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Abstract

Nowadays, the DDoS attack detection in traditional or Software Defined Network(SDN),
is an area of active scientific research. In this work we evaluate amount of information
that need to be transferred between controller and network devices in order to successfully
detect a DDoS attack in OpenFlow SDN, and proposed a way to minimize this amount,
using means of P4 programming language.
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Chapter 1

Overview

1.1 Networking paradigms

1.1.1 Distributed networking

The development of the Internet has created a digital society, where almost everything
connected with everything and can be accessed from anywhere. The distributed network
protocols that work inside network devices allow the information (in form of digital blocks,
called packets), to reach any part of the world. But, the underlying technology, traditional
IP networks, is very complex and hard to control. To create a network behavior in accor-
dance with desired policies, network operators have to configure every individual switch
or router separately, using low-level and mostly vendor-specific commands. In addition
to this, network operators need to adapt their networks to faults and load changes, using
almost non-existent in IP-networks mechanisms of automatic fault response and reconfig-
uration. To make situation even more complicated, traditional IP networks are vertically
integrated. The control plane (that decides how to handle network traffic) and the data
plane (that executes traffic forwarding according to the decisions made by the control
plane) are bundled inside the traditional switches and routers, lowering flexibility and
making very difficult any innovation and evolution of the networking infrastructure. As
an example, we can remember the transition from IPv4 to IPv6, which started long time
ago and still uncompleted, despite the fact, that this transition is just a protocol upgrade.
Computer networks can be divided in three planes of functionality: the data, control and
management planes (see Figure 1.1).

The data plane corresponds to the network devices, or components of devices, respon-
sible for data forwarding. The control plane contains all the protocols used to manage
forwarding tables of the data plane components. The management plane includes software
services, for example SNMP-tools, responsible for remote control and monitoring of the
control functionality. From the network-policy point of view, network policy is defined on
the management plane, enforced by the control plane, and executed by the data plane.
Control and data planes are coupled in traditional IP networks, usually they placed inside
the same device, making network structure highly decentralized. This decentralization was
considered as a very important design goal at the beginning of Internet - it guaranteed
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1 – Overview

Figure 1.1. Layered view of networking functionality [1]

network resilience. And indeed, it worked very efficient, but as the outcome gave us very
complex and almost static architecture, which is complex and hard to control. Network
misconfigurations are very common in modern days, leading undesired network behavior,
including packet losses, forwarding loops, unintended paths and other errors. In order to
support network management, vendors offer proprietary management solutions of special-
ized hardware, operating systems and network applications. Because of proprietorships
of these solutions, networks operators have to maintain separate solution for equipment
of each vendor, and separate supporting teams, which increases capital and operational
costs of the networks. Also, to solve problem of lacking functionality withing the network,
network operators have to use middle-boxes, such as firewalls, intrusion detection systems,
load-balancers and others, number of which is comparable, even if not larger, than num-
ber of basic network devices. Presence of these middle-boxes increases complexity and
decreases flexibility of network design and operations.

1.1.2 SDN

Software-Defined Networking (SDN) is a relatively new paradigm aimed to solve the lim-
itation of traditional IP networks. First, it solves the vertical integration problem by
separating control logic (network control plane) form underlying hardware, responsible
for data forwarding. Second, control logic is moved to a logically centralized controller
(or network operating system), simplifying network configuration and policy enforcement.
A simplified view of this architecture is shown in Figure 1.2. Important to mention,
that logically centralized model do not signifies physically centralized system. Instead,
industry SDN controllers has physically distributed control planes, keeping, nevertheless,
centralized logical structure.

The separation of the control plane and the data plane requires well-defined API (Ap-
plication Programming Interface) between switches and SDN controller, as depicted on the
Figure 1.2. The most recognizable of these interfaces at the moment is OpenFlow. Ac-
cording to it OpenFlow switch can have one or several tables of packet-handling rules (flow
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Figure 1.2. Simplified view of an SDN architecture. [1]

tables), each of them matches a subset of traffic and can perform actions like dropping,
forwarding, modifying on the incoming packets.

With different sets of rules, installed by controller, an OpenFlow switch can behave
like a router, switch, firewall, load balancer, traffic shaper, and any other middlebox. In
result of application software-defined networking principles can me separeted concerns of
defining network policies, their implementation in hardware, and traffic forwarding. This
separation is the key to desired flexibility, because network control is now broken into
tractable pieces, which allows us to to create new abstractions in networking, simplify
network management and introduce innovations.

The term SDN (Software-Defined Networking) was originally coined to represent the
ideas and work around OpenFlow at Stanford University [2]. Original definition of term
SDN refers to a network architecture where the forwarding state of dataplane is managed
by a remote control plane, separated form the former. The networking industry, in many
cases, shifted from original view, calling SDN anything involves software. In this work we
will refer SDN as described in [1], as a network architecture with four pillars:

1. The control and data planes are decoupled. Control functionality is removed from
network devices that will become simple (packet) forwarding elements.

2. Forwarding decisions are flow-based, instead of destination-based. A flow is broadly
defined by a set of packet field values acting as a match (filter) criterion and a set
of actions (instructions). In the SDN/OpenFlow context, a flow is a sequence of
packets between a source and a destination. All packets of a flow receive identical
service policies at the forwarding devices. The flow abstraction allows unifying the
behavior of different types of network devices, including routers, switches, firewalls,
and middleboxes. Flow programming enables unprecedented flexibility, limited only
to the capabilities of the implemented flow tables.
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3. Control logic is moved to an external entity, the so-called SDN controller or Network
Operating System (NOS). The NOS is a software platform that runs on commodity
server technology and provides the essential resources and abstractions to facilitate
the programming of forwarding devices based on a logically centralized, abstract
network view. Its purpose is therefore similar to that of a traditional operating
system.

4. The network is programmable through software applications running on top of the
NOS that interacts with the underlying data plane devices. This is a fundamental
characteristic of SDN, considered as its main value proposition.

Figure 1.3. Traditional networking versus Software-Defined Networking (SDN).
With SDN, management becomes simpler and middleboxes services can be delivered
as SDN controller applications. [1]

Notably, the logical centralization of the control logic, has several additional benefits.
First, it allows to modify network policies in simpler and less error-prone way by means
of high-level languages and software components, comparing to low-level vendor specific
device configurations. Second, a control program can automatically react to changes of
the state of network and maintain the high-level policies in any circumstances, including
device/link outages and spikes of the data traffic. Third, the centralization of the control
logic in a controller gives global knowledge of the state of the network, and therefore
simplifies the development of sophisticated networking functions, services and applications.
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Following the SDN concept introduced in [3], an SDN can be defined by three fundamental
abstractions: (i) forwarding, (ii) distribution, and (iii) specification.

• The forwarding abstraction should allow any forwarding behavior desired by the
control program (network application), in the same time hiding details of the un-
derlying hardware. OpenFlow is one realization of such abstraction, which can be
considered as an equivalent to a "device driver" in an operating system.

• The distribution abstraction should protect SDN applications from the problems
of distributed state, making the distributed control problem a logically centralized
one. Its realization requires a common distribution layer, which in SDN resides in
the NOS. This layer has two essential functions. First, it is responsible for installing
the control commands on the forwarding devices. Second, it gathers information
about the forwarding layer (network devices and links), to offer a global network
view to network applications.

• The specification abstraction, allows a control program (network application) to
express the desired network behavior without about implementation of that behavior.
This goal can be reached with virtualization solutions, or network programming
languages.

Figure 1.4. SDN Abstractions. [1]
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These abstractions allows us to convert the abstract configurations that the applica-
tions express based on a simplified, abstract model of the network, into a physical config-
uration for the global network view exposed by the SDN controller. Figure 1.1.2 depicts
the SDN architecture, concepts and building blocks. As was mentioned before, the tight
binding between control and data planes makes the deployments of new networking fea-
tures (for example, routing protocols) very hard, due to the fact, that we need to modify
all networking devices. Therefore, as was mentioned before, new features are introduced
mostly by means of new middleboxes, which are, in turn, vendor dependent and hard to
configure. Resulting topology becomes more complex, and creates additional hurdles in
implementing new functionality. In contrast, SDN separates the control plane from the
network devices and becomes an external entity: the network operating system or SDN
controller. This approach has several advantages:

• Provides a simple and cheap network testbed for developing SDN applications. It
becomes easier to program these applications because the abstractions of the control
platform and network programming languages can be moved and shared.

• All applications can use the same information (the global network view), making
more effective policy decisions using control plane software modules.

• These applications can take actions (i.e., reconfigure forwarding devices) from any
part of the network, eliminating problem of choosing the location for the new func-
tionality.

• The integration of different applications becomes more straightforward. For exam-
ple, load balancing and routing applications can be used simultaneously, with load
balancing decisions having precedence over routing policies.

1.1.3 Stateful SDN

The basic innovation of SDN is the separation between control and data plane. With Open-
Flow this separation is physically represented by "dumb" switches processing match/action
rules (flow entries) installed by "smart" controllers. The controller is able to change dynam-
ically these rules, rewriting them in order to react to changes of the state of the network.
This approach allows simple network programming, and simplified view of the network as
a "big switch", but introduces some disadvantages. In particular, there is a relatively long
processing delay, caused by information exchange between switch and controller, which can
be critical in cases of, for example, network outages or traffic management applications.

One of the possible ways of the advancement of the OpenFlow, according to some
recent proposals [4] [5], is to introduce switch-driven adaptation of forwarding rules, based
on the switch-local events. One of the proposals, OpenState [6], is the evolution of Open-
Flow abstraction, which allows to introduce "stateful" dataplane with minimal changes of
the existing OpenFlow standard. OpenState, is an OpenFlow extension that introduces
the idea of delegating some control functions back to the devices, keeping the central SDN
controller posted and fully in control of all delegated operations. The motivation of Open-
State is to move simple control tasks, that require only switch-local knowledge, out of the
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controller, nevertheless keeping controller responsible only for decisions requiring network-
wide knowledge. With OpenState, custom states may be configured inside the switch, and
may be programmed to evolve themselves, triggered by packet arrivals, measurements and
timers.

Figure 1.5. Simplified packet flow in OpenState. [7]

On the Figure 1.5 we can see proposed structure of the OpenState. State table is put
first in the switch pipeline, and store "flow states". Every packet, arriving to the switch,
is processed first by this table, by the user-programmed key ( combination of values in
protocol fields of the packet ). After the processing, packet receives "state" metadata, which
informs following packet processing stages about the "state" of the flow to which belongs
this packet. Also, next processing stages sends back to the state table some information
about processing results of the packet (for example, number of processed bytes in this
flow), which can trigger user-programmed state changes.

In this work we use more radical solution to switch programmability limitations which
was proposed in [5]: P4. P4 is a high-level language to program packet processors which
focuses on protocol-independence.

1.2 P4

1.2.1 Overview

Software-Defined Networking (SDN) has given network operators programmatic control
over their networks. In SDN, the control plane is logically (and physically) separate from
the forwarding plane, and one control plane controls multiple forwarding devices. The
fact, that forwarding devices could be programmed in many ways, still having a common,
open and vendor-independent interface (like OpenFlow) allows a control plane to control
forwarding devices from different hardware and software vendors.

The OpenFlow interface started simple, having a single table of rules that could match
packets on a small number of header fields (e.g., MAC addresses, IP addresses, protocol,
TCP/UDP port numbers, etc.). Over the past five years, the specification has grown
increasingly more complicated (see Figure 1.6), with much more header fields and mul-
tiple stages of rule tables, to allow switches to expose more advanced capabilities to the
controller.

The growth of supported header fields doesn’t show signs of slowdown. For example,
data-center network operators need to add into OpenFlow protocol new forms of packet
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Figure 1.6. OpenFlow Development. [5]

encapsulation (e.g., NVGRE [8], VXLAN [9], and STT [10]), for which they resort to
deploying more flexible software switches that are easier to extend with new functionality.
Rather than extending the OpenFlow specification, it is better to make future switches
to support flexible mechanisms for parsing packets and matching header fields, allowing
controller applications to use these capabilities through a common, open interface. Such
a general, extensible interface is going to be simpler, more elegant, and more future-proof
than today’s OpenFlow 1.x standard.

Modern chip designs demonstrate that such flexibility can be reached in custom ASICs
at terabit speeds. But programming this new generation of switch chips is far from easy.
Each chip has its own low-level interface, vendor-specific, and often on the level of mi-
crocode programming. In an article [5] was proposed a sketch the design of a higher-level
language for Programming Protocol-independent Packet Processors (P4). Fig-
ure 1.7 shows the relationship between P4-used to configure a switch, telling it how packets
are to be processed - and existing APIs (such as OpenFlow) that are designed to populate
the forwarding tables in fixed function switches. According to the article [5] authors opin-
ion P4 can raise the level of abstraction for programming the network, and can serve as a
general interface between the controller and the switches. Also P4 allows SDN controller
to program switch operations on the switch itself, making controller independent of the
fixed function design of OpenFlow switches, and by this advances flexibility of operations
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Figure 1.7. Proposed P4 position in OpenFlow framework [5]

of the network. In design of P4, authors put three goals:

• Reconfigurability. The controller should be able to redefine the packet parsing and
processing of already deployed switches, right in the field.

• Protocol independence. The switch should not be tied to specific packet formats.
Instead, the controller should be able to specify

– a packet parser for extracting header fields with particular names and types
– a collection of typed match + action tables that process these headers

• Target independence. As a C programmer does not need to know the specifics of
the CPU, the controller programmer should not need to know the details of the
switch. Instead, a vendor-supplied compiler should take care about the switch’s
capabilities during compilation of a target-independent description, written in P4,
into a target-dependent program (used to configure the switch).

1.2.2 Table pipeline model

P4 is a language which describes how packets are processed on the data plane of a pro-
grammable forwarding element such as a hardware or software switch, network interface
card, router, or network appliance. P4 was initially designed for programming switches,
but its scope has enlarged to cover a variety of devices, such as ASIC, FPGA and generally
any type of device that implements both a control plane and a data plane functionality.
But in this paper we will refer all possible P4-programmable devices as a switch.

P4 is designed to specify only the data plane functionality of the target. As a concrete
example, Figure 1.8 illustrates the difference between a traditional fixed-function switch
and a P4-programmable switch. In a traditional switch the manufacturer strictly defines
the data-plane functions. The control-plane controls these functions by managing entries
in tables (i.e routing or sitching tables), configuring specialized objects (e.g. meters),
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Figure 1.8. Difference between traditional and programmable switches [11]

and by processing control-packets (e.g. routing protocol packets) or other events, like
link state changes or learning notifications. A P4-programmable switch differs from a
traditional switch in two essential ways:

1. The data plane functions are not fixed in advance, now they are defined by the a
P4 program. The data-plane is configured at device initialization to implement the
functionality described by the P4 program (shown by the long red arrow) and has
no built-in knowledge of existing network protocols.

2. The control plane communicates with the data plane using the same structure as in
a fixed-function device, but the set of tables and other objects in the data plane are
no longer fixed, since they are defined by a P4 program. The P4 compiler generates
the API that the control plane uses to communicate with the data plane.

The core abstractions provided by the P4 language are: [11]

1. Header types describe the format (the set of fields and their sizes) of each header
within a packet.

2. Parsers describe the permitted sequences of headers within received packets, how to
identify those header sequences, and the headers and fields to extract from packets.

3. Tables associate user-defined keys with actions. P4 tables generalize traditional
switch tables; they can be used to implement routing tables, flow lookup tables,
access-control lists, and other user-defined table types, including complex multi-
variable decisions.

10
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4. Actions are code fragments that describe how packet header fields and metadata are
manipulated. Actions can include data, which is supplied by the control-plane at
runtime.

5. Match-action units perform the following sequence of operations:

(a) Construct lookup keys from packet fields or computed metadata,
(b) Perform table lookup using the constructed key, choosing an action (including

the associated data) to execute, and
(c) Finally, execute the selected action.

6. Control flow expresses an imperative program that describes packet-processing on
a target, including the data-dependent sequence of match-action unit invocations.
Deparsing (packet reassembly) can also be performed using a control flow.

7. Extern objects are architecture-specific constructs that can be manipulated by P4
programs through well-defined APIs, but whose internal behavior is hard-wired (e.g.,
checksum units) and hence not programmable using P4.

8. User-defined metadata: user-defined data structures associated with each packet.

9. Intrinsic metadata: metadata provided by the architecture associated with each
packet, for example, the input port where a packet has been received.

Figure 1.9 shows a typical set of tools used while programming a switch using P4.
Switch manufacturer should provide the hardware or software implementation framework,
an architecture definition, and a P4 compiler for that switch. P4 programmer writes
programs for a specific architecture, which defines a set of P4-programmable components
on the switch as well as their external data plane interfaces.

Figure 1.9. Programming a switch with P4 [11]

Compiling a set of P4 programs produces two artifacts:
1. device-specific data plane configuration to download into device, that implements

the forwarding logic described in the input P4 program (example: JSON file for
BMV2 software switch)
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2. an API for managing the state of the data plane objects from the control plane (info
file for the P4 Runtime)

Compared to state-of-the-art packet-processing systems (e.g., based on writing mi-
crocode on top of custom hardware), P4 has a number of significant advantages:

1. Flexibility: P4 makes expresses packet-forwarding policies as programs, in contrast
to traditional switches, which expose fixed-function forwarding engines to their users.

2. Expressiveness: P4 can express complex, hardware-independent packet processing
algorithms using only general-purpose operations and table look-ups. Such pro-
grams are portable across devices that implement the same architectures (assuming
sufficient resources are available).

3. Resource mapping and management: P4 programs describe storage resources ab-
stractly (e.g., IPv4 source address); compilers map such user-defined fields to avail-
able hardware resources and manage low-level details such as allocation and schedul-
ing.

4. Software engineering: P4 programs provide important benefits such as type checking,
information hiding, and software reuse.

5. Component libraries: Component libraries supplied by manufacturers can be used
to wrap hardware specific functions into portable high-level P4 constructs.

6. Decoupling hardware and software evolution: Target manufacturers may use abstract
architectures to further decouple the evolution of low-level architectural details from
high-level processing.

7. Debugging: Manufacturers can provide software models of an architecture to aid in
the development and debugging of P4 programs.

1.2.3 P4 Runtime

P4 Runtime is an API, introduces new way by which control plane software is able to
control the forwarding plane of a switch, router, firewall, load-balancer, and any other
type of network device. Arguably, the most interesting aspect of P4 Runtime is that it
allows to control any forwarding plane, independently of whether it is built from a fixed-
function or programmable switch ASIC, an FPGA, NPU or a software switch running
on an x86 server. The framework of P4 Runtime stays unchanged, being independent
of forwarding plane capabilities, whatever protocols and features the forwarding plane
supports. The same API can be used to control a huge variety of different switches. More
than this - when new protocols and features are added to the forwarding plane, the P4
Runtime API is automatically updated by changing the control scheme to describe how
a new feature is to be managed, without restarting or rebooting the control plane. P4
Runtime is independent of where the control plane is located; the control plane could be
a protocol stack running on a local switch operating system (switch OS), or a remote
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Figure 1.10. P4 Runtime for local Control Plane [12]

control plane running on x86 servers. On the Figure 1.10 is provided an example how a
local control plane can use P4 Runtime as an API to control the switch ASIC directly.

At present, switches (and chips) are controlled by proprietary APIs, which are closed
and mostly fixed to predefined set of functions. Such API is written to the target chip
and covers the needs, and usually there is no need to extend the API over time. Further-
more, software distribution models, in particular NDAs and license agreements very often
prohibit sharing the API with others, making it impossible for one API to be used to
control switch ASICs from different chip vendors. In result, it is very difficult, oftentimes
impossible, to add new protocols and features, and it is impossible for one network owner
to leverage different features from another, stifling innovation.

The Figure 1.11 shows how a remote control plane (standard SDN controller, like
ONOS) can use P4 Runtime API to control a switch (or router). In this example, the P4
program "tor.p4" specifies the switch pipeline. A P4 compiler generates the schema needed
by the P4 Runtime API to add and delete entries into the forwarding table at runtime.

The P4 Runtime API can be used to control any switch, of any vendor, if behavior
of this switch has been specified in the P4 language. When needed, P4 Runtime can be
used to control existing fixed-function switches. In order to do this, a developer should
write a P4 program to document the switch behavior using the P4 language. After this P4
compiler (e.g. p4c) will automatically identify elements that need to be controlled, such
as lookup tables specified in the P4 program to which we need to add and delete entries.

P4 and P4 Runtime allow programming of network devices and raise flexibility of this
process to the new level, but it’s programming model is very far from simple impera-
tive programming constructs, provided by OpenFlow. On the Figure 1.12 is shown the
structure of the P4 Runtime objects.
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Figure 1.11. P4 Runtime for remote Control Plane [12]

As we may see from Figure 1.12, a programmer or network controller, who wishes,
for example, to send IP packets with IP destination address 10.0.2.2 to switch port num-
ber 3, will not see here anything of help. In P4 and P4runtime structure this behavior
must be described first in P4 program, where we need to create a match-action table to
process IP packets and corresponding action to set destination port. After, we need an
adapter program, which translates standard IP protocol abstractions of controller into
P4Runtime specific action, i.e - to forward the packet mentioned above, controller must
write particularly shaped entry into particular match-action table of P4 program, which
calls a particular action with a particular parameter. Translating it to the objects from
Figure 1.12 we need to create and send to switch p4.WriteRequest object, which con-
tain p4.Update object of type INSERT, which contains p4.Entity object, which contains
p4.TableEntry object, which contains objects p4.FieldMatch and p4.Action, each with cor-
responding types and parameters. Going on with programming paradigms, we may say
that simple imperative programming model of OpenFlow became much more complicated,
and now resembles Object-Oriented and Multithreaded programming.

1.2.4 INband Telemetry

Inband Network Telemetry ("INT") [13] is a framework designed to allow the collection and
reporting of network state data, directly by the data plane, without requiring intervention
or work by the control plane (controller). Data exchange in INT model is implemented
by adding special headers, containing state information, to the forwarded packets. In the
INT architectural model, packets contain mentioned header fields that are interpreted as
"telemetry instructions" by network devices. These instructions tell an INT-capable device
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Figure 1.12. P4 Runtime objects structure

what information to gather and write into the packet as it travels across the network.
INT traffic sources (applications, end-host networking stacks, hypervisors, NICs, send-
side ToRs, etc.) can insert instructions either in normal network data packets or in special
probe packets. Similarly, INT traffic receivers retrieve (and report) the collected results
of these instructions, allowing the traffic sinks to monitor the exact data plane state that

15



1 – Overview

the packets "observed" while being forwarded. Some examples of traffic sink behavior are
described below: (Citation from [13])

• OAM - the traffic sink might simply collect the encoded network state, then export
that state to an external controller. This export could be in a raw format, or could
be combined with basic processing (such as compression, deduplication, truncation).

• Real-time control or feedback loops - traffic sinks might use the encoded data plane
information to feed back control information to traffic sources, which could in turn
use this information to make changes to traffic engineering or packet forwarding.
(Explicit congestion notification schemes are an example of these types of feedback
loops).

• Network Event Detection - If the collected path state indicates a condition that
requires immediate attention or resolution (such as severe congestion or violation of
certain data-plane invariances), the traffic sinks could generate immediate actions to
respond to the network events, forming a feedback control loop either in a centralized
or a fully decentralized fashion (a la TCP).

The INT architectural model is intended to be generic and enables a number of interesting
high level applications, such as: (Citation from [13])

• Network troubleshooting

• Traceroute, micro-burst detection, packet history (a.k.a. postcards)

• Advanced congestion control

• Advanced routing

• Utilization-aware routing (For example, HULA 1 , CLOVE 2 )

• Network data plane verification

Theoretically, using INT we can define and collect any switch-internal information. In
practice, however, developers of the protocol consider useful to define a small baseline set
of metadata that can be useful for a wide variety of devices. With the evolution of the
protocol this set can be extended to encompass more specific metadata, useful for special
cases, in particular for the scope of this works: Network attack detection. At present we
don’t use this protocol, but consider it worthy for the future research work.

1.3 Open Network Operating System (ONOS)

1.3.1 Overview

ONOS [14] abbreviation represents Open Network Operating System. ONOS acts as
a remote control plane for a software-defined network (SDN), manages network devices,
like switches and links between them, and runs special applications or modules to provide
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desired network behavior to clients, which can be end hosts or other networks. Structure
and capabilities of ONOS are better explained with following comparisons:

• Comparing with server operating systems, ONOS provides some analogous types
of functionality, including APIs and abstractions, resource allocation, permissions,
user-facing software such as a CLI, a GUI, and set of system applications.

• Comparing with traditional "inside the box" switch operating systems, ONOS per-
forms similar functions, but controls entire network rather than a single device, and
doing this radically simplifies management, configuration, and deployment of new
network software, hardware and services.

• Comparing with SDN controllers, ONOS platform and applications act as an exten-
sible, modular, distributed SDN controller.

The most important advantage of a network operating system is that it provides a
platform for software components designed for a particular network behavior or standard
scenario like corporate network, provider network or anoter use case. ONOS applications
mostly consist of customized communication routing, management, or monitoring services
for software-defined networks, which can separately or simultaneously, providing desired
network behavior.

ONOS can run as a distributed system across multiple servers, allowing it to use the
CPU and memory resources of multiple servers, and providing fault tolerance in case of
server failure. Also it supports live/rolling upgrades of hardware and software of controlled
devices, that oftentimes can be deployed even without interruption of network traffic.

All ONOS parts, including ONOS kernel and core services, and all ONOS applications,
are written in Java as bundles that are loaded into the Apache Karaf OSGi [15] [16]
containers. OSGi [16] is a component system for Java that allows modules to be installed
and run dynamically in a single JVM. The fact that ONOS runs in the JVM, makes it
platform independent, it can run on all OS platforms for which exists JVM.

ONOS is an open source project with wide community of developers and users, and ev-
erybody is able to take part in discussions, development, documentation, and improvement
of the ONOS systems.

1.3.2 Internal Structure

As was mentioned before, ONOS is a multi-module project whose modules are managed as
OSGi bundles. This structure was chosen to achieve the following goals, according to [14]:

• Code Modularity. The structure should be extensible, and allow to add new function-
alities as a self-contained units, which can work together with existing functionalities.

• Configurability. The structure should allow to load and unload various features,
whether at startup or at runtime, to provide the desired network behavior.

• Separation of Concern. There should be clear boundaries between subsystems to
facilitate modularity. Each module should have its own area of responsibility
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• Protocol agnosticism. ONOS, and all its applications, should not be bound to specific
protocol libraries or implementations.

In the following paragraphs we will consider all there goals in more detailed way:

Code Modularity The project consists of a set of sub-projects, each of them has its
own source tree and can be built independently. To achieve this, the ONOS source tree is
organized in a hierarchical fashion that takes advantage of Maven’s notion of a hierarchical
POM file organization. Each sub-project inside ONOS has its own pom.xml file (build
instructions). Intermediate directories have parent aggregate pom.xml files, which contain
shared dependencies and configurations for those sub-projects, enabling them to be built
independently of unrelated sub-projects. The ONOS root contains the top-level pom file
used to build the full project and all of its modules.

Configurability ONOS is written to leverage Apache Karaf as its OSGi framework. In
addition to dependency resolution at startup and dynamic module loading at runtime,
Karaf provides the following, according to [15]:

• Enable use of standard JAX-RS API to develop our REST APIs and make them
secure

• The notion of features as a set of bundles allowing assembly of custom setups

• Strict semantic versioning of code bundles, including third-party dependencies

• Local and remote ssh console with easily extensible CLI

• The notion of run-time log levels

Separation of Concern In order to achieve this goal, ONOS structure is partitioned
into following three layers :

• Protocol-aware network-facing modules (southbound interfaces) that interact with
the network

• Protocol-agnostic system core that gathers and provides information about network
state, and

• Applications that consume information from the core and use this informationin
order to provide desired network behavior

Each of the above are tiers in a layered architecture (see Figure 1.13), where network-
facing modules interact with the core via a southbound (provider) API, and the core
with the applications via the northbound (consumer) API. The southbound API defines
protocol-neutral means to relay network state information to the core, and for the core to
interact with the network via the network-facing modules. The northbound API provides
applications with abstractions that describe network components and properties, so that
they may define their desired actions in terms of policy instead of mechanism.
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Figure 1.13. ONOS system components [14]

Protocol Agnosticism In cases when ONOS needs to support a new protocol, it should
be possible to build a new network-facing module against the southbound API as a plugin
that may be loaded into the system.

1.3.3 ONOS Applications

ONOS architecture is build with tiers of functionality. The Figure 1.13 represents a
summary of ONOS components discussed in the this section.

Services and Subsystems A service [14] is a unit of functionality that is comprised of
multiple components that create a vertical slice through the tiers as a software stack. We
refer to the collection of components making up the service as a subsystem. The terms
’service’ and ’subsystem’ used interchangeably in this text.

ONOS defines several primary services:

• Device Subsystem - Manages the inventory of infrastructure devices.

• Link Subsystem - Manages the inventory of infrastructure links.

• Host Subsystem - Manages the inventory of end-station hosts and their locations on
the network.

• Topology Subsystem - Manages time-ordered snapshots of network graph views.

• PathService - Computes/finds paths between infrastructure devices or between end-
station hosts using the most recent topology graph snapshot.

• FlowRule Subsystem - Manages inventory of the match/action flow rules installed
on infrastructure devices and provides flow metrics.
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• Packet Subsystem - Allows applications to listen for data packets received from
network devices and to emit data packets out onto the network via one or more
network devices.

The Figure 1.14 figure illustrates the various subsystems that are part of ONOS today
and a few that are planned in the near future:

Figure 1.14. ONOS subsystems [14]

Each of a subsystem’s components resides in one of the three main tiers, and can be
identified by one or more Java Interfaces that they implement.

Figure 1.15. ONOS subsystems relationship [14]

The Figure 1.15 summarizes the relationships of the subsystem components. The
top and bottom dotted lines in the figure represent the inter-tier boundaries created by
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the northbound and southbound APIs, respectively. For the purpose of this work are
important that application component can control manager component through its Ad-
minService interface, can query it through service interface, and can receive asyncronous
messages from it through listener interface. Also important, that Manager components
keeps gathered information in persistent and synchronized store, which guarantees us
consistency of the information, even in cases when application component and controller
devices are placed on the different servers of the ONOS cluster.
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Chapter 2

Distributed Denial of Service
attacks

2.1 General description

At present, services like banking, electronic commerce, social networking (chat rooms) and
many others are assessed through the Internet. Denial of Service (DoS) attacks can create
many issues, influencing functioning and growth of these Internet-based applications. At-
tacks destroy or impede assess to the network services, through depletion of the network
bandwidth or network devices processing power, or through depletion of victim resources,
such as disk space, file descriptors, buffers, sockets, CPU cycles, memory, in order to pre-
vent legitimate users to assess a specific Internet service. DoS attacks exhaust resources
of the victum, so it cannot respond to legitimate user, and cannot provide requested ser-
vices. Distributed Denial of Service (DDoS) attacks are the next step in techniques of
DoS attacks, and now have become a severe problem of today’s Internet. DDoS attacks
are much more complicated to resist, despite the fact, that they uses the same techniques
as regular DoS attacks, because they are performed on a much larger scale using botnets
as shown in Figure 2.1. A botnet is a large group of hosts, which consists of hundreds or
thousands of remotely controlled computers (called zombies, bots or slave agents) under
the control of attackers, attacking a particular server, service or organization. Almost
every computer, connected to the Internet, is under a risk to become a zombie or a bot,
through the infectioning by worms, backdoors or Trojan horses, which are distributed
through e-mail content, a captivating Internet link, or a trust-inspiring sender address to
the vulnerable machines.

2.2 General Classification

Basically, DDoS attacks are of two types namely flooding attacks and vulnerability attacks
as described in following Figure 2.2 In flooding attacks, the attacker commands his army of
zombies to send junk or attack packets to the target server or service, in order to raise the
amount of traffic to a level that a victim cannot handle, which causes victim system crash
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Figure 2.1. Modus operandi of DDoS attacks

Figure 2.2. Types of DDoS attacks [17]
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or overload. Flooding attacks can be further categorized basing on attack mechanisms,
into direct and indirect (with usage of reflectors) DDoS attacks. Following categorization
is possible on the basis of protocol level that is targeted, here flooding attacks are grouped
into Network/Transport level and Application level DDoS flooding attacks. The attacks
like TCP, UDP, and ICMP flooding fall into the category of Network/Transport DDoS
flooding attacks, while HTTP flooding comes under Application DDoS flooding attacks.
In recent years, Application attacks grow rapidly, they are harder to detect and may cause
more serious problems for a particular on-line service (or web server) comparing to the
Network DDoS attacks. During vulnerability attacks, the attacker looks for flaws in the
software of the service and exploits them to against the system to cause system crash or
to create new zombie for following attacks. Not differently from Networks DDoS attack,
these attacks exploit the particularities in performance of different protocols (such as TCP
and HTTP) to exhaust the resources of the victim server and prevent it from providing
services for the authorized users.

2.3 Detection methods

One of the most common sight of the presence of the DDoS attack is the fluctuations
in the characteristics of network traffic. In the detection phase, these fluctuations are
noticed, DDoS attacks are recognized, and legitimate packets are distinguished from at-
tack packets. Detection methods can relatively easily recognize DDoS attacks with the
known (or familiar) attack patterns. Methods, based on the discovery of irregularities
in network behavior are more complicated. In these cases, without clear DDoS attack
profile or signature, the detection schemes recognize unexpected shifts in IP packet char-
acteristics or traffic volume to catch attacks. Attack detection methods build a model
or profile by observing the regular behavior of the interface, evaluate the incoming flow
against the built model and discover irregularities, distinguishing them from the regular
changes in the network behavior. The detection approaches can be implemented locally,
to protect a particular part of the network, or remotely, to expose propagating attacks in
the core network. Detection time and detection accuracy of DDoS attacks have become
the very important measures for any system of defense. Considering this, every detection
technique must describe normal network traffic in precise nd accurate way, and recognize
irregularities with high probability of survival of regular pascket, low false positive and
false negative ratios and it must be cost effective in terms of consumption of resources
and computations per packet. At present, developed many detection methods. They can
be classified on the basis of analysis methods and detection approaches, and according
to [17] can fall into categories of Signature-based, Anomaly-based and Hybrid detection,
as described in Figure 2.3. In this work we are going to use only Anomaly-based detection
methods, in particular Point anomaly-based detection.

2.3.1 Anomaly detection methods

Anomaly-based detection approach (also known as novelty detection, outlier detection,
behaviour based or one-class learning scheme [17]) is able to detect new, unknown and
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Figure 2.3. Classification of detection approaches [17]

modified attacks, for which doesn’t exist well described attack pattern. This approach
creates model of the standard network behavior and constantly compares it with the cur-
rent network behavior. When the difference between an observed and expected behavioral
patterns crosses a predefined threshold, the detection system gives an anomaly alarm; this
way an attack is discovered. Unfortunately, anomaly-based detection schemes produce a
lot of false signals because of the unstable nature of a system or network behavior and
uncertainties present in the gathered data. The incoming data to a detection mechanism
can be shaped in the form of individual data instances, such as an data object, data vector,
some measurement point, data from observation period as a collection of data instances.
Data instances may be or may not be connected to each other. Each incoming instance
can have a set of attributes and every attribute can be discrete, categorical or continuous.
Mostly the detection mechanisms are dealing with the individual incoming data instances
in which there are no relationships between the different instances. On the basis of nature
of anomalies, detection approaches are sub-categorized into Point anomaly, Contextual
anomaly, and Collective anomaly-based detection [17].

Point anomaly-based detection. If a single data instance is compared with the re-
maining dataset and on the bese of this comparison considered as an anomaly, then the
approach is known as Point anomaly-based detection. At present times, anomally-based
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detection is one the most significant and interesting field of the research on the field of
anomaly-based detection. Many various approaches have been invented to recognize point
anomalies in the network traffic, in particular Statistical Methods, Data Mining, Artificial
Intelligence (AI) Based, Information Theoretic Based, Nearest Neighbour Based Detec-
tion. Statistical methods: Statistical methods used in anomaly detection systems prepare
a model or profile to represent the normal behavior of a system (or network) and constantly
monitors the traffic, which flows between the potential victim network and the rest of the
Internet. These methods can be applied in on-line as well as off-line detection modes. This
is done through measuring statistical properties (i.e. means and variances) of parameters
of normal traffic (like activity measures i.e. session duration for each session, traffic rates,
CPU load, packet rate for each protocol and the number of different clients (number of
different IP addresses). Statistical methods, in turn, are categorized into Parametric and
Non-parametric detection methods. Parametric detection methods assume that the sys-
tem has previously collected data about parameters distribution and use the statistical
specifications from the this data. The techniques like Statistical Moments, Operational (or
Threshold Based) Model, Gaussian Model, Regression Model and Spectral Analysis comes
into the category of parametric detection. In this scheme, is set a predefined confidence
interval or range, based on statistical properties (correlations or moments) like statistical
mean, standard deviation. If any network event (which can be a specific packet, or change
of traffic flow, of appearance of new clients ) falls outside the predefined interval, i.e. above
or below the moment, it is considered as an anomaly. This scheme has more flexibility in
comparison with operational model, because the confidence interval is derived from the
observations, that can vary from system to system. Because of this, method gives higher
weights to the recent activities. In Operational (or Threshold based) model, we compare
the given observation (or an event) with a predefined limit (upper limit is n and the lower
limit is m or 0). When the count of observed events that occur during a particular period
exceeds ’n’ or falls below than ’m’ then the detection system considers the anomally de-
tected and generates an alarm. As an example, when the count of failed log-in attempts
exceeds the threshold, the system results in failed authentication. Moreover, the threshold
is based on the mean of various parameters or metrics. This scheme is effective only if
there are not any intermittent variations in standard network behaviour and the level of
tolerance of an event needs to be set in advance. If the malicious activities have more than
one event or the threshold limits are not significant, the scheme cannot detect anomalies
efficiently.

EWMA

In statistics, a moving average (rolling average or running average) is a calculation to
analyze data points by creating series of averages of different subsets of the full data
set. It is also called a moving mean or rolling mean. Variations include: simple, and
cumulative, or weighted forms. An exponential moving average (EMA), also known as an
exponentially weighted moving average (EWMA), is a first-order infinite impulse response
filter that applies weighting factors which decrease exponentially. The weighting for each
older datum decreases exponentially, never reaching zero. For the purposes of this work
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we use classical formula for EMWA computing, shown on (2.3.1)

St =
{

Y1 if t=1
α × Yt + (1 − α) × St−1 if t>1

Where:

• The coefficient α represents the degree of weighting decrease, a constant smoothing
factor between 0 and 1.

• Yt is the value at a time period t.

• St is the value of the EMA at any time period t.

Simple moving average (SMA) with N samples can be approximated by EMWA with
parameter /alpha choosed according to Formula 2.1

α = 2
(N + 1) (2.1)

28



Chapter 3

Experimental testbed

In this chapter we will describe our simulation methodology, tools we used to emulate net-
work environment, hosts, switches, DDoS attack traffic pattern and other components of
our solution. We will show general structure of solution we propose, and two implementa-
tions of this solution. Our simulation is of continuous type, all component of our simulator
are virtual, all of them are placed within laptop we used to conduct our experiments.

3.1 Tools

This section is dedicated to tools we used to emulate our testing networks, network equip-
ment to execute our algorithm and program products we used to emulate DDoS attack
traffic.

3.1.1 Mininet

As our main instrument we use Mininet [18] network emulator, which creates a virtual
network of hosts, switches and controllers. Mininet hosts can run standard and non-
standard Linux software, and its switches support OpenFlow/P4 for very flexible custom
routing and Software-Defined Networking. With Mininet we can prototype and test almost
any SDN solution, having an experimental network inside our laptop.

For our project especially important, that Mininet provides powerful and flexible
Python API, which allow us to automatize processes of creating testing network, pro-
gramming hosts and switches, running applications and many others.

3.1.2 BMV2

In our experiments with P4 protocol in our Mininet network we use Behavioral model
two (BMV2) [19] software switch that emulates a P4 datapath. It implements the full P4
specification and created to be architectural independent.
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3.1.3 Open vSwitch

In experiments with OpenFlow protocol we use standard Mininet Open vSwitch [20],
multilayer virtual switch licensed under the open source Apache 2.0 license.

3.1.4 Traffic generators

In order to emulate DDoS attack traffic in our testing network we evaluated several tools:
Scapy [21] is a powerful packet manipulation Python library. It is capable perform

many classical networking tasks, including network discovery, testing, trace-routing and
many others. This library allows to create packets for large number of protocols and send
them into the network according to rules, set by programmer. In our experiments we use
widely all power of this library, but it was not used for our main experiments. In our testing
environment, working inside the emulated Mininet host, this library cannot send packets
faster than 18 packets per second even with the simplest protocol stack and pregenerated
packet load. To emulate DDoS attack scenario we wanted to be able to increase packet
rate considerably higher, for hundreds of thousand times, like in real DDoS attacks.

Iperf is a widely used tool for network performance measurement and tuning. It is
significant as a cross-platform tool that can produce standardized performance measure-
ments for any network. Iperf has client and server functionality, and can create data
streams to measure the throughput between the two ends in one or both directions. In
our experiment we used this tool to emulate heavy packet load on the entrance of our net-
work. To our regret, this tool is not intended to be traffic generator, and doesn’t support
any traffic pattern, except constant bit rate.

D-ITG [22] Distributed Internet Traffic Generator (D-ITG) is a platform capable to
produce traffic that accurately adheres to patterns defined by the inter departure time
between packets (IDT) and the packet size (PS) stochastic processes. Such processes
are implemented as an i.i.d. sequence of random variables. A rich variety of probability
distributions is available: constant, uniform, exponential, Pareto, Cauchy, normal, Poisson
and gamma. This tool was widely used for debugging our programs, but in the DDoS
attack emulation scenario, with many generators and many listeners, shows itself unstable.
In the final experiments this tool was substituted by Socket generator.

Socket Generator and Listener In order to simplify traffic generation we write our
own traffic generator, using standard Python Socket library. It generates Poisson traffic
pattern in a very simple way of operation:

• Generator opens standard UDP socket

• In infinite cycle, until the end of the experiment, the generator:

– sends packet from the socket to destination address
– generates random time interval according to exponential distribution
– waits for generated time interval

Size of the packet set to be 1250 bytes, which corresponds to 10 kilobits on the wire. In
order to emulate periods of normal and attack traffic patterns, our generator changes ex-
ponential distribution parameters to obtain different traffic rate. Resulting traffic pattern
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has two repeating phases : For the first interval generator emulates normal traffic, for the
next interval generated "attack" traffic, for next again normal traffic and so on. Duration
of these intervals goes as an incoming parameter of our generator.

Following example illustrates work of the generator. If it started with command:
gen3_sock.py 10.0.2.2 0 30 10 17

it will be generating packets, directed to address 10.0.2.2 (first parameter), without
starting delay (second parameter), changing traffic rate once every thirty seconds (third
parameter), from 10 packets per second (forth parameter) to 170 packets per second (forth
and fifth parameters multiplied). Resulting traffic pattern presented on the Figure 3.1

Figure 3.1. Socket generator traffic pattern

In pair with socket generator we use Socket listener. This program receives packets
from the generators, counts them and then discards.

3.2 Testing topology
For our experiments we use Mininet emulated topology, presented on the Figure 3.2

Also, we made next assumptions

• Our network is SDN domain, under control of single SDN controller
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Figure 3.2. Testing topology

• Our network is included into larger network, structure of which is unknown to us

• In order to simplify experiments, we don’t count return traffic from our network

In our topology, hosts with odd numbers (i.e. h1, h3, h5, h7) emulate external network,
packets from these hosts have arbitrary source addresses. Hosts with even numbers (i.e
h2, h4, h6, h8) emulate internal networks of our SDN domain. Sequentially, switches
with odd numbers (s1, s3, s5, s7) imitate entrances in our network and may be referred
as "edge" or "border" switches. Switches with even numbers (s2, s4, s6, s8) are internal.
Routing(switching) configuration is static in all experiments, and written into switches by
means of controller, used in the experiment. In order to simplify experiments, each host has
set of static ARP entries reflecting all other hosts in the topology. Control (or controller)
traffic exchange is emulated by means of Mininet and has place outside the topology,
traffic of this type does not appear on the interswitch links. Traffic measurements is
done by internal means of applications (traffic generators, traffic receivers and controller
application ), by means of internal counters in Mininet switches (BMV2) and, in some
cases, by analysis of traffic captured into PCAP file format.
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3.3 General implementation components

Figure 3.3. General structure of the proposed solution

Generally, to solve DDoS attack discovery and mitigation problem, we should answer
some questions about traffic in our network, define what type of traffic is dangerous, define
possible sources of this traffic, define dangerous levels of the traffic and many others. In
our solution we put answers to all these questions into the components, presented on the
Figure 3.3. Let us consider them:

Traffic pattern As we know from previous chapters, all DDoS attacks are different.
Generally, they are targeted to specific targets, exploiting particular vulnerabilities of
each server platform. Every network has its own pattern of traffic, which is dangerous for
its servers and applications. This traffic pattern is the first component of our solution.
In order to be able to detect the attack on the network devices, attack traffic must be
described in terms, understandable for network devices, i.e. as a bit pattern. P4, because
of its protocol independence, provides to us ability to describe traffic in very detailed
way. For example, we can discover only HTTP GET requests directed only to particular
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set of servers. Generally, description of traffic pattern could consist of arbitrary number
of rules, each of them could have arbitrary complex bit pattern. For the simplicity, in
our implementations we consider the most simple case - IP packets, that have particular
destination address.

Counters placement Next step after description of attack traffic pattern is a decision
where we count this traffic pattern. In case of vanilla SDN, traffic counting executed by
controller, which is dangerous in case of DDoS attack - controller receives part of attack
traffic and found itself under attack, even if attack is not directed to it. In our scenario,
traffic counting delegated to network devices. This creates next problem illustrated by the
Figure 3.4:

Figure 3.4. Sequental counters

In the example on the Figure 3.4 Flow1 is counted on each network device which it
crosses on the way to its target, and simple summation of all counters could give to network
controller incorrect information about total amount of traffic in the network.

There are several strategies to avoid this scenario, from which we chose one with
creating the set of counting switches by solving network graph in order to any traffic flow,
from any attack source, to any attack target, must cross one and only one network device
from the set. This strategy allows us not to count traffic on all switches, but use minimum
number of counting devices, needed for our purpose. Also, this approach will decrease
operational cost of the solution. In our implementations we are going to count traffic only
on switches imitating entrances in our network.
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Decision function is the component, which will process information about total attack
traffic in our network, gathered by our controller from the counting switches. On the
exit of the function our controller will get simple decision - true, if there is the attack,
and false otherwise. In our solution we use Exponential Moving Average (EWMA) as a
decision function, with pair of static thresholds - one for discovering the start of attack
and second to discover the end of attack. Decision function will be called with interval of
one second.

Policy executors are the set of network devices, responsible for the counter-attack
actions. For each device we keep two sets of commands: first, policy enforcement, for
the case of attack detection, and second, policy canceling, for the case of the end of
attack. This structure allows us to use relatively complex counter-attack measurements -
for example, rerouting traffic to the special device in case of attack detection, and restoring
the normal routing scheme after the end of attack. Placement of policy executors is chosen
in a way, which allows us to keep our counting ability even in case when counter-attack
policy is active, i.e. each policy executor is placed "downstream" of each counter relatively
to possible attack traffic flow. In our solution we consider traffic dropping action, executed
by one or several network devices.

3.4 P4Runtime implementation

Our first solution consists of simple P4 program and mini-controller written in Python,
which uses means of P4Runtime library to control our switches.

Structure of P4 program On the Figure 3.5 represented the structure of our P4
program.

From the Figure 3.5 we can see, that this pipeline consists from two match-action tables
cnt_lpm and cnt_ipv4. Each packet going through switch will be processed processed first
in table cnt_lpm and after by table cnt_ipv4. Let’s consider purposes of these tables:

Table cnt_lpm designed for attack traffic counting. It contains traffic pattern rules
paired with number of internal switch counter. This table placed first in the P4 pipeline in
order to count attack traffic independently of countermeasures status. Work of this table
illustrated by following example:

table_add cnt_lpm count_it 10.0.2.2/32 => 1
This table entry means, that packet matches the pattern 10.0.2.2/32 must be processed

with action count_it with parameter one, which just increases corresponding counter
(number one) by the size of this packet.

Table ipv4_lpm executes routing of the traffic. It contains addresses of internal
networks of our SDN domain paired with switch port, on which should be directed traffic.
Also, this table works as "policy executor". In case of attack detection our controller will
change routing rules in this table.
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Figure 3.5. Structure of P4 program

Mini-controller structure As the incoming data our mini-controller receives P4 pro-
gram, forwarding rules for each switch, set of the "counters" switches, set of the "policy
executors" switches, in which each element goes with two sets of commands for use in case
of policy enforce/cancel. At the start of the experiment no one of the switches in our
network has commands about special actions applied to attack traffic, we consider it as
passive counter-attack policy status. This status becomes active, if special commands are
executed by "policy executor" switches General mini-controller sequence of operations is
following:

• Install P4 program into BMV2 switches

• Install routing rules into ipv4_lpm tables

• Installs attack pattern rules into cnt_lpm tables of the switches from "counters" list

• Repeats following actions in infinite cycle, until the end of the experiment

– Collect counter information from "counters" switches

– Process collected information with decision function

– In case of positive decision function answer and passive policy status, send "pol-
icy executors" switches commands to enforce policy, and change policy status
to active

– In case of negative decision function answer and active policy status, send
"policy executors" switches commands to cancel policy, and change policy status
to passive
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– Wait for predefined period of time (in our solution - 1 second) 1

As an advantage of this solution should be mentioned its simplicity - mini-controller
program is less than one hundred lines of code. As a disadvantages we consider limited
scalability of the solution - "counter" switches are polled sequentially, and with large
number of switches and high network RTT, decision delay can become unacceptably long.

3.5 ONOS internal application

As our next step we insert our application into real SDN controller - ONOS, described in
the section 1.3.

In the Figure 3.6 is shown the place of our application in the structure of ONOS.

Figure 3.6. Place of our application inside ONOS architecture

Placed this way our application has direct access to all ONOS services, including
statistics collection, which we can use for our purpose. For our experiment we use static
network configuration, and shut down all ONOS applications, except our application and
BMV2 device driver.

Structure of P4 program for this implementations is different from P4Runtime im-
plementation, described in Section 3.4. We consider, that our application could work with
other ONOS applications, and forwarding table may not be fully under our control. To
avoid possible conflicts, now we do not use forwarding table for policy enforcing, this task

1Mini-controller syncronized in a way to start polling in the beginning of the second. In reality waiting
time equal one second minus time spent on polling.
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is transferred to separate match-action table. On the Figure 3.7 presented our new P4
pipeline:

Figure 3.7. Structure of P4 pipeline for our application

As we can see on the Figure 3.7, now we have three match-action tables in our pipeline.
Let us explain the purpose of each:

• Table cnt_count. As in our previous solution, counting table placed first in P4
pipeline. The purpose of the table stays the same - it holds the records of attack
traffic pattern, and number of switch counter on which counted attack traffic.

• Table cnt_drop This table is our new policy enforcer - in case of attack records
from attack traffic pattern are copied to this table and switch starts dropping attack
traffic. If traffic "hits" any record in this table, following tables in the pipeline are
skipped, they are useless in case of activated policy. But, our counting ability stays
untouched, because counting table placed before this.

• Table l2_forwarding. This table is responsible for packet forwarding in our network.
Our application does not touch directly this table.2

Work of this pipeline is better explained by following examples:

• If incoming packet does not belong to attack traffic pattern, it doesn’t hit table
cnt_count, nor the cnt_drop table. It is goes straight to the l2_forwarding table,
receives from there its exit port, and goes by its way.

2Not completely correct. Our application creates static forwarding rules by means of ONOS FlowOb-
jectives service, and eventually these rules are written in this table.
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• If incoming packet belong to attack pattern, but policy is not active, it hits cnt_count
table, corresponding internal counter of the switch will be increased by size of this
packet, and packet goes to the next table. Because policy is not active, table
cnt_drop is empty, packet cannot hit it, it follows to the next table, receives its
exit port and leaves the switch.

• If incoming packet packet belongs to attack pattern and policy is active, it will
be counted as usual by the cnt_count table, but this time it hits cnt_drop table,
because when policy is active, our attack pattern rules written there. All following
processing steps for this packet are skipped, and packet is discarded by switch.

Technical details of the application Despite the fact, that our ONOS application
uses the same decision structure as our previous solution (mini-controller, described in
Section 3.4), technical particularities is very different. We cannot command switches
directly, and have to use ONOS services to do the same tasks. Here we provide short
description of used ONOS services and ways we using them.

ONOS DeviceService is responsible for device management, which includes statistics
gathering. This service intended to be universal to any switch model, and because
of this has some restrictions:

1. It does not support P4 indirect counters we used before, it supports only switch
port counters. To solve this problem we create virtual ports on our counting
switches and binds our P4 counters with these ports. 3 This way we gather
information from out attack pattern counters.

2. It gathers statistics according to its own schedule. We can set frequency of
statistics gathering, but not the precise moment of switch polling. To determine
if we have updated statistics we use ONOS Event Subsystem illustrated by
Figure 3.8. Our application registers itself as a listener for DeviceService (which
is Manager, according to ONOS service classification), and now able to receive
device-binded events, in particular PORT_STATS_UPDATED event, which
means that DeviceService updated port statistics for one of the switches.

3. Next problem connected to previous. DeviceService gathers statistics according
to its own schedule and does not keep precise order of switch polling. The same
switch can be polled last in one polling cycle, and the first in the next. In
order to not count statistics from one switch twice, we indroduce notation of
statistics gathering interval, binding it to ONOS server time. It is better
to explain it with the example: When we receive PORT_STATS_UPDATED
event we check its timestamp, for example it is 10:15:55.1034, and compare
it with the time of previous event, for example 10:15:54.8945. If both events
happened within the same second, they considered to be in the same interval.

3To simplify the solution we use one of existing ports on the switch, namely number one.
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Figure 3.8. ONOS events subsystem [14]

If it is not so, as in our example, we consider than previous gathering period is
completed and started new one.

FlowObjectiveService intended to be universal service to manage flow rules in any
switch, of any type and any model, connected to ONOS. Because of this it support
only basic operations, for example sending particular packet to particular port. We
use this service to install forwarding rules to the switches.

ONOS FlowRuleService is much more specific than FlowObjectiveService, it knows
particularities of the switch, and in our case can send to the switch P4-specific
commands. We use it to implement counting and dropping rules.

Main flow of the application

• On the first step our application set statistics gathering parameters. In order to set
statistics polling frequency to once per second we set parameter deviceStatsPollFre-
quency of ONOS DeviceService to 1 second.4

• On the second step we write to our switches predefined forwarding rules by means
of ONOS FlowObjectiveService. All rules set to be permanent.

• On the third step our application, by means of FlowRuleService, writes counting
rules in the tables cnt_count of each switch form the counters list.

4Using ONOS CLI.
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• On the forth step our application register itself as a Listener of the ONOS Device-
Service. We listen only in PORT_STATS_UPDATED events, which means, that
statistics for the one of the switches is updated.

• On the fifth step we enter infinite cycle, which does main operations of our applica-
tion. This cycle continues until the end of the experiment or until deactiovation of
our application. Inside cycle application waits for the PORT_STATS_UPDATED
event, in response of which does following operations

– Check, if source of event is one of the counting switches.
– If no, ignore the event and skip all following steps.
– Checks, if current statistics gathering period is completed
– If so, calls decision function
– Asks source of the event for gathered statistics by means of getDeltaStatistics-

ForPort method of DeviceService, writes result into corresponding data struc-
ture.

If called, desicion function does following operations:

• Summarizes gathered statistics for all switches from counters list

• Processes this sum with EWMA

• If policy is passive:

– Compares result with high threshold
– If result is above:

∗ By the means of ONOS FlowRuleService, writes attack traffic pattern to
cnt_drop tables of all switches from "policy enforcers" list

∗ Changes policy status to active

• If policy is active:

– Compares result with lower threshold
– If result is below:

∗ By the means of ONOS FlowRuleService, deletes attack traffic pattern from
cnt_drop tables of all switches from "policy enforcers" list

∗ Changes policy status to passive

In order to simplify previous paragraph, and as an alternative explanation of our
algorithm, we provide description in pseudocode:

if policy status is passive then
if EWMA_result ≥ high_threshold then

write counter − attack rules into switches
change policy status to active
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end if
else

if EWMA_result ≤ low_threshold then
delete counter − attack rules from switches
change policy status to passive

end if
end if
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Chapter 4

Experimental evaluation

4.1 P4 Runtime implementation

For our first experiment we use components placement according to following picture:

Figure 4.1. Experiment topology
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Generators are Python Socket Generators, described in Section 3.1.4. They posi-
tioned on the hosts h1 and h3 and generate Poisson traffic according to the following
pattern: For 30 seconds traffic is generated with parameter equal 10 packets per second,
for the next 30 seconds parameter changes to 200 packets per second, then pattern repeats.
Target for the both generators is address 10.0.2.2 (host h2).

Listener is Python Socket Listener, and placed on the host h2. In this experiment it
performs only logging of received traffic.

Counters In the counters list our mini-controller has two switches: s1 and s3. It
corresponds to the counting strategy near the source.

Policy executor in this experiment placed on the switch s2.
In this experiment Decision function analyses packet counters of the switches1. High(attack)

threshold set to 350 packets per second, low threshold set to 300 packets per second. Re-
sulting behavior of our system presented on the Figures 4.2 and 4.3:

Our analysis starts with the graph on the Figure 4.2. Here we can see with all partic-
ularities working algorithm of our testing environment:

At the time 1s of the experiment started our mini-controller. On the graph we see
corresponding spike of the control traffic. At this moment was happening setup of
our network: P4 program was written into the switches, forwarding and counting
rules were written into corresponding tables and packets started moving through our
network.

During the time from 2nd to 25th second we see normal functioning of our network.
Should be noticed, that controller and receiver statistics gathering periods are syn-
chronized almost perfectly - their graphs almost coincide.

At the time 26s our generators go to the attack mode. Total data traffic and receiver
graphs go up synchronously, after them goes up our decision function graph.

At the time 33s our decision function registers the attack. Policy executor switch re-
ceives command to enforce policy, and switch started dropping traffic. On the control
traffic graph we can see little spike, corresponding to the command. Should be no-
ticed, that at the time 34s, receiver counter is zero. It means, that processes of
statistics gathering, processing and policy execution were completed before the ar-
rival of the first packet of 34th second (there were 387 packets during 34th second
of the experiment)

During the time from 34th to 55th seconds we see behavior of our system under attack.
As we planned, our counting ability is kept, we still see amount of the attack traffic
in our system, despite the fact, that this traffic does not reach its target.

At the time 56s our generators return to normal traffic pattern. At the same time our
decision function came below low threshold, and policy executor switch received the

1All packets in our experiment have the same size, bitrate strictly proportional to the packet rate
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Figure 4.2. P4Runtime Experiment traffic in pps

command to cancel the policy. As in the case of policy enforcing, all these commands
were executed before arrival of the first packet of the 57th second.

From the time 57s to the end of the experiment we again see normal system behavior.

From the second graph on the Figure 4.3 we can evaluate amount of data, exchanged
by network components in order to provide this behavior. All packets on our dataplane
has the same size, therefore corresponding graphs are strictly proportional to graphs on
the previous picture (Figure 4.2), and don’t merit separate discussion. The only exception
is the graph control traffic graph from which we can see, that in our experiment amount of
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Figure 4.3. P4Runtime Experiment traffic in bps

control data, exchanged by our devices, is not dependent on rate of data traffic, and stays
stable independently of the presence of the attack and of status of the policy. Content of
the control traffic was evaluated separately, in the following paragraph we provide a de-
scription of its structure. Almost any request from controller to the switch, independently
of the type of request (information request or command execute), requires following packet
exchange:

1. TCP packet from the controller to the switch, with request

2. TCP packet from the switch to the controller, with answer

3. TCP ACK from the controller

4. TCP packet from the switch

5. TCP ACK from the controller
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6. Very often, but not always, switch sends one more packet to the controller

7. Controller confirms receiving of this packet (TCP ACK)

In all cases information transmitted in first two packets, and in our opinion, packets from
number 4 to number 7 are related to the internal mechanics of gRPC (Google Remote
Procedure Call) on which based P4Runtime protocol. Arbitrary appearance and disap-
pearance of messages number 6 and 7 form "saw" shape of the control traffic graph.

As we can see from the graphs, Reactivity of our system, i.e. period of time between
start of the attack, and the detection of the attack by our system, is considerably large.
From the parameters, influencing the reactivity, namely sampling period, decision function
parameters, and time needed to information exchange, our experiment allows evaluate the
latter. In our experiment, amount of time spent to information exchange between switches
and controller is so small, that could be not taken to consideration with small number of
switches.

Figure 4.4. P4Runtime Experiment traffic screenshot

Figure 4.4 illustrates this conclusion. On the screenshot we can see traffic exchange,
that had place during 33rd second of the experiment (Figure 4.2), which corresponds to
the absolute time 21:56:51, packets 1024-1038. In order to facilitate reading, we extract
these packets:

1024 2018-08-14 21:56:51.002229 TCP 145 33598 - 50051 [PSH, ACK]
1025 2018-08-14 21:56:51.002919 TCP 116 50051 - 33598 [PSH, ACK]
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1026 2018-08-14 21:56:51.002948 TCP 66 33598 - 50051 [ACK]
1027 2018-08-14 21:56:51.003019 TCP 76 50051 - 33598 [PSH, ACK]
1028 2018-08-14 21:56:51.003030 TCP 66 33598 - 50051 [ACK]
1029 2018-08-14 21:56:51.004913 TCP 147 34768 - 50053 [PSH, ACK]
1030 2018-08-14 21:56:51.005340 TCP 116 50053 - 34768 [PSH, ACK]
1031 2018-08-14 21:56:51.005363 TCP 66 34768 - 50053 [ACK]
1032 2018-08-14 21:56:51.005429 TCP 76 50053 - 34768 [PSH, ACK]
1033 2018-08-14 21:56:51.005439 TCP 66 34768 - 50053 [ACK]
1034 2018-08-14 21:56:51.009116 TCP 233 42972 - 50052 [PSH, ACK]
1035 2018-08-14 21:56:51.009313 TCP 98 50052 - 42972 [PSH, ACK]
1036 2018-08-14 21:56:51.009338 TCP 66 42972 - 50052 [ACK]
1037 2018-08-14 21:56:51.009839 TCP 102 50052 - 42972 [PSH, ACK]
1038 2018-08-14 21:56:51.009859 TCP 66 42972 - 50052 [ACK]

As we can see controller synchronizer put the polling in the very beginning of the
second, namely at the 51.002229, 2229 microseconds from the second start. At time
51.003830, packet 1028 concluded information exchange with switch s1. At time 51.004913
was concluded exchange with switch s3 (packet 1033), data was processed by controller,
and decision of policy enforcing was taken. At time 51.009116 command was sent to
the switch s2, and at time 51.009859 (packet 1038) information exchange was concluded
completely. All exchange took 7630 microseconds, which corresponds to 0.007630 second
and is one thousand times shorter than seven seconds needed for our decision function to
discover the attack.

Nevertheless, exchange time must be taken into consideration, because for big number
of switches it can become considerably large. For example we can say, that scalability of
our testing environment, with polling time equal one second, is limited by five hundred
switches.

4.2 ONOS internal application

Structure of testing environment in this experiment is exactly the same, as in Experiment
described in Section 4.1, with the same types, parameters and positions of generators, lis-
teners, counters and policy enforcers. The only difference - now our testing environment
is under control of real SDN controller - ONOS, inside which works our internal applica-
tion. This solution is much more "heavyweight", and our decision function will work with
different parameters. Parameter alpha stays 0.4, but both thresholds are shifted down
by 100 packets each, and now we have high threshold on 250 packet per second, and low
threshold on 200 packets per second.

Also, because of the "weight" of the ONOS, in this experiment appeared starting order
of the testing network components:

• First, starts ONOS. It takes about three minutes even with empty confuguration.
This time is not included in the experiment time.
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Figure 4.5. ONOS Experiment traffic in PPS

• Second, starts Mininet network emulator together with listeners and generators.
This moment considered as start of our experiment.

• Third, starts our ONOS application.

Full duration of our experiment can bee seen on the Figure 4.5, but in order to simplify
our analysis we are splitting it by two smaller figures, Figure 4.6 and Figure 4.7

On the Figure 4.6 we can see the start of our experiment, from the starting moment
of the MIninet simulator, until second 80. Let’s look at it:

At time 1s our testing network is started. By this moment ONOS is already running,
it receives "hello" from our switches, recognizes BMV2 switch type, and writes P4
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Figure 4.6. ONOS Experiment traffic in PPS

program into each switch. On the graph we can see corresponding peak of the control
traffic.

From time 2s until time 43s we can see ONOS transient period and then stable ONOS
behaviour. Should be noticed, that during this period our network has no configu-
ration - we hadn’t write any rules into switches yet.

At time 43s our application is started. It writes forwarding rules into switches and traffic
starts moving through our network. On the graph we can see corresponding spike
of control traffic, lower than previous. By this time our generators are already in
"attack mode", and the very first data received by our application is already higher
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than attack threshold.

At time 47s decision function discovers the attack. Policy enforcer switch receives cor-
responding command and receiver stops receiving traffic. Should be noticed, that
in this experiment policy executed with some delay, and our receiver received some
packets from next second. Reasons of this behavior will be explained later.

At time 67s our generators returns to normal traffic, on the same second decision func-
tion registers the end of attack, and commands to restore normal network behavior.
On the graph we can see, that receiver counter graph moved up.

In the first part of the Experiment (Figure 4.6) we described interesting, but non-
standard situation, our application was started right during the attack. Second part of the
Experiment, on the Figure 4.7, describes more "normal" situation, where our application
is already activated, and attack starts after period of normal network activity, like in our
previous experiment, described in Section 4.1.

Here we can see:

From time 68s until time 95s we can see normal network behavior under normal net-
work load. Should be noticed, that receiver graph does not correspond precisely
with the total data traffic graph, produced by our application. This behavior will
be explained later.

At time 95s both generators switch to attack traffic.

At time 99s decision function discovers the attack, and enforces policy. Should be no-
ticed, that in reality decision was taken and executed between 98th and 99th second,
receiver got some traffic from 98th second. On the graph we can see, that during
98th second, total data traffic graph is still increasing, but receiver graph became
decreasing.

From time 99s until time 127s we can see behavior of our system under attack.

At time 127s our generators return to normal traffic, on the same second decision func-
tion discovers the end of attack and returns the system to normal behavior.

It’s time to explain the reason, why total data traffic and receiver graphs do not
correspond precisely. As was explained in Section 3.5, ONOS polls switches according to its
own schedule, keeping consistent only polling interval (in all our experiments - one second).
In result we have desynchronized counters. For example: Receiver counter binded to the
absolute time, in starts counting period at the beginning of the second, and finishes at the
beginning of the next. In the same time, polling for the switch in ONOS may have place
at 400 milliseconds from the beginning of the second, and repeats once per second, making
effective counting period from 0.4 to 1.4 second. Another switch may have another polling
shift, which makes situation even more complicated. Our ONOS application considers all
polling results, gathered during statistics gathering interval, belonging to this interval, but
in reality these results include some data from previous interval and not include some data
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Figure 4.7. ONOS Experiment traffic in PPS

from current. In the worst case it makes worse reactivity of our system, adding worst case
delay equal to duration of statistics gathering interval.

Due to the same reason we have a delay in policy enforcing/cancelling. Our Internal
ONOS application is binded to the ONOS events, which may not correspond to the be-
ginning of the next statistics interval (second). Processing starts with first polling event
of the new statistics interval, and therefore, policy execution shifted from the beginning
of the second to the middle.

This better be explained by Figure 4.8. Receiver interval is binded to the absolute
time. ONOS polling intervals have the same length, but binded to the other moments in
time, chosen by ONOS, and therefore shows different values in their counters. Due to the
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Figure 4.8. Statistics gathering intervals shift

same reason we have a delay at decision function. For example, let’s consider interval 2 on
the Figure 4.8. During this interval, our application received and stored data from switch
s3, gathered in interval 1, and data from the switch s1, also gathered during interval 1.
Event, which triggers our decision function, is the first event after the end of interval 2,
in this case - end of polling interval 2 of switch s3. This way, decision moment appears in
the middle of the interval 3, and at this moment function processes the results from the
interval 1.

Technically, we can call decision function after each ONOS event, related to statistics
gathering. It can shorten the decision interval and better the reactivity of the system, but
with large number of switches it will create considerable computation load to the ONOS
servers. Also, we can notice, that with large number of switches will solve itself - large
number of events will be nearly uniformly distributed during the interval, it will shorten
the interval between end of the previous interval and the first event of the next.

On the Figure 4.9 is shown results of our experiment in order to evaluate amount of
control traffic, needed for this solution.

As we can see from this graph, amount of control traffic is relatively stable, and, as
in our previous solution from Section 4.1, it does not depend neither on the presence of
the attack, nor on the policy status, nor even of the status of our application. Baseline
of control traffic graph is statistics gathering mechanism, which polls all switches with
frequency once per second. Spikes of the control traffic graph are formed by switch avail-
ability check ONOS mechanism, working once in 10 second in base mode, and once per
30 seconds in extended mode (BMV2 "hello")

4.3 Reference solution

This solution exists in order to get reference value of control traffic in SDN networks with-
out special abilities of P4, used by our application. Testing environment for this solutions
is exactly the same as described in Section 4.1 and was used in all our Experiments. In

53



4 – Experimental evaluation

Figure 4.9. ONOS Experiment traffic in bits per second

this experiment our test network uses switches of Open vSwitch type, instead of BMV2
and in ONOS configuration BMV2 driver is changed to Openflow-base application, which
gives as classical OpenFlow testbed. Figure 4.10 presents results of the experiment.

Our ONOS internal application is used in this experiment, but its scope is very limited.
It is able to setup forwarding rules, using ONOS FlowObjective Service, but it attempt
to setup counting tables fails, due to the fact, that Open VSwitch does not supports P4
specific commands. In result ONOS does not setup traffic counting scheme, provided by
our application, and falls back to the standard OpenFlow statistics gathering, by means
of FlowStatistics mechanism. It gives us possibility to evaluate amount of control traffic
in the standard OpenFlow configuration. Several words about the graph presented on the
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Figure 4.10. ONOS OpenFlow Experiment traffic in bits per second

Figure 4.10

From the start of the Experiment until 100th second we see behavior of the net-
work, which has no rules. All switches are up, but traffic is not going through
network. Statistics gathering mechanisms are working idle.

From the 101th second to the end of the experiment we see network behavior un-
der load. Our application started, wrote forwarding rules into switches, failed to
create counting tables and worked idle during this period. Amount of control traffic
changed for this period, but not much. And, as in our previous experiments, amount
of control traffic does not depend on the presence of the attack.
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Should be noticed, that in case of OpenFlow switches we don’t see usual spike of the
traffic in the beginning of the experiment. This one more time underlies the difference be-
tween the structures of OpenFlow and P4. OpenFlow based on predefined set of fields and
actions, known to both controller and switch, this structure doesn’t need any initialization,
switch is ready to action immediately after turned on.

4.4 Comparison

In order to compare amount of control traffic dependency in our experiments we put
control traffic graphs on the same picture, presented on Figure 4.11.

Figure 4.11. Control traffic comparison in bits per second
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As we can see on the graphs, our P4Runtime solution, described in section 4.1 has the
lowest amount of control traffic. This solution is kind of baseline - we collect minimum
information, only for our purposes.

Next from it goes our internal ONOS application. ONOS collects data from all data
from all switches, but our application managed to present needed data in compact form.

Above all, we see standard OpenFlow statistics gathering through flowcounters. It is
ten times higher than our ONOS P4 solution.
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Chapter 5

Conclusion

In this work we have shown one of the ways to control the expenses, needed for the purpose
of discovering network DDoS attacks. Proposed solution allows to make significantly lower
the amount of control information, transmitted between controller and network devices.
Also, proposed solution has the structure, which allows to use much more advanced meth-
ods of processing gathered information, without radical changes of the solution structure.

In the first part of this work we evaluated protocol P4. In our opinion, this solution
solves the problem of network protocol numeracy, allowing to "teach" switch chip to under-
stand protocol fields and corresponding set of action for any existing protocol. This also
solves the problem of a new protocols, because any emerging protocol can be described
by means of P4 as a number of information fields and possible actions. Description, made
this way, can be uploaded into any P4-compliant switch, even if mentioned switch already
works as a part of a network, making the switch, and therefore the whole network able to
understand new protocol. Capabilities of P4 can significantly speed up the implementa-
tion of new protocols, in the same time allowing to create custom solutions, which support
only those protocols which needed for particular network.

We evaluated protocol P4Runtime, which allows to control and adjust operations of
any P4-compliant switch at runtime. This protocol allows full spectra of control operations
on the switches, including interchange of switch P4 programs almost without interruption
of operations. Also, combination of P4 program and P4 Runtime control interface made
possible very flexible ways of statistics gathering, and therefore allow to lower significantly
amount of control traffic, needed to perform special operations, like DDoS attack detection.
As we mentioned before in this work, structure of P4 Runtime is very different from its
predecessors, like OpenFlow, and from conventional ways of network control, based on
network protocols. This structure more resembles objects interdependence, typical for
programming, than any set of abstractions, typical for network engineers. In our opinion,
adoption of P4 Runtime protocol in networking community is going to be slow.

We evaluated capabilities of both P4 and P4Runtime in virtual testing environment,
on the scenario of DDoS network attack detection. For our first solution we wrote our
own version of SDN controller on Python, and evaluated our ability to lower control
traffic in SDN network. Our solution, basing on abilities of P4 and P4Runtime, allows
us to successfully detect DDoS, while transmitting more than ten times lower amount
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of control traffic. Also, this solution allows us better evaluate way of operations of P4
and P4 Runtime, better understand the structure of control traffic, and evaluate, in first
approximation, parameters influencing reactivity of our DDoS detection system and its
scalability.

Also, we evaluate ability of our solution to work inside real SDN controller - ONOS. We
rewrite our solution on JAVA, according to principles of OSGi, on which is built ONOS,
and include it into ONOS structure as one of the ONOS application. Our experiments
have shown us, that our solution can work successfully inside real multithreaded industrial
SDN network controller, and still allows us to lower amount of control traffic needed for
DDoS attack detection, this time less than ten times, as in our previous experiment, but
still significantly. Also, these experiments shows us, that set of parameters influencing
reactivity and scalability of our solution is different in case of industrial network con-
troller, in particular, that network RTT in this case has much less influence because of
multithreading way of work of the controller.
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