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It’s not because things are difficult that we dare not venture. It’s because we dare not
venture that they are difficult.

Lucius Annaeus Seneca
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Summary

Since 2010, the number of new malware released daily became so high that manual anal-
ysis is not an option anymore. In 2017 it was estimated that 120 million new malwares
were released, that is about 200 per minute, mainly targeting the Microsoft Windows Op-
erating Systems. Given the scale of the threat, emerged the need of automated approaches
to detected new malware variants: several methodologies were proposed during the years,
including a variety of machine learning approaches, although the signatures have been
proved to be the most effective ones. A signature is a pattern that identifies a malicious
code, and, even though they suffer from the so-called “specificity” problem, they have been
demonstrated effective, scalable, and almost unaffected by false positives.
This thesis presents a research that aims to create a set of effective signatures, starting
from a set of known malware samples, that are capable of matching new malware variants
with very high recall, while reducing the number of false positives. The proposed procedure
was implemented in a new framework, named YaYaGenPE, which targets the generation
of signatures for Microsoft Windows executables, and produces YARA rules, the industry
standard type of signatures. The designed framework was conceived as a pipeline consist-
ing of three steps: the features extraction procedure, an optional clustering procedure and,
finally, the rules generation step.
Several tests were performed using, as a comparison meter, available YARA rule genera-
tion tools. In particular three of them were selected: yarGen, YaraGenerator, and yaBin.
Results show that YaYaGenPE generates less rules with respect to the other tools, with less
false positives, comparable precisions and a better coverage of the training sets provided.
Finally, some automatically generated rule sets were tested on the VirusTotal Intelligence
RetroHunt service that applies the rules against a corpus of 100 TeraBytes containing
benign and malicious software. Results show that, considering the huge amount of tested
software, rules are accurate enough to avoid most of the false positives and targeted to
specifically match samples of the family they were trained on or samples really close to
the training ones.
The entire work has been done in collaboration with VirusTotal, one of the biggest mal-
ware analysis platforms, which, since January 2018, is part of Chronicle, a subsidiary of
Alphabet Inc., the Google’s parent company.
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Chapter 1

Introduction

Malwares have been around since the early years of the IT area. Initially, these executa-
bles were not necessarily malicious, as they were prevalently diffused either for fun or for
scientific purposes. Unfortunately, the era of malwares developed for fun is over, and, since
2000, malwares aim at wrecking havoc on the affected systems or, as a tendency begun
by the ’Cryptolocker’ malware, at locking all the machine’s files asking for a ransom [8].
Figure 1.1 shows the screenshot of a victim machine infected by the “Cerber” ransomware,
one of the most infective ransomwares for Windows 10 [44].

Figure 1.1: Screenshot of a victim machine infected by the “Cerber” ransomware. The
victim is redirected to a set of (.onion) links which will give the possibility to pay the
ransom.

Whatever the methodology used, it is evidenced, since 2010, the will of using malwares as
an illegal way of making money or of denying victim’s functionalities.
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1 – Introduction

Although these types of software threaten both companies and privates, there is no doubt
that the former are the ones suffering the most from this type of problems. A statement
given by the cyber-security company “Carbon Black” in 2018 reported that approximately
92% of the companies they interviewed were interested by at least one cyber-security at-
tack on the previous year [19].
The 2018 trend in Malware development, although slightly decreasing in the last 3 years,
is still a major concern for IT security. The number of newly generated malwares is so high
that, in 2017, it is estimated that 3.9 new malicious samples were generated per second
[3]. Consequently, this should also be the ideal pace, for Anti-Virus software, of noticing
and recognizing new malicious samples.
From an Operating System market point of view, out of the 121 million new malwares
detected in 2017, statistical analysis show that Microsoft Windows and Android Mobile
are the two preferred malware targets and the picture seems to be valid for year 2018 as
well [3].

Figure 1.2: Operating System target percentages in 2017 and Q1 of 2018 (picture from
[3]).

The previous facts evidence the impossibility, for the analysts, to manually analyze all the
malicious samples that are constantly generated. On the other hand, it would ideally be
possible, once determined the effective malicious nature of a sample, to create a unique
signature that specifically identifies it, but the evolution rate of the malwares samples and
the high variety of obfuscation techniques would make this approach ineffective, not to
mention the huge database size that would be required to handle all the possible versions
of the same executable.
For these reasons, it is needed an automated and effective approach towards malware de-
tection, that is capable, possibly, of synthesizing several malicious samples in a restricted
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1 – Introduction

amount of signatures, but at the same time, being not too generic to detect a high number
of benign softwares as malicious (i.e., false positives), which might harm system usability.
In particular, it would be ideal to have a set of signatures that maximizes the malwares
coverage while keeping at minimum the number of benign executables erroneously tar-
geted as malicious.
This thesis aims at satisfying this need of automated malware detection procedures. In
particular, the main target of this work is the design of YaYaGenPE, a framework capable,
given a set of malicious samples, of creating a set of signatures that cover all the samples,
while at the same time identifying their relevant common traits.
The framework is focused on the Microsoft Windows Operating System executables, and
it is a complement of the already developed YaYaGen framework [35][1], that targets the
Android platform, with which it shares the signatures generation algorithms.
The signatures defined by both the tools are ultimately expressed in the form of YARA
rules. YARA is a pattern matching tool whose success has been constantly growing since
its creation, such that many cyber-security companies have been reported to extensively
use it (e.g. “Kaspersky Labs”, “ESET”, “Symantec”, “Trend Micro” and many more) [67].
YaYaGenPE was conceived as a pipeline consisting of three steps: the features extraction
procedure, an optional clustering procedure and, finally, the rules generation step.
The first step, i.e., the features extraction, relies on a specific set of static analysis fea-
tures consisting of the Windows Portable Executable header fields, i.e., all the fields that
identify the relevant parts of a Microsoft Windows binary executable. Static analysis fea-
tures are, indeed, generally faster than dynamic analysis ones. Moreover, most of existing
packers and obfuscation methodologies tamper the Import Address Table (IAT) and the
executable entry-point only, leaving intact the majority of the PE header fields, while
dynamic analysis features (i.e., executable’s behavior peculiar characteristics) are more
complex and computationally intensive, sometimes also requiring human intervention.
The framework also supports an innovative set of features that are the user provided YARA
rules. In particular, the procedure allows the user to provide some rules, that will be incor-
porated as features of the malicious samples when positively matching them. These rules
might indeed be really helpful in detecting malicious samples and avoiding false positives,
since they might be written by domain experts to specifically target designated malwares.
The second phase, i.e., the clustering, is an optional procedure and consists of two differ-
ent algorithms. Working on the Windows Executables, it is indeed expected a big variety
on the samples that the tool will have to handle. For this reason, YaYaGenPE supports,
internally, two different clustering procedures that allow to reduce the size of the groups
of samples the rules are generated on while working concurrently on the closest samples
possible. This procedure is performed under the assumption that, working on groups of
samples similar each other, the consequent signatures are capable of underlying the com-
mon features shared among them, without being too much generic (i.e., avoiding as much
as possible the detection of benign samples as malicious).

3



1 – Introduction

The last step of the framework is the generation of a set of YARA rules for each cluster.
Each rule is determined by finding an optimal combination of features that covers the
highest number of samples possible, in the cluster. Two implementations are proposed:
the “greedy” approach and the “clot” one. The former finds a set of rules by iteratively
searching for the local optimal solution.
The latter is an improved version of the greedy approach, which produces overlapped
rules, but approximately equally distributed in the number of covered samples, avoiding
the problem of unbalanced rules in terms of numbers of literals.
Both the signature generation algorithms solve, in a sub-optimal way, the “Set Coverage”
problem and, as such, are independent on the features provided, making the framework
easily extensible to any new set of features in the future.

4



Chapter 2

Background

2.1 Malware

In computer systems security, malware is a common word to define any malicious software:
a software that harms a user, a target system or an entire network.
The first hypothesis of malware existence was introduced by John von Neumann, who, by
1951, theorized the possibility of self-replicating automatons [33]: this definition is what,
nowadays, identifies viruses and worms.
During the years, new outcomes were produced on the same topic: in 1959, Lionel Penrose
presented an automated self-replication model, which was then developed by Frederick G.
Stahl on an IBM 650.
The first recognized virus was publicly demonstrated by Fred Cohen in 1983, while he was
a graduate student at USC. Then, in 1986, two Pakistani programmers created the Brain
virus, which was capable of escaping detection by simulating the system calls that were,
at the time, used as a signature of virus [17].
From that point on, the spreading of malware has been constantly growing, also due to
the diffusion, in the wild, of automatic tools to generate variants of the same program
(these tools are usually known as Mutation Engines).
Early days malwares were initially created either for fun or for scientific purposes [33].
However, as the knowledge on computer systems grew up among the community and with
the uprising success of Internet, several authors started creating malwares for profit.

2.1.1 Malware typologies

During the years, several different typologies of malwares have been created. All of them
try to harm the system in a way or another, however, different typologies differ for their
different attack methodologies.
The most famous malware classes are [37]:

• Backdoor : malicious code that allows unauthorized and unauthenticated access to
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2 – Background

the attacker.

• Botnet: similar to a Backdoor, but involves several infected hosts, all executing the
same set of instructions given by the attacker(s) (this methodology is also known as
Command-and-control).

• Downloader : a malicious code that is used to download malicious software from the
Internet and execute them. This type of malware is installed by attackers the first
time they get access to the system.

• Information-stealing malware: this category of malware is used to gather informa-
tions from the infected systems and convey them to the author. There are several
types of information-stealing malwares, such as sniffers, password hash grabbers and
keyloggers, however, the common goal of any of them is typically to retrieve access
credentials of the victim for any given service she signs into.

• Launcher : malicious program used to launch other malicious softwares. This is typ-
ically used to ensure stealth or higher level access permissions to a system.

• Rootkit: this type of malware comprehends several other malicious codes, one of
which is typically a backdoor, and it is used to conceal them and to give control of
all the possible softwares to the attacker.

• Scareware: software designed to scare the victim, typically by telling that the system
is infected, in order to convince her that buying the recommended software would
solve the problems. In reality, what the bought software does is to clean-up the
system from the scareware.

• Ransomware: also considered as part of the Scareware category, it slightly differs
from the previous class’ behaviour: Ransomwares encrypt relevant parts (typically
user data) of the operating system or even the entire hard drive and blackmail the
victims to pay the attacker in order to get the decryption key [27].

• Spam-sending malware: a malware that infects a system and uses it as a vector to
send spam e-mails to other systems.

• Viruses: a particular type of malware that damages the infected system and then
uses the network connection to replicate on near and/or reachable systems;

• Worms: they use an approach similar to the one employed by viruses, however, they
damage the machines in which they are injected by saturating the resources of the
hosting machines through constant self-reproduction;

• Cryptocurrency-mining malware: one of the latest malware trends. It is a particular
type of malware that uses the victim’s machine in order to mine crypto-currencies
for the attacker [26].
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2 – Background

2.1.2 Malware evloution

During the arms race between malware authors and analysts, the structure and the obfus-
cation methodologies used in malicious executables changed rapidly. Initially, the machine
code was completely unprotected and this allowed analysts to easily target opcode se-
quences to recognize specific malware families. To evade such signatures, malware authors
employed several obfuscation techniques.
Obfuscation techniques were originally introduced to protect intellectual property of soft-
ware, by generating new executables that behave like the old ones, but structurally different
[69], eventually even harder to disassemble and to analyse.

Encrypted malware. The first category ever introduced of obfuscation was the en-
cryption of the malware body. This methodology allowed authors to hide the content of
the malware and, as a consequence, to avoid signature matching. Indeed, after a malware
has been encrypted, the whole binary code is hidden and it does not match an eventual
signature previously generated over a plain sample. Moreover, by simply changing the
encryption key from generation to generation, also the encrypted content changes, thus, it
was not possible to create a simple signature over the entire malware. However, in order to
recover the original executable code, this type of obfuscation requires a decryption stub,
which, in the early days, was remaining constant across different generations. Because of
this, malware analysts started creating a signature of the decryption stub instead of the
entire malware body.
Early days encryption/decryption stubs were also really simple and efficient, ultimately,
as simple as an XOR cipher [49].

Oligomorphic Malwares. The next step, in order to avoid the just mentioned signa-
ture, was to create a methodology capable of generating a different decryptor at each new
generation. The first attempt in this direction consisted in the so called Oligomorphic mal-
wares, that were capable of creating a few hundred different decryptors. Nevertheless, the
number of generated decription stubs was still manageable through decryptor signatures
matching.
The first example of oligomorphic malware was the Whale virus, detected in 1990. This
executable contained a few dozen decryptors embedded and, when spreading to other ma-
chines, it chose randomly one among these decryptors and the correspondent encryptor to
create the malware variant [49].

Polymorphic Malwares. As few hundreds of decryptors were not enough to thwart
signature matching analysis, malware authors created tools that aimed at the generation
of countless number of decryptors, through the usage of several obfuscation techniques
(some of those will be described in the next sections). One tool of the kind was “The
Mutation Engine (MtE)” [69]: this engine was capable of converting a plain malware to a
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polymorphic one by linking the engine to the malicious executable [49].
This new obfuscation methodology was a huge problem back in the days when it came out,
however, anti-virus vendors started analysing the suspicious samples by actually executing
them in a protected environment (i.e., sandbox). During the execution, the analysts can
then keep track of suspicious behaviour or, eventually, extract the machine code of the
malware once the decryptor has done its job.
Even though this last methodology works, it is not always effective due to armoring tech-
niques: a set of techniques that deny emulators to properly track the behaviour of the
executable (e.g., anti-debugging and anti-Virtual Machine techniques [37]).

Metamorphic Malwares. The last advance in malware obfuscation was the meta-
morphism. This particular category of malware variants generation directly targeted the
malicious code of the executable, so to make it equivalent from a behavioural point of view,
but structurally different from time to time. As opposed to the polymorphism, in which
the changings were performed to the decryptor, by adding some of the typical obfuscation
techniques, metamorphism directly target the code responsible of the malicious behaviour,
that, in this way, cannot be used anymore to generate a signature once decrypted. In par-
ticular, if properly designed, metamorphic malwares are capable of creating millions of
functionally equivalent variants, from which it is not possible to find a common pattern.
The first example of metamorphic malware was the Win95/Regswap virus, found in 1998
[50]. This virus did not use polymorphic decryptors, instead, it generated variants of its
body by keeping a constant operation flow but changing the registers involved in the oper-
ations. This technique, also known as register swapping, is one among several metamorphic
transformations.
Other remarkable examples of metamorphic malwares are:

• W95.Zmist: released by the famous malware author Z0mbie, this malware used most
of the metamorphic transformations and even a polymorphic decryptor. The value
of this sample resides in the “Mistfall engine”: an engine capable of decompiling
target executables into a set of objects, separately mutate each of them, insert itself
in between the objects, and put all the pieces together in a new sample.

• Simile: found in 2002, this virus was famous thanks to the “MetaPHOR engine”,
which accounted for almost 90% of its assembly code [56]. MetaPHOR is an acronym
for Metamorphic Permutating High-Obfuscating Reassembler, and, while performing
metamorphic mutations, it allowed virus to grow or shrink in size. Moreover, this
engine was capable of properly infecting also Linux’s ELF executables [50], even if
the original virus was designed for a Windows environment [56].
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2.1.3 State of the Art on Malware Analysis

As malware started spreading all over the world, analysis techniques have been developed
by the researchers in order to detect whether an executable is malicious or not.
During the years, three types of analysis have been defined [62]:

• static analysis;

• dynamic analysis;

• hybrid analysis.

Static Analysis techniques

The static analysis techniques try to detect malwares without executing the analysed sam-
ple [23]. These methodologies focus on the peculiar features of the malicious samples with
respect to the benign ones.
This family of techniques is generally the fastest and the safest one, since it does not require
running the samples in a protected environment. However, it has been proved that, when
using obfuscation techniques, static analysis are usually not enough to identify malicious
samples, and, to make them obfuscation resilient, they may lead to obfuscator detection
(and, as a consequence, to false positives) [38]. Moreover, some static techniques, such
as those hash or string based, are targeting the reactive detection of malicious samples,
i.e., they are typically not capable of detecting zero-day malwares since they are based on
signatures derived from already analysed samples.
Nevertheless, this approach is still one of the most widespread, due to the limitations (in
terms of computational time and behavior detection) of the dynamic counterpart.
Some of these techniques try to detect string signatures, byte-sequence n-grams, syntactic
library call, control flow graph analysis and opcode frequency distribution.
Some other approaches try to analyse the header structures of the executable samples:
the basic idea of the just mentioned analysis is to try to find peculiar header fields that
distinguish malicious executables from benign ones.

Case of study: PE-probe

As an example of the last static analysis category, PE-Probe uses a selection of the most
relevant features of a PE Executable to detect when a sample is malicious [54]. This
framework is an evolution of the PE-Miner one, which aimed at detecting relevant features
of the PE header and feeding them to a set of classification algorithms in order to find the
best malware classifier [55].
The basic idea of PE-Miner is to:
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1. select a set of features from the PE header, such as imported DLLs, linker versions
and imported resources numbers;

2. perform a preprocessing step, which involves features reduction (using redundant
feature removal, principal component analysis or Haar Wavelet Transform);

3. feed the classifier with the identified samples (they used different types of classifiers
and detected that the decision tree J48 was the best in terms of accuracy).

They claimed, using a combination of each classifier with each feature selection methodol-
ogy, AUC 1 values not lower than 0.936, which is fairly high, considering the fact that, as
they mentioned, approximately 40 % of the samples were packed and around 12.5 % of the
remaining ones were detected as being not packed nor unpacked, meaning that they were
likely obfuscated through a custom packer (which is not detected by PEiD or Protection
ID 2).
PE-Probe is an improvement of the PE-Miner framework and tries to overcome the lim-
itations it had. In particular, the authors claimed that, when training PE-Miner using
only packed executables and then testing with non-packed ones, the accuracy decreases of
approximately 10 %.
Because of this, PE-Probe adds a preliminary non-signature based classification to detect
which samples are packed and which not. Starting from that outcome, a set of relevant
features is extracted per class, in order to adapt to the two different situations, and then
the resulting samples are given to the second step of PE-Miner.

Dynamic analysis techniques

As opposed to the static analysis techniques, the dynamic ones try to detect malicious
behaviour by actually running the executable in a controlled environment and tracking
the operations that are performed. This procedure, however, requires a safe environment
(sandboxing or virtual machines) and a set of monitoring tools to keep track of file system,
registry and networking activities [23].
The dynamic analysis is more effective than the static one in terms of behaviour detection,
since it does not need the executable to be disassembled. However, it is computationally

1 AUC is an acronym for Area Under the Curve, which is used to evaluate the quality of a binary
classifier. Specifically, considering the True Positives ratio (TP) on the x-axis and the False Positives ratio
(FP) on the y-axis, it is possible to draw the curve of a binary classifier in terms of TP and FP by varying
one of its parameters. The Area Under the Curve is then a measure of the portion of the graphical area
under the drawn curve. The AUC values range from 0.0 to 1.0, where values around 0.5 indicate an almost
randomic classifiers, while extreme values (i.e., values near to 0.0 and to 1.0) indicate a good classifier.
Interestingly, classifiers with an AUC close to 0.0 are really good in guessing the opposite of the correct
classification, which, opportunely reversed, still identify good classifiers.

2 PEiD and Protection ID are two of the most famous signature based packers publicly available.
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expensive, time consuming and it is not always effective. In fact, during the years, several
anti-debug and anti-virtual machine techniques [37] have been implemented by malware
authors in order to prevent malicious behaviour to be tracked (review of some of these
methodologies in the following sections). From what it has just been said, it is clear that
neither static analysis nor dynamic one are perfect, and that the two of them should be
complementary.

Hybrid analysis techniques

This last set of techniques is just an ensemble of the previous two. The motivation of these
is in the last line of the previous subsection: static and dynamic analysis are complemen-
tary each other.
Hybrid analysis aims at having a complete view of the malware’s behavior by bypassing
obfuscation and anti-analysis techniques through the combined usage of static and dy-
namic analysis. Indeed, most of the times, static disassembler are not capable of coping
with anti-disassembly and/or packing techniques, while dynamic analysis might not be
able to cover all the code paths of the executable, due to trigger conditions and/or anti-
debugging or anti-virtualization techniques.
Some practical applications have been developed using hybrid analysis, both for malicious
behaviour detection and for complete and resilient code disassembly. In [47], the authors
created a framework that combines static and dynamic analysis to create a complete
control-flow graph that is returned to the analyst in order to help her studying the sam-
ples. The application uses several countermeasures, introduced in several previous works,
to anti-analysis techniques (both static and dynamic), allowing to merge the contribu-
tion of the two analysis in an overall graph. The authors also claimed support of several
commercial packers (such as UPX, ASPack, PECompact and others) with good coverage
results.

Case of study: HDM-Analyser

As an example of hybrid analysis targeting malware detection, it is here briefly described
HDM-Analyser [20].
The tool aims at creating a classifier from features that were extracted from non-packed
executables through hybrid analysis. In particular, the features that have been selected in
that work were the sequence of called APIs 3, since they have good chances of tracking
the malwares behaviour. As it will be described in the next section, static analysis might
not be enough to extract the API calls, due to anti-analysis techniques, so, the approach

3API stands for Application Programming Interface and indicates the set of library functions that the
OS and/or the programming language put at programmer’s disposal to perform some tasks.
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chosen was to rely also on dynamic analysis. However, as the authors pointed out, one
of the main disadvantages of the dynamic analysis is that it is time consuming since it
requires the execution, at testing time, of the analysed sample. On the other hand, a small
overhead during the training phase might be acceptable in return of an higher accuracy
in the feature extraction. The aim of the framework is that of using dynamic analysis as
a heuristic to guide the static disassembler on the choice of the paths to follow in any
decision point during the testing of a sample.
Specifically, when there’s a branch instruction (e.g., JZ [EAX]), common disassemblers
are not usually capable of detecting which will be the outcome of the branch, so they will
limit to disassemble entirely the code. However, in order to extract the API call sequences
it is required to understand which direction will be taken by the branch. At testing time,
without dynamically executing the sample, this is not possible; because of this, the authors
applied a machine learning technique (in particular, a Bayesian Netowrk) to provide which
will be the most likely outcome of the branching instruction without executing it, but only
looking at a window of n instructions preceding the branching one (experimentally, n was
set to 3).
During the training phase, the static analysis part creates an “Enriched Control Flow
Graph”, that is a control-flow graph in which each node represents a jump/branch in-
struction (or eventually a call/ret instruction through a proper substitution) and each
edge represents a target instruction or the API spanning (an API is identified by an edge
that goes from the instruction pointed by a CALL to the first RET instruction). Every
node is also associated with an enrichment vector, which contains a counter for each type
of instruction, in a simplified instruction set, that indicates how many times that instruc-
tion occurred in the n instructions preceding the node’s one.
Meanwhile, the dynamic analysis creates the actual control flow of the sample. Once both
analysis have been performed, the control flow graph is traversed, node by node, and,
at each edge, it is checked whether that edge represents the API call in the sequence of
APIs identified by the dynamic analysis. If the edge represents an API call, there are two
possibilities:

• if the node’s taken edge refers to the next instruction in the flow, the node is labeled
as negative (the jump instruction is not executed);

• if the node’s taken edge refers to a jump instruction, it is labeled as positive.

All the other nodes, that were not associated with an API edge remain unlabelled. At the
end of this procedure, all the labeled nodes of the graphs of the executables are collected
in an “Enrichment Table”. This table will then be used to construct the Bayesian Network.
Using that Network to define API calls sequence at testing times showed results that were
intermediate in between dynamic analysis and static one, both in terms of accuracy and
in terms of execution time. In particular, the authors claim that the framework is capable
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of reaching accuracies higher than the static analysis with only a small execution time
overhead.

2.1.4 Malware obfuscation techniques

This section provides a brief overview of some of the most famous obfuscation techniques.

Dead-Code Insertion. One of the simplest obfuscation techniques to change the ap-
pearance of an executable is to add sequences of instructions whose effect, on the behaviour
of the code, is negligible. The easiest way to do this is to add a sequence of NOP instruc-
tions, i.e., instructions that are used just to waste CPU clock ticks.
However, the previous example is so easy that antivirus scanners can recognize and remove
them from the executable before computing the signature. Because of this, malwares tend
to use several other irrelevant instruction sequences that are not that trivial to detect.
As an example, lets assume a piece of code needs to push the register EAX onto the stack.
The straightforward way to do this is by:

PUSH EAX

However, this simple instruction could be easily written also as:

NOP
NOP
DEC EAX
PUSH EAX
INC BYTE PTR SS:[ESP]
INC EAX

which is a much more complex way of having the same result. This simple substitution,
however, will prevent the signature of an executable that uses the latter to match the one
of an executable using the former.
A similar approach is known as Do-little code: this methodology, instead of inserting useless
code, adds an heavily obfuscated set of operations whose result will be of some utility for
the next instructions. In this way, analysts cannot remove this piece of code and, at the
same time, the obfuscations implied will slow down the code interpretation [46].

Register Reassignment. This obfuscation technique was originally found in theWin95/
Regswap virus. The technique consists in using the same set of logical instructions of an
executable but performing them using, as operands, a different set of registers from gen-
eration to generation.
Although the virus code changes, the variation is not that high, so, viruses can be still
detected by usign wildcard characters in signatures [48].
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Instruction Reordering. The basic idea of this technique is to keep the flow of instruc-
tions constant, but to rearrange the body of the executable by swapping blocks of machine
code. In particular, metamorphic viruses divide the code into a set of non-overlapping
blocks, then, they shuffle the order of these blocks in the executable, but introduce uncon-
ditional jump instructions accross blocks so that the execution order is still the original
one.

Instruction substitution. This obfuscation technique exploits the possibility of per-
forming the same operation with different machine code instructions. As an example, lets
assume it is needed to set register EAX to zero; in order to do this, there are several
different possibilities, such as:

1. MOV EAX,0

2. XOR EAX,EAX

3. SHR EAX,32

4. SHL EAX,32

5. AND EAX,0

and many others. Metamorphic viruses use the same principle in order to create different
variants of the same executable.

Instruction transposition. In this technique it is searched for sequences of indepen-
dent instruction chunks. Basically, each chunk of instructions (at least one instruction per
chunk) cannot be split and reordered, being composed by dependent instructions, but its
position is irrelevant with respect to the position of other chunks. Because of this, it is
possible to safely shuffle the order of the chunks in the executable without altering the
behaviour of the program.
For example, if a program executes the following code:

MOV EAX , EDX
INC ECX

the two instructions (i.e., chunks) are independent from each other. Because of this, it is
possible to generate an executable variant, equivalent to the original one, by reverting the
instructions order:

INC ECX
MOV EAX , EDX
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Code Integration. This technique was introduced by the Win95/Zmist malware. That
malicious software decomposes a target executable into a set of objects and inserts itself in
between them, by making sure that, after recombining all the pieces together, everything
still works properly. This obfuscation methodology is one of the most sophisticated and it
may make detection really hard [69].

2.1.5 Anti-disassembly techniques

These methodologies use ad-hoc crafted code and/or data to trick disassembly tools into
producing a wrong disassembled code. As a consequence, the usage of these techniques by
malware authors implies a time-consuming analysis from the malware analyst, eventually
even preventing the source code to be retrieved in a reasonable amount of time. Moreover,
these techniques might also obstacle automated and heuristic analysis tools that rely on
disassembled code [37].
The basic idea behind anti-disassembly techniques is to exploit weaknesses in disassem-
bler algorithms. Specifically, each disassembler works under some assumptions over the
executable to be disassembled, so, when these assumptions are not verified, the tool is not
capable of returning the correct code.

Disassemblers

There exist two types of disassembler: linear and flow-oriented disassembler.

Linear Disassembler It is the simplest disassembler among the two and also the easier
to trick. This tool works under the assumption that assembly instructions are linearly
organized and one instruction begins immediately after the termination of the previous
one. As a consequence, the disassembler identifies a new instruction by taking the length
of the previously parsed instruction and adding it to the beginning of that instruction’s
bytes.
This technique has some problems when dealing with code that contains instructions and
data in the same bytes sequence. This might be the case, not only of malicious executable,
but also of PE executable files: typically, PE-executables contain a single code section
called “.text”, but, at the end of this, there might be a jump table containing a list of
pointers. Thus, this table will not contain instructions, but only offsets to other locations.
However, linear disassemblers are not capable of detecting where does the code stops and
the data begins, so, they interpret that jump table as a set of instructions.

Flow-Oriented Disassembler As opposed to the previous category, flow-oriented dis-
assemblers examine each instruction and keep track of the flow of the code. This means
that, if there was a JMP instruction at some point in the code, this disassembler does
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not blindly parse the bytes immediately following the JMP instruction’s ones, but directly
disassemble the bytes at the jump destination address.
Although this behaviour is more resilient than the linear disassembler’s one, there are still
some issues, in particular when dealing with conditional branches.
In those cases, the disassembler has to follow both the true branch and the false one (typ-
ically starting from the false one), however, when dealing with handwritten code, and,
specifically anti-disassembly code, this behaviour might lead to some problems.

Anti-disassembly techniques

The following lines will describe briefly the mechanisms of the simplest techniques to trick
linear and flow-oriented disassembler (at least when not assisted by human analysts).

Jump instructions with the same target. This technique consists in consecutively
putting two complementary jump instructions pointing to the same target address, which,
overall, mimics the behaviour of an unconditional jump instruction.

Figure 2.1: Example of jump instructions to same target.

Figure 2.1 represents an example of this technique. In this example, both instructions jump
to the address 0x5, however, address 0x4 contains the byte 0xE8, which is the beginning of
a “CALL” instruction. Because of this, a linear disassembler interprets the following bytes
as a single instruction; however, when starting to disassemble at address 0x5, the resulting
instructions are those in Figure 2.2. The additional byte that causes these misalignments
is commonly known as rogue byte.

Figure 2.2: Disassembled code of Figure 2.1 starting from the target address.

This technique is also capable of tricking flow-oriented disassemblers, since these disassem-
blers consider the two jump instructions separately and, usually, start parsing the code
from the false branch.

Jump Instruction with Constant Condition. Another frequent technique is the
usage of conditional branch instructions, which, ultimately are equivalent to unconditional
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jumps. This could be easily implemented by fixing the tested bit just before the testing
instruction, so that the condition will always take one direction and never the other one
(Figure 2.3).

Figure 2.3: Example of jump instruction with constant condition.

As shown in Figure 2.3, disassemblers are not capable of detecting the jump to offset 0x5,
so, they will disassemble linearly, starting from the rogue byte immediately following. The
same thing happens also for flow-oriented disassemblers, which, usually, start disassembly
from the false branch and trust it as valid. Actually, when performing the disassembly
starting at address 0x5 the result is the one in Figure 2.2.

Impossible Disassembly. This technique is much more complex than the previous two,
and has several different application possibilities. Its basic principle is somehow the oppo-
site of the rogue byte one: there is a sequence of bytes that is part of multiple instruction
flows. As an example, lets refer to the opcode string in Listing 2.1
EB FF C0 48

Listing 2.1: Impossible Disassembly opcode string.

When this code is disassembled, the output is something like the one in Figure 2.4.

Figure 2.4: Example of erroneous disassembly of Listing 2.1.

By taking a look at Figure 2.4, the first two bytes of Listing 2.1 represent a jump instruction
to the absolute address 0x1, which is the byte “FF”. This means that the “FF” byte will
be part of two instructions: “EBFF” and “FFC0”. In particular, the code executed after
the jump is in Figure 2.5.

As it is easy to see putting the pieces together, what this code is doing is just a complex
NOP instruction. However, a similar approach could be used for much more complex
situations.

The function pointer problem. This technique uses function pointers to reduce the
information about program flow that can be extracted. In particular, if function pointers
are used in handwritten assembly or crafted properly, it might not be possible to reverse-
engineer the executable without the usage of dynamic analysis.
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Figure 2.5: Code executed after the jump of Listing 2.1.

Return Pointer Abuse. The idea of this technique is to confuse the disassembler by
using the RET instruction when it shouldn’t be used. Using a RET instruction can have
two results: either the disassembler is not capable of showing code cross-reference of the
target instructions or, in the worst case, the disassembler stops its execution, believing
the end of the program was reached.

Misusing Structured Exception Handlers. The Structured Exception Handling is a
mechanism that allow to manage error conditions without abruptly terminate the program.
This feature, although useful, it is not always supported by disassemblers, so, it is easily
usable to trick disassemblers. Since it is not so complex to create a personalized exception
handler on top of the chain already in the stack, a malware author could create a new
exception handler and, through an operation that is guaranteed to throw an exception
(such as a division by zero), jump directly on an external routine. This routine could
eventually be parsed properly by the disassembler, however, there is no indication that it
is referenced by any piece of code.

2.1.6 Anti-debugging techniques.

This set of anti-analysis techniques is used to thwart analysis that relies on debugging to
understand the malware’s behaviour. There is a big variety in the techniques that can be
used for this purpose, in the following paragraphs there will be introduced some of them.

Windows Debugger Detection.

This particular category of anti-debugging techniques is strictly based on the Microsoft
Windows environment and on the utilities it offers.

Using Windows API. The easiest of these techniques is the one that relies directly on
theWindows API to understand if a program is being debugged. Windows directly provides
a set of functions to detect debuggers, however, there are some other functions that were
designed for different purposes, but that have been adapted to debugger detection. Some
of the previously mentioned functions are:

• IsDebuggerPresent: as the name says, this function detects the presence of the de-
bugger. In order to do this, it relies on the Process Environment Block4 structure and

4A Windows Process Environment Block (PEB) is a data structure, kept by the OS, that, for each
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checks the “BeingDebugged” field, which, if debugged, should be a nonzero value.

• CheckRemoteDebuggerPresent: this function behaves exactly as the previous one,
with the exception that it has the possibility of monitoring, not only if the current
process is being debugged, but also if any other process in the local machine is,
provided that its process handle is known at runtime.

• NtQueryInformationProcess: this function can be used in order to retrieve informa-
tions about a given process. It receives a process handle as first parameter and the
type of process information requested as second one. In order to understand if the
process is being debugged, it is then sufficient to call the function on the current pro-
cess’ handle and, as second parameter, the value “ProcessDebugPort”. If the process
is not debugged, NtQueryInformationProcess will return zero, otherwise a nonzero
port number.

• OutputDebugString: this function sends a string to the debugger for display. How-
ever, this function can be used to test if there actually is a debugger receiving that
string. In particular, a process could try to send a string to an eventual debugger by
OutputDebugString and then check if the GetLastError function indicates that an
error occurred. If the function indicates no errors, then the process is being debugged,
since it means that the OutputDebugString call was successfull.

Manually Checking Structures. Using the Windows API is a practical way of under-
standing if the process is being debugged, however, malware authors tend to prefer manual
checking methodologies. The reason behind this is that these APIs could be hooked by a
rootkit to return false informations, so to trick the anti-analysis checks. Among the several
possibilities for manual checks there are:

• Checking the BeingDebuggedFlag. This technique emulates manually what was per-
formed by the Windows API IsDebuggerPresent function.

• Checking the ProcessHeapFlag. In this approach, it is searched for two particular
fields (the ForceFlags and the Flags fields) in the ProcessHeap. A ProcessHeap is a
structure located at offset 0x18 in the Process Environment Block and contains an
header in which, on the just mentioned fields, it is specified whether the heap was
created within a debugger or not.

• Checking for NTGlobalFlag. Processes tend to create memory heaps differently when
they are started within a debugger. In particular, at offset 0x68 of the PEB it is

running process, stores all the user-mode parameters associated. In this context, what is relevant is that,
among other fields, this structure contains a BYTE “BeingDebugged” that indicates if the process is being
debugged or not.
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specified information about how to create the heap. If, at that offset, there is the
value 0x70, it means that the process is being debugged. Actually, the value 0x70 is
a combination of 3 different flags, that are set if the process is started by a debugger.

• Checking for system residue. This technique searches on the OS for traces left by a
debugger. Examples of traces can be: registry keys modified by debuggers, files or
directories associated with debugger executables or in-memory debugger traces.

Identifying Debugger Behaviour

Debuggers are usually used by setting breakpoints or stepping forward instruction by in-
struction. These debug modes, however, modify the original process’ code. This particular
class of anti-debugging methods aims at detecting these kind of operations. Examples of
these techniques are:

• Scan for INT 3 instruction. The INT 3 instruction is a particular software interrupt
used by debuggers to trigger the debug exception handler and to stop execution
(that is a basic way of setting a breakpoint). The opcode of this instruction is
0xCC. Malwares could, at the beginning of the execution, through a CALL and
POP sequence of instructions, retrieve the portion of source code being executed
and search for that particular opcode. If the opcode is found, then it means that, if
things have been designed properly, the process is being debugged.

• Performing Code Checksums. This technique resembles somewhat the previous one,
however, instead of searching for the 0xCC opcode, it is performed a cyclic redun-
dancy check (CRC) or a checksum of the executable code and it is compared to the
original checksum. If the two checksums do not match it means that something (in
this case a debugger) has modified the executable code.

• Timing Checks. This technique exploits the time delay required when an executable
is run under the supervision of a debugger, in particular when the debugger is going
through a step-by-step execution. However, in all cases, there are two main method-
ologies to realize if a process is being debugged:

– get a timestamp, execute some instruction and then get another timestamp. If
the process is being debugged, the execution will take more than when not, so,
it is possible to detect a debugger.

– get a timestamp before and after raising an exception. This technique is rely-
ing on the fact that, when a process is debugged, exception handling usually
requires human intervention to prosecute, which introduces a huge delay. Some
debuggers allow to ignore exceptions, however, even in these cases, the ignoring
process requires some time delay.
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2.1.7 Anti-Virtual Machine techniques

The last type of analysis of malicious samples is the one relying on Virtual Machines.
With this approach, analysts build up a protected Virtual Machine environment in which
the malware is free to execute and perform its malicious tasks. Malware authors, as a
consequence, have developed a set of techniques to detect and evade Virtual Machine
analysis. Most of these techniques target a specific Virtual Machine, that is VMWare.

VMWare Artifacts. Generally speaking, each Virtual Machine is known to leave arti-
facts on the installed Operating System. Malwares can use these artifacts to know if they
are running in a virtual environment. The following techniques take, as an example, the
VMWare Virtual Machine artifacts. There is a set of artifacts that can be used for this
purpose, such as:

• search for running processes related to the VMWare Tools Service;

• search for registry keys related to VMWare, typically related to virtualization of the
hardware;

• check the MAC address: each MAC address has the first 3 bytes related to the vendor
of the network interface. However, if the process is running on a Virtual Machine,
also the network interface will be virtual, and it will be associated to VMWare as a
vendor. In this case, the first 3 bytes will be 00:0C:29.

• search for hardware versions: when virtualized, the hardware versions, such as those
of the motherboard, will be associated to the Virtual Machine.

Checking for memory artifacts. This approach is similar to the one used in the
anti-debugging techniques, i.e., it is searched, in memory, for artifacts left by the Virtual
Machine.

Vulnerable Instructions. This last set of techniques relies on particular instructions,
which, when executed on a virtual machine, have an output that is different with respect
to the one that would have been returned if executed directly on the hosting machine.

2.1.8 Packers

Packers were initially developed, in the 80’s and early 90’s, to compress the executables in
order to reduce the size they occupied both in the secondary memory and in RAM [50].
These tools consist of a packing stub, typically not included in the generated executable,
and of an unpacking stub. The former is in charge of compressing and (eventually) en-
crypting the executable body, while the latter reverses the operations and restores the
original body at runtime.

21



2 – Background

Packers, together with compression and encryption, typically include several of the pre-
vious obfuscation and anti-analysis techniques, ideally to provide intellectual property
protection. As always, these capabilities have been employed not only by legitimate au-
thors, but also, and prevalently, for malicious purposes.

Detecting packed samples

Packed samples can be detected with a certain degree of confidence through the Shannon
Entropy measure, however, this is just an heuristic approach. In addition, this measure
allows to know, with a certain probability, if an executable is packed or not, but it does not
tell anything about which is the packer used. To address this last problem, there are packer
signature databases. Nevertheless, tools that use such databases (as PEiD or Sigbuster)
are not always capable of matching packers due to the high variety in the wild and due
to the evolution and changes in packers’ codes. Moreover, it might happen that malware
authors modify some of the code related to the packers so that the generated samples do
not match any packer signature.

Packers complexity and diffusion

Packers, in the market or custom made, have different characteristics. The different fea-
tures and unpacking methodologies used define several levels of complexity. Understanding
packers complexity is not a trivial task, however, some studies have been made to try to
give it a standardized classification. The study in [61] identifies 6 types of packers, having
increasing complexity.
Packers ranging from type 1 to type 5 allow, at some point in time during execution, to
have a complete view over the unpacked malicious code, while they only differ for the
number of decryption routines applied and for the obfuscation methodologies included.
Type 6 packers are the most complex ones, for which only a slice of code is unpacked
in memory from time to time. This means that, in order to get the complete code, it is
necessary to take several memory dumps at different time instants.
Most notable examples of commercial packers are:

• UPX: it is a Type 1 packer, so, the simplest category. It consists of a single decryp-
tion routine, at the end of which there is a transition to the original executable;

• UPolyX: it is an UPX scrambler, that operates on the output given by UPX. It
consists of a polymorphic engine with two interleaved unpacking layers, the outer-
most of which extracts part of the original code plus the innermost unpacking layer.
As a result, this packer is a Type 3;

• Armadillo: this packer is one of the most complex ones. It is a Type 6 packer
consisting of two processes, the father, in charge of unpacking the code, and the
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child that executes the original program.

• VMProtect and Themida: those two packers, among other possibilities, allow
for embedded virtual machine packing. In this particular methodology, they encode
the original executable into a purposely created machine language, and add, in the
packed executable, a virtual machine capable of correctly interpreting it.

2.2 Automatic Approaches to Malware Analysis

The number of newly discovered malwares per year has shown, in the last 10 years, an
exponential growth [2]. Figure 2.6, although referring to 2012, perfectly represents the
situation perceived by Anti-Virus companies about the amount of threats yearly created.

Figure 2.6: Depiction of the perceived malware situation in 2002 and 2012 by the Anti-
Virus industry.

This increment in the number of new samples has been, since a while now, unsustainable
for malware analysts, so, it is needed an approach capable of automatically detecting mal-
ware samples.
Several different attempts have been done in this direction, most of them creating classifi-
cation models to be applied to testing samples. Recent years approaches have been focusing
on dynamic analysis features, due to the high packed samples percentages, however, dy-
namic analysis has some pitfalls and difficulties that might hinder automatic analysis, as
described previously (i.e., anti-debugging and anti-VirtualMachine techniques).
One of the most successful techniques in malware detection is, nowadays, the signature
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matching, which is why many automated tools aim at signature generation.
Because of these reasons, this work focuses on static analysis, and, prevalently, on the PE
header features, ultimately generating YARA rules.
Ucci et. al [60] present an extensive description of all the methodologies applied and of all
the features used in malware related topics. The following sections present a brief descrip-
tion of some of them.
It is worth mentioning that, as stated in [60], the problem of finding a good and standard-
ized samples set is still open, so, it is not yet possible to perform accurate and valuable
comparisons of different solutions.

Malwares detection

This set of methodologies aim at determining whether a sample is malicious or not. Ex-
amples of malware detection techniques are signatures and classifiers.

Signature-based approaches. Amalware signature is any type of pattern identifying a
particular sample or set of samples. Signatures can range from the over-specific executable
hash to particular strings and/or opcodes in the executable.
Signatures should be general enough to detect malware variants or entire families, however,
they also should be specific enough to find the least false positives possible.

Classification A large number of approaches to the malware detection focused on cre-
ating a classifier capable of distinguishing between malicious and benign executables. As
an example, some of these methodologies rely on decision trees [55][54], which have been
proved effective for malware detection. Moreover, decision trees also have the nice possi-
bility of easily translating the tree to a set of rules, each composed of the AND of each
branch from the root to a leaf (i.e., a rule-based classifier).
Although classification is a valid approach, it requires an exhaustive goodware and mal-
ware samples set. If a malware samples set is fairly easy to get, eventually reducing the set
to a particular malware family, it is not that easy to find an acceptable goodware samples
set.
Moreover, classification algorithms do not take into account the fast malware evolution
pace, which might render useless the model’s goodware/malware distinction. On top of
that, several studies showed the effectiveness of adversarial Machine Learning in tricking
models to mis-classify crafted samples.
Biggio et al. [9] have proved the possibility of crafting PDF malicious samples so to
trick Support-Vector-Machines (SVM) and Neural-Networks (NN). Experiments have been
made supposing two scenarios: one in which the attacker perfectly knows the victim model
and its training dataset, the other in which only the features representations and the type
of the model was known. Results show that, given a maximum amount of modifications
allowed, SVMs were highly subject to crafting, as well as NNs under particular crafting
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procedures (i.e., when considering mimicry methodologies).
Papernot et al. [40], although not targeting specifically the malwares context and not
considering modification constraints, have shown that, using the victim model as a black
box from which getting classification outputs, they were able to create classifiers (Linear
Regression and Deep Neural-Networks) that approximate the victim, from which craft-
ing samples capable of fooling the victim model with high accuracy. Their tests were
performed over Amazon Machine Learning service and Google Cloud Prediction having
mis-classification rates higher than 84% for both in the most restrictive conditions.

Malware variants and family identification

Some other approaches focused on malware variants (and/or family) detection, for which
any tested sample is either associated to its variants (i.e., variants selection) or to its
families (i.e., families selection).
These techniques lie on the idea that malware authors, in order to evade detection, try to
generate variants of the same families, by relying on the previously mentioned polimorphic
and metamorphic engines. To counter this issue, attempts have been done to associate
new malicious executables to their variants or families by applying or removing the most
common obfuscation techniques used by polimorphic and metamorphic engines .

Malware Category Detection

This class of methodologies aims at classifying malwares basing on their behaviors and
goals. This means that, as opposed to the previous class of approaches, malwares coming
from different authors, and not being related (e.g., variants of the same executable) are
nevertheless grouped together, provided that they present similar behavioral characteris-
tics.
This type of description can provide useful additional informations to support extensive
additional analyses, however, there still isn’t a standardized taxonomy of malware cate-
gories and this might limit the effectiveness of the approach.

Malware Development Detection

An interesting analysis technique relies on the on-line submissions of samples to scanning
services and sandboxes. In particular, malware authors might test their executables on on-
line sandboxes and scanning services, before spreading the malware in the wild, to make
sure that the executable will not raise any suspect [24][28][5]. Although this approach is
fairly new, results in [24] were promising and showed that traces of the development of
big malicious campaigns samples where already present in on-line sandboxes before the
campaigns began.
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Malware Triage

New malwares occur at a constantly growing pace, so, it is usually not possible to take
care of all of them in a reasonable amount of time. Because of this, it is needed a fast
and fairly reliable prioritization mechanism. Malware triage uses some of the techniques
employed in the previous categories to skim low priority samples and make analysts focus
on relevant ones, similarly to what happens in an Emergency Room at the hospital.

2.3 Signatures and Automatic Signature Generation Tools

One of the most effective Malware Detection techniques is the signature based one. The
term “signature” was introduced during the first years of malwares appearance. Since then,
this term has always been indicating a growing number of detection mechanisms.
Initially, signatures were considered as a contiguous sequence of bytes that identify a
particular malicious sample, but, as malwares started to evolve, that definition has been
extended to comprehend other detection mechanisms [29]. Nowadays, the term signature
comprehends any technique capable of identifying (families or classes of) malicious samples.
Any Anti-Virus product still relies on a signatures database, that is typically private and
based on a custom format. However, lately, there has been a growth in the usage of YARA
[68], an open-source tool that supports signature matching and definition.

2.3.1 YARA rule overview

YARA rules are the concise representation of what should be the signature of a malware.
Each rule is used by the YARA tool, that compiles it and checks what the rule states on
a file, whose name is given as tool argument. A rule follows a C-like syntax and consists
of two parts: strings and condition.
Strings can be hexadecimal sequences, textual strings or regular expressions (eventually,
byte sequences can also be expressed through textual strings or regular expressions). The
strings typically used in YARA rules represent opcodes5 of malicious instruction sequences
and constant strings (e.g., “/bin/sh”).
The condition is a logical expression comprehending (functions of) strings and, eventually,
some other operands (such as integer values or modules related operands). An example of
a simple YARA rule is in Listing 2.2.

rule shell
{

strings:
$sh = "/bin/sh"

5An opcode is the byte sequence that corresponds to a machine instruction (e.g., the instruction “PUSH
EAX” corresponds to an opcode of 0x50).
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condition:
$sh

}

Listing 2.2: An example of yara rule searching for “/bin/sh” on the entire file.

YARA rules also have the possibility to support for loops and string counts, which allow to
create even more complex and targeted rules. For a complete description of all the YARA
rules possibilities, it is reminded to the YARA documentation [65].
During the years, and with the growth of the tool’s usage, YARA has been extended to
support a number of external modules that aid signature generation. These modules allow
the researchers to create signatures not only using strings and opcodes, but also relying
on more advanced functions.

The “math” module. This module contains an ensemble of mathematical functions
that allow to compute statistical measures over the bytes of the analyzed sample. One of
the most used functions of this module is the “entropy”, which computes the Information
Entropy of the bytes of the samples. This particular measure is an heuristic widely used
to detect whether a sample is packed or not.

The “hash” module. Another class of supported functions is a subset of all the cryp-
tographic hash functions. Among all the functions, the module supports “MD5”,“SHA-
1”,“SHA-256” and 32-bit checksums, both of a single string and of an entire portion of the
analyzed sample. Although these functions are usually very specific, leading to the match
of very targeted byte sequences (which is ultimately the goal of the cryptographic hash
algorithms), some of these might be used when creating the hash of only portions of the
samples.

The “cuckoo” module. This module introduces an important extension on the YARA
rules possibilities. In particular, this module was introduced to support the parsing of any
dynamic-analysis report generated by the Cuckoo sandbox. The module allows to access
a limited amount of dynamic features, among which: the contacted network hosts, the
accessed files and the accessed registry keys.

The “PE” module. The most important module, for the purposes of this work, is the
PE one. This module allows to access almost all the fields contained in the header of a
Portable Executable. Although access to this type of information can be still performed
through the usage of plain rules, the usage of the module dramatically simplifies the process
and the readability of the rules.
The power of this module relies also on the almost complete coverage of the header, for
which nearly all the fields in the header can be addressed by a rule.
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2.3.2 Automatic signature generation tools

As for the time of writing, there are already some automatic signature generation tools,
which have also been taken into account as comparative metric for this thesis’ framework.
These tools are all based on strings and opcodes matching and, the majority of them,
produce a set of YARA rules as output.

yarGen

This tool [22] creates YARA rules by searching strings and opcodes in the malicious
samples given as input, provided that those are not part of a database of strings and
opcodes appearing also on goodwares files. The strings extracted from the samples are
also further classified by a Naive-Bayes Classifier so to choose strings that are effectively
meaningful, instead of encrypted or compressed sequences.
yarGen also has several possibilities left to the user, such as the usage of strings only or
strings and opcodes, or the possibility to use user provided goodwares to extract strings
and opcodes that have to be ignored instead of using the predefined database.
In order to create a rule, each string identified by the tool is assigned with a score and
only strings having a score high enough will be part of a rule. The scoring system has been
hard coded in the tool and assigns points basing on the content of the considered string,
eventually adding negative points when the string is also present in the good strings and
opcodes database. This scoring system can also be ignored by using the “z0” parameter,
which tells the tool to insert in the rules any string that matches the proper requisites,
independently on the score they have.
The tool also automatically generates what the author defined super rules, that is, rules
that can match a sub-set of the malicious samples containing more than one element.

YaraGenerator

This tool [10] works by taking into account strings only in order to generate rules. Yara-
Generator is suited not only for PE executables, for which it separately supports imported
dlls and functions, but also for e-mail messages, pdfs, Microsoft Office documents and even
Javascript or HTML documents.
However, as opposed to the previous tool, it accepts a set of samples and tries to extract
features (i.e., strings) common to all of them, which is much more restrictive, and, as a
result, it is usually not suited for big sample sets.

Yabin

Yabin [39] is a tool released by the AlienVault Open Threat Exchange (OTX) community
to create YARA signatures from the executable code of the malicious samples.
The basic principle of the tool is to find rare functions in any given sample, by looking for
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function prologues (e.g., the opcode sequence “55 8B EC”, which is the “PUSH BP; MOV
BP, SP” instruction sequence that defines the usual beginning of a function). From all the
functions found, the tool then relies on a huge goodwares database to skim common or
non-malicious functions.
The main idea behind this approach lies in the code re-use: it is not uncommon that
malware author recycle code from shared databases when creating new malwares. This
would result into having several malwares share part of the code, so, the tool aims at
finding those shared bytes.
Although the approach of the tool seems valid, as the authors claim, the tool is designed to
work on unpacked samples, because, otherwise, there are good chances that it will identify
the packer’s signature.

Icewater

Icewater [43] is not a publicly released tool, however, the author shared some of the rules
the tool generated with the community.
The idea behind the tool is quite different from the one of the previous ones, and it has
never been disclosed in detail. In general, the tool relies on clustering of malicious samples
found on the Internet, from which it is extracted a set of rules that rely on the md5 hash
or opcodes of portions of the malicious samples.

BASS

This tool [7] is developed by Cisco-Talos and aims at the automatic generation of ClamAV
pattern-based signatures. These signatures are different from the YARA rules, however,
the underlying principle is the same: they indicate a sequence of characters or opcodes
that uniquely identify malicious samples.
As for the YARA rules, ClamAV signatures support the possibility of using wildcards in
the pattern to be matched and to specify the condition as a logical expression of patterns,
however, they are more limited in terms of functionalities. For this reason, it is not possible
to convert exactly YARA rules to ClamAV signatures, thus, a comparison with the BASS
tool is out of the scopes of this work.
BASS works in a more elaborated way than the other tools mentioned. In particular, it
relies on already clustered malware samples, from which it generates signatures by finding
shared code among the samples.
The shared code is retrieved through a sequence of filtering and elaboration steps, at the
end of which a single code sequence, eventually containing wild characters, is returned as
signature.
In order to find shared portions of code, BASS disassembles the executable code and finds
the most similar functions shared among different samples, by making use of the BinDiff
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6 tool. In particular, BASS searches for the largest connected subgraph of a functions
similarities graph generated relying on BinDiff.
From the functions thus extracted, the tool relies on Kam1n0 [59], to filter out library
and white-listed functions. Starting from the remaining functions, the tool then extracts,
iteratively, by starting from the closest functions couple, the shared Longest-Common-
Subsequences (LCS)7, which, opportunely interleaved with wild characters, will become
the samples signatures.
Finally, BASS keeps the generated rules under testing for a limited amount of time, against
an internal database of goodwares. If a rule matches a goodware, then the process is started
again but, this time, accounting the function that generated the positive match inside the
functions’ white-list.

6BinDiff is a comparison tool for binary files, that allows to find differences and similarities in disas-
sembled code.

7A Longest-Common-Subsequence of two strings (in this context, opcodes), is a sequence of not nec-
essarily contiguous characters (i.e., bytes), that appear in the same relative order in both strings (e.g.,
“ACBDA” and “ADDBCDCA” share the longest-common-subsequence “ABDA”)
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Chapter 3

The proposed framework

The tool presented in this work is inspired by and complementary to the YaYaGen frame-
work, whose goal is the automated YARA rule generation for the Android Operating
System. The target of YaYaGenPE is the YARA rule generation for the Microsoft Win-
dows Operating System, which is where most of the business still lies.
Both the tools have been designed keeping in mind the high need for automated and
scalable procedures to accurately manage malware detection for their respective target
Operating System.
YaYaGen and YaYaGenPE focus on finding, from a given set of samples, a minimum en-
semble of features that commonly characterize all of them and, finally, to convert these
features into a suitable set of YARA rules.
The result of this behavior is twofold:

• The generated rules do not rely, unless specifically requested to the framework, on
a goodwares database. This is, in most of cases, a positive thing, since it is almost
impossible to get a comprehensive set of goodwares to use for a correct classification.

• When the set of samples is properly selected, the generated rules are capable of
capturing all the relevant features of the malwares and not exclusively those that
separate malicious softwares from benign ones.

3.1 Framework’s general behavior

Before delving into the details of how the framework actually works and of all its possi-
bilities, it is worth doing a brief description of the overall idea, to make things as clear as
possible beforehand.
YaYaGenPE works in 3 steps:

1. Executable samples features extraction: in this phase, almost all the fields of
the PE header are extracted as features of the executable and, if the user desires to,
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it is also possible to include other rules as features of the executable. The provided
rules will be converted into their conjunctive normal form and split by the “and”
conjunction, to create new sub-rules in order to loose some information and make
them more general.

2. Executables clustering: this step is optional and strictly depends on the algorithm
chosen by the user. This phase has been purposely introduced keeping scalability in
mind, which is one of the most required features today, given the numbers introduced
in chapter 1. Specifically, the clustering allows to manage accurate rules generation
for thousands of samples in some hours.

3. Rule generation: the final step of the framework generates the YARA rule. Actu-
ally, this phase has a broader scope than the one of generating a set of YARA rules,
and aims at finding a set of features that is common to many samples given as input.
In this phase, there are two possible algorithms the user can rely on (i.e., the greedy
algorithm and the clot one), which will be described in detail subsequently.

Figure 3.1: Graphical depiction of the entire framework rule generation flow.

3.2 Executable samples feature extraction

In this section it will be described in detail the first step of the tool. As already briefly
mentioned, the set of features extracted are basically of two types:
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• PE header fields: almost all the extractable fields of the executable header are
taken.

• user provided rules: if any.

3.2.1 PE header fields

An exhaustive description of all the extracted PE header fields has been done in Ap-
pendix A, so, in the next lines it will be described only those features that were not
explicitly mentioned there.
All the extracted features have been retrieved by making use of the “pefile” [13] Python
tool, which, although has a great coverage of the PE header, has some discrepancies with
respect to the YARA PE module. This issue implies that, in some particular occasions,
it is not possible to successfully extract all the previously mentioned features. To extend
the features coverage as much as possible, some of these features are actually obtained
by functions purposely written inside the framework, to follow, as much as possible, the
YARA PE module extraction procedures, however, even in those cases, there are still some
cases in which this might not work.
The main reason behind the choice of these features is that, as introduced in chapter 2, PE
header fields, apart from some notable exceptions (i.e., the execution entry point and the
Import Address Tables), to the best of this thesis’ research background are not reported
being tampered by packers.

Imphash feature extraction

The imphash is the hash of the Import Address Table, which keeps track of all the imported
functions and the DLLs they belong to. Researchers have found that programs that call
the same functions in the same relative order of appearance in the source code will have
the exact same Import Address Table. This happens because compilers tend to scan the
source code sequentially to identify the requested DLLs of each function and build the
Import Address Table accordingly, in a fixed way.
This means that two executables having the same imphash are likely to have been produced
by the same source code and the same author, possibly making it a useful feature.
The pseudo-code to extract the imphash from the Import Address Table is described in
Listing 3.1, and, although there is an available version on the pefile tool, it has been
rewritten to comply with YARA restrictions (which are different from the pefile’s ones).

imports_string = ""
for dll in pe_object.IAT:

dll_name = dll.name
dll_name = remove_suffix(dll_name , ".dll")
for imported_function in dll.imports:

if imported_function has Ordinal:
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function_name = convert_ordinal_to_function_name(Ordinal)
else:

function_name = imported_function.Name
imports_string += ("," + dll_name+ "." +function_name)

return md5(imports_string)

Listing 3.1: Imphash extraction pseudo-code. The description follows the original Python
code as much as possible, with some modifications to help comprehension.

Overlay data extraction

The Overlay data is a section of bytes that are not addressed by any field of the PE header.
As a consequence, this data is not loaded automatically by the loader when creating
the executable image in memory. However, the Overlay section might contain malware
payloads, together with some other informations, not necessarily malicious.
Overlay data lie at the end of the executable, but it is not always straightforward to trace
its beginning, especially when dealing with tampered PE headers (which is usually the
case for malicious samples). Nevertheless, the PE module of YARA allows to address both
the size and the offset of an eventual Overlay section in the executable.
At the time of writing, YaYaGenPE uses the function designed in the pefile tool to extract
the Overlay section, but, as for the Imphash, this feature is not always coherent with the
one required by YARA, so, if the two do not match, this feature will be ignored.

3.2.2 User provided rules features

In order to improve the rules efficacy, YaYaGenPE offers the possibility to use, as features
of a malicious sample, the fact that it matches other YARA rules, that are retrieved by
simplifying user provided YARA rules.
The reasons behind this new set of features are multiple:

• Several malware authors tend to reuse code or functions from other malicious sam-
ples already in the wild, either because the author was the developer of the other
samples or because he/she relies on a commonly shared database of functions. As a
consequence, using previously matching rules (or part of them) might help identify-
ing malicious samples or even families.

• Usually, rules that have been written by domain experts are extremely effective and
well targeted, as opposed to automatically generated rules. However, it might happen
that those rules are over-specific for the new context in which they are currently being
applied, so, they have to be accurately simplified.

• YaYaGenPE exclusively focuses on the PE header field, so, it does not take into
account the source code of the executable. Adding opcodes to the rule generation
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might overcome this limitation, however, several rules shared with the community
already contain opcodes targeted for particular malwares. For this reason, it might
be reasonable to try to use those rules, instead of finding meaningful opcodes in the
targeted malwares.

Before using user provided rules as features, it is necessary to make them more general,
since many of them, especially those written by domain experts, tend to be tailored for a
given set of malwares.

Rules normalization and simplification

In order to simplify the rules, the idea of this work was that of converting the rules’
conditions into their conjunctive normal form and then splitting each of these normalized
conditions into a list of conditions. Before explaining the reasons behind this choice and
eventual other options, it is useful to give a definition of the terms that will be used in
the next lines.

Definition 3.2.1. In mathematical logic, a literal is an atomic formula or its negation.

Definition 3.2.2. An atomic formula is any formula that does not contain any logical
connective.

The definition of formula strictly depends on the type of logic that is being used. In
propositional logic, a formula can be:

• a propositional variable, such as True, False or any named variable (e.g., A);

• the negation (NOT) of a formula (e.g., ¬A);

• the concatenation of two formulas, through a binary connective, that is one of AND
(∧), OR (∨), implication ( =⇒ ), bi-implication (⇐⇒ ).

Although YARA rules are more complex than plain propositional logic, in that they contain
functions, that are typical of predicative logic, in this work they have been approximated
to propositional logic conditions, since it is accurate enough for the applicative context.

Definition 3.2.3. In Boolean logic, a formula is in Conjunctive Normal Form (CNF)
if it is a conjunction (AND) of one or more clauses, where a clause is a disjunction (OR)
of literals.

An example of a CNF formula might be:

(A ∨B ∨ ¬C) ∧ (¬B ∨ C),

where the two parts separated by the AND operator (i.e., (A ∨ B ∨ ¬C) and (¬B ∨ C))
are the clauses.
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Now that the basic concepts have been introduced, it is possible to explain why this sim-
plification process is performed. Specifically, if the previous CNF formula would represent
a YARA rule condition, for the rule to match, both the clauses have to be true. However,
it might happen that, for over-specific rules, one of the clauses is general enough to be
adopted for other malicious samples, while the other might not. For this reason, when the
user provides some rules, the tool does not use the entire condition as feature, but converts
it into CNF and uses all the resulting clauses as new conditions.
It is however worth mentioning that, if a rule is already general enough, the splitting of its
CNF will not alter the final result, since the rules produced by the tool will be the AND
of all the features found by the chosen algorithm. This means that, if all clauses of a rule’s
CNF are general enough to be selected, in the final rule there will be, together with other
features, all those clauses, concatenated by AND conjunctions (i.e., the original rule).

Conversion of YARA rule condition to logical proposition. The algorithm to de-
termine the conjunctive normal form from any given propositional logic formula is listed
in Algorithm 1.

Algorithm 1 Conversion of any propositional logic formula to its conjunctive normal
form (CNF)
1: Convert each implication P =⇒ Q to its equivalent form ¬ P ∨ Q
2: Convert each bi-implication P ⇐⇒ Q to its equivalent form (¬ P ∨ Q) ∧ (P ∨ ¬ Q)
3: Repeatedly replace ¬(P ∧ Q) with ¬P ∨ ¬Q
4: Repeatedly replace ¬(P ∨ Q) with ¬P ∧ ¬Q
5: Repeatedly replace ¬(¬ P) with P.
6: Repeatedly replace P ∨ (Q ∧ R) with (P ∨ Q) ∧ (P ∨ R)

In order to apply the mentioned algorithm, it is however necessary to convert (and ap-
proximate) each rule condition to a propositional formula. This implies making some as-
sumptions and simplifications over which constructs to convert to propositional variables.
As for the current version of the tool, the following substitutions are made:

1. any “for” construct is converted to a single propositional variable, even if it contains
nested “for” constructs. As an example, the construct:

for i in (0..100) : (for j in (300..500) : $a at i and $b at j)

becomes a single variable (e.g., the variable “A”).

2. any construct like “all of ...”, “any of ...” or “n of ...”, where n is an integer, is
converted to a single variable (e.g., “B”).

3. any other remaining logical construct that does not contain a connective is converted
to a single variable.
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Creating sub-rules from the YARA rule condition. Once the YARA rule condition
has been converted into a propositional logic formula, Algorithm 1 is applied to identify
the CNF of the condition.
Finally, each clause (OR formula in between two ANDs) is selected and its original YARA
rule constructs are restored. Each clause identified will thus become a new YARA rule.
When converting clauses’ variables back to their original value, it is also checked whether
the original construct is in a list of too generic conditions or not. If it is, then the construct
is omitted from the final sub-rule. This final step is fundamental to remove conditions that
will, if present, make the sub-rule match for almost every sample.

Putting things together: complete conversion example

As an example, lets consider the YARA rule in Listing 3.2, that matches a sample of one
of the most famous cyber-physical malware campaigns.

rule Stuxnet_Malware_3 {

meta:
description = "Stuxnet␣Sample␣-␣file␣~WTR4141.tmp"
author = "Florian␣Roth"
reference = "Internal␣Research"

strings:
$x1 = "SHELL32.DLL.ASLR." fullword wide
$s1 = "~WTR4141.tmp" fullword wide
$s2 = "~WTR4132.tmp" fullword wide
$s3 = "totalcmd.exe" fullword wide
$s4 = "wincmd.exe" fullword wide
$s5 = "http ://www.realtek.com0" fullword ascii
$s6 = "{%08x-%08x-%08x-%08x}" fullword wide

condition:
(uint16 (0) == 0x5a4d and filesize < 150KB and ($x1 or 3 of ($s*)))

or (5 of them)
}

Listing 3.2: Example of Yara rule matching the Stuxnet malware.

Following the previous conversion steps, these substitutions will be defined:

• “uint16(0) == 0x5a4d” becomes variable “A”;

• “filesize < 150KB” becomes variable “B”;

• “$x1” becomes variable “C”;

• “3 of ($s*)” becomes variable “D”;
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• “5 of them” becomes variable “E”;

the condition becomes something like:

(A and B and (C or D)) or E.

The previous is a plain propositional logic formula, for which it is possible to apply Algo-
rithm 1. The result of the application of the algorithm is:

(A or E) and (B or E) and (C or D or E).

Finally, selecting each clause and reverting back each variable to the original construct,
the rules in Listing 3.3 are generated.

rule Stuxnet_Malware_3_0 {

strings:
$x1 = "SHELL32.DLL.ASLR." fullword wide
$s1 = "~WTR4141.tmp" fullword wide
$s2 = "~WTR4132.tmp" fullword wide
$s3 = "totalcmd.exe" fullword wide
$s4 = "wincmd.exe" fullword wide
$s5 = "http ://www.realtek.com0" fullword ascii
$s6 = "{%08x-%08x-%08x-%08x}" fullword wide

condition:
uint16 (0) == 0x5a4d or (5 of them)

}

rule Stuxnet_Malware_3_1 {

strings:
$x1 = "SHELL32.DLL.ASLR." fullword wide
$s1 = "~WTR4141.tmp" fullword wide
$s2 = "~WTR4132.tmp" fullword wide
$s3 = "totalcmd.exe" fullword wide
$s4 = "wincmd.exe" fullword wide
$s5 = "http ://www.realtek.com0" fullword ascii
$s6 = "{%08x-%08x-%08x-%08x}" fullword wide

condition:
filesize < 150KB or (5 of them)

}

rule Stuxnet_Malware_3_2 {

strings:
$x1 = "SHELL32.DLL.ASLR." fullword wide
$s1 = "~WTR4141.tmp" fullword wide
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$s2 = "~WTR4132.tmp" fullword wide
$s3 = "totalcmd.exe" fullword wide
$s4 = "wincmd.exe" fullword wide
$s5 = "http ://www.realtek.com0" fullword ascii
$s6 = "{%08x-%08x-%08x-%08x}" fullword wide

condition:
$x1 or 3 of ($s*) or (5 of them)

}

Listing 3.3: Result of the sub-rules generation.

Results in Listing 3.3, although correct, show the reason behind the last point of the
previous paragraph (i.e., filtering out too much generic literals). In particular, “uint16(0)
== 0x5a4d” will always match a PE executable (referring to Appendix A) and “filesize <
150KB” might as well match a big number of executables.
Because of this reason, once defined the clauses and converted them back, too general
literals are removed from the newly created rules. As a result, the first two rules will
become as shown in Listing 3.4.

rule Stuxnet_Malware_3_0 {

strings:
$x1 = "SHELL32.DLL.ASLR." fullword wide
$s1 = "~WTR4141.tmp" fullword wide
$s2 = "~WTR4132.tmp" fullword wide
$s3 = "totalcmd.exe" fullword wide
$s4 = "wincmd.exe" fullword wide
$s5 = "http ://www.realtek.com0" fullword ascii
$s6 = "{%08x-%08x-%08x-%08x}" fullword wide

condition:
5 of them

}

Listing 3.4: First two rules of Listing 3.3 after cleaning the generic constructs.

The two resulting rules will be identical, so, only one of them is preserved, while the other
is removed from the generated sub-rules.

Rules to features conversion. The previous steps describe the process of simplification
of the user provided rules. However, these rules are not yet the malicious samples features.
In order to create the proper features from these rules, it is, indeed, tested each rule against
each input malware and, when a rule matches, it is added to the remaining set of features
associated to the matched sample.
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3.3 Executables clustering

This step of the tool is optional and performed only when requested by the user, although
it is suggested to request it when the size of the samples set is fairly high (clustering should
be adequate for samples sets of 10 elements or more).
The reason behind the usage of clustering has to be found on the balance between rules
outcomes and computational complexity and time required by the two basic algorithms
(i.e., greedy and clot). As will be explained in the next section, the greedy algorithm is
quite fast, however, when the samples set size increases significantly, it tends to produce
rules with a small amount of literals. This might mean that rules are too generic and, con-
sequently, they can generate a relatively high number of false positives. On the contrary,
the clot algorithm tends to be more accurate than the greedy one, but its computational
time is higher.
In order to account for both, clustering of executable samples seems to be the most rea-
sonable solution.
There are lots of clustering algorithms that have been developed and studied during the
years, however, some require to set up the number of clusters the user wants (e.g., the K-
Means algorithm or any hierarchical clustering algorithm, if there is no alternative choice
for the dendrogram’s cutting point). This parameter is not determinable a priori in the
context of malware clustering, especially since the tool does not know the samples it will
be provided with until runtime.
For this reason, the choice of the clustering algorithm has been restricted to those that
are capable of automatically defining the number of clusters produced.
The algorithms selected for the tool are of two different clustering classes:

• density-based clustering: this class of algorithms generates clusters by identifying,
in the areas of the features space, points connected together by an appropriate level
of density. The most famous algorithm of this class is DBSCAN, whose acronym
stands for density-based spatial clustering of applications with noise.

• monothetic divisive clustering: this class of algorithms is not among the most
famous ones, but, for the purposes of this work it might be meaningful to give it a
try. In particular, a monothetic divisive (hierarchical) clustering algorithm, as the
name says, performs an hierarchical divisive clustering by taking into account one
feature at each split. This approach allows to read the dendrogram thus created as
if it was a decision tree.

Before delving into the details of the mentioned approaches, it is necessary to talk a little
about used metrics and features’ domains.
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3.3.1 Features’ domains and metrics

As for all the data analysis problems, the first step to take, before choosing the algorithms,
is to decide which will be the numerical domain of each feature and, once defined, the most
appropriate distance for that domain.

Features’ domain choice

During the development of the tool, it has been chosen to consider all the features as
binary, eventually converting features relying on strings and integers to binary ones.
The reasons behind this choice are multiple:

• most of the features of the PE header are binary ones, such as those involving flags
of any field, Imported functions and DLLs or even the rules matching, if the user
provides them.

• features relying on integer values, which are almost all the remaining ones, tend to
assume discrete values and, in almost every case, are not that meaningful for the
identification of the clusters. As an example, features like PE header’s image base
field, section alignment, disk alignment or sections starting addresses usually tend
to be always multiple of a page or of a disk section (in the case of disk alignment),
and this holds even for executables completely different from each other. On the
contrary, resources offsets and even size are really mutable but the same values of
these fields might be valuable for identifying variants of the same samples.

• features containing string values have no clear distance definition, apart from the
equality concept. Because of this, it is appropriate to convert them to binary, even
if it adds features redundancy.

Although some features selection might be done just before applying density-based cluster-
ing, one might ask why aren’t the features containing strings and integers always removed.
The reason is twofold:

• as explained in chapter 2, malwares tend to rely either on polimorphic/metamorphic
engines or on packers. Although these tools modify the content of the executable,
they usually keep untouched most of the integer values in the PE header, as they
usually tamper the Import Table and the executable’s entry point.

• when packers modify section names, which is one of the few string features, they
tend to give, in some cases, names that are related to the packer in some way or
unconventional ones. In these cases, it might be helpful to keep this information for
the clustering procedure.
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Distance choice

When choosing a distance definition, it is necessary to take into account the mathematical
domain of the features, and the meaning the distance has with respect to the applicative
field.
Because of the choice made on the previous lines, the selection of the distance has to be
done among those compatible with binary values. An exhaustive listing of similarities and
distances for binary features is in [18].
The similarities (and, consequently, the distances) that have been chosen for the tool were
the Jaccard and the Russell-Rao ones. However, before describing the chosen similarities,
it is worth defining some quantities, which will be referred later.
In the context of binary features, each data sample (in this case, an executable) can be
represented as a binary array of length equal to the total number of distinct features.
Each binary value is then set to 1 if the corresponding feature is present in the sample or
0 otherwise.
Given a set of N features, and two samples p and q, it is possible to define 4 quantities:

a =
N∑

i=1
piqi, (3.1a)

b =
∑

i:pi=0
∧

qi /=0

1, (3.1b)

c =
∑

i:pi /=0
∧

qi=0

1, (3.1c)

d =
∑

i:pi=0
∧

qi=0

1. (3.1d)

The sum of all these quantities gives the total number of features (N).
These quantities respectively represent: the number of features p and q have in common
(a), the number of features p has that q doesn’t (b), the number of features q has that p
doesn’t (c) and the number of features both p and q do not have (d).

Jaccard Similarity. The Jaccard similarity is a statistical measure that evaluates how
close two samples are by measuring the ratio between the size of the common features and
the size of the union of the features present in at least a sample.
Mathematically, given two features sets A and B, coming from two different samples, the
Jaccard similarity is defined as:

J(A,B) = card(A ∩B)
card(A ∪B) .

42



3 – The proposed framework

Equivalently, using the quantities defined in Equation 3.1:

J(p, q) = a

a+ b+ c

Russell Rao similarity. This similarity is less common than the previous one, however,
it has the advantage of considering also the absence of features. Specifically, the Russell
Rao similarity of two samples is defined as the ratio between the total number of common
features and the total number of features in the domain (i.e., the length of the array
representing all the features).
Referring back to Equation 3.1, the Russell Rao similarity can be expressed as:

R(p, q) = a

a+ b+ c+ d

Jaccard and Russell Rao differences. From the previous definitions, it is easy to see
that the Jaccard similarity tends to evaluate the closeness of two samples relative to the
features possessed by at least one of them. On the contrary, the Russell Rao similarity
measures how similar two samples are in an absolute way, that is, by considering all the
possible features the samples might have.
To better explain the difference, and why both similarities are valuable in the context of
this work, lets assume to have three arrays of features: A = 1101011011, B = 1100000000
and C = 0101000000.
The Jaccard similarities for each couple of arrays are:

J(A,B) = 2
7 , J(B,C) = 1

3 and J(A,C) = 2
7

As a result, the closest couple, considering the Jaccard similarity, is (B,C), even though
the two of them have only one common component, while (A,B) and (A,C) share two
features each. When computing the Russell Rao similarity, instead:

R(A,B) = 2
10 , R(B,C) = 1

10 and R(A,C) = 2
10

This means that, when using the Russell Rao similarity, couples (A,B) and (A,C) are
equivalently similar and have higher similarity than the (B,C) couple.
In the context of features clustering for rule generation, although the Jaccard similarity
is a valid measure, it might be useful to take into account the Russell Rao one, since it
tends to privilege elements that have many features in common. Having an high number
of common features in a cluster is desirable in the context of rules generation since it helps
creating detailed rules, which might be less prone to false positives.
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3.3.2 Density-based clustering algorithms

Many clustering algorithms work under the assumption that data points are distributed
following a mixture of several Gaussian distributions. This assumption leads to the cre-
ation of spherical clusters, which, in some cases, might not be adequate. Moreover, some
of those algorithms require to set the number of clusters to be determined, which, is not
easy to define a-priori and it is typically dependent on the instance of the problem.
Density-based algorithms, on the contrary, do not make assumptions about data distri-
bution, and try to discover arbitrarily shaped clusters (Figure 3.2). The principle behind
density based clustering is to find connected, dense areas in the data (features) space, sep-
arated by sparser areas [21]. Consequently, the number of clusters the algorithm generates
strictly depends on the number of connected dense areas found.

Figure 3.2: Comparison of different clustering algorithms when dealing with non-rounded
shape clusters.

The results of the algorithm are dependent on the definition of “dense areas” and of
“connected” points. Different definitions of the previous terms define different density-
based clustering algorithms.

3.3.3 HDBSCAN clustering algorithm

The HDBSCAN algorithm is an improvement of the density-based clustering procedure.
It tries to overcome all the limitations that density-based clustering algorithms have [11].
In practice, this is done by adding hierarchical clustering on top of a DBSCAN variant
[11][12][36], by varying the density parameter for all the possible values it can have and
keeping track of any change in the clusters when doing so.

DBSCAN algorithm

DBSCAN works on the concepts of “dense” areas. In order to define when an area is
“dense”, it is thus needed to define a minimum density threshold, and a common unit
area where to compute the density. Specifically, DBSCAN requires that the user provides
a minimum number of points (data samples) MinPts as density threshold and a radius ε
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from which it is created a circular area in which density is evaluated.
Using the previous two parameters, it is possible to define the concepts of core points and
of density-reachability.

Definition 3.3.1. A data sample is a core point if the neighborhood of radius ε of the
sample contains at least MinPts points.

Definition 3.3.2. A point q is directly density-reachable from a point p if p is a core
point and distance(p, q) < ε.

Definition 3.3.3. A point q is (generally) density-reachable from a point p if there is a
path p1, . . . , pN such that p1 = p, pN = q and, for each i in 1, . . . , N − 1, pi+1 is directly
density-reachable from pi.

From these definitions, it is possible to classify each point of the dataset as:

• core point.

• border point: a data sample is a border point if the neighborhood of radius ε of the
sample contains less than MinPts points and at least one of them is a core point.

• noise point: a data sample is a noise point if the neighborhood of radius ε of the
sample contains less than MinPts points and none of them is a core point.

The algorithm starts from a point of the dataset and classifies all the points according
to one of the previous definitions. While doing so, the algorithm simultaneously defines
the clusters, by grouping together all the points that are density-reachable from at least
another point (i.e., the core and border points).
The algorithm’s pseudocode is in Algorithm 2.
Although DBSCAN works well for data spaces in which clusters are not rounded shaped,
there are some limitations of this approach. The first of these is the difficulty in estab-
lishing which are the most appropriate threshold and ε parameters. Even more relevant,
this algorithm can provide good results only for data spaces where density is sufficiently
homogeneous. Indeed, when the algorithm is provided with a dataset with different density
areas, results are not as good as expected.
HDBSCAN tries to overcome both these limitations at the cost of a slower procedure.

DBSCAN* algorithm

This algorithm is a variant of the standard DBSCAN that removes the concept of border
points. With this restriction in mind, it is possible to define a concept similar to the direct
density-reachability, that is ε-reachability. In particular, given the previously introduced
parameters MinPts and ε, the ε-reachability is defined as follows:

Definition 3.3.4. Two points p and q are ε-reachable if they are core points and distance(p, q) ≤ ε.
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Algorithm 2 DBSCAN pseudo-code.
C ← 0
for Point p in database DB do

if label(p) /= undefined then
continue

end if
Neighbors = get_Neighbors(DB, distance, p, eps)
if |Neighbors| < minPts then

label(p)← ”Noise”
continue

else
C ← C + 1
for q in Neighbors do

if label(q) == ”Noise” then
label(q)← C

end if
if label(q) /= undefined then

continue
end if
label(q)← C
Neighbors_q = get_Neighbors(DB, distance, q, eps)
if |Neighbors_q| ≥ minPts then

Neighbors← Neighbors ∪Neighbors_q
end if

end for
end if

end for

From this definition, it follows:

Definition 3.3.5. Two points can be defined as density-connected if they are directly or
transitively ε-reachable.

The DBSCAN* algorithm differs from the DBSCAN in the way it defines the clusters.
In particular, the algorithm defines each cluster C as the set of points of the dataset that
are density-connected.

HDBSCAN algorithm

The idea behind HDBSCAN is to extend DBSCAN* to support an hierarchy of DBSCAN*
clustering results for each possible ε value. There are different interpretations of the algo-
rithm’s procedure, which are exhaustively described in [36].
Although the explanation of the algorithm is more elaborated than the following one,
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and not strictly linked to the DBSCAN* algorithm, it is possible to conceptually inter-
pret HDBSCAN as a way to find clusters that persist for several ε values when running
DBSCAN* over all the possible ε. This clusters’ selection removes the choice of the ε
parameter and allows to select clusters properly even when dealing with varying density
datasets.
Moreover, if the persistence score of each cluster is defined properly, the problem of find-
ing a set of non-overlapping clusters that maximizes the total persistence can be seen as
a constrained optimization problem and it has a straightforward solution.

Applying the HDBSCAN algorithm to the dataset

This work uses the implementation of the HDBSCAN algorithm in [58]. It requires, as
input parameter, a matrix of N rows and M columns, where N is the total number of
samples and M is the total number of features, and a metric. The matrix contains, at
each entry (n,m) a 1 if the n-th sample has the m-th feature, or 0 otherwise. The metrics
chosen, as mentioned previously, were the Jaccard and the Russell-Rao ones, both natively
supported by the library (Figure 3.3).

Figure 3.3: Creation of the NxM matrix from the reports given as function parameter.

At the end of the clustering procedure, the HDBSCAN algorithm will return a set of
clusters and a set of noise points. For each cluster, it is applied the rules generation
algorithm. However, it is necessary to decide how to act when dealing with the noise
points’ rules generation. The current choice is to create a new rule for each noise point, as
specific as possible(Figure 3.4). This approach generates rules that might be over-specific,
however, grouping together all the noise points in a single cluster and applying the rules
generation algorithm on it have shown, experimentally, poor results.
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Figure 3.4: Creation of one rule for each noise point identified and clusters grouping. The
rule creation step is just the conversion of the noise point’s features to a YARA rule
composed as the logical conjunction of all the features.

As shown in Figure 3.4, with this last choice, if the user provides some goodwares, there
is no way to avoid false positives, if there is any for the noise points’ rules. Nevertheless, if
any noise point generated a rule detecting at least a false positive, that would be always
present, no matter the cluster the noise point is in. Specifically, if a noise point rule
detected a false positive, it would mean that all the noise sample’s features are not enough
to distinguish it from the detected false positive.
The remaining samples (i.e., those that are not noise points) are grouped in their respective
clusters (Figure 3.4). For each cluster it is then applied the procedure of rules generation
(Figure 3.5).

Figure 3.5: Creation of the rules for each cluster identified (i.e., those whose samples’
cluster_id is at least zero). The rule creation step is performed by the “compute_rules”
function.

As shown in Figure 3.5, if the user provides some goodwares, and any of these produces a
false positive for a cluster, the set of rules returned by the “compute_rules” function will
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be empty, and, in that case, the HDBSCAN algorithm is recursively applied only to that
clusters’ points, so to identify more specific sub-clusters and, consequently, more specific
rules.
Finally, once each sample is covered by at least a rule, the total rule set is returned.

3.3.4 Monothetic clustering algorithms

The monothetic clustering algorithms are a set of procedures that define clusters whose
components have some features in common, instead of being generally “close” to each
other. Specifically, a cluster is called monothetic if a conjunction of logical properties is
both necessary and sufficient for the membership in the cluster [15]. In practice, this is
done, in the case of hierarchical clustering, by splitting (or merging) data objects using a
single variable at a time.
This type of clustering methodologies is not widespread among the community, however,
the previous definition is what is desirable for the rules generation procedure because it
allows, while creating the clusters, to identify some of the features that will be included
in the final rules.
For the purposes of this work, the monothetic algorithms that have been taken into ac-
count are those involving a hierarchical divisive clustering, and, in particular, they are the
“Unsupervised Decision Tree” [6] and the “DIVCLUS-T” [16].
These two algorithms are conceptually similar each other, however, they require that the
user defines a minimum number of samples per leaf node or the number of desired clusters
(these two are the requirements for the “Unsupervised Decision Tree”) or the dendrogram’s
cutting point (for the DIVCLUS-T).
These requirements, as already mentioned, are not easily determinable in an automated
context, so, the algorithms have been slightly adapted to stop when an homogeneity cri-
terion is matched.
Although it is well known that developing ad-hoc clustering algorithms might not be the
best choice, the applicative context and the clusters’ subsequent usage for rule generation
justify the introduction of these variations from the standard procedures.
Through all the entire work, this clustering variant will be referred to as “Unsupervised
Decision Tree”(UDT), which, although being also the name of one of the two clustering
procedures it was inspired by, is auto-explicative of the clustering outcome.

3.3.5 Building the clusters tree

The generation of the clustering tree in the tool follows the same structure of the ones in
[6] and [16], however, it differs for the evaluation of the quality of the split and for the
stopping criterion, which are linked together.
The algorithm consists of a recursive procedure that works on a sub-partition of the initial
dataset. In the following description, it will be considered the recursive function over a
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generic partition of the dataset, which, at the beginning, corresponds to the entire dataset.

Features extraction and features selection

The procedure starts by counting, for each feature present in at least a data sample of
the considered partition, the number of occurrences of the feature. Among these features,
only those that are shared by at least a minimum percentage of data samples m and by at
most (1−m) ·N samples, with N total number of samples in the partition, are preserved.
The reason behind this features selection process is twofold:

• considering all the possible features would slow down the clustering procedure too
much, especially when working on big datasets at the beginning of the procedure;

• features that are rare in the partition, although valuable, might create too small
clusters, and, considering the subsequent rule generation procedure inside the final
cluster, this might lead to over-specific rules.

It is worth mentioning that, as the recursion goes deeper, and partitions get smaller,
the features selection becomes lesser and lesser selective, allowing the algorithm to be
sufficiently generic at the beginning, while more specific towards the end.
Due to this features selection, it is possible that the set of selected features will be empty,
because all the features are either too much rare or too much frequent in the partition.
In that case, the clustering algorithm stops and the rules generation procedure starts, as
shown in Figure 3.6.
Similarly to HDBSCAN, if the rules generation procedure creates rules that match any of
the user provided goodwares, the rule set will be empty, so, the procedure will be repeated
from scratch, this time considering all the possible features (i.e., m = 1

N
).

In this last case, if the features set is still empty, it means that all the samples share
the same set of features, so, if the rules generated from here will produce false positives,
they cannot be extended any further and, as a consequence, they will still produce false
positives.

Selecting the best splitting feature

Once all the valid features have been selected, it is necessary to define which of these is
the best one. Algorithms in [6] and [16] propose two different approaches for the choice of
the best feature.
In particular, DIVCLUS-T [16] proposes the usage of the inertia criterion for the considered
partition, which is a generalization of the sum of square errors criterion. This criterion,
applied to a bi-partition results in the maximization of the between-cluster inertia of the
partition, which is:

B(Al, Al̄) = µ(Al)µ(Al̄)
µ(Al) + µ(Al̄)

distance2(g(Al), g(Al̄))
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Figure 3.6: Clustering tree features selection.

where l is the feature that splits the partition A, µ(Al) and µ(Al̄) are the sum of the
weights associated to each sample of, respectively, Al and Al̄, and g(Al) and g(Al̄) are the
centroids of the respective partitions.
When the samples have all the same weight, equal to 1, as for this thesis’ context, µ(Al)
and µ(Al̄) are equivalent to the total number of samples of the respective partition, n(Al)
and n(Al̄). As a consequence, the previous expression becomes:

B(Al, Al̄) = n(Al)n(Al̄)
n(Al) + n(Al̄)

distance2(g(Al), g(Al̄)).

The “Unsupervised Decision Tree”[6] algorithm, on the contrary, proposes 4 different mea-
sures, two of which are computationally expensive but provide accurate selection of the
feature, while the others are less accurate but faster.
Both the approaches have justified measures selection, but, for the purposes of selecting
a proper stopping criterion, they are not well suited. In particular, none of the measures
there mentioned have an intuitive threshold that indicates whether the cluster that is be-
ing split is already sufficiently homogeneous.
For this reason, the splitting criterion chosen for the current implementation
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relies on the maximization of a distance parameter.
Specifically, the distance that is maximized at each step is the one between
the closest binary approximation of the centroids of the clusters. In particular,
the approximation of the centroids is obtained by rounding the centroids’ features values,
which, being the mean of all the feature values of the cluster they represent, are typically
not integer (Figure 3.7).

Figure 3.7: Function that determines the closest binary feature point to the centroid of a
cluster.

The rounding of the centroids has the benefit of making possible the application of the
Jaccard and the Russell Rao measures while smoothing the weight of the highly variable
integer and string features. Indeed, many features, such as the entrypoint one, or the sec-
tion names ones, tend to assume several different values. When converting these features
to binary ones, there will be one new binary feature per value. If one particular value of
these is relevant for the cluster, this would be the prevalent one among all the possible
values, and, when computing the cluster’s centroid, it will likely have a corresponding
mean value close to 1. On the other hand, a feature that assumes an approximately homo-
geneous distribution of the feature’s values will have no prevalent value, so, all the binary
features averages in the centroid will be close to 0.
The rounding of each feature allows then to enhance the weight of common string and
integer feature values and to reduce the weight of rare or not relevant ones.
In mathematical terms, given a cluster’s centroid g(A), for which each feature’s value is
a real number between 0 and 1, and its features set F , the binary approximation of the
centroid a(A) is determined by:

∀i ∈ F, ai(A) =
{

1 if gi(A) >= 0.5
0 otherwise
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The feature selected when splitting a cluster A is then:

l = argmaxi∈F {distance(a(Ai), a(Aī))},

where Ai and Aī are the two partitions determined, respectively, by the samples that have
the feature i (i.e., each sample s such that si = 1) and by the samples that don’t have the
feature i.
Currently, if there is more than one feature that has the maximum distance value, the
selection of the splitting one is a random choice, however, it might be possible to use
additional and more precise criteria, as it is done in [16].
The procedure that selects the best feature and its partitions is in Figure 3.8.

Figure 3.8: Portion of code that determines the best splitting feature for the provided
dataset.

Evaluation of the stopping criterion and rules generation

Once the best splitting feature has been defined, the two new sub-clusters are determined
by taking the two partitions Al and Al̄ associated to that feature.
After the sub-clusters have been found, it is necessary to evaluate whether they can be
considered valid or if they are too close each other. To do this, it is fixed a distance thresh-
old, that defines when the two clusters can be preserved and when the rules generation
can start over the entire partition A = Al ∪Al̄. In particular, the split is stopped when:

distance(a(Al), a(Al̄)) < min_threshold.

This stopping criterion justifies the usage of the plain distance measure as splitting quality
evaluation, since it gives an intuitive idea of which should the threshold be (approximately).
Experimental results have shown that, when using the Russell Rao similarity, a distance
threshold of 0.7 is accurate enough to generate good clusters. Similarly, for the Jaccard
similarity it has been set a distance threshold of 0.45.
The chosen values have an heuristic motivation behind:
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• when the centroids’ approximations have a distance of less than 0.7, using the Russell
Rao similarity, it means that, among all the possible features, at least 30% of them
are shared;

• when the centroids’ approximations have a Jaccard distance of less than 0.45, it
means that, among all the features possessed by at least one of the two representa-
tives, at least 55 % of them are shared.

Both the just mentioned percentages are such that, when generating the rules, a sufficiently
high number of features per rule is selected (around 100 features per rule in the worst
cases).
The portion of code that evaluates the stopping criterion and acts consequently is in
Figure 3.9.

Figure 3.9: Last part of the tree generation code. It includes the evaluation of the stopping
criterion and the rules generation. As for Figure 3.8, the stopping disequation is here
reverted due to the signs of the distance measures.

Finally, if the two sub-clusters are close enough (i.e., the stopping criterion is verified),
the rules generation procedure starts. As it was happening for the HDBSCAN clustering,
if the rules generated match any goodware the user provides, the returned set of rules will
be empty. In this case, the sub-clusters determined at the previous steps will be considered
valid and the procedure starts (recursively) again on each of them.

The logical tree structure. The bi-partition created by the algorithm, by splitting on
a single feature, identifies a tree whose leaves are the final clusters. However, the main
reason why the tree was chosen is the simultaneous generation of part of the YARA rules
while clustering.
Specifically, as Figure 3.9 shows, just before recurring in any of the two sub-partitions, the
feature that generated the split is added to a list of current features, eventually negated
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when it is being considered the partition that does not have that feature. Moreover, that
feature is removed from the cluster that is determined by that feature’s presence, so that
the subsequent steps of the procedure focus only on novel features.
The features list just introduced identifies the cluster’s path in the clustering tree (from
the root to the leaf) where, being the clustering monothetic, each branch is characterized
by the presence or absence of the node’s feature for that branch samples. In other words,
the list of features at each leaf (i.e., cluster) represents a set of features whose presence
or absence is shared for the points of the cluster. For this reason, these features, together
with their boolean value, can be added to the YARA rules generated on that cluster.
A graphical representation of the tree produced when applying the “Unsupervised Decision
Tree” algorithm on the “scar” family is in Figure 3.10.

pe.imports("user32.dll","ReleaseDC")

pe.os_version.minor == 0

pe.number_of_sections == 4

cluster 0 cluster 1

shimrat_0

cluster 2 cluster 3

pe.resources[0].length==308

pe.imports("user32.dll","LoadImageA")

cluster 4 cluster 5

cluster 6

Figure 3.10: Resulting tree of the “Unsupervised Decision Tree” algorithm applied on the
“scar” family. Each node indicates the splitting feature while the two branches indicate,
respectively, on the left that the feature is True for the subset, on the right that the feature
is False.

3.4 Rules generation

The rules generation is the last step of the tool. This step relies on a function already
mentioned multiple times, that is “compute_rules” . This function has multiple tasks but
relies on the underlying algorithm the user has chosen.
The actual version of the tool supports two different algorithms, the greedy and the clot
algorithm, which will be described in this section.
Back to the “compute_rules” function, its body is almost equivalent in the HDBSCAN
and the “Unsupervised Decision Tree” algorithms, so, in the following lines, it will be
described just once, underlying the differences when needed. The current implementation
of the function is depicted in Figure 3.11.
The function starts by calling the algorithm requested by the user on the samples contained
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Figure 3.11: Function that generates the YARA rules. It relies on the algorithm asked by
the user and, if the user provided any goodware, it checks that the rules obtained do not
generate false positives. If they do, then it returns a void rule set.

in the considered cluster. Then, in the case of the “Unsupervised Decision Tree”, the set of
features that characterize the cluster (i.e., the ones that are determined at the clustering
step) are added to each produced rule.
Finally, if the user provided some goodwares, each of them is tested against the rules and,
if at least a false positive is found and the cluster that generated the rules has at least
two samples, it is returned a void rule set (None value). In any other case, the set of rules
determined by the previous steps is returned to the caller, either because the rules did
not generate any false positive, or because the cluster was consisting of a single element,
which means, no more clustering is possible.

3.4.1 The underlying algorithms

The greedy and the clot algorithms were initially developed for the YaYaGen tool, how-
ever, they work on any general set of features, so, they were both suitable for the Portable
Executable tool variant.
In the following sections, there will be a description of the general idea of both the pro-
cedures, not referring to the particular YARA generation procedure, but considering the
goal of finding a group of features sets that can cover all the data samples.
In mathematical terms: lets consider a set of data samples S. Each sample s ∈ S is
characterized by a subset Fs of features, where Fs ⊂ F and F is the overall set of features.
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Alternatively, each sample s ∈ S could be seen as an array of |F | elements such that:

∀ f ∈ F, sf =
{

1 if s has feature f
0 otherwise

Each feature f ∈ F is associated with its relative relevance score w which indicates the
importance of the feature’s presence in a data sample.
From the set of features F , it is possible to identify its powerset P(F ). The idea of both
the algorithms is to try to find, from the powerset of F a “good” set of elements (i.e.,
sub-sets of F ) R ∈ P(F ) such that:

∀ s ∈ S ∃ r ∈ R : ∀ f ∈ r, sf = 1.

In other words, the algorithms try to find a “good” set of rules R that covers completely
the samples set S, in which, each rule r ∈ R is composed of a set of features f ∈ F .
Alternatively, these algorithms can be seen as a sub-optimal solution of the “Set cover”
problem [53] where the set of rules R is the solution that covers the entire universe, which
corresponds to the entire set of data samples.

The greedy algorithm

The greedy algorithm tries to do what just mentioned by searching for the first local op-
timum solution it can get.
The algorithm requires a threshold t that guides the search of “good” rules, and that can
be manually configured by the user, so to find the best balance between rules specificity
and number of generated rules.
The algorithm iterates on all the samples not covered by any rule. In particular, it deter-
mines two elements in the set of uncovered samples such that the common features’ score
is maximum, by relying on the score of each feature previously mentioned (procedure in
Algorithm 3).
Once the best intersection of samples is found, the corresponding set of features Fi is
tested against all the remaining uncovered samples, and, if any matching sample is found,
it is removed from the list of the currently uncovered samples.
For all the remaining samples, it is then progressively identified a new set of features Fr

by finding the best intersection between the current set of features Fi and those of any
other sample (Algorithm 4).
The procedure goes on until it is found a set of features that has a score lower than the
fixed threshold t. When this happens, the set of uncovered samples is updated, by re-
moving the samples s such that Fs ⊇ Fr, and the procedure starts again, until the set of
uncovered samples is empty.
The complete procedure is in Algorithm 5.
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Algorithm 3 Function that determines the best couple of samples to get features from.
The evaluate function is used to measure the quality of the common features of the samples.
function evaluate(F,W )

val = 0.0
for f ∈ F do

val = val +W [f ]
end for
return val

end function

function get_best_feature_pairs(U)
best_rule← ∅
best_val← 0.0
for si ∈ U do

for sj ∈ U\{si} do
features = si ∩ sj

val = evaluate(features, W)
if val > best_val then

best_val = val
best_rule = features

end if
end for

end for
return best_rule

end function

Algorithm 4 Function that finds the best intersection between a predefined set of features
and any other sample in a set of samples L.
function get_relaxed_rule(yara_rule, L, W)

best_rule← ∅
best_val← 0.0
for s ∈ L do

features = yara_rule ∩ features(s)
val = evaluate(features, W)
if val > best_val then

best_val = val
best_rule = features

end if
end for
return best_rule

end function
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Algorithm 5 Greedy algorithm pseudo-code. It takes as parameters a samples set S and
the user defined threshold t
function greedy(S,W, t)

U ← S
rules_list = List()
while U /= ∅ do

if |U | > 1 then
yara_rule = get_best_feature_pairs(U)

else
yara_rule = get_features(U)

end if
L← U\{s ∈ U : yara_rule ⊆ features(s)}
while L /= ∅ do

new_rule = get_relaxed_rule(yara_rule, L, W)
if new_rule = ∅ then

new_rule = yara_rule
end if
if evaluate(new_rule,W ) < t then

break
end if
yara_rule = new_rule
L← U\{s ∈ U : yara_rule ⊆ features(s)}

end while
U ← L
rules_list + = yara_rule

end while
end function

The clot algorithm

The clot algorithm is more complex than the greedy counterpart, however, it does not
search for the first greedy solution possible but tries to generate a smarter (and qualita-
tively better) set of rules, at the cost of higher computational time.

In this section, for readability reasons, it is referred to any features set as a rule, im-
plying the subsequent conversion process of each set to a YARA rule.
The clot algorithm, as opposed to the greedy procedure, starts by creating a first set of
valuable rules from which picking the best ones afterwards.
The set of rules just mentioned is extracted by initially generating one rule per sample,
as specific as possible. Then, for each rule in the set, it is determined a new rule as the
best intersection of this rule’s features with any other rule. If the resulting rule has a score
higher than the user specified threshold t, it is then added to the set of rules (Algorithm
6).
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Algorithm 6 Function that determines the initial set of rules for the set of samples S from
which extracting the best ones. The “coverage” function referred is in charge of evaluating
how many samples, in the set S, are covered by the rule given as parameter.
function find_ruleset(S,W, t)

heap = List()
bunch = List()
rules_list = List()
for s ∈ S do

rule = features(s)
heap.append(rule)
bunch.append(rule)

end for
while |heap| > 0 do

heap = sort(heap)
rule1 = heap.extract_last_element()
best← ∅
for rule2 in bunch do

new_rule = rule1 ∩ rule2
if new_rule in bunch then

continue
end if
if evaluate(new_rule,W ) ≥ t ∧ best == ∅ then

best = new_rule
end if
if evaluate(new_rule,W ) ≥ t ∧

(coverage(best, S)<coverage(new_rule, S) ∨
coverage(best, S)==coverage(new_rule, S) ∧
evaluate(best,W )>evaluate(new_rule,W )) then
best = new_rule

end if
end for
if best /= ∅ then

heap.append(best)
bunch.append(best)

end if
end while
return bunch

end function

This procedure goes on until all the rules in the set, including those generated meanwhile,
have been taken into account.
With this methodology, the algorithm is capable of looking up for all the best intersections
possible, eventually considering multiple intersections, but the decision on which of these
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are part of the final ruleset is taken afterwards, that is, considering all these combinations.
In this sense, the algorithm is not strictly greedy, but has some degree of movement with
respect to the previous one.
The choice of the final set of rules is done in two separate steps: a preliminary one deter-
mines a greedy set of rules while the second one, available only for relatively small rule
sets, searches for the optimal combination of rules.
The preliminary step iterates until all the samples are covered by at least a rule. In par-
ticular, at each iteration, it selects the sample that is covered by the smallest number
of rules. Among the rules that cover this sample, the procedure selects the one with the
highest coverage of the uncovered samples and adds it to the final rule set. Once the rule
has been added to the rule set, all the samples that are covered by that are removed from
the set of uncovered samples, and the iteration starts again (Algorithm 7).

Algorithm 7 Function that determines a reasonable solution for the set of samples S,
from the rule set R provided at the previous steps. The “FIND_BEST_RULE” function
searches for the best rule in the set provided as parameter, privileging the highest coverage
value and, in case of equality, the smallest rule score.
function find_reasonable_solution(S,R,W )

U ← S
ruleset = List()
while |U | > 0 do

critical_set← ∅
for s in U do

current_set = find_matching_rules(s,R)
if critical_set == ∅ ∨ |current_set| < |critical_set| then

critical_set = current_set
end if

end for
rule = find_best_rule(critical_set)
ruleset.append(rule)
U ← U\{s ∈ U : rule ⊆ features(s)}

end while
return ruleset

end function

At the end of the procedure, there will be a final set of rules that is capable of covering all
the samples, however, this does not necessarily provide the best solution possible, since it
selects rules by focusing first on the least covered samples.
For this reason, when the set of rules is fairly small, it is reasonable to try to find the best
combination of rules possible. This search is done by considering all the combinations of
the rules, to find the best combination that covers all the samples.
Ideally, this procedure should take into account the analysis of the power set of the set
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of rules, however, this is usually computationally too expensive. For this reason, the algo-
rithm starts searching for the best solution on all the combinations of length n, where n
is the size of the rule set found at the preliminary step.
If any optimal solution is found on these combinations, it is then searched for the best
combination of n-1 rules. This procedure goes on, progressively reducing the number of
rules in each combination, until it cannot find an optimal solution anymore(Algorithm 8).

The complete sequence of function calls that drive the overall clot algorithm is in Algo-
rithm 9, which contains also the directive that decides when to apply the research for an
optimal solution and when to accept directly the first one found.

Converting the features sets to YARA rules.

Both the algorithms presented return, as a final solution, multiple features sets. These
sets, however, have to be accurately translated to a YARA rule each.
This translation mechanism is performed by simply creating, for each features set, a YARA
rule whose condition contains the conjunction (i.e., the “AND”) of all the features in the
set. Eventually, if the user provided some YARA rules to be included as features, a private
YARA rule for each selected rule feature is created.
In the end, the disjunction (i.e., “OR”) of all the ( not private) YARA rules thus created
constitutes the rule-set covering the input samples.
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Algorithm 8 Function that determines the optimal solution for the set of samples S,
from the rule set R provided at the previous steps, privileging the highest coverage value
and, in case of equality, the smallest ruleset score. “Coverage” and “Evaluate” functions
are here the sum of the “Coverage” and “Evaluate” functions applied for each rule in the
ruleset.
function find_best_solution(S,R,W, target_size)

yara_ruleset← ∅
while run_exact == TRUE do

best_solution← ∅
if target_size == 0 then

break
end if
rules_combination = get_combinations(R, target_size)
for combination in rules_combination do

U ← S
for rule in combination do

U ← U\{s ∈ U : rule ⊆ features(s)}
end for
if |U | > 0 then

continue
end if
if best_solution == ∅∨

(coverage(best_solution, S)<coverage(combination, S) ∨
coverage(best, S)==coverage(combination, S) ∧
evaluate(best_solution,W )>evaluate(combination,W )) then
best_solution = combination

end if
end for
if best_solution /= ∅ then

yara_ruleset = best_solution
target_size = |yara_ruleset| − 1

else
run_exact = FALSE

end if
end while
return yara_ruleset

end function
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Algorithm 9 Clot algorithm pseudo-code. The function has been expressed as the se-
quence of calls to the previous functions, for readability reasons.
function clot(S,W, t)

yara_ruleset← ∅
initial_ruleset = find_ruleset(S,W, t)
yara_ruleset = find_reasonable_solution(S, initial_ruleset,W )
target_size = |yara_ruleset|
search_space_size = get_number_of_combinations(|initial_ruleset|, target_size)
if search_space_size > 500 then

return yara_ruleset
else

optimal_ruleset = find_best_solution(S, initial_ruleset,W, target_size)
if optimal_ruleset /= ∅ then

yara_ruleset = optimal_ruleset
end if

end if
return yara_ruleset

end function
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Chapter 4

Experimental results.

This chapter presents the experimental results obtained with the tool, using the different
distance measures and algorithms and trying different parameters combinations and data
samples.
The dissertation covers different aspects of the experimental results, and uses, as compar-
ison meters, the yaBin and yarGen tools, introduced in subsection 2.3.2. The remaining
YARA rule generation tools are not reported here since they have been showing poor
results in most of the tests faced.
Although it has been tried to give a reasonable and sound set of results, in the context
of malware identification, outcomes are tricky to evaluate. In particular, it is not a trivial
task to determine the family of a given sample, and, as a consequence, working on families
of malwares does not necessarily provide results that have high precision, because they
might depend a lot on the mis-classification of some samples’ families.
The mis-classification of a sample’s family, indeed, might reduce the quality of the results,
because there might be samples and, consequently, rules that are actually belonging to
other families. For this reason, in most of the chapter, it will be taken into account a
relative comparison among the tools, rather than evaluating absolutely the tool’s quality.
To this extent, the experiments focused on getting an idea of 5 different aspects, covered
from section 4.2 to section 4.6:

• the quality of the clustering procedures and the capability of clustering using the
current features set;

• the capability of recognizing malware families and not their packers;

• the capacity of the tool of avoiding false positives;

• the capability of the rules to find malicious samples they weren’t trained on, even of
different families;

• the capability of the tools to cover the entire training set and the number of samples
covered per rule.
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Finally, section 4.7 presents a brief discussion of the previous aspects considered all to-
gether.
The last two sections focus, instead, on an in-depth analysis of the YaYaGenPE per-
formances. Specifically, section 4.8 presents the results obtained by testing some of the
generated rules over the VirusTotal Intelligence platform, while section 4.9 reports the
results of the k-fold validation performed on some of the biggest malware families in the
dataset.

4.1 Dataset Analysis

This section provides an insight on the dataset provided by VirusTotal. The initial study
is based on a dataset consisting of 6,881 malicious executables. Each sample is associated
with the VirusTotal report, which indicates all the most relevant information and the
outcome of the analysis performed by about 30 relevant Anti-Virus products.

4.1.1 Families detection

In order to extract the most probable family for each sample in the dataset, it has been
used AVclass, a pre-trained classifier. This tool, relying on an internal training set, asso-
ciates the most likely family to each given sample. The detailed approach of the tool is
reported in [52]; briefly, the tool uses the labels provided by Anti-Viruses on each report
in order to find out the most common family. In order to do this, the process performs
a procedure of cleaning and standardization of each Anti-Virus label, for which it relies
on two internal lists, one to clean the labels and produce a set of tokens, the other to re-
move family aliases. This is needed because Anti-Viruses do not report directly the family
name, but, each match, consists of the family plus other spurious information. Moreover,
different Anti-Viruses tend to give different names to the same family, so, before ranking
the most frequent families, aliases of each have to be converted to a single name.
This classification process has some limitations and inaccuracies, in particular in the de-
tection of family aliases and when it has to choose the most likely family among a set of
ex-aequo ones, for which the choice is almost randomic. Nevertheless, given the size of the
dataset, it is not feasible to proceed on a manual analysis in a reasonable amount of time,
thus, automatic classification is necessary.
Figure 4.1 illustrates the distribution of families in the dataset.

4.1.2 Family samples similarities

For a further analysis, each family was grouped and, for each of them, ssdeep and imphash
have been used to evaluate the similarity of every sample with any other of the same family.
The former is based on fuzzy hashing in order to determine similarity of two files [32]. The
latter is the same function introduced in section 3.2.1 and, as an hashing function, it is
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Figure 4.1: Distribution of families with more than 10 samples for the EXE dataset.

only an indicator of perfect match.
None of the two metrics is accurate, since ssdeep can find only files really close each other
and imphash is an heuristic for which even a simple swapping of DLLs would imply not
matching anymore. Nevertheless, for lots of families, the complementary usage of those
two metrics allows to detect similarities in the analysed samples. Figure 4.2 illustrates the
samples similarities on simmetric heatmaps of some of the most relevant families.

4.1.3 The YARA rule-set

To get a better picture of the dataset under-analysis, it has been made use of a big ensemble
of rules, coming from several open-source github repositories [4]. After a cleaning phase,
in which rules that did not aim at PE files or not matching any sample or syntactically
wrong were removed, the remaining rules have finally been grouped into two categories:
malware matching rules, that search for malicious behavior, and packers matching rules,
that look for packed samples.
The results of the application of these rules to the mentioned dataset are the followings:

• Malware rules: 68.8%;

• Packers rules: 63.4%.

Rules matching percentages for malware is in the order of 70%, even though, looking at
the VirusTotal reports, the number of Anti-Virus positives is high (more than 50% of Anti-
Viruses detect samples as malicious in almost all samples). This might be related to the
high percentage of packed samples: being most of them packed and being the rules based
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(a) Teslacrypt family. (b) Bitman family.

(c) Yakes family. (d) Locky family.

Figure 4.2: Heatmaps that show the correlation between samples of some EXE families.
Disposition of samples has been purposely rearranged to collapse together similar samples
as much as possible. Following the legend: colors from 0.0 to 1.0 indicate the degree of
similarity of samples for what concerns ssdeep, while imphash is different; color at 2.0
indicates samples equivalent for imphash measure; colors from 2.0 to 3.0 indicate that
samples are equivalent from the imphash point of view (value 2.0) and that they have a
degree of similarity for what concerns ssdeep as well (ssdeep similarity > 0.0).

on static analysis, it is highly probable that most of rules are not capable of matching the
samples. Moreover, it is important to remark that most of the packers matching rules are
detecting commercial and widely spread packers, so, it is likely that the number of packed
samples is even higher than the percentages indicated previously.
From Table 4.1 it is possible to see how a big percentage (approximately 37%) of samples
is packed using Armadillo, which is one of the strongest packers commercially distributed.
This should drive the analysis towards characteristics of the executables that are not so
much affected by packing.
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Packer Matched samples
Armadillo 2537
NSIS 338
PureBasic 105
PCGuard 95
aPLib 58
PECompact 48
Yoda 30
UPX 27
ASProtect 12
ASPack 5
VMProtect 4

Table 4.1: Table showing the number of samples in the dataset of executables (EXE) for
each matching packer. It is worth mentioning NSIS, which is not, usually, a packer, but an
installer, however, as described in [14], some ransomwares have been extensively misusing
it as a packer.

4.2 Clustering evaluation

A question that is reasonable to ask, when talking about clustering of malicious samples,
is whether the clusters are coherent enough to represent (generations of) families or not.
This question is even more suitable when dealing with static analysis, for which the be-
havior of a family is not taken into account (at least directly).
Most of the results in this work have been obtained by considering separated families,
already divided by using the labels given by the AVclass tool. However, this tool is limited
to determining the overall family and it is not capable of giving details about the fam-
ily’s generation and variant. For this reason, it was not possible to test the accuracy of
clustering when operating on a single family, so, the tests focused on considering all the
families together and on evaluating the clusters with respect to the family labels inside
each cluster.
In order to evaluate clustering quality, it has been used the V-measure [45]. This particular
measure, similarly to the F-measure applied for classification algorithms, consists of the
harmonic mean of two other measures, that are homogeneity and completeness. As Rosen-
berg and Hirschberg explained [45], typically, the two measures are opposed one to each
other, i.e., when homogeneity increases, completeness tends to decrease and vice-versa.
In particular, the homogeneity measure is an indicator of how much are the clusters ho-
mogeneous, i.e., how much does the algorithm tend to group together data samples having
the same data labels.
The completeness measure, on the other hand, measures how much the algorithm is capa-
ble of clustering all the data samples having a given label inside the same cluster.
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These measures, to work properly, need an already labeled solution. For this work pur-
poses, the labeled solution used was the AVclass labeling output, which associates, to each
sample, its most likely family.
However, this solution, as based on the most common family attributed by all the Anti-
Viruses that analyzed the sample, is not precise. Specifically, AVclass does not take into
account the accuracy and relevance of the Anti-Virus that attributed a label and, even
more important, it is not capable of dealing properly with ex-aequo of family labels, ulti-
mately ending in a random choice of the label.
Moreover, although AVclass developers have made a good job in aliases removal, it might
still happen that some families are aliases of some others (e.g., “teslacrypt” is also named
“bitman” by kaspersky labs [31], and “cerber” family is associated with the “zerber” family
as well [30]). Furthermore, some families might be usually associated with others since one
is a downloader of the other(s) (e.g., the “upatre” family is part of the downloaders class
and it typically drops families like “cryptowall”, “crowti” and “zbot”). These limitations
might impact negatively the clustering results, since the label chosen by AVclass might be
the wrong one, or a non-detected alias of others in the same cluster.
Homogeneity and completeness of all the data samples are in Table 4.2.

Algorithm Homogeneity Completeness

UDT 0.82 0.28
UDT+rules 0.81 0.28
HDBSCAN 0.79 0.28
HDBSCAN+rules 0.80 0.28

Algorithm Homogeneity Completeness

UDT 0.72 0.29
UDT+rules 0.74 0.29
HDBSCAN 0.89 0.27
HDBSCAN+rules 0.92 0.28

Table 4.2: Tables representing the Homogeneity and Completeness of the entire dataset,
computed when clustering using all the possible combinations of features and clustering
algorithms. Table on the left presents results when using the Russell-Rao distance, while,
on the right, results were obtained using the Jaccard distance.

The results evidence a fairly high homogeneity value while a rather small completeness.
This outcome is exactly what was expected from the measures definitions, however, it is
not much concerning the completeness low values, since it is not usually the case that each
family has to be in a single cluster. As already mentioned in chapter 2, metamorphic and
polimorphic engines generate a huge variety even in samples belonging to the same family.
For this reason, especially when considering static analysis, it is no wonder that the same
family is spread among several clusters.
The main focus of this analysis was, in fact, on the homogeneity value, which gives an idea
of how well similar samples of the same family are grouped together.
Although results are not optimal, they show an acceptable clustering quality, especially
considering the imprecise “ground truth” used as comparison meter (i.e., the AVclass la-
bels). The goodness of the results was also manually verified, by checking that the majority
of the clusters, in all the clustering procedures, contained up to two different families each.
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Results show an opposite behavior of the “Unsupervised Decision Tree” and “HDBSCAN”
algorithms. In particular, the former tends to generate more accurate results using the
Russell-Rao measure, while the latter produces better (and good) results with the Jaccard
distance.
As a matter of fact, these results might be somehow misleading. In particular, another
information that has to be taken into account for the purposes of rules generation is the
number of clusters created and the number of single point clusters among them.
Although this information is somehow contained in the completeness measure and does
not account heavily in clusters evaluation, it is practically important to consider the num-
ber of clusters for this work, since it directly affects the number and the specificity of
the generated rules. In particular, the higher the number of clusters, the higher will the
rules specificity be. Ultimately, when dealing with single point clusters, the rule will be as
specific as possible for a given sample, and this might lead to over specific rules. Table 4.3
represents the number of clusters found by each of the algorithms in Table 4.2 along with
the number of clusters containing a single point and the average cluster size.

Algorithm # Clusters Single Pts. clusters Avg. cluster size
UDT 1390 546 4,9
UDT + rules 1348 488 5,0
HDBSCAN 1232 259 5,5
HDBSCAN + rules 1314 287 5,1

Algorithm # Clusters Single Pts. clusters Avg. cluster size
UDT 1093 520 6,2
UDT + rules 1047 469 6,4
HDBSCAN 2124 524 3,2
HDBSCAN + rules 2245 572 3,0

Table 4.3: Tables showing the sizes of the clusters from which Table 4.2 was computed.
Table on the left presents results when using the Russell-Rao distance, while, on the right,
results were obtained using the Jaccard distance.

These results show the correlation between the number of clusters (and their size) and the
homogeneity value: the higher is the former, the higher will the latter be. As said, although
HDBSCAN with the Jaccard distance seems to produce the highest accurate clustering
results, this clustering quality has to be weighted considering also the high number of
produced clusters.
Finally, it is to be noted that, even though the other results show an homogeneity value
that is from 0.72 up to 0.82 out of 1.0, the clustering procedure is just a preliminary step
to make sure that the greedy or the clot algorithm can work on fairly similar samples, that
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have not (but it would be preferable to) be perfectly clustered.

4.3 Packer vs. Family detection

One of the most important questions for this work was whether the rules generated detect
the packers of the samples or their families. This question hasn’t an easy and straight-
forward answer, since there are lots of different packers and they have different levels of
complexity. Moreover, some of the packers have been modified by malware authors and
their version is not publicly available.
Apart from the difficulties of finding the right packers to test,once a packer has been found,
it is also difficult to determine the effective resilience of the rules to that packer.
A possible test to answer this question was performed by using the simplest packer openly
diffused, i.e., UPX [63], and packing all the goodwares with it. The aim of the test is to
check if the rules generated do match any of the packed goodwares.
For this test, only the families that had at least a sample packed with UPX, according to
Table 4.1 were selected. In particular, excluding malwares that were not attributed to any
family, the extracted families were: “cerber”, “locky”, “upatre” and “zerber”.
Of these families, the rules have been generated considering all the samples, even those
that were not packed by UPX. The reason behind this choice is due to the fact that cre-
ating the rules only on UPX packed samples might bias the results.
These tests require a set of UPX packed goodwares. Finding a good set of UPX packed
goodware is not easy, so, to get an approximately consistent set, it was applied the UPX
packing procedure over the original database of 3,413 goodwares and it was selected the
3,028 goodwares that were successfully packed by UPX.

4.3.1 YaYaGenPE results

Table 4.4 shows the number of false positives for all the possible algorithms and training
choices of the tool on the previously mentioned families when using the Russell-Rao dis-
tance. As shown, results are promising, in that, only one family (i.e., “Locky”) generated
false positives on a single configuration. Further analysis also indicated that the 7 false
positives found were due to a single rule, which was too generic, and presented a small
number of condition literals, probably due to a not optimal cluster from which rule was
generated.
It is worth mentioning that, when it is referred to “goodware” in Table 4.4, it is implied
that the training procedure was done considering goodwares that were not packed by UPX.
As a consequence, those rules did not generate any false positive on the “goodwares” set
used during the training phase, but that does not prevent rules from finding false positives
when the same set of goodwares is consequently packed. The rule that generated the false
positives is shown in Listing 4.1.
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Algorithms + parameters Cerber Locky Upatre Zerber
udt + greedy 0 0 0 0
udt + greedy + rules 0 0 0 0
udt + greedy + goodware 0 0 0 0
udt + greedy + rules + goodware 0 0 0 0
udt + clot 0 0 0 0
udt + clot + rules 0 0 0 0
udt + clot + goodware 0 0 0 0
udt + clot + rules + goodware 0 0 0 0
hdbscan + greedy 0 0 0 0
hdbscan + greedy + rules 0 0 0 0
hdbscan + greedy + goodware 0 0 0 0
hdbscan + greedy + rules + goodware 0 7 0 0
hdbscan + clot 0 0 0 0
hdbscan + clot + rules 0 0 0 0
hdbscan + clot + goodware 0 0 0 0
hdbscan + clot + rules + goodware 0 0 0 0

Table 4.4: Table reporting the number of false positives found on packed goodwares. Each
row reports a combination of algorithms and parameters used for the training, while each
column indicates the family in which the training was performed. Each entry indicates the
number of false positives found by all the rules of the algorithm of the corresponding row
when trained on the family of the corresponding column. All the rules obtained have been
generated by using the Russell Rao distance.

import "pe"
import "math"
private rule APT17_Unsigned_Symantec_Binary_EFA_0{

condition:
pe.number_of_signatures == 0

}

private rule apt_ProjectSauron_encrypted_container_0{
condition:

math.entropy (0x400 ,filesize) >= 6.5
}

rule YaYaRule: rule97 {
meta:

author = "YaYaGen␣--␣Yet␣Another␣Yara␣Rule␣Generator␣for␣
PE␣files␣(*)␣v0.1 _spring18"

date = "14␣Aug␣2018"
note = "Beta␣version"
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condition:
pe.characteristics & pe.RELOCS_STRIPPED and
pe.linker_version.minor == 0 and
pe.checksum == 0 and
pe.resource_version.major == 0 and
pe.sections [2]. characteristics & pe.SECTION_MEM_READ and
pe.sections [0]. characteristics & pe.SECTION_MEM_READ and
pe.sections [1]. characteristics &

pe.SECTION_CNT_INITIALIZED_DATA and
pe.sections [0]. virtual_address == 4096 and
APT17_Unsigned_Symantec_Binary_EFA_0 and
pe.sections [1]. characteristics & pe.SECTION_MEM_READ and
pe.checksum !=pe.calculate_checksum () and
apt_ProjectSauron_encrypted_container_0 and
pe.characteristics & pe.MACHINE_32BIT and
pe.resource_timestamp == 0 and
pe.sections [0]. characteristics & pe.SECTION_MEM_EXECUTE and
pe.image_version.major == 0 and
pe.image_base == 4194304 and
pe.imports("shell32.dll") and
pe.subsystem == 2 and
pe.sections [2]. characteristics & pe.SECTION_MEM_WRITE and
pe.imports("kernel32.dll") and
pe.characteristics & pe.EXECUTABLE_IMAGE and
pe.sections [2]. characteristics &

pe.SECTION_CNT_INITIALIZED_DATA and
pe.machine == 332 and
pe.image_version.minor == 0 and
pe.resource_version.minor == 0 and
pe.imports("kernel32.dll","GetProcAddress")

}

Listing 4.1: Weak rule generated by the YaYaGenPE tool, which was causing false positives
in packed goodwares.

As shown in Listing 4.1, the rule presents a small number of literals in the condition
(a reasonable expected amount in these case has been experimentally deduced around
100 features or more) and the present literals are, for the most part, common features
of both benign and malicious samples (e.g., any feature indicating read/write/execute
characteristics of the PE sections).
Table 4.5 shows the results of the exact same test as the one just mentioned but over the
rules produced using the “Jaccard” distance instead of the “Russell Rao” one.
As opposed to Table 4.4, in this case, no rule generated false positives. This can also be
partially justified by the cluster statistics in Table 4.3, for which, considering “HDBSCAN”
clustering, when using the “Jaccard” distance, more clusters were produced and, likely,
more specific rules should result.
Comparing the number of generated rules in the two cases, it results that the former
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Algorithms + parameters Cerber Locky Upatre Zerber
udt + greedy 0 0 0 0
udt + greedy + rules 0 0 0 0
udt + greedy + goodware 0 0 0 0
udt + greedy + rules + goodware 0 0 0 0
udt + clot 0 0 0 0
udt + clot + rules 0 0 0 0
udt + clot + goodware 0 0 0 0
udt + clot + rules + goodware 0 0 0 0
hdbscan + greedy 0 0 0 0
hdbscan + greedy + rules 0 0 0 0
hdbscan + greedy + goodware 0 0 0 0
hdbscan + greedy + rules + goodware 0 0 0 0
hdbscan + clot 0 0 0 0
hdbscan + clot + rules 0 0 0 0
hdbscan + clot + goodware 0 0 0 0
hdbscan + clot + rules + goodware 0 0 0 0

Table 4.5: Table reporting the number of false positives found on packed goodwares. The
table follows the exact same structure of Table 4.4 and it has been obtained by using rules
generated considering the “Jaccard” distance.

produced 210 rules, while the latter generated 237 rules.
Further analysis of the rules that detected false positives in Table 4.4 and their respective
in Table 4.5 showed that the “rule97” previously introduced was one of the most generic,
having only 27 features in its condition, while any rule produced using the “Jaccard”
distance in the same situation had at least 58 features.
This big discrepancy in the number of features per condition is probably the main reason
behind the difference in the false positives numbers, as adding features in a rule is likely
to reduce the number of false positives that will be matched.

4.3.2 yarGen results

Even if these results are enough explicative of the rules efficacy, at least for what con-
cerns UPX, Table 4.6 reports, as a comparison meter, the results obtained with another
automatic YARA rule generator: yarGen. As shown in Table 4.6, except for the “upatre”
family samples, any other family is reported to have false positives, on the majority of the
tests performed.
As for YaYaGenPE, the “goodware” parameter used in yarGen refers to the fact that the
tool has been provided with the non-packed goodwares, so that it can avoid strings that
are present there as rules features. Results show that yarGen works better when consider-
ing its internal strings database (any entry not using the “goodware” parameter), which
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Parameters Cerber Locky Upatre Zerber
rules 18 11 0 10
rules + excludegood 18 11 0 10
rules + goodware 18 11 0 11
rules + excludegood + goodware 18 11 0 11
rules + opcodes 4 4 0 0
rules + opcodes + excludegood 4 4 0 0
rules + opcodes + goodware 4 4 0 11
rules + opcodes + excludegood + goodware 4 4 0 11
rules + z0 3 1 0 7
rules + z0 + excludegood 1 0 0 7
rules + z0 + goodware 5 6 0 1
rules + z0 + excludegood + goodware 2 2 0 0
rules + z0 + opcodes 2 1 0 0
rules + z0 + opcodes + excludegood 1 0 0 0
rules + z0 + opcodes + goodware 3 4 0 1
rules + z0 + opcodes + excludegood + goodware 2 2 0 0

Table 4.6: Table representing the results of the rules produced by yarGen against the
packed goodwares. For a complete description of the parameters indicated in each row, it
is reminded to [22].

is definitely more complete than the one provided with the goodwares used during these
tests, or when taking into account opcodes.
Moreover, even though these kind of statistics will be addressed in the upcoming sections,
it should also be mentioned that, for all the family-parameters training combinations there
reported, none was capable of fully covering the training set. The highest coverage is, in
fact, obtained when the “z0” parameter is set, which relaxes the constraints imposed by
the tool when choosing strings that can be used as rules features, and, even in these cases,
coverage is never complete.

4.3.3 yaBin results

Interestingly, the yaBin tool, which was stated by the authors to possibly match the packer
of the provided samples, have shown promising results, as reported in Table 4.7.
These experiments have been taken by using the only 2 parameters that provided YARA
rules for the yaBin tool. What is even more interesting is that, by packing the goodwares,
the yaBin false positives numbers, for some of the family drastically decreased (more
details on false positives coming in the next sections). Apart from this, as was happening
for the yarGen tool, also yaBin was not capable, for some of the families and parameters
used, of covering all the samples given as training set.
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Parameter Cerber Locky Upatre Zerber
Yara 0 0 0 0
YaraHunt 0 0 0 0

Table 4.7: Table reporting the results of the false positive matches of yaBin created rules
over the families indicated by the respective column and using the parameter in the cor-
responding row.

4.3.4 Final considerations on the previous results

The just shown results show that YaYaGenPE is somehow resistant to packers detection,
at least for the UPX packer. Moreover, the YaYaGenPE tool seems to perform better than
yarGen, and equivalently to the yaBin tool. As already remarked, however, this test has
not the claim to be absolute, in that it was based on one of the simplest packers openly
diffused.

4.4 False Positives matching results

One of the biggest concerns for the cyber-security companies is whether the signatures
generated produce false positives or not. In particular, it is requested that signatures (i.e.,
YARA rules in this work) produce the least possible number of false positive matches.
In order to address this type of issues, it is needed a reliable set of goodwares. Finding a
realistic and exhaustive set of goodwares is nowadays a big problem, since the typologies
and the variety of executables is really high. In this work, it was used a set of 3,413 PE
executables extracted from a Windows 10 Operating System, containing the majority of
the softwares the common user has, plus development tools and even some compiled cus-
tom (and benign) C programs.
Although it is well known that this might not be enough, for the purposes of a realistic
approximation of benign executables used by the community, it seemed the most reason-
able choice to come up with, especially considering the lack of a commonly shared and
acknowledged goodwares test set.

4.4.1 YaYaGenPE false positives results

Unsupervised Decision Tree Clustering

This section focuses on the results obtained by using the “Unsupervised Decision Tree”
clustering algorithm on top of the “clot” or “greedy” algorithms.
Before showing the results, it is needed to mention that, although there are families count-
ing a small number of samples, the clustering algorithm has still been applied. In those
cases, if samples are already homogeneous enough, the resulting rules will be exactly
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equivalent to those from the plain application of the “greedy” or the “clot” algorithm
underneath, as the clustering stops at the first splitting attempt.
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teslacrypt 0 0 0 0 0 0 0 0
sagecrypt 0 0 0 0 0 0 0 0
ruskill 0 0 0 0 0 0 0 0
genkryptik 0 0 0 0 0 0 0 0
cerber 2 2 0 0 2 2 0 0
score 0 0 0 0 0 0 0 0
waldek 0 0 0 0 0 0 0 0
dmalocker 0 0 0 0 0 0 0 0
crowti 0 0 0 0 0 0 0 0
zusy 0 0 0 0 0 0 0 0
zbot 0 0 0 0 0 0 0 0
zboter 0 0 0 0 0 0 0 0
allaple 0 0 0 0 0 0 0 0
upatre 0 0 0 0 0 0 0 0
myxah 0 0 0 0 0 0 0 0
atraps 0 0 0 0 0 0 0 0
genericcryptor 0 0 0 0 0 0 0 0
glupteba 0 0 0 0 0 0 0 0
locky 0 10 0 0 0 0 0 0
dalexis 0 0 0 0 0 0 0 0
sage 0 0 0 0 0 0 0 0
gamarue 0 0 0 0 0 0 0 0
aura 0 0 0 0 0 0 0 0
cloud 0 0 0 0 0 0 0 0
crypmod 0 0 0 0 0 0 0 0
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Table 4.8 – continued from previous page
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Table 4.8 – continued from previous page
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scar 0 0 0 0 0 0 0 0
beebone 0 0 0 0 0 0 0 0

Table 4.8: Table that represents the number of false positives found by the rules trained
with algorithms and parameters indicated in the respective column using, as training
set, the family indicated in the respective row. The rules have been generated using the
“Russell Rao” distance. Whenever not explicitly specified the “clot” algorithm, it is implied
the usage of the “greedy” to determine the final rules.

Table 4.8 show the number of False Positives found by the rules generated using all
the possible parameters combinations over all the families detected by AVclass. All the
trainings have been done by using the “Russell Rao” distance.
Results show no False Positive matches for almost all the families and parameters com-
binations, and, although these numbers may vary slightly for the biggest families, the
number of matched False positives is always close to those already shown in Table 4.8.
Similar results were obtained by performing the same set of trainings and tests but using
the “Jaccard” distance instead of the “Russell Rao” one, as shown in Table 4.9.
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Table 4.9 – continued from previous page
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myxah 0 0 0 0 0 0 0 0
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genericcryptor 0 0 0 0 0 0 0 0
glupteba 0 0 0 0 0 0 0 0
locky 10 0 0 0 1 0 0 0
dalexis 0 0 0 0 0 0 0 0
sage 0 0 0 0 0 0 0 0
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Table 4.9 – continued from previous page
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torrentlocker 0 0 0 0 0 0 0 0
onion 0 0 0 0 0 0 0 0
critroni 0 0 0 0 0 0 0 0
dagozill 0 0 0 0 0 0 0 0
tpyn 0 0 0 0 0 0 0 0
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scar 0 0 0 0 0 0 0 0
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Table 4.9: Table that represents the number of false positives found by the rules trained
with algorithms and parameters indicated in the respective column using, as training
set, the family indicated in the respective row. The rules have been generated using the
“Jaccard” distance. Whenever not explicitly specified the “clot” algorithm, it is implied
the usage of the “greedy” to determine the final rules.
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HDBSCAN clustering algorithm

In this section it will be presented the same set of results just shown using the “Unsuper-
vised Decision Tree”, but, this time, using the “HDBSCAN” clustering.
The results are slightly higher, in terms of False positives, with respect to the correspond-
ing ones using the “Unsupervised Decision Tree”, but still, they present a small number
of False Positives for all the families.
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locky 7 1 0 0 4 1 0 0
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Table 4.10 – continued from previous page
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Table 4.10 – continued from previous page
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dynamer 0 0 0 0 0 0 0 0
torrentlocker 0 0 0 0 0 0 0 0
onion 8 1 0 0 0 0 0 0
critroni 0 0 0 0 0 0 0 0
dagozill 0 0 0 0 0 0 0 0
tpyn 0 0 0 0 0 0 0 0
zegost 0 0 0 0 0 0 0 0
ngrbot 0 0 0 0 0 0 0 0
scar 0 0 0 0 0 0 0 0
beebone 0 0 0 0 0 0 0 0

Table 4.10: Table that represents the number of false positives found by the rules trained
with algorithms and parameters indicated in the respective column using, as training
set, the family indicated in the respective row. The rules have been generated using the
“Russell Rao” distance. Whenever not explicitly specified the “clot” algorithm, it is implied
the usage of the “greedy” to determine the final rules.

Table 4.10 shows a behavior that is also evidenced in the majority of the families
presenting false positives in Table 4.8, Table 4.9 and Table 4.11. In particular, it is possible
to see that the addition of the user provided rules as features tends, in several cases, to
decrease the number of false positives matched, sometimes also drastically. This behavior
is somewhat expected, in that, user provided rules, might target strings and opcodes that
successfully distinguish malicious executables from benign one. Specifically, during all the
tests performed, it has been made use of the rules cited in subsection 4.1.3, which, although
not perfect, contain a huge number of packers and specific opcodes matching rules.
These rules might be the reason why the number of false positives, in most of the false
positives matching rules, decreases, in that, most of benign samples are not packed and are
compiled through standard compilers, which tend to have a more regular set of opcodes
(i.e., it is unlikely that they will contain the opcodes searched by these rules).
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fraudrop 0 0 0 0 0 0 0 0
autoit 0 0 0 0 0 0 0 0
enestaller 0 0 0 0 0 0 0 0
yakes 0 0 0 0 0 0 0 0
hplocky 0 0 0 0 0 0 0 0
teslacrypt 0 0 0 0 0 0 0 0
sagecrypt 0 0 0 0 0 0 0 0
ruskill 0 0 0 0 0 0 0 0
genkryptik 0 0 0 0 0 0 0 0
cerber 0 0 0 0 0 0 0 0
score 0 0 0 0 0 0 0 0
waldek 0 0 0 0 0 0 0 0
dmalocker 0 0 0 0 0 0 0 0
crowti 6 9 0 0 16 9 0 0
zusy 0 0 0 0 0 0 0 0
zbot 0 0 0 0 0 0 0 0
zboter 0 0 0 0 0 0 0 0
allaple 0 0 0 0 0 0 0 0
upatre 1 2 0 0 1 2 0 0
myxah 0 0 0 0 0 0 0 0
atraps 0 0 0 0 0 0 0 0
genericcryptor 0 0 0 0 0 0 0 0
glupteba 0 0 0 0 0 0 0 0
locky 0 0 0 0 0 1 0 0
dalexis 0 0 0 0 0 0 0 0
sage 0 0 0 0 0 0 0 0
gamarue 0 0 0 0 0 0 0 0
aura 0 0 0 0 0 0 0 0
cloud 0 0 0 0 0 0 0 0
crypmod 0 0 0 0 0 0 0 0

Continued on next page
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carberp 0 0 0 0 0 0 0 0
rack 0 0 0 0 0 0 0 0
razy 0 0 0 0 0 0 0 0
coantor 0 0 0 0 0 0 0 0
midie 0 0 0 0 0 0 0 0
tescrypt 11 7 0 0 11 7 0 0
cryptowall 2 0 0 0 8 0 0 0
tinba 0 0 0 0 0 0 0 0
zerber 0 0 0 0 0 0 0 0
delf 0 0 0 0 0 0 0 0
teerac 0 0 0 0 0 0 0 0
enestedel 0 0 0 0 0 0 0 0
mikey 0 0 0 0 0 0 0 0
bitman 0 0 0 0 0 0 0 0
barys 0 0 0 0 0 0 0 0
scatter 0 0 0 0 0 0 0 0
dridex 0 0 0 0 0 0 0 0
shiz 0 0 0 0 0 0 0 0
agentb 0 0 0 0 0 0 0 0
lethic 0 0 0 0 0 0 0 0
shade 0 0 0 0 0 0 0 0
reconyc 0 0 0 0 0 0 0 0
deshacop 0 0 0 0 0 0 0 0
fareit 0 0 0 0 0 0 0 0
dynamer 0 0 0 0 0 0 0 0
torrentlocker 0 0 0 0 0 0 0 0
onion 0 0 0 0 0 0 0 0
critroni 0 0 0 0 0 0 0 0
dagozill 0 0 0 0 0 0 0 0
tpyn 0 0 0 0 0 0 0 0

Continued on next page
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zegost 0 0 0 0 0 0 0 0
ngrbot 0 0 0 0 0 0 0 0
scar 0 0 0 0 0 0 0 0
beebone 0 0 0 0 0 0 0 0

Table 4.11: Table that represents the number of false positives found by the rules trained
with algorithms and parameters indicated in the respective column using, as training
set, the family indicated in the respective row. The rules have been generated using the
“Jaccard” distance. Whenever not explicitly specified the “clot” algorithm, it is implied
the usage of the “greedy” to determine the final rules.

4.4.2 yarGen False Positives statistics

The yarGen tool disposes of a lot of possible parameters and their combinations, however,
when considering medium-large families, the majority of them present a non-zero, and
sometimes also relevant, number of false positives. The resulting number of false positives
found for the rules produced by yarGen are in Table 4.12 and Table 4.13, where they
present the same usage of parameters per training, except for the parameter “z0” which
was used exclusively in Table 4.13. The only difference introduced by this parameter is
the fact that the scoring associated to each string is ignored when adding a string to the
generated rules, i.e., any valuable string found is added to the rule, independently on how
the tool evaluates it. This behavior usually results in a better coverage of the training set,
however, it might be a sort of double-edged sword, in that, for some families, it introduces
a spike in the number of false positives.
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fraudrop 0 0 0 0 0 0 0 0
autoit 0 0 0 0 0 0 0 0
enestaller 0 0 0 0 0 0 0 0
yakes 0 0 0 0 0 0 0 0
hplocky 0 0 0 0 0 0 0 0
teslacrypt 0 0 0 0 0 0 0 0
sagecrypt 0 0 0 0 0 0 0 0
ruskill 0 0 0 0 0 0 0 0
genkryptik 0 0 0 0 0 0 0 0
cerber 19 20 19 20 7 4 7 4
score 0 0 0 0 0 0 0 0
waldek 0 0 0 0 0 0 0 0
dmalocker 0 0 0 0 0 0 0 0
crowti 1 2 1 2 0 0 0 0
zusy 0 1 0 1 0 0 0 0
zbot 0 1 0 1 0 0 0 0
zboter 0 0 0 0 0 0 0 0
allaple 0 0 0 0 0 0 0 0
upatre 2 2 2 2 0 0 0 0
myxah 0 0 0 0 0 0 0 0
atraps 0 0 0 0 0 0 0 0
genericcryptor 0 0 0 0 0 0 0 0
glupteba 0 0 0 0 0 0 0 0
locky 25 22 25 22 7 4 7 4
dalexis 0 0 0 0 0 0 0 0
sage 0 0 0 0 0 0 0 0
gamarue 0 0 0 0 0 0 0 0
aura 0 0 0 0 0 0 0 0
cloud 0 0 0 0 0 0 0 0
crypmod 3 0 3 0 0 0 0 0

Continued on next page
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carberp 0 0 0 0 0 0 0 0
rack 0 0 0 0 0 0 0 0
razy 0 0 0 0 0 0 0 0
coantor 0 0 0 0 0 0 0 0
midie 0 0 0 0 0 0 0 0
tescrypt 0 0 0 0 0 0 0 0
cryptowall 15 1 15 1 0 0 0 0
tinba 0 1 0 1 0 0 0 0
zerber 28 19 28 19 6 19 6 19
delf 0 0 0 0 0 0 0 0
teerac 0 0 0 0 0 0 0 0
enestedel 0 0 0 0 0 0 0 0
mikey 0 0 0 0 0 0 0 0
bitman 21 5 21 5 0 0 0 0
barys 0 0 0 0 0 0 0 0
scatter 6 19 6 19 6 19 6 19
dridex 0 0 0 0 0 0 0 0
shiz 0 0 0 0 0 0 0 0
agentb 0 0 0 0 0 0 0 0
lethic 0 1 0 1 0 0 0 0
shade 6 19 6 19 6 19 6 19
reconyc 0 0 0 0 0 0 0 0
deshacop 0 0 0 0 0 0 0 0
fareit 0 0 0 0 0 0 0 0
dynamer 6 4 6 4 6 4 6 4
torrentlocker 0 0 0 0 0 0 0 0
onion 0 0 0 0 0 0 0 0
critroni 0 0 0 0 0 0 0 0
dagozill 0 0 0 0 0 0 0 0
tpyn 0 0 0 0 0 0 0 0

Continued on next page
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zegost 0 0 0 0 0 0 0 0
ngrbot 0 0 0 0 0 0 0 0
scar 0 0 0 0 0 0 0 0
beebone 0 0 0 0 0 0 0 0

Table 4.12: Table that represents the number of false positives found by the rules generated
by yarGen with the parameters indicated in the respective column using, as training set,
the family indicated in the respective row.

Family pl
ai
n

go
od

w
ar
e

ex
cl
ud

eg
oo

d

go
od

w
ar
e+

ex
cl
ud

eg
oo

d

op
co
de

s

op
co
de

s+
go

od
w
ar
e

op
co
de

s+
ex
cl
ud

eg
oo

d

op
co
de

s+
go

od
w
ar
e+

ex
cl
ud

eg
oo

d

fraudrop 0 0 0 0 0 0 0 0
autoit 0 0 0 0 0 0 0 0
enestaller 0 0 0 0 0 0 0 0
yakes 295 295 0 0 0 0 0 0
hplocky 0 0 0 0 0 0 0 0
teslacrypt 2 2 0 0 0 0 0 0
sagecrypt 295 295 0 0 0 0 0 0
ruskill 0 0 0 0 0 0 0 0
genkryptik 0 0 0 0 0 0 0 0
cerber 7 9 4 2 6 3 4 2
score 0 0 0 0 0 0 0 0
waldek 0 0 0 0 0 0 0 0
dmalocker 0 0 0 0 0 0 0 0
crowti 0 0 0 0 0 0 0 0
zusy 2 2 0 0 0 0 0 0
zbot 0 0 0 0 0 0 0 0

Continued on next page
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zboter 0 0 0 0 0 0 0 0
allaple 0 0 0 0 0 0 0 0
upatre 2 6 2 0 0 0 0 0
myxah 0 0 0 0 0 0 0 0
atraps 0 0 0 0 0 0 0 0
genericcryptor 0 0 0 0 0 0 0 0
glupteba 0 0 0 0 0 0 0 0
locky 6 14 4 3 5 4 4 2
dalexis 0 0 0 0 0 0 0 0
sage 0 0 0 0 0 0 0 0
gamarue 0 3 0 0 0 1 0 0
aura 0 0 0 0 0 0 0 0
cloud 0 0 0 0 0 0 0 0
crypmod 0 0 0 0 0 0 0 0
carberp 0 0 0 0 0 0 0 0
rack 0 0 0 0 0 0 0 0
razy 0 0 0 0 0 0 0 0
coantor 0 0 0 0 0 0 0 0
midie 0 0 0 0 0 0 0 0
tescrypt 0 0 0 0 0 0 0 0
cryptowall 1 4 0 0 0 0 0 0
tinba 0 1 0 0 0 0 0 0
zerber 25 1 25 0 4 1 4 0
delf 0 0 0 0 0 0 0 0
teerac 0 0 0 0 0 0 0 0
enestedel 0 0 0 0 0 0 0 0
mikey 0 0 0 0 0 0 0 0
bitman 3 17 0 1 0 0 0 0
barys 0 0 0 0 0 0 0 0
scatter 5 6 4 2 4 5 4 2
dridex 0 0 0 0 0 0 0 0
shiz 0 0 0 0 0 0 0 0
agentb 0 0 0 0 0 0 0 0

Continued on next page
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lethic 0 0 0 0 0 0 0 0
shade 4 4 4 0 4 4 4 0
reconyc 0 0 0 0 0 0 0 0
deshacop 0 0 0 0 0 0 0 0
fareit 0 0 0 0 0 0 0 0
dynamer 4 5 4 2 4 5 4 2
torrentlocker 0 0 0 0 0 0 0 0
onion 1 2 0 0 0 0 0 0
critroni 0 0 0 0 0 0 0 0
dagozill 0 0 0 0 0 0 0 0
tpyn 0 0 0 0 0 0 0 0
zegost 0 0 0 0 0 0 0 0
ngrbot 0 0 0 0 0 0 0 0
scar 0 0 0 0 0 0 0 0
beebone 0 0 0 0 0 0 0 0

Table 4.13: Table that represents the number of false positives found by the rules generated
by yarGen with the parameters indicated in the respective column using, as training
set, the family indicated in the respective row. The parameter “z0”, although not shown
explicitly in the table was permanently set during all the trainings performed.

As results show, yarGen rules tend to generate false positives in several tests, partic-
ularly when considering families with a numerous number of samples, according to the
distribution in Figure 4.1. In particular, the number of False Positives found by yarGen is
much higher than the number of False Positives found by YaYaGenPE.

4.4.3 yaBin false positives

yaBin shows alternating results in terms of false positives, depending on the parameter it
is being used. Results in Table 4.14 show that the usage of the “yara” parameter, which
generates really specific YARA rules, i.e., rules searching for several function prologues
each, present no false positives in all the tested families. On the other hand, the parameter
“yaraHunt”, which tries to simplify the rules generated by the “yara” parameter in order
to match several different samples, are affected by an high number of false positives. This
compromise was already stated by the authors, and, although it creates a large number
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of false positives, it successfully increases the training set coverage by the generated rules,
which, otherwise, is not guaranteed to be complete.

Family yara yaraHunt

fraudrop 0 5
enestaller 0 0
yakes 0 77
teslacrypt 0 68
sagecrypt 0 52
genkryptik 0 0
cerber 0 16
waldek 0 0
crowti 0 6
zusy 0 12
zbot 0 5
allaple 0 0
upatre 0 20
glupteba 0 52
locky 0 57
dalexis 0 1
sage 0 3
gamarue 0 1
crypmod 0 9
rack 0 0
razy 0 3
midie 0 1
tescrypt 0 5
cryptowall 0 10
tinba 0 1
zerber 0 12
teerac 0 0
enestedel 0 0
mikey 0 1
bitman 0 32
barys 0 0
scatter 0 2
dridex 0 2
shiz 0 1
agentb 0 2

Continued on next page
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Table 4.14 – continued from previous page
Family yara yaraHunt

lethic 0 0
reconyc 0 2
deshacop 0 1
fareit 0 6
dynamer 0 0
onion 0 3
critroni 0 0
dagozill 0 0
tpyn 0 2
scar 0 1
beebone 0 0

Table 4.14: Table that represents the number of false positives found by the rules generated
by yaBin with the parameters indicated in the respective column using, as training set,
the family indicated in the respective row.

Comparing the just presented results with those of YaYaGenPE, it is evidenced that
yaBin tends to perform slightly better than YaYaGenPE when using the “yara” parameter,
while definitely worse with the “yaraHunt” one.

4.5 True positives and malware families coverage testing

In this section, it is addressed the problem of how well do the rules detect malicious samples
they weren’t purposely written for. This test has to be compared with the previous one,
in that, although it is preferred to have rules that do not match any goodware at all, it
is as well desirable that the rules are capable of detecting samples they weren’t trained
on, since, otherwise, it would be probably simpler to address the malwares’ hashes as rule
conditions.
The tests have been performed by generating the rules for each family in the dataset and
applying them on the remaining part of the executables. Indeed, although different families
should have different distinctive traits, detecting the real family of an executable is difficult.
This means that, using the AVclass assigned labels to each sample, it is likely that some
malwares are mis-classified, especially when considering executables that are ambiguous
enough to be catergorized by an equivalent number of Anti-Viruses as belonging to two or
more different families. That might happen due to the not perfect AVclass aliases removal
or because the sample is actually classified differently by the Anti-Viruses. The bottom
line is that some families used for the training might contain samples not belonging to
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that family and, some executables not in the training set might effectively be samples of
the training family.

4.5.1 YaYaGenPE true positives

Unsupervised Decision Tree results

Table 4.15 and Table 4.16 show the number of new malware positives found by the rules
generated on the families indicated in the rows, using the parameters indicated in the
columns and, respectively, the Russell Rao and Jaccard distances. The amount of new
positives is determined by applying the generated rules on the remaining part of the
dataset. This set of results give an idea of how well do the rules target novel and possibly
similar malicious samples.
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agentb 1 1 1 1 1 1 1 1
allaple 0 0 0 0 0 0 0 0
atraps 0 0 0 0 0 0 0 0
aura 0 0 0 0 0 0 0 0
autoit 0 0 0 0 0 0 0 0
barys 3 3 3 3 3 3 3 3
beebone 1 1 1 1 1 1 1 1
bitman 977 984 895 1010 957 1003 923 1030
carberp 0 0 0 0 0 0 0 0
cerber 321 363 403 358 305 344 306 349
cloud 0 0 0 0 0 0 0 0
coantor 0 0 0 0 0 0 0 0
critroni 0 0 0 0 0 0 0 0
crowti 66 61 62 62 62 61 58 58
crypmod 92 79 97 30 84 30 128 79
cryptowall 25 29 25 29 29 25 29 26
dagozill 1 4 1 4 1 1 1 1
dalexis 2 2 2 2 2 2 2 2
delf 0 0 0 0 0 0 0 0
deshacop 0 0 0 0 0 0 0 0

Continued on next page
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Table 4.15 – continued from previous page
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dmalocker 0 0 0 0 0 0 0 0
dridex 0 0 0 0 0 0 0 0
dynamer 5 5 5 5 5 5 5 5
enestaller 9 9 9 9 9 9 9 9
enestedel 100 100 100 100 100 100 100 100
fareit 2 2 2 2 2 2 2 2
fraudrop 3 3 0 3 3 3 3 3
gamarue 11 5 11 5 15 6 12 7
genericcryptor 1 1 1 1 1 1 1 1
genkryptik 4 4 4 4 4 4 4 4
glupteba 44 44 44 44 44 44 44 44
hplocky 3 3 3 3 3 3 3 3
lethic 12 12 12 12 12 12 12 12
locky 28 168 116 37 114 121 111 36
midie 1 1 1 1 1 1 1 1
mikey 7 14 7 7 7 14 7 14
myxah 13 13 13 13 13 13 13 13
ngrbot 0 0 0 0 0 0 0 0
onion 14 12 14 13 14 12 14 13
rack 0 0 0 0 0 0 0 0
razy 78 95 78 94 78 87 143 95
reconyc 0 0 0 0 0 0 0 0
ruskill 0 0 0 0 0 0 0 0
sage 13 13 13 13 13 13 13 13
sagecrypt 29 43 30 43 29 31 30 43
scar 11 11 11 11 11 11 11 11
scatter 11 11 11 11 11 11 11 11
score 0 0 0 0 0 0 0 0
shade 0 0 0 0 0 0 0 0
shiz 105 62 99 68 102 102 96 67
teerac 0 0 0 0 0 0 0 0
tescrypt 60 54 60 60 60 60 71 60

Continued on next page
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Table 4.15 – continued from previous page
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teslacrypt 867 885 897 874 889 884 866 904
tinba 9 9 9 9 9 9 9 9
torrentlocker 1 1 1 1 1 1 1 1
tpyn 1 1 1 1 1 1 1 1
upatre 21 34 27 22 26 28 25 29
waldek 0 0 0 0 0 0 0 0
yakes 103 105 95 101 95 97 95 109
zbot 4 4 4 4 4 4 4 4
zboter 0 0 0 0 0 0 0 0
zegost 0 0 0 0 0 0 0 0
zerber 493 454 471 483 439 488 457 445
zusy 63 97 78 97 78 69 65 97

Table 4.15: Table that shows the number of new malware positives found by the rules
trained on the family on the row with the parameters indicated by the respective column.
All the rules used for the tests have been generated using the Russell Rao distance.
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agentb 1 1 1 1 1 1 1 1
allaple 0 0 0 0 0 0 0 0
atraps 0 0 0 0 0 0 0 0
aura 0 0 0 0 0 0 0 0
autoit 0 0 0 0 0 0 0 0
barys 3 3 3 3 3 3 3 3
beebone 1 1 1 1 1 1 1 1
bitman 961 1051 901 937 898 1003 944 916

Continued on next page
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carberp 0 0 0 0 0 0 0 0
cerber 338 336 417 355 323 303 331 352
cloud 0 0 0 0 0 0 0 0
coantor 0 0 0 0 0 0 0 0
critroni 0 0 0 0 0 0 0 0
crowti 62 58 62 62 58 58 57 58
crypmod 104 79 84 79 127 79 119 30
cryptowall 29 26 28 25 29 25 29 25
dagozill 1 4 1 4 1 1 1 1
dalexis 2 2 2 2 2 2 2 2
delf 0 0 0 0 0 0 0 0
deshacop 0 0 0 0 0 0 0 0
dmalocker 0 0 0 0 0 0 0 0
dridex 0 0 0 0 0 0 0 0
dynamer 5 5 5 5 5 5 5 5
enestaller 9 9 9 9 9 9 9 9
enestedel 100 100 100 100 100 100 100 100
fareit 2 2 2 2 2 2 2 1
fraudrop 3 3 3 3 3 3 0 0
gamarue 12 4 6 8 12 4 14 4
genericcryptor 1 1 1 1 1 1 1 1
genkryptik 4 4 4 4 4 4 4 4
glupteba 44 44 44 44 44 44 44 44
hplocky 3 3 3 3 3 3 3 3
lethic 12 12 12 12 12 12 12 12
locky 303 110 110 35 263 42 114 116
midie 1 1 1 1 1 1 1 1
mikey 7 7 7 14 7 14 7 7
myxah 13 13 13 13 13 13 13 13
ngrbot 0 0 0 0 0 0 0 0
onion 14 12 14 13 14 12 14 13
rack 0 0 0 0 0 0 0 0

Continued on next page
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Table 4.16 – continued from previous page
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razy 96 144 87 278 87 88 96 95
reconyc 0 0 0 0 0 0 0 0
ruskill 0 0 0 0 0 0 0 0
sage 13 13 13 13 13 13 13 13
sagecrypt 35 43 35 43 30 43 35 43
scar 11 11 11 8 11 11 11 11
scatter 11 11 11 11 11 11 11 11
score 0 0 0 0 0 0 0 0
shade 0 0 0 0 0 0 0 0
shiz 79 67 103 67 99 67 87 67
teerac 0 0 0 0 0 0 0 0
tescrypt 60 60 71 60 85 85 85 60
teslacrypt 871 895 898 860 878 908 839 925
tinba 9 9 9 9 9 9 9 9
torrentlocker 1 1 1 1 1 1 1 1
tpyn 1 1 1 1 1 1 1 1
upatre 32 33 23 13 22 34 23 32
waldek 0 0 0 0 0 0 0 0
yakes 112 99 111 109 96 102 103 114
zbot 4 4 4 4 4 4 4 4
zboter 0 0 0 0 0 0 0 0
zegost 0 0 0 0 0 0 0 0
zerber 447 479 493 425 459 441 404 411
zusy 72 91 65 97 63 97 65 93

Table 4.16: Table that shows the number of new malware positives found by the rules
trained on the family on the row with the parameters indicated by the respective column.
All the rules used for the tests have been generated using the Jaccard distance.

Results in the tables are comparable in terms of numbers and they both show that
the rules are generic enough to match other samples in the dataset. Specifically, taking
a look at Figure 4.1, it is possible to verify that the biggest families are also those that
tend to be the best ones in terms of new positives. This is might be consequence of two
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particular reasons: the number of samples inside each family and the imprecise AVclass
family detection. The former implies that, to cover a huge number of samples, it is re-
quired an adequately large set of rules, which, if generic enough, are capable of covering
several other malicious executables. The latter suggests that, when using AVclass labels to
identify the families, it is more likely that, on bigger families, there might be mis-classified
samples. This mis-classification leads to some rules that, in fact, target samples belonging
to different families with respect to the training one, and, as a consequence, they are likely
to match other samples of those families.
Finally, some of the biggest families are also those for which aliases were not perfectly
detected, since some of these are actually aliases of some others (e.g., “teslacrypt” and
“bitman” have been reported to be the same family for what concerns Kaspersky Labs,
while “cerber” and “zerber” should be variants of the same family). For this reason, man-
ually verifying the results evidenced that rules generated on each family is capable of
covering several other samples of the respective alias family.

4.5.2 HDBSCAN results

This section presents the same set of results as the previous one, but determined using
the rules found on the clusters determined by the HDBSCAN algorithm. All the results
have been grouped in two tables: Table 4.17, which reports the results of the rules created
using the Russell Rao distance, and Table 4.18, that presents results of the rules determined
using the Jaccard distance.

Family hd
bs
ca
n

hd
bs
ca
n+

ru
le
s

hd
bs
ca
n+

go
od

w
ar
e

hd
bs
ca
n+

ru
le
s+

go
od

w
ar
e

hd
bs
ca
n:
cl
ot

hd
bs
ca
n:
cl
ot
+
ru
le
s

hd
bs
ca
n:
cl
ot
+

go
od

w
ar
e

hd
bs
ca
n:
cl
ot
+
ru
le
s+

go
od

w
ar
e

agentb 1 1 1 1 1 1 1 1
allaple 0 0 0 0 0 0 0 0
atraps 0 0 0 0 0 0 0 0
aura 0 0 0 0 0 0 0 0
autoit 0 0 0 0 0 0 0 0
barys 3 3 3 3 3 3 3 3
beebone 1 1 1 1 1 1 1 1
bitman 1681 1679 1681 1679 1680 1679 1680 1678
carberp 0 0 0 0 0 0 0 0

Continued on next page
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Table 4.17 – continued from previous page
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cerber 297 293 297 293 251 247 251 247
cloud 0 0 0 0 0 0 0 0
coantor 0 0 0 0 0 0 0 0
critroni 0 0 0 0 0 0 0 0
crowti 79 79 66 79 61 61 61 61
crypmod 122 122 122 122 122 122 122 122
cryptowall 41 40 41 40 41 40 41 40
dagozill 4 4 4 4 1 1 1 1
dalexis 3 3 3 3 3 3 3 3
delf 0 0 0 0 0 0 0 0
deshacop 1 1 1 1 1 1 1 1
dmalocker 0 0 0 0 0 0 0 0
dridex 0 0 0 0 0 0 0 0
dynamer 5 5 5 5 5 5 5 5
enestaller 9 9 9 9 9 9 9 9
enestedel 4 4 4 4 4 4 4 4
fareit 2 2 2 2 2 2 2 2
fraudrop 0 0 0 0 0 0 0 0
gamarue 18 4 18 18 6 6 19 18
genericcryptor 1 1 1 1 1 1 1 1
genkryptik 4 4 4 4 4 4 4 4
glupteba 0 0 0 0 0 0 0 0
hplocky 0 0 0 0 0 0 0 0
lethic 1 1 1 1 1 1 1 1
locky 202 193 156 183 29 29 19 19
midie 30 30 30 30 30 30 30 30
mikey 18 18 18 18 7 7 7 7
myxah 13 13 13 13 13 13 13 13
ngrbot 0 0 0 0 0 0 0 0
onion 1692 764 12 12 12 12 12 12

Continued on next page
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Table 4.17 – continued from previous page
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rack 0 0 0 0 0 0 0 0
razy 194 194 194 194 97 97 180 180
reconyc 0 0 0 0 0 0 0 0
ruskill 0 0 0 0 0 0 0 0
sage 0 0 0 0 0 0 0 0
sagecrypt 58 58 58 58 58 33 58 58
scar 36 36 36 36 36 36 36 36
scatter 35 35 1 35 35 35 1 35
score 0 0 0 0 0 0 0 0
shade 0 0 0 0 0 0 0 0
shiz 123 120 123 120 123 120 123 120
teerac 0 0 0 0 0 0 0 0
tescrypt 268 268 268 268 80 80 80 80
teslacrypt 1212 1212 1212 1212 1086 1086 1086 1086
tinba 9 9 9 9 9 9 9 9
torrentlocker 0 0 0 0 0 0 0 0
tpyn 1 1 1 1 1 1 1 1
upatre 31 34 23 34 32 34 32 31
waldek 0 0 0 0 0 0 0 0
yakes 141 139 141 139 141 140 141 140
zbot 10 10 10 10 10 10 10 10
zboter 0 0 0 0 0 0 0 0
zegost 0 0 0 0 0 0 0 0
zerber 435 435 367 435 435 435 325 435
zusy 156 153 156 153 124 147 124 147

Table 4.17: Table that shows the number of new malware positives found by the rules
trained on the family on the row with the parameters indicated by the respective column.
All the rules used for the tests have been generated using the Russell Rao distance.
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agentb 1 1 1 1 1 1 1 1
allaple 0 0 0 0 0 0 0 0
atraps 0 0 0 0 0 0 0 0
aura 0 0 0 0 0 0 0 0
autoit 0 0 0 0 0 0 0 0
barys 3 3 3 3 3 3 3 3
beebone 1 1 1 1 1 1 1 1
bitman 714 675 714 675 714 675 714 675
carberp 0 0 0 0 0 0 0 0
cerber 240 235 240 235 240 235 240 235
cloud 0 0 0 0 0 0 0 0
coantor 0 0 0 0 0 0 0 0
critroni 0 0 0 0 0 0 0 0
crowti 292 256 91 91 532 285 86 86
crypmod 287 284 287 284 287 284 287 284
cryptowall 38 33 36 33 72 33 36 33
dagozill 4 4 4 4 1 1 1 1
dalexis 33 43 33 43 4 14 4 14
delf 0 0 0 0 0 0 0 0
deshacop 1 1 1 1 1 1 1 1
dmalocker 0 0 0 0 0 0 0 0
dridex 0 0 0 0 0 0 0 0
dynamer 5 5 5 5 5 5 5 5
enestaller 9 9 9 9 9 9 9 9
enestedel 4 4 4 4 4 4 4 4
fareit 2 1 2 1 2 1 2 1
fraudrop 0 0 0 0 0 0 0 0
gamarue 30 21 30 21 30 21 30 21
genericcryptor 1 1 1 1 1 1 1 1
genkryptik 4 4 4 4 4 4 4 4

Continued on next page
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glupteba 0 0 0 0 0 0 0 0
hplocky 0 0 0 0 0 0 0 0
lethic 1 1 1 1 1 1 1 1
locky 57 55 57 55 57 424 57 53
midie 24 22 24 22 24 22 24 22
mikey 218 187 218 187 143 112 143 112
myxah 13 13 13 13 13 13 13 13
ngrbot 0 0 0 0 0 0 0 0
onion 9 9 9 9 9 9 9 9
rack 0 0 0 0 0 0 0 0
razy 37 46 37 46 37 46 37 46
reconyc 0 0 0 0 0 0 0 0
ruskill 0 0 0 0 0 0 0 0
sage 0 0 0 0 0 0 0 0
sagecrypt 51 47 51 47 51 47 51 47
scar 35 35 35 35 35 35 35 35
scatter 6 7 6 7 7 7 7 7
score 0 0 0 0 0 0 0 0
shade 0 0 0 0 0 0 0 0
shiz 128 87 128 87 128 87 128 87
teerac 0 0 0 0 0 0 0 0
tescrypt 80 68 66 66 80 68 66 66
teslacrypt 759 701 759 701 758 702 758 702
tinba 9 9 9 9 9 9 9 9
torrentlocker 0 0 0 0 0 0 0 0
tpyn 1 10 1 10 1 10 1 10
upatre 54 72 39 20 54 72 39 20
waldek 2 2 2 2 0 2 0 2
yakes 133 121 133 121 133 121 133 121
zbot 6 6 6 6 6 6 6 6

Continued on next page
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zboter 0 0 0 0 0 0 0 0
zegost 0 0 0 0 0 0 0 0
zerber 312 300 312 300 312 300 312 300
zusy 167 135 167 135 170 135 170 135

Table 4.18: Table that shows the number of new malware positives found by the rules
trained on the family on the row with the parameters indicated by the respective column.
All the rules used for the tests have been generated using the Jaccard distance.

The results obtained by using the HDBSCAN algorithms are comparable with the ones
in the previous section, with which they share the considerations made on the biggest
families, however, for some small families, the number of new malware positives is slightly
smaller. This is due to the clustering procedure, that tends to generate a high number of
noise points, especially in small families, which lead ultimately to the creation of a rule
per each, and, as a consequence, on over-specific rules.
It is worth mentioning that, for most of the families, the number of new malware positives
is always similar when changing the parameters used for the training. There are, however,
some notable exceptions, for which, when using the “clot” algorithm for the rule genera-
tion, the number of new positives decreases, probably due to more specific and balanced
rules.
Finally, by looking at the results of the “onion” family in Table 4.17 and of the “crowti”,“locky”
and “cryptowall” families in Table 4.18, it is evidenced a spike in the number of new posi-
tives found. This result, together with the number of false positives indicated respectively
in Table 4.10 and in Table 4.11, underlines the importance of having specific rules (i.e.,
rules with a consistent number of features each).
Specifically, it is evidenced that, a spike in the number of new matches corresponds to
a relatively high number of false positives. By manually checking the rule sets interested
by this trend, it was noticed that each presents one or, at most, two rules with a rel-
atively small number of literals (i.e., always below 100 features) and lacking references
to relevant features(e.g., the sample’s resources or, less relevant but still important, the
rich signature’s features). The lack of important features leads these rules to be composed
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prevalently of imported functions, however, the packing mechanism tends to hide all the
distinctive functions from the Import Address Table, leaving only the generic ones (i.e., the
functions imported from the “kernel32” DLL), which are usually contained in the good-
ware’s Import Address Table as well. Consequently, the rules will match a big number of
malicious samples, but also a non-negligible number of benign ones.
To this extent, the addition of domain expert written rules as features is typically helpful
to reduce the number of false positives, by adding targeted features, and consequently
by reducing the number of new matches found. The reduction of the number of matches
might be seen as a negative side of the introduction of new features, however, it is com-
monly preferred, in the IT security area, to have rules that tend to be slightly over-specific
but with a low number of false positives than having generic rules that produce an high
number of false positives.

4.5.3 yarGen true positives

Table 4.19 and Table 4.20 show the number of new true positives found by the rules
generated by yarGen, applying all the possible parameters the tool disposes of. Table 4.20
differs from Table 4.19 in that all the trainings have been done by using the “z0” parameter.
Taking a closer look to the results, and comparing them with the YaYaGenPE ones,
it is evidenced an higher number of true positives, in particular when looking at the
medium-small families (referring to Figure 4.1). Although this might be promising, it is
necessary to confront these results with the false positives respectively in Table 4.12 and
Table 4.13. Specifically, the high number of new matches, along with the high number of
false positives, might be an indicator of too much generic rules, which are not tailored to
detect a particular malware family and, typically, not usable in a real context due to the
high number of false positives.
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agentb 12 6 12 6 12 6 12 6
allaple 0 0 0 0 0 0 0 0
atraps 0 0 0 0 0 0 0 0
aura 0 0 0 0 0 0 0 0
autoit 0 0 0 0 0 0 0 0
barys 1 1 1 1 1 1 1 1
beebone 2 2 2 2 1 1 1 1
bitman 877 931 877 931 332 345 332 345
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Table 4.19 – continued from previous page

Family pl
ai
n

go
od

w
ar
e

ex
cl
ud

eg
oo

d

go
od

w
ar
e+

ex
cl
ud

eg
oo

d

op
co
de

s

op
co
de

s+
go

od
w
ar
e

op
co
de

s+
ex
cl
ud

eg
oo

d

op
co
de

s+
go

od
w
ar
e+

ex
cl
ud

eg
oo

d

carberp 19 19 19 19 0 0 0 0
cerber 368 434 368 434 260 262 260 262
cloud 99 99 99 99 8 8 8 8
coantor 0 0 0 0 0 0 0 0
critroni 8 8 8 8 0 0 0 0
crowti 63 207 63 207 44 52 44 52
crypmod 409 371 409 371 75 90 75 90
cryptowall 88 190 88 190 10 33 10 33
dagozill 8 4 8 4 2 1 2 1
dalexis 36 36 36 36 8 8 8 8
delf 0 0 0 0 0 0 0 0
deshacop 0 0 0 0 0 0 0 0
dmalocker 0 0 0 0 0 0 0 0
dridex 0 0 0 0 0 0 0 0
dynamer 94 102 94 102 66 102 66 102
enestaller 65 65 65 65 27 27 27 27
enestedel 26 28 26 28 26 26 26 26
fareit 1 1 1 1 1 1 1 1
fraudrop 68 68 68 68 2 2 2 2
gamarue 35 54 35 54 5 6 5 6
genericcryptor 5 5 5 5 5 5 5 5
genkryptik 4 4 4 4 4 4 4 4
glupteba 66 66 66 66 38 38 38 38
hplocky 3 3 3 3 3 3 3 3
lethic 1 21 1 21 0 1 0 1
locky 292 409 292 409 93 69 93 69
midie 24 16 24 16 19 16 19 16
mikey 67 14 67 14 8 8 8 8
myxah 33 33 33 33 15 15 15 15
ngrbot 0 0 0 0 0 0 0 0
onion 39 39 39 39 34 34 34 34
rack 29 29 29 29 6 6 6 6
razy 343 390 343 390 64 60 64 60

Continued on next page
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reconyc 0 0 0 0 0 0 0 0
ruskill 0 0 0 0 0 0 0 0
sage 13 13 13 13 13 13 13 13
sagecrypt 56 56 56 56 56 56 56 56
scar 34 34 34 34 16 16 16 16
scatter 95 333 95 333 74 333 74 333
score 2 2 2 2 2 2 2 2
shade 89 339 89 339 61 339 61 339
shiz 141 141 141 141 141 141 141 141
teerac 38 38 38 38 16 16 16 16
tescrypt 491 374 491 374 24 36 24 36
teslacrypt 603 603 603 603 487 487 487 487
tinba 3 9 3 9 3 9 3 9
torrentlocker 1 1 1 1 1 1 1 1
tpyn 1 1 1 1 1 1 1 1
upatre 62 110 62 110 26 31 26 31
waldek 0 2 0 2 0 0 0 0
yakes 116 116 116 116 114 114 114 114
zbot 0 3 0 3 0 1 0 1
zboter 0 0 0 0 0 0 0 0
zegost 0 0 0 0 0 0 0 0
zerber 378 548 378 548 178 406 178 406
zusy 208 313 208 313 59 74 59 74

Table 4.19: Table that shows the number of new positives obtained by the yarGen gener-
ated rules over the family indicated in each row and using the parameters in each column.
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agentb 13 13 13 13 13 13 13 13
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allaple 0 0 0 0 0 0 0 0
atraps 0 0 0 0 0 0 0 0
aura 0 0 0 0 0 0 0 0
autoit 0 0 0 0 0 0 0 0
barys 3 3 3 3 3 3 3 3
beebone 2 2 2 2 1 1 1 1
bitman 719 907 622 849 508 544 504 513
carberp 19 19 19 19 0 0 0 0
cerber 361 438 345 321 272 283 271 298
cloud 8 8 8 8 8 8 8 8
coantor 0 0 0 0 0 0 0 0
critroni 9 9 9 8 2 2 2 0
crowti 80 77 79 77 75 71 75 71
crypmod 194 208 194 205 86 90 86 87
cryptowall 83 126 32 33 39 41 30 31
dagozill 3 3 3 3 1 1 1 1
dalexis 36 36 36 36 8 8 8 8
delf 0 0 0 0 0 0 0 0
deshacop 0 0 0 0 0 0 0 0
dmalocker 0 0 0 0 0 0 0 0
dridex 0 0 0 0 0 0 0 0
dynamer 76 168 76 97 66 168 66 97
enestaller 65 65 65 65 27 27 27 27
enestedel 26 26 26 26 26 26 26 26
fareit 2 2 2 2 2 2 2 2
fraudrop 2 2 2 2 2 2 2 2
gamarue 78 208 68 93 45 104 44 44
genericcryptor 5 5 5 5 5 5 5 5
genkryptik 4 4 4 4 4 4 4 4
glupteba 40 40 40 40 38 38 38 38
hplocky 3 3 3 3 3 3 3 3
lethic 1 1 1 1 1 1 1 1
locky 112 476 55 422 71 248 53 242

Continued on next page
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midie 24 24 24 24 24 24 24 24
mikey 8 8 8 8 8 8 8 8
myxah 21 21 21 21 15 15 15 15
ngrbot 0 0 0 0 0 0 0 0
onion 70 295 39 39 34 36 34 34
rack 29 29 29 29 6 6 6 6
razy 266 229 192 234 111 111 111 111
reconyc 0 0 0 0 0 1 0 0
ruskill 0 48 0 21 0 0 0 0
sage 13 13 13 13 13 13 13 13
sagecrypt 148 148 61 61 61 61 61 61
scar 21 21 21 21 17 19 17 19
scatter 99 161 77 99 74 167 74 98
score 2 2 2 2 2 2 2 2
shade 71 148 71 0 61 148 61 0
shiz 141 141 141 141 141 141 141 141
teerac 26 26 26 26 16 16 16 16
tescrypt 159 189 53 166 82 85 82 82
teslacrypt 912 912 774 774 693 693 683 683
tinba 9 161 9 9 9 9 9 9
torrentlocker 1 1 1 1 1 1 1 1
tpyn 1 1 1 1 1 1 1 1
upatre 82 126 33 62 36 37 30 32
waldek 0 0 0 0 0 0 0 0
yakes 163 163 140 140 137 137 137 137
zbot 11 11 9 11 11 11 9 11
zboter 0 0 0 0 0 0 0 0
zegost 0 0 0 0 0 0 0 0
zerber 379 326 361 313 276 266 269 219
zusy 131 200 107 123 121 121 120 121

Continued on next page
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Table 4.20: Table that shows the number of new positives obtained by the yarGen gener-
ated rules over the family indicated in each row and using the parameters in each column.
As opposed to Table 4.19, all the trainings have been performed by using the “z0” param-
eter together with the indicated ones.

4.5.4 yaBin true positives

yaBin, as opposed to yarGen, tends to produce, in most of the families, less true positive
matches with respect to YaYaGenPE when using the “yara” parameter, which generates
the most accurate ruleset among the two possible parameters it has. On the other hand,
the “yaraHunt” parameter, which tries to generate rules that are generic enough to match
other samples, has a much higher number of true positives found. However, as for the
yarGen tool, this increment in the number of malwares found has to be weighed by the
high number of false positives reported in Table 4.14, which indicates that those rules
are not specific enough. Indeed, although these rules match lots of malicious samples, the
number of false positives also suggest that they are too weak and imprecise to be effectively
used in a real context.
The complete results of the malware positives found by yaBin are in Table 4.21.

Family yara yaraHunt
agentb 13 44
allaple 0 0
barys 3 3
beebone 1 4
bitman 528 2234
cerber 250 406
critroni 0 9
crowti 60 370
crypmod 46 2237
cryptowall 29 147
dagozill 0 12
dalexis 0 8
deshacop 0 1615

Continued on next page
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Table 4.21 – continued from previous page
Family yara yaraHunt
dridex 0 14
dynamer 5 5
enestaller 9 27
enestedel 4 5
fareit 2 37
fraudrop 2 1827
gamarue 6 236
genkryptik 4 30
glupteba 0 0
lethic 1 86
locky 10 2187
midie 14 395
mikey 8 1877
onion 1 34
rack 0 8
razy 91 2024
reconyc 4 1396
sage 13 67
sagecrypt 61 320
scar 17 2488
scatter 7 37
shiz 141 442
teerac 0 0
tescrypt 43 2091
teslacrypt 694 1549
tinba 9 1446
tpyn 1 56
upatre 19 588
waldek 0 0
yakes 137 2046
zbot 7 22
zerber 234 411
zusy 91 2475

Table 4.21: Table that represents the number of new true positives found by the rules
generated by yaBin with the parameters indicated in the respective column using, as
training set, the family indicated in the respective row.
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Considering both the true positives of the current section and the false positives intro-
duced in section 4.4, yaBin results are better than yarGen ones and somehow comparable
with YaYaGenPE results, at least for the rules generated when using the more restric-
tive parameter (i.e., “yara”). Specifically, while YaYaGenPE privileges the true positive
matches, at the cost of some false positives found, the yaBin “yara” rules do not generate
false positives, but present a much restricted number of new positives.

4.5.5 Evaluating precision of the rules

In order to get an idea of how precise the rules are, it has been computed the precision of
the malware positives of the previous sections.
Rules precision is not a fundamental characteristic to evaluate, in that, what really matters
in the context of malware detection is that the rules are properly capable of detecting
malicious samples. Nevertheless, the rules precision gives an idea of how well do the rules
capture the distinctive traits of each family they were trained on.
Before showing the results, it is needed to introduce how is the precision computed. In
particular, as already mentioned, the dataset has been divided into families by using the
most likely label provided by AVclass (i.e., the label with the highest score in the list
returned by the tool). The training phase has then been done family by family. In order
to compute the precision and, eventually, the recall, it would be ideal to perform a k-
fold validation for each family of the training set, however, although accurate, given the
dataset used in this work, the number of samples per family is, in many cases, too small
to accurately perform a valuable k-fold validation, not to mention the required time to
test all the tools in all the conditions. For this reason, the precision has been computed
by considering, for each matching sample of the test set, the entire list of labels AVclass
gave to it, and by checking whether that list contains the training family label or not.
These results, although not as accurate as the k-fold validation, give an idea of the accuracy
of the tools when working with not perfectly clustered datasets. Specifically, due to the
imprecise AVclass family attribution, two main classification errors may have been made:
either the sample does not belong to the family it has been assigned to, due to the selection
of a random AVclass label among those with the highest score, or, the family is an alias
of another family. The former implies that, training the rules over a sample which is not
really part of the attributed family might create rules that, actually, cover some samples
of other families. The latter, instead, implies that samples are distributed among the two
alias families and the families’ sizes strictly depend on the number of Anti-Virus that use
one family label instead of the other. Nevertheless, in this case, rules trained on a specific
family alias should be capable of matching a fair amount of samples belonging to the other
alias.
Both these considerations can be evaluated by taking into account the complete list of
family labels returned by AVclass: in the first case, indeed, if several samples are assigned
to a particular family due to a split decision, it is likely that the samples of the other
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family, if similar to the first ones, will present, in the list of AVclass labels, the name of the
first family. In the second case, similarly, if a family is an alias of another, the majority of
the samples of both families should have both the labels in their list of AVclass labels.
For these reasons, computing the precision basing on the complete list of AVclass labels is
a valuable way to get an idea of how well do the rules work.
Nevertheless, these results are worsened by the fact that some rules, altough targeted for
some specific malware families, will match similar samples of, possibly, families different
from the training ones. For this reason low precision values are not necessarily indicators
of bad results and, in order to get an idea of the real quality of the rules, it is introduced
a relative comparison among the tools, which will evidence when, although presenting low
precisions, results are still acceptable.
Table 4.22 shows the average precisions of the tools computed on the families containing at
least 3 samples, by keeping constant the parameters indicated in the columns and averaging
the single precision values determined by varying all the possible remaining parameters
for all the tools. For a complete tabular representation of the precisions determined in all
the training possibilities it is reminded to Appendix B.

YaYaGenPE yarGen yaBin

Family
UDT
Russell
Rao

UDT
Jaccard

HDB.
Russell
Rao

HDB.
Jaccard plain z0 yara yara

Hunt

agentb 0.0 0.0 0.0 0.0 4.2 7.7 7.7 2.3
allaple NaN NaN NaN NaN NaN NaN NaN NaN
barys 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
beebone 100.0 100.0 100.0 100.0 75.0 75.0 100.0 25.0
bitman 77.4 77.2 58.4 80.9 74.0 78.3 83.7 53.8
cerber 79.1 79.0 87.1 91.2 68.1 74.9 92.8 71.7
critroni NaN NaN NaN NaN 25.0 39.3 NaN 22.2
crowti 69.8 71.2 66.1 51.2 49.1 63.7 73.8 16.2
crypmod 20.9 18.4 16.4 6.7 11.4 14.1 26.1 2.4
cryptowall 22.2 21.9 30.9 16.3 30.7 29.0 27.6 24.5
dagozill 0.0 0.0 0.0 0.0 9.4 0.0 NaN 8.3
dalexis 50.0 50.0 66.7 38.2 25.0 25.0 NaN 50.0
deshacop NaN NaN 100.0 100.0 NaN NaN NaN 0.2
dridex NaN NaN NaN NaN NaN NaN NaN 7.1
dynamer 0.0 0.0 0.0 0.0 1.2 0.8 0.0 0.0
enestaller 77.8 77.8 77.8 77.8 32.2 32.2 77.8 44.4
enestedel 6.0 6.0 50.0 50.0 18.9 19.2 50.0 40.0
fareit 50.0 56.2 50.0 75.0 100.0 50.0 50.0 2.7

Continued on next page
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YaYaGenPE yarGen yaBin

Family
UDT
Russell
Rao

UDT
Jaccard

HDB.
Russell
Rao

HDB.
Jaccard plain z0 yara yara

Hunt

fraudrop 33.3 33.3 NaN NaN 27.2 50.0 50.0 0.2
gamarue 21.5 32.0 17.6 12.1 16.4 9.1 50.0 3.4
genkryptik 25.0 25.0 25.0 25.0 25.0 25.0 25.0 6.7
glupteba 2.3 2.3 NaN NaN 2.1 8.2 NaN NaN
lethic 16.7 16.7 100.0 100.0 34.9 100.0 100.0 4.7
locky 22.3 16.0 33.2 23.8 12.0 13.6 72.7 1.6
midie 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5
mikey 13.4 8.9 0.0 3.9 10.8 0.0 0.0 0.8
onion 14.7 14.7 6.3 0.0 2.8 3.1 0.0 5.9
rack NaN NaN NaN NaN 10.1 10.1 NaN 12.5
razy 80.5 81.2 82.1 59.1 47.7 40.4 39.6 21.8
reconyc NaN NaN NaN NaN NaN 0.0 0.0 0.0
sage 15.4 15.4 NaN NaN 15.4 15.4 15.4 29.9
sagecrypt 59.4 54.2 55.5 63.4 52.6 49.2 54.1 21.2
scar 100.0 100.0 47.2 45.7 73.5 87.8 100.0 0.7
scatter 0.0 0.0 0.0 0.0 1.9 2.5 0.0 0.0
shiz 91.4 91.6 81.9 83.9 90.8 90.8 90.8 66.3
teerac NaN NaN NaN NaN 0.0 0.0 NaN NaN
tescrypt 45.6 46.0 41.2 44.8 40.2 40.7 39.5 34.4
teslacrypt 88.5 88.8 83.4 89.6 90.4 87.5 91.2 67.5
tinba 11.1 11.1 11.1 11.1 5.6 10.0 11.1 0.1
tpyn 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
upatre 31.8 33.9 19.6 22.4 23.7 23.2 26.3 3.4
waldek NaN NaN NaN 50.0 0.0 NaN NaN NaN
yakes 51.8 48.6 42.4 43.0 47.0 46.0 48.2 3.6
zbot 60.0 60.0 27.3 71.4 66.7 16.1 14.3 40.9
zerber 61.6 62.1 61.1 68.8 54.7 70.0 74.8 63.3
zusy 32.7 33.0 20.5 19.3 14.2 19.8 27.5 3.8

Table 4.22: Table showing the average precision computed on the family indicated in each
row by varying, for each tool configuration indicated in the corresponding column, all the
possible parameters. Whenever an entry presents the value “NaN” it is meant that the tool
was not capable of matching, for any parameter of the corresponding tool, any malicious
sample in the dataset apart from the training samples.

Results in Table 4.22 show that YaYaGenPE tends, for most of the families, to perform
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better than yarGen and worse than the yaBin “yara” configuration.
On the other hand, the precision of the rules generated by the yaBin “yaraHunt” config-
uration are usually much worse than the YaYaGenPE ones.

4.6 Training set coverage and number of samples per rule

This section covers two aspects that are not strictly related to the rule performances, but
that are still relevant for the malware detection context: the capability of the tools to
create rules that cover the entire training set, and the number of samples per rule. In
particular, the former is an important aspect of any automatic signature generation tool
since it is desirable, and even necessary, that the tool generates rules that are capable
of covering all the samples the user provides. The latter is the inverse of the number of
rules generated per training set. It is less relevant than the former, however, considering
approximately the same number of true positive matches, it would be better to generate
the least number of rules possible, i.e., to have the highest number of covered samples per
rule.

4.6.1 Training set coverage

For readability reasons, it is here reported the number of uncovered samples per family,
which is the exact opposite of the training set coverage, but gives an immediate idea of
the performances of the tools.
Table 4.23 reports the maximum, average and minimum number of uncovered samples per
family for each tool, considering all the possible parameters of the tools and, in case of
YaYaGenPE, the two possible distance measures (i.e., Russell Rao and Jaccard distances).
The coverage values have been computed considering only the families whose number of
samples is at least three.
As Table 4.23 shows, YaYaGenPE provides an almost absolute coverage of all the families
in the dataset, with the only exception of the “Zbot” family, which was not covered com-
pletely due to a tampered PE file that “pefile” was not capable of analyzing.
On the other hand, both yarGen and yaBin aren’t capable of completely covering entirely
the families provided in the dataset and this behavior holds particularly for the yarGen
tool, for which the number of uncovered samples reaches a maximum of 790 uncovered
samples for the “Teslacrypt” family. Also the best case, which is usually associated with
the usage of the “z0” parameter, reaches a maximum number of uncovered samples equal
to 189, in case of the “Cerber” family.
yaBin supports a better coverage with respect to the yarGen tool, however, it also presents
some families for which the complete coverage was not possible. Specifically, the “Locky”
family presents a minimum number of uncovered samples equal to 10, while, in case of the
“Cerber” family, the maximum number of uncovered samples rises up to 47.
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Last considerations to be done for both yarGen and yaBin is the balance between the
training set coverage and the number of true positives and false positives matched. In
particular, for both yarGen and yaBin, it has been observed that the minimum number
of uncovered samples is reached when using, respectively, the “z0” parameter and the
“yaraHunt” one. Both these parameters, as already underlined in the previous sections,
usually generate a set of rules that is typically unusable in a real context, due to the
high number of false positives found. As a consequence, the number of uncovered samples
associated to rules usable in a real context is respectively, the average one indicated in
Table 4.23 for yarGen and the maximum one for yaBin.1

Family YaYaGenPE yarGen yaBin
max avg min max avg min max avg min

agentb 0 0 0 1 0 0 0 0 0
allaple 0 0 0 0 0 0 0 0 0
barys 0 0 0 2 1 0 0 0 0
beebone 0 0 0 0 0 0 0 0 0
bitman 0 0 0 450 214 24 0 0 0
cerber 0 0 0 328 229 189 47 25 2
critroni 0 0 0 1 1 0 0 0 0
crowti 0 0 0 48 22 0 1 1 0
crypmod 0 0 0 7 2 0 0 0 0
cryptowall 0 0 0 13 4 0 0 0 0
dagozill 0 0 0 0 0 0 2 2 2
dalexis 0 0 0 1 0 0 1 1 1
deshacop 0 0 0 1 0 0 0 0 0
dridex 0 0 0 2 1 0 0 0 0
dynamer 0 0 0 0 0 0 1 1 0
enestaller 0 0 0 0 0 0 0 0 0
enestedel 0 0 0 0 0 0 0 0 0
fareit 0 0 0 1 0 0 0 0 0
fraudrop 0 0 0 0 0 0 0 0 0
gamarue 0 0 0 16 6 0 0 0 0
genkryptik 0 0 0 0 0 0 0 0 0
glupteba 0 0 0 0 0 0 1 0 0
lethic 0 0 0 22 8 0 0 0 0

Continued on next page

1yaBin presents two parameters only, so, the average number of uncovered samples is the average of
just two values, the worse of which is the “yara” (un-)coverage, while the best is related to the “yaraHunt”
parameter.
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Family YaYaGenPE yarGen yaBin
max avg min max avg min max avg min

locky 0 0 0 99 60 20 41 25 10
midie 0 0 0 1 0 0 0 0 0
mikey 0 0 0 1 0 0 0 0 0
onion 0 0 0 6 3 0 0 0 0
rack 0 0 0 0 0 0 0 0 0
razy 0 0 0 10 5 0 2 1 0
reconyc 0 0 0 0 0 0 0 0 0
sage 0 0 0 0 0 0 0 0 0
sagecrypt 0 0 0 3 2 0 0 0 0
scar 0 0 0 13 5 0 0 0 0
scatter 0 0 0 1 0 0 2 1 0
shiz 0 0 0 0 0 0 0 0 0
teerac 0 0 0 0 0 0 0 0 0
tescrypt 0 0 0 12 4 0 0 0 0
teslacrypt 0 0 0 790 404 22 0 0 0
tinba 0 0 0 1 0 0 0 0 0
tpyn 0 0 0 0 0 0 0 0 0
upatre 0 0 0 50 26 8 2 1 0
waldek 0 0 0 1 0 0 0 0 0
yakes 0 0 0 284 142 0 0 0 0
zbot 1 1 1 38 31 17 0 0 0
zerber 0 0 0 139 79 29 3 2 0
zusy 0 0 0 17 6 0 0 0 0

Table 4.23: Table showing the maximum,average and minimum number of uncovered sam-
ples for the rules generated on the family indicated in each row for the tool indicated in
the corresponding column. Measures have been retrieved by considering, for all the tools,
all the possible parameters they dispose of and, in case of YaYaGenPE, also both the
supported distances (i.e., Russell Rao and Jaccard distances).

4.6.2 Number of covered samples per rule

This section analyzes the number of produced rules by each tool for the families containing
at least three samples.
Specifically, as for the previous section, it is here reported the minimum, average and
maximum amount of samples covered per rule for each tool, by testing all the possible
parameters and distance measures possible.
The results are reported in Table 4.24.
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Family YaYaGenPE yarGen yaBin
min avg max min avg max min avg max

agentb 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
allaple 1.0 1.7 4.0 0.8 0.8 0.8 1.0 1.0 1.0
barys 1.0 1.0 1.0 1.0 1.3 2.0 1.0 1.0 1.0
beebone 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
bitman 3.0 4.2 6.2 0.9 1.2 1.6 2.1 2.1 2.1
cerber 3.9 5.7 9.0 1.6 2.1 3.1 3.4 3.4 3.4
critroni 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
crowti 1.8 2.2 2.7 1.0 1.4 2.0 1.8 1.8 1.8
crypmod 1.8 2.1 2.3 0.8 0.9 1.0 1.6 1.6 1.6
cryptowall 1.5 1.8 2.5 0.8 1.0 1.3 1.3 1.3 1.3
dagozill 1.3 1.5 2.0 1.0 1.0 1.0 2.0 2.0 2.0
dalexis 1.1 1.4 2.7 0.9 0.9 0.9 1.1 1.1 1.1
deshacop 1.3 1.8 2.7 0.8 0.8 0.8 1.1 1.1 1.1
dridex 1.0 1.2 1.5 0.8 0.9 1.0 1.0 1.0 1.0
dynamer 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
enestaller 1.0 1.5 3.0 0.8 0.9 1.0 3.0 3.0 3.0
enestedel 1.0 1.7 6.0 1.0 1.0 1.0 3.0 3.0 3.0
fareit 2.8 3.1 4.7 0.9 1.0 1.1 1.4 1.4 1.4
fraudrop 1.0 1.2 1.5 1.0 1.0 1.0 1.0 1.0 1.0
gamarue 1.7 2.1 2.8 0.8 0.9 1.0 1.2 1.2 1.2
genkryptik 1.0 1.3 3.0 0.8 0.9 1.0 1.5 1.5 1.5
glupteba 1.0 1.3 2.0 1.0 1.0 1.0 1.0 1.0 1.0
lethic 3.5 7.9 28.0 0.8 1.0 1.3 4.7 4.7 4.7
locky 2.6 2.8 3.1 1.0 1.1 1.2 1.2 1.2 1.2
midie 1.5 2.0 3.0 1.0 1.0 1.0 1.0 1.0 1.0
mikey 1.1 1.4 2.0 0.9 0.9 1.0 1.1 1.1 1.1
onion 2.0 2.1 2.5 0.9 1.0 1.0 1.0 1.0 1.0
rack 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
razy 1.7 2.0 2.5 0.9 1.1 1.2 1.5 1.5 1.5
reconyc 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
sage 1.0 1.3 2.0 0.8 0.8 1.0 2.0 2.0 2.0
sagecrypt 2.0 2.4 3.1 0.9 1.0 1.1 1.9 1.9 1.9
scar 2.5 3.1 4.2 0.8 1.0 1.6 2.1 2.1 2.1
scatter 1.2 1.8 4.0 0.9 1.0 1.0 1.0 1.0 1.0
shiz 2.1 2.3 2.6 0.8 0.9 1.0 1.8 1.8 1.8
teerac 1.0 1.2 1.5 1.0 1.0 1.0 1.0 1.0 1.0

Continued on next page
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Family YaYaGenPE yarGen yaBin
min avg max min avg max min avg max

tescrypt 1.7 2.0 2.4 0.9 0.9 1.0 1.4 1.4 1.4
teslacrypt 2.9 4.0 5.5 0.9 1.1 1.4 2.1 2.1 2.1
tinba 1.4 1.6 1.8 0.6 0.9 1.2 1.4 1.4 1.4
tpyn 1.6 2.0 2.6 0.9 0.9 0.9 1.6 1.6 1.6
upatre 1.6 2.0 2.5 0.9 1.0 1.0 1.2 1.2 1.2
waldek 1.0 1.2 1.8 1.0 1.0 1.2 1.0 1.0 1.0
yakes 3.0 3.4 4.0 1.2 1.4 1.6 2.8 2.8 2.8
zbot 2.7 3.1 3.6 1.9 2.1 2.3 2.0 2.0 2.0
zerber 3.8 5.5 10.3 1.3 1.4 1.7 3.7 3.7 3.7
zusy 1.9 2.2 2.6 0.8 0.9 1.0 1.5 1.5 1.5

Table 4.24: Table showing the maximum,average and minimum number of samples covered
per rule on the family indicated in each row for the tool indicated in the corresponding
column. Measures have been retrieved by considering, for all the tools, all the possible
parameters they dispose of and, in case of YaYaGenPE, also both the supported distances
(i.e., Russell Rao and Jaccard distances).

From the results it is evident how YaYaGenPE is the tool that has the highest samples
per rule ratio, reaching a maximum of 28 samples per rule on the “Lethic” family. yarGen
and yaBin, on the other hand, reach a maximum of, respectively, 3.1 on the “Cerber”
family and 4.7 samples per rules on the “Lethic” family. On the same families, it is also
possible to notice how YaYaGenPE covers, on average, a higher number of samples per
rule with respect to the maximum number of the other two tools.
This also means that, in the majority of cases, YaYaGenPE generates a smaller number of
rules per training set and, although it is not strictly fundamental, this feature is a measure
of the scalability of each rule in terms of number of matched samples.

4.7 Final considerations on the signature generation tools

In order to get a better picture of the tools performances, it is necessary to consider all the
previous sections together. Indeed, even tough true positives, false positives, precision and
training set coverage have been analyzed separately, what really matters for an automatic
signature generation tool is the combination of the four.
For the following considerations, it will be taken into account the overall behavior of
yarGen, regardless of the “z0” parameter usage, and the yaBin “yara” rules for yaBin,
since the “yaraHunt” parameter tends to generate results comparable and possibly even
worse than the yarGen ones.
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To this extent, by performing a general comparison of all the tools, it is possible to state
that YaYaGenPE is the exact balance between yarGen and yaBin, in terms of true posi-
tives, false positives and overall precision. In particular, yarGen rules usually generate a
high number of true positives as well as a non-negligible number of false positives and a
precision lower than those of the other tools. On the other hand, the yaBin “yara” rules
are much more accurate, in that, they find no false positives and present a fairly high
precision, but they match a rather restricted number of true positives.
YaYaGenPE rules, as opposed to the other tools, present a small number of false positives,
a high number of true positive matches and precision slightly lower than yaBin rules, but
still comparable.
On the other hand, from the point of view of the training set coverage, YaYaGenPE seems
to perform definitely better than both the other tools. On top of that, YaYaGenPE rules
are also the ones with the highest samples per rule ratio.
Table 4.25 presents a final comparison of all the tools that have been extensively used
during this work, with a view on both the performances and the different approaches used
by each of them.

YaraGenerator yarGen yaBin BASS YaYaGenPE

Pure YARA YES YES YES NO YES

Based on Strings Strings Binary Binary PE + rules

Algorithm Common strings Whitelist
strings

Whitelist
funcs

Bindiff
+ LCS Set covering

Clustering NO NO NO YES YES

Scalable YES YES YES NO YES

Packing NO NO YES YES YES

False positives High High Low Low Low

High Coverage NO YES YES NO YES

Training-set
coverage NO NO NO YES YES

Samples per
rule High Low Low ? High

Table 4.25: Table presenting a complete comparison of all the tools analyzed during this
work.
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4.8 VirusTotal Intelligence platform tests

In this section there are a set of results obtained by testing some of the rules generated
for the tests of the previous sections over the VirusTotal Intelligence platform.
VirusTotal [64] is, today, one of the biggest platforms for automatic and free software
analysis. It also hosts the Intelligence platform that allows, among other things, to supply
YARA rules which will be constantly applied to any new software uploaded to the plat-
form in order to search for any match. Moreover, the Intelligence platform provides the
RetroHunt service, which, given a set of YARA rules, tests them against their repository
of binary data. The RetroHunt starts scanning the database backwards from the most re-
cently provided software until either the rule set reaches a total number of 10,000 matches
or a total of approximately 100 TeraBytes of data has been analyzed.
Results of the rules tested on the RetroHunt service are shown in Table 4.26.

Family Algorithm # Positives True positives False Positives

Olympic
Destroyer

udt + greedy +
rules

143 143 0

Sagecrypt udt + clot +
rules

136 136 0

Fareit clot + rules 385 385 0

Scatter udt + greedy 57 49 8

Scatter udt + greedy +
rules

35 31 4

Shiz udt + clot +
rules

12 12 0

Crowti udt + greedy +
rules

66 66 0

Tescrypt udt (Jaccard) +
clot + rules

1407 897 510

Table 4.26: Table representing the outcome of the RetroHunt procedure applied on the
rules generated by the algorithm indicated in the respective column, over the family in
the respective row. Wherever not specified differently, it is has been used the Russell Rao
distance.

Most of the results shown are promising, in that, the number of matched positives is re-
stricted, i.e., at most 1407 matches found on 100 TeraBytes, and the majority of them
presents a high number of true positives and a low number of false positives. This is an
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indicator of rules that are particularly targeted towards the family they have been trained
on, since they are capable of filtering out most of the remaining software. Manual analysis
on these results have also shown that, the majority of the true positives found presented,
in the labels identified by AVclass, the corresponding training family, which is a strong
hint of the accuracy of the rules.
Furthermore, focusing on the “Scatter” results, it is also possible to verify what was al-
ready mentioned when examining the number of False Positives found by the YaYaGenPE
rules: when adding the user provided rules as features the number of False Positives tends
to decrease.
Special considerations have to be done, nevertheless, for the “Tescrypt” family test, which
reported false positives of approximately 36% of the total matches 2. Although the number
of false positives is rather low, considering the 100 TeraBytes analyzed on the platform,
the ratio of true positives against false positives is not as good as expected. Further anal-
ysis have determined that the total number of false positives have been all found by a
single rule, which, even if containing approximately 130 literals, did not present any of
the features which are typically effective for malicious samples matching (i.e., resources
related features and RICH header features). In particular, out of the 1407 positives, 1404
were due to the just mentioned rule, while the remaining 3 ones were matched by another
one which targeted 3 true positives, specifically of the “Tescrypt” family.
Finally, for all the rules, performances similar to those in Table 4.26 were observerd on
the on-line tests performed by the Intelligence platform on the daily provided software.

4.9 YaYaGenPE k-fold validation

In this section it is presented a set of k-fold validations performed over some of the biggest
families in the dataset.
Before presenting the detailed results, it has to be mentioned that YaYaGenPE is not a
data classifier, which means that the conventional k-fold validation measures do not hold
in this case. For this reason, once divided each tested family into k partitions, as the
k-fold validation requires, the training is performed on k-1 partitions and only the recall
is computed over the remaining k-th partition, for each of the k tests required by the
k-fold validation. Indeed, computing the precision on the k-th partition is, in this case,
meaningless, since all the matched samples in the k-th partition are true positives of the
tested family, i.e., the precision would be always equal to 1.
On the other hand, in order to give a meaningful idea of the precision, it is here reported
the same precision illustrated in subsection 4.5.5, computed, for each of the k tests provided
by the k-fold validation, on all the samples of the dataset minus those in the k-1 partitions

2Telling which of the matches are effectively False Positives is not trivial, so, it has been chosen to
consider as False Positives any sample for which less than 3 Anti-Virus indicated it as malicious.
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used for the training. In this case, the just mentioned precision takes into account both
the samples of the k-th partition and the remaining dataset samples, which may still be
of the tested family but assigned to another one or that may be of a completely different
family.
High precision values thus mean that the tested family, on average, was capable of re-
trieving, among all the matched samples, lots of samples whose AVclass labels contain the
tested family label, which should be an indicator of valuable rules.
Still, low precision values are not necessarily an indication of bad rules, because of two
reasons: the rules are still matching true positives, even if of a different family, and, the
rules have been trained to recognize common traits of the family, but not to distinguish
that family from any other. In particular, for the latter, nothing prevents two families
from presenting similar traits, at least from a static-analysis point of view.
Finally, as already mentioned several times, the family division performed by AVclass is
not perfect and, as a consequence, the rules might have been trained on samples of the
wrong family, which extends their coverage of the dataset to families different from the
training one.
Results of the k-fold validations performed are illustrated in Table 4.27 and Table 4.28,
respectively representing the results determined using the “Unsupervised Decision Tree”
and the “HDBSCAN” clustering algorithms, in both cases using the “Russell Rao” distance
only. Both the set of results were obtained by setting the value of k to 10.

Family Parameters Recall Overall precision

yakes greedy 0.699 0.675
yakes greedy + rules 0.715 0.626
yakes clot 0.704 0.683
yakes clot + rules 0.721 0.655
teslacrypt greedy 0.805 0.897
teslacrypt greedy + rules 0.818 0.902
teslacrypt clot 0.806 0.901
cerber greedy 0.871 0.816
cerber greedy + rules 0.888 0.814
cerber clot 0.865 0.831
cerber clot + rules 0.882 0.819
crowti greedy 0.525 0.731
crowti greedy + rules 0.538 0.731
crowti clot 0.525 0.735
crowti clot + rules 0.525 0.719
zusy greedy 0.495 0.338
zusy greedy + rules 0.51 0.328

Continued on next page
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Family Parameters Recall Overall precision

zusy clot 0.436 0.41
zusy clot + rules 0.495 0.373
upatre greedy 0.358 0.428
upatre greedy + rules 0.384 0.462
upatre clot 0.325 0.521
upatre clot + rules 0.339 0.519
zerber greedy 0.879 0.724
zerber greedy + rules 0.897 0.642
zerber clot 0.882 0.733
zerber clot + rules 0.885 0.668
shiz greedy 0.491 0.878
shiz greedy + rules 0.561 0.852
shiz clot 0.471 0.872
shiz clot + rules 0.55 0.864

Table 4.27: Table representing the recall and overall precision of the k-fold validation
applied on the combination of family and parameters indicated in the first two columns.
All the results have been determined by using the “Unsupervised Decision Tree” clustering
algorithm.

Family Parameters Recall Overall precision

yakes greedy 0.73 0.612
yakes greedy + rules 0.746 0.501
yakes clot 0.723 0.66
yakes clot + rules 0.743 0.511
cerber greedy 0.888 0.76
cerber greedy + rules 0.882 0.731
cerber clot 0.882 0.763
cerber clot + rules 0.884 0.752
crowti greedy 0.539 0.585
crowti greedy + rules 0.564 0.294
crowti clot 0.539 0.545
crowti clot + rules 0.564 0.199
zusy greedy 0.567 0.199
zusy greedy + rules 0.552 0.252
zusy clot 0.507 0.213
zusy clot + rules 0.552 0.253

Continued on next page
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Family Parameters Recall Overall precision

upatre greedy 0.452 0.35
upatre greedy + rules 0.466 0.361
upatre clot 0.42 0.338
upatre clot + rules 0.428 0.353
zerber greedy 0.891 0.604
zerber greedy + rules 0.9 0.589
zerber clot 0.891 0.609
zerber clot + rules 0.9 0.589
shiz greedy 0.491 0.828
shiz greedy + rules 0.519 0.804
shiz clot 0.491 0.828
shiz clot + rules 0.519 0.804

Table 4.28: Table representing the recall and overall precision of the k-fold validation
applied on the combination of family and parameters indicated in the first two columns.
All the results have been determined by using the “HDBSCAN” clustering algorithm.

Results show an opposite behavior of the “Unsupervised Decision Tree” rules with re-
spect to the “HDBSCAN” ones. Specifically, the former presents higher overall precision
values while the latter has better recall values. This pattern is somehow related to the clus-
tering statistics in Table 4.2 and Table 4.3 in which, HDBSCAN presented slightly lower
homogeneity values and slightly lower number of clusters generated. As a consequence,
the rules generated by HDBSCAN are likely to be less specific than the “Unsupervised
Decision Tree” ones, which means that they are capable of matching more samples than
the last ones but that they are also slightly less precise.
Some general considerations can also be done by comparing Table 4.24 with the results
in Table 4.27 and Table 4.28. Specifically, it is possible to see that the number of samples
covered per rule is related to the recall of the family. In particular, families with high
samples per rule are also likely to present high recall. This consideration is also, probably,
linked to the similarity of the samples inside any family, i.e., families with similar samples
usually require less rules to cover the entire dataset and, concurrently, the rules trained
exclusively on part of the samples are likely to cover a consistent part of the remaining
family samples. Vice versa, families consisting of samples really distant one from each
other require lots of specific rules to cover the training set and, rules trained on part of
the family samples, may not cover many other remaining samples of the same family.
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Chapter 5

Conclusions

The aim of this thesis was the design and development of an automatic signature gen-
eration tool for the Microsoft Windows Operating System. This framework was created
with the goal of aiding security experts by generating signatures that can capture common
traits of the provided malicious samples.
Given the high ratio at which new malware are introduced, it is indeed evident that a man-
ual analysis and signature generation for each new malware found is not even an option.
For this reason, the developed framework has also the goal of being sufficiently scalable,
allowing to handle thousands of samples in hours.
Scalability, indeed, is today one of the biggest concerns for the automatic signature gener-
ation, along with the creation of meaningful and targeted signatures. As a matter of fact,
the state-of-the-art signature generation tools are not capable of dealing properly with
both. As an example, the BASS framework has been proved to provide really accurate
and specific signatures at the cost of an expensive signature generation procedure, due to
an heavy clustering algorithm underneath. On the other hand, tools like YaraGenerator,
yarGen and yaBin have linear complexity in the number of samples provided, but all of
them have some flaws in the generation of targeted signatures. In this direction, YaYa-
GenPE aims at handling a consistent number of samples and simultaneously at producing
accurate rules.
Results have shown that YaYaGenPE generated rules are, indeed, more accurate than the
majority of the tested tools, while providing a better coverage of the provided samples
and covering more samples per rule. Moreover, the rules tested on the VirusTotal Intelli-
gence platform have shown promising results, making the tool suitable for usage in a real
context, where the rules will have to face thousands of new samples daily.
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5.1 Limitations and future work.

Although the design of the framework has shown already interesting performances, there is
still room for improvement, specifically addressing the current tool limitations. In particu-
lar, there are still some points where the tool might handle things differently and probably
even more accurately, which will be addressed in the next paragraphs.

Features selection. The current set of supported features, along with the binary en-
coding of each, can reach numbers in the order of tens of thousands features with datasets
of thousands of samples. Even though, in all the tests performed, thousands of features
have never been a big concern for the resulting clusters quality, the curse of dimension-
ality 1 might be troublesome when handling a huge set of samples, for which it might be
interesting studying some feature selection procedures.
Many of the previous malware detection approaches reported in section 2.2 were perform-
ing dimensionality reduction either by selecting the most statistically relevant features or
by performing some of the most common feature selection procedures (e.g., feature hash-
ing or Principal-Component-Analysis).
Although the latter might be worth a try, the former, even if faster, could be somehow
limited to the particular malware panorama when the statistics about the features have
been extracted. This means that, at the high pace of the malware evolution, the statistics
found in a previous point in time might not be relevant anymore in the next future, and
this would require a continuous update of the best statistical features.
The features selection, apart from possibly improving the clustering quality, might as well
improve the speed of the clustering procedure, and this might help extending the tool
scalability.

Additional features support. Thanks to the independence of the YaYaGenPE clus-
tering and rule generation procedures from the extracted features, the framework is easily
extensible to support newer, and probably even better, set of features. For this reason,
one of the next works might be the analysis of the efficacy of new malware features and
their implementation in the tool.

Better goodwares management. As for the time being, goodwares are handled by
creating more specific clusters from those whose signatures have generated some false
positives. This approach is working in all the test cases that have been done throughout
this thesis, however, it hinders the rules generality, since all the rules will be generated

1The curse of dimensionality is the phenomenon for which, when increasing the dataset dimensions,
the distance between each point in the dataset tends to decrease. Extremely, for the number of dimensions
that goes to infinity, the points distances tend to zero. This particular behavior affects particularly the
Euclidean distances.
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again even if only one of them was not specific enough.
For this reason, it is definitely worth studying a new, and more effective, mechanism of
dealing with any false positive found during the rules generation procedure, in order to
target the problematic rules only.

Rules quality evaluation and refinement. As shown in chapter 4, some of the rules
contain prevalently too much generic literals and, consequently, tend to generate a non-
negligible number of false positives. For this reason, the rules quality evaluation can be
refined by assigning a proper weight to each of the features the tool extracts. By giving
more importance to some features with respect to others, the rule generation might provide
rules that focus on the features that are more relevant for the malware detection. As a
side effect, this can possibly reduce the number of False Positives even without relying on
a proper goodwares database.

Rules optimization. Most of the rules generated by YaYaGenPE contain a huge num-
ber of features each. This, although being good for avoiding false positives, might introduce
over-specificity. For this reason, it is worth taking into account a final step of rules opti-
mization that aims at keeping rules still accurate while reducing the number of features
per rule. To this extent, YaYaGen [35] already disposes of a rule optimization algorithm
that could be easily integrated in YaYaGenPE as well.

130



Appendix A

The PE File structure

The Portable Executable File Format is the standard executable format for all the Win32-
based systems. This format is strongly based on the Unix’s Common Object File Format
(COFF) and takes into account some extensions needed to meet recent operating systems
requirements (the COFF format was introduced in 1983 in UNIX System V) [41].
The documentation of the PE format is in the WINNT.H header file. In the following lines
it will be explained the most important parts of the format accordingly to the purposes
of this work.

A.1 The MS-DOS MZ format.

The Portable Executable always starts with the old MS-DOS MZ executable format. This
format consists of a DOS Header, that describes the DOS executable, and of the DOS
Stub, that is a set of instructions used to print an error message whenever the machine
running the executable is not Win32-based.
The DOS Header is described in the IMAGE_DOS_HEADER structure of WINNT.H,
and it is reported in Listing A.1 for commodity.

typedef struct _IMAGE_DOS_HEADER {
WORD e_magic; /* 00: MZ Header signature */
WORD e_cblp; /* 02: Bytes on last page of file */
WORD e_cp; /* 04: Pages in file */
WORD e_crlc; /* 06: Relocations */
WORD e_cparhdr; /* 08: Size of header in paragraphs */
WORD e_minalloc; /* 0a: Min. extra paragraphs needed */
WORD e_maxalloc; /* 0c: Max. extra paragraphs needed */
WORD e_ss; /* 0e: Initial ( relative ) SS value */
WORD e_sp; /* 10: Initial SP value */
WORD e_csum; /* 12: Checksum */
WORD e_ip; /* 14: Initial IP value */
WORD e_cs; /* 16: Initial ( relative ) CS value */
WORD e_lfarlc; /* 18: RVA of relocation table */
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WORD e_ovno; /* 1a: Overlay number */
WORD e_res [4]; /* 1c: Reserved words */
WORD e_oemid; /* 24: OEM identifier (for e_oeminfo ) */
WORD e_oeminfo; /* 26: OEM information ; */
WORD e_res2 [10]; /* 28: Reserved words */
DWORD e_lfanew; /* 3c: Offset to extended header */

} IMAGE_DOS_HEADER , *PIMAGE_DOS_HEADER;

Listing A.1: DOS Header in WINNT.H

The first WORD1 of the header is the so called magic number (e_magic, referring to the
first field of Listing A.1), that represents the identification number of the DOS executable.
This field contains the (hexadecimal) value 0x5A4D, which, interpreted as an array of
characters, is the ASCII string ’MZ’, as the initials of Mark Zbikowski, the creator of the
first linker for DOS (please note that the array of characters is printed starting from the
lowest index, that corresponds to the sequence {0x4D, 0x5A}). In the next fields there
are important values to execute correctly the DOS executable (such as the initial stack
segment value e_ss, or the initial instruction pointer value e_ip).
The most important field, however, is the e_lfanew DWORD, that represents the relative
virtual address (RVA)2 of the effective PE Header.
Immediately following the DOS Header there is the DOS Stub (starting at offset 0x40 from
the beginning of the file). It is easy to take a look at the instructions executed there: by
extracting the bytes from 0x40 up to the end of the DOS executable (typically, it occupies
the first 128 bytes) and , by disassembling them (for example, by using ndisasm 3), it is
possible to see the operations performed. Basically, what the DOS Stub does is to print
the string “This program cannot be run in DOS mode.” and terminate.

The Rich Header. In between the DOS Header and the beginning of the PE Header,
there usually is a gap that stores the so called “Rich Header”. The name of this Header
is due to the fact that, just before the end of the Header, there is always a DWORD
containing the same 4 bytes whose ASCII sequence is “Rich”, even though the preceding
bytes may vary. This header is not officially documented, but it has been reverse engineered
[42][25]. Results show that this header contains a list of items. Each element in the list

1In computer software programming, a WORD represents a 16 bits group. Other data definitions, in
the same context, are: NIBBLE (to define a group of 4 bits), DWORD (or double WORD, a group of 32
bits) and QWORD (or quad word, a group of 64 bits).

2The relative virtual address is the offset, starting from the beginning of the file in memory, where the
represented value can be found. The PE format strongly relies on RVAs, because they are easier to manage
with respect to absolute addresses, especially in case of relocations

3ndisasm is one of the most widespread Linux x86 disassembler tools. It was originally designed to dis-
assemble machine code produced by the NASM assembler, however, it works as well for any x86 executable
code sequence.
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consists of two DWORDs: the first identifies a compiling tool, while the second indicates
how many times that tool has produced items for the executable.
The first DWORD can, in turn, be decomposed into 2 WORDs, the Most significant one
containing the unique ID of the tool, the least significant one storing the build version of
the tool [25]. An interesting fact about the Rich Header, as stated in [25] is that, during the
2018 Winter Olympics, a large scale malware attack used, among several other obfuscation
techniques, a Rich Signature copied from malwares of the “Lazarus” group as an attempt
to fool analysts into guessing the original authors.

A.2 The PE Header.

The PE header starts at the RVA indicated in the DWORD e_lfanew. At this address there
is the “Signature” field, which is a DWORD that can assume different values, depending
on the executable format. In case of a PE format, the field, interpreted as an array of
characters, stands for the string “PE\0\0”. Immediately after this field there is the File
Header. This structure contains basic information about the file and it follows the original
COFF implementations. Finally, the PE Header ends with the Optional Header, which, as
opposed to what the name suggests, is mandatory, since it contains fundamental details
of the executable.

A.2.1 File Header

The File Header is represented by an IMAGE_FILE_HEADER structure, whose repre-
sentation is in Listing A.2.

typedef struct _IMAGE_FILE_HEADER {
WORD Machine;
WORD NumberOfSections;
DWORD TimeDateStamp;
DWORD PointerToSymbolTable;
DWORD NumberOfSymbols;
WORD SizeOfOptionalHeader;
WORD Characteristics;

} IMAGE_FILE_HEADER , *PIMAGE_FILE_HEADER;

Listing A.2: File Header structure.

Among the fields of the structure it is important to remark:

• the Machine WORD, that is a number identifying the CPU the file is destined to;

• the TimeDateStamp DWORD, that indicates when was the file generated; some
AntiVirus might check this value in order to find suspicious instants of time, such
as future ones.
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• the NumberOfSections WORD, that indicates how many sections are in the file;

• the SizeOfOptionalHeader WORD, that is always fixed to 224 (bytes) and, as the
name says, it tells the length of the Optional Header;

• the Characteristics WORD, that is used as a set of flags to give information about
the executable. In particular, it is possible to specify whether the program is an
executable (0x0002) or a DLL (0x2000) and many other values, not relevant for the
purposes of this work.

A.2.2 Optional Header.

The Optional Header was initially introduced in the COFF format in order to include ad-
ditional information when needed. However, the Portable Executable uses this Header
to convey critical information. The header is represented by two different structures,
depending on the processor architecture the file is destined to, respectively called IM-
AGE_OPTIONAL_HEADER32 and IMAGE_OPTIONAL_HEADER64. The two struc-
tures, apart from data type differences, have substantially the same set of fields, so, from
here on, it will be described the 32 bits version. The complete representation of the header
is in Listing A.3.

typedef struct _IMAGE_OPTIONAL_HEADER {

/* Standard fields */

WORD Magic; /* 0x010b */
BYTE MajorLinkerVersion;
BYTE MinorLinkerVersion;
DWORD SizeOfCode;
DWORD SizeOfInitializedData;
DWORD SizeOfUninitializedData;
DWORD AddressOfEntryPoint;
DWORD BaseOfCode;
DWORD BaseOfData;
DWORD ImageBase;
DWORD SectionAlignment;
DWORD FileAlignment;
WORD MajorOperatingSystemVersion;
WORD MinorOperatingSystemVersion;
WORD MajorImageVersion;
WORD MinorImageVersion;
WORD MajorSubsystemVersion;
WORD MinorSubsystemVersion;
DWORD Win32VersionValue;
DWORD SizeOfImage;
DWORD SizeOfHeaders;
DWORD CheckSum;
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WORD Subsystem;
WORD DllCharacteristics;
DWORD SizeOfStackReserve;
DWORD SizeOfStackCommit;
DWORD SizeOfHeapReserve;
DWORD SizeOfHeapCommit;
DWORD LoaderFlags;
DWORD NumberOfRvaAndSizes;
IMAGE_DATA_DIRECTORY

DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES ];
} IMAGE_OPTIONAL_HEADER32 , *PIMAGE_OPTIONAL_HEADER32;

Listing A.3: WINNT.H Optional Header representation (32 bits version)

A sufficiently detailed description of each field of the structure is in [41]. For this work it
is enough to focus on few of those. In particular:

• SizeOfCode, SizeOfInitializedData, SizeOfUninitializedData fields, as the names ex-
plain, indicate the size of the respective sections (respectively, usually referred as
.code or .text, .data and .bss). It is important that these sizes effectively match those
of the sections, otherwise it might mean that the executable has been manipulated
[57].

• The AddressOfEntryPoint field is the RVA of the first instruction to be executed
by the program; usually, malwares or packers modify this address to make it point
over an injected routine that, once it has performed its job (in case of packers, the
decryption of the code), will jump back to the original entry point (OEP).

• The BaseOfCode and BaseOfData fields are the RVAs of, respectively, the code and
data sections when mapped in memory.

• The ImageBase field represents the preferred load address of the file when it will be
memory-mapped. Specifically, the linker, when creating an executable, assumes that
the file will be loaded in memory to a predefined location. That location is indicated
in this field, however, the loader might decide, for example because ASLR is enabled,
to avoid loading the file in the specified address. In this last case, the loader has to
perform the base relocations, using the .reloc section (more details following).

• The SectionAlignment field specifies that each section of the executable has to start
at a virtual address that is multiple of that value, independently on the empty space
that would appear in between two consecutive sections. As an example, let’s assume
that the alignment is set to be 0x1000 (which usually is, being it the standard size of
a page); if the .code section occupies 256 bytes (0x0100 bytes) and starts at virtual
address 0x1000, the next section has to begin at virtual address 0x2000 and the
space in between will remain unused.
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• The FileAlignment field has the same conceptual meaning of the previous field, but
indicates the alignment when the file is stored on the secondary memory. For this
reason, typically, this value is set to the size of a disk sector, that usually is 0x200
bytes (512 bytes).

• The SizeOfImage field indicates the total size of all the sections of the executable,
aligned following the SectionAlignment value.

• The SizeOfHeaders field specifies the size of the DOS Header, the PE header and
the section table, rounded up to the next multiple of FileAlignment value, that is,
the entire size of the file minus the size of all the sections.

• The NumberOfRvaAndSizes field indicates the number of entries of the subsequent
array of IMAGE_DATA_DIRECTORY structures. This entry has always been set
to 16 since the introduction of the format.

• The DataDirectory element specifies an array IMAGE_DATA_DIRECTORY struc-
tures. Each of these structures consist of a VirtualAddress member, that specifies
the RVA of the directory on the file, and of a Size member, that tells the dimen-
sion of the considered element (the structure is represented in Listing A.4). Some of
these directory entries can be empty and some others, such as the Debug Directory,
are superfluous and can be removed without causing any harm. However, the most
important ones are the import directory and the Import Address Table (IAT). The
former references to a structure that lists all the functions of external DLLs the
executable relies on, while the latter is used by the program at runtime to find the
addresses of these functions. It is up to the loader to set the addresses in the IAT
before the program starts running[57].

typedef struct _IMAGE_DATA_DIRECTORY {
DWORD VirtualAddress;
DWORD Size;

} IMAGE_DATA_DIRECTORY , *PIMAGE_DATA_DIRECTORY;

Listing A.4: IMAGE_DATA_DIRECTORY structure

A.3 The Section Table.

Immediately following the PE Header, there is the section table. This table contains in-
formation about each section in the image. The sections here represented are sorted by
starting RVAs. Each section consists of homogeneous data, and, depending on the content
and purpose, has different access privileges.
The section table consists of an array of IMAGE_SECTION_HEADER (Listing A.5),
whose number of entries is specified in the NumberOfSections field of the File Header.
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typedef struct _IMAGE_SECTION_HEADER {
BYTE Name[IMAGE_SIZEOF_SHORT_NAME ];
union {

DWORD PhysicalAddress;
DWORD VirtualSize;

} Misc;
DWORD VirtualAddress;
DWORD SizeOfRawData;
DWORD PointerToRawData;
DWORD PointerToRelocations;
DWORD PointerToLinenumbers;
WORD NumberOfRelocations;
WORD NumberOfLinenumbers;
DWORD Characteristics;

} IMAGE_SECTION_HEADER , *PIMAGE_SECTION_HEADER;

Listing A.5: IMAGE_SECTION_HEADER structure

The Section Header starts with an array of 8 bytes that specifies the Name of the section.
Most of these names start with a dot (e.g., “.text” or “.code”), but it is not mandatory.
However, it is necessary to remark that, in case the name takes all the 8 bytes, there will
be no NULL terminator, since the string is interpreted as a list of bytes and not as a
conventional one.
The following field is a union (Misc) whose meaning changes depending on the type of file
that is being described (EXE or OBJs). If it is an EXE file, it will contain the size of the
section (VirtualSize), before it is rounded up to the FileAlignment value. On the other
hand, if it is an OBJ file, the union contains the PhysicalAddress of the section.
The VirtualAddress field contains, in an EXE file, the RVA where the loader should map
the section. To get the absolute address where to map the section, it is necessary to take
the ImageBase address (Optional Header field) and sum up this RVA. If the file is an OBJ,
this field is meaningless and set to 0.
The SizeOfRawData field contains, for an EXE file, the size of the section after it has
been rounded up to the next file alignment multiple. If it is set to 0, then it indicates
uninitialized data.
The PointerToRawData is the file offset where the data of the section begins.
The Characteristics member is a set of flags that specify the section’s attributes. The most
important values of this field are:

• IMAGE_SCN_CNT_CODE (value 0x00000020), that means that the section con-
tains code;

• IMAGE_SCN_CNT_INITIALIZED_DATA (value 0x00000040), that indicates that
the section contains initialized data (this value is set for almost all the sections but
the executable and the uninitialized ones);
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• IMAGE_SCN_CNT_UNINITIALIZED_DATA (value 0x00000080), that indicates
a section containing uninitialized data (typically named .bss);

• IMAGE_SCN_MEM_EXECUTE (value 0x20000000) specifies that the section can
be executed (typically it is in conjunction with IMAGE_SCN_CNT_CODE);

• IMAGE_SCN_MEM_READ (value 0x40000000) indicates that the section is read-
able (typically all sections are);

• IMAGE_SCN_MEM_WRITE (value 0x80000000) specifies that the section is writable.

A.3.1 Most Common Sections.

In this section there will be a brief description of the sections that are usually present in
almost every executable:

• .text or .code: this section is where, generally, all code emitted by the compiler or
the assembler is stored. The linker, typically, takes all the .text sections, coming
from the different OBJs of a project, and concatenates all of them into a single
section. There might also be additional code inside this section, apart from the one
written by the programmer. In particular, there might be instructions like:

JMP DWORD PTR [XXXXXXXX ].

This happens when calling a function of an external module. In that case, the CALL
instruction issued by the compiler does not transfer control directly to the external
function, but it executes the previous instruction, which, in turn, jumps to an address
whose value is stored in the .idata section, that is the real starting point of the
function. This workaround has been introduced in order to reduce the number of
locations where the loader has to patch the effective address of the DLL functions to
be called. In particular, using pointers in the .idata section, only the values stored
there have to be adjusted to point to the right function and not every single call to
an external DLL function.

• .data: this section contains all the initialized data. This data comprehend global
and static variables initialized at compile time. As for the .text section, the linker
takes all the .data sections from the various OBJ and LIB files and combine them
into a single section.

• .bss: this section is used to store all the uninitialized global or static variables. Again,
one single .bss section is created by combining all the .bss sections in the OBJ and
LIB files.

138



A – The PE File structure

• .idata: this section contains information about the functions and data that the
program imports from external DLLs. Each function imported by the PE is explicitly
listed in this section.

• .edata: this section is a list of all the functions and data that the PE exports for
other modules.

• .reloc: it is the section that holds a table of base relocations. A base relocation is an
entry needed if the loader was not able to load the file where the linker assumed it
would. In this case only, the .reloc section is used to find where, in the image, there
is a 32-bit absolute address to be fixed in order to point to the right position.

A.4 An in-depth view of the Import procedure.

The “.idata” section contains all the information relative to the functions of external mod-
ules needed by an executable. It is here where the loader finds what is needed in order to
patch the JMP instruction mentioned in the previous section.
The .idata section always starts with an array of IMAGE_IMPORT_DESCRIPTOR
structures, whose fields are described in Listing A.6.

typedef struct _IMAGE_IMPORT_DESCRIPTOR {
union {

DWORD Characteristics;
DWORD OriginalFirstThunk;

} DUMMYUNIONNAME;
DWORD TimeDateStamp;
DWORD ForwarderChain; /* -1 if no forwarders */
DWORD Name;
/* RVA to IAT (if bound this IAT has actual addresses ) */
DWORD FirstThunk;

} IMAGE_IMPORT_DESCRIPTOR ,* PIMAGE_IMPORT_DESCRIPTOR;

Listing A.6: IMAGE_IMPORT_DESCRIPTOR structure

This array does not have an explicitly specified length and, in order to specify the end,
there is an element with all the fields set to NULL.
The Name field indicates which is the DLL the descriptor refers to.
The first union in Listing A.6 was originally devoted to indicate a set of flags. Since
the PE File Format introduction, however, it has been used as the RVA to the first IM-
AGE_THUNK_DATA structure of an array terminated by a zero value element.
The last field, FirstThunk, can be interpreted in the same way as the first one. In sum-
mary, what happens is that the import descriptor will have two parallel arrays, zero
terminated, composed of IMAGE_THUNK_DATA structures. The structure of an IM-
AGE_THUNK_DATA is represented in Listing A.7.

139



A – The PE File structure

typedef struct _IMAGE_THUNK_DATA32 {
union {

DWORD ForwarderString;
DWORD Function;
DWORD Ordinal;
DWORD AddressOfData;

} u1;
} IMAGE_THUNK_DATA32 ,* PIMAGE_THUNK_DATA32;

Listing A.7: IMAGE_THUNK_DATA structure

Basically, its union ends up being filled either with the Ordinal of the imported API,
or with the pointer to an IMAGE_IMPORT_BY_NAME structure. This last structure
contains, in turn, a string naming the function to import and an hint on the ordinal of
the function in the Export Table of the DLL (Listing A.8).

typedef struct _IMAGE_IMPORT_BY_NAME {
WORD Hint;
BYTE Name [1]; /** "1" is just a placeholder . **/

} IMAGE_IMPORT_BY_NAME ,* PIMAGE_IMPORT_BY_NAME;

Listing A.8: IMAGE_IMPORT_BY_NAME structure

The reason for two arrays of the same type is that the first one (OriginalFirstThunk) is
never modified, and, for this reason is usually called hint-name table. The second one
(FirstThunk), on the contrary, is overwritten by the PE loader, in a way that, after
the function has been found on the Export Table, the IMAGE_THUNK_DATA’s union
will contain the corresponding address. Getting back to the code section, the address in
each “JUMP DWORD PTR [XXXXXXXX]” instruction is exactly the RVA of an IM-
AGE_THUNK_DATA in the FirstThunk array, that, once modified by the loader, will
contain the right function pointer.
A graphical representation of an import descriptor and the related structures is in Fig-
ure A.1.

A.5 The Export Table.

As explained in the previous section, the PE loader accesses the Export Table of the re-
quested module in order to patch the jump address inside the FirstThunk union. This
table is usually stored in a section named “.edata”.
The just mentioned section always begins with an IMAGE_EXPORT_DIRECTORY
structure, whose fields are in Listing A.9. The structure’s virtual address is then addressed
by the IMAGE_DATA_DIRECTORY relative to the export table inside the DataDirec-
tory array immediately following the Optional Header (Listing A.4).
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Figure A.1: Graphical representation of a .idata section entry.

typedef struct _IMAGE_EXPORT_DIRECTORY {
DWORD Characteristics; /* unused */
DWORD TimeDateStamp; /* time/date stamp indicating

when the file was created */
WORD MajorVersion; /* unused */
WORD MinorVersion; /* unused */
DWORD Name; /* RVA to string Name of this DLL. */
DWORD Base; /* Stores the starting ordinal number */
DWORD NumberOfFunctions;
DWORD NumberOfNames;
DWORD AddressOfFunctions;
DWORD AddressOfNames;
DWORD AddressOfNameOrdinals;

} IMAGE_EXPORT_DIRECTORY ,* PIMAGE_EXPORT_DIRECTORY;

Listing A.9: IMAGE_EXPORT_DIRECTORY structure.

It is important to remark the last three DWORDs, since they represent RVAs to three
parallel arrays containing all the informations needed for each function inside the DLL.
Each of these arrays has a number of elements corresponding to the value indicated in the
NumberOfFunctions field (actually, the AddressOfNames array has “NumberOfNames”
entries, but NumberOfNames and NumberOfFunctions seem to be always identical). Each
array conveys a different type of information:

• the array pointed by AddressOfFunctions contains a sequence of function entry
points;

• the array pointed by AddressOfNames has a sequence of pointers to ASCII strings,
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each indicating the name of the function;

• the array pointed by AddressOfNameOrdinals stores an ordinal number for each
function exported by the DLL.

A graphical representation of the Export Table is in Figure A.2.

Figure A.2: Graphical representation of the .edata section.

A.6 The resources directory.

Typically, the resources are stored in a section named “.rsrc”, even though this is not
mandatory. This section, or whatever section is in charge of storing resources, contains a
structure organized in a directory tree.
The root of this directory tree is addressed by the VirtualAddress field of one of the
IMAGE_DATA_DIRECTORY entries in the DataDirectory array of the Optional Header
(refer to Listing A.3). Each directory in the tree is represented by an IMAGE_RESOURCE
_DIRECTORY structure, whose format is in Listing A.10.

typedef struct _IMAGE_RESOURCE_DIRECTORY {
DWORD Characteristics;
DWORD TimeDateStamp;
WORD MajorVersion;
WORD MinorVersion;
WORD NumberOfNamedEntries;
WORD NumberOfIdEntries;
/* IMAGE_RESOURCE_DIRECTORY_ENTRY DirectoryEntries []; */

} IMAGE_RESOURCE_DIRECTORY ,* PIMAGE_RESOURCE_DIRECTORY;

Listing A.10: IMAGE_RESOURCE_DIRECTORY structure.
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Immediately following the directory structure there is an array of directory entries (IM-
AGE_RESOURCE_DIRECTORY_ENTRY structures), whose size is the sum of the
NumberOfNamedEntries and of the NumberOfIdEntries fields. In particular, the entries
identified by a Name appear first in the array, immediately followed by those iden-
tified by Id (same order as the fields in the resource directory structure). Each IM-
AGE_RESOURCE_DIRECTORY_ENTRY element has a structure described in List-
ing A.11 (for readability reasons it has been omitted the detailed description, that consid-
ers the Big-Endian equivalent of some fields).
typedef struct _IMAGE_RESOURCE_DIRECTORY_ENTRY {

union {
struct {

unsigned NameOffset :31;
unsigned NameIsString :1;

} DUMMYSTRUCTNAME;
DWORD Name;
WORD Id;
WORD __pad;

} DUMMYUNIONNAME;
union {

DWORD OffsetToData;
struct {

unsigned OffsetToDirectory :31;
unsigned DataIsDirectory :1;

} DUMMYSTRUCTNAME2;
} DUMMYUNIONNAME2;

} IMAGE_RESOURCE_DIRECTORY_ENTRY ,* PIMAGE_RESOURCE_DIRECTORY_ENTRY;

Listing A.11: IMAGE_RESOURCE_DIRECTORY_ENTRY structure.

In short, the struct consists of two unions, which basically end up being a DWORD each,
whose meaning depends on the most significant bit. The first one either contains a pointer
to the string identifying the name of the entry or the Id of the entry (if the most significant
bit is set to 1 then the other 31 bits are an offset, inside the file, of where the name starts).
The second union is used to determine whether the entry is a leaf node or a sub-directory:
if the most significant bit of that union is set to 1, then the entry represents a sub-directory
and the remaining 31 bits point to another IMAGE_RESOURCE_DIRECTORY struc-
ture, otherwise the union points to an IMAGE_RESOURCE_DATA_ENTRY structure,
that is the object containing details about the resource (Listing A.12).
typedef struct _IMAGE_RESOURCE_DATA_ENTRY {

DWORD OffsetToData;
DWORD Size;
DWORD CodePage;
DWORD Reserved;

} IMAGE_RESOURCE_DATA_ENTRY ,* PIMAGE_RESOURCE_DATA_ENTRY;

Listing A.12: IMAGE_RESOURCE_DATA_ENTRY structure.
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The only important fields of that structure, according to the purposes of this work are the
OffsetToData and the Size ones.

Directory tree layout. Given the easily growing complexity of the tree, the tree layout
has been usually organized to follow a three level structure[66]. Specifically, the levels
convey the following information:

• the first level of sub-directories, starting from the root, indicates the type of the
resources stored inside: there is one directory entry per type of resource;

• the second level of sub-directories (the ones inside the “type” directories) contains a
directory entry per resource name: there can be several resources having the same
name, and all of them are stored inside the same directory;

• finally, at the third level, there is an IMAGE_RESOURCE_DIRECTORY_ENTRY
for each language the resource is encoded into. In particular, it might happen that
some resources can support different languages, even though they are conceptually
equivalent. In this case, the Name field of the struct is interpreted as 2 numbers:

– the language identifier, consisting of the lowest 10 bits of the Name DWORD;

– the sub-language identifier, described by the remaining 22 bits.
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Appendix B

Exhaustive precision results

This chapter presents all the precisions computed for all the tests performed on each
family and analyzed tool. In the following tables there will not be the tables associated
to the yaBin tool since it consits only of two parameters that generate YARA rules and,
consequently, the precisions represented in Table 4.22 are already the effective results (i.e.,
not an average value). Whenever indicated the value “NaN” it is meant that the rules did
not found any other positive apart from the training set ones. This happens, at least for
YaYaGenPE, specifically on most of the smallest families (i.e., those with less than 10
elements), for which rules are really specific.
Finally, it has to be reminded that the precision here reported is intended as described in
subsection 4.5.5.

B.1 YaYaGenPE precision results

B.1.1 Unsupervised Decision Tree Precision tables.

This section presents the results obtained by the “UDT” clustering algorithm on top of
the rules generation procedures.
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agentb 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
allaple 4 NaN NaN NaN NaN NaN NaN NaN NaN
atraps 2 NaN NaN NaN NaN NaN NaN NaN NaN
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Table B.1 – continued from previous page
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aura 2 NaN NaN NaN NaN NaN NaN NaN NaN
autoit 2 NaN NaN NaN NaN NaN NaN NaN NaN
barys 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
beebone 3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
bitman 1090 0.791 0.744 0.789 0.774 0.797 0.781 0.735 0.783
bunitu 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
carberp 2 NaN NaN NaN NaN NaN NaN NaN NaN
cerber 533 0.829 0.78 0.747 0.76 0.843 0.767 0.84 0.762
cloud 2 NaN NaN NaN NaN NaN NaN NaN NaN
coantor 2 NaN NaN NaN NaN NaN NaN NaN NaN
critroni 3 NaN NaN NaN NaN NaN NaN NaN NaN
crowti 75 0.712 0.689 0.726 0.677 0.677 0.689 0.707 0.707
crypmod 42 0.163 0.165 0.155 0.367 0.167 0.367 0.125 0.165
cryptowall 47 0.276 0.16 0.276 0.16 0.276 0.16 0.276 0.192
dagozill 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
dalexis 8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
delf 2 NaN NaN NaN NaN NaN NaN NaN NaN
deshacop 8 NaN NaN NaN NaN NaN NaN NaN NaN
dmalocker 2 NaN NaN NaN NaN NaN NaN NaN NaN
dridex 3 NaN NaN NaN NaN NaN NaN NaN NaN
dynamer 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
enestaller 3 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778
enestedel 6 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
fareit 14 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
fraudrop 3 0.333 0.333 NaN 0.333 0.333 0.333 0.333 0.333
gamarue 33 0.182 0.4 0.182 0.2 0.133 0.167 0.167 0.286
genericcryptor 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
genkryptik 3 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
glupteba 4 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023
hplocky 2 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667
lethic 28 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167
locky 647 0.429 0.077 0.147 0.378 0.149 0.116 0.126 0.361
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Table B.1 – continued from previous page
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midie 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
mikey 8 0.0 0.357 0.0 0.0 0.0 0.357 0.0 0.357
myxah 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ngrbot 2 NaN NaN NaN NaN NaN NaN NaN NaN
onion 40 0.214 0.083 0.214 0.077 0.214 0.083 0.214 0.077
rack 3 NaN NaN NaN NaN NaN NaN NaN NaN
razy 40 0.808 0.8 0.808 0.809 0.808 0.816 0.79 0.8
reconyc 3 NaN NaN NaN NaN NaN NaN NaN NaN
ruskill 2 NaN NaN NaN NaN NaN NaN NaN NaN
sage 4 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154
sagecrypt 47 0.655 0.488 0.667 0.488 0.655 0.645 0.667 0.488
scar 25 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
scatter 12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
score 2 NaN NaN NaN NaN NaN NaN NaN NaN
shade 2 NaN NaN NaN NaN NaN NaN NaN NaN
shiz 104 0.914 0.903 0.909 0.912 0.922 0.922 0.917 0.91
teerac 3 NaN NaN NaN NaN NaN NaN NaN NaN
tescrypt 29 0.45 0.481 0.45 0.45 0.45 0.45 0.465 0.45
teslacrypt 2478 0.892 0.893 0.893 0.887 0.865 0.885 0.878 0.893
tinba 7 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
torrentlocker 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
tpyn 13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
upatre 154 0.381 0.265 0.407 0.273 0.231 0.357 0.32 0.31
waldek 7 NaN NaN NaN NaN NaN NaN NaN NaN
yakes 682 0.524 0.486 0.526 0.525 0.526 0.546 0.526 0.486
zbot 43 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
zboter 2 NaN NaN NaN NaN NaN NaN NaN NaN
zegost 2 NaN NaN NaN NaN NaN NaN NaN NaN
zerber 329 0.629 0.612 0.637 0.602 0.606 0.602 0.639 0.602
zusy 65 0.365 0.309 0.295 0.309 0.295 0.377 0.354 0.309
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Table B.1 – continued from previous page
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Table B.1: Table that shows the precision of the rules trained on the family on the row
with the parameters indicated by the respective column. All the rules used for the tests
have been generated using the Russell Rao distance.
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agentb 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
allaple 4 NaN NaN NaN NaN NaN NaN NaN NaN
atraps 2 NaN NaN NaN NaN NaN NaN NaN NaN
aura 2 NaN NaN NaN NaN NaN NaN NaN NaN
autoit 2 NaN NaN NaN NaN NaN NaN NaN NaN
barys 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
beebone 3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
bitman 1090 0.785 0.758 0.748 0.775 0.784 0.764 0.758 0.807
bunitu 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
carberp 2 NaN NaN NaN NaN NaN NaN NaN NaN
cerber 533 0.769 0.818 0.76 0.783 0.789 0.822 0.798 0.781
cloud 2 NaN NaN NaN NaN NaN NaN NaN NaN
coantor 2 NaN NaN NaN NaN NaN NaN NaN NaN
critroni 3 NaN NaN NaN NaN NaN NaN NaN NaN
crowti 75 0.742 0.707 0.726 0.677 0.707 0.707 0.719 0.707
crypmod 42 0.125 0.165 0.167 0.165 0.157 0.165 0.16 0.367
cryptowall 47 0.276 0.192 0.25 0.16 0.276 0.16 0.276 0.16
dagozill 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
dalexis 8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
delf 2 NaN NaN NaN NaN NaN NaN NaN NaN
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Table B.2 – continued from previous page
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deshacop 8 NaN NaN NaN NaN NaN NaN NaN NaN
dmalocker 2 NaN NaN NaN NaN NaN NaN NaN NaN
dridex 3 NaN NaN NaN NaN NaN NaN NaN NaN
dynamer 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
enestaller 3 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778
enestedel 6 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
fareit 14 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0
fraudrop 3 0.333 0.333 0.333 0.333 0.333 0.333 NaN NaN
gamarue 33 0.167 0.5 0.333 0.25 0.167 0.5 0.143 0.5
genericcryptor 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
genkryptik 3 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
glupteba 4 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023
hplocky 2 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667
lethic 28 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167
locky 647 0.053 0.118 0.118 0.343 0.046 0.357 0.132 0.112
midie 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
mikey 8 0.0 0.0 0.0 0.357 0.0 0.357 0.0 0.0
myxah 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ngrbot 2 NaN NaN NaN NaN NaN NaN NaN NaN
onion 40 0.214 0.083 0.214 0.077 0.214 0.083 0.214 0.077
rack 3 NaN NaN NaN NaN NaN NaN NaN NaN
razy 40 0.812 0.819 0.816 0.817 0.816 0.807 0.812 0.8
reconyc 3 NaN NaN NaN NaN NaN NaN NaN NaN
ruskill 2 NaN NaN NaN NaN NaN NaN NaN NaN
sage 4 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154
sagecrypt 47 0.571 0.488 0.571 0.488 0.667 0.488 0.571 0.488
scar 25 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
scatter 12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
score 2 NaN NaN NaN NaN NaN NaN NaN NaN
shade 2 NaN NaN NaN NaN NaN NaN NaN NaN
shiz 104 0.924 0.91 0.922 0.91 0.909 0.91 0.931 0.91
teerac 3 NaN NaN NaN NaN NaN NaN NaN NaN
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Table B.2 – continued from previous page
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tescrypt 29 0.45 0.45 0.465 0.45 0.471 0.471 0.471 0.45
teslacrypt 2478 0.896 0.891 0.895 0.895 0.882 0.868 0.896 0.882
tinba 7 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
torrentlocker 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
tpyn 13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
upatre 154 0.375 0.273 0.478 0.385 0.318 0.265 0.304 0.312
waldek 7 NaN NaN NaN NaN NaN NaN NaN NaN
yakes 682 0.509 0.515 0.505 0.459 0.51 0.48 0.466 0.447
zbot 43 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
zboter 2 NaN NaN NaN NaN NaN NaN NaN NaN
zegost 2 NaN NaN NaN NaN NaN NaN NaN NaN
zerber 329 0.609 0.601 0.615 0.614 0.621 0.646 0.597 0.664
zusy 65 0.319 0.33 0.354 0.309 0.365 0.309 0.354 0.301

Table B.2: Table that shows the precision of the rules trained on the family on the row
with the parameters indicated by the respective column. All the rules used for the tests
have been generated using the Jaccard distance.

B.1.2 HDBSCAN Precision tables.

This section presents the precision values obtained applying the “HDBSCAN” clustering
algorithm on top of the rules generation procedures.
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Table B.3 – continued from previous page
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allaple 4 NaN NaN NaN NaN NaN NaN NaN NaN
atraps 2 NaN NaN NaN NaN NaN NaN NaN NaN
aura 2 NaN NaN NaN NaN NaN NaN NaN NaN
autoit 2 NaN NaN NaN NaN NaN NaN NaN NaN
barys 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
beebone 3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
bitman 1090 0.585 0.584 0.585 0.584 0.585 0.584 0.585 0.584
carberp 2 NaN NaN NaN NaN NaN NaN NaN NaN
cerber 533 0.828 0.84 0.828 0.84 0.9 0.915 0.9 0.915
cloud 2 NaN NaN NaN NaN NaN NaN NaN NaN
coantor 2 NaN NaN NaN NaN NaN NaN NaN NaN
critroni 3 NaN NaN NaN NaN NaN NaN NaN NaN
crowti 75 0.608 0.608 0.712 0.608 0.689 0.689 0.689 0.689
crypmod 42 0.164 0.164 0.164 0.164 0.164 0.164 0.164 0.164
cryptowall 47 0.317 0.3 0.317 0.3 0.317 0.3 0.317 0.3
dagozill 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
dalexis 8 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667
delf 2 NaN NaN NaN NaN NaN NaN NaN NaN
deshacop 8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
dmalocker 2 NaN NaN NaN NaN NaN NaN NaN NaN
dridex 3 NaN NaN NaN NaN NaN NaN NaN NaN
dynamer 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
enestaller 3 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778
enestedel 6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
fareit 14 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
fraudrop 3 NaN NaN NaN NaN NaN NaN NaN NaN
gamarue 33 0.167 0.25 0.167 0.167 0.167 0.167 0.158 0.167
genericcryptor 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
genkryptik 3 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
glupteba 4 NaN NaN NaN NaN NaN NaN NaN NaN
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Table B.3 – continued from previous page
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hplocky 2 NaN NaN NaN NaN NaN NaN NaN NaN
lethic 28 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
locky 647 0.089 0.093 0.109 0.098 0.448 0.448 0.684 0.684
midie 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
mikey 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
myxah 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ngrbot 2 NaN NaN NaN NaN NaN NaN NaN NaN
onion 40 0.001 0.001 0.083 0.083 0.083 0.083 0.083 0.083
rack 3 NaN NaN NaN NaN NaN NaN NaN NaN
razy 40 0.814 0.814 0.814 0.814 0.804 0.804 0.85 0.85
reconyc 3 NaN NaN NaN NaN NaN NaN NaN NaN
ruskill 2 NaN NaN NaN NaN NaN NaN NaN NaN
sage 4 NaN NaN NaN NaN NaN NaN NaN NaN
sagecrypt 47 0.552 0.534 0.534 0.534 0.552 0.667 0.534 0.534
scar 25 0.472 0.472 0.472 0.472 0.472 0.472 0.472 0.472
scatter 12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
score 2 NaN NaN NaN NaN NaN NaN NaN NaN
shade 2 NaN NaN NaN NaN NaN NaN NaN NaN
shiz 104 0.813 0.825 0.813 0.825 0.813 0.825 0.813 0.825
teerac 3 NaN NaN NaN NaN NaN NaN NaN NaN
tescrypt 29 0.362 0.362 0.362 0.362 0.462 0.462 0.462 0.462
teslacrypt 2478 0.815 0.815 0.815 0.815 0.853 0.853 0.853 0.853
tinba 7 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
torrentlocker 2 NaN NaN NaN NaN NaN NaN NaN NaN
tpyn 13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
upatre 154 0.194 0.176 0.217 0.176 0.219 0.176 0.219 0.194
waldek 7 NaN NaN NaN NaN NaN NaN NaN NaN
yakes 682 0.418 0.424 0.418 0.424 0.426 0.429 0.426 0.429
zbot 43 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273
zboter 2 NaN NaN NaN NaN NaN NaN NaN NaN
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zegost 2 NaN NaN NaN NaN NaN NaN NaN NaN
zerber 329 0.584 0.584 0.651 0.584 0.584 0.584 0.735 0.584
zusy 65 0.192 0.196 0.192 0.196 0.226 0.204 0.226 0.204

Table B.3: Table that shows the precision of the rules trained on the family on the row
with the parameters indicated by the respective column. All the rules used for the tests
have been generated using the Russell Rao distance.
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agentb 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
allaple 4 NaN NaN NaN NaN NaN NaN NaN NaN
atraps 2 NaN NaN NaN NaN NaN NaN NaN NaN
aura 2 NaN NaN NaN NaN NaN NaN NaN NaN
autoit 2 NaN NaN NaN NaN NaN NaN NaN NaN
barys 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
beebone 3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
bitman 1090 0.807 0.812 0.807 0.812 0.807 0.812 0.807 0.812
bunitu 2 NaN NaN NaN NaN NaN NaN NaN NaN
carberp 2 NaN NaN NaN NaN NaN NaN NaN NaN
cerber 533 0.912 0.911 0.912 0.911 0.912 0.911 0.912 0.911
cloud 2 NaN NaN NaN NaN NaN NaN NaN NaN
coantor 2 NaN NaN NaN NaN NaN NaN NaN NaN
critroni 3 NaN NaN NaN NaN NaN NaN NaN NaN

Continued on next page
153



B – Exhaustive precision results

Table B.4 – continued from previous page

Family Size hd
bs
ca
n

hd
bs
ca
n+

ru
le
s

hd
bs
ca
n+

go
od

w
ar
e

hd
bs
ca
n+

ru
le
s+

go
od

w
ar
e

hd
bs
ca
n:
cl
ot

hd
bs
ca
n:
cl
ot
+
ru
le
s

hd
bs
ca
n:
cl
ot
+

go
od

w
ar
e

hd
bs
ca
n:
cl
ot
+
ru
le
s+

go
od

w
ar
e

crowti 75 0.264 0.297 0.78 0.78 0.139 0.298 0.767 0.767
crypmod 42 0.066 0.067 0.066 0.067 0.066 0.067 0.066 0.067
cryptowall 47 0.184 0.152 0.194 0.152 0.125 0.152 0.194 0.152
dagozill 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
dalexis 8 0.212 0.209 0.212 0.209 0.75 0.357 0.75 0.357
delf 2 NaN NaN NaN NaN NaN NaN NaN NaN
deshacop 8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
dmalocker 2 NaN NaN NaN NaN NaN NaN NaN NaN
dridex 3 NaN NaN NaN NaN NaN NaN NaN NaN
dynamer 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
enestaller 3 0.778 0.778 0.778 0.778 0.778 0.778 0.778 0.778
enestedel 6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
fareit 14 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0
fraudrop 3 NaN NaN NaN NaN NaN NaN NaN NaN
gamarue 33 0.1 0.143 0.1 0.143 0.1 0.143 0.1 0.143
genericcryptor 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
genkryptik 3 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
glupteba 4 NaN NaN NaN NaN NaN NaN NaN NaN
hplocky 2 NaN NaN NaN NaN NaN NaN NaN NaN
lethic 28 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
locky 647 0.263 0.273 0.263 0.273 0.263 0.04 0.263 0.264
midie 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
mikey 8 0.028 0.032 0.028 0.032 0.042 0.054 0.042 0.054
myxah 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ngrbot 2 NaN NaN NaN NaN NaN NaN NaN NaN
onion 40 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
rack 3 NaN NaN NaN NaN NaN NaN NaN NaN
razy 40 0.595 0.587 0.595 0.587 0.595 0.587 0.595 0.587
reconyc 3 NaN NaN NaN NaN NaN NaN NaN NaN
ruskill 2 NaN NaN NaN NaN NaN NaN NaN NaN
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sage 4 NaN NaN NaN NaN NaN NaN NaN NaN
sagecrypt 47 0.608 0.66 0.608 0.66 0.608 0.66 0.608 0.66
scar 25 0.457 0.457 0.457 0.457 0.457 0.457 0.457 0.457
scatter 12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
score 2 NaN NaN NaN NaN NaN NaN NaN NaN
shade 2 NaN NaN NaN NaN NaN NaN NaN NaN
shiz 104 0.781 0.897 0.781 0.897 0.781 0.897 0.781 0.897
teerac 3 NaN NaN NaN NaN NaN NaN NaN NaN
tescrypt 29 0.412 0.471 0.455 0.455 0.412 0.471 0.455 0.455
teslacrypt 2478 0.9 0.893 0.9 0.893 0.9 0.893 0.9 0.893
tinba 7 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
torrentlocker 2 NaN NaN NaN NaN NaN NaN NaN NaN
tpyn 13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
upatre 154 0.167 0.125 0.205 0.4 0.167 0.125 0.205 0.4
waldek 7 0.5 0.5 0.5 0.5 NaN 0.5 NaN 0.5
yakes 682 0.414 0.446 0.414 0.446 0.414 0.446 0.414 0.446
zbot 43 0.714 0.714 0.714 0.714 0.714 0.714 0.714 0.714
zboter 2 NaN NaN NaN NaN NaN NaN NaN NaN
zegost 2 NaN NaN NaN NaN NaN NaN NaN NaN
zerber 329 0.692 0.683 0.692 0.683 0.692 0.683 0.692 0.683
zusy 65 0.174 0.215 0.174 0.215 0.171 0.215 0.171 0.215

Table B.4: Table that shows the precision of the rules trained on the family on the row
with the parameters indicated by the respective column. All the rules used for the tests
have been generated using the Jaccard distance.

B.2 yarGen Precision tables
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agentb 3 0.083 0.0 0.083 0.0 0.083 0.0 0.083 0.0
allaple 4 NaN NaN NaN NaN NaN NaN NaN NaN
atraps 2 NaN NaN NaN NaN NaN NaN NaN NaN
aura 2 NaN NaN NaN NaN NaN NaN NaN NaN
autoit 2 NaN NaN NaN NaN NaN NaN NaN NaN
barys 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
beebone 3 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0
bitman 1090 0.625 0.69 0.625 0.69 0.795 0.852 0.795 0.852
bunitu 2 0.308 0.308 0.308 0.308 0.5 0.5 0.5 0.5
carberp 2 0.0 0.0 0.0 0.0 NaN NaN NaN NaN
cerber 533 0.622 0.657 0.622 0.657 0.704 0.74 0.704 0.74
cloud 2 0.061 0.061 0.061 0.061 0.375 0.375 0.375 0.375
coantor 2 NaN NaN NaN NaN NaN NaN NaN NaN
critroni 3 0.25 0.25 0.25 0.25 NaN NaN NaN NaN
crowti 75 0.468 0.275 0.468 0.275 0.605 0.615 0.605 0.615
crypmod 42 0.071 0.084 0.071 0.084 0.133 0.167 0.133 0.167
cryptowall 47 0.125 0.195 0.125 0.195 0.636 0.273 0.636 0.273
dagozill 4 0.125 0.25 0.125 0.25 0.0 0.0 0.0 0.0
dalexis 8 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
delf 2 NaN NaN NaN NaN NaN NaN NaN NaN
deshacop 8 NaN NaN NaN NaN NaN NaN NaN NaN
dmalocker 2 NaN NaN NaN NaN NaN NaN NaN NaN
dridex 3 NaN NaN NaN NaN NaN NaN NaN NaN
dynamer 3 0.011 0.02 0.011 0.02 0.0 0.02 0.0 0.02
enestaller 3 0.2 0.2 0.2 0.2 0.444 0.444 0.444 0.444
enestedel 6 0.192 0.179 0.192 0.179 0.192 0.192 0.192 0.192
fareit 14 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
fraudrop 3 0.044 0.044 0.044 0.044 0.5 0.5 0.5 0.5
gamarue 33 0.086 0.037 0.086 0.037 0.2 0.333 0.2 0.333
genericcryptor 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
genkryptik 3 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
glupteba 4 0.015 0.015 0.015 0.015 0.026 0.026 0.026 0.026
hplocky 2 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667
lethic 28 0.0 0.048 0.0 0.048 NaN 1.0 NaN 1.0
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locky 647 0.048 0.044 0.048 0.044 0.14 0.246 0.14 0.246
midie 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
mikey 8 0.075 0.357 0.075 0.357 0.0 0.0 0.0 0.0
myxah 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ngrbot 2 NaN NaN NaN NaN NaN NaN NaN NaN
onion 40 0.026 0.026 0.026 0.026 0.029 0.029 0.029 0.029
rack 3 0.034 0.034 0.034 0.034 0.167 0.167 0.167 0.167
razy 40 0.673 0.638 0.673 0.638 0.328 0.267 0.328 0.267
reconyc 3 NaN NaN NaN NaN NaN NaN NaN NaN
ruskill 2 NaN NaN NaN NaN NaN NaN NaN NaN
sage 4 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154
sagecrypt 47 0.526 0.526 0.526 0.526 0.526 0.526 0.526 0.526
scar 25 0.471 0.471 0.471 0.471 1.0 1.0 1.0 1.0
scatter 12 0.032 0.009 0.032 0.009 0.027 0.009 0.027 0.009
score 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
shade 2 0.011 0.006 0.011 0.006 0.016 0.006 0.016 0.006
shiz 104 0.908 0.908 0.908 0.908 0.908 0.908 0.908 0.908
teerac 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tescrypt 29 0.369 0.433 0.369 0.433 0.333 0.472 0.333 0.472
teslacrypt 2478 0.886 0.886 0.886 0.886 0.922 0.922 0.922 0.922
tinba 7 0.0 0.111 0.0 0.111 0.0 0.111 0.0 0.111
torrentlocker 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
tpyn 13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
upatre 154 0.161 0.118 0.161 0.118 0.346 0.323 0.346 0.323
waldek 7 NaN 0.0 NaN 0.0 NaN NaN NaN NaN
yakes 682 0.466 0.466 0.466 0.466 0.474 0.474 0.474 0.474
zbot 43 NaN 0.333 NaN 0.333 NaN 1.0 NaN 1.0
zboter 2 NaN NaN NaN NaN NaN NaN NaN NaN
zegost 2 NaN NaN NaN NaN NaN NaN NaN NaN
zerber 329 0.526 0.513 0.526 0.513 0.64 0.507 0.64 0.507
zusy 65 0.091 0.067 0.091 0.067 0.22 0.189 0.22 0.189
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Table B.5: Table that shows the precision obtained by the yarGen generated rules over
the family indicated in each row and using the parameters in each column.
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agentb 3 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
allaple 4 NaN NaN NaN NaN NaN NaN NaN NaN
atraps 2 NaN NaN NaN NaN NaN NaN NaN NaN
aura 2 NaN NaN NaN NaN NaN NaN NaN NaN
autoit 2 NaN NaN NaN NaN NaN NaN NaN NaN
barys 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
beebone 3 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0
bitman 1090 0.786 0.667 0.81 0.684 0.837 0.809 0.835 0.839
bunitu 2 NaN 1.0 NaN NaN NaN 1.0 NaN NaN
carberp 2 0.0 0.0 0.0 0.0 NaN NaN NaN NaN
cerber 533 0.698 0.591 0.719 0.757 0.827 0.802 0.83 0.765
cloud 2 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375
coantor 2 NaN NaN NaN NaN NaN NaN NaN NaN
critroni 3 0.333 0.333 0.333 0.25 0.5 0.5 0.5 NaN
crowti 75 0.632 0.623 0.627 0.623 0.648 0.648 0.648 0.648
crypmod 42 0.113 0.106 0.113 0.107 0.174 0.167 0.174 0.172
cryptowall 47 0.229 0.183 0.273 0.273 0.41 0.439 0.258 0.258
dagozill 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
dalexis 8 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
delf 2 NaN NaN NaN NaN NaN NaN NaN NaN
deshacop 8 NaN NaN NaN NaN NaN NaN NaN NaN
dmalocker 2 NaN NaN NaN NaN NaN NaN NaN NaN
dridex 3 NaN NaN NaN NaN NaN NaN NaN NaN
dynamer 3 0.0 0.012 0.0 0.021 0.0 0.012 0.0 0.021
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enestaller 3 0.2 0.2 0.2 0.2 0.444 0.444 0.444 0.444
enestedel 6 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.192
fareit 14 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
fraudrop 3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
gamarue 33 0.09 0.062 0.059 0.065 0.111 0.115 0.114 0.114
genericcryptor 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
genkryptik 3 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
glupteba 4 0.25 0.025 0.25 0.025 0.026 0.026 0.026 0.026
hplocky 2 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667
lethic 28 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
locky 647 0.15 0.042 0.232 0.043 0.236 0.076 0.241 0.07
midie 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
mikey 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
myxah 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ngrbot 2 NaN NaN NaN NaN NaN NaN NaN NaN
onion 40 0.014 0.01 0.026 0.026 0.029 0.083 0.029 0.029
rack 3 0.034 0.034 0.034 0.034 0.167 0.167 0.167 0.167
razy 40 0.56 0.489 0.49 0.5 0.297 0.297 0.297 0.297
reconyc 3 NaN NaN NaN NaN NaN 0.0 NaN NaN
ruskill 2 NaN 0.0 NaN 0.0 NaN NaN NaN NaN
sage 4 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154
sagecrypt 47 0.345 0.345 0.541 0.541 0.541 0.541 0.541 0.541
scar 25 0.81 0.81 0.81 0.81 1.0 0.895 1.0 0.895
scatter 12 0.02 0.019 0.026 0.03 0.027 0.018 0.027 0.031
score 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
shade 2 0.014 0.007 0.014 NaN 0.016 0.007 0.016 NaN
shiz 104 0.908 0.908 0.908 0.908 0.908 0.908 0.908 0.908
teerac 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tescrypt 29 0.352 0.402 0.453 0.373 0.415 0.435 0.415 0.415
teslacrypt 2478 0.805 0.805 0.882 0.882 0.906 0.906 0.905 0.905
tinba 7 0.111 0.019 0.111 0.111 0.111 0.111 0.111 0.111
torrentlocker 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
tpyn 13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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upatre 154 0.146 0.095 0.273 0.161 0.306 0.297 0.3 0.281
waldek 7 NaN NaN NaN NaN NaN NaN NaN NaN
yakes 682 0.405 0.405 0.471 0.471 0.482 0.482 0.482 0.482
zbot 43 0.182 0.182 0.1 0.182 0.182 0.182 0.1 0.182
zboter 2 NaN NaN NaN NaN NaN NaN NaN NaN
zegost 2 NaN NaN NaN NaN NaN NaN NaN NaN
zerber 329 0.674 0.693 0.66 0.76 0.681 0.677 0.673 0.785
zusy 65 0.191 0.15 0.215 0.203 0.207 0.207 0.208 0.207

Table B.6: Table that shows the precision obtained by the yarGen generated rules over
the family indicated in each row and using the parameters in each column. As opposed to
Table 4.19, all the trainings have been performed by using the “z0” parameter together
with the indicated ones.
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