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Summary

The contribution of this work is a CoSimulation Framework for the Assessment of Power
Knobs in Deep-Learning Accelerators. The tool is a reply to the demands of collaborative
works between machine learning experts and digital designers in order to exploit at their
fullest the possibilities of deep-learning-on-chip.
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Chapter 1

Introduction

In the last few years there has been a real renaissance of Machine Learning, the field
of computer science studying algorithms allowing machines to sense complex information
from raw data without being specifically designed for that.
Neural Networks and especially Deep Neural Networks, a particular branch of Machine
Learning, have shown broad applicability from object classification and detection, to speech
recognition and natural language processing.
Before employing a neural network it is necessary to perform a training phase where all
the learnable parameters are set to optimize the network for a specific task. The training
is usually done once and executed on power hungry systems like High Performance CPU,
clusters of CPUs and/or clusters of GPGPUs.
Recently a huge effort has been put on bringing the inference phase, which consists in using
a trained neural network to perform the task on the field, to resource-constrained devices
with restricted power/energy capabilities. Different motivations could be addressed for this
choice, but the general philosophy is the desire to exploit at their fullest the sea of devices
that have been used until now just to collect and send raw data to data-centers. Security,
reliability, reduced traffic on the network such as the perspective of having smart devices
with the sensemaking ability is for sure highly attractive in many practical applications.
For this reason, at algorithmic level it has been tried to optimize the neural network model
using energy-aware heuristics, thus the birth of pruning to reduce memory footprint and
total number of computations, light networks optimized for low hardware capabilities
and low resolution computations using reduced bitwidth arithmetic operators. In par-
allel, on the computational side, digital designers and low-level software engineers started
to rethink computer architectures and computational kernels to improve energy-efficiency
and throughput of the hardware platforms in order to enable the deploy of neural networks
on chip. Indeed, many hardware accelerators and innovative CPUs have been designed and
fabricated and also optimized software libraries have been developed.
In order to facilitate research and use of machine learning algorithms many software frame-
works like TensorFlow, PyTorch, Theano have been released. These frameworks provide
the user with a modular infrastructure where he can choose how to customize the available
basic blocks to adapt existing model to his specific application or to develop new models.
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1 – Introduction

In particular they are all highly optimized for the execution on different hardware plat-
forms like CPUs, GPUs and application specific architectures like the TPU1 designed by
Google.
On the opposite side, even if the hardware domain is full of CAD softwares aimed at pro-
viding powerful optimization tools to help engineers in the complex task of designing ASIC,
there is a lack of tools enabling the exploration of joint hardware-software optimization in
the deep-learning-on-chip domain. In particular focusing on power and energy optimiza-
tion techniques, data-driven strategies are particularly appealing for embedded systems
working in a multi-context scenario, where the non-functional requirements can change
over time. The concept is to tune at run-time quantities affecting the power consumption
of the systems, such as the power supply voltages of different die areas, clock frequencies,
body-biasing or the precision of arithmetic operators. These power knobs affect other fac-
tors of merit, like throughput and/or the quality of result, thus designers need to verify
that the system is able to work at the best trade-off point, while fulfilling the requirements
of each working condition.
This thesis provides a tool able to meet the demands of a collaborative work between
machine-learning experts and digital designers, with a particular attention to hardware ac-
celerators implementing a spatial architecture. The latter consists of a large number of pro-
cessing elements, interconnected with a network-on-chip allowing the sharing of operands
and to carry on computations spatially. In particular, the contribution of this work has
consists in the development of a co-simulation framework able to:

• Evaluate the effective energy efficiency of realistic workload of spatial accelerators
avoiding the simulation of the entire accelerator micro-architecture.

• Explore the design space to evaluate pros and cons of the designated HW architecture
and power-management strategy.

• Enable an early efficiency testing of energy-aware neural network model, without
waiting for the complete design of the accelerator, thanks to an accurate estimation
of the energy profile of the real hardware platform.

The tool has been designed in order to be easily interfaced with common frameworks for
machine learning and with the industrial ASIC design flow. The general philosophy behind
the co-simulation framework is to have a behavioral neural network inferential engine that
communicates with a gate-level simulator: the inferential engine can provide stimuli to the
circuit, collect responses, status signals and modify the configuration of power knobs. The
aim is to simulate the system also from a non-functional perspective, thus the need for a
gate-level simulator, but with only the minimum hardware required to verify the impact of
a specific power management strategy on the network accuracy. In particular, the effect of
power knobs on the system is emulated through a library of SDF files, one for each working
condition, which can be loaded by the gate-level simulator when a power-context switch is
performed.

1Tensor Processing Unit.
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1 – Introduction

1.1 Outline
The thesis is organized as follows: inChapter 2 a general overview on the actual state of IC
CMOS technology is reported, with a particular emphasis on power optimization techniques
and power knobs, which are relevant to this work. Chapter 3 is devoted to a description of
neural networks with a focus on the computational perspective and hardware accelerations
on spatial architecture. Chapter 4 is fully focused on the functionality and architecture
of the framework. It explains in detail how the front-end is designed to be interfaced with
common machine learning frameworks and with the standard ASIC industrial design flow
targeting std. cells technology. The architectural choices are illustrated and motivated
also by means of examples. In Chapter 5 a design case of an hardware accelerator
supporting an output stationary dataflow has been used as case of study. In particular,
an Approximate Voltage Overscaling technique called MAC-Drop has been used as power
management strategy under testing.
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Chapter 2

Low Power Design Practice

As already mentioned in the introduction, this chapter presents the fundamentals of Low
Power Design practice. Before diving into the details of the techniques used in the design
flow, it can be useful to review the current state of Integrated Circuits technology.

2.1 State of CMOS IC Technology

The progress of technology nodes, together with the development of EDA tools and new
computing architectures, led to a significant increase of number of transistors on the same
die area. This is not only due to the effects of what was already predicted by Moore’s law [1],
but also to the ability of digital designers to create complex and high-performance circuits.
The new architectures they developed, in fact, allowed for a complete exploitation of the
improved technology nodes, thus increasing at the same time both the complexity and the
efficiency of hardware capabilities. As the graph reported in fig. 2.1 shows, by neglecting
the role of power consumption, the employed design strategies would soon have led to ICs
with a power density greater than that of a nuclear reactor. The only solution is to include
in the standard design flow power consumption as a fundamental design metric. As it
should be clear by now, this is not only a must in energy-constrained embedded systems,
but also in devices targeting the high-performance market.

It is important to notice that even if energy and power are correlated since power, in case
of computing systems, is the rate at which energy is consumed, techniques reducing the
power do not necessary decrease the energy consumption of the system. The choice between
which metric has to be used depends on the specific application, context and device. For
example, if the clock frequency is halved but the application execution time is doubled,
the energy consumption remains quite the same, whilst dynamic power is reduced by half.
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2 – Low Power Design Practice

Figure 2.1: Power density vs Year in CMOS IC market.

2.2 Power Consumption in current CMOS technology

In CMOS technology the power consumption can be decomposed as the sum of two com-
ponents: dynamic power and static power.

2.2.1 Dynamic Power Consumption

Dynamic power results from the energy consumed by the activity of circuits, i.e. the change
of a stimulus in case of combinatorial logic or the sampling process in sequential cells like
flip-flop and latches.
It is possible to identify two sources of dynamic power consumption: short-circuit current
and charging/discharging of capacitances.

Pdynamic = Psw + Psc (2.1)

The switching power, Psw, is related to the energy needed to charge/discharge the load
capacitance, the wire capacitance and the self capacitance of the gate. Figure 2.2 depicts
all the capacitances seen by a CMOS inverter.

13



2 – Low Power Design Practice

Figure 2.2: All the parasitic capacitances seen by a CMOS inverter driving another in-
verter.[2]

It is possible to express the switching power as:

Psw = 1
2 · V

2
dd · Cload · fclk · esw (2.2)

According to equation 2.2, there are four terms contributing to the power consumption,
towards which the optimization effort should be directed:

• The load capacitance Cload depends on physical parameters of gates and wires.

• Vdd and fclk are two design parameters and they are strictly related to the speed of
the system.

• esw takes into account the activity of the node, i.e. the fact that, except for the clock
tree network, not all the cells have a transition at each clock cycle.

The short-circuit power term, Psc, is related to the current flow during the switching of
the cell through both pull-up and pull-down stages.
CMOS technology, as the name suggests, is a complementary logic, so the pull-up and
the pull-down stages should not be active at the same time. However, since the switching
process is not instantaneous, i.e. the transition between ON-state and OFF-state is con-
tinuous, there is a current flowing through the cell.
The contribution of Psc to the total power is lower than the one of switching power Psw,
but still it has to be optimized. In particular, the sizing of transistors is fundamental,
as well as the relation between the transition time of input signal and output signal. As
reported in [3], the matching between transition times of input and output signals is a rule
of thumb for the overall short circuit current minimization.

2.2.2 Static Power Consumption
Usually the term static power refers to the current flowing in a stationary situation, i.e.
when no switching is in progress. The static power consumption is expressed by:

Pstatic = Ileak · Vdd (2.3)
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2 – Low Power Design Practice

Ideally in CMOS technology the static power consumption should be equal to 0, since
the complementary nature of the logic should have no static current flowing between the
power rails. Actually, in real devices a static current is always present and can be caused
by different physical phenomena [4]. Three main current contributions are:

• Gate-oxide leakage: The advancement of processing node has caused a reduction
of the gate oxide thickness, thus an increased electrical field across the oxide. This
causes a leakage current due to tunneling effect.

• pn Junction Reverse-Bias Current: The leakage current flowing due to the re-
verse biasing condition of drain and source to well junctions.

• Subthreshold leakage: The simplest model of a MOS is the one representing the
connection between drain and source as an ideal switch controlled by the voltage
applied to the gate, Vgs. Actually in MOS transistors it is possible to have a drain-
source current even if the gate voltage is under threshold. This is called subthreshold
leakage current.

Figure 2.3: IDS(VGS) for different values of Vth.

As reported in fig. 2.3 [3], the lower the threshold voltage Vth, the higher the current ID
value when Vgs is equal to 0. This means that also static power consumption will be higher.
This relation is of fundamental importance to understand the key role that leakage power
consumption has in deep-sub-micron technology. Indeed, scaling the technology node leads,
as reported also before, to higher transistor density and an increase in the speed of gates,
which in turn leads to lower clock period. With a higher switched capacitance and clock
frequency the dynamic power consumption, as well as the power density, increases such
that not all the area of the chip can be active at the same time: this is usually called in
literature dark silicon phenomenon.
The first approach used by IC designers to bring down dynamic power consumption was
to reduce supply voltage. A simple model for the propagation delay of a cell is reported in
equation 2.4.

Dp = Cl ·
Vdd

(Vdd − Vth)α (2.4)

It is clear that, in order to compensate the effect of delay degradation due to reduced
supply voltage, also the threshold voltage has to be lowered.
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2 – Low Power Design Practice

It is important also to notice that leakage current highly depends on temperature, therefore
the working temperature of the silicon has to be consistently low. This can be achieved by
a well designed packaging, a physical-design stage aware of the temperature issue, and of
course by reducing the power consumption.

2.3 Power Optimization Techniques
Different techniques from architectural to transistor level have been proposed in order to
optimize power consumption. In the next subsections a few examples at each different
abstraction level have been reported.

2.3.1 Architectural Level
A first group of optimization techniques is applied to the architectural level. The main
point is to change the architecture of the system to make it faster, then reduce the Vdd to
return at the original speed. In this way the throughput remains the same but the dynamic
power consumption has decreased.
Two possible architectural modifications are based on parallelization and pipelining. Be
aware that in order to exploit this techniques some additional circuitry has to be employed,
thus in some conditions the power consumption may increase.

The parallel approach consists in substituting a functional unit working at frequency
fclk1 with two functional equivalent units working at frequency fclk2 = fclk1

2 but on two
different edges of the clock. An illustration of the methodology is reported in fig. 2.4a.
It is possible to use the slack created by increasing the clock period lowering the supply
voltage. This approach presents two main issues: a more than doubled area with increasing
on leakage power consumption and a scalability issue. Indeed, it is not possible to reduce
too much the Vdd, since when it approaches Vth the delays increase so rapidly that it is not
possible to compensate them while at the same time reducing the power consumption.

FU

FU

FU

clk2

clk2

clk1

clk1
clk1

(a) Parallelization

FU

clk1
clk1

FU_1

clk1
clk1

FU_2

clk1

(b) Pipelining

Figure 2.4: Architectural level dynamic power optimization.

Pipeline involves splitting a combinatorial circuit in more parts enclosed in a synchronous
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2 – Low Power Design Practice

environment. In this way each part has a worst case propagation delay lower than the to-
tal circuit, thus Vdd can be decreased to consume the available slack. Also this technique
presents some drawbacks like the increased latency, more area occupied on the die and also
scalability issues similar to the previous case.

2.3.2 Logic Level
Another group of optimization techniques is applied to the logic level. At this stage the
view of the IC designer is focused on logic gates, thus the architecture of circuits has been
already defined.

Slack

N.
Critical
Paths

Quasi-
Critial

Non-
Critical

(a) Conceptual Image (b) Dual-Vth Post-Synthesis Assignation.

Figure 2.5: Slack Redistribution for power optimization.

Dual-Voltage Gates. A first optimization for dynamic power consists in employing
dual-voltage assignment to the logic gates. As the name suggests, this technique belongs
to a wider set of solutions based on voltage scaling, like those reported in the previous
subsection. As explained in subsection 2.2.1, both dynamic power consumption and prop-
agation delay of a logic gate depend on Vdd. Generally in a circuit not all gates belong to
critical or quasi-critical paths, thus it is possible to consume the slack available on gates
belonging to non-critical paths by lowering their Vdd. This concept is depicted in the graph
reported in fig. 2.5. Due to the high complexity of on-chip voltage regulators and power de-
livery network, however, the number of power supply voltages must be restrained. Usually
two values are the best trade-off. Different algorithms as [5], [6] have been proposed for
automatic assignation of the Vdd to the cell: in general they are heuristic methods based on
some graph visit that iteratively try to find the partitioning of the netlist satisfying timing
constraint with minimum power consumption. Figure 2.6 illustrates an example of circuit
partitioned by the Clustered Voltage Scaling Algorithm for dual voltage assignment. The
main drawback of this technique is the use of level shifters necessary to interconnect the
tiles of die at different voltage, which of course generates overhead and complexity in the
physical design.

Clock Gating. Another technique for dynamic power reduction is based on the obser-
vation that the outputs of a logic block are useful only under certain conditions. Thus,
it is possible to disable the switching of the clock through the insertion of an activation
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2 – Low Power Design Practice

Figure 2.6: An example of circuit partitioned by the Clustered Voltage Scaling Algorithm
for dual voltage assignment.

function which enables the clock gating. The effect of clock gating is not only a decrease of
power consumption on the clock tree and on the register itself, but mostly a reduction of
the switching activity of the combinatorial logic fed by the gated registers. Different ways
of realizing the clock gating from a circuit perspective have been proposed, as reviewed
in [7]. The most common used is Latch Based And clock gating reported in fig. 2.7, where
the enable signal is applied through a latch before being conjuncted with the clock signal.
The latch is employed to avoid hazard propagation and to reduce the degradation of clock
signal rising and falling transitions.

Figure 2.7: Latch And Clock Gating structure.

Power Gating. The idea behind power gating technique [8] is to reduce leakage currents
of gates that are in idle state for a long period. This is achieved by inserting high Vth
transistors in series with the pull-up and/or pull-down networks of a number of gates,
in order to reduce the sub-threshold current when these transistors are deactivated. A
conceptual representation of power gating is reported in fig. 2.8. Instead, when the sleep
transistors are activated, the gates should continue to work normally, thus they have to be
properly sized to reduce the delay penalty. The insertion of sleep transistors turns out to
be a very complex design task: it requires different optimization algorithms for regulating
cell clustering, sleep transistors sizing and distribution network of enable signals.
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Figure 2.8: A conceptual representation of power gating.

Dual Vth Assignment. A technique to reduce leakage power consumption consists in
using multi Vth cells. Nowadays silicon vendors provide technological libraries composed of
high speed cells with high leakage power consumption and low speed cells with low leakage
power consumption, which can be integrated in the same technological process. The basic
idea is similar to the one used for dual Vdd assignment and reported in fig. 2.5, where the
design is first synthesized and mapped onto all low-Vth cells, then the cells belonging to
non-critical paths are replaced with the high-Vth version. Also in this case some heuristic
algorithms are used, as the one proposed in [9], or in [10], where a simultaneous assignment
of Vth and gate sizing reduces total power consumption.

2.4 Power Knobs

The common characteristic between the power optimization techniques reported in the
previous section is the fact that they are applied at design time. Thus they can be defined
static because the trade-off with the other design metrics is defined once during the con-
struction of the IC and cannot be changed at run-time. Another approach instead is to
change dynamically the power consumption of the circuit during its operation, by acting
on the figures of merit which directly affect power and energy. This is an interesting sce-
nario since, as reported in 2.1, the same system is placed in a multi-context environment
where the non-functional requirements can vary consistently. For this reason the design of
a system in the worst case scenario turns out to be highly inefficient when the circuit is
operating in the other contexts. The online modification of system operating conditions is
achieved by means of knobs which act on Vdd and fclk for regulating the power consump-
tion, but at the same time also throughput and quality of result. This power knobs can be
managed with a control system that, based on information sensed from the circuit itself
and from the environment, tries at run-time to find the best trade-off. In the following
subsections three major dynamic power optimization techniques will be presented.
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2.4.1 Dynamic Voltage and Frequency Scaling
The first technique presented is Dynamic Voltage and Frequency Scaling. The system
is characterized in order to work at different fixed combinations of supply voltage and
frequency value. As explained in [11], DVFS technique has proven to be effective at
achieving low power consumption while fulfilling performance requirements. Unfortunately
in deep-sub micron technology the efficacy of this technique has been lowered due to the
increased importance of leakage power consumption. DVFS consists in dynamically scaling
Vdd and fclk, in order to reach the condition where average circuit speed is consistent to
meet total computation time and/or throughput requirements, but at minimum energy.

2.4.2 Dynamic Voltage Scaling using Razor-FF
The idea of "just-enough" energy is pushed even further through dynamic voltage scaling
using timing sensors, i.e. a logic circuit able to sense timing violations. In this case only
the Vdd is used as power knob, whilst the clock frequency is not modified, thus timing
violations due to the dependency of cells delays on power supply voltage can occur. At
this point an important consideration must be pointed out. The working frequency of the
system is based on the timing of critical paths without any consideration on the dynamic
behavior of the system: this means that the actual number of times that the paths are
synthesized is not taken into account. From a static point of view this could lead to think
that the number of timing violations is huge even with a small decreasing in the Vdd, as
the number of paths with an arrival time greater than the required one is extremely large.
Actually in common circuits and under realistic workload this does not occur. As it is well
represented in fig. 2.9, by weighting the number of paths with respect to the sensitization
frequency, it is possible to lower the Vdd still keeping the majority of paths under the
required time. In fig. 2.9b it is reported the dynamic distribution under different Vdds of a
32bits multiply-and-accumulate unit: it is clear that up to the wall-of-slack, i.e. the point
where the majority of paths cross the required time barrier, the circuit can continue to
work correctly in most cases with a much lower power consumption.

Arrival TimeTclk

# of paths
Legend

1.10V
1.00V
0.95V

(a) Static Path Arrival Time Distribution

Arrival TimeTclk

# of paths
Legend

1.10V
1.00V
0.95V

(b) Dynamic Path Arrival Time Distribution

Figure 2.9: Static vs Dynamic Path Distribution under different power supply voltages.
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One of the most important and diffused in-situ timing sensors is Razor, proposed in [12].
Razor is a method of error detection and correction in the wider range of measure and
control strategies applied to IC in the last years, [13], [14], [15]. The idea behind Razor
is illustrated in fig. 2.10. A single flip-flop is augmented with a shadowed latch which is

Figure 2.10: Razor-FF logic diagram, [12].

controlled by a delayed clock. The flip-flop is sensitive to the rising edge of the clock, while
the shadowed latch is transparent on the low state of the delayed clock. In this way, when
the input signal is late with respect to the clock, the shadow latch is still transparent, thus
it can latch the correct value. When the latch goes in memory mode, the flip-flop and
shadowed latch outputs can be compared to know if a mismatch has occurred. In order to
avoid spurious transitions of the error flag, it must be ensured that there is no path with
a delay that is smaller than the detection window. This is called short-path padding and
it is equivalent to hold-time fixing which can be imposed at synthesis time as a minimum
delay constraint. An example of timing diagram when an error is detected and corrected
by Razor is reported in fig. 2.11. This error flag can be used as trigger for an error recovery

Figure 2.11: An example of timing diagram: an error is detected and corrected by Ra-
zor, [12].

mechanism, allowing the entire system to keep producing always-correct results. Possible
error recovery mechanisms are:

• clock gating on the pipe, to make stall of previous and next stage.
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• Architectural replay. For example, in modern µPs flush mechanisms for branch
misprediction, speculative instruction and exception management are already im-
plemented, so that they can be used also to deal with error recovery state.

Clearly the recovery from a timing error implies losing a clock cycle, but also wasting energy
due to the invalidation of computations already performed. However, if the recovery state is
rare, then lower power consumption is achieved at the cost of a slightly inferior throughput
of the system. If the number of errors is high enough to excessively degrade the timing
performance, then the error control unit communicates with power unit to increase the
Vdd. Substantially the aim is to make the system work at the minimum voltage with an
acceptable average throughput.

2.4.3 Voltage Scaling for Error-tolerant Applications
The last type of dynamic power optimization, differently from those introduced before,
exploits the quality of results as an additional figure of merit. In certain applications, for
example those dealing with human sensing like image, video and music processing, it is
possible to design non-always correct systems, i.e. employ some approximations in order to
improve other properties of the system. The traditional approach is called approximate
computing and it usually consists in designing mathematical operators that differ from the
ideal ones in their functional behavior. For example, it is possible to have an approximate
adder with a bounded error while performing addition compared to an exact one, but
with smaller area or higher throughput. As reported before, in multi-context embedded
systems also the requirements on the quality of results, thus on the error magnitude of the
approximation, can be variable. The circuit-level design of an operator with configurable
approximation is challenging [16]. For this reason another possible approach is to use Vdd as
both power and approximation knob. Two very effective techniques are: Adaptive Voltage
Over-Scaling and Dynamic Voltage Accuracy Scaling.

Adaptive Voltage Over-Scaling. The architecture of this technique is similar to 2.4.2,
where voltage is lowered without changing the frequency. Actually, Razor is here used
only as an error detection strategy, since no error recovery mechanism is employed. The
error flags generated by the Razor, as done in [17], can be accumulated in a counter and
a threshold based mechanism can be used to regulate the scaling of Vdd. The mechanism
reduces at minimum the overhead introduced, and the trade-off between energy and quality
of results can be easily controlled by simply regulating the error threshold.

Dynamic Voltage Accuracy Scaling. Another possible approach for approximate
computing consists in introducing intentionally quantization errors at run-time by reducing
the precision of arithmetical operators [18]. Thanks to bitwidth reduction two main effects
can be exploited from a power consumption point of view:

• Reduction of circuit activity. The first effect of gated inputs is a drastic reduc-
tion of switching activity. The relationship between the reduction order of switching
activity and bitwidth depends on the circuit architecture.
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• Voltage over-scaling. Reducing the bitwidth of the circuit causes also a shorten-
ing of the critical paths. The generated slack can be consumed through a Vdd scaling
without any frequency reduction. An example of a scalable array multiplier is re-
ported in fig. 2.12. It is possible to see how, by using only the two most significant
bits, the critical path becomes shorter than the full bitwidth circuit.

Figure 2.12: Bitwidth reduction in array multiplier, [18].
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Chapter 3

Hardware Accelerators for
Neural Networks

3.1 Background Neural Network
Machine learning is the field of computer science studying algorithms allowing machines to
sense complex information from raw data and learn specific tasks without being specifically
designed for that, [19].
Neural Network is a specific area of machine learning. It can be defined as a huge parallel
system made up of interconnected elementary processing units with some parameters that
are configurable through a process called learning, [20]. From a mathematical perspective
it is represented by a graph G = {V,E} where the vertexes are called neurons and the
edges weights. It is inspired by the human brain, where the neurons are highly specialized
biological cells able to transmit and receive information through electrical and chemical
processes.
A more quantitative definition of the learning process can be formulated as follows. The
neural network has to perform a task T learning by a set of samples D, thus a score function
S is introduced to estimate the goodness of the network at T. Learning means that the
network is able to improve its score S by processing D.
Only in the last few years neural networks have reached a wide range of use with remarkable
results, even if the first proposal dates back to 1943 [21]. This is attributable mainly to the
availability of data set in different fields with million of samples, the big-data phenomenon,
and also to the diffusion of powerful parallel hardware, in particular GPGPU with mature,
stable and easy to use software libraries.
A few application examples of Neural Network are:

• Image Classification. To assign a label from a defined set to an input image.

• Image Detection. To draw a bounding box on each recognized object of the input
image. Example reported in fig. 3.1a.

• Segmentation. To highlight the edges of each recognized object of the input image.
Example reported in fig. 3.1b.
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• Speech Recognition. To transform an audio sample of human voice in a text.

• Text Translation. To translate a text in different languages.

• Decision-making: To decide the next action, given the actual state of the environ-
ment and of the system.

(a) Image detection (b) Image segmentation

Figure 3.1: Examples of computer vision task performed by a neural network.

Biological Analogy. Roughly speaking, the biological neuron is composed of a nucleus
surrounded by dendrites and an axon with its terminals, as depicted in fig. 3.2a. The axon
terminal of a neuron is connected to the dendrites of the same or other neurons through
the synapses. A synapse is a chemical/electrical connection able to modulate the strength
of the communication between neurons. Different mathematical models of a neuron have
been proposed in literature, but the most used in the artificial neural network field is the
one called Rosenblatt perceptron, [22], depicted in fig. 3.2b. The idea is to have a model
able to emulate that:

• the communication between neurons can be of different strength and also it can be
both excitatory or inhibitory. Thus the use of weighted inputs.

• the neuron integrates the impulses and applies a firing function to determine its state.
Therefore the use of a summing node and a non-linear activation function.

(a) Simplified view of biological neuron.
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(b) Rosenblatt perceptron.

Figure 3.2: The perceptron model proposed by Rosenblatt and a simplified view of a
biological neuron.
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The mathematical representation of the perceptron is reported in eq. 3.1. The most com-
mon activation functions are sigmoid, tanh, and rectifier.

z = f(
n∑
k=0

wk · Ik) (3.1)

A single perceptron can be used to linearly separate the multidimensional input space.
Connecting multiple neurons to build complex network allows to manipulates the input
in different ways, such that the tasks reported before can be accomplished. Figure 3.3
from [23] is an excellent pictorial representation of common neural network architectures
built from the perceptron or other neuron model.

Figure 3.3: Neural Model Zoo [23].

Among all neural network architectures the most widely diffused are:

• Feed-Forward Neural Network: it is a multilayer perceptrons able to divide the
multidimensional input space in different regions, thus it is used for classification
purposes.

• Deep Convolutional Neural Network: as the name suggests, it is built by cascading
many convolutional layers, even if it also involves the use of other kinds of layer in
the final stage. The idea is to increase the number of layers in order to improve
both capacity and generalization capability of the network. The convolutional part is
usually called feature extractor, since it is employed to filter and group representative
information from the raw data received as input. For example, when CNN are used
for classifying images, the convolutional layers extract the features from input images,
then a feed-forward network is used to perform the classification. In particular, some
works on visualization and interpretation of DNNs [24], [25] have shown that in the
first layers the network tries to learn how to recognize simple patterns like texture
and geometric primitives. Instead, going deep in the network, the level of abstraction
is higher, since the geometric primitives are combined into shapes and then into
ensembles of shapes. At the end complex pattern like human mouth, animal ears,
tires are recognized.
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In order to correctly employ machine learning to solve a specific task it is necessary to
perform a training phase. Training a neural network means setting the value of weights
and bias for each neuron.
It is possible to identify three major categories for the training process:

• Supervised Learning. The training data is labeled and the network has to learn
starting from input-output examples. A loss function is defined to compute the
closeness of the output of the network to the ground truth, and in a certain way
the error is back-propagated to tune the learnable parameters in order to mimic the
correct behavior.

• Unsupervised Learning. The training is performed with any information about the
ground truth. The objective is to find structures and patterns in the input data, or
to learn statistical moments from the data samples that are seen as a representation
of a stochastic process.

• Semi-Supervised Learning. It is a mixture of the previous two. It is usually em-
ployed when a huge unlabeled data set and few labeled examples are available.

From a system designer perspective it has to be considered that the training phase is usu-
ally done once and it is very resource expensive. The parameters update for large network
requires multiple hours on power-hungry and powerful devices like GPGPU.

For the inference phase, instead, a promising option is to bring it on the edge device. In
many applications security and reliability are major concerns, thus relying on the connec-
tion to perform the computation in the cloud could be a problem. Furthermore, nowadays
a huge amount of devices is employed mainly to collect and send raw data to servers located
in data-centers. However, in order to exploit cyber-physical systems at their fullest, it is
necessary to provide these resource-constrained devices with the ability of sensemaking,
i.e. the capability of extracting from raw data complex and valuable knowledge.

3.2 Computational view of Deep Neural Network
In order to understand what are the computational requirements of Deep-Neural Network,
it is useful to introduce two famous architectures having different application domains.

AlexNet. Proposed by Alex Krizhevsky et others [26], it has been one of the first papers
of the renaissance of NNets in the last years. It won the 2012 ImageNet LSVRC-2012
competition [27] with more than 10% improvement on top-5 accuracy over the second
classified. The authors proposed a new way to deal with the computational complexity
during the training phase exploiting:

• The highly parallel architecture of GPU.

• ReLu activation function instead of sigmoid or tanh..

• Dropout methods, i.e. a stochastic way to avoid over-fitting through the temporary
elimination of some weight.
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Figure 3.4: AlexNet: Convolutional Neural Network for classification task.

As shown in fig. 3.4, it is composed of five convolutional layers followed by three fully-
connected layers. Actually the convolutional layers are composed of 2D convolutional
filters, max-pooling and ReLu activation. It is important to notice that the feature extrac-
tor part occupies about 95% of the total execution time, while the classifier has a large
impact on the memory footprint.

PyDnet. Proposed by Poggi and others [28], it is a neural architecture optimized for
CPU inference that extracts depth maps from single-camera images. It has been proposed
for embedded applications and it allows to obtain results similar in terms of accuracy to
state-of-the-art for monocular depth estimation. The architecture is shown in fig. 3.5. It
contains three main blocks:

• Pyramidal Feature Extraction: six couples of convolutional layers aimed at down-
sizing the image from 1/2 to 1/64 of the initial resolution. It acts as a decoder stage.

• The obtained feature map at each resolution is processed by an estimator composed
of four convolutional layers.

• A transposed convolution layer to upsize the feature map from lower resolution
in order to be processed by the estimator of an higher resolution layer together with
the pyramid output. This allows to speed-up the training and reduce the number of
parameters, i.e. number of weights, and also the number of computations required to
perform the inference.
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Figure 3.5: PyDnet: a neural architecture for unsupervised monocular depth estimation
optimized for CPU platform, [28].

The previous neural network architectures are used as examples to analyze which are the
common layers employed in state-of-art neural networks, thus to understand the computa-
tional effort of each layer and how they can be supported on different hardware platforms.

Fully-Connected Layer. From a computational point of view it is possible to describe
the fully connected layer as a matrix multiplication. For these reason it is possible to use
many optimized algorithms developed for high-performance linear algebra packages, [29].
A fully connected layer of m output neurons and n input neurons, represented in fig. 3.6a,
can be formalized as follow: W ∈ Rm,n is the weight matrix, I ∈ Rn,1 is the input activation
tensor and the output tensor is obtained by O = W ·I, with O ∈ Rm,1. Usually the matrices
involved are large, thus fully-connected layers have a huge memory occupation and require
high bandwidth. Figure. 3.6b depicts the computational perspective of a batched fully-
connected layer.

(a) Illustration of a fully connected layer
based on neurons and synapses.

(b) Computational point of view of Fully-
connected Layer, [30].

Figure 3.6: Fully Connected Layer.
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Convolutional Layer. A convolution layer transforms the input feature maps into the
output maps through multiple 3D filters called kernels. The layer performs the convolution
of the filters across the three dimensions width, height and depth of the input feature map.
Many experiments, like [31], state that convolutional layers take up most time of compu-
tation volume in both inference and training phases on both CPUs and GPGPUs. The
computation of a convolutional layer can be configured specifying the following parameters:

• Shape of input and output tensor.

• Size of the kernel.

• Stride and Dilation of the 2D convolution.

• Padding of the input tensor

Figure 3.7: Representation of the computations involved in the execution of a convolutional
layer, [30].

The pseudo code describing a convolutional layer with zero padding, stride and dilation
set to 1 is reported in list. 1. Fig. 3.7 is a pictorial representation of the computations
involved.

1 for ( m = 0; m < n_output_channels; m++ ) { // Output channels
2 for ( n = 0; n < n_input_channels; m++ ) { // Input channels
3 for ( r = 0; r < dim_y_output; r++ ) { // Ouput neuron y coordinate
4 for ( c = 0; c < dim_x_output; c++ ) { // Output neuron x coordinate
5 for ( i = 0; i < dim_y_kernel; i++ ) { // y coordinate of the kernel
6 for ( j = 0; j < dim_x_kernel; j++ ) { // x coordinate of the kernel
7 O(m,r,c) += I(n,r+i,c+j)*W(m,n,i,j) // MAC operation
8 }
9 }

10 }
11 }
12 }

Listing 1: Convolution Pseudo Code
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The reason why convolutional layers are so expensive, in terms of execution time, is not
only related to the large number of computations, but also to the high number of memory
accesses, both read and write of operands, partial and final results. In the case of the code
reported in 1 having an input tensor with dimensions cin · y · x and a weight tensor with
dimensions cout · cin · ky · kx the number of operations is: Θ(cout · cin · (y − ky + 1) · (x −
kx + 1) · ky · kx). For example CONV2 of AlexNet requires ≈ 2Gops. Two main elements
must be considered in order to optimize the convolutional operation: the high data-reuse
and the exploitable parallelism. It is clear that there are multiple sources of data-reuse:

• Weights Reuse: The same weights are reused multiple times on each 2D plane with
different activation values.

• 4D Weight Reuse: Even if this is exploitable only in specific cases like training and
applications where an high latency is acceptable, in case multiple input tensors, i.e. a
batch of inputs, are available then the entire weight tensor is reused for each element
of the batch.

• 2D Activation Reuse: Since the kernel 2D window of dimension kx · ky is slided
across the input plane, the same activation will be present in multiple point-wise
multiplications.

• 3D Activation Reuse: Each output channel is obtained through the convolution of
different weights with the same 3D input tensor, thus the reuse of all input values
across multi-output computation.

For what concerns the parallelism, as reported in [32], it is possible to point out a basic
taxonomy based on how the six loops, reported in 1, are unrolled. Among all the possibil-
ities, three of them are reported below, since they have been used as mapping strategies
in many hardware accelerators developed in the last years.

• Synapses parallelism: Multiple synapses are executed in parallel, i.e. the multiplica-
tions between weights and activations, while a single input feature and a single output
neuron is considered. The pseudo code is reported in 2.

1 .........................................
2 for ( i = 0; i < dim_y_kernel; i+=Ti ) { // y coordinate of the

kernel↪→

3 for ( j = 0; j < dim_x_kernel; j+=Tj ) { // x coordinate of the
kernel↪→

4 parallel for ( ti = 0; ti < Ti; ti++ ) { // y coordinate unrolled
5 parallel for ( tj = 0; tj < Tj; tj++ ) { // x coordinate unrolled
6 O(m,r,c) += I(n,r+i+ti,c+j+tj)*W(m,n,i+ti,j+tj) // MAC operation
7 }
8 }
9 }

10 }
11 .........................................

Listing 2: Single Feature Single Neuron Multiple Synapses
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• Feature parallelism: Multiple input and output channels and output are processed in
parallel, but with only one output neuron and one synapse at a time.

1 .........................................
2 for ( m = 0; m < n_output_channels; m++ ) { // Output channels
3 for ( n = 0; n < n_input_channels; m++ ) { // Input channels
4 parallel for ( tm = 0; tm < Tm; tm++ ) { // y coordinate unrolled
5 parallel for ( tn = 0; tn < Tn; tn++ ) { // x coordinate unrolled
6 O(m + tm,r,c) += I(n,r+i,c+j)*W(m+tm,n+tn,i,j) // MAC operation
7 }
8 }
9 }

10 }
11 .........................................

Listing 3: Multiple Feature Single Neuron Single Synapses

• Neuron parallelism: Multiple output neurons are mapped on different processing
elements working concurrently.

1 .........................................
2 for ( r = 0; r < dim_y_output; r+=Tr ) { // Ouput neuron y coordinate
3 for ( c = 0; c < dim_x_output; c+=Tc ) { // Output neuron x coordinate
4 parallel for ( tr = 0; tr < Tr; tr++ ) { // y coordinate unrolled
5 parallel for ( tc = 0; tc < Tc; tc++ ) { // x coordinate unrolled
6 O(m,r,c) += I(n,r+i+tr,c+j+tc)*W(m,n,i,j) // MAC operation
7 }
8 }
9 }

10 }
11 .........................................

Listing 4: Single Feature Multiple Neuron Single Synapses

Once the parallel structure has been decided, it is possible to optimize the computational
kernel to exploit data-reuse. In temporal architectures like CPU and GPGPUs this means
managing the memory layout and the memory access patterns in order to be as cache-
friendly as possible. On the contrary, in hardware accelerators, the data-reuse is exploited
by sharing operands and partial results between processing element, thus implementing a
spatial architecture with optimized network-on-chip.

Deconvolutional or Transposed Convolutional Layer. When the neural network is
used to generate images like the depth map of PyDnet, or the mask applied to the inputs
to accomplish segmentation tasks, there is the need for a computational kernel able to up-
sample from low-resolution to a higher resolution. The deconvolutional layer performs an
up-sampling process, but with learnable parameters. The idea is to go in the other direction
compared to a convolution, in particular to reverse the many-to-one mapping resulting from
the convolution kernel. The main computational kernel implementing deconvolution is the
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one based on the transposed convolutional matrix, resorting in a matrix-multiplication, and
the one based on up-sampling the input tensor through zero insertions and then performing
a convolution.

Figure 3.8: Representation of a deconvolutional layer with a 5× 5 kernel. Credits to [33].

Pooling Layer. The pooling layer is used to reduce the spatial dimension of the feature
maps in order to lower the number of computations, but also to avoid overfitting on training
data. It is applied to each channel of an activation tensor as a sliding window and a
reduction function like max or average. It has almost the same configurable parameters of
a convolutional layer.

Reduction Function

Figure 3.9: Representation of a pooling layer.

Activation. The activation layer is simply computed through a point-wise function. For
performance reason it can be fused with the computation of the previous layer in order
to avoid useless data movement in memory hierarchy. The most common used activation
functions are:

• Relu: y = max(0, x)

• Leaky Relu: y = step(x) ∗ x+ step(−x) ∗ α

• Sigmoid: y = 1
1+e−x

• Tanh: y = 1−e−2·x

1+e−2·x
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Activation Function

Figure 3.10: Representation of an activation layer.

In the general case when possible they are computed with a polynomial representation,
thus employing only multiplication and addition, or through a look-up table.

3.3 Hardware Accelerators

This section gives an overview of three energy-efficient deep-learning accelerators.

3.3.1 Eyeriss

Eyeriss has been designed and implemented on TSMC 65nm LP technology in 2016 by
MIT researchers of the Energy-Efficient Multimedia Systems Group, [34].
They introduced a taxonomy of previous hardware accelerators based on the implemented
data-reuse methods. The three basic strategies are:

• Weight Stationary: the weights are stored locally at each processing element and
they stay stationary as much as possible. The input features are broadcasted to the
processing elements, while partial results are accumulated spatially.

• Output Stationary: each processing element is in charge of at least one output
neuron. This means that the partial results stay stationary at each processing ele-
ment. Weights are broadcasted or multicasted from the on-chip memory, then reused
together with the activations between neighboring processing elements.

• No-Local Reuse: particularly attractive for hardware with less flexibility on place-
ment of memory near computational logic or with a very large number of computa-
tional nodes.The access to local buffer is maximized, thus both activations and weights
are multicasted to the processing elements and the partial results are accumulated
spatially.
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Figure 3.11: Row Stationary proposed in [30].

They proposed a mixed dataflow which tries to maximize the reuse of both weights and
activations, called row stationary. Fig. 3.11 depicts how the operands are assigned to
each PE and also the data reuse in the computational grid. In particular, at each processing
element a row of weights and of input feature map is assigned. The partial results are then
collected vertically over the grid of processing elements. In this way it is possible to have a
simple yet efficient Network-on-Chip, since rows of the weight tensor are broadcasted over
the rows of the processing element grid, the partial sums accumulated vertically and rows
of the activation tensor are broadcasted on the diagonals of the processing element grid.

Figure 3.12: Architectural representation of Eyeriss, a CNN accelerator proposed by V.Sze
and others at MIT, [34].

Fig. 3.12 depicts a macro view of Eyeriss architecture. Each Processing Element has an
energy-efficient register file with a dimension of 0.5KB, a MAC unit and a local control unit.
The NoC provides connection between different processing elements, in particular there
are multiple common data buses with control signals to specify which are the processing
elements involved in the communication. The implemented connections allow unicast and
multicast communications from the global buffer and the processing elements. The global
buffer is implemented as an SRAM in order to reduce the energy cost of the accesses, but
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this implies some constraints on the total size, for example in the chip fabricated it was
set to 108KB. For this reason, there is a DRAM memory as large storage space. Two clock
domains are present, one for the DRAM and another for the on-chip SRAM and PEs grid.
The synchronization between different clock domains is performed through FIFOs. The
choice of having multiple clocking domains allows to better explore the energy-throughput
trade-off, enabling at the same time the integration of the accelerator in a System-on-Chip.

3.3.2 Efficient Inference Engine

Figure 3.13: Architectural representation of EIE, a fully-connected accelerator optimized
for sparse NNets, [35].

Efficient Inference Engine, EIE, is an an accelerator for compressed neural network pro-
posed by Song Han and others at Stanford University [35]. In particular, it accelerates
sparse matrix-vector multiplication in an energy efficient way. The main motivation be-
hind EIE is to design a hardware platform able to exploit pruning and weight sharing, two
energy-aware optimizations performed on the neural network model. The weight matrix is
represented in a compressed sparse column format, i.e. each column is stored in memory
through two vectors, one for the non-zero values and another to encode the number of zeros
between the elements. For example the vector [0,7,8,0,0,0,9] is encoded through v = [7,8,9]
and z = [1,0,3]. Since all the sparse columns are stored in a memory, a vector of pointers
to the first element of each column is needed. The block diagram of the processing element
architecture is reported in fig. 3.13.
The matrixW and the activation vector a are distributed across all the processing elements
such that PEi stores all the rows Wj with j mod N = i1. The aim is to maximize the
efficiency given by both activation and weight sparsity. In particular, the non-zero activa-
tions with the relative index are broadcasted to all PEs and stored in the input activation
queue. The index is used to retrieve the pointers to the start and to the end of the sparse
column assigned to each PE and stored in the sparse matrix SRAM. The sparse matrix
SRAM contains the tuple <v,x>, where v is an index to the 16bits fixed-point weight,
while x is used as index in the accumulation array stored in the activation r/w unit. The

1N is the total number of processing elements.
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activation r/w unit is composed of two register files, such that one contains the source acti-
vations and the other the destination activations, but, after an entire matrix multiplication
is performed, the roles of the two can be swapped, in order to support multi-layer neural
networks without any additional data movement. After the ReLu operation is executed,
the activation vector is compressed and distributed again to the PEs through a distributed
leading non-zero detection unit. The accelerator is controlled by a central control unit
which generates control signals and manages the communication with the host CPU.

3.3.3 Tensor Processing Unit

Figure 3.14: Architectural representation of the tensor processing unit, accelerator pro-
posed by Google to enhance data-analytics in data center, [36].

The Tensor Processing Unit is designed to be a powerful co-processor improving perfor-
mances of machine-learning workload in Google servers, [36]. The device has been silicon
fabricated and mounted on a PCB with a PCIe I/O bus to be easily connected to already
existing servers. A block diagram of the TPU architecture is reported in fig. 3.14.
The TPU computational heart is the matrix multiply unit, a huge 256x256 systolic array.
The instructions are streamed from the host CPU and stored on a on-chip instruction
buffer. The weights are stored in the DDR3 DRAM since they are loaded once for each
input batch and they can be prefetched into the Weight FIFO while a computation is in
progress on another set of weights. The unified buffer is allocated for the activation matri-
ces. Since it is accessed from both the host CPU and the matrix-multiply unit, the unified
buffer is a fast and large memory with an high speed 167GiB/s bus for the matrix multiply
unit and a 10GiB/s for the host CPU. The results of the matrix-multiply unit, stored in
the accumulator queues, are firstly processed by the activation pipeline, an arithmetical
and logical unit executing the activation function, then stored back in the unified buffer.
A CISC ISA has been designed from scratch specifically for the TPU.
The main instructions are:
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• Read_host_memory: it performs the data transfer from the host shared memory to
the internal on-chip buffers called Unified Buffer.

• Read_weights: it is used to read weights from the read-only off-chip DDR3 DRAM
to the Weight FIFO.

• Matrix_multiply: it starts the execution of the matrix multiplication.

• Activate: it triggers the execution of the activation/pooling function on the accu-
mulator queues.

• Write_host_memory: it starts a memory transaction from the unified buffer to the
host shared memory.
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Figure 3.15: Matrix Multiplication 2x2 performed on a systolic array.
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The heart of the TPU is the matrix multiply unit implementing a huge systolic array.
Figure 3.15 depicts how a multiplication of 2x2 matrices is carried on a systolic array.
Basically the systolic array is a grid of fused multiply-and-accumulate units interconnected
to accumulate partial sums on the vertical dimension and forward input activation to the
right neighbor.
At each clock cycle, a single MAC unit performs the following actions:

• Multiply the weight stored locally with the input coming from the left or from the
input queue, in case of units located on the left border.

• Add the product to the partial sum coming from the above MAC unit, only in case
of units not located on the top border of the grid.

• Send input activation to the processing element located on the right, if present.

• Forward the partial sum to the MAC unit located below, while, in case of units located
on the bottom edge of the grid, the partial sum is stored in the activation queue.

Figure 3.16: TPU matrix-multiply unit, [36].

Fig. 3.16 reports the direction of data movement together with the input queues on the
left border and the accumulation queues located at the bottom of the systolic array. The
weights, which stay stationary at each node of the grid, are sent during an initial configu-
ration phase.
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Chapter 4

The CoSimulation Framework

The chapter presents the contribution of this work: a co-simulation framework for the
evaluation of power management in early phase of design of spatial architecture for deep-
leaning on chip.

4.1 CoSimulation key aspects
As explained in chapter 3, hardware acceleration of neural network workload is fundamen-
tal to achieve energy efficiency and acceptable throughput in embedded systems near the
sensors.
The wide range of neural network use, together with the deep theoretical effort that this
subject has experienced in the last years, makes urgent a joint work between machine learn-
ing experts and hardware designers to develop new computing architectures able to satisfy
the requirements of realistic applications, and at the same time to unlock the potential of
deep-learning.
Even if this Deep Learning computing paradigm is highly application specific, flexibility
and programmability are still needed to support multiple networks, but also to efficiently
meet the peculiarities of each layer within the same network. Furthermore the require-
ments on the quality of results could be dependent on the environmental conditions in
which embedded systems operate. All these sources of variabilities can be exploited by an
adaptive power management control system that, using power knobs like supply voltage,
clock frequency and body biasing, can change at run-time the working point in terms of
energy, throughput and quality of result.
Performing a gate-level-simulation of the entire accelerator to understand the available
degrees of freedom and to explore the energy/throughput/accuracy trade-off is unfeasible
both in terms of simulation time and time-to-market. Moreover, waiting for the com-
plete micro-architecture before developing and testing power management strategies may
be truly inefficient, since early analysis could lead to a more performing accelerator.
The objective of this work is to meet these demands with a co-simulation framework able
to:

• Evaluate the effective energy efficiency of realistic workload of spatial accelerators
avoiding the simulation of the entire HW.
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• Explore the design space to evaluate pros and cons of the designated HW architecture
and power-management strategy.

• Enable an early efficiency testing of the neural netowork architecture thanks to an
accurate estimation of the energy profile of the real hardware platform.

4.2 Tool Overview
The tool has been designed in order to be easily interfaced with common frameworks for
machine learning and with the industrial ASIC design flow. The general philosophy be-
hind the co-simulation framework is to have a behavioral neural network inferential engine
that communicates with a gate-level simulator: this framework can provide stimuli to the
circuit, collect responses and status signals and modify the configuration of power knobs.
The aim is to simulate the system also from a non-functional perspective, thus the need for
a gate-level simulator, but with only the minimum hardware required to verify the impact
of a specific power management strategy on the network accuracy. In particular, the effect
of power knobs on the system is emulated through a library of SDF files, one for each
working condition, which can be loaded by the gate-level simulator when a power-context
switch is performed.
QuestaSim, a commercial tool by MentorGraphics, is used as gate-level simulator. It
allows the simulation of VHDL, Verilog, SystemVerilog code, but it provides proprietary
APIs called FLI to interface the simulation kernel with imperative C code. The foreign
language code is compiled and built as a shared library which is loaded at the startup by
QuestaSim. The back-end initializes all internal data structures based on the information
parsed from the configurations file, it emulates the modules that are not described in hard-
ware and implements the power management control system. Since the software emulation
is completely hardware independent, it has to mimic only the functionality and it can be
written efficiently in C. Concurrently, all the other gate-level components are instantiated,
managed and simulated by QuestaSim.
Synopsys Design Compiler is used for synthesis and optimization of HDL code with
std. cell as target technology, while Synopsys PrimeTime has been employed for static
timing analysis, power estimation and SDF library creation.
The front-end of the framework, written in Python, receives the RTL description of the
hardware and the neural network trained model as an ONNX file, so that it can configure
the whole system. The front-end receives also a dataset which is used as a series of testing
inputs: these can be split based on how many concurrent simulations the user wants to
run. At this point the back-end of the framework can be started. Multiple instances of
QuestaSim load both the shared library containing all the software needed to emulate parts
of the hardware accelerators and the post-synthesis netlist with the proper SDF.
At the end of the co-simulation, the framework generates a human-readable report about
the energy consumption, average power, throughput and achieved accuracy on the dataset.
Moreover, in order to set up a co-simulation for its system, a future user can focus only
on the behavioral representation in C, while all the infrastructure is designed to be easily
used.
The next sections of this chapter explain in details the tool interface to the external world
and the internal architecture.
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4.3 External Interface
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Figure 4.1: Architecture diagram depicting the tool external interface. It is shown that it
is fully integrated in standard design flow both in terms of input and of language used.

The interface of tool to the external world is depicted in fig. 4.1. It is conceptually divided
in two different domains: the neural net domain and the hardware domain.
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4.3.1 Neural Net Domain
During the last years, Different machine learning libraries have been designed with the
aim of helping the development of machine learning algorithms. The most diffused for
neural networks are PyTorch1 and TensorFlow2. These frameworks provide a set of
ways to describe, train and test neural networks. The main common characteristics of the
frameworks are:

• Possibility to define a neural network as interconnection of available layers, each one
with several customizable parameters.

• Compute gradients to train a neural network using gradient descent or other optimiz-
ers that are already built inside the framework.

• Provide access to a library of defined and pre-trained models that can be easily loaded
in custom user program.

• Native support to parallel execution on cluster of processors and/or on GPGPUs.
After training, testing and optimizing the neural architecture, a final model is obtained
with a set of trained parameters. In order to easily integrate the co-simulation tool with one
of these common machine learning frameworks, it has been decided to use ONNX, an open
standard developed by multiple industrial partners to easily transfer models between tools.

ONNX has been designed to facilitate the transition from the framework used to train
and test the network to the inferential engine necessary to deploy the model on final hard-
ware platform. ONNX uses as serializing mechanism protocol buffers. Protocol buffers3

are developed and maintained by Google and represent an efficient way to exchange com-
plex data structures. This mechanism is based on the definition of data structures, called
messages, in a human readable .proto file. The .proto file is processed by the protobuf
compiler generating methods for encoding/decoding the specified data structures. It is a
language-neutral format, so it is possible to use it in C++, Ruby, GO, Python and other
programming languages.
The onnx.proto file provides mainly the definition of the following messages:

• GraphProto. It contains a list of nodes topologically sorted and without cycle. Each
node represents a layer and it has at least one output. It also contains a list of tensor
messages called initializers, which specify data for the constant tensor, i.e. weights
and biases of all layers. In GraphProto it is possible to find also the information
about primary input and primary output of the entire graph.

• NodeProto. Each node is described in terms of an optional string identifier, the
keyword specifying the layer type and the names of input and output tensors. In-
side the network each tensor is identified uniquely by a string identifier. Multiple
AttributeProto messages are used to specify properties of the specific layer.

1https://pytorch.org/
2https://www.tensorflow.org/
3https://developers.google.com/protocol-buffers/
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• TensorProto. It is defined in order to fully describe a tensor, thus it provides infor-
mation about dimensions and data type. In case of a constant tensor, it contains a
vector of raw data in binary format.

Since ONNX does not support fixed-point model, the information about radix point is
provided through a pickle dump object. In particular, three Python dictionaries are used
to specify radix-point positions of weights, biases and output features of convolutional and
fully connected layers. More specifically, each dictionary maps a layer identifier with a
radix-point value, thus it maps a string to an integer number. The framework front-end
has a Python script that receives as inputs the pickle dump object and the ONNX file to
produce a human-readable description of the network and a binary file for each constant
tensor. The format specification of this ASCII description is reported in listing. 5 and an
example of input file for LeNet5 Architecture quantized on 8 bits is showed in listing. 6.

1 {Id of the net : string}
2 {quantized_net : boolean} [{bitwidth used : int} if quantized_net is TRUE]
3 {n_tensors : int}
4 {{id : int } {tensor_type: string} {dimensions : int }
5 [{path_file : string} if constant]
6 [{radix_point : int} if quantized_net is TRUE]} repeated x n_tensors lines
7 {n_layers : int}
8 {{id : string} {op_type : string} {id_input_activation : int}
9 {id_output_activation : int} [Additional_parameters]} repeated x n_layers lines

10

11 ################################################################################
12 . Additional_parameters, they depend on the type of layer
13

14 "Relu" -> None
15

16 "Fc" -> {id_weight_tensor: int } {id_bias_tensor: int }
17 {alpha : float} {beta : float}
18 {broadcast : int } {transA : int }
19 {transB : int }
20

21 "Conv" -> {id_weight_tensor: int } {id_bias_tensor: int }
22 {dims_y_kernel : int } {dims_x_kernel : int }
23 {padding_y_dim : int } {padding_x_dim : int }
24 {stride_y_dim : int } {stride_x_dim : int }
25

26 "MaxPool" -> {dims_y_kernel : int } {dims_x_kernel : int }
27 {padding_y_dim : int } {padding_x_dim : int }
28 {stride_y_dim : int } {stride_x_dim : int }
29

30 "Reshape" -> {num_next_attr : int }
31 {how_to_reshape : int } repeated x num_next_attr
32

33 "Flatten" -> {axis : int }
34 ################################################################################

Listing 5: Structure of the ASCII file describing a neural network
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1 LeNet5_8bit
2 29
3 -2 output 1 1 1 10 2 8
4 -1 input 1 3 32 32 6 8
5 0 constant 6 3 5 5 lenet_data/1.data 8 8
6 1 constant 1 1 1 6 lenet_data/2.data 9 8
7 2 constant 1 1 1 1 lenet_data/3.data 0 8
8 3 constant 16 6 5 5 lenet_data/4.data 7 8
9 4 constant 1 1 1 16 lenet_data/5.data 8 8

10 5 constant 1 1 1 1 lenet_data/6.data 0 8
11 6 constant 1 1 120 400 lenet_data/7.data 7 8
12 7 constant 1 1 1 120 lenet_data/8.data 8 8
13 8 constant 1 1 1 1 lenet_data/9.data 0 8
14 9 constant 1 1 84 120 lenet_data/10.data 7 8
15 10 constant 1 1 1 84 lenet_data/11.data 8 8
16 11 constant 1 1 1 1 lenet_data/12.data 0 8
17 12 constant 1 1 10 84 lenet_data/13.data 7 8
18 13 constant 1 1 1 10 lenet_data/14.data 8 8
19 14 constant 1 1 1 1 lenet_data/15.data 0 8
20 15 constant 1 1 1 1 lenet_data/16.data 0 8
21 16 feature 1 6 28 28 5 8
22 17 feature 1 6 28 28 5 8
23 18 feature 1 6 14 14 5 8
24 19 feature 1 16 10 10 4 8
25 20 feature 1 16 10 10 4 8
26 21 feature 1 16 5 5 4 8
27 22 feature 1 1 1 400 4 8
28 23 feature 1 1 1 120 3 8
29 24 feature 1 1 1 120 3 8
30 25 feature 1 1 1 84 3 8
31 26 feature 1 1 1 84 3 8
32 12
33 Conv4 Conv -1 16 0 1 5 5 0 0 1 1
34 Relu5 Relu 16 17
35 MaxPool6 MaxPool 17 18 2 2 0 0 2 2
36 Conv11 Conv 18 19 3 4 5 5 0 0 1 1
37 Relu12 Relu 19 20
38 MaxPool13 MaxPool 20 21 2 2 0 0 2 2
39 Flatten14 Flatten 21 22 1
40 Gemm19 Fc 22 23 6 7 1.0 1.0 1 0 1
41 Relu20 Relu 23 24
42 Gemm25 Fc 24 25 9 10 1.0 1.0 1 0 1
43 Relu26 Relu 25 26
44 Gemm31 Fc 26 -2 12 13 1.0 1.0 1 0 1

Listing 6: Description of LeNet5 quantized on 8 bits

4.3.2 Hardware Domain
For what concerns the hardware domain, it has been decided to focus on standard indus-
trial flow for ASIC design. As reported in fig. 4.2, due to the high complexity of ASIC,
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the standard pipeline is composed of different stages, each with its own optimized EDA
tool. The design flow starts with the functional specification of the system, followed by an
architectural design where the system is decomposed in macro blocks taking into consider-
ation performance specifications. At this point designers start to write HDL code, usually
in VHDL or Verilog, specifying behavior and/or structure of the architectural blocks. The
RTL description of the system is used as entry point for the logic stage, which produces
an optimized gate-level netlist. This consists of a structural description of the circuits
in terms of std. cells available in the used technological library. The netlist has to be
compliant with user defined timing, area and power constraints. From this stage the so
called Back-end design takes care of the physical design of the IC, from gate placement
and routing up to packaging design. Then the chip is taped out, fabricated and tested.

Figure 4.2: Standard design flow of ASIC.

This work deals with architectural, logic and circuit design. The tools used in these parts
are Synopsys Design Compiler for synthesis, optimization and tech mapping and Synopsys
Prime Time for static timing analysis and power estimation. The silicon vendor provides
the designers with a set of cells collected in a library. Timing and power factors of merit
of any cell are reported in a standardized human readable file called liberty, .lib extension.
These parameters are obtained through a number of SPICE simulations of the cell un-
der different conditions, for example rising/falling time of input signals, load capacitance,
power supply voltage, process corner and temperature.
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The framework developed takes as input an RTL description of the processing element dat-
apath. The information about the synthesis condition in terms of PVT corner is specified
in a tcl file, while area, timing and power constraints in a sdc file. The synthesis and opti-
mization flow with Design Compiler has been automated with a series of tcl scripts. The
post-synthesis netlist is analyzed with PrimeTime for generating detailed reports about
power consumption and static timing of the circuit. In particular, in order to deal with
voltage and temperature values different from the one used for synthesis, new operating
conditions are created by interpolating the available libraries. PrimeTime is also used to
generate the back annotation necessary to perform post-synthesis simulation. The silicon
vendor, apart from providing the liberty file of the library, gives also an HDL model of
each cell. An example of a NAND2X2 is reported in 7.

1 ‘endcelldefine
2 ‘celldefine
3 ‘ifdef functional
4 ‘timescale 1ns / 1ns
5 ‘delay_mode_zero
6 ‘else
7 ‘timescale 1ns / 1ps
8 ‘delay_mode_path
9 ‘endif

10

11 ‘define NAND2X2_A_R_Z_F_1 0.1
12 ‘define NAND2X2_A_F_Z_R_1 0.1
13 ‘define NAND2X2_B_R_Z_F_1 0.1
14 ‘define NAND2X2_B_F_Z_R_1 0.1
15

16 module NAND2X2 (Z, A, B);
17

18 output Z;
19 input A;
20 input B;
21

22 and U1 (INTERNAL1, A, B) ;
23 not #1 U2 (Z, INTERNAL1) ;
24

25 specify
26

27 (A -=> Z) = (‘NAND2X2_A_F_Z_R_1,‘NAND2X2_A_R_Z_F_1);
28 (B -=> Z) = (‘NAND2X2_B_F_Z_R_1,‘NAND2X2_B_R_Z_F_1);
29

30 endspecify
31

32 endmodule

Listing 7: Verilog description of a library cell

The delays reported in the verilog model of the cells are different from the actual delay
of a cell instantiated in the circuit, since the latter depends on the loads, fan-in, fan-out
and position in the circuit. Therefore, in order to perform a post-synthesis simulation with
an accurate estimation of the circuit timing, PrimeTime offers the possibility to produce
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a standard delay format file called SDF. The SDF is standardized by IEEE and it is in
ASCII format. In this framework SDF is used mainly to annotate delays, timing checks
and timing constraints.

1 (CELL
2 (CELLTYPE "NAND2X2")
3 (INSTANCE U670)
4 (DELAY
5 (ABSOLUTE
6 (COND B (IOPATH A Z (0.033::0.037) (0.047::0.052)))
7 (COND A (IOPATH B Z (0.034::0.039) (0.045::0.052)))
8 )
9 )

10 )

Listing 8: SDF content for IOPATH of a NAND Cell

In listing 8 a part of an SDF file for a NAND2X2 cell is reported. The COND statement
is used to specify that the propagation delay between the two pins is valid only when the
specified condition is true. The values in the first couple of parentheses correspond to
the delay values when Z makes a rising transition, whilst the values in the second couple
of parentheses correspond to a falling transition. In general inside each parenthesis three
values separated by colon should be reported: minimum, typical and maximum corner
values. In this example typical values are missing, thus only the best and worst case gate-
level simulation can be performed. The SDF file can be loaded in QuestaSim together with
the post-synthesis netlist, and a timing accurate simulation can be performed. For each
operating condition of the circuit a different SDF file is generated, in this way it is possible
to simulate power management policies where the supply voltage is used as power knob.

4.4 Framework Architecture
The front-end is realized with a Python script that accepts the input files as described in
previous section and configures the system to perform the co-simulation.
The back-end is made up of two main parts: one is the infrastructure needed to represent a
neural network for the inferential part, while the other is a communication protocol between
the software components and the hardware simulators. The latter has been designed in
order to simplify the set up of a co-simulation for different dataflow mapping strategies,
since they are one of the key aspect of spatial architecture, as explained in subsection 3.2.

4.4.1 Neural Network Computational Model
The basic elements needed to represent a neural network are tensors and layers.

Tensor. A Tensor is an extension of a matrix on more than two dimensions. In particular,
for neural network purposes, they have been considered of maximum four dimensions. For
performance reasons they have been stored in contiguous memory locations. In case of a
floating-point tensor only an array of raw data and its dimensions are stored as member
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values, instead for fixed-point tensors also bitwidth and radix-point position are included
as members.
The type of raw data is single precision IEEE-754 float for floating-point tensors, while
for fixed-point tensors it has been decided to use integer on 32 bits, but including the
information on real bitwidth as a member of the class. In this way it is possible to represent
also non power of 2 bitwidth up to 32 bits. The interfaces of a floating-point tensor and of
a fixed-point tensor are reported in list. 9 and 10.

1 struct tensor_float {
2 unsigned int dims[4] ;
3 float* raw_data ;
4 };
5

6 typedef struct tensor_float* Tensor_float;

Listing 9: Row Stationary Dataflow Emulation

1 struct tensor_fixed_point {
2 unsigned int dims[4] ;
3 int32_t* raw_data ;
4 int8_t int_bits ;
5 int8_t frac_bits ;
6 int8_t tot_bits ;
7 };
8

9 typedef struct tensor_fixed_point* Tensor_fixed_point;

Listing 10: Fixed-point tensor interface

Layer. Even if different layers are employed in a neural net, all of them show common
characteristics:

• They can be configured. For example, in case of a convolutional layer, the main op-
tions are stride, padding, number of output channels, kernel dimensions and dilation.

• They can be scheduled, i.e. they consume input tensor(s) and perform some kind of
processing to produce the output tensor.

In order to deal with both floating point and fixed point, neural network data and compu-
tation have been considered totally decoupled. Indeed the layer class is represented by its
computational kernel and pointers to I/O and constant tensors. The abstract interface of
a layer is listed in 11.

1 typedef struct layer* Layer;
2

3 struct layer {
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4 struct vf_table* vft ; /**< Pointer to the Virtual Fuction Table */
5 void* _layer; /**< Pointer to the struct of specific layer */
6 };
7

8 /** Pointers to the concrete version of init, print and schedule functions **/
9 struct vf_table {

10 error_code (*init_layer) (Layer, void*);
11 void (*print_layer) (void*);
12 error_code (*schedule_layer) (void*, void*);
13 };

Listing 11: Abstract Layer interface

Each layer implements the abstract layer interface through three specific functions:

• init_layer. Allocates memory and configures the parameters.

• schedule_layer. Performs the computations, i.e. a transformations of the input
tensors into the output tensor.

• print_layer. Used for debugging purposes, it is employed to print all information
about an already configured layer.

The following list describes the implemented layers with the available options:

• Convolutional Layer.
Computational Kernel: Direct Convolution.
Parameters:

– Id : string
– number of input channels: unsigned integer
– number of output channels: unsigned integer
– kernel x dimension : unsigned integer
– kernel y dimension : unsigned integer
– stride on x dimension : unsigned integer
– stride on y dimension : unsigned integer
– padding on x dimension: unsigned integer
– padding on y dimension: unsigned integer

• Concatenation Layer.
Parameters:

– Id : string
– number of input tensors: unsigned integer
– axis where it has to be performed the concatenation: unsigned integer

• Fully Connected Layer.
Computational Kernel: Matrix Multiplication.
Parameters:
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– Id : string
– number of output neurons: unsigned integer
– number of input neurons: unsigned integer

• Max Pool Layer.
Parameters:

– Id : string
– kernel x dimension : unsigned integer
– kernel y dimension : unsigned integer
– stride on x dimension : unsigned integer
– stride on y dimension : unsigned integer
– padding on x dimension: unsigned integer
– padding on y dimension: unsigned integer

• Activation Layer.
Parameters:

– Id : string
– pointer to the activation function : void*

• Reshape Layer.
Parameters:

– Id : string
– new x dimension : unsigned integer
– new x dimension : unsigned integer
– new x dimension : unsigned integer
– new x dimension : unsigned integer

Layer

init_layer() 
schedule_layer() 
print_layer()

Deconv_Layer

+ Tensor input
+ Tensor output
+ Tensor weight
+ Tensor bias 

+ init_layer() 
+ schedule_layer() 
+ print_layer()

ReLu_Layer

+ Tensor input
+ Tensor output

+ init_layer() 
+ schedule_layer() 
+ print_layer()

Fc_Layer

+ Tensor input
+ Tensor output
+ Tensor weight
+ Tensor bias 

+ init_layer() 
+ schedule_layer() 
+ print_layer()

Reshape_Layer

+ Tensor input
+ Tensor output

+ init_layer() 
+ schedule_layer() 
+ print_layer()

Conv_Layer

+ Tensor input
+ Tensor output

+ init_layer() 
+ schedule_layer() 
+ print_layer()

Tensor Data Structure 

- Data 
- Dimension information 
- Tot_bits 
- Int_part_bits 
- Frac_part_bits

Figure 4.3: Architecture diagram of the main blocks of the simulator.
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Network. Layers and tensors can be composed to build a neural network. The class net
has an interface reported in listing 12.

1 struct net{
2 char id[50] ;
3 unsigned int n_layers ;
4 Layer* layers ;
5 int n_tensors ;
6 #if TENSOR_TYPE == FLOATING_POINT
7 Tensor_float* tensors_pool ;
8 #elif TENSOR_TYPE == FIXED_POINT
9 Tensor_fixed_point* tensors_pool ;

10 #endif
11 #if TENSOR_TYPE == FLOATING_POINT
12 Tensor_float primary_output ;
13 Tensor_float primary_input ;
14 #elif TENSOR_TYPE == FIXED_POINT
15 Tensor_fixed_point primary_output ;
16 Tensor_fixed_point primary_input ;
17 #endif
18 };
19

20 typedef struct net* Net;
21

22 int init_net(
23 Net* net_to_init, char* path_init_file
24 );
25

26 void print_net(
27 Net net
28 );
29

30 int schedule_net(
31 Net net
32 );
33

34 void free_net(
35 Net net
36 );

Listing 12: Net interface

All tensors in the network, both constant tensors and activation tensors, are allocated and
stored in a tensor pool. To each tensor a numerical id is assigned, so that it is possible
to implement the pool as a vector and retrieve the tensor with a direct access. All the
layers as well are stored in a vector in topological order. In this way, by simply visiting the
vector in order and calling the schedule function of each layer, it is ensured that each input
tensor is valid when it has to be processed. The primary input and the primary output
of the network are not included in the pool, as the primary input is filled externally and
the primary output is processed at the end for obtaining the outcome. Thus, it has been
decided to manage them in a different way, in particular as direct pointers.
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4.4.2 How to talk with Modelsim: Foreign Language Interface
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virtual_neuron_logic.vhd
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Virtual Neuron Logic
virtual_neuron_logic.c

FIFO_queue.shared_obj

 
FIFO Record 

2 Fields: 
  1) Action to perform 
  2) Operands for the arithmetic units.

FIFO_record.obj

post_syn_netlist

Figure 4.4: Architecture diagram of interface between gate-level circuit and imperative
code.

MentorGraphics provides many FLI APIs, i.e. C functions, which can be used to access
and modify information inside the HDL simulator.
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As reported in FLI manual provided by MentorGraphics, a C program can be used to:

• Explore the hierarchy of an HDL design.

• Read and write values of HDL objects, in particular signals and variables.

• Access information about the simulation status.

• Modify flow and configuration of the simulation.

Usually a VHDL module is composed of two parts: entity declaration and architecture
description. The architecture description contains the RTL specification of functionality
or structure of the module. In order to use FLI APIs, the architecture is just a link to a
foreign C function. In this plain C function the initialization of the module is done, and then
multiple threads can be started. It is possible to use threads controlled by the operating
system or processes managed by QuestaSim. In the former case every synchronization
primitive offered by the operating systems can be used, while in the latter the process is
threated as a VHDL process, thus it can have a sensitivity list.
The init function has the following synopsis:

1 void function_name(
2 mitRegionIdT region ,
3 char *param ,
4 mtiInterfaceListT *generics ,
5 mitInterfaceListT *ports
6 )

Listing 13: Init function synopsis

The first argument is an ID used to locate the module in the design hierarchy, instead the
second allows to specify options when the foreign architecture is instantiated in the .vhd
file. Generics and ports are linked lists containing handles to generic parameters and ports
of the design.
The main FLI functions used in the framework are:

• mit_FindPort(mtiInterfaceListT *ports, char* port_name).
It is used to extract a handle to a port signal in the interface list.

• mit_CreateDriver(mtiInterfaceListT *ports, char* port_name).
It is used to create a driver for a specific signal. The driver is necessary for setting
values onto that signal.

• mit_CreateProcess(char *name_proc, mtiVoidFuncPtrT func_ptr, void *param).
It is used to create a process named name_proc, executing the function pointed
by func_ptr. It is possible to pass a parameter to the function through the param
argument, usually a structure containing all the signals and the drivers created in the
init function.
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• mit_Sensitize(mtiProcessIdT proc, mtiSignalIdT sig, mtiProcessTriggerT trigger).
It is used to sensitize the process with id proc to signal sig. The trigger parameter
is used to specify if the process is sensitive to value changes, MTI_EVENT, or when
the signal is active, MTI_ACTIVE.

• mit_ScheduleDriver(mtiDriverIdT driver_id, long/void* value, mtiDelayT delay,
mtiDriverModeT mode).
It allows to change the value of the signal controlled by the driver with id driver_id.
It is possible to delay the signal with respect to the moment when the function is
called. Since in VHDL there are multiple kinds of delay, the argument mode allows to
choose between inertial and transport delay. If the signal is an array, then the value
is interpreted as a pointer to a vector, otherwise it is a long integer variable.

• mit_GetSignalValue(mtiSignalIdT signal_id) and
mit_GetArraySignalValue(mtiSignalIdT signal_id, void* buffer).
These two functions are used to read the value of a scalar signal or an array starting
from the signal handler.

• mit_GetArraySignalValue(mtiVoidFuncPtrT func_ptr, void* param).
A callback function called when QuestaSim is closed. It is necessary to free all the
allocated memory.

In this framework FLI APIs are used mainly to create a foreign architecture emulating the
global control unit of the accelerator, the local control unit of each processing element and
also the memory system.

4.4.3 Spatial Computing Infrastructure
As shown by the examples of hardware accelerator for deep-learning in section 3.3, the
main components of a spatial architecture are:

• Processing Element. It is a simple computational node and it can be composed
of local memory, control logic and a datapath able to execute arithmetic and logical
instructions.

• Memory system. Usually it is hierarchically organized to optimize performance, area
occupation and power consumption. It could store weights, biases, activations and
temporary results.

• Network-On-Chip. It is in charge of two main tasks: dispatch data from/to the
memory system to/from the processing element and move data between processing
elements.

• Global Control Unit. It coordinates the functionality of the entire accelerator.
It generates high-level control signals for the other components and supervises the
interface with the external world.

Since the target for this co-simulation framework is a spatial architecture for deep-learning
on chip, each of the previously reported components has to be represented by a data struc-
ture, and its behavior must be emulated with a set of methods. As it should be clear by
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now, a spatial accelerator is composed of a series of concurrently working elements, thus
also the software emulation should have a parallel structure. This is achieved by means
of processes managed by the operating systems, POSIX threads since Linux is used as
host OS, and processes managed by QuestaSim, in particular as components of a foreign
architecture.
The main target is the co-simulation of power management strategies acting on the process-
ing elements. The user can decide how to divide the processing element in two parts: one
emulated by a foreign architecture and the other simulated at gate-level. Clearly the user
has to provide the RTL description for the gate-level part to the framework. A VHDL entity
is declared with a structural architecture such that the two parts are connected by signals,
processed as usual in VHDL and with the FLI APIs in the software emulation. The global
control unit contains the inferential engine detailed in subsection 4.4.1 and emulates all the
high level functionality of the accelerator. The communication between the global control
unit and the processing elements is achieved by means of a shared memory. In particular,
the global control unit provides instructions and data to the processing elements through
thread-safe FIFO queue. A FIFO has been implemented mainly because the PE logic in
real hardware does not have a complex mechanism to fetch data, but it just responds to
the instruction stream sent by the global control unit. Moreover, from a simulation point
of view it solves the problem of different execution speeds by QuestaSim processes and OS
processes, meaning that FIFO are also employed due to their asynchronous behaviour as
communication primitives.
The shared memory contains also the representation of the tensor. This aspect is extremely
important, since in this way it is possible to reduce additional data movement in the simu-
lator: when a processing element has to store a data in the memory, in fact, the address is
available, so the foreign architecture is able to write it in memory. The shared memory is
also employed to allow the communication between processing elements: by simply pushing
instructions and data on the queue of another processing element, it is in fact possible to
emulate the movement of data inside the spatial architecture.
Synchronization between the global control unit and the processing elements is done by
means of a synchronization barrier. In particular, this barrier is used to synchronize layer
scheduling in the net. Only when all the processing elements have finished their work, then
the computation for the next layer can be started.
The implemented infrastructure allows to easily emulate different dataflow mapping, since,
as reported in subsection 3.2, a dataflow can be represented by means of tiling and loop un-
rolling of the computational kernel for both convolutional layer and fully connected layer.
Thus, it is possible to use the same structure by simply pushing values on the FIFO of the
processing element receiving data/action. This allows the user to employ the same index
used to write the loop of the computational kernel to address the FIFO of a processing
element in the grid.
The following part shows two examples of dataflow mapping: in particular, it explains how
to write the computational kernel in order to emulate an output stationary, lst. 15, and a
row stationary dataflow, lst. 14.
In case of a row stationary dataflow, it is possible to reorganize the six loop code in
order to: push activations and weights of the same row on the same FIFO, then proceeds
in the vertical direction of the grid to complete one row of the output feature map. The
address is sent only to the FIFO corresponding to the top edge of the grid.
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1 for ( m = 0; m < n_output_channels; m++ ) { // Output channels
2 for ( r = 0; r < dim_y_output; r++ ) { // Ouput neuron y coordinate
3 for ( i = 0; i < dim_y_kernel; i++ ) { // y coordinate of the kernel
4 fifo_ptr = grid[i][r];
5 for ( c = 0; c < dim_x_output; c++ ) { // Output neuron x coordinate
6 for ( j = 0; j < dim_x_kernel; j++ ) { // x coordinate of the kernel
7 send_to_fifo(fifo_ptr,I(0,r+i,c+j),W(m,0,i,j));
8 }
9 }

10 }
11 for ( c = 0; c < dim_x_output; c++ ) { // Output neuron x coordinate
12 fifo_ptr = grid[0][r];
13 store_to_memory(fifo_ptr, &O(m,r,c));
14 }
15 }
16 }

Listing 14: Row Stationary Dataflow Emulation

In case of an output stationary dataflow, it is possible to reorganize the six loop code
in order to: push activations and weights needed for the computation of one output neuron
and also the address where to store the result on the same FIFO, then proceeds with the
other output neurons advancing the pointer to the FIFO vector in a round-robin fashion.

1 for ( m = 0; m < n_output_channels; m++ ) { // Output channels
2 for ( r = 0; r < dim_y_output; r++ ) { // Ouput neuron y coordinate
3 for ( c = 0; c < dim_x_output; c++ ) { // Output neuron x coordinate
4

5 fifo_ptr = next_fifo_ptr();
6

7 for ( n = 0; n < n_input_channels; m++ ) { // Input channels
8 for ( i = 0; i < dim_y_kernel; i++ ) { // y coordinate of the kernel
9 for ( j = 0; j < dim_y_kernel; j++ ) { // x coordinate of the kernel

10 send_to_fifo(fifo_ptr,I(n,r+i,c+j),W(m,n,i,j))
11 }
12 }
13 }
14

15 store_to_memory(fifo_ptr, &O(m,r,c));
16

17 }
18 }
19 }

Listing 15: Output Stationary Dataflow Emulation
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Chapter 5

Use Case: Voltage OverScaling
of an Output Stationary
Accelerator

This chapter presents a use case of the tool: design space exploration in terms of dynamic
power vs network accuracy of a spatial architecture implementing an output stationary
dataflow. The processing element datapath is augmented with Razor-FFs and MAC-Drop[37],
a Voltage Over-Scaling technique, is used as power management strategy.

5.1 Processing Element
The target technology is a 40nm std.cell library by STMicroelectronics.
The accelerator provides fixed-point capability with weights, input and output feature
maps on 8 bits, while biases are on 32 bits. A pictorial representation of the bitwidth
involved in the I/O interface of the processing element datapath is reported in fig. 5.1.
Each layer has its own radix-point value in order to minimize the accuracy drop from the
floating-point version of the network, [38].

Processing Element 
Datapath

8
Weight

8
Input Feature

32
Bias

Output Feature
8

Figure 5.1: Bitwidth involved in the datapath.

For each output neuron, the multiplication between weight and input feature is carried on
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a 8 ∗ 8 integer multiplier, then the output, which is on 16 bits, is added to the 32 bits
accumulator register. Even if 16 bits are used as guard-bits to take into account the huge
number of accumulations, a saturation logic has been used at the output of the adder in
order to make the design overflow-free. At the end of the computations related to one
output neuron, the result is shifted, narrowed with saturation on 8 bits and stored in
memory. The pseudo-code of the fixed-point computations is reported in lst. 16.

1 int32_t accumulator = bias
2

3 for weight in W:
4 for input_feature in I:
5 int16_t mul_result = weight*input_feature
6 int32_t accumulator = saturated_sum(mul_result,accumulator)
7

8 accumulator = accumulator >> ( I.radix_point + W.radix_point - O.radix_point )
9 int8_t output_feature_map = narrowing_with_saturation(accumulator)

Listing 16: Fixed-point computations

Control Logic

Datapath

FIFO obj

Multiply-and-
Accumulate

with saturation 
Shift &

Narrowing

Figure 5.2: High-level view of the PE.

A block diagram of the processing element is depicted in fig. 5.2. It is composed of two
main parts:

• Datapath: it is a 2 stage pipelined design. The first stage is made of a functional unit
able to perform fused multiply-and-accumulate with guard bits on the accumulator
and a saturation logic to make all operations overflow-free. While in the second stage
it is possible to find the shifter needed to adjust the integer representation according
to the radix point value of the weights, input and output feature maps and the
narrowing unit with saturation on 8 bits, which is used to restore the 8 bits bitwidth
on the generated output neuron.

• Control Logic: it reads the stream of instructions and operands from the input
FIFO, generates the proper control signals for the datapath and communicates with
the memory system in order to write-back the results.
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As reported in section 4.4, the user can decide how to partition the spatial accelerator in
two parts, one simulated at gate-level, whilst the other emulated with behavioral C code.
In this case, it has been decided to bind only the arithmetic core of the processing element
datapath to the gate-level simulation. A block diagram of the processing element part
emulated at gate-level is shown in fig. 5.3.
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feature
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forward_bias

Figure 5.3: RTL view of the processing element stage simulated at gate-level.

As can be seen in fig. 5.3 the datapath stage has been enriched with Razor-FFs, [12].
As reported in section 2.4.2, Razor is based on a double-sampling mechanism which is
used to detect and, in case, correct timing errors. In this design it has been used as error
detection and correction mechanism from timing errors due to Voltage-OverScaling. In
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particular, the arithmetic cores of each processing element are placed on their own specific
Vdd domain. An on-chip regulator can change the supply voltage based on the control
signals coming from a power management unit. The Vdd can be pushed below the point-of-
first-failure where the arrival time of all timing paths of the circuit fulfills the required time
constraint. In this situation, the main register is not able to sample correctly the signal,
but it is ensured that the shadow register could store the right value. This is possible by
clocking the shadow register with a delayed clock, which borrows a time-window called
detection window from the next cycle to wait for late transitions. Classical techniques
used to recover from timing errors are not easily applied to spatial architectures since the
large number of processing elements makes the adoption of cycle-penalties recovery strate-
gies highly inefficient. For this reason, J.Zhang et al. [37], proposed a timing error recovery
technique called MAC-Drop which can be easily implemented also in spatial architecture.
Instead of correcting a timing error, the cycle following the faulty-one is used to restore
the last correct result in the accumulation register. In particular the output of the shadow
register is bitwise XORed with the output of the main register. If at least one bit differs
between the two registers1, then the output of the shadow register is provided as input to
the main register. In this way one multiplication, i.e. a synaptic connection, is dropped but
no time penalty is introduced. If the number of operations dropped due to timing errors is
kept under a certain threshold it is still possible to keep the network accuracy sustainable
in favor of a lower dynamic power consumption. Fig. 5.4 reports a timing diagram where
some cycles are error-free, while in a cycle a timing error occurs, thus it is showed the
adopted recovery mechanism.
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weight W0 W1 W2 W3 W4

feature I0 I1 I2 I3 I4
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Q_accumulator RES_0 RES_1 INCORRECT RES_2 RES_4

Q_shadow RES_0 RES_1 RES_2 RES_2 RES_4

error_flag

Error-Free Cycles Timing
Error 

Recovery
Cycle 

MAC
Drop

Figure 5.4: Timing diagram of the processing element enriched with Razor.

A particular synthesis flow with specific constraints has to be set-up in order to introduce
Razor-FFs in the design. The first design choice is the width of the detection window:

1This is done by means of an OR-tree.
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a greater detection window allows to have lower Vdd compared to the nominal one since
there is more time for late transitions. Unfortunately, the width of detection window has
an impact on the circuit, in particular due to the so called short-path padding. In order
to be sure that any change in the value of a signal during the detection window is due
to a late transition, it must be ensured that no path has an arrival time smaller than the
detection window. If this constraint is not satisfied, then a transition during the detection
window could be addressed to a computation already finished of the actual cycle and it
may not belong to a late computation from the previous cycle. During the synthesis of
the circuit the short-path padding can be imposed in the hold-fixing phase, where, instead
of using the hold time of the flip-flops, the width of the detection window is imposed as
min-delay constraint. Fig. 5.5 is a pictorial representation of the phenomenon.
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clk_delayed
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race_path late_transition

a e
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Figure 5.5: Timing diagram of the processing element enriched with Razor.

As reported in 4.4 synthesis, static timing analysis and SDF library extraction are inte-
grated in the framework flow. The synthesis has been done using Synopsis Design Compiler,
whilst power and timing analysis through Synopsis Prime Time. It has been set the voltage
step of the on-chip regulator to 20mV with a nominal Vdd = 1.10V . The std.cell library
used are characterized at three supply voltages, 1.10V, 1.05V, 0.95V, thus the characteri-
zation at the other voltages has been derived by means of an interpolation. The detection
window has been set to 0.25 · Tclk due to the arrival time of the critical paths with the
lowest supply voltage, Vdd = 0.96V . In table 5.1 are reported some factors of merit of the
designed processing element with Razor and the one of the baseline without Razor-FFs.

Post Synthesis Results
Razor Baseline Razor/Baseline

Area 2274.15 µm2 1320.88 µm2 1.7
Clock Period 4 ns 4 ns 1
Leakage Power 2.660 · 10−6 mW 1.506 · 10−6 mW 1.7
Dynamic Power 3.553 · 10−4 mW 2.137 · 10−4 mW 1.6
Total Power 3.580 · 10−4 mW 2.152 · 10−4 mW 1.7

Table 5.1: Factors of merit of the used processing element.
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5.2 Results
The framework has been used to test the trade-off accuracy vs Vdd of a five layers CNN,
LeNet5, quantized on 8 bits and trained on Cifar-10 [39].
The baseline accuracy on the TestSet is: 72%.
In particular the following experiment has been conducted on 1000 images from the TestSet
of Cifar-10: the Vdd of 8 processing elements has been kept static for the whole inference at
different level starting from the nominal one, 1.10V , down to 0.96V , with a step of 20mV .
For each layer has been also measured the average timing error rate as:

average_timing_error_rate = #timing_errors
#images ·#computations (5.1)
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Figure 5.6: Accuracy vs Vdd.

Fig. 5.6 shows the accuracy, compared to the baseline, reached at each Vdd value.
Fig. 5.7 shows the timing error rate for the convolutional layers, while fig. 5.8 depicts the
rate for the fully connected layers. It is possible to notice that at 1.02V, i.e. 80mV under
the nominal Vdd, no timing error occurs, thus there is no accuracy drop compared to the
baseline. At 1.00V the timing error rate is very low, less than 1% for all layers, indeed the
accuracy is still comparable with the baseline. This experiment confirms that even if the
static timing analysis states that a certain number of paths will be in violation, only the
real workload, i.e. which are the paths actually sensitized, can determine the number of
timing violations. At 0.98V the timing error rate of each layer increases but the accuracy
drop is about 3%, while at 0.96V the timing error rate is so high that the accuracy of the
network goes down to 17% compared to the baseline.
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An appealing outcome of this experiment is also the differences between the layers in terms
of timing error rate. For the classifier block, deeper is the layer and lower is the error rate,
whilst for the feature extractor it is the opposite. This result can be used to elaborate a
more complex strategy where the Vdd is different depending on the layer executed. The
aim of the power management strategy should be to keep the timing error rate high enough
to lower the Vdd, therefore minimizing dynamic power consumption, but lower enough to
avoid an excessive accuracy degradation.
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Figure 5.7: Average Timing Error Rate of Convolutional Layers.
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Chapter 6

Conclusions and Future Work

This thesis provides a CoSimulation framework for assessment of power knobs in spatial
architectures for deep-learning hardware accelerations. The presented tool provides a full
integration both with common machine learning frameworks and with the industrial ASIC
design flow.
The effectiveness of the framework as useful tool for early-phase verification of power
management strategies has been demonstrated in a real design case of an output stationary
accelerator enriched with Razor-FFs.
Possible future works include:

• Integration with parallel gate-level simulator or with an FPGA to speed-up the entire
simulation time.

• Investigation of more complex data-driven power management strategies.

• Development of optimization algorithms on neural network model to improve the
efficiency of data-driven power management.
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