
POLITECNICO DI TORINO

Master Degree in Mechatronic Engineering

Predictive Maintenance
A brain for the machine

Advisor

prof. Marcello Chiaberge
Candidate:

Claudio Filippo Vitiello

Company tutors
Prima Industrie S.p.A

Stefano Albrile

October 2018

ABSTRACT

Nowadays, in the industrial sector, one of the main aspects for which companies
decide to invest most of their time and resources, to obtain ever more accurate
results, is maintenance.

Maintenance refers to the ability to keep the machine in good condition, through
a series of appropriate operations and controls. Normally, this process accompanies
the whole life of the machine and, in some cases, it is difficult to find the best
trade-off in the use of this tool.

In recent years, in a resource optimization process, the desire to have predictive
maintenance is increasingly widespread: the goal, therefore, is to anticipate and
predict any problems on the machine by performing the right operations in the
right time to avoid the waste of time or serious failures.

Furthermore, this process assumes even greater importance if the context in
which it was conceived is considered: Industry 4.0 or ”4th industrial revolution”.

This is where this thesis is placed: the general aim is to realize a predictive
maintenance system able to detect and, consequently, to prevent unexpected failures
of a laser cutting system by exploiting the analysis of the harmonic impulse response
and elaborating the results with the use of pattern recognition models.

In this context, first and foremost, tools, resources and their use have been
defined to conduct a feasibility study on the developed method (ie accelerometer and
neural networks, as better described later), since - in the absence of similar examples
in the literature - it was not possible to predetermine its validity in advance and,
therefore, its suitability to produce results in line with the expectations.

The experimentation has been divided into two phases: the first one consists of
doing a modal analysis on the machines following an impulsive force; the second
one requires the use of pattern recognition models based, in the studied case, on
neural networks, to perform a categorization of the examined signal, establishing if
and, eventually, which anomaly is going to occur on the machine.

These topics will be dealt with in detail throughout the thesis structured in six
chapters.

The chapter 1 contextualizes the theoretical problems of the project, presenting
the notion of Industry 4.0 and the changes that will involve in the way of relating
to the machine; the concept of maintenance will be defined, identifying the most

III

widespread methods including the predictive one; the modal analysis and its key
points will be described; finally, the concept of machine learning, its characteristics
and its potential will be illustrated.

In chapter 2, an overview of the neural networks will be provided, describing
their behavior and the process that allows them to learn and understand situations.
Finally, some parameters and functions produced by the network (ROC, confusion
matrix) will be analyzed.

The chapter 3 describes the machine used during the tests, ie a 3D laser cutting
machine. Its general structure as the fixed axes, the mobile ones and the head, in
addition to the main components such as the numerical control (CNC), on which
it is based, will be analyzed. This analysis is essential because it is useful to
understand potential machine failures: two of these anomalies have been selected,
based on criteria that are better detailed inside the chapter.

The chapter 4 is dedicated to the illustration of the various tools, functions and
work environments used during the experimentation, with reference to the impulse
generation used to excite the machine, the sensors used during the experimenta-
tion (accelerometer and encoder), the modalities and protocols of communication
between accelerometer and PC, and MATLAB.

The chapter 5 is intended to the analysis of the two techniques used to build
the system: the first one involves the use of an accelerometer, while the second one
of an encoder whose signal has been transmitted to a virtual oscilloscope. All the
operations performed to achieve the desired result will be described step by step:
the data acquisition phase (using sensors), the data elaboration phase, the creation
of the neural networks used to identify and categorize the different situations and,
finally, the testing phase in which the neural networks have been further validated.

Finally, in chapter 6 the conclusions on the work will be drawn, going to examine
the next phase of the project, listing some possibilities and future strategies.

List of Figures

1.1 Industry 4.0 . 13

1.2 Maintenance . 15

1.3 Modal Analysis . 16

1.4 Machine Learning . 18

1.5 Basic structures of the supervised, unsupervised and reinforced learning 20

2.1 Artficial Neural Network . 21

2.2 Biological Neural Networks . 22

2.3 Structure of a basic Neural Network 23

2.4 Behavior of a neuron . 23

2.5 Activation functions . 25

2.6 Generic scheme Neural Network - backpropagation 26

2.7 Gradient descent . 27

2.8 Backpropagation process . 28

2.9 Confusion matrix - example . 29

2.10 ROC - example . 30

2.11 Neural Network - MATLAB example 32

3.1 Laser Next 1530 . 35

3.2 LN1530 - Machine module . 36

3.3 LN1530 - front part . 37

3.4 LN1530 - rear part . 37

3.5 LN1530 - movable structure . 38

3.6 LN1530 - Main components of the movable structure 39

3.7 LN1530 - optical chain . 40

3.8 LN1530 - CNC . 41

3.9 LN1530 - Cabin . 42

3.10 LN1530 - Turntable module . 43

3.11 Servo drive parameters - velocity loop gain 45

3.12 Servo drive parameters - position loop gain 45

3.13 Closing carriage anomaly - screws loose 46

V

4.1 CNC - pulse generation . 48
4.2 Pulse characteristics . 49
4.3 Accelerometer Sequoia . 49
4.4 Accelerometer and Machine axes orientation 50
4.5 Error position on oscilloscope . 51
4.6 Command file - example . 51
4.7 File data.csv - example . 52
4.8 Event capture - example . 53
4.9 JavaApplication - execution . 53

5.1 Project - main phases . 55
5.2 CS1: Command File - Accelerometer 56
5.3 CS1: time responses - normal situation 57
5.4 CS1: time responses - servo drive anomaly 58
5.5 CS1: time responses - closing carriage anomaly 58
5.6 CS1: frequency responses - normal situation 59
5.7 CS1: frequency responses - servo drive anomaly 59
5.8 CS1: frequency responses - closing carriage anomaly 60
5.9 CS1: correct responses of more machines 61
5.10 CS1: anomalies responses - comparison 61
5.11 CS1 - MP: general scheme . 62
5.12 CS1 - MP: Reference file . 63
5.13 Neural Network - architecture . 63
5.14 CS1- MP: Neural network dataset of first phase 64
5.15 CS1- MP: Confusion matrix and ROC of first phase 64
5.16 CS1- MP: Neural network dataset of second phase 65
5.17 CS1- MP: Confusion matrix and ROC of second phase 65
5.18 CS1- MP: Test . 67
5.19 CS1- MP: Application . 69
5.20 CS1- SP: general scheme . 70
5.21 CS1- SP: Neural Network dataset 70
5.22 CS1- SP: Confusion matrix and ROC 71
5.23 CS1- SP: Test . 72
5.24 CS2: Acceleration signal . 74
5.25 CS2: time responses - normal condition 74
5.26 CS2: time responses - servodrive anomaly 75
5.27 CS2: time responses - carriage anomaly 75
5.28 CS2: frequency responses - normal condition 76
5.29 CS2: frequency responses - servo drive anomaly 76
5.30 CS2: frequency responses - carriage anomaly 77
5.31 CS2: correct responses of more machines 78
5.32 CS2: anomalies responses - comparison 78

5.33 CS2 - MP: Reference file . 79
5.34 CS2 - MP: general scheme . 79
5.35 CS2 - MP: Neural network dataset of first phase 80
5.36 CS2 - MP: Neural network dataset of second phase 80
5.37 CS2 - MP: Confusion matrix and ROC of first phase 81
5.38 CS2 - MP: Confusion matrix and ROC of second phase 81
5.39 CS2 - MP: Test . 82

List of Tables

4.1 CNC comand . 48

VIII

Contents

List of Figures 5

List of Tables 8

1 Introduction 11

1.1 Industrie 4.0 . 11

1.2 Maintenance . 13

1.3 Modal analysis . 15

1.4 Machine Learning . 17

1.4.1 Supervised machine learning 18

1.4.2 Unsupervised machine learning 19

1.4.3 Reinforced machine learning 19

2 Neural Networks 21

2.1 Biological Neural Network . 22

2.2 Structure . 22

2.3 Activation function . 24

2.4 Learning process - Backpropagation 25

2.5 Tools . 28

2.6 In MATLAB . 31

2.7 Pros and cons . 32

3 Machine 35

3.1 Machine Module . 36

3.1.1 Fixed Structure . 36

3.1.2 Movable structure . 37

3.2 Optical chain . 40

3.3 CNC . 40

3.4 Cabin and Turntable module . 42

3.5 Problem analyzed . 43

IX

4 Instruments 47
4.1 Impulse generator . 47
4.2 Accelerometer . 49
4.3 Encoder - Oscilloscope . 50
4.4 PC-Accelerometer connection . 51
4.5 MATLAB . 54

5 Method 55
5.1 Case study 1 : accelerometer . 56

5.1.1 Data Analysis . 61
5.1.2 Multi-phases . 62
5.1.3 Single-phase . 70
5.1.4 Conclusion . 73

5.2 Case study 2 : encoder . 74
5.2.1 Data analysis . 78
5.2.2 Multi-phases . 79

6 Conclusion 83
6.1 Next steps . 83

A JAVA application - code 85
A.1 JavaAccelerometer . 85
A.2 Sequoia . 88
A.3 SerialPortCommunication . 89
A.4 CalibrationAccelerometer . 95
A.5 AccelerometerComponents . 97
A.6 Command . 99
A.7 FileHelper . 102

Bibliography 105

Chapter 1

Introduction

This introduction provides a description of the industrial and social context in
which this thesis is placed and the main thematics that it covers.

1.1 Industrie 4.0

In recent years, following the delicate economic situation that the world has faced,
the companies started to experiment with new solutions to optimize resources and
consequently reduce the waste of money. In particular, in the industrial sector,
a set of innovative activities was conceived which took the name of Industria 4.0
during the 2011 Hannover fair [6].

This program is so vast and ambitious that it is quite difficult to predict the
results and the impact these new solutions will have over time. Surely, it will
lead to a benefit in all sectors, from industrial to social with important economic
conseguences: for this reasons, scholars defined this historical passage as ”Fourth
industrial revolution”. In fact, briefly reviewing the various stages, the first was the
steam engine, the second was the assembly chain, the third the robots while the
latter in action wants to combine the physical systems with intelligence and data
[34, 18].

The programs included in this project [4, 7] are:

• Advanced manufacturing solution: advanced production systems, ie intercon-
nected and modular systems that allow flexibility and performance. These
technologies include automatic material handling systems and advanced robotics
such as collaborative robots.

• Additive manufacturing: additive manufacturing systems will allow increase
the efficiency of the use of materials since the company will start to produce
parts and small products inside. They are at the beginnning but to think to

11

1 – Introduction

produce part for their own machine at home, reducing the waiting cycle times,
is no longer utopian.

• Augmented reality: vision systems with augmented reality to better guide op-
erators in performing their daily activities. This allows a reduction of risk and
a greater accuracy as the worker will be guided in each operation, indicating
how and where to intervene [5].

• Simulation: simulation between interconnected machines to optimize pro-
cesses.

• Horizontal and vertical integration: integration and exchange of information
both horizontally and vertically, among all elements of the production process
to make it even more efficient.

• Industrial internet of things (IoT): communication between elements of pro-
duction, not only within the company but also outside it, thanks to the use of
the internet.

• Cloud: implementation of all cloud technologies such as online information
storage, the use of cloud computing, and external data analysis services. The
cloud also covers methodologies for managing very large amounts of data
through open systems. The final result is the conception of the industry at an
increasingly virtual and abstract level [18].

• Cyber-security: the increase in internal and external interconnections opens
the door to the whole issue of information security and systems that must not
be altered from the outside.

• Big Data & Analytics: techniques to analyze and manage large amounts of
data obtained from different sources for preventive and prediction scopes. In
this way, the data assume more meaningful and importance since, using them,
the machine can discover relationhip connected to specific situations and create
model to detect them [6].

Prior to Industry 4.0, some of these programs such as Big Data & Analytics,
Autonomous Robots and Additive Manifacuting already existed but acted as inde-
pendent disciplines. The goal, now, is to interact as many fields as possible with
each other, and this will allow companies to take new paths in the way of producing
bringing benefits for everyone [44].

Several applications, in as many branches, have been already developed using
these new technologies and way of thinking: for example in public trasportation
sphere, new automated vehicles have been designed in such a way that, by means
of sensors and AI, they are able to deal with the majority of the situations. Other

12

1.2 – Maintenance

example, in industry field is, of course, predictive maintenance, the project de-
scribed in this thesis. Generally, all these products have an increased reliability,
flexibility, efficiency, since all manufacturing stages are optimized reducing waste
and downtime, with the overall cost lowered.

However, like most innovations of this magnitude, there are not only advantages
but also disadvantages, especially in the short term: the Industry 4.0 project was
not welcomed by everyone in a positive way as came true the spectrum of the sub-
stitution of the man with an automaton, a delicate subject nowadays [2, 19]. In
fact, it is undeniable that most of the mechanical and basic jobs, such as the trans-
port of materials or the control of resources, are and will be carried out by robots,
which will replace the human worker. On the other hand, these new technologies
will bring with them the request of numerous softwriters able to program, analysts
and people with specific skills able to develop new models. Moreover, looking at the
theme of augmented reality, there will be the possibility to help the less experienced
to perform all kinds of operations by giving them all the necessary instructions in
real time.

Figure 1.1: Industry 4.0

1.2 Maintenance

Maintenance is one of the most delicate aspects within a company and in some cases
leads to employ a number of resources, both economic and personal, not indifferent.

13

1 – Introduction

In fact, it plays an important role in the life cycle of a machine as it preserves or
even increases its functionalities and, consequently, its value over time [33].

However, to accurately estimate how often the machine needs to be serviced
is difficult: find the right compromise between suspending the production of the
asset to perform maintenance tests to avoid breakdowns, with the risk of having
interrupted the process unnecessarily and waiting for the failure to happen with the
consequent replacement of the piece at high costs and times, is the most difficult
challenge that faces a company[8].

Nowadays, there are three methodologies to do maintenance[17]:

• Reactive maintenance: also known as ”breakdown maintenance” requires the
intervention of the technician only after the malfunction of the resource, such
as the breaking of a piece. In this case the keyword is repair and, there-
fore, bringing the resource back to its normal working condition. It is the
easiest technique to implement but not very efficient: if among the analyzed
techniques it requires the least number of people involved, the time and the
cost taken for repair operations, with the product not available, determine
important avoidable expenses using other methodologies. Moreover, another
aspect should not be underestimated are the consequences deriving from these
malfunctions: if in some cases the damages are only of an economic nature,
more delicate cases can lead to far more serious consequences since can impli-
cate human life. Therefore, the need to find new solutions of maintenance is
increased.

• Preventive maintenance: also called ”planned maintenance” or ”scheduled
maintenance”, is one of the most widespread techniques and aims to mantain
the correct status of the resource by carrying out periodic checks to detect
anomalies. The advantage of this method is to avoid the event of the failure
with all the consequences of the case such as the cost of repair and interrup-
tion of the production process. However, the criticality lies in establishing
the periodization of controls: this parameter is often chosen high as a precau-
tionary measure and it may unnecessarily slow down the production process,
involving unnecessary interventions on pieces that are still able to do their job.
This problem has been solved partly by performing monitoring and analysis
activities, obtaining statistical data with which it is possible to establish with
greater accuracy the choice of this parameter without losing the reliability of
the method. A common example is the revision of the machine, which must
be performed periodically.

• Predictive maintenance: it is one of the cornerstones of the Industia 4.0 project
as it seeks through the analysis of data, obtained in the Big Data & Analysis
and IoT (Internet of Things) context [40, 38], to establish in what condition
the resource is and will be. It aims to carry out targeted actions in order

14

1.3 – Modal analysis

to prevent any malfunctioning of the resource, only when necessary. It is a
complex and innovative process because it allows to build relation between
data obtained from different sources and instruments (such as acceleration,
temperature, machine cycle time...) using specific models, obtained for ex-
ample with machine learning. Undoubtedly, it represents the answer to the
problems found in the previous cases as it anticipates not only the event of
the failure but avoids early and useless interventions. Indeed, the advantages
deriving from the use of this methodology are indisputable: lower labor costs,
increased reliability, risk mitigation, increased equipment life. On the other
hand, it is the technique that surely requires a greater transversal knowledge
of the problems and of the argument, as well as a request for data in the
following that must be as high as possible to obtain more and more accurate
models.

In conclusion, it is clear that from several point of view the predictive mainte-
nance technique is the one that brings greater benefits: in fact, considering only
the economic field [21], as shown in the graph (1.2), even if the maintenance costs
deriving from the predictive technique are greater than the other cases, the waste
of production time is rather limited, leading to a much lower total cost compared
to the other two cases.

Figure 1.2: Cost of Maintenance [21]

1.3 Modal analysis

Modal analysis is the study of the dynamic behavior of a structure when it is
subjected to vibration[29]. It is based on the study of the natural frequency and

15

1 – Introduction

of the proper ways of vibrating associated with the various components of the
structure, as a result of a forcing. To date, to conduct this analysis, it is required:

• the use of sensors, such as accelerometers, encoders.

• a data acquisition system: it is often required an analog-digital converter front-
end to digitize analog instrumentation signals.

• PC host (personal computer) to display and analyze data.

In principle, the main steps of a modal analysis are:

Figure 1.3: Key points of Modal Analysis

The analysis can be conducted in different ways[16]:

• SISO (single-input, single-output): the structure is excited at one point and
the response is collected by a single sensor placed in a single position.

• SIMO (single-input, multiple-output): the structure is excited at one point
and the response is collected by sensors positioned at different points.

• MISO (multiple-input, single-output): the most common analysis, when the
machine was excited by an instrument, like a hammer. A fixed accelerome-
ter was placed to acquire the signal following hammering applied at different
points.

• MIMO (multi-input, multiple-output): it may be possible to associate the
response with its source following a good analysis.

16

1.4 – Machine Learning

The most used excitation signals are pulse, square wave, swept sine, chirp.
One of the most common applications about modal analysis is maintenance[15].

Doing this kind of analysis is comparable to ”listen” the inside of the machine and,
so, it allows to understand what happens. Each component vibrates in its own way,
generating a characteristic noise, which is even more highlighted in the spectrum.
If damage is present, this characteristic is distinguished from background noise.
The specialist is, thus, able to identify the problem and distinguish the kind of
it: for example, it is possible to detect an imbalance, a misalignment or a damage
to the bearings. Moreover, in a view of predictive maintenance, it is also possible
carry out this diagnosis with an estimation how serious the problem is, in order to
establish whether it is necessary to act quickly.

1.4 Machine Learning

Over time, the primary objective of human being is to create structures able to
simplify the situations they face [27, 26]. Hence the desire to deepen the issue of
machine learning: as the name suggests, it consists of training and educating the
instrument to recognize certain situations by making it ”think” like a human being.

This is possible because this tool is able to find correlation and connection
between the tested data, returning in the output the desired result.

The strong point is that even if the analyzed data come out form different
sources, as acceleration and temperature, the model is still able to find relationships,
extrapolating only the informations that it considers most important, through a
weight system, providing accurate results in minimum time. Considering this, it is
quite evident the potential of this instrument: suffice it to say that, although the
human brain is able to solve most situations in a few milliseconds, the performance
that can reach the computer is of a higher order of speed (microseconds).

This tool is used in various disciplines, from medicine to psychology, but it is in
the scientific field that is providing more applications [32]:

• security heuristics that attack patterns to protect, for instance, ports or net-
works;

• image analysis to identify distinct forms and shapes, such as medical analyses
and face and fingerprint recognition;

• deep learning to generate rules for data analytics and big data handing, such
as marketing and sales promotions;

• object recognition and predictions from combined video streams and multisen-
sor fusion for autonomous driving;

Going into detail, there are three major categories of machine learning: super-
vised control, unsupervised control and reinforced control [28, 24, 20].

17

1 – Introduction

Figure 1.4: Machine Learning [43]

1.4.1 Supervised machine learning

Both the inputs and the correct outputs are provided by the user. In this case the
machine will have to find the correlations between input and output in order to
develop a behavior that responds adequately to the future data it will receive [32].

So, the main point here is to create a large enough database with all informations,
data and experiences in such a way the system has simply to draw on it to give
the right solution to the problem. Therefore, this type of machine learning is, in
some way, delivered already packaged and the machine must only be able to choose
which is the best response to the stimulus given to it.

Supervised control includes two main sub-categories:

• Classification[11]: in the training phase, to each incoming data is associated
a class to which it belongs. Then, it will be up to the machine to associate
future data in the right category.

• Regression: in this case the machine, using the input data and the respective
outputs, must identify the correct trend in order to provide a suitable result
for the subsequent inputs.

In this thesis, with a view to obtain a classification model, this kind of learning
has been used, by means of neural networks whose characteristics and functionalities
are described in the next chapter.

18

1.4 – Machine Learning

1.4.2 Unsupervised machine learning

In this case the user only provides input data. The machine looks for common
characteristics in the given signals categorizing and organizing them, learning their
importance in order to produce a reasonable results.

Thus, the machine uses informations and data, without having any example of
their use and, consequently, no knowledge about the desired output. This type
of machine learning has more degree of freedom with respect to the previous case
since, autonomously, the machine has to organize the informations in a smarter
way and learn which are the best results according to the different situation that
arise.

The unsupervised control provides two sub-categories:

• Clustering: it is a process similar to classification. In this case, not being
provided the outputs with which to associate the input, the task of the machine
will be to find affinity between the data in order to identify the classes.

• Reduction Data set: it is a process that allows to identify which data, among
those under examination, are of little relevance for the purposes of classification
and, consequently, can be discarded from the discussion.

1.4.3 Reinforced machine learning

The reinforced machine learning is the most complex among all them. The machine
or the software agent interacts with the surrounding environment and learns its
behavior on the basis of ”trial and error” procedure using feedback from its own
actions and experiences [36].

In this case, in addition to the machine, auxiliary elements, as sensors and cam-
eras, are used to better understand and detect what happens in the surrounding
environment allowing to the system to make the best choices possible in each situ-
ation.

The most common applications that use this technique are videogames, self-
driving cars and in the field of robotics when an efficient adaptive control system
is desired.

19

1 – Introduction

Figure 1.5: Basic structures of the three learning paradigms: supervised, usuper-
vised and reinforced learning[20]

20

Chapter 2

Neural Networks

The artificial neural network (ANN), also known simply as a neural network, is one
of the models of machine learning[10]. As the name suggests, its behavior recalls
that one of biological neural networks: inspired by them, they possess data pro-
cessing units, artificial neurons, which actually perform the same task as biological
neurons do in the brain. Therefore, each unit is linked to the other in order to
create a real network of interconnections that allows the model created to interact
with the outside world like the brain of a human being.

For this reason, nowadays, they represent the foundation of artificial intelligence:
there are many applications that already involve the use of neural networks, includ-
ing google translate, the detection of spam in e-mail and the facial recognition.

Figure 2.1: Artificial Neural Network [41]

21

2 – Neural Networks

2.1 Biological Neural Network

Before proceeding with the description of the ANN, a briefly introduction on how
the biological neural networks work is given[22].

The human brain is composed of bilion of unit called neurons. Each of them
receives as input the electrical signals from all the dendrites, elaborates the infor-
mation in the soma and, if the sum weighing exceeds the value of activation, emits
a pulse electric output towards the axon. Then, the neurons are linked each other
in a contact points called synaptic contact. Here the electric signal is trasformed
in chemical substance (neurotransmitter) before returning electric once it is passed
into the other part. The synapse is in charge of exciting or inhibiting connections
between the two neurons by varying neurotransmitters.

(a) Dendrites, soma and axon [22] (b) Synaptic contact [1]

Figure 2.2: Biological Neural Networks

2.2 Structure

The artificial neural network, in the same way, has units, called artificial neurons,
which are grouped in three stages [42]:

• Input layer: layer in which the inputs, used to train the neural network, are
provided. It is comparable to dendrites.

• Hidden layers: internal layers (H - hidden), introduced in 1986 by David
Rumerlhart, which are responsible for processing and transmitting data. Their
introduction allowed the elaboration of more complex learning models as the
Multi-Layers Perceptron (MLP) networks. They do the same job of the soma.

• Output layer: layer in which the neural network transmits the final result. For
this reason, it refers back to the axon.

22

2.2 – Structure

Figure 2.3: Structure of a basic Neural Network [1]

Each neuron is typically connected to all neurons of the next layer by weighted
connections. To each connection, a numerical value(weight) is associated, which is
multiplied by the value of the connected neuron.

After that, each neuron sums the weighted values of all neurons of the previous
layer connected to it and adds to the total a value that takes the name of bias.
Therefore, the equation related to a generic neuron is:

neti =
NX
j=1

xj ∗ wi
j + bi (2.1)

where N is the amount of neurons linked to this one.
Finally, an activation function is applied to this result, which normalizes the

output in a range of values that varies according to the chosen one, before passing
it to the next layer:

yi = f(neti) = f(
NX
j=1

xj ∗ wi
j + bi) (2.2)

Figure 2.4: Behavior of a neuron

23

2 – Neural Networks

This process is propagated between all stages until output layer, where a final
result is provided.

2.3 Activation function

The activation function is used to decide the shape of the output of a neuron.
It can be both linear and non-linear and, as mentioned previously, it also has a
normalizing effect on the neuron output: this last effect avoids that the output of
neurons, after several layers, becomes very large due to the cascading effect.

The most used activation functions are:

• Heaviside or unit step: the simplest one, if the input is greater or equal to 0,
then the output will be 1; viceversa, the output will be 0.

f(neti) =

(
0 if neti < 0

1 if neti ≥ 0

• rectifier linear unit (ReLU): only positive values are passed by the function.
Thus, the negative values become 0, while the positive ones are mapped in a
linear way.

f(neti) =

(
0 if neti < 0

neti if neti ≥ 0

• sigmoid: non-linear function that converts the inputs into a range between 0
and 1, in a way illustrated by the below equation.

f(neti) =
1

1 − e−neti
(2.3)

• tanh: the hyperbolic tangent has a similar shape of the sigmoid function, but
it converts the input between -1 and 1.

f(neti) =
eneti − e−neti

eneti + e−neti
(2.4)

• softmax: function used in the probability field. It calculates the probabili-
ties distribution of the event over ‘n’ different events. So, this function will
calculate the probabilities of each target class over all possible target classes.
Therefore, the calculated probabilities will be helpful for determining the tar-
get class for the given inputs.
The main advantage of using Softmax is the output probabilities range: the

24

2.4 – Learning process - Backpropagation

value is between 0 and 1, and the sum of all the probabilities is equal to one.
If the softmax function is used for multi-classification model, it returns the
probabilities of each class and the target class will have the highest probabil-
ity.

f(neti) =
enetiPN
j=1 e

netj
(2.5)

(a) step (b) ReLU

(c) sigmoid (d) tanh

Figure 2.5: Activation functions

2.4 Learning process - Backpropagation

In this section, the most common way to learn the feedforward neural network will
be analyzed: the Backpropagation algorithm [3, 31, 35].

The Backpropagation algorithm is used to set the weights of a multilayer neural
network with a fixed architecture. It performs gradient descent to try to minimize
the sum squared error between the network’s output values and the given target
values, called cost or loss function, going to modifying the weights.

To understand the process, let us recall the following parameters:

• wkj is a generic weight from the hidden(j) to the output layer(k).

25

2 – Neural Networks

• wji is a generic weight from the input(i) to the hidden layer(j).

• y is the actual output.

• t is the target output.

• net is the net input.

Figure 2.6: Generic scheme Neural Network - backpropagation

As mentioned above, the sum of all errors is described analitically by the cost
function:

C =
1

2

X
k

(yk − tk)2 (2.6)

The aim is to reduce as minimum as possible the value of this function. For this
purpose, the only parameter able to do it is the actual output. Going more deeply,
it appears that each output depends on weights and more accurate results can be
obtained changing and updating these values:

∆W = Wnew −Wold = −γ ∗ ∂C

∂W
(2.7)

where γ represents the learning rate, intoduced to define the length of variation
step of the weights.

At this point, it is important to note that the change to a hidden to output
weight (wkj) depends on error at the output node and activation at the hidden
node, while the change to a input to hidden weight (wji) depends on error at the
hidden node (which in turn depends on error at all the output nodes) and activation
at the input node.

Let us start to analyze the first case.

∆wkj = wkjnew − wkjold = −γ ∗ ∂C

∂wkj

(2.8)

26

2.4 – Learning process - Backpropagation

Then, using the chain rule the following relation is obtained:

∂C

∂wkj

=
∂C

∂yk
∗ ∂yk
∂netk

∗ ∂netk
∂wkj

(2.9)

Performing all computation and substituting in equation (2.8), the new values
of weights are found:

wkjnew = wkjold − γ ∗ (yk − tk) ∗ [yk ∗ (1 − yk)] ∗ yj (2.10)

Finally, it is possible to determine the weight change for an input to hidden
weight. This is a bit more complicated because it depends on the error in all of the
nodes this weighted connection can lead to.

∆wji = wjinew − wjiold = −γ ∗ ∂C

∂wji

(2.11)

∂C

∂wji

= [
X
k

∂C

∂yk
∗ ∂yk
∂netk

∗ ∂netk
∂yj

] ∗ ∂yj
∂neti

∗ ∂neti
∂wji

(2.12)

Now, substituting the results obtained from above equation back into our original
one(2.11), the new values of weights are:

wjinew = wjiold − γ ∗ [
X
k

(yk − tk) ∗ yk ∗ (1 − yk) ∗ wkj] ∗ yj ∗ (1 − yj) ∗ yi (2.13)

This process is iterated until the variation of the cost function are so small that
is meaningless continue to update the weight: it means a minimum local of the
function has been found.

Figure 2.7: Gradient descent [30]

To summarize, here is what the learning process on neural networks looks like:

27

2 – Neural Networks

Figure 2.8: Backpropagation process [3]

2.5 Tools

Some tools and graphs such as the Confusion matrix and the Receiver Operat-
ing Characteristic(ROC) [39] can be used to verify the accuracy of the obtained
classifier:

• Confusion matrix: as the name suggests, it is a matrix which columns indicate
the instance of the actual outputs - the outputs that neural network would
consider - while the raws indicate the target classes. When the data is pro-
cessed, if it is listed in the correct classification, then both actual and target
class are the same; otherwise, when a mismatch occurs, the two classes will
be different and it means the neural network could not place data in the right
class. On the basis of this, it is possible to understand which problems the
model is not able to identify and whether it may need to do a new training to
solve the problem.

Considering the example of figure (2.9), 444 and 238 data that belong, respec-
tively, to class 1 and 2 have been placed correctly while 3 data that should
belong to class 2 have been wrongly considered in class 1 and, viceversa, 14
data of class 1 have been collocated in class 2.

• ROC: it is another tool used to check the quality of classifiers. To better
understand how this tool works, it is better to start examinating the easiest
case, ie the binary (two-classes) problem. In addition, these new terminologies
are introduced:

– True positive (TP): data that should belong to class i are classified cor-
rectly in class i.

– True negative (TN): data that should not belong to class i are not classified
in class i.

28

2.5 – Tools

Figure 2.9: Confusion matrix - example [25]

– False positive (FP): data that should not belong to class i are classified
wrongly in class i.

– False negative (FN): data that should belong to class i are not classified
in class i.

For each class, the classifier computes other quantities, as the sensitivity and
specificity [12]. The sensitivity is the ratio between number of outputs whose
actual and predicted class is class i divided by the number of outputs whose
predicted class is i:

sensitivity =
TP

TP + FN
(2.14)

The specificity, indeed, is the ratio between number of data whose actual and
target class is not class i and all data whose target class is not class i.

specificity =
TN

TN + FP
(2.15)

29

2 – Neural Networks

For each class of a classifier, ROC applies threshold values across the interval
[0,1] to outputs. For each threshold, two values are calculated, the True Pos-
itive Ratio (TPR) and the False Positive Ratio (FPR). Taking into account
a specific class i, TPR is the sensitivity while FPR is (1 - specificity), ie the
number of outputs whose target class is not class i, but the actual one is class
i, divided by the number of outputs whose target class is not class i:

TPR = sensitivity =
TP

TP + FN
(2.16)

FPR = 1 − specificity =
FP

TN + FP
(2.17)

To pass from binary case to multiclasses case, the easiest way is to reduce the
multiclass problem to multiple binary classification problems [14]: in this way,
each class is compared to all others. Then, the ROC defines a bidimensional
space in which the TPR represents the x-axis while the FPR the y-axis. To
measure the percentage of accuracy of the classifier, it is necessary to calculate
the area under the curve and multiply the result by 100.

Figure 2.10: ROC - example [13]

From the figure (2.10), it emerges the more the classifier is accurate, more the
curve tends to the upper left corner, corresponding to have an high sensitivity
and an high specificity. If a point has (0,1) coordinates, it means a perfect
accuracy of the classifier.

30

2.6 – In MATLAB

2.6 In MATLAB

The Neural Network can be implemented using different environment. Here, it will
be described how to generate a neural network using the MATLAB environment,
by means of the Neural Network Toolbox [9].

First of all, according to the target, four different types of neural network are
proposed:

• Fit Data: used to describe fitting problems, in which the neural network has
to map between a data set of numeric inputs and a set of numeric targets.

• Pattern Recognition: used for pattern recognition problems, the neural net-
work classifies inputs into a set of target classes.

• Time Series analysis: used in the field of prediction, it uses past values of one
or more time series to predict future values.

• Cluster Data: in this kind of problems, the neural network is used to group
data having similar characteristics.

For my purpose, the Pattern Recognition one has been selected. It has the
following characteristics:

• Two-layer feedforward network: the outputs always proceed in one direction,
ie forward, and they never create a cycle;

• Sigmoid activation function in the hidden layer;

• Softmax activation function in the output layer;

• Number of network inputs = number of problem inputs;

• Number of neurons in output layer = number of problem outputs;

• Number of neurons in the hidden layer: there is no way to know a-priori this
parameter. Anyway, it is suggested to stay near to the value, using a ”try and
error” procedure, obtained by the following equation:

Nh =
p
Ni ∗No (2.18)

where Ni is the number of network inputs and No is the number of neurons in
the output layer. The choice of this parameter is very important: if it is too
small, the classifier is not able to establish the right correlation and give the
right importance to data and, consequently, does not provide the appropriate
results; in the other case, the overfitting problem ([37]) can occurs. In this
latter case, the classifier becames too much sensibile: subsequently all small
variations and noise play an important role in the outgoings causing a loss in
the model’s accuracy and validity.

31

2 – Neural Networks

Figure 2.11: Neural Network implemented in MATLAB - Pattern Recognition ex-
ample

Then, the user has to import the dataset (inputs and outputs - supervised learn-
ing) used. It is splitted by the classifier: the 70% is used for training, the 15% for
validating the network and stop training before overfitting, and the remaining 15%
for the test phase.

Finally, the classifier starts the learning process based on scaled conjugate gra-
dient backpropagation method.

Once it ends, its accuracy is valutated using the Confusion matrix and the ROC:
if it satisfies the user, it is possible to export the correspondent code in MATLAB.
In the other case, it is possible to retrain the model modifying, if necessary, the
number of hidden neurons or changing the percentage of division of data until a
good solution is found.

2.7 Pros and cons

It is important that the user knows the potentiality and the limits of a neural
network [23].
The pros are:

• Neural networks are able to solve problems that are difficult to figure out using
other algorithms.

• They produce good results even if data are complex, imprecise or subject to
noise.

• They are easy to implements.

The cons are:

• The user does not know in which way the net finds the solution (black-box).

• It is necessary to have a large dataset to have a good learning process and a
low output error.

32

2.7 – Pros and cons

• It is not possible to know a-priori whether the problem will be solved: for
example, it is difficult to find a solution with inputs belonging to an high
number of categories.

33

34

Chapter 3

Machine

In order to better understand the problem analyzed during the thesis, a general
overview is given of the main elements of the machine: useful for understanding
which problems and anomalies can damage it.

In particular, the analysis will focus on the type of machine used during the
tests, ie the 3-D laser cutting machine and even more specifically the Laser Next
1530 (LN1530). It is the symbol and spearhead of the company and one of the
most demanded by the costumers, thanks to its perfomances and characteristics.
The term 1530 stands for its dimension: 15 means 1.5m of maximum extension
reached by the Y axis, while 30 means 3.0m of maximum extension of X axis.

The machine has the following functional groups:

1. Machine module

2. Optical Chain

3. CNC

4. Cabin and Turntable module

Figure 3.1: Laser Next 1530

35

3 – Machine

3.1 Machine Module

As undelined by the figure (3.2), the machine module is composed by the following
components:

1. Fixed structure

2. Movable structure

3. Head

Figure 3.2: LN1530 - Machine module

3.1.1 Fixed Structure

The main component of the fixed structure is the base (1) made of synthetic gran-
ite, which guarantees excellent absorption of the vibrations and optimal thermal
stability. The base is fastened on the floor through the abutments (2) and the
anchoring brackets (3).

The front part of the base has a housing for the movement system of the X
carriage (4) and the exhaust hood (5). The movement system of the X carriage is
protected by bellows (6).

The X carriage movement system (4) allows the movement of the carriage unit
along the X axis. The movement is achieved by using a linear motor and re-
circulating ball bearing guides. The transduction of the position is carried out
through an optical line included in the guide and a reading head connected to a
sliding block. In the upper part of the base there is the cable holder chain (7).

In the rear part of the base there are: the pneumatic panel (7), the air treat-
ment unit (air dryer and filtering) (8), the automatic lubrication system (9), the

36

3.1 – Machine Module

electromechanical cabinet (10), the chiller (11) and the water systems panel (12).
The laser support (13), used during the machine transport phases, is fixed on the
right side of the base.

Figure 3.3: LN1530 - front part

Figure 3.4: LN1530 - rear part

3.1.2 Movable structure

The mobile structure (1) consists of the following components:

• X,Y carriage

• Z carriage

37

3 – Machine

• Cutting head

Figure 3.5: LN1530 - movable structure

X,Y carriage X carriage (1) is fastened to the interface plate by means of the
hinge (2) and the four screws. The hinge (2) allows to fold back the carriage unit
when shipping and moving the machine.

The Y carriage is fitted with two external bellows (3) for the recirculating ball
slide guides protection and with two inner bellows (4) for the linear motor and
optical line protection. During machine operation the bellows (3) and (4) are closed
and hooked to the Y carriage. They are free to move, sliding on specific guides along
the Y axis, adapting to the movement of the Y carriage. The electrical box (5) and
the overhead cable tray (6), on which is fastened also the delivery fibre (7) are
installed on the top of the carriage.

The front part of the X carriage includes the housing for the Y carriage movement
system that is fastened to the X carriage through four sliding blocks.

The Y carriage movement system consists of two recirculating ball slide guides
and a linear motor. The transduction of the position takes place by means of an
optical line included in the guide and a reading head connected to a sliding block.

Z carriage The Z carriage (1) slides along the Z axis thanks to the guides (2)
assembled on it. The related sliding blocks are assembled on the Y Carriage. The
movement of the axis is made by a geared motor (3) on which is keyed to a pinion
with helical teeth which engages on a rack fixed to the Z carriage. The braking
of the axis is carried out by means of a brake assembled inside the motor and two
pneumatic brakes assembled on the guides. On the front part of the Z carriage
there is the cable holder chain (4) on which is fixed also the delivery fiber (5).

38

3.1 – Machine Module

Cutting head The main features are:

• A axis rotation = 360° (continuous)

• B axis rotation = ± 135°

• C axis stroke = ± 12mm

• focal lengths = 5”

• capacitive sensor: it keeps constant the distance between the tip and piece
surface.

(a) X and Y carriage (b) Z carriage

(c) Cutting head

Figure 3.6: LN1530 - Main components of the movable structure

39

3 – Machine

3.2 Optical chain

The optical path of the machine is constituted by an optical fibre cable (A) which
guides the laser beam from the generator, through the X chain system (B), the
Y chain system (C) and the Z chain system (D) to the collimator(E). From the
collimator, the laser beam (F), through the mirrors of the head (G), is sent to the
focusing lens(H).

Figure 3.7: LN1530 - optical chain

3.3 CNC

The Prima Power Laser Next is equipped with the latest version of the P30L numer-
ical control with 17” touch screen and integrated Human Machine Interface (HMI).
The P30L numerical control is developed and manufactured by Prima Electro, a
company of the Prima Industrie Group. P30L controls X, Y, Z, A and B axes of
the machine, the C-axis, the laser generator, the turn table and additional axes.

The multitasking controls allow work preparation and set up while the machine is
running. Thus, the time spent for changing from one work to another is minimized.

The software provides an information system with alarm code explanation, user
manuals, dynamic work queue function as well as fast file transfer. All these support
the operator in several ways facilitating self-learning possibilities, giving recovery
instructions and simple access to electronic manuals, spare part manuals etc.

A data base (TOB) with a large number of cutting parameters for various ma-
terials is stored on the P30L computer. To quickly optimize parameters for new
or different materials the laser cutting parameters can be edited in the database.
In addition, the system offers to the operator the possibility to customize cutting

40

3.3 – CNC

parameters (e.g. feed rate, cutting gas pressure and so on) online, directly on the
touch screen panel, even during the laser process.

The CNC is capable of high speed approach to the workpiece using the Fast
Approach function.

Main features:

• Microsoft Windows 7 O.S;

• ISO G-code language;

• Fiber optic full-connected digital servodrives;

• Editing, preview and tracing functions;

• Technological parameters on CNC (integrated data base);

• Check scrap function;

• Integrated diagnostic system to identify and correct possible malfunctions;

• Machine remote monitoring (compliant with Industry 4.0 requirements);

• Teleservice connection to Prima Power Customer Service;

• Tools for automatic check and calibration;

• Integrated profibus board for connection with external devices;

• Maintenance manager;

Figure 3.8: LN1530 - CNC

41

3 – Machine

3.4 Cabin and Turntable module

In order to conform with safety regulations (EN 60825-1), the machine is equipped
with a safety cabin designed to protect the operator and any personnel located
in the area around the machine from laser radiation (direct or diffused) and from
moving mechanical parts.

The cabin encompasses the entire machine working area. It is equipped with a
roof, which has air vents designed to compensate the internal vacuum produced by
the air suction system, that ensures that the working area is completely closed.

The lighting inside the cabin is provided by six fluorescent lamps.

Two manual doors located on both sides of the cabin front part allows the
operator to access the working area. Each manual door is equipped with a safety
micro-switch. In case of accidental opening during the laser process, the shutter
closes, the laser is turned off and the machine stops. The manual doors can be
opened from the inside by pushing.

Two windows arranged on the right side and the left side of the cabin allow
visual inspection of the machine work area. The windows prevent the escape of
diffused laser radiation and are equipped with an active safety system which turns
off the laser if the window is damaged by direct laser radiation.

The turntable in front of the machine is installed for the parts loading/unloading.
It is equipped with a safety wall, which closes the front of the cabin and avoids
exposure to laser radiation during the cutting process.

A LED monitor, located on the front of the cabin above the turntable, is con-
nected to an indoor camera, which allows to control the work area.

The loading/unloading area in front of the machine is limited by protection
devices (safety light curtains, scanner or fences) to control the access.

In the case of configuration with scraps conveyor there are fixed guards that
protect the scraps unloading zone. The area is accessible through a manual door
equipped with safety micro-switches which stop the movement of the conveyor.

Figure 3.9: LN1530 - Cabin

42

3.5 – Problem analyzed

The turntable module is the interface for loading and unloading parts and is
constituted by:

1. Turntable unit

2. Tunnel group

3. Barrier group

4. Safety light curtains

The turntable is of the type with two positions and it carries out the alternate
transfer of the equipment from the loading-unloading area to the working area of
the machine and vice-versa. It is a CNC servo-controlled axis with a fast rotating
time (2,3s) and a very short stop time (<300ms) in case of emergency stop. In
its standard version the turntable is equipped with a CANBUS connection to the
automatic fixtures.

Figure 3.10: LN1530 - Turntable module

3.5 Problem analyzed

Some company departments - global service, installation and production - have
been interviewed in order to determine the most frequent problems and the most
difficult situations to manage. As a result, a selection has been made to identify
the most significant:

• X-axis roller bearing damaging

• Setup servo drive incorrect

• Closing X carriage incorrect

43

3 – Machine

• Closing Z carriage incorrect

• Faulty foundation / basement

• Defective brushless motor (linear or rotary)

• Optical line misalignment

• Bearing of ball screw damaged

• Loose belt

• Linear motors not well fixed

• Mechanical backlash position transducer

After an analysis, it has been decided to concentrate on the identification of the
bad setup servo drive and on the loosening of the screws of the X carriage. The
reasons behind the choice are the following:

1. They allowed immediately to make a first distinction between mechanical and
software problem.

2. They were the only two problems that were easy to simulate and to reproduce
over time because they did not involve an invasive intervention and, therefore,
did not compromise the working status of the machine.

From the practical point of view, the first problem has been simulated going to
intervene on the numerical control and modifying at a time the following parame-
ters:

• velocity loop gain: set by default at 1450 Am/m and it has been reduced at
700 Am/m (figure 3.11).

• position loop gain: set by default at 120 1/s and it has been modified at 60
1/s and 180 1/s (figure 3.12).

These parameters, as many others, have been sent to the servo drive, placed in
the the electromechanical cabinet, which was in charge of giving the corresponding
informations to the machine.

The second one consisted of loosening the four screws of the X carriage with
the use of a dynamometric forceps (3.13): starting from condition in which they
have been closed with a torque value of 200 Nm, different combinations have been
carried out in order to cover the generality of the cases.

Two considerations have to keep in mind from now on:

44

3.5 – Problem analyzed

1. The problems have been considered indipendently of each other: at this stage,
the two situations have not been considered simultaneously.

2. The tests simulating these problems have been many and not all compromised
the good quality of the cut of the machine: in some circumstances, they have
been used as trend and a warning that continuing in that way a more serious
problem would be happened.

(a) Kv = 1450(default) (b) Kv = 700

Figure 3.11: Servo drive parameters - velocity loop gain

(a) Kp = 120(default) (b) Kp = 60

(c) Kp = 180

Figure 3.12: Servo drive parameters - position loop gain

45

3 – Machine

(a) I condition

(b) II condition

Figure 3.13: Closing carriage anomaly - screws loose

46

Chapter 4

Instruments

Several tools and programs have been used during the execution of the project, in
order to make it as compliant, uniform and adaptable as possible. In particular, the
program developed for pulse generation, the sensors (accelerometer, encoder), the
application for the accelerometer/PC connection and MATLAB will be discussed.

4.1 Impulse generator

In order to conduct an accurate modal analysis, the way in which the impulse has
been generated has played an important role. The impulse has been simulated
by a signal implemented via software: a series of strings of commands executed
by numerical control of the machine (P30L). Unlike a physical signal - typically
in these cases the easiest thing is to hit the machine with a tool (a hammer, for
example) - the use of this method allowed to obtain the following advantages:

• The signal is always the same for all tests.

• The signal starts at the beginning of the control system covering the whole
system chain and therefore all the components are stressed.

• The covered harmonic content is almost constant in the frequency range in-
volved.

Before launching the execution of the program, some preliminary operations
have been performed that allowed to amplify and to highlight the result. For this
purpose, the parameters shown in the table 4.1 have been modified:

After that, it has been possible to proceed with the execution of the program: it
is a short string of command repeated for as many times as desired that recreating
a situation of abrupt braking. In the figure (4.1) is described one single pulse.

47

4 – Instruments

CNC command Impulse Original Description

C99001 0.0012 0.1667 Minimum acceleration time [s]

C99068 6.0e7 2.4e6 Tangential dejerk [mm/s3]

C00006 3.6e7 1.4e6 Cartesian dejerk [mm/s3]

C01006 3.6e7 1.4e6 Cartesian dejerk [mm/s3]

C02006 3.6e7 1.4e6 Cartesian dejerk [mm/s3]

Table 4.1: CNC comand

In the first place, the machine has been brought into a starting situation where
the X axis was retracted, the Y and Z extended: this configuration was chosen as
a design specification at the beginning.

Subsequently, the machine started a movement at constant low speed - almost 10
times lower than cutting speed - along the positive X axis for 1s before decelerating,
similar to emergency braking, along the same axis: this allowed to obtain a signal
similar to a pulse. Obviously, actually, an ideal pulse can not be achieved, but the
characteristics of the resulting signal have made it possible to speak of pulse.

As the figure (4.2) illustrates, the deceleration reached 9m/s2 for 0.008s.

Figure 4.1: CNC - pulse generation

48

4.2 – Accelerometer

Figure 4.2: Pulse characteristics

4.2 Accelerometer

The accelerometer used is the Sequoia. It presented the following features:

Figure 4.3: Accelerometer Sequoia

• Triaxial: it gave the availability to get the acceleration on the three compo-
nents (X, Y, Z), especially useful in anticipation of future scenarios.

• Sampling frequency: 8192 Hz

• Full scale: 5g

• Offset: ± 2 mg

• Sensitivity: ± 0.3

49

4 – Instruments

It has been decided to place it at the end of the kinematic chain (at the bottom of
the Z axis) using beeswax, a technique commonly used in these circumstances. The
position has been chosen following various reflections carried out at the beginning
of the project, which had lead to the conclusion that this situation reflexs the best
scenario in which the effects would be more visible. Its orientation with respect to
the machine axes is as follows:

(a) Accelerometer orientation (b) Machine axes orientation

Figure 4.4: Accelerometer and Machine axes orientation

In order to standardize the method, during the processing of data, translation
operations have been performed to associate the accelerometer axes with those of
the machine, as explained better later.

4.3 Encoder - Oscilloscope

In addition to the use of the accelerometer, it has been decided to exploit the
virtual oscilloscope present by default in the numerical control. On it, by means of
an encoder, the servo position errors of the various fixed axes (X, Y, Z), mobile (a,
b, c) and the acceleration have been represented. The operating principle was the
same for all cases: through optical fibers, the numerical control sent the position
control to the servo-drive, which in response sent the corresponding power signal to
the motor. At this point the encoder, positioned along the optical line integrated
in the guide along which the linear motor ran, recorded the real position of the
motor obtaining a position error given by:

positionerror = positioncmd − positionreal (4.1)

50

4.4 – PC-Accelerometer connection

Figure 4.5: Error position on oscilloscope

This difference was shown on the oscilloscope which sampled with a sampling
time of 1.2 ms - one order of magnitude lower than the accelerometer. During
the data collection, to accelerate the operations, all tests performed in that con-
figuration have been saved on a single file and, only subsequently, they have been
separated using the acceleration as reference parameter.

4.4 PC-Accelerometer connection

To transmit the data from the accelerometer to the computer, an application has
been created to let the accelerometer communicate directly with the PC. This
procedure has been implemented in Java via the NetBeans platform. Using this
type of programming language involves a series of innumerable advantages, among
which surely the portability of the code on every operating systems. First of all, a
command text file (cmd.txt) has been created in which a series of parameters have
been inserted that must be recalled by the code to obtain the information regarding
the serial connection and the accelerometer operation:

Figure 4.6: Command file - example

51

4 – Instruments

The containt of this file is just an example. Then, when the signals have been
acquired from machine, the values have been changed as explained better later.
Anyway, the meaning of the parameters is the following:

• ’COM3 ’ is the name of the serial port. According to the PC, it changes.

• ’Z ’ is the acceleration component of the accelerometer to be analyzed. Re-
specting the different orientations, it changes depending to the axis on which
the analysis is conducted.

• ’1 ’ represents the threshold above which the program starts to record the
signal. The unit of measurement is m/s2

• ’30 ’ is the waiting time interval within which the event must occur. It is
expressed in second.

• ’space empty ’ needs to the program to let it know that no file is present and,
therefore, must take care to create a .csv file on which to write the data. In
testing phase, it will be contain the name of the file.

After that, it has been drafted the code that took the signal, acquired by the
accelerometer, when the event occurred and saved the containt in a established
order (time,accX,accY,accZ) on a .csv file, called data.csv.

Figure 4.7: File data.csv

In this case, the event consisted in overcoming a certain threshold by the signal
- acceleration on one of the axes [m/s2] - and only later were executed a series of
instructions that led to saving of the same in a range of time ranging from 0.01s
before the event until the next second.

52

4.4 – PC-Accelerometer connection

Figure 4.8: Event capture - example

Figure 4.9: JavaApplication - execution

For each acqusition, the user is always aware of the status of the acquisition by
means of a series of strings, as illustated in the figure (4.9):

For the realization of the code 7 classes have been created:

• JavaAccelerometer: the main class and it performs the main actions, ie reading
the text file with the instructions and performing the thread, ”Sequoia” and
writing the signal output in an excel file.

• Sequoia: the thread is described, the accelerometer calibration functions are
called and the ”SerialPortCommunication” class is executed.

53

4 – Instruments

• SerialPortCommunication: describes the used serial port, the way in which it
communicates with PC and all instructions that must be performed once the
signal is acquired.

• CalibrationAccelerometer: contains all information necessary to describe the
accelerometer (sensitivity, calibration vector and calibration matrix). These
information have been taken from datasheet.

• AccelerometerComponents: in this class the bytes received from the accelerom-
eter are processed to transform them into corresponding double values.

• Command: extract all information from the .txt file.

• FileHelper: invokes the ”Command” class and inserts the acquired information
into a list.

For the complete drafting of the code, please refer to Appendix A.

4.5 MATLAB

MATLAB is the most important tool for the realization of this thesis. Platform
used to perform the analysis phase, data processing and for the construction of
neural networks. It has also been used to implement the testing phase and to
create a graphical interface (using the APP figure tool). The version used is 2018a.
As partially mentioned before, given the power of this tool, some specific tools
such as the Neural Network Toolbox and the Application Compiler (used for the
development of the app) have been used.

54

Chapter 5

Method

The project consisted of performing the following operations:

1. Applying a pulse to the machine.

2. Seeing the response using the accelerometer and the encoder. In the first case,
data have been saved directly on the PC, using the specific serial-communication
protocol (written in JAVA) between the two devices. In the other case, data
have been saved on the CNC and, then, imported into the PC using USB flash
drive.

3. Analysis of the data: Fourier trasform, interpolation of the data and other
operations.

4. Pattern recognition: creation, training and validation of the neural networks.

Figure 5.1: Project - main phases

55

5 – Method

The aim of the experiment is to prevent failures due to two potential anomalies,
ie closing carriage problem and setup servo drive problem. For this purpose, several
tests have been carried out simulating each of them.

In particolar, 1093 signals have been recorded and saved using the accelerometer:

• 247 tests represented the normal condition

• 498 tests simulate the setup servo drive anomaly

• 348 tests simulate the closing carriage X anomaly.

Meanwhile, 510 data have been collected using the encoder:

• 105 tests represented the normal condition

• 225 tests simulate the setup servo drive anomaly

• 180 tests simulate the closing carriage X anomaly.

Since the sensors used were two, as many case studies have been carried out:

• case study 1: based on the use of an accelerometer. The involved machines
were 9: 4 have been used for training the classifier and the remaining 5 for
verifying and adding validity.

• case study 2: based on the use of encoder. The involved machine were 5: 3
for the training phase and the remaining for increasing the number of tests.

Both case study have been implemented in MATLAB.

5.1 Case study 1 : accelerometer

As mentioned before, each time the machine has been excited by the pulse, its
response has been detected by the accelerometer. Using a MATLAB function, the
cmd.txt file has been modified in order to adapt to our situation:

Figure 5.2: Command File - Accelerometer

Thus, in our case the reference acceleration component was the Z one and the
threshold was fixed at 3m/s2. Then, the JAVA application has been recalled:
when the event happened, the signal was saved in the PC in a .csv file. Considering

56

5.1 – Case study 1 : accelerometer

the characteristics of the accelerometer (sample time = 0.12ms) and the signal
duration, all files contained 8192 data for each field - the time and the acceleration
components(X,Y,Z).

Since the accelerometer and the machine axes had a different orientation, as
emerged by the figure (4.4), in order to standardize the data, they have been trans-
lated:

• Acceleration along the machine axis X = - Z accelerometer component

• Acceleration along the machine axis Y = Y accelerometer component

• Acceleration along the machine axis Z = X accelerometer component

Once I do this operation, the time-responses of all situations have been plotted
distinguishing the three cases:

• normal situation: represented in blue color.

• setup servo drive anomaly: represented in red color.

• closing carriage anomaly: represented in green color.

(a) acceleration axis X (b) acceleration axis Y

(c) acceleration axis Z

Figure 5.3: Time responses - normal situation

57

5 – Method

(a) acceleration axis X (b) acceleration axis Y

(c) acceleration axis Z

Figure 5.4: Time responses - servo drive anomaly

(a) acceleration axis X (b) acceleration axis Y

(c) acceleration axis Z

Figure 5.5: Time responses - closing carriage anomaly

58

5.1 – Case study 1 : accelerometer

From the above graphs, it is difficult to determine unique indications on the
different situations. For this reason, the domain of interest has been changed from
time to frequency, performing the Fourier transform.

(a) acceleration axis X (b) acceleration axis Y

(c) acceleration axis Z

Figure 5.6: Frequency responses - normal situation

(a) acceleration axis X (b) acceleration axis Y

(c) acceleration axis Z

Figure 5.7: Frequency responses - servo drive anomaly

59

5 – Method

(a) acceleration axis X (b) acceleration axis Y

(c) acceleration axis Z

Figure 5.8: Frequency responses - closing carriage anomaly

Then, since the considered files were many and of big size, to reduce computional
cost and to make the analysis faster, their dimensions have been reduced by means
of linear interpolation.

Starting from 8192 values, only 100 have been considered: this number came out
from the fact that the analysis has been focused in the range from 1 to 100 Hz and,
therefore, the amplitude is result of the association with each unit of frequency. If
higher frequencies had been considered, there would be high probability that noise
and external factors would have too much importance.

Moreover, always in this context of optimization of the method, the further
analysis have been carried out using only the signals relating to the X axis since,
from graphical study, it was the case that highlights the differences.

60

5.1 – Case study 1 : accelerometer

5.1.1 Data Analysis

Following the analysis, these two considerations have been drawn:

1. the machines in normal condition had a behavior that was similar but not
identycal between each other.

Figure 5.9: Correct responses of more machines overlapped

2. the machine in anomaly conditions had a frequency response whose can be
very different (closing carriage problem) but also similar (setup servo drive
anomaly), in most of the considered frequencies, when compared with the
response in normal condition.

(a) ok vs closing carriage (b) ok vs Setup servodrive

Figure 5.10: Anomalies responses - comparison

61

5 – Method

Thus, the problem was: how can finding the relations and providing the correct
outputs be made easier for neural network in this condition??

Two answers have been designed:

• Multi-phases

• Single-phase

5.1.2 Multi-phases

The first solution is to split the entire problem in two phases:

1. Detect if an anomaly is occuring.

2. Detect which anomalies between setup servodrive and closing carriage problem
is occuring.

Figure 5.11: Multi phases - general scheme

For doing this, in the first phase, a new element has been introduced: the
reference file.

For each machine a signal corresponding to normal condition is kept, as a sort
of machine ‘fingerprint’. Pratically speaking, when the machine is ”born”, and it
surely works good, a signal is acquired and set aside.

During the machine lifetime, the subsequent signals will be always compared to
this signal, through the absolute value of the subtraction. In this way, the neural
network easily is able to give to the user a warning if something is going wrong.

62

5.1 – Case study 1 : accelerometer

(a) Reference (b) Subtraction wrt to reference

Figure 5.12: MP - Reference file

Neural Networks

To implement this kind of solution, two neural networks have been used that had
the following characteristcs:

• Number of network inputs = 100;

• Number of network outputs = 2;

• Number of hidden neurons = 20;

Figure 5.13: Neural Network - architecture

The first neural network has been trained to detect whether an anomaly was oc-
curing and, for this purpose, a dataset has been produced with two types of inputs:
anomaly situation (closing carriage + setup servodrive) and normal situation.

Furthermore, a graph has been created in order to have a clear idea on what in
this phase the neural network had to learn, on which the blue signals, corresponding
to normal condition, and red ones, to anomaly condition have been plotted (figure
5.14).

The neural network produced the following Confusion matrix and ROC (figure
5.15).

63

5 – Method

Figure 5.14: Neural network dataset - first phase

(a) Confusion matrix (b) ROC

Figure 5.15: Confusion matrix and ROC - first phase

As evident from above, the training has been carried out efficiently and, so, it
has not been necessary to intervene in order to improve the model.

Using a similar procedure, the second phase has been implemented. In this stage,
no additional computations have been necessary and, so, the signals remained in
their original form. In this phase, the second neural network had the task to
distinguish which problem was occuring on the machine, between setup servo drive
and closing carriage anomaly.

As before, a dataset has been created in which, on the one hand, there were
files corresponding to closing carriage problem and, on the other, there were ones

64

5.1 – Case study 1 : accelerometer

related to setup servo drive anomaly. The corresponding plot is given in the figure
(5.16).

Figure 5.16: Neural network dataset - second phase

The Confusion matrix and the ROC generated from the training are illustrated
in the figure (5.17).

(a) Confusion matrix (b) ROC

Figure 5.17: Confusion matrix and ROC - second phase

Also in this case, the training had a good accuracy.

65

5 – Method

Test

To follow, a MATLAB script simulating the testing procedure has been imple-
mented.

First of all, the user has to select the reference file according to the machine
he/she wants to analyze. Then the system will request if the file to test is already
present or it has to be acquired in real-time by the accelerometer. When selected
the desired option and acquired the sample, the system automatically will start the
cycle that will lead to the result: the appropriate neural networks will be recalled
according to the actual phase and the corresponding outgoings will be written in
a string in the command window of MATLAB. If from the first phase no anomaly
has been detected, the system is forced to not do further analysis.

66

5.1 – Case study 1 : accelerometer

Figure 5.18: Test - multi phases

67

5 – Method

APP

As supplementary operation to testing script, the corresponding graph interface
has been implemented using the APP figure environment and from which an APP
has been developed using the APP development ToolBox. In this way, this tool has
become indipendent from MATLAB environment and can run and work in each
PC. Referring to the figure (5.19):

1. Port Adress button serves to indicate which port is used by accelerometer to
connect itself with PC.

2. File Reference buttom allows to select the reference file used for the test. Once
selected a string with the corresponding machine will appear in the below field.
In case of missing of the selection of the reference file, a warning dialog will
appear informing the user to make a choice.

3. Start is used to take the test. In particular, a led becames green when the
system is ready to consider a new sample and will turn red when the signal
will be acquired (real-time) or selected in a folder.

4. Clean button allows to cancel all information considered until now and, so, if
pressed, it is necessary to reselect the file reference.

5. List of flag command: the simulation flag allows to decide whether the test
must be taken from a folder or acquired in real-time; the enable graph decides
whether to show the graphs below; the average data training set flag creates an
average signal of the different categories of the figure (5.14) and (5.16) instead
of representing them: it is used to make the graphs a little more clear; the
show Ok curve and show led are used to show or hide, respectively, the Ok
curve in the right graph and the decisional led.

6. It is the main part: here the result of the neural networks are shown lighting up
the appropriate leds in red. The Info NN1 and Info NN2 buttoms, if clicked
open two files containing the corresponding informations about the neural
networks. In addition to the usual cases until now treated, a new one has been
added called Warning, which collects all unknown cases: it is a reminder that
the neural networks work well only for cases for which they have been trained.
It is introduced in the first phase to set aside all signal considered in the ok
case but, as graphically evidenced, they are not. It is something that falls out
the neural networks, since it has been implemented in mathematical way: if
the area under the curve is over a certain value, the signal enters in this case.

7. The two graphs represent graphically how the neural networks think. Thus,
they are used to add security to the neural network results since the user can
easily understand if they make sense.

68

5.1 – Case study 1 : accelerometer

Figure 5.19: APP

69

5 – Method

5.1.3 Single-phase

Another solution is to consider independently each machine and, therefore, create a
model that is valid only for that machine. In this way the potential machine failure
can be detected in only one phase and without adding operations.

Figure 5.20: Single-phase general scheme

Neural Network

In this case, a dataset for each machine has been created: each of them included
tests about all situations - normal behavior, setup servodrive anomaly and closing
carriage problem - put together.

The corresponding graph was the following:

Figure 5.21: Neural Network dataset

70

5.1 – Case study 1 : accelerometer

For all machines, the neural network, which had the same properties of the
previous one, reached good accuracy as emerged from the Confusion matrix and
ROC:

(a) Confusion matrix
(b) ROC

Figure 5.22: Confusion matrix and ROC

Test

As last procedure, a MATLAB script for the testing phase has been implemented
in order to verify the validity of each neural network. The main difference from
the previous one is the necessity to select the machine on which to do the analysis.
Once you do this selection, the system will automatically recall the corresponding
neural network and, then, it will require to the user where it has to take the test:
either it has to acquire in real-time from the machine or take from a folder a file
already present. Finally, a message containing the selected machine and the actual
condition will appear.

71

5 – Method

Figure 5.23: Test - single phase

72

5.1 – Case study 1 : accelerometer

5.1.4 Conclusion

This single-phase solution seems better than the multi-phases one because does
the same job in a faster and easier way, since has only one phase and no further
operations on data.

However, for each machine, it requires all necessary tests for training the cor-
responding neural network: it is not so much useful for the purpose one wants to
reach since the degree of autonomy is strongly limited to the selected machine.

For this reason, at this stage of analysis, the first solution is preferable.

73

5 – Method

5.2 Case study 2 : encoder

In this second case, the focus has been switched on axes servo position error. Using
the virtual oscilloscope, the servo position error of all axes - X,Y,Z,a,b,c - and the
acceleration have been plotted. Since to make the process faster each time 15 signals
have been recorded consecutively, the acceleration signal, whose characteristic is
similar to a pulse as evidenced by figure (5.24), has been used as reference signal in
order to split each of them and standardize all in such a way as to have all the other
components of the signal singolarly starting at the same time. In particular, since
each component had to be of 1s sampled every 1.2ms, each time the acceleration
exceeded the threshold of -8m/s2, the system considered 83 data before and 750
after this event.

Figure 5.24: Acceleration signal

Figure 5.25: Time responses - normal condition

74

5.2 – Case study 2 : encoder

Figure 5.26: Time responses - servo drive anomaly

Figure 5.27: Time responses - carriage anomaly

75

5 – Method

As in the previous case study, the move from time to frequency domain has been
necessary to notice the differences among the cases.

Figure 5.28: Frequency responses - normal condition

Figure 5.29: Frequency responses - servo drive anomaly

76

5.2 – Case study 2 : encoder

Figure 5.30: Frequency responses - carriage anomaly

The interpolation process has been carried out respecting the same hyphotesis
and procedure described earlier and the selected axis to carry out the analysis from
now on is the X one.

77

5 – Method

5.2.1 Data analysis

The problematics that emerged previously also here were present. In order to
refresh the mind, here are illustrated again with reference to the actual case study:

1. the machines in normal condition had a behavior that was similar but not
identycal between each other.

Figure 5.31: Correct responses of more machines overlapped

2. the machine in anomaly conditions had a frequency response whose can be
very different (closing carriage problem) but also similar (setup servo drive
anomaly), in most of the considered frequencies, when compared with the
response in normal condition.

(a) ok vs closing carriage
(b) ok vs setup servo drive

Figure 5.32: Anomalies responses - comparison

78

5.2 – Case study 2 : encoder

5.2.2 Multi-phases

To solve these situations, the same solution of multi-phases accelerometer has been
adopted: the entire problem has been splitted in two phases introducing the refer-
ence signal.

(a) Reference (b) Subtraction wrt to reference

Figure 5.33: Reference file

So the aim, as before, is primarly to identify whether and, only after, which
problem is occuring:

Figure 5.34: General scheme

Neural Networks

For this purpose, two datasets and as many neural networks have been created:

• the first one included data corresponding to correct condition, painted in blue,

79

5 – Method

and anomaly one (mix of closing carriage anomaly and servodrive anomaly)
painted in red.

Figure 5.35: Neural network dataset - first phase

• the second one is used to distuinguish the two anomaly cases: the servo drive
expressed in blue and closing carriage in red.

Figure 5.36: Neural network dataset - second phase

80

5.2 – Case study 2 : encoder

The respective neural networks had good accuracy and precision as emerged
from the respective Confusion matrix and ROC:

(a) Confusion matrix
(b) ROC

Figure 5.37: Confusion matrix and ROC - first phase

(a) Confusion matrix
(b) ROC

Figure 5.38: Confusion matrix and ROC - second phase

81

5 – Method

Test

The testing script implementation has followed the same procedure of the multi-
phases accelerometer one.

Figure 5.39: Test - case study 2

82

Chapter 6

Conclusion

The predicitive maintenance is something born in the last few years and, surely, it
is a very powerful tool if developed correctly and continuously. For this reason, not
finding specific references in literature, this thesis had as main target to guarantee
the feasibility of the whole method.

Therefore, some considerations and choices have been taken a-priori during the
discussion, as result of theoretical hypothesis without really know if they would
work in practice: for example the axes starting position, types of sensors and the
accelerometer position are only some of the assumptions considered.

In the end, the obtained results look very positive since this tool, in both case
studies, is able to recognize all situations adressed so far.

Obviously, this thesis represents only the first step of implementation of the
predictive maintenance and, now, will be illustrated the next steps and possible
scenarios.

6.1 Next steps

In the short and long time the following achievements can be obtained:

• Run intensive training and testing phases to add accuracy and complexity to
our classification: until now, only two problems have been considered but,
in the future, add new cases must become a priority. Moreover, add tests
for each single case can help the classifier to become more efficient and more
independently, with the possibility to avoid further mathematical operations
that slow the model.

• Develop industrial setup: from company point of view, this tool allows to
develop computational unit, install new sensors on machine and implement
new application for the CNC program in order to obtain a better and more
efficient item.

83

6 – Conclusion

• Intellectual property protection: this project is subject a patent and, therefore,
it goes to increase the resources and the knowledges owned by the company.

• New application fields: once this tool produce a result, it is necessary to close
the loop and to find a system in order to fix eventually the machine. In this
field, several scenarios can be taken into account: for istance, if the occurred
problem is possible to solve via software, a solution can be implemented that
instructs the system to automatically make the correct changes to come back
to the normal situation. Otherwise, if a mechanical problem occurs, then the
augmented reality field can enter in the process showing to the technical which
is the best procedure to fix the situation.

84

Appendix A

JAVA application - code

A.1 JavaAccelerometer

1 package javaaccelerometer;
2
3 import java.io.File;
4 import java.io.IOException;
5 import java.io.PrintWriter;
6 import java.nio.file.Files;
7 import java.nio.file.Paths;
8 import java.nio.file.StandardCopyOption;
9 import java.util.ArrayList;

10
11 public class JavaAccelerometer {
12
13 static String fileData;
14 static String namePort;
15 static int timeout;
16 static double triggerLevel;
17 static int trSel;
18
19 static Thread comThread;
20
21 static boolean stopThread = false;
22 static int timeOutStep = 1000;
23
24 public static void main(String[] args) throws IOException,

InterruptedException{
25
26 String filePath = "cmd.txt";
27

85

A – JAVA application - code

28
29 try{
30 ArrayList<Command> commands = FileHelper.readFile(filePath);
31 for (Command c : commands){
32 fileData = c.getFileData();
33 namePort = c.getPortName();
34 timeout = c.getTimeout();
35 triggerLevel = c.getTriggerLevel();
36 trSel = c.getTriggerType();
37
38
39 System.out.println("File already present: " + fileData);
40 }
41
42 }catch(IOException e){
43 System.err.println(e);
44 }
45
46
47 if (fileData!=null)
48 {
49 Files.copy(Paths.get(fileData), Paths.get("data.csv"),

StandardCopyOption.REPLACE_EXISTING);
50 }
51 else
52 {
53
54 System.out.println("Port name: " + namePort + "; TriggerLevel: "

+ triggerLevel + "; trSel: " + trSel);
55
56
57 comThread = new Thread(new Runnable() {
58
59 @Override
60 public void run() {
61 try{
62
63 Sequoia.runSequoia(triggerLevel,trSel - 1,namePort);
64
65
66 }catch(Exception ex){
67 System.out.println("Errore sull’esecuzione di

sequoia: " + ex);
68 }
69 }
70 });

86

A.1 – JavaAccelerometer

71
72 comThread.setPriority(Thread.MAX_PRIORITY);
73 comThread.start();
74
75 boolean wellExit = false;
76
77 for (int i = 0; i < timeout; i++)
78 {
79
80 if (timeout - i < 6)
81 {
82 System.out.println(String.valueOf(timeout - i) + "

Seconds before timeout exit...");
83 }
84
85 Thread.sleep(timeOutStep);
86
87 if (!comThread.isAlive())
88 {
89 wellExit = true;
90 break;
91 }
92
93 }
94
95 if (!wellExit)
96 {
97 System.out.println("Time expired...aborting process...");
98
99 stopThread = true;

100
101 System.out.println("Writing dump data to file...");
102
103 File file = new File("data.csv");
104 PrintWriter outputFile = new PrintWriter(file);
105
106 for (int h = 0; h < 10; h++)
107 {
108 outputFile.println("0;0;0;0;");
109 }
110
111
112 System.out.println("Dump data writed to file...");
113 }
114 }
115 }

87

A – JAVA application - code

116 }

A.2 Sequoia

1
2 package javaaccelerometer;
3
4 import java.io.FileNotFoundException;
5 import java.io.IOException;
6 import java.util.ArrayList;
7 import jssc.SerialPortException;
8
9

10 public class Sequoia{
11
12 static SerialPortCommunication port = new SerialPortCommunication();
13
14 public static void runSequoia (double triggerLevel, int trSel, String

PortName) throws FileNotFoundException, InterruptedException,
IOException, SerialPortException {

15
16 try
17 {
18 ArrayList<String> sel = new ArrayList<>();
19 sel.add("X");
20 sel.add("Y");
21 sel.add("Z");
22
23
24 System.out.println("Trigger Direction = " + sel.get(trSel) + " --> "

+ trSel);
25 System.out.println("Trigger Level = " + String.valueOf(triggerLevel)

+ " m/sˆ2");
26 System.out.println("Waiting for trigger...");
27
28 //inizializzazione del thread di lettura
29 CalibrationAccelerometer calAcc = new

CalibrationAccelerometer();
30 calAcc.CalibrationMatrix();
31 calAcc.CalibrationVector();
32 calAcc.Sensivity();
33
34 try{
35 port.WriteReadSerialPort(trSel,triggerLevel,PortName);

88

A.3 – SerialPortCommunication

36 } catch(NullPointerException ex){
37 System.out.println("Non lavora: " + ex);
38 }
39
40 }
41 catch (RuntimeException exc)
42 {
43 System.out.println(exc);
44 }
45 }
46
47 }

A.3 SerialPortCommunication

1 package javaaccelerometer;
2
3 import java.io.File;
4 import java.io.FileNotFoundException;
5 import java.io.PrintWriter;
6 import java.time.LocalDateTime;
7 import java.util.ArrayList;
8
9 import jssc.SerialPort;

10 import jssc.SerialPortException;
11
12
13 public class SerialPortCommunication {
14
15 static boolean stopThread = false;
16 static boolean triggerOn = true;
17 static boolean triggerCatch = false;
18 static int preTriggerCount = 192;
19 static int postTriggerCount = 8000;
20 static int bufferSize = 81920;
21 static int cutSize = 8192;
22 static int triggerPos = 0;
23 static int triggerCount = 0;
24 static double sampleTime = 0.0001220703125;
25
26 static SerialPort port;
27 static CalibrationAccelerometer calibAccel = new

CalibrationAccelerometer();
28 static AccelerometerComponents accComp = new AccelerometerComponents();

89

A – JAVA application - code

29 static ArrayList<ArrayList<Double>> accBuffer = new ArrayList<>();
30 static ArrayList<Double> accBufferList = new ArrayList<>();
31
32
33
34 public SerialPortCommunication(){
35
36 this.port = null;
37 }
38
39
40 public void WriteReadSerialPort (int trSel, double triggerLevel, String

PortName)
41 throws SerialPortException, InterruptedException,

FileNotFoundException {
42
43 port = new SerialPort(PortName);
44
45 port.openPort();
46
47 int baudRate = 921600;
48 port.setParams(baudRate,
49 SerialPort.DATABITS_8,
50 SerialPort.STOPBITS_1,
51 SerialPort.PARITY_NONE);
52
53 port.setFlowControlMode(SerialPort.FLOWCONTROL_NONE);
54
55 port.writeString("AC");
56 byte[] floatAccel_ = new byte[2];
57
58 floatAccel_ = port.readBytes(2);
59
60
61 if ((char)floatAccel_[0] == ’A’)
62 {
63
64 }
65 else
66 {
67 port.closePort();
68 Thread.sleep(1000);
69 port.openPort();
70
71 port.writeString("AC");
72 floatAccel_ = new byte[2];

90

A.3 – SerialPortCommunication

73 floatAccel_ = port.readBytes(2);
74 }
75
76 while (true)
77 {
78
79 if (stopThread)
80 {
81 break;
82 }
83
84 int sizeRead = 0;
85
86 byte[] floatAccelBuffer = new byte[sizeRead*5];
87
88 byte[] floatAccel = new byte[5];
89
90 byte[] dumpStep = new byte[1];
91
92 ///lettura dei dati dalla porta seriale
93
94 while (true)
95 {
96
97 sizeRead = port.getInputBufferBytesCount();

sizeRead = sizeRead / 5;
98 sizeRead = sizeRead * 5;
99
100 if (sizeRead < 5)
101 {
102 continue;
103 }
104
105 floatAccelBuffer = new byte[sizeRead];
106
107 floatAccelBuffer = port.readBytes(sizeRead);
108
109 byte XH = (byte)(floatAccelBuffer[0] & 0x0F);
110
111 byte XL = (byte)(floatAccelBuffer[1] & 0x0F);
112
113 byte YH = (byte)((floatAccelBuffer[2] & 0xF0) >>> 4);
114
115 byte YL = (byte)((floatAccelBuffer[3] & 0xF0) >>> 4);
116
117 byte ZH = (byte)(floatAccelBuffer[3] & 0x0F);

91

A – JAVA application - code

118
119 byte ZL = (byte)(floatAccelBuffer[4] & 0x0F);
120
121
122 byte chkSumCalc = (byte)(XH + XL + YH + YL + ZH + ZL);
123
124 chkSumCalc = (byte)(chkSumCalc & 0X0F);
125
126 byte chkSum = ((byte)((floatAccelBuffer[0]& 0xF0) >>> 4));
127
128
129
130
131 if (chkSumCalc == chkSum)
132 {
133 break;
134
135 }
136 else
137 {
138 System.out.println("CheckSum Fault during Triggering -> " +

LocalDateTime.now().toString());
139 dumpStep = new byte[1];
140 dumpStep = port.readBytes(1);
141 }
142 }
143
144 ///fine lettura
145
146
147 for (int i_ = 0; i_ < sizeRead; i_ = i_ + 5)
148 {
149
150 for (int j_ = 0; j_ < 5; j_++)
151 {
152 floatAccel[j_] = floatAccelBuffer[i_ + j_];
153
154 }
155
156 ///inizio scorporo delle accelerazioni dai bytes ricevuti

e li inserisco nei buffer delle 3 accelerazioni
157
158
159 accBuffer = accComp.getValue(floatAccel, calibAccel);
160
161 accBufferList = accBuffer.get(trSel);

92

A.3 – SerialPortCommunication

162
163 ///fine scorporo
164
165
166 ///verifico se avviene il trigger
167 if ((triggerOn) && (triggerCatch == false))
168 {
169 if (accBufferList.size()> preTriggerCount)
170 {
171 if (accBufferList.get(accBufferList.size() - 2) <=

triggerLevel)
172 {
173 if (accBufferList.get(accBufferList.size() - 1)

> triggerLevel)
174 {
175 triggerCatch = true;
176 triggerPos = accBufferList.size() - 1;
177 triggerCount = 0;
178 System.out.println("Trigger Catch..!!!");
179
180 }
181 }
182 }
183 }
184
185
186 ///fine trigger
187
188
189 ///inizio gestione dei dati da quando viene catturato il

trigger
190
191 if (triggerCatch)
192 {
193 triggerCount = triggerCount + 1;
194
195 if (triggerCount > postTriggerCount)
196 {
197 int a = triggerPos;
198
199 int c = preTriggerCount + postTriggerCount;
200 int d = accBuffer.get(0).size();
201
202
203 System.out.println("Data Ready...writing to

file....");

93

A – JAVA application - code

204
205 ArrayList<Double> xd = accBuffer.get(0);
206 ArrayList<Double> yd = accBuffer.get(1);
207 ArrayList<Double> zd = accBuffer.get(2);
208
209 ArrayList<Double> xData = new

ArrayList<>(xd.subList(triggerPos -
preTriggerCount, triggerPos +
postTriggerCount));

210 ArrayList<Double> yData = new
ArrayList<>(yd.subList(triggerPos -
preTriggerCount, triggerPos +
postTriggerCount));

211 ArrayList<Double> zData = new
ArrayList<>(zd.subList(triggerPos -
preTriggerCount, triggerPos +
postTriggerCount));

212
213 File file = new File("data.csv");
214 PrintWriter outputFile = new PrintWriter(file);
215
216 for (int h = 0; h < xData.size(); h++)
217 {
218 outputFile.println(String.valueOf((new Double(h

* sampleTime)).toString() + "," +
xData.get(h).toString() + "," +
yData.get(h).toString() + "," +
zData.get(h).toString()));

219 }
220
221 outputFile.close();
222
223 System.out.println("Data has been writed to file!

Exit process...");
224
225 stopThread = true;
226
227 triggerPos = 0;
228 triggerCatch = false;
229
230
231 triggerOn = false;
232
233 triggerCatch = false;
234
235 }

94

A.4 – CalibrationAccelerometer

236 }
237
238
239 ///fine gestione dati
240
241 }
242
243 ///inizio rimozione dal buffer dei campioni in eccesso
244
245 if (accBuffer.get(0).size() > bufferSize - 1)
246 {
247 for (int i = 0;i<cutSize+1;i++) {
248
249 ArrayList<Double> a = accBuffer.get(0);
250 a.remove(i);
251
252 ArrayList<Double> b = accBuffer.get(1);
253 b.remove(i);
254
255 ArrayList<Double> c = accBuffer.get(2);
256 c.remove(i);
257
258 }
259
260 if (triggerCatch)
261 {
262 triggerPos = triggerPos - cutSize;
263 }
264 }
265
266 ///fine rimozione
267
268 }
269
270 }
271
272 }

A.4 CalibrationAccelerometer

1
2 package javaaccelerometer;
3
4 public class CalibrationAccelerometer {

95

A – JAVA application - code

5
6 private float[] calibVector;
7 private float[] calibMatrix;
8 private float sensivity;
9

10
11 public CalibrationAccelerometer() {
12 this.calibMatrix = null;
13 this.calibVector = null;
14 this.sensivity = 0;
15
16 }
17
18 public float[] CalibrationVector () {
19
20 calibVector = new float[3 + 2];
21
22 calibVector[0] = (float)(32.15645 * 2);
23 calibVector[1] = (float)(8.031253 * 2);
24 calibVector[2] = (float)(8.000053 * 2);
25
26 return calibVector;
27
28 }
29
30
31 public float[] CalibrationMatrix() {
32
33 calibMatrix = new float[9];
34
35 calibMatrix[0] = (float)(0.5000134 * 2);
36 calibMatrix[1] = (float)(-0.001953125 * 2);
37 calibMatrix[2] = (float)(0.001953125 * 2);
38 calibMatrix[3] = (float)(-0.001955064 * 2);
39 calibMatrix[4] = (float)(0.5000114 * 2);
40 calibMatrix[5] = (float)(-0.001953136 * 2);
41 calibMatrix[6] = (float)(-0.00781264 * 2);
42 calibMatrix[7] = (float)(0.03134206 * 2);
43 calibMatrix[8] = (float)(0.5027562 * 2);
44
45 return calibMatrix;
46 }
47
48
49 public float Sensivity(){
50

96

A.5 – AccelerometerComponents

51 sensivity = (float)(26.8);
52
53 return sensivity;
54 }
55
56
57
58
59 }

A.5 AccelerometerComponents

1
2 package javaaccelerometer;
3
4 import static java.lang.Math.pow;
5 import java.util.ArrayList;
6
7 public class AccelerometerComponents {
8
9 static ArrayList<ArrayList<Double>> accBuffer = new ArrayList<>();

10
11 public AccelerometerComponents(){
12 accBuffer.add(new ArrayList<>()); //acc X
13 accBuffer.add(new ArrayList<>()); //acc Y
14 accBuffer.add(new ArrayList<>()); //acc Z
15 }
16
17
18
19 public ArrayList<ArrayList<Double>> getValue(byte[] floatAccel,

CalibrationAccelerometer calAcc){
20
21
22 short[] acc = new short[5];
23 short xAcc_;
24 short yAcc_;
25 short zAcc_;
26
27 float xAcc;
28 float yAcc;
29 float zAcc;
30
31 float[] calibMatrix = calAcc.CalibrationMatrix();

97

A – JAVA application - code

32 float sensivity = calAcc.Sensivity();
33 float[] calibVector = calAcc.CalibrationVector();
34
35
36 for (int i=0; i<5; i++)
37 {
38
39 if (floatAccel[i] < 0)
40 {
41 acc[i] = (short)(floatAccel[i] + 0xFF +1);
42 }
43 else
44 {
45 acc[i] = (short)(floatAccel[i]);
46 }
47
48 }
49
50
51
52 xAcc_ = (short)((short)((short)((acc[0]) << 8)) |

(short)(acc[1]));
53 yAcc_ = (short)((short)((short)((acc[2]) << 4)) |

(short)((acc[3]) >> 4));
54 zAcc_ = (short)((short)((short)((acc[3]) << 8)) |

(short)(acc[4]));
55
56
57 xAcc_ = (short)(xAcc_ & 0x0FFF);
58 yAcc_ = (short)(yAcc_ & 0x0FFF);
59 zAcc_ = (short)(zAcc_ & 0x0FFF);
60
61
62 if (xAcc_ <0)
63 {
64 xAcc = (float)(pow(2,16)+ xAcc_);
65 xAcc = (float)(xAcc - 2048) + calibVector[0];
66 }
67 else{
68 xAcc = (float)(xAcc_ - 2048) + calibVector[0];
69 }
70
71 if (yAcc_ <0)
72 {
73 yAcc = (float)(pow(2,16)+ yAcc_);
74 yAcc = (float)(yAcc - 2048) + calibVector[1];

98

A.6 – Command

75 }
76 else{
77 yAcc = (float)(yAcc_ - 2048) + calibVector[1];
78 }
79
80
81 if (zAcc_ <0)
82 {
83 zAcc = (float)(pow(2,16)+ zAcc_);
84 zAcc = (float)(zAcc - 2048) + calibVector[2];
85 }
86 else{
87 zAcc = (float)(zAcc_ - 2048) + calibVector[2];
88 }
89
90
91
92
93 accBuffer.get(0).add((double)(((xAcc * calibMatrix[0] + yAcc *

calibMatrix[1] + zAcc * calibMatrix[2]) / sensivity)));
94 accBuffer.get(1).add((double)(((xAcc * calibMatrix[3] + yAcc *

calibMatrix[4] + zAcc * calibMatrix[5]) / sensivity)));
95 accBuffer.get(2).add((double)(((xAcc * calibMatrix[6] + yAcc *

calibMatrix[7] + zAcc * calibMatrix[8]) / sensivity)));
96
97
98 return accBuffer;
99
100 }
101
102
103
104 }

A.6 Command

1 package javaaccelerometer;
2
3 public class Command {
4 private String portName;
5 private String triggerType;
6 private double triggerLevel;
7 private int timeout;
8 private String fileData;

99

A – JAVA application - code

9
10 public static Command parseData(String data){
11 String[] splittedData = data.split(";");
12
13 Command c = new Command();
14 c.setPortName(splittedData[0]);
15 c.setTriggerType(splittedData[1]);
16 c.setTriggerLevel(splittedData[2]);
17 c.setTimeout(splittedData[3]);
18
19 if (splittedData.length == 5){
20 c.setFileData(splittedData[4]);
21 }
22
23 return c;
24 }
25
26 private Command(){
27 }
28
29 public Command(String portName, String triggerType, int triggerLevel,

int timeout, String fileData) {
30 this.portName = portName;
31 this.triggerType = triggerType;
32 this.triggerLevel = triggerLevel;
33 this.timeout = timeout;
34 this.fileData = fileData;
35 }
36
37 public String getPortName() {
38 return portName;
39 }
40
41 public void setPortName(String portName) {
42 this.portName = portName;
43 }
44
45
46 public int getTriggerType(){
47
48 if (triggerType.equals("X"))
49 {
50 return 1;
51 }
52 else if (triggerType.equals("Y"))
53 {

100

A.6 – Command

54 return 2;
55 }
56 else if (triggerType.equals("Z"))
57 {
58 return 3;
59 }
60 else
61 {
62 return 1;
63 }
64
65 }
66
67
68
69 public void setTriggerType(String triggerType) {
70 this.triggerType = triggerType;
71 }
72
73
74 public double getTriggerLevel() {
75 return triggerLevel;
76 }
77
78 public void setTriggerLevel(double triggerLevel) {
79 this.triggerLevel = triggerLevel;
80 }
81
82 public void setTriggerLevel(String triggerLevel) {
83 this.triggerLevel = Integer.parseInt(triggerLevel);
84 }
85
86
87
88 public int getTimeout() {
89 return timeout;
90 }
91
92 public void setTimeout(int timeout) {
93 this.timeout = timeout;
94 }
95
96 public void setTimeout(String timeout) {
97 this.timeout = Integer.parseInt(timeout);
98 }
99

101

A – JAVA application - code

100
101
102 public String getFileData() {
103 return fileData;
104 }
105
106 public void setFileData(String fileData) {
107 this.fileData = fileData;
108 }
109
110 @Override
111 public String toString() {
112 return "Command{" + "portName=" + portName + ", triggerType=" +

triggerType + ", triggerLevel=" + triggerLevel + ", timeout=" +
timeout + ", fileData=" + fileData + ’}’;

113 }
114 }

A.7 FileHelper

1 package javaaccelerometer;
2
3 import java.io.BufferedReader;
4 import java.io.File;
5 import java.io.FileNotFoundException;
6 import java.io.FileReader;
7 import java.io.IOException;
8 import java.util.ArrayList;
9

10 public class FileHelper {
11
12 public static ArrayList<Command> readFile(String filePath)throws

FileNotFoundException, IOException{
13 ArrayList<Command> fileContent = new ArrayList<>();
14
15 File file = new File(filePath);
16 FileReader fr = new FileReader(file);
17 BufferedReader br = new BufferedReader(fr);
18 String buffer;
19
20 while ((buffer = br.readLine()) != null) {
21 if(!buffer.isEmpty()){
22 fileContent.add(Command.parseData(buffer));
23 }

102

A.7 – FileHelper

24 }
25 br.close();
26 fr.close();
27
28 return fileContent;
29 }
30
31 }

103

104

Bibliography

[1] Intelligenza artificiale (blog). Reti Neurali. url: http://www.intelligenzaartificiale.
it/reti-neurali/.

[2] A.Magnani. “Perché si parla tanto di industria 4.0: che cos’è e quanti lavori
può creare”. In: Il Sole 24 ore (2017).

[3] A.Moawad. “Neural networks and back-propagation explained in a simple
way”. In: (2018).

[4] A.Pedrazzini. “L’industria 4.0 è un’occasione per valorizzare persone e com-
petenze”. In: Il Sole 24 ore (2018).

[5] F.Baena et al. “Learning Factory: The Path to Industry 4.0”. In: (2017).

[6] K.Santos et al. “Opportunities Assessment of Product Development Process
in Industry 4.0”. In: (2017), pp. 1358–1365.

[7] M.A.A.K.Bahrin et al. “Industry 4.0: A review on industrial automation and
robotic”. In: Jurnal Teknologi (2016).

[8] B.Capehart. Automated Diagnostics and Analytics for Buildings. Ed. by Fair-
mont Press. 2014.

[9] M.H. Beale, M.T. Hagan, and H.B Demuth. Neural Networks Toolbox: Getting
Started Guide. MathWorks, 2018.

[10] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford Uni-
versity Press, Inc., 1996.

[11] Christopher M. Bishop. Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Springer-Verlag, 2006.

[12] C.M.Florkowski. “Sensitivity, Specificity, Receiver-Operating Characteristic
(ROC) Curves and Likelihood Ratios: Communicating the Performance of
Diagnostic Tests”. In: The Clinical Biochemist Reviews 4 (2008).

[13] C.Souza. “Discriminatory Power Analysis by Receiver-Operating Character-
istic Curves”. In: (2009).

[14] R.E.Schapire E.L.Allwein and Y.Singer. “Reducing Multiclass to Binary: A
Unifying Approach for Margin Classifiers”. In: J. Mach. Learn. Res. 1 (2001),
pp. 113–141.

105

BIBLIOGRAPHY

[15] Jimin He and Zhi-Fang Fu, eds. Modal Analysis. Butterworth-Heinemann,
2001.

[16] C.Niezrecki J.Baqersad P.Poozesh and P.Avitabile. “Comparison of Modal
Parameters Extracted Using MIMO, SIMO, and Impact Hammer Tests on
a Three-Bladed Wind Turbine”. In: Topics in Modal Analysis II, Volume 8.
Ed. by Allemang R. Springer International Publishing, 2014.

[17] K.Smith. “Reactive vs Preventive vs Predictive Maintenance”. In: VIZIYA
(blog) ().

[18] L.Li L.D.Xu E.L.Xu. “Industry 4.0: state of the art and future trends”. In:
International Journal of Production Research 56.8 (2018), pp. 2941–2962.

[19] M.Bartoloni. “I robot distruggono posti di lavoro? In Germania è vero il con-
trario”. In: Il Sole 24 ore (2018).

[20] M.Beyeler. “How to choose the right algorithm for your machine learning
problem”. In: (2017).

[21] M.Cifalinò. “La manutenzione negli impianti industriali”. In: Impianto.it ().
url: https://www.impianto.it/manutenzione-impianti-industriali/.

[22] M.Gori. “Introduzione alle reti neurali artificiali”. In: Mondo digitale 4 (2006).

[23] M.Mijwel. “Artificial Neural Networks Advantages and Disadvantages”. In:
(2018).

[24] M.Sanjeevi. “Different types of Machine learning and their types”. In: (2017).

[25] MathWorks. url: https://www.mathworks.com/help/deeplearning/ref/
plotconfusion.html.

[26] S Ryszard Michalski, G Jaime Carbonell, and M Tom Mitchell, eds. Machine
Learning an Artificial Intelligence Approach Volume II. Morgan Kaufmann
Publishers Inc., 1986.

[27] Thomas M. Mitchell. Machine Learning. 1997.

[28] N.Boldrini. “Cos’è il Machine Learning, come funziona e quali sono le sue
applicazioni”. In: AI4Business (2017).

[29] N.M.M.Maia and J.Silva. “Modal analysis identification techniques”. In: 359
(Jan. 2001), pp. 29–40.

[30] N.M.Živković. How do Artificial Neural Networks learn? 2018. url: https:
//www.codeproject.com/Articles/1225385/How-do-Artificial-Neural-
Networks-Learn.

[31] Michael A. Nielsen. Neural Networks and Deep Learning. Determination Press,
2015.

[32] P.Louridas and C.Ebert. “Machine Learning”. In: IEEE Software 33.5 (2016),
pp. 110–115.

106

BIBLIOGRAPHY

[33] R.K.Mobley. An Introduction to Predictive Maintenance. Ed. by Elsevier.
2002.

[34] S.Mousa R.Morrar H.Arman. “The Fourth Industrial Revolution (Industry
4.0): A Social Innovation Perspective”. In: Technology Innovation Manage-
ment Review 7 (2017), pp. 12–20.

[35] Raúl Rojas. Neural Networks: A Systematic Introduction. Springer-Verlag,
1996. Chap. 7: The backpropagation algorithm.

[36] S.Bhatt. “5 Things You Need to Know about Reinforcement Learning”. In:
(2018).

[37] S.Lawrence and C.L.Giles. “Overfitting and Neural Networks: Conjugate Gra-
dient and Backpropagation”. In: International Joint Conference on Neural
Networks (2000), pp. 114–119.

[38] S.Selcuk. “Predictive maintenance, its implementation and latest trends”. In:
Journal of engineering manufacture (2017).

[39] T.Fawcett. “An introduction to ROC analysis”. In: Pattern Recognition Let-
ters 27.8 (2006). ROC Analysis in Pattern Recognition, pp. 861–874.

[40] T.Foxworth. “Using IoT and Machine Learning for industrial Predictive Main-
tenance”. In: (2017).

[41] DataFlair team. Introduction to Artificial Neural Network Model. 2017.

[42] V.Gupta. “Understanding Feedforward Neural Networks”. In: (2017).

[43] V.Jha. “Machine Learning Algorithm - Backbone of emerging technologies”.
In: TechLeer (2017).

[44] TED Institute - YouTube. “Markus Lorenz: Industry 4.0: how intelligent ma-
chines will transform everything we know”. In: (2015).

107

		Politecnico di Torino
	2018-10-16T15:11:54+0000
	Politecnico di Torino
	Marcello Chiaberge
	S

