 100% accuracy): however, all of them are tested on
the very small dataset described in [22].
Using this dataset, they are far from the real life application, mainly for
two reasons:

1. they all use a kcross validation technique, using a lot of training data
with respect to testing;

2. the number of ictal segments and interictal ones are equal. However
one challenge in this field, as for other classification tasks, is the im-
balance of the classes, the presence of more istances of one class with
respect to the other [56].

Nevertheless, the importance to learn from a reduced dataset is important,
since the number of relevant events is low.
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In the following, I focus on recent machine-learning based seizure onset
detection methods [11–13] that may be partitioned into two groups. The
first group is based on extracting time or frequency features or a mixture
of them from the iEEG signals followed by traditional supervised machine
learning methods such as support vector machines (Section 3.1) and artifi-
cial neural networks (Section 3.2). For implementation of this group, I use
Python 2.7 with the Scikit-learn library. The second group consists of recent
deep learning algorithms that automatically extract features and construct
classifiers (Section 3.3 and Section 3.4). The deep neural networks are im-
plemented in Python 2.7 using Keras library with Tensorflow backend. I
added a final postprocessing step to all the competitors to avoid a too high
number of false alarm in a long term scenario.
The postprocessing stage is also present in the majority of the works on
dataset with long times recordings for seizure detection or prediction [13,
50,57,58].

3.1 Support Vector Machine with Local Binary
Pattern

Figure 3.1: Pipeline for the SVM: the steps are identical to the ones of
HD computing, only with a substitution of the classification paradigm.
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The SVM is one of the simpliest classifier: it is a discriminative algo-
rithm of machine learning, that create margins between classes: in particu-
lar, the SVM try to maximize these margins through orthogonal projection.
In other words, the SVM creates an hyperplane in Rn, wheren is the num-
ber of features, to separate the two classes.
The number of parameters, i.e. the coefficients of the hyperplane, is equal
to the number of input features: each of them is trained through the gradi-
ent descendent, a technique that minimize the output error of the classifier.
The formula that I want to minimize is:

[ 1
n

nØ
i=1

max(0,1 − yi(w × xi − b))] + λ||w||2 (3.1)

where n is the number of samples, yi the real output of sample i, w the
weights, Xi the features of sample i and λ a regularization factor. The last
important point to highlight is the dot product w × xi; the SVM could be
caracterized by a so called ’kernel’: changing it, I change the type of mar-
gins that the SVM draws.
Using a linear kernel, the dot product is mantained: conversely, changing
the type of kernel, the × is substituted by the relation of that particular
kernel.
The model has been trained with the linear kernel, using the box constraint
C equal to 1.0 [11]. More complex kernels, as the RBF one, will result in
an higher overfit due to the strong imbalance of data.
The SVM receive as inputs n ∗ Ch features, where n is the number of dif-
ferent LBP codes and Ch the number of channels. Each feature is drawn
by a counter that keeps trace of the frequency of a single LBP code for an
individual channel. In other words, the SVM works on the concatenated
histograms of all the channels.
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Working in this direction, I am directly comparing the Support Vector Clas-
sifier with the Hyperdimensional Computing, since both pre- and post- pro-
cessing are the same; in this way, I can compare two hardware friendly
techniques, demostrating that HD can outperform SVM for this type of
classification.

3.2 Multi Layer Perceptron with Local Gradient
Pattern

Figure 3.2: Pipeline for the MLP: the steps are again similar to the ones
of figure 2.1, with a changing in the symbolization for the preprocessing,
changing the local binary patterns in local gradient patterns.

The SVM divide the space of the solutions with a linear margin: the
next, natural step, is to try to use convex margins to divide the space, before
going to a total non-linear separation.
A feed-forward neural network does exactly this job if composed by a single
hidden layer.
A MLP net (i.e. a feed-forward net) is composed by a connected net of
neurons (figure 3.3) with a regular structure:

• a trainable weight w for each input of the neuron;
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• a bias factor b;

• an activation function f that receive as inputs qn
i=0 wi × xi − b and

trasform it to avoid too high numbers in the output.

Hence, my multilayer perceptron neural network is composed by three lay-
ers. One input layer, one hidden layer, composed by 40 neurons, and the
output layer. The number of nodes in the input layer is equal to the dimen-
sionality of the features space.
The training of the net is slightly more complicated with respect to the
svm. The MLP exploit a generalization of the gradient descent, the back-
propagation of the errors.
From a practical point of view, I feed the training points in my net in epochs:
at each epoch, I calculate the output for each point and then I correct the
weights with the reported formula:

wI
i,j = wi,j + ηδj

dfj(e)
de

xi (3.2)

where w represent the weight, η the learning rate, δ the backpropagated
error and f the activation function of the neuron.
The training is stopped by some criteria that could be set, like a maximum
number of iterations or the performance of the net on a cross-validation set.
As the SVM, also the MLP net needs an additional phase of preprocessing.
As reported in [11] I use the LGP encoding, a different version of Binary
pattern, that gives slightly better performances with this classifier.
Later, the features are constructed in the aforementioned way, feeding the
MLP with histograms of channels. The simple pipeline is presented in figure
3.2.
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Figure 3.3: Multi Layer perceptron net is a fully connected net: the input
layer is composed by m nodes, where m = #(channels)∗#(LBPcodes), the
hidden layer is composed by 40 neurons, the output estimate the probability
of the input to belong to the ictal class.

Figure 3.4: The pipeline based on the long-short term memory pipeline is
simplier: the net directly works on the raw signal, extracting automatically
the features from the signal.
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3.3 Long-short term memory

As the previous two techniques, the RNN is taken from literature [12] on
seizure detection, previously tested on the Dataset published by the Bonn
University and adapted to my datasets.
This technique explot a unit, the LSTM, to create a network that keeps
into account the time correlation between points.
Without entering in details, I list only the fundamental part of the LSTM
neurons to understand its operation:

• an input gate receives the raw inputs and multiply them by a trainable
matrix;

• a recurrent gate receives output of a previous neurons and multly
again them with one other trainable matrix;

• an output output miesx the informations from the current trained time
sample and the sequence informations coming from the recurrent gate
to encode the whole new sequence on the output.

From this list, it is easy to understand that the LSTM is not a parallell
model, but a sequential one: incremeanting the size of the window ana-
lyzed, the necessary encoding time increases.
Nevertheless, this model could automatically extract good features related
to the timing correlations of ictal and interictal sequence, as shown from
the good classification results.
As already said, the base version of the long-short term memory RNN works
on single channel recordings, taking big windows of 23.6 seconds of raw
iEEG signal [12].
This basic block has been mantained, to exactly compare my proposal al-
gorithm with this method.
However, some modifications, in order to adapt the net to a real time detec-
tion with a multi-channel recording system has been applied: to be totally
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fair, I try two different configurations, collecting results for both of them.

Figure 3.5: Long-short term memory configurations. In the first config-
uration, a single LSTM is used for each channel and the output are then
merged through a Linear Layer. In the second configuration, the LSTM
works on a bigger time window, created with the concatenation of all the
input channels.

3.3.1 Serial configuration

The first configuration has been inspired by the LSTM model itself: in
fact,it has been demonstrated that giving larger windows, the algorithm
will recognize better new unseen sequences.
To do so, I create ’virtual’ time windows, concatenating the single ones
belonging to different channels: the hardware implementation will be the
same, changing from one to which ever number of channels; however, incre-
menting this number, the time to work on the virtual window will increase
linearly.
Therefore, the structure of this configuration is exactly the one presented
in figure 3.6.

3.3.2 Parallel configuration

For what concerns the second configuration, I try to learn separately all the
channels, thinking that concatenating them all together could lead to a loss
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Figure 3.6: Long-short term memory architecture. The networks directly
infer on raw iEEG data without any additional preprocessing stage. The
two configurations used are build on top of that model, replicating it or
feeding with bigger windows. The model is composed by a first LSTM
layer with 100 neurons, a dense layer that reduces the dimensionality of the
space to 50, a Max Pooling stage which has 50 features as output and a last
softmax layer for the prevision.

of information.
This solution is exploited using a different LSTM net for each channel (figure
3.5).
With respect to the previous configuration I have a trade off between timing
and hardware:

• the serial architecture has a constant memory footprint, not corre-
lated with the number of channels: increasing the number of channel,
linearly increase the computational time;

• the parallel configuration, has a constant computation time, because
each channel is treated separately in a parallel fashion. However, the
memory occupation grows with the number of channels.

However, to fully exploit the parallelization of that technique, I should have
a number of cores equals to the number of channels: the structure is not
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completly scalable.
Conversely, the serial configuration scales very well if I have a sufficient fast
computation.

3.4 Convolutional Neural Network with STFT

Figure 3.7: High level pipeline based on Convolutional neural network: in
figure 3.9 can be found a much more detailed explanation of the network.

The convolutional neural networks work normally on 2-D inputs, as
images, to extract features and achieve good classification; in this case, the
highlight is on the generality of the algorithm: with respect to hand-crafted
feature extractor, the CNN could automatically extract good features from
images.
The CNN are the core of the deep net analysis, which contains all algorithm
with many layers. They are differentiated from classical machine learnig
approaches by the high number of steps used to achieve the classification.
The most important blocks of this type of net are:

1. Convolutional layers, used like neurons of feed-forward net, but
with only a local connectivity, e.g. the 9 nearest neurons of the previ-
ous layers. A full layer is composed by n neurons, each one connected
to only a portion of neurons of previous layer.

2. Pooling layers, used to merge informations from near neurons: the
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principal type of pooling are mean and max, which takes respectively
the mean and the max value of a group of neurons.

3. non-linear layers, whose function is comparable with the activation
function at the output of a single neuron of a MLP net.

In figure 3.8 I report the convolutional layer and the pooling layers.

Figure 3.8: On the left a convolutional layer with a single filter and a 2D
input is represented. On the right, the max and the averaging pooling for
a 2D input are shown.

For my purpose, I use a predefined model of CNN, since building a
CNN from scratch is expensive in terms of time (due to the high number of
hyperparamethers).

The Convolutional Neural Network model has been taken from [13] and
adapted for the detection problem. The CNN has three blocks and two final
layers, as described in Fig. 3.9. Each block is composed by a convolution
layer with rectified linear unit activation function and a max pooling. The
former layer has 16 filters with 5 x 5 kernels and a stride of 2; the next
ones have respectively 32 and 64 filters, with 3 x 3 kernel and stride 1. The
two fully-connected layers trasform the output first to 128 and then to the
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2 final outputs, ictal and interictal. Unlike the previous methods, based
on LBP, the CNN needs a two-dimensional input; the short-time Fourier
transform (STFT) is used to convert the raw EEG data in a two-dimensional
matrix with frequency and time on axis. I used window of 9 seconds for this
algorithm, since it was impossible to have a lower dimension mantaining the
same structure (e.g. the strides, max pooling layers, ...).

Flatten

~ ~~ ~:
~ ~~ ~:

HIDDEN LAYERS OUTPUTSINPUTS

CONVOLUTIONAL
POOLING POOLING POOLING

CONVOLUTIONAL CONVOLUTIONAL

n x 37 x 75

16@ 9 x 18

64@ 1 x 3
32@ 4 x 8

192

128

2

Figure 3.9: Convolutional neural network architecture. Short time Fourier
transform is used to feed input with 9 seconds time-frequency windows. The
model is composed by three convolution blocks. Each block consists of a
convolution layer with a rectified linear unit (ReLU) activation function,
and a max pooling layer. The first block is composed by 16 filters with 5
x 5 kernels, with stride of 2. Max pooling is applied over a 2 x 2 region
reducing both dimensions of a factor of 2. The same steps are applied in the
two consequent blocks, with 32 and 64 filters, respectively, kernel size 3 x 3
and stride 1. The features extracted are flattened and two fully connected
layers, with sizes of 128 and 2, respectively, gives the final output. The
former fully connected layer uses a sigmoid activation function, while the
latter uses a soft-max activation function. Both of the fully connected layers
have a dropout rate of 0.5.
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Chapter 4

Results

In this chapter I first introduce the 2 novel datasets (Section 4.1) and then
I expose the results of the seizure detection for both the datasets, togheter
with the spatial analysis of the brain for a group of 11 patients.

4.1 Datasets

The datasets are created from patient of the Bern Inespital epilepsy pro-
gram. Except for the need for invasive EEG studies, there were no addi-
tional inclusion criteria. All the patients gave written informed consent that
their data from iEEG might be used for research purposes. The decision
on the necessity for iEEG recordings, the electrode implantation scheme,
and the decision on surgical therapy was made entirely on clinical grounds.
These decisions were taken prior to and independently from the construction
of this dataset.

iEEG signals were recorded intracranially by strip, grid, and depth elec-
trodes (all manufactured by AD-TECH, Wisconsin, USA), using a Nicolet
One recording system with a C64 amplifier (VIASYS Healthcare Inc., Madi-
son, Wisconsin, USA). An extracranial electrode, localized between 10/20
positions Fz and Cz, was used as reference for signal recording. iEEG
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recordings were either sampled at 512 or 1024Hz, depending on whether
they are recorded with less or more than 64 contacts. The iEEG recorded
with more than 64 contacts are down-sampled to 512Hz prior to further
analysis for the first dataset. iEEG signals were re-referenced against the
median of all the channels free of permanent artifacts as judged by visual
inspection. After 16-bit analog-to-digital conversion, the data were digitally
band-pass filtered between 0.5 and 150Hz using a fourth-order Butterworth
filter prior to analysis and written onto disk at a rate of 512Hz. Forward
and backward filtering was applied to minimize phase distortions.

All the iEEG recordings were visually inspected by an EEG board-
certified experienced epileptologist (Kaspar Schindler) for seizure identi-
fication and exclusion of channels continuously corrupted by artifacts.

4.1.1 Short time recording dataset

The first dataset that I used in this study includes 16 patients (P1–P16)
of the epilepsy surgery program of the Inselspital Bern for a total of 99
recordings. Clinical data on the patients is summarized in Table 4.1.

Each recording consists of 3 minutes of interictal segments (immediately
before the seizure onset), the ictal segment (ranging from 10 s to 1002 s), and
3 minutes of postictal time. In addition to the iEEG data for each patient,
the dataset includes the age, the indices of channels, the indices of resected
channels, the MRI findings, the epilepsy syndrome and the post-surgical
outcome. The dataset will be soon available online.
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4.1.2 Long time recording dataset

Table 4.2: Clinical characteristics of patients and seizures included in the
dataset 2.
Abbreviations: Elec.: electrode, Seiz.: seizures

ID Elec.
[#]

Seiz.
[#]

Time of
recording [h]

Mean seizure
duration [s]

Mean seizure
distance [m]

L1 88 2 293.36 602 9945.13
L2 66 2 235.22 88 212.68
L3 64 4 158.38 65 197.87
L4 32 14 40.70 42 154.75
L5 128 4 110.00 16.5 227.25
L6 32 8 145.99 45 835.37
L7 75 4 68.95 69.5 655.37
L8 61 4 143.79 21.94 98.60
L9 48 25 40.88 42.37 92.07
L10 32 17 42.39 71 148.35
L11 32 2 212.22 91.5 1067.37
L12 56 9 191.42 146.44 725.28
L13 64 7 103.99 102.71 857.68
L14 24 2 161.39 25.85 73.77
L15 98 2 195.92 94.5 8391.73
L16 34 5 177.05 190.8 635.85
L17 60 2 129.60 97.5 227.38
L18 42 5 205.07 199 1407.25

The second dataset that I used in this study includes 18 patients (L1–L18)
of the epilepsy surgery program of the Inselspital Bern.
For each patient, a single recording of multiple hours is present. A total of
118 seizures are contained together with 2656 hours of iEEG recording.

Clinical data on the patients is summarized in Table 4.2.
Each recording consists of 40–293 hours of recording. The recording

is mostly composed by interictal period, and 2–25 seizures are reported
during that period. Since the recording is continuos in time, i.e. without
any interruption of recording, this dataset could be used also for future
experiments about prediction of seizures. The dataset will be soon available
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online.

4.2 Seizure Detection Results

In this section, I compare my method to the state-of-the-art (Chapter 3)
for detecting seizures in the first dataset (Section 4.2.1) and in the second
dataset (Section 4.2.2).

4.2.1 Dataset 1 experimental results

I compare my algorithm (LPB+HD) with the aforementioned state-of-the-
art methods using the first dataset described in Section 4.1. The results
of LSTM + Linear Layer (parallel LSTM) have been neglected, as overper-
formed by the serial LSTM. The algorithm is implemented in Python 2.7
using PyTorch. To have an identical setup, for the state-of-the-art methods
I also add the postprocessing step that is tuned for each of them to increase
their specificity.

I report performance metrics including specificity, sensitivity, macroav-
eraging accuracy, and delay of seizure onset detection given a limited num-
ber of trained seizure examples. Sensitivity is defined as the percentage of
correctly detected seizures in the test dataset. Specificity is defined as the
percentage of misclassified interictal 0.5 s window. Macroaveraging accuracy
is the mean of sensitivity and specificity that gives them equal weight to
address the unbalancing issue between the ictal and interictal segments [59].
Latency is measured as the time that algorithm takes to classify an unseen
seizure after the seizure onset time point that is marked by the expert.

Tables 4.3, 4.4, 4.5 illustrates the full comparison results. I divide all
available seizures for a patient into only two sets: training and testing (no
evaluation set). I train all the methods only on the training set, and measure
the metrics on the test set using k-fold cross-validation, where k is the total
number of seizures minus the number of seizures in the training set (i.e., I
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Table 4.3: Performance of my algorithm (LBP+HD). The upper part of
table shows the results in the one-shot learning setting, while the part below
it shows the results of the few-shot learning.
Abbreviations and symbols used in this table: TrS: number of trained
seizures, k: number of folds in cross-validation, ü: latency as delay of seizure
onset detection, Spe.: specificity, Sen.: sensitivity, elec.: electrodes, and Ac-
curacy: macroaveraging accuracy.

One-shot learning

LBP + HD Computing

ID TrS k ü [s] Spe. [%] Sen. [%]

P2 1 4 15.1 100 100
P4 1 4 34.5 100 100
P5 1 6 20.9 100 100
P6 1 2 6.3 100 100
P8 1 3 13.2 100 100
P11 1 2 7.0 100 100
P13 1 2 10.0 100 100
P16 1 2 32.3 100 100

mean 17.4 100.0 100.0

Few-shot learning

P1 2 4 6.3 100 100
P15 2 8 36.4 100 100
P3 3 12 21.8 79.97 91.03
P7 3 5 5.0 49.9 88.57
P9 3 4 16.2 96.31 96.43
P10 3 11 3.9 98.41 94.41
P12 6 5 15.9 96.88 80
P14 4 7 10.5 95.94 85.71

mean 14.5 89.68 92.02

Total
mean 15.9 94.84 96.01

Accuracy 95.42

rotate the trained seizures among all available seizures).
Based on the number of seizures used for training, I observe that the

patients may be roughly partitioned into two groups: patients with one-shot
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Table 4.4: Comparisons of my algorithm (LBP+HD) with the state-of-the-
art methods: LBP+SVM [11], LGP+MLP [11]. The upper part of table
shows the results in the one-shot learning setting, while the part below it
shows the results of the few-shot learning.
Abbreviations and symbols used in this table: TrS: number of trained
seizures, k: number of folds in cross-validation, ü: latency as delay of seizure
onset detection, Spe.: specificity, Sen.: sensitivity, elec.: electrodes, and Ac-
curacy: macroaveraging accuracy.

One-shot learning

LBP + Linear SVM LGP + MLP

ID TrS k ü [s] Spe. [%] Sen. [%] ü [s] Spe. [%] Sen. [%]

P2 1 4 10.1 91.74 75 12.2 98.26 100
P4 1 4 29.3 100 100 35.2 100 100
P5 1 6 14.7 92.09 100 14.6 84.54 100
P6 1 2 9.0 100 100 7.5 100 100
P8 1 3 11.9 100 100 10.3 100 100
P11 1 2 6.5 100 100 6.5 100 100
P13 1 2 16.3 100 100 9.8 100 100
P16 1 2 29.3 100 100 29.5 96.81 100

mean 15.9 97.98 96.88 15.7 97.45 100.0

Few-shot learning

P1 2 4 6.9 100 100 6.9 96.76 100
P15 2 8 31.3 99.86 100 30.8 91.71 100
P3 3 12 15.6 81.33 100 16.8 77.04 100
P7 3 5 5.0 51.78 88.57 10.9 65.53 91.42
P9 3 4 12.4 89.05 96.42 14.4 88.93 89.28
P10 3 11 9.2 97.39 92.31 13.3 98.78 88.81
P12 6 5 13.6 82.62 88 17.3 85.01 90
P14 4 7 9.1 98.02 95.71 9.9 94.58 94.28

mean 12.9 87.51 95.13 15.0 87.29 94.22

Total
mean 14.4 92.74 96.00 15.4 92.37 97.11

Accuracy 94.37 94.74

learning (in the upper part of Table 4.3), and patients that need few more
training seizures (few-shot learning) in the lower part of the table. For half
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Table 4.5: Comparisons of my algorithm (LBP+HD) with the state-of-
the-art methods: LSTM [12], STFT+CNN [13] The upper part of table
shows the results in the one-shot learning setting, while the part below it
shows the results of the few-shot learning.
Abbreviations and symbols used in this table: TrS: number of trained
seizures, k: number of folds in cross-validation, ü: latency as delay of seizure
onset detection, Spe.: specificity, Sen.: sensitivity, elec.: electrodes, and Ac-
curacy: macroaveraging accuracy.

One-shot learning

LSTM STFT + CNN

ID TrS k ü [s] Spe. [%] Sen. [%] ü [s] Spe. [%] Sen. [%]

P2 1 4 10.6 100 100 11.2 95.63 100
P4 1 4 29.5 100 100 31.3 100 100
P5 1 6 17.1 99.31 100 26.3 100 100
P6 1 2 8.9 100 100 15.0 100 100
P8 1 3 10.9 100 100 18.5 100 100
P11 1 2 7.08.5 100 100 12.8 100 100
P13 1 2 11.3 100 100 15.8 100 100
P16 1 2 27.3 100 100 35.0 100 100

mean 15.5 99.91 100 20.7 99.45 100.0

Few-shot learning

P1 2 4 5.9 99.98 100 15.2 99.07 100
P15 2 8 31.4 99.99 100 45.1 100 100
P3 3 12 16.1 86.85 55.30 13.65 67.07 63.6
P7 3 5 14.1 50.16 85.00 4.7 16.7 100
P9 3 4 7.5 82.98 100 13.2 86.95 100
P10 3 11 8.9 98.67 99.09 14.9 98.36 100
P12 6 5 17.6 99.56 90 6.8 35.00 100
P14 4 7 9.6 98.85 92.86 6.75 39.03 100

mean 13.9 89.63 90.28 15.0 67.77 95.45

Total
mean 14.7 94.77 95.14 17.9 83.61 97.73

Accuracy 94.96 90.67

of the patients (8 out of 16), my algorithm exhibits one-shot learning, i.e.
training with only one seizures is possible. My algorithm achieves perfect
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(100%) specificity and sensitivity in detecting novel seizures. The other
methods cannot exhibit such perfect generalization in the one-shot setting:
the LSTM is the closest method that achieves 99.91% specificity. Overall,
all the methods achieve better performance for these patients in the upper
part of table.

The remaining eight patients, listed in the lower part of Table 4.3, are
more challenging due to their fast and very localized seizures (i.e., only 2
or 3 electrodes out of 70 are involved in the ictal activity). Hence for these
patients few more seizures (2–6) are required for training. my algorithm
trained with two seizures still maintains the perfect generalization for two
more patients (P1 and P15) while the other methods are behind. Only for
two patients (P3 and P7), my algorithm shows a low specificity in the few-
shot learning; on average, it achieves 89.68% specificity (vs. 89.63% in the
LSTM) and 92.02% sensitivity (vs. 90.28% in the LSTM).

It is worth to briefly discuss two types of variation that may occur for
seizures. The seizures may start focal and remain focal (i.e., restricted to
one lobe/hemisphere) or they may secondary generalize and involve both
cerebral hemispheres. Importantly for this type of variation the iEEG pat-
terns emerging at the seizure onset are very similar and thus seizure onset
should be rapidly detected. On the other hand, few patients may have
seizures starting in different regions of the brain, for example some seizures
begin in the left, some in the right temporal lobe (so-called bilateral tempo-
ral lobe epilepsy). If this is the case, there will be different iEEG patterns
at seizure onset for the different types of seizures, and both types have to
be learned by the algorithms.

Considering both one-shot and few-shot settings across Table 4.3, my
algorithm, on average, achieves higher macroaveraging accuracy (95.42%)
than the other methods. The LSTM is the closest method that reaches
94.96%macroaveraging accuracy thanks to the added postprocessing method
to avoid otherwise lower accuracy of 90.46%. Although other methods reach
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slightly higher sensitivity for some of the patients, my algorithm achieves
the highest specificity (94.84% on average) that clearly shows the limitation
of the other methods for long-time recordings. The latency of seizure on-
set detection of my algorithm is slightly larger than the one yielded by the
LSTM (15.9 s vs. 14.7 s). Given that the average duration of ictal segments
is 123.6 s (see Table 4.1), my algorithm still detects the seizures in the first
8% of the ictal window. Such a delay of detection below 20 s is well suited
for several important applications considering that iEEG seizure onset of-
ten precedes clinical onset by more than 20 s [60]. Furthermore, considering
that the median durations of mesial temporal lobe seizures and of neocor-
tical extratemporal seizures have been found to be 106 s and 78 s, respec-
tively [61], it may be helpful for theraupeutic interventions aimed a early
seizure termination or prevention of generalization of seizure activity [62].

More importantly, my algorithm operates with simple binary operations
and a lower memory footprint. As the output of training, my algorithm re-
quires to store only the contents of the AM: 2∗d bits for the two prototypes.
The IM can be efficiently rematerialized by a cellular automa from a random
seed [63], hence there is no need to store the IM [37].

Table 4.6: The table shows the memory requirement to store each model
(i.e. the learned weights).

Memory footprint

HD SVM MLP LSTM CNN

Weights
[#] 2496 256 × # e. 10240 × # e. + 160 185408 1600 × # e. + 194056

1 4–10× 148–410× 74× 101–142×

The Table 4.6 shows the number of weights to be stored for each model.
The number of weights for all the state-of-the-art methods (except the
LSTM) grows with the number of electrodes. Though the number of weights
in the LSTM are constant, its computational time grows with the number
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of electrodes, since it is a sequential model. Considering d=10,000, my
method is stored on 2,500 bytes resulting in at least 4–10× lower mem-
ory requirements with respect to the simplest SVM classifier, and up to
74× with respect to the LSTM. Moreover, this is a conservative memory
estimation for my algorithm as the dimensionality can be reduced to 1000
for some iEEG recordings without affecting the performance. And finally,
my algorithm works with binary operations while other methods employ
floating-point operations.

4.2.2 Dataset 2 experimental results

In this section, I propose again the comparison of my algorithm (LPB+HD)
with the aforementioned state-of-the-art methods using the second dataset
described in Section 4.1. I decide to neglect LSTM+Linear Layer and
MLP+LGP results, because strongly overperformed by the other soa meth-
ods.

As an extension of previous experiments, for the state-of-the-art meth-
ods I also add the postprocessing step that is tuned for each of them to
increase their false detections per hour(FpH). Contrary to the previous set
of experiments, removing the postprocessing step in unfeasible since the
FpH will grow so much, limiting a real implementation. In fact, multi-
ple false alarm could cause a higher level of anxiety, that could cause an
increasing of the epileptic activity [64].

I report performance metrics including FpH, sensitivity, and delay of
seizure onset detection given a limited number of trained seizure examples.
Sensitivity is defined as in the previous experiments. FpH is defined as
the number of false alarms occurred during an hour. Two false positive
occurring nearer than 10 minutes one from the other are classified as the
same false seizure. Latency is again measured as the time that algorithm
takes to classify an unseen seizure after the seizure onset time point that is
marked by the expert. Table 4.7 illustrates the full comparison results.
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4.2 – Seizure Detection Results

The experiments are divided into two sets: for the main algorithm, the
HD + LBP, I use a window of 30 seconds interictal iEEG and 1 or 2 seizures
to train and I test the full recording, reporting number of false alarms,
number of seizure detected and delay; for the state-of-the-art competitors,
I use the same train setup, but I tested on 20 hours of recording of interictal
iEEG and on all the fragments containing a seizure, because limited by the
computational resources. I use 1 seizure for training for 14 of 18 patients
and 2 seizures for the other 4 (L4, L7, L8, L12). No evaluation set has been
considered.

For the 2/3 of the patients (12 out of 18), my algorithm exhibits ideal
performances, in terms of Sensitivity (100%) and false detections (0). For
all the patients (18 out of 18), my algorithm achieves an impressive 0.0 false
detection rate, avoiding any false seizure detection for a total of 2656 hours
of recordings.

The other methods cannot exhibit such perfect generalization: the SVM
is the closest method that achieves 0.31 FpH. Overall, all the competitors
achieve comparable performances in term of Sensitivity with the HD algo-
rithm, but with a higher FpH (0.31–0.54). Only for two patients (L7 and
L14), my algorithm shows a very low sensitivity in the few-shot learning
(50% and 0%); noteworthy, for patient L14, all the methods fail in the
detection of the unseen seizure. This low sensitivity could be linked to dif-
ferent types of variation that may occur for seizures, as previously described
(Section 4.2.1). On average, my algorithm achieves 87.67% sensitivity (vs.
89.59% in the SVM) and 0.0 FpH (vs. 0.54 in the SVM). The latency of
seizure onset detection of my algorithm as for the other dataset is slightly
larger than the one yielded by the competitors (17.26 s vs. 12.84 s of SVM).
The considerations done for the previous dataset hold, yielding the HD la-
tency to be good enough for several applications (e.g. closed loop seizure
termination).

Finally, I further investigate the dimension (d) of hypervectors. For the
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4 – Results

experiments on short-time dataset (Section 4.2.1), I use a constant dimen-
sion of 10000; conversely, for this dataset I tuned the dimension per patient,
reducing it till there aren’t worsening of the performance. In Table 4.7 the
tuned dimension is reported for each patient. As we can see, almost half
of the patients shows the same performances with d = 1000. Reducing d,
I can save memory footprint (10× higher gain), power consumption and
computational time.

4.3 Spatial analysis results

In this section, I report the identification accuracy and the p-value of my
algorithms for determining the ictogenic regions. For identifying the ic-
togenic hemisphere, I assess how my algorithm performs on the patients
with bilaterally localized electrodes (11 out of 16 patients; see Fig 2.10).
For these patients, ictogenic hemispheres are indicated by the experts as
previously reported in [5]. The second column of Table 4.8 lists these hemi-
spheres as ground truth, and shows the mean score of my algorithm for the
left and right hemispheres. When the score of one side significantly differs
from the other side (p < 0.01), the algorithm classifies the hemisphere with
the highest score as the ictogenic hemisphere. Using one or two seizures for
training, the algorithm correctly classifies the ictogenic hemisphere with an
accuracy of 100% (11 of 11) and p < 0.01.

Four patients out of 11 require at least two seizure examples for robust
identification, otherwise their p-values will be higher than 0.01. Moreover,
for nine patients with more recorded seizures, I perform further analysis
by increasing the number of training seizures (see the second half of Ta-
ble). The p-value decreases for eight patients thus implying a more robust
identification. Noteworthy for five patients, the reduction is higher than
two order of magnitude. However, for P15, the tests show a higher p after
training with all the seizures. This might be due to the strongly asymmetric
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4.3 – Spatial analysis results

T
ab

le
4.
8:

Pa
tie

nt
s
w
ith

bi
la
te
ra
lly

lo
ca
liz

ed
el
ec
tr
od

es
ar
e
an

al
yz
ed

to
id
en
tif
y
th
ei
r
ic
to
ge
ni
c
he

m
i-

sp
he

re
.
T
he

fir
st

pa
rt

sh
ow

st
he

m
in
im

um
nu

m
be

ro
fs

ei
zu

re
sf

or
tr
ai
ni
ng

(T
rS
.)
to

id
en
tif
y
th
e
ic
to
ge
ni
c

he
m
isp

he
re

w
ith

p
<

0.
01

;
al
so

th
e
m
ea
n
sc
or
es

of
th
e
he

m
isp

he
re
s
an

d
th
e

p
-v
al
ue

of
th
e
t-
te
st
.
T
he

ex
pe

rim
en
ts

ar
e
al
so

re
pe

at
ed

by
tr
ai
ni
ng

w
ith

al
la

va
ila

bl
e
se
iz
ur
es
.

T
ra
in
ed

w
it
h
m
in
.
#

of
se
iz
ur
es

s.
t.

p
<

0.
01

T
ra
in
ed

w
it
h
al
l
av
ai
la
bl
e
se
iz
ur
es

ID
H
em

.
T
rS
.

[#
]

M
ea
n
Sc
or
e

L
ef
t
H
em

.
M
ea
n
Sc
or
e

R
ig
ht

H
em

.
p
-v
al
ue

T
rS
.

[#
]

M
ea
n
Sc
or
e

L
ef
t
H
em

.
M
ea
n
Sc
or
e

R
ig
ht

H
em

.
p
-v
al
ue

P
1

R
1

0.
11
76

0.
17
65

0.
00
00
5

5
0.
10
91

0.
17
54

<
0.

00
00

01
P
2

L
1

0.
25
31

0.
10
92

0.
00
00
1

4
0.
24
81

0.
09
01

<
0.

00
00

01
P
5

L
1

0.
34
96

0.
22
16

0.
00
2

6
0.
34
66

0.
23
55

<
0.

00
00

01
P
6

R
2

0.
09
66

0.
16
08

0.
00
5

2
0.
09
66

0.
16
08

0.
00
5

P
8

L
1

0.
10
57

0.
06
17

0.
00
05

3
0.
10
34

0.
07
41

0.
00
02

P
9

R
2

0.
10
10

0.
13
27

0.
00
09

6
0.
09
19

0.
13
72

<
0.

00
00

01
P
11

L
1

0.
16
49

0.
10
40

0.
00
8

2
0.
20
64

0.
15
12

0.
00
3

P
12

R
1

0.
05
49

0.
07
78

0.
00
4

10
0.
06
15

0.
09
31

<
0.

00
00

01
P
13

R
2

0.
15
55

0.
21
36

0.
00
01

2
0.
15
55

0.
21
36

0.
00
01

P
15

L
2

0.
25
10

0.
16
75

0.
00
00
7

9
0.
26
93

0.
21
75

0.
00
08

P
16

R
1

0.
23
42

0.
37
04

0.
00
00
2

2
0.
23
93

0.
34
45

0.
00
00
1

75



4 – Results

implantation scheme for this patient.
For identifying the ictogenic lobe, I use the data from two patients for

whom the exact SOZ localization is available [5]. The algorithm correctly
localizes the SOZ for only one of them. This result can be compared to the
post-surgical outcome: the algorithm correctly classifies the SOZ for the
patient who remained seizure free after surgery (3 years follow-up), whereas
the other one did not improve, thus suggesting that the SOZ was more
extensive than assessed during pre-surgical evaluation. These findings are
promising but further studies are warranted to confirm my results.
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Chapter 5

TX2 implementation

In this chapter I will report an efficient implementation of the algorithm on
the Tx2 platform. The Tx2 platform offers an embedded platform to run
algorithms in a linux environment. I use the Tx2 platform to make a fair
comparison of energy consumption and time of execution of all the methods
aforementioned.

In the following, I will present the Jetson TX2 platform (Section 5.1),
an efficient parallelization of the HD algorithm on the GPU (Section 5.2),
and the comparation among all the algorithms in term of energy and time
of execution (Section 5.3).

5.1 Jetson TX2 computing device

Jetson Tx2 is a powerefficient embedded AI computing device. Jetson TX2
is built around an NVIDIA Pascalfamily GPU and loaded with 8 GB of
memory and 59.7 GB/s of memory bandwidth. It features a variety of
standard hardware interfaces that make it easy to integrate it into a wide
range of products and form factors.

The Jetson TX2 module integrates:
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5 – TX2 implementation

Figure 5.1: Jetson Tx2 platform, an AI supercomputer features NVIDIA
Maxwell architecture, 256 NVIDIA CUDA cores, 64-bit CPUs, and a power-
efficient design.

• 256 core NVIDIA Pascal GPU. Fully supports all modern graph-
ics APIs, unified shaders and is GPU compute capable. The GPU
supports all the same features as discrete NVIDIA GPUs, including
extensive compute APIs and libraries including CUDA. Highly power
optimized for best performance in embedded use cases.

• RMv8 (64-bit) Multi-Processor CPU Complex. Two CPU clus-
ters connected by a high-performance coherent interconnect fabric
designed by NVIDIA; enables simultaneous operation of both CPU
clusters for a true heterogeneous multi-processing (HMP) environ-
ment. The Denver 2 (Dual-Core) CPU clusters is optimized for higher
single-thread performance; the ARM Cortex-A57 MPCore (Quad-
Core) CPU clusters is better suited for multi-threaded applications
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5.1 – Jetson TX2 computing device

and lighter loads.

• 8GB LPDDR4 and 32 GB eMMCmemory integrated on the mod-
ule.

• 128-bit Memory Controller.128-bit DRAM interface providing high
bandwidth LPDDR4 support.

It also includes an advanced HD Video Encoder, an HD Video Decoder, a
Display Controller Subsystem, a 1.4Gpix/s Advanced image signal process-
ing and Audio Processing Engine.

Moreover, the TX2 board includes sensors on the board and the module
to perform power measurements at different levels of granularity. Reading
out these sensors allows to perform power measurements on the TX2 board.

Finally, the TX2 board could perform operations in different modes, to
save power or to achieve best performances. Using the command $ sudo
nvpmodel -m [mode] the TX2 board could work with the different modes
reported in table 5.1. The TX2 could work with both the CPU cluster and
the GPU at max frequency (Max-N) to optimize speed or with the ARM
cortex only and the GPU at minimum frequency (Max-Q) to save power.
All the other modes are in between, as trade-off between speed and power
saving.

Table 5.1: Different modes of operation of TX2 platform. Max-N achives
the highest speed of execution, Max-Q the maximum power saving.

Mode Mode Name Denver 2 fs ARM A57 fs GPU fs

0 Max-N 2 2.0 GHz 4 2.0 GHz 1.30 GHz
1 Max-Q 0 4 1.2 GHz 0.85 GHz
2 Max-P Core-All 2 1.4 GHz 4 1.4 GHz 1.12 GHz
3 Max-P ARM 0 4 2.0 GHz 1.12 GHz
4 Max-P Denver 2 2.0 GHz 0 1.12 GHz
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5 – TX2 implementation

5.2 HD Acceleration on GPU

Figure 5.2: Parallelization of the algorithm on a GPU. For each kernel, 2
threads and 2 blocks are highlighted to show the distribution of the opera-
tions inside the GPU.

In this section, I will highlight the most important step of the paral-
lelization of the algorithm on the GPU of the TX2 device. I exploit the
CUDA code to ensure a full employment of all the CUDA cores.

The code is composed of three CUDA kernels, that perfectly match the
three sections of the algorithm. In the following, I describe the structure of
each kernel, using 128 as number of electrodes:

• LBP kernel: this kernel is used to compute the LBP of a time win-
dow. Inputs: EEG signal; Outputs: LBPs matrix; Blocks/threads:
128/256; each single block of the GPU analyses a different channel,
since the computation of LBP is channel specific and is uncorrelated
with the LBP of other channels.

Each thread inside the block, first move a sample of the EEG data to
the shared memory to speed up the computation, then calculates the
temporal difference between the corresponding sample and the next
one, and finally creates the LBP associated to that point.

• ENCODING kernel: this kernel trasforms the LBPs matrix into
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5.2 – HD Acceleration on GPU

a single vector to be compared with the associative memory. In-
puts: LBPs matrix, LBPs’ IM, channel’s IM; Outputs: encoded vector;
Blocks/threads: 32/32; for this kernel, each block takes into account
only 32 bits of both the IM and produce 32 bits of the encoded vector.
For example, block 0 uses bits 0-31 of the IMs and produces the bits
0-31 of the output; block 1 uses bits 32-63 and produces the bits 32-63
of the output.

Conversely, at the threads level we have two different steps: first,
each thread copies to the shared memory 4 vectors of the channel’s
IM (i.e. 4 channels) and 2 vectors of the LBPs’ IM. In this way, both
the memory are completely copied to the shared memory. After, each
thread works on one bit. In this phase, each thread performs the
majority across the 128 channels, generating a new bit for each time
sample. Finally, the thread performs again the majority among the
full time window (256 samples). The output is a 32 ∗ 32 bit vector
that encodes the time window of 256 samples.

• PREDICTION kernel: this kernel is used to give the label to the
test window. Inputs: query vector, associative memory, and predic-
tions’ vector; Outputs: label of the window; Blocks/threads: 1/32;
this kernel is simpler than the previous ones. Each thread takes into
account 32 bits of all the inputs, performing xor between query and
both the label vectors and then the popcount. The two hamming
distances are computed summing up all the threads results. Finally,
the postprocessing is applied by a single thread that computes the
window label.

In Fig. 5.2 all the kernels are visually described.
Furthermore, the dimension of the encoded window could be tuned as

0.5 second or 1 second. Only applying the 3 kernels, a window of 0.5 second
is used to produce the encoded vector. Conversely, if you want to change
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5 – TX2 implementation

from 0.5 seconds to 1 second (0.5 seconds has been applied to first dataset,
1 second to the second one), you simply compose the encoded vector with
the one of the previous window before applying the PREDICTION kernel,
keeping information from two successive windows of 0.5 seconds, i.e. 1
second.

5.3 Experimental Results and scalability

Figure 5.3: Comparison of my algorithm with state-of-the-art methods
in terms of energy and false detection / hour. Energy per classification is
plotted on the x-axis, mean false detection/hour on the 18 patients is on
the y-axis.

My experiments involve running the above discussed methods on CPU
clusters and on the GPU of the NVIDIA Jetson TX2. The experiments
are performed with an identical setup for all the considered methods and
different combination of resources (GPU and CPU) is used for each of them.
I use d = 1000 in my algorithm and I evaluate the performance with 24
and 128 channels (respectively the minimum and the maximum number of
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5.3 – Experimental Results and scalability

Table 5.2: TX2 performances of all the algorithms. The best resources
(i.e. CPU and GPU) are chosen for all of them. I report time for a single
classification, energy per classification, and the ratio between the state-of-
the-art energy/time and my algorithm performances. I repeat the experi-
ments in max performance mode (MAXN) and in maximum power saving
mode (MAXQ). These data are drawn from the patient with the maximum
number of channels, 128.

MAXN

128 elec HD SVM(CPU) CNN(GPU+CPU) LSTM(CPU)

time[ms] 10.0 25.5 147.0 5278.0
energy[mJ] 42.0 132.6 751.0 36286.0
time gain 1.0× 2.6× 14.7× 527.8×
energy gain 1.0× 3.2× 17.9× 864.0×

MAXQ

128 elec HD SVM(CPU) CNN(GPU+CPU) LSTM(CPU)

time[ms] 13.0 51.0 213.0 6333.0
energy[mJ] 35.0 103.0 556.0 16224.0
time gain 1.0× 3.9× 16.4× 487.2×
energy gain 1.0× 2.9× 15.9× 463.5×

Table 5.3: Same data of the previous table. The data are taken with the
patient with lowest number of the channels, 24.

MAXN

24 elec HD SVM(CPU) CNN(GPU+CPU) LSTM(CPU)

time[ms] 8.6 11.0 42.0 983.0
energy[mJ] 32.5 53.0 184.0 6588.0
time gain 1.0× 1.3× 4.9× 114.3×
energy gain 1.0× 1.6× 5.7× 202.7×

MAXQ

24 elec HD SVM(CPU) CNN(GPU+CPU) LSTM(CPU)

time[ms] 12.5 20.8 53.0 1416.0
energy[mJ] 32.0 44.8 131.0 3980.0
time gain 1.0× 1.7× 4.2× 113.3×
energy gain 1.0× 1.4× 4.1× 124.4×
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channels for patients in my dataset).
My algorithm is implemented with CUDA toolkit to maximally exploit

the componentwise operations parallelization. The state-of-the-art methods
are implemented using Python 3 optimized libraries (in particular keras and
scikit-learn).

Fig. 5.3 depicts false detection rate and energy measurements of my
algorithm using different TX2 power modes, comparing them with the state-
of-the-art methods. In Table 5.3 and Table 5.2 I report the results for the
best implementation of each method. I report implementation with CPUs,
GPUs, or a combination of them, basing on the lowest energy consumption.
Both time and energy consumption are evaluated for a single classification,
that is repeated every 0.5 seconds.

Initially, I validate the methods on the board with a 30 minutes interictal
segment and one seizure. The training of the model is done off-line and the
trained model is loaded on the board.

Then, I evaluate execution time and energy consumption with Max-
N and Max-Q mode. In a 24-channel model, my algorithm achieves 8.6
ms time of execution and 32.5 mJ energy consumption in Max-N mode,
and 12.5 ms and 32.0 mJ in Max-Q mode. Noteworthy with an ASIC
implementation I can further decrease the frequency of execution, increasing
the time to 500ms (real time constraint) and consistently reducing the
energy consumption. Table 5.3 shows that HD roughly gains 1.3×–1.7× in
time and saves 1.4×–1.6× energy compared to SVM model. Moreover, HD
achieves 4.2×–114.3× speed up and 4.1×–202.7× energy saving compared
to deep-learning approaches.

I also evaluate the scalability of the algorithm, increasing the number of
channels from 24 to 128. As detailed in Table 5.2 the speed up increases to
2.6×–3.9× with SVM and to 14.7×–527.8× with deep-learning methods The
energy saving reaches a minimum of 15.9× in comparison with the CNN.
These results highlight a constant execution time and energy consumption
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in the HD with a variable number of channels (e.g. Max-q mode, 12.5 s
vs 13 s time, 32.0mJ vs 35mJ energy consumption). Conversely, the state-
of-the-art methods display a considerable increment in both the metrics
increasing the number of the channels from 24 to 128 (e.g. Max-q mode,
20.8 s vs 51 s time, 44.8mJ vs 103mJ energy consumption).

My findings show that the proposed algorithm (HD+LBP) demands
for lower energy in comparison with all the other analysed methods on an
embedded device as TX2. Further studies are warranted to address the
energy consumption of the algorithm on an implantable device with more
limited of TX2 platform.

85



86



Chapter 6

Conclusions and Future
Work

My algorithm learns from one or few iEEG seizure recordings; it exploits
LBP codes and HD computing that enable full binary operations during
training and inference. Its learning procedure is transparent and thus al-
lows to translate the learned codes into information about the spatial local-
ization of the seizure-generating brain regions, for example to better target
surgical resection or neuro-modulatory interventions. The algorithm per-
fect generalizes on a second long time dataset, showing a 0.0 false detection
rate. My algorithm also provides a universal and linearly scalable interface
with a minimal set of parameters that ease analyzing all iEEG recordings
from different patients with 24 to 128 implanted electrodes. Using the first
dataset with 16 patients and 99 seizures, my algorithm requires a total of 34
seizures for training: eight seizures for eight patients (with one-shot learn-
ing) and 26 seizures for the other eight patients (with few-shot learning). I
test the algorithm on 65 unseen seizures using k-fold cross-validation: the
algorithm outperforms LBP+SVM, LGP+MLP, LSTM and STFT+CNN
with higher specificity and macroaveraging accuracy, and a lower memory
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footprint.
I confirm these results with the second dataset: on 18 patients and 120

seizures, the algorithm again outperform the state-of-the-art, training with
22 seizures and testing on the remaining 98. The proposed algorithm con-
sumes less energy and requires less time to perform a classification compared
to the baseline.

Future work will follow in two directions:

• Software: it is possible to apply the described positional binding
to the algorithm and to use different kinds of encoding. It could
be interesting to take into account in the encoding the correlation
between channels, that has been demonstrated to be connected to
seizure activity [65].

• Hardware: focus on efficient hardware implementation on an ASIC,
with a dedicated hardware for specific HD operations (distributed xor
and popcount). A possible future application of the algorithm could
be the development of a closed-loop seizure termination system on an
implantable device.

Furthermore, the algorithm could be used to assist doctors in the tedious
work of iEEG analysis and in clinical daily activity.
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0.1 Introduction

The way the brain works suggests suggest that rather than working with num-
bers that we are used to, computing with hypervectors (high-dimensional vec-
tors, e.g., 10,000 bits) is more efficient. HD computing offers a general and
scalable model of computing as well as well-defined set of arithmetic operations
that can enable fast and one-shot learning (no need of back-propagation like in
neural networks ). Furthermore it is memory-centric with embarrassingly par-
allel operations and is extremely robust against most failure mechanisms and
noise. There have been successful applications in variety of tasks such as: lan-
guage recognition, text classification, biosignal processing (EMG/EEG), scene
reasoning, analogical-based reasoning, etc.

Hypervectors are high-dimensional (e.g., 10,000 dimensions), they are (pseudo)
random with independent identically distributed components and holographi-
cally distributed (i.e., not microcoded). Hypervectors can use various coding:
dense or sparse, bipolar or binary and can be combined using arithmetic oper-
ations such as multiplication, addition, and permutation. The vectors can be
compared for similarity using distance metrics.

In this project, the goal would be to develop an high level algorithm exploit-
ing HD computing for seizure detection, using intracranial EEG signals.

0.2 Project Description

There are four main objective for this project:

1. designing and developing a set of feature extractors and HD classifiers for
the seizure detection/prediction problem;

2. developments of such algorithms in high-level Matlab/Python;

3. implementation in C and embedded processors.

0.3 Goals

The main goals of the project are outlined below:

• find one or multiple preprocessing algorithm in time or frequency domain,
to extract good features from iEEG;

• create a full pipeline (preprocessing + classifier) to achieve good accuracy
on a novel dataset;

• implement the algorithm on an embedded processor to calculate energy
consumption and see real time execution;

Additional bonus goals:

1



• speed up the algorithm using CUDA computing, exploiting GPU with
python;

• create a working version of the algorithm using the CUDA toolkit, paral-
lelizing the HD on an embedded GPU;

• explore the state-of-the-art to find good baseline and assess their perfor-
mance on the same new dataset.

0.4 Project Realization

0.4.1 Project Plan

Within the first week of the project you will be asked to prepare a project plan.
This plan should identify the tasks to be performed during the project and sets
deadlines for those tasks. The prepared plan will be a topic of discussion of the
first week’s meeting between you and your advisers. Note that the project plan
should be updated constantly depending on the project’s status.

0.4.2 Meetings

Weekly meetings must be held between the student and the assistants. In case
a meeting cannot be done, a weekly writeup report must be written. The exact
time and location of these meetings will be determined within the first week
of the project in order to fit the students and the assistants schedule. These
meetings will be used to evaluate the status and progress of the project. Beside
these regular meetings, additional meetings can be organized to address urgent
issues as well.

0.4.3 Report

Documentation is an important and often overlooked aspect of engineering. One
final report has to be completed within this project. The common language
of engineering is de facto English. Therefore, the final report of the work is
preferred to be written in English. Any form of word processing software is
allowed for writing the reports, nevertheless the use of LATEX or any other
vector drawing software (for block diagrams) is strongly encouraged by the IIS
staff.

Final Report The final report has to be presented at the end of the project
and a digital copy need to be handed in. Note that this task description is part
of your report and has to be attached to your final report.

0.4.4 Presentation

There will be a presentation (20 min presentation and 5 min QA) at the end
of this project in order to present your results to a wider audience. The exact
date will be determined towards the end of the work.
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