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Chapter 1

Introduction

In the last years, high-performance computing requirements led to unite the advantages brought by
parallel computing typical of graphic processors with the flexibility of the general-purpose program-
ming. This is how the so-called GPGPUs (General-Purpose Graphic Processing Units) have started to
be developed and diffused on the market. These units present themselves as parallel processors with
the natural tendency to treat large blocks of data. This large amount of computation is in fact spread
among the different multiprocessors, single units containing multiple cores inside. All cores commonly
execute the same code, but just with different portions of inputs. This architecture paradigm is called
SIMD (Single Instruction Multiple Data).

GPGPUs even extend the concept of SIMD combining it with low-level multithreading. This execution
model is called SIMT (Single Instruction Multiple Thread): instead of just having a single program
flow which contains instructions addressed to packed data, here every instruction is executed by dif-
ferent threads which have real hardware consistency. This means that each of them is not created at
software level as in the CPU multithreading, but has a reserved portion of resources (ALU, register
file) over which it processes its assigned data. For these reasons, in a GPGPU most of the silicon area is
devoted to data processing units, with only a relatively little portion for caching and control. In these
conditions, throughput reaches levels unachievable for classical microprocessors, even if belonging to
last generations.

GPGPUs are difficultly used as stand-alone units, while they are more usually placed alongside main
CPUs (which play the role of masters of the system) which feed their device storage with both in-
structions and data for those routines which may have strict requirements in terms of acceleration and
parallelization. These routines take the name of kernels.

It is undoubtedly the Nvidia’s CUDA platform the master in the CPU-GPU cooperation framework
market. CUDA (Compute Unified Device Architecture) is a set of APIs which extend the common
C++ libraries to allow programmers not to care about underlying graphical concepts. A common
CUDA program thus contains a control part executed by the CPU and a computational kernel exe-
cuted by the GPU.

However, due to their rigid microarchitectural features, GPGPUs are not available as support unit for
most of the computing systems. On the contrary, FPGAs (Field Programmable Gate Arrays) are can
be seen as soft (reconfigurable) hardware accelerators to be placed next to CPUs, because they are
perfectly adaptable to the designer requirements. However, when using FPGAs a certain degree of
expertise in HDL (Hardware Description Language) coding is expected, and besides, reconfiguration
of the logic may take unaffordable times.

In order to put together the pros of the two platforms alleviating their drawbacks, the University of
Massachusetts has developed a model for a soft integer GPGPU optimized for FPGA implementation
which is called FlexGrip (FLEXible GRaphlc Processor). FlexGrip is based on the G80 architec-
ture by Nvidia, the first dedicate general-purpose architecture by the company, and allows the direct
execution of CUDA binary code with Compute Capability 1.0. FlexGrip supports 28 base instructions
declinable in different formats, among which arithmetic and logic operations, movement between the
different levels of memories, branches and thread synchronism setting and predicated instructions. The
internal parallelism can be set at different levels, such as the number of parallel internal cores within



the multiprocessor.

Beyond the benefits of using it as an accelerator for FPGA, FlexGrip also has the trivial but not
obvious merit of offering the academic community an open-source model of a graphic processor, due
to the confidentiality issues adopted by GPU manufacturer about the implementation details of their
devices. The accelerated development that some sectors of the industry have known in the last years
from the automation point of view (think for example of the automotive industry) necessarily pushes
companies to request that these components have a sufficiently high degree of reliability. The challenge
is gathered by the research centers and the academic teams involved in IT reliability, such as ours,
which are trying (among the other activities) to offer innovative techniques for building efficient SBST
(Software-Based Self Test) programs for such devices. In fact, many of the techniques used routinely
for the self-test of normal processors cannot be reused here, due to the presence of specific modules
that are to be precisely studied at the gate level to identify all the possible faults. This is clearly not
possible without the netlist of a working GPU.

Then, this thesis work has been focused on the validation, debug and extension of the VHDL model of
FlexGrip through an instruction-level analysis. The behavior of all the nominally supported function-
alities has been analyzed by compiling a high number of random CUDA kernels to consider as many
formats as possible of each of the instructions, due to the absence of any reference manual for the
effective ISA by Nvidia. Formats which were not fully working or implemented have been corrected
and completed, as well as collected in a tool which is able to write down the corresponding mnemonic
and binary in the .SASS input file (the format of the assembly language for the Nvidia family).

The present document is organized as follows: Chapter 2 provides a general background on FlexGrip
in terms of architecture and functioning. Chapter 3 describes the activities performed in these months
to bring the model to the current status. Chapter 4 is the final chapter, that includes some points of
evaluation of the performance of the model and ideas for future development.



Chapter 2

Background on FlexGrip

2.1 General Architecture and Functioning
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Figure 2.1: Overview of a GPGPU architecture.

The Figure 2.1 offers a global overview of FlexGrip architecture, and in general of a GPGPU. It basically
has a multicore architecture, consisting in an array of streaming multiprocessors, each one containing a
certain number of parallel scalar processors which enable the device to execute more threads in parallel.
Multiprocessors are called streaming because each of them is composed by processing elements that
perform the same operation on multiple data simultaneously. Every thread is mapped onto a single
scalar processor, which provides to it dedicate arithmetic and logic resources to perform its task. Such
cores generally use 32-bit operands, but can also work with halfwords (16 bits). Each thread has
then reserved for it a portion of the wvector register file, a significant amount of immediate memory
to be used as dedicate general-purpose registers, where to store immediate results. All threads can
access in parallel to this storage component, but no one of them can access to a portion assigned to
another thread. The communication between threads belonging to a block is achieved through the
shared memory. At the bottom of the memory hierarchy there are the interfacing memories such as



the global memory, which is visible by all SMs and usually stores inputs and outputs of the kernel for
the communication with the host, the constant memory which is a read-only space where the kernel
constants are written by the host, and the system memory which contains the instructions of the
kernel. Obviously, unlike these types of memory, the overall amount of memory internal to an SM for
implementing the vector register file and the shared memory is divided into the number of threads and
blocks, so it sets an upper bound to the reachable internal parallelism.

At the hardware level, the kernel is launched by the host which decides the number of blocks present in
the overall grid and the number of threads composing each block. A block contains a certain number of
threads that can cooperate together, for this reason it is also called CTA (Cooperative Thread Array).
The grid is seen as a two-dimensioned set of blocks, and the blocks are seen as three-dimensioned sets
of threads. The programmer can also decide the length of all these dimensions to organize the parallel
configuration. Once composed, the grid is passed to the block scheduler which dispatches the blocks
among the available SMs. At its internal, the multiprocessors further split the blocks organizing them
into subset of threads called warps. A warp is a smaller set of simultaneous operations that may be
performed conditionally, generally 32-thread wide. The number of scalar processors within the SM
normally fits the warp dimension, but if this is not happening, warps are divided into lanes of threads
executed one after the other in parallel on the available SPs.

When the SM fetches a new instructions, through the employ of the warp scheduler assignes it to
a warp which is marked as READY. Warps can also be ACTIVE if they are already executing an
instruction, WAITING for other warps to reach a common synchronization point (the mechanism will
be shown in next sections) and possibly FINISHED. Every thread composing the warp addresses a
different portion of data, and it is free to take data-dependent branches or it can be stopped from
execution by data-dependent conditional instructions. Summing up, a warp is characterized by its
state, its own program counter and a thread mask which indicates how many threads are executing
the instruction corresponding to that PC. Depending on the value of each bit in the mask, a scalar
processor is enabled or inhibited from execution of the thread assigned to it.

Whenever a divergency is created inside a warp, instructions pointed to each subset of threads have no
other solution but to be executed serially. This results in a non-full utilization of the resources which
obviously penalizes the performance. The worst case scenario is when each thread of the warp takes
its own branch, and an O(n) performance penalty is caused.

In order to summarize the software-hardware interaction which makes possible the execution of the
kernel on the GPU:

e The kernel passed by the host is mapped onto a grid of CTAs (blocks)

The block scheduler assignes each block to a streaming multiprocessor

e The multiprocessor further divides the assigned blocks into warps

At each new instruction, the warp scheduler selects a ready warp for its execution

Within the warp, each thread is assigned to a single scalar processor



Figure 2.2: Host-GPU interaction.



2.2 Streaming Multiprocessor Architecture
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Figure 2.3: SM internal architecture.

Let’s move now the focus to the internal pipeline which characterizes each streaming multiproces-
sor. It is designed as a five-stage pipeline (Fetch, Decode, Ezecute, Read and Write) which recalls
the MIPS architecture. Unlike MIPS, many instructions can retrieve at least one of their operands
directly from the shared or the constant memory (register-memory architecture). This is noticeable in
Figure 2.3: the Read stage preceeds the Execute one, and has connections with all types of data storage.

2.2.1 Control Units

At configuration time, when the SM is not yet enabled, the external driver loads in all the kernel
parameters necessary for its execution, such as the dimensions of the grid and the blocks, the number
of blocks per multiprocessor, the number of used general-purpose registers and the size of the shared
memory per block. It also delivers the actual parameters of the kernel function (for the CUDA
programming model, as it will be explained later on, a kernel is still a procedure called by host, so it
owns a set of data parameters) and sets its number.

The supervision of the whole SM is entrused to the streaming multiprocessor controller, which is the
module that receives the "go" command from the block scheduler. When the controller wakes up, it
finds all the configuration parameters mentioned before both on the signals from the block scheduler
and in the configuration registers, which are a portion of storage external to the SM. Its first task is
allocating the blocks assigned to the multiprocessor by dividing the shared memory according to the
size indications and by writing at the beginning of each reserved portion a block header. Such header
contains the length of the 3 dimensions of the block, the 2 dimensions of the grid either, the x and y
indexes of the block within the grid, and the list of all the data parameters of the kernel, one after the
other. While the block parameters are organized in words of 16 bits, parameters are on 32 bits.
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Figure 2.4: The block header in the shared memory.

Once initialized each block in the shared memory, the controller must initialize the threads in the
vector register files. For each scalar processor present in the SMP, there is also a dedicate dual-port
register file of each of the 3 types (general-purpose, address and predicate, their usage will be explained
later on). Because of the presence of multiple blocks and warps, threads are much more numerous
than single register files, so the controller computes a base address for each thread. At this location,
it writes the x, y and z coordinates within the block as follows.

RO threadidx.z threadidx.y threadidx.x

3 2625 1615 0

Figure 2.5: Register 0 filling with thread IDs.

The control is now passed to the warp unit, which receives from the controller the number of blocks
assigned to the SMP and so it determines, in base of the warp size, how many warps are to be generated.
For each warp, a warp pool lane of 128 bits is generated and stored in a dedicate portion of memory
inside the unit, addressed with the warp ID and composed as follows.

0000 shared memary block register file program initial thread mask current thread mask
base address number | base address | counter
127 124 |'23 1901 10 108 | 103 a7 | = -2 - =1 3 <]

Figure 2.6: The warp pool lane fields.

Also, the state of each warp is stored in a second portion of memory. A third storage unit, the fence
registers, is used to mark what are the warps waiting at a block barrier synchronization point: this
point is set by a dedicate instruction and makes all warps belonging to a block synchronize at a certain
instruction pointer. All warps executing such instruction must be set as waiting and unlocked only
when all warps have executed it.



The warp unit schedules warps in round-robin fashion, reading the pool and the state. The pipeline is
enabled when a READY warp is scheduled. Then, its state is set to ACTIVE and its parameters are
passed to the Fetch stage.

2.2.2 Fetch and Decode

The instruction bus towards the system memory is 32-bit wide, so depending on the length of the
instruction (32-bit if half or 64-bit if full), 1 or 2 cycles are taken by the Fetch stage to complete the
read-in. The next program counter is incremented by 4 or 8 and the instruction is passed to the Decode
stage.

The Decode is a pretty complex module which, depending on the opcode of the instruction, individu-
ates fields for source memory type, address or register number, size of the operands, conditional fields,
instruction pointer values (in case of branches or synchronization point setting) and others. Fields’
position and dimension are not strictly fixed and depend on the instruction, as it will be explained in
the next Chapter, when the ISA will be presented.

2.2.3 Read of the operands

The Read stage has 3 internal modules which work simultaneously and are able to retreive in parallel
the operands from the register files and serially from the other memories. Let us see in details how the
register files are organized and their tasks.

The vector register files are the first type of fast memory dedicate to single cores, and are used to
implement general-purpose registers, as already said. For each SP, a bank of 512 32-bit registers
times the number of warp lanes is allocated. An example is reported in the image below: in this
configuration, 8 cores are present in the SMP, so 4 warp lanes (rows) are needed. The numbering from
0 to 31 indicates the index of the thread within the warp.

THREADS
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Figure 2.7: Register file configuration with 8 cores.

If 16 cores were there, RF from 0 to 15 would be present, just row 0 and row 1 would appear, and each
register file would be composed of 1024 instead of 2048 locations.

Each RF is dual-ported, with the port A contended by the SMP controller and the Read stage, and
the port B left to the Write stage. Being 2048 the maximum depth of each RF, its address busses are
11-bit wide, organized as follows.
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Figure 2.8: General-purpose register address composition.

The number of registers per thread is decided by the driver at configuration time, anyway it cannot go
beyond 128, due to the fact that in the instructions encoding, the maximum length that the register
number field can have is 7 bits. In fact, independently of the number of employed registers, in the
ISA R124 is a bounded-to-zero register, normally used in operations that require a zero operand, while
R127 cannot be written and is a kind of throw-away register, set as destination for those operations
whose result is not to be saved (e.g. test or comparison instructions). These two registers are not
actually accessed in FlexGrip, and the logic internal to the pipeline simulates their behavior. For
configurations with a high number of threads, the threshold of 128 registers is to be kept even lower
to avoid overlapping of portions between threads.

The address register files are a set of 32-bit registers as well, organized as the previous, that contains
registers only used for addressing the shared memory in an indirect way (that means address register
value plus offset). Special instructions allow to move values from general registers to address registers
and vice versa. For each core, 128 registers times the number of lanes are allocated, so the
maximum depth is 512. Actually, just 4 address registers are assigned to each thread (A1, A2, A3 and
A4).

The predicate register files have the same dimension and organization as the address registers. Loca-
tions assigned to each thread are 4 as well (C0, C1, C2 and C3) and are just 4-bit wide. These registers
can save the flags coming out from the ALU (if the programmer specifies it in the instruction encod-
ing), and subsequently they can be read for deciding the execution or the non-execution of conditional
instructions. Flags are (in order): overflow, carry, sign and zero.

Address busses for both address and predicate register files are organized as follows.

warp
lane 1D

a 7' 6 201 0

register

.
warp 1D number

Figure 2.9: Address and predicate register address composition.

Remember that address and data busses out from Read and Write stage are multiplied by the number
of cores, allowing all threads in the same warp lane to complete their reading and writing operations
simultaneously.

This is not true for other portions of memory (shared, global, constant), towards which addresses are
forwarded thread after thread. Thus, accesses to this memories have a larger latency and considerably
impact the performance.

A main merit of the Read stage is the presence of internal memory controllers with adders and shifters
to compute the address without using the Execute stage modules, unlike the MIPS pipeline.

2.2.4 Execution

The Execution stage is the crux of the FlexGrip pipeline, because it contains the scalar processors
with all the logic and arithmetic modules necessary to perform in parallel the operations supported
by the ISA. FlexGrip is an integer GPGPU, so integer addition, subtraction, multiplication and MAC
(multiply-and-accumulate) are supported, with operands of 16 or 32 bits, signed or unsigned. Also
arithmetic and logic shift are supported, integer-to-integer conversions (e.g., signed on 16 bits to signed
on 32), comparisons and bitwise boolean functions (AND, OR, XOR, NOT). The result is analyzed
and predicate flags are computed: if an overflow has occurred, if a carry has been produced by the
addition, if the result is with sign or if it is zero.

Alongside SPs, a flow control unit is present, to deal with branches, synchronization point settings,



block barrier points and kernel return instructions. This module has a direct connection with the
warp stack, a portion of LIFO outside the stage and dedicate for each warp. Let us focus first on the
branching mechanisms.

Every time a conditional instruction is executed, being it a conditional branch or a normal instruction
with conditional field, the Read stage retrieves the flags from the indicated predicate register, and
computes an instruction mask which says which are the threads in the warp enabled to its execution
according to the value of the flags. For example, one condition could be equal to zero, so the zero flag
is read and only the thread with that flag set are enabled. The instruction mask has a life that ends at
the Write stage: actually every SP executes the instruction but only the enabled threads write their
destination locations. If the instruction is a branch, the flow control unit updates the program counter
with the target address, transforms this instruction mask into the next current mask and pushes onto
the warp stack the threads which are not taking the branch. The warp stack accepts words of 66 bits,
organized as follows.

flow
D

65 34733 32'H 0

fhread mask program counter

Figure 2.10: Stack word fields.

In case of branch, that fields are filled with the flow ID of the branch ("01"), the thread mask of
the threads not taking the branch (computed as a bitwise AND between the current mask and the
complement of the instruction mask) and the starting program counter for that group. In fact, the
pipeline executes one branch after the other: once executed one of them, the stack is popped and
another branch is executed, by setting mask and program counter as the ones popped out. This goes
on until the reconvergence point is reached by all threads.

In fact, the warp branch mechanism does not work if a synchronization point is not set before the
potentially divergence instructions as the branch. Even if this is not visible at high level of program-
ming, at low level the compiler introduces a particular instructions which pushes onto the stack the
information relative to the synchronization point of all the threads. The thread mask pushed is then
composed by the mask of the current set of active threads within the warp (that potentially take the
branch), the flow ID of the synchronization ("00") and the program counter of the synchronization
instruction. This can be any instruction, provided that its marker indicates that it is a JOIN instruc-
tion. Every time such an instruction is executed, it means that one of the multiple branches created
has reached the reconvergence point. So, the stack is popped and another branch is resumed. The
last subset of threads that reaches the reconvergence point pops from the stack the synchronization
point information itself, so the original mask and the common program counter are restored, and the
program flow can continue from that point. The Figure 2.11 summarizes how the warp divergence
handling works.
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Figure 2.11: The warp divergence mechanism.

Summing up, the branch divergency is articulated along these steps:

1. The synchronization point is reached - the warp stack is populated with the synchronization
point information

2. The execution reaches the branch instruction - the "taken" path is executed first, while the
thread mask of the "not taken" path is pushed along with the current PC

3. The first execution branch reaches the synchronization instruction - the stack is popped and the
"not taken" path is loaded in the pipeline

4. The last execution branch reaches the synchronization instruction - the synchronization point
information is popped and all threads resume parallel execution

The mechanism is obviously supported also for nested branches, i.e., branches that further divide
themselves and set a synchronization point relative just to a branch path within the warp. Levels of
nesting can be up to 32, as this is the depth of the warp stack.
When return or block barrier instructions are instead recognized, the flow control unit changes the
current warp state from ACTIVE to FINISHED or WAITING.

2.2.5 Write of the results

The Write stage is the last stage of the pipeline. It is specular with respect to the Read stage: it
contains all the controllers for register files and memories (except for the constant memory, which

11



obviously cannot be written). As the Read stage was attached to port A of each storage device, the
Write stage controls the B port, allowing the write of results while a read is being performed.

The chain is not broken at this stage, because the warp information and state, which have traversed all
the pipeline, are delivered back to the warp unit. Here a checker reads such information and updates
the pool lane and the state in the dedicate memory within the unit, so that the warp has consistent
values for the scheduler.

All the pipeline stages have a stall signal which feeds the preceding stage, which is asserted when the
stage is busy and not ready to accept new data. Outputs of the stage are only updated when the stall
input signal is low.

2.3 The CUDA programming model

What has been presented up to now is the general outline of a GPGPU in terms of hardware. Now
the focus moves to the software model that fits this architecture. In fact, the common programming
paradigm, even with SIMD or multithreading, is not applicable here. The programmer must enter in
the order of ideas of writing a routine for a single thread which is however automatically executed by
a large number of threads, without needing to allocate them in some way, because they are already
supported at hardware level. The result is a new programming paradigm, which over the years has
pushed the development of several extensions of the common languages to support it. The most famous
extension is definitely the CUDA platform (Compute Unified Device Architecture) by Nvidia,
designed to allow C/C++ to support GPGPU programming without need of expertise in graphic or
parallel programming.

A CUDA source file (.cu) outline is similar to normal C/C++ code, with a driving main() procedure
executed by the host CPU and one or more kernels which contain code for the GPU. The following
sample code adds two integer vectors A and B of size DIM and stores the result into vector C:

#include <stdio.h>
#include <cuda_ runtime.h>
#define DIM 64

// Kernel definition
__global  void vectorAdd(int %A, int xB, int xC)

{

int i = blockldx.x % blockDim.x + threadldx.x;
Cli] = Ali] + B[i];

}

// Host main routine

int main(void)

{
int A[DIM], B[DIM], C[DIM];
int blocksPerGrid = 2;
int threadsPerBlock = 32;

vectorAdd<<<blocksPerGrid , threadsPerBlock>>>(A, B, C);

return 0;

}

The library <cuda_runtime.h>> contains the definitions for the CUDA extensions to the standard C++
library, its inclusion is mandatory. From the host main routine, the kernel can be launched passing
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data parameters (between ( )) and configuration parameters (between <<< >>>), i.e., the number
of threads for each block and the number of blocks composing the grid. Given that configuration, the
kernel is meant to be executed by 64 threads, each one performing the addition of one element of A
with one element of B. The array index for the operands is found using a common formula: assuming
that we are using monodimensional blocks and grid (with only x dimension), the x block index can be
0 or 1 since the grid dimension is 2, and the x thread index goes from 0 to 31 since the block dimension
is 32, so the offset variable i can assume values from 0 to 63 depending on the thread position within
the grid. So, all elements are mapped by the kernel.

It is also possible to specify the length (in order) of x, y and z dimensions of the blocks and the grid
by using dim3() structure:

vectorAdd<<<dim3(2, 1, 1), dim3(4, 4, 2)>>>(A, B, C);

Actually, the z dimension for the grid is fixed to 1 for this architecture.

The grid organization of threads has actually been thought for helping the programmers to give a
certain order to the parallel units of computation. We know that, at SMP level, the actual parallel
unit of relevance is the warp, not controllable from CUDA. Divergencies within warps are automatically
managed by both the compiler (with the adding of synchronization points) and the hardware (with
the warp stack mechanism explained in the previous section). When a block-level synchronization is
required among threads, the programmer has to specify it by calling the primitive

__syncthreads () ;

This statement introduces in the compiled code a special instructions that marks a warp as WAITING
and acts as a barrier at which all threads in the block must wait before any is allowed to proceed.
Divergencies at grid level are not supported by any CUDA primitive, but must be handled with
programming stratagems like breaking a kernel down into multiple littler kernels or declaring global
variables acting as semaphores outside the kernel, like

~_device_ int sem = O0;

More information and hints on CUDA can be found in the numerous guides available online.

2.4 Software Flow

To obtain the binary code of the kernel necessary to feed the hardware, the CUDA source code must
be submitted to the Nvidia dedicate compiler, called nwvee. Such tool translates the kernel into an
intermediate pseudo-assembly language which is named PTX (Parallel Thread Execution). This
is an open language which defines a virtual ISA for Nvida GPUs. Programmers can even write kernels
in PTX from CUDA by using the common ANSI C directive

asm (...) ;

PTX makes use of virtual registers (declared as normal variables) and pseudo-instructions with clear
mnemonic which are then mapped in binary through a process whose details are protected by Nvidia
and not open to the programmer. This process is done at runtime by the CUDA driver API, with the
production of a .cubin file, which through another Nvidia tool called cuobjdump can be disassembled
in a human-readable hardware language named SASS (Source and ASSembly code). SASS is
specific to the target GPU architecture and represents the actual code executed on Nvida machines.
A typical .sass file (e.g. the translation of the vector sum code before) appears as follows:
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code for sm_18

Function : _Z9ectorAddPiS_5_
/*eeee=/ /*B8x100042850023c780%/ MOV.Ule ReH, g [Bx1].Uls;
/*80as*/ /*Bx2000000504000780=/ I2I.U32.U16 R1, RBL;
/*8e1e=/ /*Bx60014c8100284780=/ IMAD.Ul6 RO, g [@x6].Ul6, R8H, R1;
/*8018=/ /*Bx30020009c4180780=/ SHL R2, Re, @x2,
/*8028=/ /*Bx2102e500 =/ IADD32 RO, g [@x4], R2;
[*ee24=/ /*Bx2102eaBc =/ IADD32 R3, g [@x5], R2;
/*B028%/ /*BxdB0=008580c00780=/ GLD.U32 R1, globalld [RE];
/*8e3e=/ /*BxdB0=068180c00780=/ GLD.U32 R@, globalld [R3];
/*8038%/ /*Bx200058204 =/ IADD32 R1, R1, Re,
/*803c*/ /*Bx2102ecBd =/ IADD32 RO, g [@x6], R2;
/*ee4e=/ /*BxdB0e0085a0c00781%/ GST.U32 globalld [R@], R1;

Figure 2.12: Example of SASS binary code.

Each line contains the program counter, the hexadecimal encoding of the instruction and its mnemonic.
The very first line indicates the compute capability the code is written for. With this label, Nvidia
catalogs its machines in base of the hardware capabilities of each generation of GPUs. FlexGrip
has been developed to support compute capability 1.0, the same as G80 first generation of graphic
processors. The corresponding label is in fact sm_ 10, which needs also to be included as -arch compile
option for nvce.

This level of compute capability fixes some hardware limitations which are compliant with the current
design of FlexGrip.

Warp size 32
Minimum thread size per block 32
Maximum number of thread blocks 8
Maximum dimensionality of thread blocks 3
Maximum dimensionality of blocks grid 2
Maximum number of warps per streaming multiprocessor 32
Maximum number of threads per streaming multiprocessor 1024
Number of 32-bit general-purpose register per streaming multiprocessor | 16384
Shared memory size per streaming multiprocessor 16 KB
Constant memory size 8 KB
Global memory size 256 KB
System memory size 256 KB

Besides the compute capability limitations, it is also important to remember that the current version
of FlexGrip

e Does not support floating-point operations

e Does not support integer division

e Does not support operations with operands wider than 32 bits
e Does not support a thread-dedicate local memory

e Does not support instructions for calling subroutines

e Does not support instructions for loop breaking

e Does not support texture memory and texture fetch.
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Figure 2.13: The software flow for CUDA kernels.
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Chapter 3

Performed Activities

What has been written up to this point is the basic knowledge that was acquired before starting to
work with FlexGrip, and that anyone else who wants to spend time on this project should have, too.
This chapter will instead present the work that has been done for advancing the status of the project.
At first, the model has been acquired and validated in its fundamental features. Then, the focus has
been moved to the instruction level where corrections and extensions have been done. Last, 2 typical
parallel applications have been developed as benchmarks of the new model for performance analysis.

3.1 Validation of the model

At first, the RTL code of FlexGrip has been analyzed to understand the hierarchy of the different
modules. At this aim, a block diagram has been drawn, with the help of Simulink tool by MAT-
LAB. The diagram is not simulable, and just helps to wrap blocks one inside the other to clarify the
architecture. This first part allowed to recognize some unused ports or signals that were object of
first dummy modifications of the code. Once produced the diagram, some simulations with random
code already provided by the original testbench were launched in order to understand and validate the
general behavior of the main modules, as the block scheduler, the streaming multiprocessor controller,
the stages of the pipeline, the warp unit and the memory blocks.

A list of nominally supported instructions was included in the presentation paper of FlexGrip [1] (see
Figure 3.1), and so the focus has been moved to their validation.
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FLEXGRIP-SUPPORTED CUDA INSTRUCTIONS

Opcode Description

21 Copy integer value to integer with conversion

IMULS Integer multiply

IMUL3Y

IMUL321

SHL Shift keft

[ADD Integer addition between two registers

GLD Load from global memory

R2A Move register to address register

R2G Store to shared memory

BAR Barrier synchronization

SHR Shift right

BRA Conditional branch

ISET Integer conditional set

MOv/ Move mgister to register

MOV32

RET Conditional return form kemel

MOV R, 5[] Load from shared memory

IADD, S[]. | Integer addition between shared memory and register

R

GST Store to global memory

AND C[l. R | Logical AND

IMATLY Integer multiply-add: all register operands

IMAD32

S8Y Set synchronization point; used before potentially
divergent instructions

LADDI Integer addition with an immediate operand

NOP No operation

ap Predicated execution

MVI Move immediate to destination

XOR Logical XOR

IMADY Integer multiply-add with an immediate operand

MAD32I

LLD Load from local memory

LST Store to local memory

AR Move address register to data register

Figure 3.1: The initial list of instructions nominally supported by FlexGrip.

The list is incorrect, because some instructions, even if the description could be right, are not existing
in that form (e.g. TADDI, MAD32I, AND, XOR are not instructions, while IADD32I, IMAD32I,
LOP.AND, LOP.XOR are). However, it still offers an idea on what are the possibilities of the hardware
in terms of arithmetic and logic operations and in term of movements between memories.

The goal was first to create some code in order to push out those instructions in compiled kernels, so
the software flow was assimilated and the first dummy SASS code was produced from simple CUDA
programs. Writing kernels directly in PTX has been considered as an option to produce test kernels
for the instructions, so the PTX syntax has been studied and applied. Anyway, the Nvidia compiler
optimizes in a deep way the code from PTX to SASS, preventing the programmer to use, for example,
all the desired register numbers or all the custom format options for a given operation. A solution to this
problem has been found in compiling a huge number of random kernels directly from CUDA
to push out most of the SASS instructions and formats. This large amount of instructions
has been collected and grouped by name at first: all GLD, all MOV, all ITADD instructions, and so
on. A bitwise comparison by inspection has been done between the instructions with the same name
but with different operands or options in order to individuate the position of the binary fields for
source, destination, operand sizes and similar. Remember that Nvidia consider the SASS code as a
private resource, so never released any reference on this. The process has also been aided by the
interpretation of the RTL code of the Decode stage, a pretty intricate module. The complexity in
reading such uncommented and unreferenced VHDL code, plus the amount of time spent to compile
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pseudo-random kernels to collect the binaries, made this process take the most significant portion of
the thesis work period, about 4 months.

Anyway, every time an instruction was understood in its fundamental details, it was added to a
rudimental tool, refined afterwards, which is able to directly write a SASS file with the instructions
of a possible kernel. When a relevant number of formats for a given instruction was found, including
all the memory types supported and all the possible options, a functional test kernel was written for
it. A custom unified group of simple tools has been developed in order to:

e initialize the global memory with some values

e write a file with the golden reference of the expected results

e write down in a .sass file the test kernel containing all the formats of the instruction
e simulate the kernel

e retrieve the global memory results and compare them with the expected ones

At this point, the solutions were 2: either the match was 100% and so the process moved to another
instruction, or the fixing phase started. This consisted in a graphical simulation (with waveforms)
of the kernel to individuate the fault responsible of such inconsistency. Once found, the VHDL code
was analyzed in order to understand what behavioral or structural statements were causing the fault,
and possibly some lines of code were modified, added or removed. The test kernel was at this point
relaunched and the process possibly repeated.
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Pick a new instruction
from the nominal list

Compile pseudo-random kernels to see
appearing as many formats as possible

Compare the encoding of all the formats
between them and to the RTL statements of
the Decode stage of the pipeline

Add each format to the tool that
directly writes SASS code

Write a test kernel for the instruction
with all encountered formats

Simulate the test kernel

Are the results TRUE

consistent with the
expected ones?

Check the waveform simulation to find out
the origin of the faulty behavior

Modify the RTL code in
order to solve the problem

Figure 3.2: The instruction set validation process.
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3.2 Correction and extension of the model

Even if some experiments were already made on FlexGrip to evaluate the reachable level of speedup
in executing some common benchmarks with respect to non-graphic processors, the RTL code was
containing a relevant percentage of bugs, discovered through the process explained in the previous
section. Since the beginning of the thesis work, 21 of 54 VHDL source files composing the project
have modified, (38.8%). Actually, this is not the percentage of modification of the whole project code,
because the average of changed lines per file is 12%, so we obtain an overall amount of modification
around 4.8%. Every time a problem was encountered and fixed, a new version of the project was
committed to the repository. Modifications made to the code of FlexGrip can be divided into 3
categories:

1. Removals of unused ports and signals or useless statements
2. Modifications in order to make the various instruction formats working (the most relevant part)
3. Modifications for future improvement of the architecture.

The modification type at point n. 1 was the set of changes made in the very first part, even before
the simulations of the kernels, because these were design imperfections visible even without need of
simulating the hardware. Point n. 2 has been the most relevant part of the thesis work, while point n. 3
has arrived last and has concerned the possibility of FlexGrip to even increase its parallel computation
capabilities, as it will be explained in the dedicate section in Chapter 4.

Commissions have been in total 27, 15 of which regarding the Decode stage. The module holds the
record of modifications with 132 changed lines, even if for its dimensions its edit percentage is under
the 15%. A summary of the modifications of the modules is reported.

Module Edit percentage | Edit description

Decode stage 14.6% Fixed positions of bits indicating the correct
memory type, the sign, the source address
and the destination address for many arith-
metic and movement instructions, masking of
the indicators contained in the high part of
the instruction when an immediate operand
is supported, adding of missing cases in some
statements for particular formats, removal of
some name mistakes, removal of bit assign-
ments mismatched with the binary

Integer to integer con- | 60.9% The module was not supporting all the pos-

verter within the scalar sible integer formats and even the supported

processor ones were converted with errors

Predicate flags calculator | 41% Removal of useless redefinitions and correction

within the Write stage of the flag value decision in base of the ALU
outputs

Fetch stage 30.4% Changed the instruction bus width from 8 bit

to 32 in order to use just 1 port of the dual-
port system memory instead of 2 in parallel
Scalar processor 19.3% Added a port to bring in the instruction
marker and redefinitions of some signals for
feeding the arithmetic modules

System memory controller | 14.5% Changed data width from 8 bits to 32 bits
Vector register file con- | 14.2% Added support for single-byte reading and
troller writing

Adder /subtracter within | 13.9% Solved problems in computation of the carry
the scalar processor and the overflow
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Address calculator within | 11.4% Shifting of the addresses was performed in the
the Read stage wrong direction

Execute stage 8.7% Fixed out-of-time input sampling, redefinition
of the instruction flags depending on scalar
processor outputs

Data type decoder within | 8.3% Decoding was inconsistent with the associa-

the Read stage tion between the mnemonic of the instruction
and its binary encoding

Global memory controller | 6% Sign-extension of signed operand was not im-
plemented, added single-byte support

GPGPU top level entity 5.5% Modified architecture to support new width of
system memory (32 bits)

Warp scheduler 3.3% Fixed misbehaviors causing endless loops in

the state machine when scheduling a FIN-
ISHED or WAITING warp

Source operand reader | 3% Added support for constant memory load,
within the Read stage address-to-general-purpose register movement
and fixed a bug for which only the 6 low bits
of the immediate operand were read

Warp unit 1.8% Removed unused ports

Streaming multiprocessor | 1.6% Changed system memory interface to support
new width of 32 bits

GPGPU main definition | 1.6% Adapted components port outline to modifica-

package tions made and added new definition for sys-
tem memory bus width (32 bits)

Write stage 1.3% Removed useless assignments to internal sig-
nals

Read stage 0.7% Fixed wrong instruction mask computing

when popping the stack during execution of
a join instruction

Streaming multiprocessor | 0.7% Fixed a bug for which the write enable out for

controller the general-purpose register was hold active
in states of the FSM where was not needed
anymore

3.3 Verified ISA for the model

As already mentioned, the instruction validation process has been long and complicate for the absence
of any documentation on the actual hardware ISA supported by Nvidia G80 family. The relevant
number of different formats come out from the compilations and the analysis of the RTL description
of the Decode stage were the only references available for completing the work. At the end of this
process, thought, the general idea on how instructions are encoded in SASS has become surely clearer
than before, and this section has the aim to present the discoveries made about it.

The set is composed by both full and half instructions, i.e., either on 64 bits or on 32 bits only. All the
half instructions contains the suffix "32" in the name. The low 32 bits host the operative code of the
instruction, the sources and the destination (register numbers or addresses) and some configuration
bits. In case of flow instruction, the target PC of the operation is also encoded. The high 32 bits
host the subopcode, the instruction marker, the possible main part of the 32-bit immediate operand,
the conditional fields, the memory source type, the dimensions of the operands, the possible type of
conversion to be applied for operands, the type of movement in case of some load/store/movement
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instructions and other configuration bits.
Therefore, any 64-bit normal instruction is outlined as follows:

INSTRNAME.OPTIONS.CX (CX.COND) DEST, SRCS;
If the instruction is a flow instruction, its aspect is instead:
INSTRNAME.OPTIONS (CX.COND) TARGET;
A 32-bit instruction cannot have conditional fields and is outlined as the following:
INSTRNAME.OPTIONS DEST, SRCS;

Fields CX, OPTIONS and COND are not usually displayed if their value is default (i.e., no predicate
register to be set, no conditions for the instruction, 32-bit operands).

CX can assume values C0, C1, C2 or C3 and indicates one of the four predicate registers available
per thread. A predicate register can be both set (write out of the flags) and read (for conditional
execution) by an instruction.

The field OPTIONS is actually a multiple field displaying all the instruction options. Most of the time
size and sign of the operands are listed, unless they are 32-bit unsigned, which is the default data type.
The option .S is common to all instructions and marks that instruction as a reconvergence (join) point
for branch divergency (see Chapter 2). Some other instruction-specific options may appear here.
Operands of an instruction may be:

e General-purpose registers (from RO to the last register alloted to any thread, at most R126). RO
contains the thread ID at kernel startup, R124 is a bounded-to-0 register and register #127 is a
non-writable location indicated with the symbol o [0x7f]. When half registers are addressed, the
syntax is RXH or RXL.

e Shared memory locations, whose symbolic is g [0x..]. If an indirect memory addressing is required,
then the symbolic becomes g [AX+0x..]. AX can assume values A1, A2, A3 or A4 and indicates
one of the four address registers available per thread.

NOTE: the address register is always a byte pointer, while the immediate offset does respect the
size of the operands, and the hardware left-shifts its value to point the correct byte. Employ of
address registers is thus helpful when groups of misaligned bytes are to be addresses.

e Constant memory locations, whose symbolic is ¢ [0x1] [0x..]. Here indirect addressing is not
allowed.

e Global memory locations, whose symbolic is globall4 [RX]. Here the only possible addressing is
pure indirect and byte-pointing, and general-purpose registers are used instead of address ones.

e Immediate values, in hexadecimal format 0x...
e Address registers, only in case of movement from/to general-purpose registers.

Since this ISA is a register-memory architecture, most of the instruction can have just one operand
directly taken from the memory, constant or shared. The global memory can only be accessed through
load and store instructions. The destination can be a memory location only in case of store instruc-
tions, otherwise results are targeted to general-purpose registers.

Let us focus now on how instructions are encoded in binary. What is to be pointed out is that this
is not fixed-bitfield ISA, so bits can change their meaning even if occupying the same posi-
tions. This is what actually makes the understanding of the Decode so difficult. A summary of the bit
fields position and meaning for the known ISA is presented in Figure 3.3. The double indexes indicate
the minimum and the maximum position of the edge of that field, since dimensions depend on the
instruction. Other dedicate configuration bits can take the positions left by those field reduction.
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target address (in case of flow instruction)

opcode memory address destination flow | long
addr. reg. low config. bits
source 2 source 1
k3 | 28'27 26'25 23122 16115 9's 2! 1 0
22) (21) 12) (8)
high 26 bits of the immediate operand (if any)
subopcode | 0 —— — marker
configuration bits | source 3 (2) | pred. reg. | condifion | setp | setp reg. |regout| a.rh.

83 61! 80 50 53052 45145 44143 30l as Ta7 LTS 2

(51)

Figure 3.3: Bit fields of a typical instruction.

long: this bit is set if the instruction is encoded on 64 bit, reset if on 32.
flow: indicates if it is a flow instruction.

destination: indicates the destination location, can be a general-purpose register or an address
register at most, never a memory offset.

source 1: indicates the location of the first operand, can be a memory offset or a register number;
in case of instruction supporting an immediate operand, hosts from bit 14 to bit 9 the lower 6
bits of such value.

source 2: indicates the location of the second operand, can be a memory offset or a register
number.

memory address: for some load/store instructions, indicates the source/destination memory
offset.

target address: indicates the next program counter for a branch instruction or a synchronization
point for a reconvergence setting instruction.

address register (low part): represents the two lower bits of the address register number to be
read for indirect memory addressing; if "00", no address register is added to the offset.

opcode: together with the subopcode and other configuration fields, identifies the instruction.

marker: if "00", the instruction is a normal instruction (FULL_NORM); if "01", the instruction
is the last instruction of the kernel (FULL_END); if "10", the instruction has been set as a
reconvergence point by a previous synchronization instruction, so the stack is to be popped
(FULL__JOIN); if "11", the instruction supports an immediate operand;

a.r.h. (address register high part): represents the MSB of the address register (set to 1 only if it
is Ad);

regout: says if the operation does or does not write the result (e.g., comparison and test instruc-
tion may not need to store the ALU result but only the flags);

setp (set predicate) register: indicates the number of predicate register (C0, C1, C2 or C3) to be
written with the flags produced by the operation;

setp (set predicate): says whether the flags are to be saved in a predicate register or not;

condition: encodes the condition for the possible predicated execution. "01111" is the default
condition and corresponds to absence of condition;

predicate register: is the predicate register number to be read to see if the condition is respected
and so if the instruction can be executed or not for that thread;

source 3 (2): indicates the location of the possible third operand (e.g. multiply-and-add); in
some cases may indicate the second operand or also the destination;
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e subopcode: together with the opcode and other configuration fields, identifies the instruction.

All other bits are used for configuration: they may be present or not, and assume different meaning
depending on the instruction (e.g., the type of bitwise logic operation, the type of integer-to-integer
conversion, the size of the operands, their source memory type, the direction of the shift and others).
In the current conditions, FlexGrip supports these 28 instructions in their overall 74 formats:

Instruction | Description Verified Formats

IADD Integer addition | TADD RZ, RX, RY
IADD RZ, -RX, RY
TADD RZ, g [0x..], RX
TADD RZ, g [0x..], -RX
TADD RZ, RX, ¢ [0x1] [0x..]

TADD32 Integer addition | TADD32 RZ, RX, RY

(half format) TADD32 RZ, RX, -RY
TADD32 RZ, g [0x..], RX
TIADD32 RZ, g [0x..], -RX
IADD32.U16 RZL|H, RXL|H, RYL|H
TADD32.U16 RZL|H, RXL|H, -RYL|H

TADD321 Integer addition | TADD32I RZ, RX, 0Ox..
with an immedi- | TADD32I RZ, -RX, 0x..
ate operand IADD32I RZ, g [0x..], 0x..

121 Integer-to- 121.U32.U16 RZ, RXL|H
integer conver- | 121.532.516 RZ, RXL|H
sion 121.U382.532 RZ, |IRX| !

121.532.532 RZ, -RX

121.U32.U16 RZ, g [0x.]. U16
121.592.516 RZ, g [0x..].S16
121.U32.U16.BEXT RZ, RXL|H 2
121.582.516.BEXT RZ, RXL|H
121.U82.U16.BEXT RZ, g [0x..]. U8
121.532.516.BEXT RZ, g [0x..].S8

IMUL Integer multipli- | IMUL.U16.U16 RZ, RXL|H, RYL|H
cation IMUL.U16.U16 RZ, g [0x..].U16, RXL|H

IMUL.S16.516 RZ, RXL|H, RYL|H
IMUL.S16.516 RZ, g [0x..].S16, RXL|H

IMUL32 Integer multipli- | IMUL32.U16.U16 RZ, RXL|H, RYL|H
cation (half for- | IMUL32.U16.U16 RZ, g [0x..].U16, RXL|H
mat)

IMUL321I Integer multi- | IMUL32L.U16.U16 RZ, RXL|H, 0x..
plication with | IMUL321.516.516 RZ, RXL|H, 0x..
immediate
operand

SHL Shift left SHL RZ, RX, 0x...

SHL RZ, RX, RY
SHL.U16 RZL|H, RXL|H, 0x..
SHL RZ, g [0x..], Ox..

Lfor absolute value computation

2BEXT means Byte EXTension: operations are performed on the least significant byte of the half register
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SHR

Shift right

SHR RZ, RX, 0x..

SHR.S32 RZ, RX, 0x..

SHR RZ, RX, RY

SHR.S32 RZ, RX, RY
SHR.U16 RZL|H, RXL|H, 0x..
SHR.S16 RZL|H, RXL|H, 0x..
SHR RZ, g [0x..], Ox..
SHR.S32 RZ, g [0x..], Ox..

IMAD Integer IMAD.U16 RZ, RXL|H, RYL|H, RW
multiply-and- IMAD.S16 RZ, RXL|H, RYL|H, RW
add IMAD.U16 RZ, RXLIH, c [0x1] [0x..], RY
IMAD.S16 RZ, RXL|H, c [0x1] [0x..], RY
IMAD32 Integer IMAD32.U16 RZ, RXL|H, RYL|H, RZ 3
multiply-and-
add (half
format)
IMAD321I Integer IMAD321.U16 RZ, RXL|H, 0x.., RZ
multiply-add IMAD321.S16 RZ, RXL|H, Ox.., RZ *
with immediate
operand
LOP Bitwise logical | LOP.AND/OR/XOR/PASS B RZ, RX, RY °®
operation LOP.AND/OR/XOR/PASS B RZ, g [0x..], RX
LOP.AND/OR/XOR/PASS B RZ, RX, c [0x1] [0x..]
LOP.U16 . AND/OR|XOR|PASS B RZL|H, RXL|H, RYL|H
R2A Move general- | R2A AX, RX
purpose register
to address
register
MOV Move register to | MOV RZ, RX
register / load | MOV.UI16 RZL|H, RXL|H
from shared | MOV RZ, g [0x..]
memory MOV.U16 RZLIH, g [0x..].U16
MOV.U16 RZL|H, g [0x..]. U8
MOV32 Short version of | MOV32 RZ, RX
the MOV MOV32 RZ, g [0x..]
MOV32.U16 RZL|H, RXL|H
MVI Move immediate | MVI RX, 0x..
to destination
ISET Integer compar- | ISET RZ, RX, RY, COMP_TYPE
ison ISET RZ, RX, c [0x1] [0x..] ,COMP_TYPE
ISET RZ, g [0x..], RX, COMP_TYPE
ISET.S82 RZ, RX, RY, COMP_TYPE
ISET.S32 RZ, RX, ¢ [0x1] [0x..], COMP_TYPE
ISET.S32 RZ, g [0x..], RX, COMP_TYPE
BRA Branch BRA CX.COND 0x..
BRA 0x..
BAR Block  barrier | BAR.ARV. WAIT b0, Oxfff 8
synchronization

3
4

SPASS_B is used as NOT

6This is the only format that the compiler ever produced when compiling the

source n.3 must be the same register as destination. This is the only format known for IMAD32
source n.2 must be the same register as destination

syncthreads() primitive. Anyway,

parameters and options are not read by the hardware that just blocks all threads within the same block when this
instruction is executed
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RET Return form | RET
kernel RET CX.COND
SSY Set synchro- | SSY 0x..
nization  point
(used before
potential warp
divergency)
NOP No operation NOP
A2R Move address | A2R RX, AX
register to
general-purpose
register
GLD Load from | GLD.U32/U16/S16/U8/S8 RZ, globall4 [RX] 7
global memory
GST Store to global | GST.U32/U16/S16/U8/S8 globall4 [RZ], RX
memory
R2G Store to shared | R2G.U32.U32 g [0x..], RX
memory R2G.U16.U16 g [0x..], RXL|H
R2G.U16.U8 g [0x..], RX 8
MVC Load from con- | MVC RX, c [0x1] [0x..]
stant memory

These are all the formats that a reasonable thesis work time has been able to retreive from the hundreds
of kernel compilations done. However, it is very likely than other formats of these 28 instructions may
exist, and such formats may work or not. Anyway, this list is granted by the writer of this document.
Each one of these formats has been added to the direct SASS assembler tool that has been developed,
and proved with a dedicate test kernel. It must be said (without claims by the writer) that a right
combination of these formats allows to use the current hardware capabilities of the model in toto.
Limitation in the limitation, these 28 instructions are NOT the complete instruction set valid for
a G80 Nvidia machine with compute capability 1.0. That ISA also has support for floating-point
conversions and operations, address registers increment, subroutine calls and even transfers from an
additional level of memory called local memory which stands between the general-purpose registers
and the shared memory in the hierarchy and works as a thread-dedicate bigger portion of storage (e.g.,
for larger amount of temporary data like matrixes). For obvious reasons of time, the author could not
directly face up to such limits of the model. However, it is possible to find in Chapter 4 a detailed
report of the suggested and hoped future improvements of the project.

3.4 Development of two common target applications: Edge De-
tection and Fast Fourier Transform

Once the above instruction set was validated, we wanted to see some real application run on the model

to evaluate the performance. In this regard, two very common applications in the field of parallel

computing have been chosen: the edge-detector filter application for images and the Fast Fourier
Transform (FFT) for discrete signals.

3.4.1 Edge Detection

Edge detection consists in taking an image (seen as a matrix of color values) and applying to it a filter
to bring out the contours of the figures that appear in there. The edge is considered found when a

7Only full registers (32-bit) can be targetted, the extension, both for signed and for unsigned, is done automatically
8Here the least significant byte of the register is picked
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discontinuity in colours respect specific mathematic parameters. By the application of such filter, the
image becomes a dark image only outlining the shapes of the objects present in the original version,
and can be more easily digested by, for example, a face-recognition algorithm or something similar.

Figure 3.4: The original image and the image after the application of an edge-detection filter.

The process passes through the transformation of the picture into grayscaled unidimensional colors. If
an image is encoded in RGB format, the value of the corresponding generic grayscaled pixel is

Y =0.2989R + 0.5870G + 0.1140B (3.1)

Then, the edge-detecting filter is applied through matriz convolution between the grayscaled image
(GS) and a 3x3 matrix called kernel, thought for this scope, to obtain the filtered image F.

0 1 0
F=GSx[1 -4 1 (3.2)
0 1 0

Convolution is the process of adding each element of the image to its local neighbors, weighted by the
kernel. For example, if we have two 3x3 matrices, we flip both the rows and columns of the kernel and
then we multiply locally similar entries and summing. The element at coordinates [2, 2] (that is, the
central element) of the resulting image would be a weighted combination of all the entries of the image
matrix, with weights given by the kernel:

a b c 0 1 0
d e flx|1 —4 1]][2,2] = —4se+1xf+0xi+1xh+0xg+1xd+0xa+1xb+0xc = —4de+ f+h+d+b
g h i) \0o 1 0

Neighbors of border elements are considered null:
a b c 0 1 0
d e fl+x[1 —4 1]|[1,1] = —4*xa+1xb+0xe+1xd+0+x0+0+x0+0+%0+0+0+0+0 = —4da+b+d
g h i 0 1 0
(3.4)

It goes without saying that such a mole of computation is better handled by a parallel architecture as
GPGPUs. The overall amount of pixels is spread among the threads, up to an upper bound of 1 pixel
per thread, which operates both the grayscale conversion and the filter application. Signed integer
multiplication, addition and division are needed for this algorithm. While the first two are supported
by FlexGrip, the absence of the third pushed to think to alternative methods.

For the pixel /thread ratio, it was introduced the limitation of only having powers of 2 as dimensions
of the image, and also as number of threads. Given A and B powers of 2, the division between them
can be performed easily through a formula involving logarithm and left-shifts:

A/B =1 << (log(A4) —log(B)) (3.5)

The base-2 logarithm of an integer is easily found with this algorithm:
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int log(int n)
{
int k =N, i = 0;
while (k) {
k >= 1;
i++;
}
return i — 1;

}

For the pixel values multiplication with decimal numbers, a mathematical reasoning has been done:
multiplying for 0.2989 means multiplying for the fraction that generates such decimal number. The
fraction could be any, but a fraction with a 2’s power denominator is chosen in such a way that
the division can be performed through a right-shift. Moreover, it must be chosen a power of 2 that
guarantees the result not to lose significant digits. Since multiplications on FlexGrip are calculated
on 16-bit numbers, it was considered wise to use fractions with 26 (65536) as denominator. Those
multiplications with the decimal numbers mentioned above have therefore been transformed as follows:

R-0.2989 = (R - 19588) >> 16 (3.6)
G - 0.5870 = (G - 38469) >> 16 (3.7)
B-0.1140 = (B - 7471) >> 16 (3.8)

The complete source code is available in Appendix A.

3.4.2 Fast Fourier Transform

A Fast Fourier Transform algorithm is an algorithm that computes the Discrete Fourier Transform
(DFT) of a sequence. This sequence is a collection of values representing samples taken from a time-
continuous signal. The Fourier Transform is useful to pass from the time domain of a signal to the
frequency domain, so that an evaluation of the frequency components of that signal can be done. Given
a sequence of numbers x,,, xz € C, the Fourier Transform is defined as

N—1
Xp=Y ape #®F" k=0, ,N-1 (3.9)
n=0

Direct computation of such formula requires an O(N?) cost. Under the limitation of having N as a
power of 2, the FFT is able to compute the formula with a cost O(N log(NN)). The most diffused FFT
algorithm is the Cooley-Turkey one, which computes the element in groups of growing powers at each
step/loop. To explain, at first loop elements xg, x2, x4, x¢ and so on are taken for computation, and
the others are excluded; the next cycle, elements xg, x1, x3, x4 and so on are taken, while x1, zo, x5, g
are excluded, and so on. The number of cycles is equal to the logarithm of the dimension of the vector,
at the last loop elements from g to xx/o_; are taken. Before starting the computation, elements in
the vector are reordered following a specific index order to make the process possible. Then, the roots
of the unit, (e~*%" %k =0,...,N/2—1) must be computed to be multiplied for the elements. Once
done that, the actual algorithm can start.

The version of FFT developed for the project performs the ordering and the roots computation outside
the kernel to bypass the GPU limitations. The main routine passes the ordered array and the array
of the roots to the kernel function, along with the dimension. A specific data structure has been
defined for the complex numbers, and since division and floating-point numbers are not supported, an
artificial fixed-point system has been studied: the real and the immaginary parts of the number are
32-bit signed integers whose 8 low bits are to be considered as the fractional part. While the addition
does not affect this scheme, the multiplication makes the fractional part double its length, taking the
low 16 bits. Therefore, at the kernel return, values are to be considered as composed of 16 bits of

28



integer part and 16 bits of fractional part.

The only division required is when elements are to be assigned to each thread, and a start and a stop
index within the array are to be computed for each of them. At this aim, the logarithm method is
employed, since both total amount of thread and number of elements are powers of 2.

It must be underlined that, contrary to the Edge Detection application, here the parallelism of the
GPGPU is half wasted, since at any instant only half of the elements must be loaded and processed,
while the threads which have been assigned to those values that are not to be considered in the present
cycle are still.

The complete source code, with verbous comments to better understand each part, is available in
Appendix A.
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Chapter 4

Conclusions

4.1 Performance evaluation

The following tables report the execution times of the two applications developed depending on the
number of parallel cores inside the SMP and the number of threads used. As input image of the Edge
Detection kernel, a 16x16 pixels image has been chosen, while for the FFT a signal of ordered samples
from 1 to 64 (ramp) has been taken. Since it is impossible to have a number of threads lower than the
dimension of a warp (32) and greater than the dimension of the inputs (at most 1 pixel/sample per
thread), the performance of the FFT has been evaluated with 32 and 64 threads, while the Edge Detec-
tion has been simulated with 32, 64, 128 and 256 parallel threads, for each value of internal hardware
parallelism. The reduced sizes of the inputs allowed to more easily check at first sight the coherence
of the results, anyway computed through C functions which reproduce exactly the statements of the
kernel. The clock speed has been left equal to the original one of the project, 100 MHz.

FFT:

64 threads | 32 threads

8 cores 963.270 ns 955.850 ns

16 cores 587.150 ns 650.730 ns

32 cores 405.790 ns 494.150 ns

Edge Detection:

256 threads | 128 threads | 64 threads | 32 threads
8 cores 2.591.720 ns 1.594.460 ns | 1.129.510 ns | 1.069.870 ns
16 cores 1.430.610 ns 898.230 ns 638.460 ns 710.660 ns
32 cores 848.480 ns 548.420 ns 415.170 ns 527.110 ns

The times are referred to a flat grid configuration, i.e. with all threads occupying one line only in
the block and with just one block collecting all threads. In fact, it has been observed that changing
the x, y and z dimensions of the block and of the grid does not affect the execution time, and as
well distributing the number of threads over more threads only produces an increase of the execution
time of 460 ns each new block, which is the allocation time in the shared memory of the block by the
controller.
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First thing to be noticed is the time saving brought by increasing the hardware parallelism. The FFT
boost its performance of its 39% when passing from 8 to 16 cores, and of its 58% when passing to
32, while the Edge Detection improves of a 45% from 8 to 16 and of a 67% from 8 to 32. The gain
has a negative 2nd derivative over the number of cores due to the fact that while arithmetic and logic
operations from /to registers are perfectly parallelized, loads and stores towards memory are in any case
executed serially, therefore a lower horizontal asymptote is present, representing the time of execution
of all the memory operations, which are far more expensive in terms of time, especially if towards the
global memory.

The strange behavior is the apparently paradoxal decrease of the execution time when the number of
threads is lowered in the Edge Detection kernel. This is actually provoked by the fact that division is
absent in the design, and the relevant number of divisions needed before the actual computation for
dividing the data along the threads, is to be computed following the logarithm method explained in
the previous Chapter. This task is pretty time-consuming, for the presence of loops executed by all
threads. However, the lower the number of threads, the lower the number of loops, and also the lower
the number of parallel executions of such threads. This results in an evident performance boost. The
effect is less visible in the FFT for the much lower number of divisions to be done.

As it is possibile to notice, the tendency inverts when the number of threads reaches the lower bound,
in the 16-core and in the 32-core execution. Here the gain brought by the lower number of logarithms
computed cannot compensate the increase of number of actual loops made by each thread for the
image computation (the number of pixel-per-thread increases).

In the 8-core execution with 32 threads of the Edge Detection this fashion is not visible but the negative
slope is lowering down in any case. In the 8-core exeuction with 32 threads of the FFT, instead, the
performance are improved a little with respect to the 64-thread version, but the causing phenomenon
is the same: the logarithm loops are lower, and this affects the performance more than what the grow
of the actual computational cycles for each thread does.

4.2 Further developments

FlexGrip is a very useful model for GPGPU simulation and study for its pretty high accurancy and
its depth of detail description. However, it still has limits that, in view of future developments, would
be a shame not trying to overcome.

The most striking and most stringent limit from the point of view of simulative possibilities and not
only is the absence of a multi-SMP environment. This means that the parallelism is only exploited
at the core level, by playing with the number of internal scalar processors in the Execute stage of the
pipeline. The block scheduler in the current conditions does not implement any dispatching algorithm,
and just assignes the whole grid to the only SMP standing.

Anyway, the dual-ported nature of all the device memories (global, constant, system), under certain
conditions, potentially supports the introduction of a second multiprocessor. In the current design,
these three blocks of memory are contended (for both ports) between the signals coming from the
extern and the SMP. In fact, the external driver needs to write both the instructions of the kernel in
the system memory and the constants needed for its execution in the constant memory. At the end
of the kernel, then, it needs to access the global memory for reading the results. For this purposes, it
actually requires one port only, even if for sake of design coherence, when the signal of external control
is up, both ports are accessible from the extern.

As already explained in Chapter 2, the design is made up in such a way that each portion of memory
can be accessed simultaneously for reading and for writing purposes, in and out of the SMP. Anyway,
the constant and the system memory are not thought to be written but by the driver at the configura-
tion time. The result is that port B of the constant memory, when the external control is released and
the kernel is running, has all signals (data, address and write enable) bounded to 0. Therefore, thesfe
signals can be attached to the constant memory interface of the second SMP with no additional effort.
For the system memory, the situation is a little different, because originally the architect designed both
the ports in control of the SMP in order to perform a fetch of 16 bits of the instruction each cycle,
sending two consecutive addresses on ports A and B and reading 2 bytes at a time. The mechanism
respected the original memory data width of single bytes, but it was expensive for time and utilization
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overheads. My step ahead was then to extend the system memory width from byte to quadwords (32
bits) in order to boost the fetch process (maximum fetch time has been lowered from 4 cycles to 2)
and especially to leave one port free and available for the incoming second multiprocessor.

Unlike these two storage blocks, the global memory is a read-write memory, so once the driver releases
the control, port A is bounded to Read stage internal to the pipeline of the SMP while port B is
bounded to the Write stage. The insertion of a second multiprocessor inevitably leads to introduce a
mechanism of arbitration for the access. Such a mechanism is already present within the streaming
multiprocessor in different zones, like for example in the Read stage, where the 3 different source-
gathering modules may want to access the same memory block while the interface is just one. The
arbiter present here could be replicated at the extern of the SMPs and could decide for global memory
contention.

There is also a fourth space of storage outside the multiprocessors, that is the configuration register
file. This module is written at configuration time by the external drivers, and reflects the value of its
registers directly outside to the block scheduler, but it is also accessed by a normal register file by the
SMP controller at kernel startup time. Here the modification suggested is straightforward: the block
could be redesigned as a dual-port register file as all the other ones present in the model, so that both
SMPs can access it.

Once solved the contention for the common external memories, still the block scheduler needs to be
modified to support a two-multiprocessor environment. The ports of the module are to be minimally
changed: the signal smp_done_in is to be extended from single to double line to receive both the done
signals from both the SMP. As well, block_idz_out on 16 bits is to be doubled for indicating to each
SMP the number of the first block assigned to it. Internally, an algorithm for correctly partition the
total number of blocks should be implemented. For example, since the grid dimensions are a power of
2 and so the blocks can be 1, 2, 4 or 8 at most, if just one block is to be scheduled then it is assigned
to one of the 2 SMPs randomly, otherwise blocks are divided equally over the multiprocessors. The
output interface of the scheduler, apart from the block index signal, can remain untouched, because
those values are equal for all the SMPs present, so they can feed both multiprocessors. Also the SMP
enable signal (activated at the end of the scheduling) and the SMP reset (delivered at the end of the
kernel, when all SMPs are done) can feed both the SMPs.

With all these modification, a two-multiprocessor GPGPU could be simulated. For designs that con-
template the presence of more than 2 SMPs, the mechanism of arbitration could be adopted also for
constant memory, system memory and configuration registers, while the block scheduler could only be
adapted to the new number in terms of interface and internal policy. If smart arbiters were placed
alongside memory ports and an intelligent and parametric policy was implemented inside the block
scheduler, making the number of multiprocessor a generic parameter for the design would be not so
difficult.

The other big limit of FlexGrip is its partial support for the complete ISA of the Nvidia G80 family,
at least for compute capability 1.0. It would be really positive to introduce a floating-point unit, even
because in some compilations among the hundreds done since the beginning of this work, arithmetic
instructions like FADD or FMUL or conversion instructions like F2I, I2F or F2F have appeared. The
thesis time was insufficient to think about the FPU insertion, however it is not so difficult to find and
adapt something already done online. If an FPU were added to the scalar processor, it would then be
just a matter of writing the necessary statements for the floating-point instructions into the Decode
stage (once understood the instruction encoding) and that is it.

The original G80 ISA also contemplates the presence of an intermediate level of immediate memory
between the registers and the shared memory, which is the local memory. Loads and stores from /to
this thread-reserved portion appear for example when compiling kernels which make use of relevant
quantities of intermediate memory (e.g., a temporary variable where to store an array or a matrix) that
the register file is unable to fit but that are anyway reserved to a single thread. The instructions LLD
and LST were also already present in the original list of nominally supported instructions, anyway in
the current conditions there is no local memory, and neither is the hardware equipped to support it.
It is therefore a question of rethinking the Read and Write stages in a deep way in order to substain
this further level of memory, which can be very useful for some applications.

Instead, there seems to be support for some flow control instructions (such as subroutine call CAL or
conditional break from loop BRK) in the dedicate unit within the pipeline execute. However, since
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these instructions were not belonging to the nominally supported list, the investigation of the present
work has not gone beyond the realization of this fact.

As for the division, it seems that it is not contemplated at the level of compute capability implemented
by FlexGrip, and even the compiler rephrases a division with tricks involving multiplication and shifts.
Here the non plus ultra would be fabricating from scratch the opcode and the instruction encoding for
the integer division at least, and adapting a dedicate unit within the scalar processor for its execution.
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Appendix A

CUDA source code for the two
developed benchmarks

The code for the benchmarks developed for evaluating the performance of the design is reported here.

EdgeDetection.cu:

typedef struct {
uint8 t R;
uint8 t G
uint8 t B;

} pixel;

__device_  uint8 t img grayscaled [DIM1]|[DIM2]; // intermediate grayscaled
image

// IMPORTANT NOTE: the compiler takes into account that the address of
this global variable is stored in the constant memory at address c [0
xe] [0x0].

// This zone is unknown for FlexGrip, so to avoid problems, after
compilation all the instructions containing that address in the SASS
are to be changed to ¢ [0x1] [0x2].

// Edge Detection kernel
__global ~ void EdgeDetection(pixel imgin [][DIM2], uint8 t imgout [][DIM2
|, size t M, size t N)

{
// global thread ID computation
int a = blockDim .x;
int b = blockDim.y;
int w = blockDim.z;
int A = gridDim .x;
int B = gridDim.y;
int x = threadldx .x;
int y = threadldx.y;
int z = threadldx.z;
int X = blockldx.x;
int Y = blockldx.y;
int ops = x + (y*a) + (z*xaxb) + (Xxaxbsw) + (YxaxbxwxA);
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// image is MxN pixels, divided into as many subimages as the threads
are

// each thread takes as many pixels as it can in a single row

// if pixels per thread (ppt) number is lower than pixels in a line (N)
, then more than one thread occupies a line, and each subimage has m
=1 and n=N/tpl (threads per line)

// if ppt is equal to N, then just one thread occupies a line, and each
subimage has m=1 and n=N

// if ppt is greater than N, then more than 1 line is assigned to a
single thread, and each subimage has n—M/lpt (lines per thread) and

|

|

|

|

|

|
// <— N —
int m; // height of subimage
int n; // width of subimage
int r, c¢; // starting pixel coordinates
int i, j; // cursors for moving through the pixels
intl6 _t s; // temporary accumulator for computation
int totPix = MxN; // total number of pixels
int totThreads = axbxwxAxB; // total number of threads
int ppt; // pixels—per—thread
int tpl; // threads—per—line (not used if ppt > N)
int lpt; // lines—per—thread (not used if ppt <= N)

// unfortunately division is not supported by FlexGrip architecture ,
but since divisions are between powers of 2, we can use the
logarithm method

// ppt computation

int k1 = totPix;

int k2 = totThreads;

int 1gl = 0;

int 1g2 = 0;

while (k1 > 0) {
k1l = k1 >> 1;
lgl++;

}

lgl ——;

while (k2 > 0) {
k2 = k2 >> 1;
lg2++;

}

1g2 ——;

ppt = 1 << (lgl — 1g2);

if (ppt <= N) {

// tpl computation
kl = N;
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k2 = ppt;
lgl = 0;
lg2 = 0;
while (k1 > 0) {
k1l = k1 >> 1;
lgl++;
}
lgl ——;
while (k2 > 0) {
k2 = k2 >> 1;
lg2++;
}
lg2 ——;
tpl = 1 << (1gl — 1g2);
// starting row index is found as ops shifted right of the logarithm
of the number of threads contained in a line
kl = tpl;
lgl = 0;
while (k1 > 0) {
k1l = k1 >> 1;
lgl+4+;
}
lgl ——;
r = ops >> lgl;
// starting column index is found as pptx(ops MOD tpl), i.e., pptx*(
ops AND (tpl—1))
¢ — pptx(ops & (tpl—1));
// number of rows of the subimage is just 1

m= 1;

// number of columns of the subimage is N/tpl (possibly all columns
if ppt = N)

k1l = N;

k2 = tpl;

lgl = 0;

g2 = 0;

while (k1 > 0) {
k1l = k1 >> 1;
lgl+4+;

}

lgl ——;

while (k2 > 0) {
k2 = k2 >> 1;

lg2++;

}

g2 ——;

n=1<< (lgl — 1g2);
}
else {

// 1pt computation

k1l = ppt;

k2 = N;

lgl = 0;

lg2 = 0;

while (k1 > 0) {
kl = k1 >> 1;
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lgl+4+;
}
gl ——;
while (k2 > 0) {
k2 = k2 >> 1;
lg2 4+
}
g2 —;
Ipt = 1 << (lgl — 1g2);
// starting row index is found as ops shifted left of the logarithm

of Ipt
kl = Ipt;
lgl = 0;

while (k1 > 0) {
kl = k1 >> 1;
lgl++;
}
lgl ——;
r = ops << lgl;
// starting column index is just 0

c = 0;

// number of rows of subimage is given by M/Ipt
k1l = M;

k2 = Ipt;

lgl = 0;

lg2 = 0;

while (k1 > 0) {
k1l = k1 >> 1;
lgl++;
}
lgl ——;
while (k2 > 0) {
k2 = k2 >> 1;
lg2 4+
}
lg2 ——;
m=1<< (lgl — 1g2);
// number of columns of subimage: all the columns, so N
n = N;
}

// grayscaled image computation
for (i=0; i<m; i++) {
for (j=0; j<n; j++) {
s = ((imgin[r+i][c+j].-R+x0x4C84)>>16) + ((imgin[r+i][c+]j].G*x0x9645)
>>16) + ((imgin|[r+i][c+j].B*0x12DF)>>16);
if (s > 255) img_grayscaled|[r+i][c+j] = 255;
else img_grayscaled|[r+i][c+j] = (uint8_t)s;
}
}

// filter application
for (i=0; i<m; i++) {
for (j=0; j<n; j++) {
// clockwise sense
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s = 0;

s = s + (img_ grayscaled[r+i][c+j]) *x—4;

if (c+j+1 <= N-1) s = s + img_grayscaled [r+i][c+]+1];
if(r+i+1 <= M-1) s = s + img_ grayscaled [r+i+1][c+j];
if(c+j—1 >= 0) s = s + img grayscaled [r+i][c+j —1];
if(r+i—1>=0) s = s + img_grayscaled [r+i —1][c+j];

if(s < 0) s = 0;
else if(s > 255) s = 255;
imgout [r+i][c+j] = (uint8_t)s;

w
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FFT.cu

typedef struct {
int32 t real;
int32 t imm;

} complex;

int lg2(int N) //function to calculate the logarithm base 2 of an
integer

{
int k =N, i = 0;
while (k) {

k >= 1;
14+
return i — 1;
int reverse(int N, int n) //calculates the reverse index of each

number with respect to the dimension N

{

int j, p= 0;

for(j = 1; j <= 1g2(N);5 j++) {
(0 & (1< (12(N) = j)))
p|:1<< (.]_1)7
}
return p;
}
void ordina(complex *fl1, int N) //disposes elements of the array with

respect to the reverse function order
{
int i, j;
complex *f2 = (complex*)malloc(Nxsizeof (complex));
for(i = 0; 1 < N; i++) {

f2[i].real = fl[reverse(N, i)].real;
f2[i].imm = fl[reverse (N, i)].imm;
}
for(j = 0; j < N; j++) {
fi[j].real = f2[j].real;
f1[j].imm = f2[j].imm;
}
}
// FFT kernel
__global  void FastFourierTransform (complex v, complex *«W, int N)

{
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// global thread ID computation

int a = blockDim.x;
int b = blockDim.y;
int w = blockDim.z;
int A = gridDim .x;
int B = gridDim .y;
int x = threadldx.x;
int y = threadldx.y;
int z = threadldx.z;
int X = blockldx .x;
int Y = blockldx.y;
int ops = x + (y*xa) + (zxaxb) + (Xxaxbxw) + (YxaxbxwxA);

// input array is composed by N complex numbers, divided into as many
subarrays as the threads are
// threads cannot be more than elements, of course

int totThreads = axbxwxAxB; // total number of threads

int j; // counter of the main loop

int i; // counter of the inner loop

int ept; // elements per thread

int start; // starting index

int stop; // finish index

int 1lg2dim = 0; // logarithm of the dimension — needed for knowing how
many times the application must cycle

int k1, 1gl; // support variables for computing the logarithms

complex temp; // 1st temporary variable for FFT computing — see Cooley—
Turkey algorithm for reference

complex Temp; // 2nd temporary variable for FFT computing — see Cooley—
Turkey algorithm for reference

int n = 1; // see Cooley—Turkey algorithm for reference

int m =N >> 1; // see Cooley—Turkey algorithm for reference

int md = m—1; // mask for the index — see Cooley—Turkey algorithm for
reference

// compute the logarithm of the dimension to individuate the number of
loops to be done
k1l = N;
while (k1 > 0) {
kl = k1 >> 1;
lg2dim++;

}

lg2dim ——;

// compute elements per thread
k1l = totThreads;
lgl = 0;
while (k1 > 0) {

k1l = k1 >> 1;

lgl+4+;

}

lgl ——;
ept = 1 << (lg2dim — 1gl1);

// compute the starting and final index in the array for each thread,
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which are respectively equal to opskept and (ops+1)xept
start — ops*ept;
stop = (ops+1)xept;

// actual computation of the transformed vector
for (j=0; j<lg2dim; j++) {
for (i=start; i<stop; i++) {
if (1(i &n)) {

// at each cycle, elements with indexes taken in groups of n in
an alternate fashion are computed

temp.real = v[i].real;

temp .imm = v[i].imm;

// complex multiplication: computed as a binomial product of real
and imm

// magnitude of elements of f should not overcome 2715 not to
incur in overflow in the multiplication

// individuation of the index of W is translated from the
original form (ixm)%(nxm) to simplified form (ixm)&(DIM >> 1),

// because nxm is always DIM/2 , and MOD DIM/2 corresponds to AND
(DIM/2)—1

Temp.real = (W[(i*xm)&(md)].real % v[i+n].real) — (W[(i*m)&(md)].
imm % v[i4n].imm) ;

Temp.imm = (W[(ism)&(md) |.imm % v[i4n].real) + (W[(ixm)&(md) ].
real * v[i4n].imm);

/%

>k ok ok ok ok ok sk sk ok sk sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk skosk sk sk sk sk sk sk ok ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko

*/

v[i].real = temp.real + Temp.real;
v[i].imm = temp.imm + Temp.imm;
v[i4n].real = temp.real — Temp.real;
v[i+n].imm = temp.imm — Temp.imm;
}

}

n=n-<< 1;

m=m >> 1;
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Appendix B

How to simulate FlexGrip

This user guide has been added to the document in order to show how to set up FlexGrip and run
simulations.

B.1 System requirements

1. Microsoft Windows 7

2. Mentor Graphics ModelSim 10.0 SE (or similar)
3. NVidia CUDA Toolkit 4.0 64-bit

4. Python 3.6.5

B.2 Setting up and validating the environment

First, download FlexGrip.rar from the website and unrar the data. The project has two main folders:
/GenericDesign, where the VHDL code and the configuration files are contained, and /NewApplication,
from where a new benchmark starting from CUDA or directly from SASS can be written.
GenericDesign at its first level contains:

e The top level entity, its components and the package with all the definitions
e The folder with the description of all the SMP components

e A folder containing all the configuration files (TCL scripts, memory initialization files) to use
the environment

o The folder with all the testbench files.

In the /TB folder, 11 benchmarks can be found. 9 are the test programs used for validating each
instruction family, and 2 are the applications developed by the author of this document for performance
evaluation. The last application, TP ("Test Program"), is the one that the user can customize for its
own kernel.

The file pick_bench.vhd is the testbench header and contains the parameters will be set or passed to
the design. It is here defined the number of parallel scalar processors inside the SMP, the name of the
application to be run, the dimensions of the block and the grid, the initialization data for constant
memory and the kernel data parameters. Therefore, here the parallel configuration of FlexGrip can
be changed before running the simulation to achieve the desired number of threads or internal parallel
processors. The number of CORES can be 8, 16, or 32, and according to it the WARP LANES must
be set respectively to 4, 2 or 1.

The parameters BENCH APP and BENCH APP INST have the same value and represent the
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application name, which can be one of the 12 names of the subfolders in the TB folder. The correct
application must be set as well by uncommenting the corresponding #define in the file gpgpu_ test.h.
This header file is useful for automatizing the validation process, whose list of commands is in the
execution script gpgpu_ test.bat (or gpgpu_ test.sh if Unix). When such script is launched, the correct
global memory initialization file for each application is copied into the one read by the design, and
also the file containing the expected result is produced. As last command, contents of gpgpu_ rdata.log,
containing the kernel simulation results, and ezpect.log, containing the expected values, are compared
and a percentage of success of the test is computed.

In the end, 4 files are to be modified if one of the 11 already present benchmarks is to be executed:

1. pick_bench.vhd, for setting the cores and the BENCH _APP name (the block/grid configuration
is fixed into the corresponding configuration.vhd file for each instruction test program, but still
remains editable for FFT and EdgeDetection)

2. gpgpu_ test.h by uncommenting the correct application name

3. gpgpu_ compile.tcl for setting the simulation time (test programs for instructions run in less than
200 us, for the two main apps see the table at Section 4.1)

4. gpgpu_ test.sh or gpgpu_ test.bat for setting the BENCH _APP name as well

Then, the test script is to be launched from the path /GenericDesign/lib.

If a graphical simulation of those benchmarks is required, the TCL compiling script can be launched
directly from the GUI of ModelSim/QuestaSim. In this case, the memory initialization tool is the only
one to be launched. The simulation tool will show the waves listed in the file wave.do, at the beginning
of which the correct number of cores must be set too not to lose details.

In the /NewApplication folder, the source code of any of these benchmarks is stored.

B.3 Writing custom applications

If a custom application is required, then solutions are 2: either it can be written using the CUDA
language and toolkit at high level, or it can be developed at assembly level directly.

Go to /NewApplication folder. Here an example CUDA program, TP.cu, is shown. Please see any
reference on CUDA syntax and programming model. Modify such file with the customized app and
launch the cu_ compile.bat script. At first, it invokes the compilation makefile present in the folder.
The .cu file is given to the nvee tool. A compiled .cubin binary file is produced, and a further command
cuobjdump translates such binary into the human-readable SASS language. Also the PTX version of
the kernel is produced. Then, a Python script is called to "hardwire" the SASS into the VHDL files
read by the testbench for configurations parameters and instructions. cu_ compile.bat as last opera-
tion copies these 2 files into the /GenericDesign/TB/TP folder. At this point, change the application
name in pick_bench.vhd, possibly produce your memory initialization file and do not forget to change
constants and kernel parameters from the regs default arrays in pick_bench.vhd. The TP app in fact
reads from those arrays the initial state of the shared (kernel parameters) and the constant memory.
The programmer must be careful and literally guess what are the constants used in the program. Ar-
rays are in descendent order of index, so start from the last element to insert them. Unlike parameters,
constant memory is byte-organized even if it is accessed with 32-bit movements.

Once done this, from /GenericDesign/lib launch the simulation tool and the TCL script within its
GUI and that is it.

If instead you want to write a kernel directly using SASS language, open the sass _assembler.c file. At
the bottom of the file you can insert one after the other the calls to functions referred to any working
machine format. This program does nothing else than creating a .sass file and writing into it one after
the other the instructions according to the parameters passed to procedures. It adds by default a
RET instruction at the end and a NOP after it. Once written the list of instructions, from this loca-
tion launch the script sass_assembly (present in Linux Bash version or Windows Batch). The script
compiles and executes the assembler, and then translates into VHDL files the SASS kernel and copies
into /GenericDesign/TB/TP folder. At this point, in order to simulate it, the steps to be followed are
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identical to the previous case.

NOTE: Unfortunately, Nvidia Toolkit is only released for Windows. For compiling CUDA programs,
a Windows environment is required. If you are working on a Linux distribution, you have to man-
ually copy the _configuration.vhd and the _instructions.vhd files into the destination folder for the
simulation after having switched from Windows to Linux.
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