
POLITECNICO DI TORINO

Master Degree Course in Computer Engineering

Master Degree Thesis

A framework for Virtual Network Functions
(VNF) modeling and Service Graph
verification in SDN/Cloud context

Supervisors
prof. Guido Marchetto
prof. Riccardo Sisto
dott. Fulvio Valenza, dott. Jaloliddin Yusupov

Candidate
Antonio VARVARA

student ID: 234531

YEAR 2017-2018

This work is subject to the Creative Commons Licence

Contents

1 Introduction 1

2 NFV and SDN 3
2.1 Network Function Virtualization . 3

2.1.1 NFV Introduction . 3
2.1.2 NFV ETSI Framework . 3
2.1.3 Open Source MANO . 5

2.2 Software Defined Networking . 5
2.3 The role of Verifoo in an NFV framework . 7

3 Terminology and exploited tools 9
3.1 Concepts . 9

3.1.1 Service Graph . 9
3.1.2 Physical Topology . 9

3.2 Tools . 10
3.2.1 z3 . 10
3.2.2 Verigraph . 10
3.2.3 Verifoo . 10
3.2.4 SONATA . 11
3.2.5 Neo4j . 11

4 Thesis objectives 13
4.1 Thesis motivations . 13
4.2 Design and implementation of Verifoo extensions . 13
4.3 Tests and performance evaluation . 14

5 Verifoo Extensions design 15
5.1 SONATA integration design . 15

5.1.1 Verifoo interaction . 15
5.1.2 RESTful API . 17

5.2 Neo4j integration design . 18
5.3 Verifoo workflow . 19

6 Verifoo Extensions Implementation 21
6.1 XML Input Format . 21
6.2 SONATA integration implementation . 32

6.2.1 Service Graph Simulation . 32
6.2.2 Description of the simulation REST API . 35

6.3 Neo4j Integration . 38
6.4 Verifoo Improvements . 40

6.4.1 Pre-Processing . 40
6.4.2 Multiple Endpoints . 43
6.4.3 Constraints . 46
6.4.4 Isolation Policy . 51
6.4.5 Extended Model . 52

III

6.4.6 Packet Extensions and wildcards . 54
6.4.7 New Firewall Model . 58
6.4.8 Auto-Configuration . 60
6.4.9 Auto-placement . 65

7 Experimental Results 71
7.1 Verification & Deployment Performance . 71

7.1.1 Old Model and New Model . 71
7.1.2 Deployment Constraints . 71
7.1.3 Service Graph and Chains . 72

7.2 Scalability Performance . 73
7.2.1 General Model Performance . 73
7.2.2 Autoconfiguration Performance . 75

8 Conclusions and future improvements 81

Bibliography 83

Appendices 85

A Developer’s guide to future extensions 87
A.1 it.polito.verifoo.random . 87
A.2 it.polito.verifoo.rest.common . 87
A.3 it.polito.verifoo.rest.medicine . 88
A.4 it.polito.verigraph.mcnet.components . 88
A.5 Other packages . 90

IV

Chapter 1

Introduction

In its original idea, the Internet was designed to interconnect different computers to the same network
using a series of protocols, each related to a level in the ISO/OSI protocol stack. This subdivision into
levels allowed to build relatively simple devices that were able to work only on a specific level, hiding
the unnecessary information of the other levels.

Nowadays networks are evolving rapidly and the need for a more dynamic and automated net-
work management is taking a very important role in defining the direction of this evolution. The new
paradigms that are drastically changing the rule of the game, are Software Defined Networking (SDN)
and Network Function Virtualization (NFV) that allow to adopt a dynamic network model capable of
adapting to future changes without great effort by operators.

The SDN paradigm defines a new type of architecture for the realization of a network, separating the
control plane from the data plane, switching to a more centralized approach. In particular, the control
plane is entrusted only to a single controller in order to achieve greater scalability and security regardless
of the apparatus used for the data plane, encouraging an even more dynamic network that is no more
bound to the different number of protocols used by the different brands.

The NFV paradigm, on the other hand, leads to the virtualization of services and applications that
usually run on proprietary hardware appliances (e.g. firewall, DPI, etc.). This abstraction allows a more
flexible network in which the network functions (that in this context are called Virtual Network Function,
VNF) are no more linked to a single physical server and can be moved from one server to another with
ease. Moreover, a series of network functions can be chained together to offer more complex services.
The use of virtualized applications instead of physical hardware also allows to take network functions
in and out of service, and scale them up and down easily. The NFV paradigm is based on the usage of
an orchestrator that decouples the physical instances of the network functions from the requested virtual
service. Even though the orchestrator provides a simple way to deliver or release a service composed
by a series of VNFs, it does not provide a verification for the correctness of the whole service. For
example, it does not check if two end points are indeed reachable in the service, as this would require
the knowledge of how the different VNFs work. In fact, even though the NFV automation approach
offers undeniable great benefits like scalability and flexibility, on the other hand it poses new issues
regarding misconfigurations and security flaws since it relies upon the external input to configure the
VNFs. This problem can be prominent especially in corporate networks, where the configuration of
the system could reach high level of complexity and there might be some unexpected errors that cause
unwanted behaviours. The synergy between SDN and NFV allows the formation of a programmable
network between virtualized functions.

In this context, a software module called Verifoo, further described in section 3.2, has been devel-
oped. It can be utilized in combination with an NFV orchestrator in order to automate the choice of the
optimal deployment of a network service with a formal verification of requested policies. Verifoo uses
a custom XML format and acts like a verification service which ensure that the network service that
is being deployed is compliant with what the user expressed in a series of high-level policies. More-
over, it also provides the optimal deployment on an infrastructure based on the available resources in the
physical machines.

The aim of this thesis is to further develop Verifoo which, being in its early stage of development,

1

1 – Introduction

presents certain limitations and model simplifications whose overcoming, in conjunction with the exten-
sion of its functionalities, will be described in the following chapters. Initially, Verifoo only supported
chains of VNFs as network services, with the very restrictive limitation of using only one client and
only one server. Its deployment algorithm considered only the disk storage as allocation resource that
affected the deployment. In the Verifoo simulation model, the information about the TCP/UDP ports
in a packet header was missing. This was mainly because no VNF needed such information. In fact,
even the behavioural model of a firewall, which usually needs those fields, represented only an initial
implementation which described a blacklist firewall that solely focused on the addresses to decide what
to do for a specific packet.

All the aforementioned limitations were addressed and some totally new functionalities were added,
as further described in chapter 6. In particular, the new changes promote the resolution of the configu-
ration problem that currently affects an NFV orchestrator. In fact, usually the orchestrator relies on the
configurations given by the administrator (or the user) and instructs other tools to inject that configura-
tion in the correspondent VNF. Exploiting the Verifoo framework, the new features have the objective to
automatically produce a configurations that satisfies the constraints introduced in the user-level policies.

This thesis work introduced the new features, improving the already present ones, with the aim to
explore a solution for the current problems in an NFV framework, left as study items [1] in the standard.
Even though the proposed solutions are based strictly on Verifoo, they can be easily generalized to be
of inspiration for new methods to address the same problems. This topic will be studied in depth in the
other parts of the thesis which is structured in the following way:

• chapter 2 provides a general description of the new technologies involved in the thesis;

• chapter 3 describes some useful concept that will often recur in the other chapters; moreover, it
delineates the general functioning of the tools exploited during the work;

• chapter 4 outlines what are the objectives pursued in this thesis;

• chapter 5 gives an insight on what were the design choices present in the final solution;

• chapter 6 contains all the indications on what has been added or modified in Verifoo during the
thesis;

• chapter 7 elaborates on the experimental results obtained in the testing phase;

• Chapter 8 draws conclusions on the work done and gives some suggestions on how to further
improve Verifoo.

2

Chapter 2

NFV and SDN

In this chapter, the new frontiers of virtualization are described. In section 2.1 the NFV paradigm is
illustrated with a particular focus on the Open Source MANO project which is an implementation of an
NFV orchestrator that is the current reference point for Verifoo. In section 2.2 a quick overview of the
SDN paradigm is given. Finally, in section 2.3, the role that Verifoo can have in a virtual architecture
that exploits these new virtualization techniques is framed and what are the challenges it faces.

2.1 Network Function Virtualization

2.1.1 NFV Introduction
In recent years ISPs have faced a multitude of challenges arising from the composition of their network
architecture, mainly made up of devices dedicated to a specific function (e.g. firewall, WAN accelera-
tors, etc.). This solution carries an intrinsic rigidity that restrains the ability of the architecture to change
which is however opposed to the exponential increase in customer needs. In order to maintain an accept-
able level of service, an ISP usually faces this increase adding more physical devices, being forced to
deal with a growing operational and maintenance costs without burden the final user to avoid hindering
its competitiveness. In this regard, an NFV solution exploits the benefits deriving from the virtualiza-
tion to bring radical changes in how to conceive a network architecture. It transforms all the dedicated
devices in virtual instances executable on general purpose machine whose capacity and computational
power make them able to host a significant number of those instances. The virtual devices usually are
called Virtual Network Function (VNF) and can be freely moved in the physical infrastructure. The
advantages in this approach are the reduced operational costs and the possibility to have a more rapid
evolution of a certain service since the interconnection of various network functions no longer demands
a new hardware addition in the infrastructure, nor a network administrator to be assigned to its manual
configuration.

2.1.2 NFV ETSI Framework
Nowadays these technologies are still being heavily researched and in order to sidestep the chaos that
can be associated with industry fragmentation and entry barriers, various regulations have been pro-
mulgated. In particular, the European Telecommunication Standards Institute (ETSI), an independent
standardization group, formed a group (ETSI Industry Specification Group for Network Functions Vir-
tualization, ETSI ISG NFV) charged with developing requirements and architecture specifications for
hardware and software infrastructure needed to make sure virtualized functions are maintained. In its
standardization [1], the NFV framework identifies three domains:

• Virtualized Network Function, the software counterpart of a network function which runs on the
NFVI

• NFV Infrastructure (NFVI), the physical infrastructure onto which the VNFs are executed

• NFV Management and Orchestration (NFV MANO), the orchestrator that oversees all the man-
agement tasks for the VNFs

3

2 – NFV and SDN

In particular, the NFV Management and Orchestration (MANO) is the ETSI-defined framework for the
management and orchestration of all resources in the cloud data center. This includes computing, net-
working, storage, and virtual machine (VM) resources. NFV MANO is broken up into three functional
blocks as shown in Figure 2.1:

• NFV Orchestrator: Responsible for on-boarding of new network services (NS) and virtual net-
work function (VNF) packages; NS life-cycle management; global resource management; valida-
tion and authorization of network functions virtualization infrastructure (NFVI) resource requests

• VNF Manager: Oversees life-cycle management of VNF instances; coordination and adaptation
role for configuration and event reporting

• Virtualized Infrastructure Manager (VIM): Allocates the resources for a VNF, namely it con-
trols and manages the interaction of a VNF with computing, storage, and network resources. It also
provides fault information, as well as information about resources monitoring and optimization

NFV Orchestrator (NFVO)

NS
Catalog

VNF
Catalog

VNF Manager
(VNFM)

Virtualized Infrastructure
Manager (VIM)

NFVI

VNF Instances

NFVI Resources

Figure 2.1. NFV MANO Architecture

For the NFV MANO architecture to work properly and effectively, it must be integrated with open
application program interfaces (APIs) in the existing systems. The MANO layer works with templates
for standard VNFs and gives users the power to pick and choose from existing NFVI resources to deploy
their platform or element.

4

2.2 – Software Defined Networking

2.1.3 Open Source MANO
Following the NFV MANO specifications, various projects have been developed. Among them, there is
Open Source MANO (OSM), which is an open source project that provides a practical implementation of
the reference architecture for Management & Orchestration under standardization at ETSI’s NFV ISG.
OSM is written in python and uses tools under the Apache Public License2.0. The open source nature
of the project encourages the creation of new solutions from a sure to grow community. It consists of
three main software components that map the NFV MANO functional blocks [2]:

• openvim: reference implementation of an NFV VIM (Virtualised Infrastructure Manager). It in-
terfaces with the compute nodes in the NFV Infrastructure and an openflow controller in order
to provide computing and networking capabilities and to deploy virtual machines. It offers a
northbound interface, based on REST (openvim API), where enhanced cloud services are offered
including the creation, deletion and management of images, flavours, instances and networks. The
implementation follows the recommendations in NFV-PER001.

• openmano: reference implementation of an NFV-O (Network Functions Virtualization Orches-
trator). It interfaces with an NFV VIM through its API and offers a northbound interface, based
on REST (openmano API), where NFV services are offered including the creation and deletion of
VNF templates, VNF instances, network service templates and network service instances.

• openmano-gui: web GUI to interact with openmano server, through its northbound API, in a
friendly way.

The openmano orchestrator is, in turn, composed by a series of software modules, whose task are dif-
ferent and independent but strictly interwoven in order to realize the management functionalities in an
NFV architecture. It is formed by three main parts:

• VNF Configuration & Abstraction (VCA), which is the module that deals with the lifecycle man-
agement of the network functions, giving the possibility to configure them at run-time.

• Resource Orchestrator (RO), which has been developed to manage the resource orchestration of a
NFVI through a VIM.

• Service Orchestrator (SO), which copes with the coordination of the previous modules and the en-
tire management of a network service, from the descriptors on-boarding to the online management
of the network service.

The workflow of Open Source MANO, aligned with the basic functionality that an NFV orchestra-
tor should have, envisages the modelling of a network service using a GUI or through file descriptors
which will be later deployed automatically onto a physical infrastructure. Each of the VNF composing
the network service can be configured following external indications provided by an administrator or a
third-party tool. To handle traffic flow and VNF interconnections, Open Source MANO uses an SDN
approach with a particular version of an OpenFlow controller called Floodlight [3].
The software module developed during this thesis work, Verifoo, can be integrated in the OSM orchestra-
tor as a module that can provide the optimal deployment of a network service on a well-known network
infrastructure, with a formal verification of requested policies. The orchestrator should interact with
Verifoo through the available REST API sending a request to deploy a network service on a physical
topology. After receiving a result, it should communicate the result to other modules that may benefit
from that knowledge. Currently Verifoo is able to interact with SONATA, better described in Section
3.2, which is the currently VIM adopted by OSM.

2.2 Software Defined Networking
ISPs networks contain a variety of proprietary hardware that implicitly possess less flexibility and dy-
namism than the innovation cycles require. The launch of new services often demands network recon-
figuration and on-site installation of new equipment which in turn requires additional floor space, power,
and trained maintenance staff. Hard-wired network with single functions boxes is tedious to maintain,

5

2 – NFV and SDN

slow to evolve, and prevent service providers from offering dynamic services.
A network handled with an SDN approach conceives a network directly programmable in which the
control plane is separated from the data plane and centralized in an SDN controller who has the global
view of the network. The main purpose of an SDN architecture is to be dynamic, manageable, econom-
ically efficient and adaptable, in order to be useful for the dynamic nature and high bandwidth usage of
today applications. As a result, the network devices end up doing only a simple forwarding task based
on some rules defined by the controller. This also allows the configuration of the entire network to be
executed only on one node, the controller, which then deals with applying the changes to the devices
that compose the network. As a direct consequence, the networks are agile and capable to respond auto-
matically to the needs of the traffic and services running over it. However, at the moment the controller
centralization also represents the most critical point for this technology, since it creates a single point of
failure causing concerns about its security and scalability.
As shown in figure 2.2, in an SDN architecture the applications run on top of the controller layer and
inform it about their specific needs. The controller then instructs the switches in the network to forward
the packet of a specific flow, identified by different fields of the header of the packets, based on the in-
formation received from the application. The communication between the controller and the networking
devices are usually carried out with OpenFlow.

Figure 2.2. SDN Architecture

OpenFlow is an open source communication protocol and is one of the first protocol standardized
to be used in an SDN environment. However, there are other standards and open-source organizations
with SDN resources, so OpenFlow is not the only protocol that makes up SDN. Using open standards
makes the design and the maintenance of the network easier because the same instructions sent from
the SDN controller are supported by devices of different vendors that in the classic approach rarely are
interoperable.

SDN and NFV are two independent technique, hence it is possible to design a network that uses one
technology and not the other. However, their complementarity allows both of them to be used in the
same network with great benefits. Both technologies stir towards an abstraction from the underlying
hardware, promoting a higher dynamicity and a faster evolution of the services. For instance, a service

6

2.3 – The role of Verifoo in an NFV framework

could be realized a series of VNFs dynamically and automatically chained thanks to an SDN controller
based on the specific requested solution.

2.3 The role of Verifoo in an NFV framework
In the NFV reference architectural framework there are still some study items [1] that are the subjects of
many of the works published in the recent years [4].

The decoupling of a network function from the physical hardware it runs on, poses new challenges
in instantiating VNFs at appropriate location and keeping track of it, allocating and scaling hardware
resources accordingly, all in order to map an end-to-end service onto an NFV infrastructure. In the ETSI
standardization the process of how to deterministically deploy VNF instances on the NFV Infrastructure
is not explicitly described. Giving the optimization nature of the problem, performance-efficient methods
of deployment should be encouraged. Verifoo, among its functionalities, addresses the deployment of
VNFs and offers a way to efficiently place them on a given infrastructure.

Another challenge in the NFV world regards the VNFs configurations. The network functions func-
tional behaviour is well known but an NFV orchestrator manages only their lifecycle without worrying
about the effect of their configurations. This can cause problems that can be discovered only after the
actual deployment of the service which can be risky in some cases (e.g. a firewall that let a dangerous
flow pass). Verifoo also takes care of this problem performing a preliminary verification of some poli-
cies declared by an administrator in order to check the correctness of the whole service. This verification
is achieved using internally simple models of the network functions in order to simulate the operating
service. How Verifoo achieves the previously mentioned objectives will be further described in section
3.2 after the introduction of some other useful concepts that help to understand its functioning.

Verifoo has been designed to work closely with an NFV orchestrator to act as a verification and
deployment manager. Its basic workflow is based on an external input which can be seen as the first
touch point with an NFV framework.The input follows a custom XML schema which will be described
in section 6.1. A general idea of the interaction can be seen in Figure 2.3.

NFV Orchestrator (NFVO)

VNF Manager
(VNFM)

Virtualized Infrastructure
Manager (VIM)

Verifoo

Verification &
Deployment

Service

APIs

Property Library

Verifier Framework

Figure 2.3. NFV Orchestrator with Verifoo

Received the XML describing a network service and a physical topology, Verifoo is able to generate

7

2 – NFV and SDN

the optimal deployment optimizing the network performance and the resources allocation of the physi-
cal machines. The result is returned as output and can be elaborated by the orchestrator, which can then
instruct the VIM accordingly. This last step can also be done directly by Verifoo in order to act as an
additional layer above the virtualized infrastructure and hide the optimization details from the orchestra-
tor. In the current version, as a proof of concept, this is achieved thanks to the integration of SONATA,
which is a VIM supported by OSM. All the interactions can happen through the RESTful APIs included
in Verifoo.

All the design choices of the project elaborated during this thesis will be presented in chapter 5, while
more low-level details will be described in chapter 6.

8

Chapter 3

Terminology and exploited tools

In order to fully understand the content of this thesis, a set of concepts and the used tools are presented
in the following paragraphs.

3.1 Concepts
In this section two high-level concepts commonly referred throughout the thesis will be introduced.
These concepts represent the basic information that Verifoo needs for its execution, the service graph
described in section 3.1.1 and the physical topology described in 3.1.2.

3.1.1 Service Graph
A Service Graph (or Network Function Forwarding Graph, NFFG, as it is referred to in the ETSI-
defined framework [5]) describes a network service requested by an end-user from a Service Provider.
It is modelled as a graph, where the nodes can be network functions (e.g., firewall, NAT, etc.), clients,
and servers composing the requested service, while the arcs represent packet forwarding paths. There
are no limitations whatsoever for the network functions to be in a single operator network. Each of
the function concurs to the high-level behaviour of the whole service which can be described through
policies that state if a particular flow of packets from a source is able to reach a specific destination.
The source and the destination are usually endpoints and correspond to client applications or server
applications. The clients are out of the NFV area of activity therefore the operator cannot exercise its
authority on it, hence the clients are not included in the deployment computation and their position
is always fixed. The endpoints are connected to the physical infrastructure which provides a logical
interface with the network functions. In turn, the network functions are interconnected via logical links
provided by the infrastructure. The NFV paradigm emphasizes that the deployment of the VNFs on the
physical infrastructure is not relevant for the end-to-end service. This allows a VNF to be instantiated on
different physical resources, also geographically dispersed, as long as the boundary conditions are still
met (e.g. service performance and/or policy constraints).

In Verifoo, a service graph is characterised by an id, which uniquely identifies it, and a set of nodes.
Each node has a name, which is unique, and is associated to a “functional type” that represents which
kind of network function will be deployed. A node is also characterised by a set of neighbours that
represents the unidirectional links towards the other nodes. In order to model a more realistic scenario,
each node can also be associated with constraints such as the memory or the disk storage it requires.

3.1.2 Physical Topology
A Physical Topology is the network functions virtualization infrastructure (NFVI) mentioned in Section
2.1.2. Basically, it is a collection of interconnected infrastructure hosts, each one capable of hosting
Virtual Network Functions (VNFs). A VNF can be an endpoint VNF (i.e. a client or a sever), or
a middlebox VNF that requires to be placed (e.g. a firewall, a NAT, etc.). A physical topology is
designed to be distributed, so the hosts are spread through different location which also allows to meet

9

3 – Terminology and exploited tools

locality and/or latency requirements, needed in some use cases, adding a great flexibility to the global
architecture.

In Verifoo, each infrastructure host is characterised by its name, the maximum number of VNFs that
can be allocated to it, the number of cores it has and their frequency, the amount of memory and of disk
storage available in the host. For each pair of interconnected hosts, it is also possible to express the
latency of the physical channel that connects them.
One or more graph can be allocated onto a physical topology by allocating each node of each graph onto
one host of the physical topology.

3.2 Tools
In this section a series of tool will be introduced. Verigraph and z3 represent the foundation of the
Verifoo project and are described respectively in sections 3.2.2 and 3.2.1. Some basic information about
Verifoo are presented in section 3.2.3 but more information are available throughout the whole thesis.
Finally, two tools integrated in Verifoo during the course of this work are outlined, SONATA in section
3.2.4 and Neo4j in section 3.2.5.

3.2.1 z3
z3 [6] is a theorem prover from Microsoft Research that receives as input sets of First Order Logic
(FOL) formulas in a format that is an extension of the one defined by the SMT-LIB 2.0 standard. Under
the hood, z3 is a Satisfiability Modulo Theories (SMT) solver. It can resolve constraint satisfaction
problems and thus formalize an approach to constraint programming. Its main objective is to check the
satisfiability of logical formulas, i.e. finding a solution to a set of constraints, and also to produce models
for satisfiable formulas. An extension of z3 is z3Opt [7], that can solve the Maximum Satisfiability
(MaxSAT) problem in those scenarios in which arbitrary models are not enough and applications want
to minimize or maximize one or more values. As z3 is a low-level tool, it provides a number of APIs
that can be exploited by other tools that require solving logical formulas. The version of the libraries
used currently in the project is the 3.3.4.

3.2.2 Verigraph
Verigraph [8] is a verification service for policies within network graphs. The graphs can be described
in JSON or TOSCA OASIS YAML/XML-based format. It can receive a description of a SG and of
network function configurations and, using z3, it can analyse the given SG and related configurations
in order to check if reachability policies (e.g. the possibility for packets of a certain flow generated
by a certain node of the SG to reach another SG node) are satisfied or not. The interaction with the
software is possible through RESTful and gRPC interface, as well as a complete CLI. Verigraph is the
foundation on which Verifoo has been designed. The verification framework is very similar as it shares
various portion of the code. On Verifoo though some extensions have been made in order to generalize
the approach including also a physical topology.

3.2.3 Verifoo
Verifoo (Verification and optimization orchestrator) is an extension of Verigraph, and is capable of per-
forming joint optimization and verification. It follows the recent trend for NFV management and orches-
tration (MANO) of many platforms, adding the integration of formal verification with the placement
procedure and thus formally verifying that services work before their actual deployment. Verifoo “is
able to deploy requested SGs by searching from a shared catalogue of resources. Since multiple map-
pings of a SG onto an infrastructure are possible, the orchestrator component also performs an optimal
placement on the basis of given performance parameters and delivers a formal assurance of safety and
security policies.” [9]. It requires, as an input, a SG, the physical topology, and a set of network policies
to be verified. Using z3, Verifoo produces, as an output, the verified optimal placement of the nodes of
the SG on top of physical hosts, in an XML format. The interaction with Verifoo is possible through

10

3.2 – Tools

the REST APIs that are available with the tool. More information will be given throughout the various
chapters.

3.2.4 SONATA
SONATA [10] is an emulation platform, created to support network service developers to locally pro-
totype and test complete network service chains in realistic end-to-end multi-PoP (point of presence)
scenarios. It allows the execution of real network functions, packaged as Docker, in emulated network
topologies running locally on the network service developer’s machine. While the simulation is running,
it is possible to push to the emulator a package that describes the service chain, through a particular com-
ponent called Dummy Gatekeeper. This component is a daemon process, listening on a specific port,
launched with the simulation, that takes care of the instantiation and execution of all the specified dock-
ers containing the network functions. The deployment of the dockers in the emulated network is done in
a robin-round fashion without considering the actual resources available on a specific server. However,
this round robin approach can be easily extended with slight modifications on the SONATA source code
in order to ensure the optimal deployment, which is provided by a file dynamically generated during the
execution of Verifoo. The emulation platform is based on Containernet [11] and the interactions with
it are possible thanks to various CLI commands and REST APIs. Further information on this topic are
available at https://github.com/sonata-nfv/son-emu. This platform has been recently adopted
by ETSI’s OSM project as part of their DevOps MDG under its new name vim-emu to work as a Virtual
Infrastructure Manager.
In this thesis work, the use of SONATA is aimed at allowing Verifoo to have a place in which persistently
store deployment information and test the service. The version of the libraries used currently in Verifoo
is the v3.0.

3.2.5 Neo4j
Neo4j [12] is a NoSQL graph database management system written in Java. It’s a transactional database,
hence the ACID properties are valid. In Neo4j, everything is stored in the form of either an edge, a node,
or an attribute. Each node and edge can have any number of attributes that can be used to narrow
searches. Neo4j can be used either in embedded mode or in server mode. In the embedded mode, the
database is included in the application and it is executed in the JVM. In the server mode, the Neo4j
process is independent from the application and can be accessed through the REST API or through
the dedicated driver using the Cypher Query Language, a declarative graph query language originally
created by the Neo4j developers.
Neo4j’s graphs handling capabilities are used in Verifoo, at the moment, as a debugging tool to visualize
the SG that is given as an input. The version of the libraries used currently in Verifoo is the 3.3.4.

11

https://github.com/sonata-nfv/son-emu

12

Chapter 4

Thesis objectives

The main objective of this thesis is to extend the functionalities of Verifoo in order to create a tool that
can actively support and enhance the activity of an NFV orchestrator. In this chapter, a summarized view
on how this has been achieved and why, will be given.

4.1 Thesis motivations
The NFV paradigm introduced a radical change in how the network architecture are being designed,
splitting the bond between hardware and software, allowing for the development of network services as
software application. It has progressively gained attention in the industry in such a way that it largely
affected how networks will be built in the future years. One of the secrets of its success has been the
choice to adopt a philosophy mainly open source, since it allows to regulate projects in a more flexible
way, possibly introducing a ’de facto’ standard.

In order to lay the basis of this evolution, the ETSI ISG listed some challenges [1] that could be
seen as highly beneficial improvements for the technology. The continuous research on these topics can
certainly bring fresh ideas and original resolutions methods. Verifoo sets itself in this scenario, proposing
a novel solution for two of those problems. As better described in section 2.3, Verifoo mainly targets
how to deterministically deploy VNF instances on the NFV Infrastructure with performance-efficient
algorithms and how to check the correctness of the whole service respect to some policies declared
by an administrator. The resolution of these two challenges in an NFV framework is vital for a great
evolution of the technology itself. For this reason, the improvements implemented in Verifoo delivered
a software that proposes a new resolution approach that can perfectly fits in an NFV framework. This
can help to define a new standard or give a useful foundation for new projects that share the same vision,
all aimed towards a general progression.

4.2 Design and implementation of Verifoo extensions
The expression of all the work is represented by the custom XML format that laid out the foundation
of all the other major extensions. The solution, presented in section 6.1, ensures that complex network
services can be expressed in a context fully compliant with NFV and SDN technologies.

The main part of the thesis focused obviously on the improvement of Verifoo. During the design
phase, particular attention was paid to the modularity of the final architecture to encourage future ex-
pansions and integrations. In the implementation part, great emphasis was given to the usability of the
software, removing some limitations whose overcoming was previously delayed in order to deliver a
working proof of concept of the tool. For this reason, the network simulation model has been extended
and the firewall model was totally revamped to allow to express more realistic scenarios. A detailed
description of these improvements can be found in section 6.4.

Exploiting the already present network simulation environment, a new feature has been introduced,
the auto-configuration, that is described in section 5.3. Basically it gives the opportunity to generate
VNF configurations that satisfy the user level policies. This feature greatly exploits the z3 libraries to
define the optimal set of rules that solve the presented problem. Automate this task is a great challenge,

13

4 – Thesis objectives

nevertheless the rewards that can derive from it are also significant. The designed solution to this problem
will be presented in section 6.4.8

In addition to the improvements applied to the tool itself, other services have been integrated in
Verifoo.

The SONATA integration has been a step towards the integration of Verifoo in the Open Source
MANO project, since it is already part of OSM as the virtualized infrastructure manager. A set of
RESTful APIs have been made available for this module to ease future expansions of this feature. The
sections 5.1 and 6.2 describe respectively the design of this integration and its actual implementation in
Verifoo.

The Neo4j introduction in the Verifoo project laid down the foundation for data persistence in order
to maintain a state, although in the current version is not strictly necessary for the correct functioning of
the application. In section 5.2, the motivation behind the choice of this particular non-relational database
will be highlighted, while in section 6.3, what is actually implemented in Verifoo will be presented.

4.3 Tests and performance evaluation
As an indication of the quality of the new introductions a series of performance tests have been carried
out on the final solution. These results are crucial to understand the real feasibility and applicability of
the integration of Verifoo in an NFV framework. Regardless of the results, the methodology presented
in chapter 7 is general enough to be considered as a benchmark to test also future expansions.

14

Chapter 5

Verifoo Extensions design

In this chapter the design choices adopted to introduce the new features will be outlined. The chapter is
structured in the following way:

• In section 5.1 it will be described how Verifoo is now able to interact with SONATA, focusing
on those parts of SONATA that are interesting for the interaction. A class diagram will also be
presented to explain how it is possible to replace SONATA with other third-party tools that can act
in the same way. Moreover, the RESTful web service associated with the simulation environment
will be described.

• In section 5.2 the reasons behind the introduction of the Neo4j database in the project will be
explained.

• In section 5.3, the new workflow of Verifoo will be outlined including all the new developed
features.

5.1 SONATA integration design
The SONATA emulation platform has been integrated with Verifoo through the development of a soft-
ware module that can translate the output of Verifoo into the right sequence of operations needed to
have a running simulation of the topology with deployed VNFs. The module design will be described in
section 5.1.1. The simulation can be instantiated using a specific Java class or through a set of RESTful
APIs whose design choices will be described in section 5.1.2. The development of this APIs allows a
more independent approach following the recent trends in micro-service architectures.

5.1.1 Verifoo interaction
As shown in Figure 5.1, Verifoo interfaces with the SONATA module in two points:

• it exploits the Topology API to load topology definitions that the Emu-Core will simulate

• through the SONATA CLI, Verifoo executes all those operations that allow the deployment of a
service (since the SONATA CLI commands are available only on a Linux machine, the portability
of the software is limited for now)

Even though a Resource API is available in SONATA in order to handle the resources reservation (e.g.
the amount of disk storage that a VNF will occupy), it hasn’t been used, as this task is already performed
in Verifoo by z3, since it’s strictly interwoven with the deployment operation. Hence, the host resources
are stored in SONATA only as host meta-data, leaving all the logic to Verifoo.

15

5 – Verifoo Extensions design

Verifoo

Figure 5.1. SONATA Interaction Example

A REST API that allows the interaction with the module has been developed and it will be described
in a next paragraph. A simple example of its usage is depicted in Figure 5.2.

Developer/Orchestrator

Verifoo
RESTful
Service

Input XML

Output XML

SONATA
RESTful
Service

Output XML

Topology XML

Figure 5.2. SONATA Interaction Example

16

5.1 – SONATA integration design

The orchestrator provides an input XML to Verifoo REST web service describing the service graph,
the physical topology and some policies that need to be verified (step 1). Verifoo produces the output
XML in which is specified if the policies are satisfied or not, and in case they are, the XML includes
also the optimal deployment (step 2). This same XML file can be forwarded to the SONATA REST web
service that will instantiate the simulation of the service (step 3). The orchestrator can later use a REST
API to retrieve the information on the running emulated topology (step 4) and use them to build new
requests taking into account an already set up scenario.
Since the task done by the SONATA module can also be executed by other tools, the Java classes in the
code are organized in such a way that it will be easy in the future to replace one with the other. The
UML in Figure 5.3 represents the classes schema.

MedicineSimulatorMedicineSimulator

<<interface>>

PhyResourceModel

<<interface>>

PhyResourceModel

void setPhysicalTopology()
Hosts getPhysicalTopology()
void removePhysicalTopology()

<<throws>><<throws>>

MedicineSimulationExceptionMedicineSimulationException

TopologyDBTopologyDB

static TopologyDB db

PhyResourceModel model

<<throws>><<throws>>

<<interface>>

ResourceModelException

<<interface>>

ResourceModelException

Figure 5.3. UML classes organization

The class dedicated to storing information is the TopologyDB class, implemented with the singleton
pattern. It gathers information in a PhyResourceModel object, whose interface exposes the methods to
store a physical topology, retrieve it or delete it. MedicineSimulator is a class that implements that inter-
face and offers a real implementation of the abstract methods, mapping the operations in the following
way:

• Storing a physical topology translates into launching the SONATA emulator with the given data

• Retrieving a physical topology translates into interacting with the SONATA emulator in order to
rebuild the initial data

• Deleting a physical topology translates into stopping the SONATA emulator

(note that the MedicineSimulator class has other attributes and methods but they are not relevant in this
context).
If in the future, based on other needs, another module will be chosen to store the data of the physical
topology, another class, that implements the PhyResourceModel interface, can be developed.

5.1.2 RESTful API
In this paragraph the RESTful API associated with the SONATA translation module will be described.
The service is composed by a single resource on which various operations are possible. The operations
allow the storage of physical network information and its recovery.

Service Design

On the /simulation resource, three HTTP method are possible. Sending a POST, with the output XML
of Verifoo in the body, will activate the the simulation of the topology and then it will return an HTTP
message with the 200 status code and an empty body. If there is an already running simulation, a 500

17

5 – Verifoo Extensions design

status code will be returned. If the received XML has some unsatisfied properties, a 400 status code
will be return together with a body in which will be present an XML with an ApplicationError element
(already available in the initial Verifoo schema) that will describe the error.

Performing a GET on the same resource will return an XML with an Hosts element as root, contain-
ing the information about the physical topology previously stored with a POST.

With a DELETE it is possible to stop the simulation, making room to store another one.

Resources Method Req. body Status Resp.body Meaning
/simulation POST NFV 200 The simulation is up and running
/simulation GET 200 Hosts XML describing the physical topology
/simulation DELETE 200 The simulation has been stopped

5.2 Neo4j integration design
One of the most common architecture in software applications is the Layered Application Architecture
which splits a system in layers distinct from each other. Every level has its own role and communicates
with the others without creating dependency or interferences. This approach simplifies the code man-
agement and its evolution through time. Usually, the number of the layers in this type of architecture is
three:

• Presentation layer, which defines the GUI, the user interaction input acquisition and data visual-
ization

• Application layer, which basically represents the business logic and implements all the function-
alities that can also be invoked by other services.

• Data management layer, which deals with data persistence and data access towards a data source
(e.g. a database).

Client
(IE, Chrome,
Firefox, etc.)

Application Server
(IIS, Apache, etc. with

ASP.NET, JAVA EE, etc.)

Database (MySQL,
PostgreSQL,
Neo4j, etc.)

Database (MySQL,
PostgreSQL,
Neo4j, etc.)

Figure 5.4. 3 Tiered Architecture

At the moment, Verifoo represents the application layer and there is no need at all for a data management
layer since all the information needed for its execution is contained in the input XML. However, being
able to save a state for a series of requests could open up new possibilities of interactions. Moreover,
storing information can reduce the amount of data transmitted in every HTTP request, avoiding the
repetition of those elements that are intrinsically disinclined to change, like a network infrastructure.
The network services themselves could be saved and categorized to be retrieved afterwards. Verifoo
could operate as a mere intermediary and provide a seamless and secure access to data.

The solution explored in this thesis envisages the preliminary introduction of the Neo4j database.
The choice of this particular type of non-relational database comes precisely from its intrinsic nature

18

5.3 – Verifoo workflow

since, as described in section 3.2.5, Neo4j is a graph database management system which fits perfectly
the structure of network services and infrastructures. Moreover, it natively supports graph path finding
algorithms that can be used to find the shortest path or perform other operation directly on the graphs
structure [13]. Currently, given the explorative nature of the thesis task, Verifoo exploits the JDBC
driver for the Neo4j environment and the queries are implemented at a low-level. If this part takes a
more prominent role in the project, it is advisable to use the Neo4j-OGM library [14]. An OGM (Object
Graph Mapper) provides the support to automatically persists annotated domain objects and references
in nodes and relationships in a graph (it is the equivalent of an ORM for the relational databases).

Neo4j can be used either in embedded mode or in server mode. In this case, the approach that has
been chosen is the server mode where the Neo4j process is independent from the Verifoo application and
is accessed through the dedicated driver using the Cypher Query Language. This approach encourages
a micro-service architecture favouring a higher dynamicity.

5.3 Verifoo workflow
As described in previous chapter, Verifoo fits into an NFV framework to work as a verification and
deployment service, coordinated by the action of an orchestrator. In this section the workflow of this
interaction will be presented. A high-level schema of the implemented functionalities can be seen in
Figure 5.5.

Policy RefinementPolicy Refinement

PreProcessing

Autoconfiguration

Autoplacement

Verification

Model
Translation

Input XML
(Service Graph

+
Physical Topology)

Output XML
(Auto generated

rules
+

Deployment)

Figure 5.5. Verifoo Workflow

How each of the task depicted in the image has been implemented will be described in depth in
Chapter 6. In this chapter a more abstract overview will be delineated, instead.

The input received by Verifoo from the orchestrator describes a deployment problem of intercon-
nected VNFs. Therefore, it includes the network service graph and the physical topology which contains

19

5 – Verifoo Extensions design

all the information about the available resource present on each machine and how the physical links con-
nect them. More indications can be given regarding the requirements for the various VNFs (e.g. how
much disk storage they need, how much memory, etc.). The network service can be a graph arbitrarily
complex. To highlight the specific sequence of nodes that packets will traverse is also possible to specify
network forwarding paths. This possibility is compliant with a service conceived for an SDN architec-
ture in which the same graph can be used to process different kind of flows simply instructing the switch
to follow different paths. The input also contains a series of high-level policies that express a reachabil-
ity condition between two endpoints (e.g. if a client is able to reach or not a server). These policies will
characterize the service verification whose satisfaction is the precondition before the deployment can be
computed.

The input is pre-processed to transform the XML elements that represent the VNFs in the right set
of FOL formulas that model their behaviour in z3. Also the policies are inserted in the z3 environment
as constraints. In addition, the topology is explored to understand the various deployment possibilities.
During this phase, the information can be stored in Neo4j to build a network state database.

Following the pre-processing task, the execution can follow two distinct routes. Each exploits a
different module which solves a different problem:

• the verification module, which checks if the constraints introduced by the policies are satisfied in
the described service graph

• the policy refinement module, which reverses the previous point, generating configurations for
those VNFs that requires it, in order to have a service graph that satisfies the constraints intro-
duced by the policies. In addition, it also removes from the service graph those VNFs that are not
necessary for the final solution (i.e. their configuration results empty even after the computation).
The first task is mainly executed by the auto-configuration sub-module, while the auto-placement
sub-module takes care of the second one.

Both modules produce a z3 model which contains information about the optimal deployment and the
generated configurations, if there were any. This information needs to be transferred into the actual Java
objects and finally into the XML that will be returned. After having a solution for the deployment, a
running simulation of the topology can be instantiated in the SONATA environment.

The output XML is therefore a repetition of what has been received in input with the addition of new
information about the deployment and the configurations. This file can be sent back to the orchestrator
that can exploit the new knowledge to instruct a VIM on how to deploy the network service and inform
a VNF Manager on which configuration needs to be injected.

20

Chapter 6

Verifoo Extensions Implementation

As anticipated in the previous chapters, Verifoo is a tool that performs joint optimal placement compu-
tation and formal verification of network properties (policies). Its early development state gives the op-
portunity to further refine it, reducing the gap with a possible future implementation in an NFV MANO
framework. Its integration in a framework such as Open Source MANO, can be seen as a future devel-
opment path that can follow the guidelines already traced by the general operating idea behind Verifoo
as presented in previous chapters.

All of the following work has to be seen as an extension of the one presented in the Verifoo pub-
lished paper [9] where can be found its operating principles. Based on Verigraph, Verifoo describes the
forwarding behaviour of virtual middleboxes, setting optimization objectives, using First Order Logic
(FOL) formulas which are computed by z3. While the network model is described using hard clauses,
that are formulas that must be satisfied, the optimization objective are formalized using soft clauses,
meaning that they can also be not satisfied at the cost of a specified weight penalty. Z3 provides a solu-
tion that satisfy all the hard clauses and introduces the minimal penalty for the unsatisfied soft clauses.
In this chapter all the modification made on the software are described. At first, the input XML format
required by Verifoo will be explained in details in section 6.1. After that, section 6.2 explains how the
integration with the SONATA module has been achieved and how it is possible to use a REST API to
interact with it through Verifoo. In section 6.3 the initial Verifoo layer for data persistence using Neo4j
is described. Finally, in section 6.4 all the improvements introduced in the Verifoo model are described
in details.

6.1 XML Input Format
In this section, with the help of some examples, will be presented a complete description of the input
XML needed by Verifoo in order to perform its evaluation. In the next paragraph, each element of the
XML will be described in details. An example of a complete input file can be the following:

Listing 6.1. XML Example
1 <NFV>
2 <graphs>
3 <graph id="0">
4 <node functional_type="WEBCLIENT" name="nodeA">
5 <neighbour name="node1"/>
6 <configuration description="A simple description" name="confA">
7 <webclient nameWebServer="nodeB"/>
8 </configuration>
9 </node>

10 <node functional_type="FIREWALL" name="node1">
11 <neighbour name="nodeA"/>
12 <neighbour name="nodeB"/>
13 <configuration description="A simple description" name="conf1">
14 <firewall>
15 <elements>
16 <source>nodeA</source>
17 <destination>nodeB</destination>
18 <src_port>5000</src_port>

21

6 – Verifoo Extensions Implementation

19 <dst_port>80</dst_port>
20 </elements>
21 </firewall>
22 </configuration>
23 </node>
24 <node functional_type="NAT" name="node2">
25 <neighbour name="node1"/>
26 <neighbour name="nodeB"/>
27 <configuration description="A simple description" name="conf3">
28 <nat>
29 <source>nodeA</source>
30 </nat>
31 </configuration>
32 </node>
33 <node functional_type="WEBSERVER" name="nodeB">
34 <neighbour name="node1"/>
35 <configuration description="A simple description" name="confB">
36 <webserver>
37 <name>nodeB</name>
38 </webserver>
39 </configuration>
40 </node>
41 </graph>
42 </graphs>
43 <Constraints>
44 <NodeConstraints>
45 <NodeMetrics node="node1" memory="2" reqStorage="38"/>
46 </NodeConstraints>
47 <LinkConstraints>
48 <LinkMetrics src="node1" dst="node2" reqLatency="10"/>
49 </LinkConstraints>
50 </Constraints>
51 <PropertyDefinition>
52 <Property graph="0" name="IsolationProperty" src="nodeA" dst="nodeB">
53 <HTTPDefinition url="polito.it" body="weapons"/>
54 </Property>
55 </PropertyDefinition>
56 <Hosts>
57 <Host name="hostA" cpu="1000" cores="2" memory="4" diskStorage="10" type="CLIENT"

↪→ fixedEndpoint="nodeA"/>
58 <Host name="host1" cpu="3000" cores="16" memory="16" diskStorage="50" maxVNF="1"

↪→ type="MIDDLEBOX">
59 <SupportedVNF functional_type="CACHE"/>
60 </Host>
61 <Host name="host2" cpu="4000" cores="4" memory="16" diskStorage="20" maxVNF="2"

↪→ type="MIDDLEBOX">
62 <SupportedVNF functional_type="FIREWALL"/>
63 </Host>
64 <Host name="host3" cpu="3000" cores="8" memory="16" diskStorage="10" maxVNF="3"

↪→ type="MIDDLEBOX">
65 <SupportedVNF functional_type="CACHE"/>
66 <SupportedVNF functional_type="FIELDMODIFIER"/>
67 </Host>
68 <Host name="hostB" cpu="1000" cores="2" memory="2" diskStorage="10" type="SERVER"

↪→ fixedEndpoint="nodeB"/>
69 </Hosts>
70 <Connections>
71 <Connection sourceHost="hostA" destHost="host1" avgLatency ="2"/>
72 <Connection sourceHost="host1" destHost="host2" avgLatency ="10"/>
73 <Connection sourceHost="host2" destHost="hostB" avgLatency ="5"/>
74 </Connections>
75 <NetworkForwardingPaths>
76 <Path id="0">
77 <pathNode name="nodeA"/>
78 <pathNode name="node1"/>
79 <pathNode name="node2"/>
80 <pathNode name="nodeB"/>
81 </Path>
82 </NetworkForwardingPaths>
83 <ParsingString></ParsingString>
84 </NFV>

22

6.1 – XML Input Format

NFV
NFV is the root element of the XML schema, it contains:

• A list of Graphs that represent the network services that will be deployed

• A list of Constraints

• A Property Definition element that contains a list of Properties that express the policies that will
be checked.

• A list of Hosts that form the physical topology

• A list of Connections between hosts

• An optional NetworkForwardingPaths element that allows the definition of all the paths that a
packet flow will traverse.

• An optional Parsing String that is the raw output of Verifoo, it is necessary for a REST API.

Graph
A Graph element represents a requested service graph that will be deployed in the network. Verifoo can
check and deploy multiple graphs but it’s important to notice that is mandatory to have at least one client
and one server in each of the graphs, otherwise, an exception will be thrown.
Graph is characterized by:

• A unique ID

• A list of Nodes

Listing 6.2. Graphs Example

1 <graphs>
2 <graph id="0">
3 <node ...>
4 ...
5 </graph>
6 <graph id="1">
7 ...
8 </graph>
9 </graphs>

Node
A Node is a logical network element that corresponds to a network function. A node is characterized by:

• A unique name

• A functional_type attribute that represents the network function of the node

• A List of neighbour through which is possible to define the topology of the service graph (i.e.
how the nodes are connected together)

• A configuration for the specific functional type

23

6 – Verifoo Extensions Implementation

Listing 6.3. Node Example

1 <node functional_type="FIREWALL" name="node1">
2 <neighbour name="nodeA"/>
3 <neighbour name="node2"/>
4 <neighbour name="node3"/>
5 <configuration ...>
6
7 </configuration>
8 </node>

Functional Type
The functional type of a node is an enumeration and can be one of the following:

• FIREWALL
• ENDHOST
• ANTISPAM
• CACHE
• DPI
• MAILCLIENT
• MAILSERVER
• NAT
• VPNACCESS
• VPNEXIT
• WEBCLIENT
• WEBSERVER
• FIELDMODIFIER

Configuration
In this section, different type of supported configurations are described. The configuration element must
coincide with the functional type specified in the attribute of the node element, otherwise, an exception
will be thrown. A configuration is characterized by an unique name and by an optional description.
Below, for each type of configuration, an essential description, needed to understand how Verifoo works,
will be provided. For further details, refer to the Verigraph documentation [8].

EndHost
An EndHost is a particular type of client whose configuration allows to define various fields of the packet
that will be generated by the node. The settable fields are:

• the body of the packet, useful for the DPI model
• the sequence number
• the protocol (HTTP request or response, POP3 request or response)
• the email_from field, useful for the antispam model
• the url that represents the application level destination, useful for the cache model
• the options
• the destination

Listing 6.4. End Host Configuration Example

1 <configuration description="A simple description" name="conf2">
2 <endhost body="thisisarequest"/>
3 </configuration>

24

6.1 – XML Input Format

Firewall
A Firewall configuration contains a list of ACLs (elements) that represents the flow of packets that will
be blocked. In the ACL is mandatory to define the source node and the destination node; optionally also
a source port and a destination port can be defined.

Listing 6.5. Firewall Configuration Example

1 <configuration description="A simple description" name="conf1">
2 <firewall>
3 <elements>
4 <source>nodeC</source>
5 <destination>nodeD</destination>
6 <src_port>5000</src_port>
7 <dst_port>80</dst_port>
8 </elements>
9 </firewall>

10 </configuration>

It is also possible to define a firewall with no configuration and in this case Verifoo will calculate one
that satisfies the requested policies, if possible. This configuration will be present in the output XML
provided by Verifoo.

Listing 6.6. Firewall Without Configuration Example

1 <configuration description="A simple description" name="conf1">
2 <firewall/>
3 </configuration>

Cache
The configuration element of a cache contains a list of resources that represent the nodes that will be
served by the cache (usually they are all the upstream clients in the network service topology).

Listing 6.7. Cache Configuration Example

1 <configuration description="A simple description" name="conf3">
2 <cache>
3 <resource>clientA</resource>
4 </cache>
5 </configuration>

NAT
A NAT configuration contains a list of internal nodes specified in the source elements, whose packets
will be translated following the normal NAT behaviour (also in this case, the source elements are usually
all the upstream clients in the topology).

Listing 6.8. NAT Configuration Example

1 <configuration description="A simple description" name="conf4">
2 <nat>
3 <source>clientA</source>
4 </nat>
5 </configuration>

25

6 – Verifoo Extensions Implementation

DPI
A DPI configuration contains a list of notAllowed elements that define the strings that, if found in the
body of a packet, will make the DPI drop that packet.

Listing 6.9. DPI Configuration Example

1 <configuration description="A simple description" name="conf2">
2 <dpi>
3 <notAllowed>SomeString</notAllowed>
4 </dpi>
5 </configuration>

Like for the firewall, it is possible to have a DPI with no configuration which will be provided by Verifoo
based on the desired policies.

Listing 6.10. DPI Without Configuration Example

1 <configuration description="A simple description" name="conf1">
2 <dpi/>
3 </configuration>

Antispam
An Antispam configuration contains a list of source nodes that represent the blacklisted nodes. A packet
will be dropped if its email_from field is equal to one of the blacklisted elements

Listing 6.11. Antispam Configuration Example

1 <configuration description="A simple description" name="conf5">
2 <antispam>
3 <source>nodeA</source>
4 </antispam>
5 </configuration>

Like for the firewall and the DPI, also an antispam can be declared with no configuration and, following
the same pattern, Verifoo will come up with one that satisfies the policies.

Listing 6.12. Antispam Without Configuration Example

1 <configuration description="A simple description" name="conf1">
2 <antispam/>
3 </configuration>

MailServer
A Mail Server configuration contains the Mail Server names (more than one name is possible).

Listing 6.13. MailServer Configuration Example

1 <configuration description="A simple description" name="confB">
2 <mailserver>
3 <name>nodeB</name>
4 </mailserver>
5 </configuration>

26

6.1 – XML Input Format

MailClient
A Mail Client configuration contains the Mail Server name. The use of a mail client, instead of a generic
endhost, sets the protocol of all the packets sent from the node to be POP3 requests, requiring also that
all the packets received are POP3 responses.

Listing 6.14. MailClient Configuration Example

1 <configuration description="A simple description" name="confB">
2 <mailclient mailserver="nodeB"/>
3 </configuration>

WebServer
A Web Server configuration contains the Web Server names (more than one name is possible).

Listing 6.15. WebServer Configuration Example

1 <configuration description="A simple description" name="confB">
2 <webserver>
3 <name>nodeB</name>
4 </webserver>
5 </configuration>

WebClient
A Web Client configuration contains the Web Server name. As for the mail client, the use of a web
client, instead of a generic endhost, sets the protocol of all the packets sent from the node to be HTTP
requests, expecting to receive only HTTP responses.

Listing 6.16. Web Client Configuration Example

1 <configuration description="A simple description" name="confB">
2 <webclient webserver="nodeB"/>
3 </configuration>

VpnAccess
A VpnAccess configuration contains the VpnExit name.

Listing 6.17. VpnAccess Configuration Example

1 <configuration description="A simple description" name="conf1">
2 <vpnaccess vpnexit="node2" />
3 </configuration>

VpnExit
A VpnExit configuration contains the VpnAccess name.

Listing 6.18. Vpn Exit Configuration Example

1 <configuration description="A simple description" name="conf2">
2 <vpnexit vpnaccess="node2"/>
3 </configuration>

27

6 – Verifoo Extensions Implementation

Constraints
The Constraints element encloses a NodeConstraints element, that contains all the node requirements,
and a LinkConstraints element that holds the requirements for the links between the nodes.

Listing 6.19. Constraints Example

1 <Constraints>
2 <NodeConstraints>
3 <NodeMetrics node="node1" nrOfOperations="1000" maxNodeLatency="10" memory=

↪→ "2" reqStorage="38" cores="1"/>
4 <NodeMetrics node="node2" nrOfOperations="1000" maxNodeLatency="20" memory=

↪→ "2" reqStorage="20" cores="2" optional="true"/>
5 </NodeConstraints>
6 <LinkConstraints>
7 <LinkMetrics src="node1" dst="node2" reqLatency="10"/>
8 </LinkConstraints>
9 </Constraints>

NodeConstraints
The NodeConstraints element is a list of NodeMetrics that characterize a specific node, referenced
through the node attribute, with the following information:

• The estimated nrOfOperations, used to calculate the latency that the node itself will have after
the deployment on a host that has a known computational power

• The maxNodeLatency requirement; used in conjunction with the previous attribute, imposes a
constraint on the maximum latency (expressed in ms) the node can introduce after the deployment
on a host

• The memory that the node requires to operate

• The reqStorage that represents the disk requirement of the node

• The cores that represent the minimum number of cores a host can have in order to be selected as a
valid deployment host for the node

• The optional attribute, that is used to inform Verifoo that a node can be omitted in the final de-
ployment. This attribute is strictly related with the auto-placement feature which will be described
in a later chapter.

All of the previous attributes are optional, except for the node attribute, allowing a customizable level
of detail. When an attribute is not specified, the use of the default values ensures that there will be
no restrictions on possible deployment scenarios (i.e. the hosts can contain as many node as possible
without worrying about the resource shortage). Hence, the default value assigned to the memory, the
reqStorage and cores is zero.

LinkConstraints
The LinkConstraints element is a list of LinkMetrics that characterize a specific link between two nodes.
It has the following attributes:

• The src and dst attributes that refer to the names of the node elements in a graph

• The reqLatency attribute that imposes a constraint on the maximum latency of the physical con-
nection that links together the hosts on which the source and destination nodes will be deployed
(if the nodes are deployed on the same host, the resultant latency is 0).

28

6.1 – XML Input Format

Property Definition
The PropertyDefinition element represents a list of properties that will be checked by Verifoo for a
specific graph. Currently, there are two properties that are supported by Verifoo, the isolation and the
reachability property. The Property element is characterized by some mandatory attributes that are:

• A Graph attribute that represents the graph on which the property will be checked.

• The src and the dst attributes, that tell Verifoo between which nodes the property needs to be
verified

• A Name that is an enumeration and represents the property that will be checked. With Isola-
tionProperty, Verifoo checks if there is no packet that from the source can reach the destination.
With ReachabilityProperty, Verifoo checks if at least one packet from the source can reach the
destination.

If no other attributes are used, Verifoo checks if the properties are satisfied for a generic flow of packets.
If there is a particular need to also specify these other fields, there are some optional sub-elements and
attributes that can be used:

• A src_port and a dst_port attribute that will force the property to be checked using packets that
have those specific values in the TCP ports fields

• An HTTPDefinition sub-element that forces the sent packets to be HTTP requests. In this sub-
element can also be specified all the relevant fields of a HTTP packet, such as the body and the
URL.

• A POP3Definition sub-element that forces the sent packets to be POP3 requests. Here can also be
specified some other characteristics of a POP3 packet, such as the body and the email_from field.

The HTTPDefinition and POP3Definition are used alternatively and should match the type of the proto-
col specified by the source node defined in the property, if it specifies one, in order to avoid contradic-
tions. The sub-element approach in the Property allows an easy introduction of other types of packets in
case of future needs.

Listing 6.20. Property Definition Example

1 <PropertyDefinition>
2 <Property graph="0" name="IsolationProperty" src="nodeA" dst="nodeB" src_port="

↪→ 5000" dst_port="80">
3 <HTTPDefinition url="polito.it" body="weapons"/>
4 </Property>
5 <Property graph="0" name="ReachabilityProperty" src="nodeC" dst="nodeD"

↪→ src_port="3000" dst_port="110">
6 <POP3Definition email_from="polito" body="weapons"/>
7 </Property>
8 </PropertyDefinition>

At the end of the computation, Verifoo enriches the Property element with an additional attribute, the
isSat attribute, that informs if the property is satisfied or not.

Host
An host is a physical machine present in the network infrastructure. An host is characterised by:

• A unique Name

• A type to distinguish between clients, servers and host on which there will be deployed middle-
boxes

• The cpu attribute that represents the host processor frequency expressed in GHz

29

6 – Verifoo Extensions Implementation

• The cores available on the host

• The diskStorage attribute that represents the available space in the mass storage of the host

• The memory available on the host

• The maxVNF that represents the maximum number of nodes that can be deployed on the host

• The fixedEndpoint attribute that tells Verifoo where to put a specific client or server. While is
mandatory for a client to have explicitly a host on which to be deployed, for a server it is not. If
a server doesn’t have a fixed host on which to be deployed, it will be deployed together with the
other nodes in the physical topology

• The active attribute, imposed by Verifoo at the end of its computation. It’s a boolean attribute that
is true if at least one node has been deployed on the host.

After the execution of Verifoo, the host will also contain a list of NodeRef elements that is a list of
the nodes that Verifoo decided to deploy on that host. As a consequence of the deployment, the host
resources will be updated subtracting the requirement of the nodes, as specified in the NodeMetrics
element.

Listing 6.21. Hosts Example

1 <Host name="hostA" cpu="1000" cores="2" memory="4" diskStorage="10" type="CLIENT"
↪→ fixedEndpoint="nodeA"/>

2 <Host name="host1" cpu="3000" cores="16" memory="16" diskStorage="50" maxVNF="1"
↪→ type="MIDDLEBOX" active="true">

3 <SupportedVNF functional_type="FIREWALL"/>
4 <SupportedVNF functional_type="CACHE"/>
5 <SupportedVNF functional_type="FIELDMODIFIER"/>
6 <NodeRef node="node1"/>
7 <NodeRef node="node2"/>
8 </Host>
9 <Host name="host2" cpu="4000" cores="4" memory="16" diskStorage="20" maxVNF="2"

↪→ type="MIDDLEBOX" active="true">
10 <SupportedVNF functional_type="FIREWALL"/>
11 <NodeRef node="node3"/>
12 </Host>
13 <Host name="host3" cpu="3000" cores="8" memory="16" diskStorage="10" maxVNF="3"

↪→ type="MIDDLEBOX">
14 <SupportedVNF functional_type="CACHE"/>
15 <SupportedVNF functional_type="FIELDMODIFIER"/>
16 </Host>
17 <Host name="hostB" cpu="1000" cores="2" memory="2" diskStorage="10" type="SERVER"

↪→ fixedEndpoint="nodeB" active="true">
18 <NodeRef node="nodeB"/>
19 </Hosts>

Connection
A connection element represents a unidirectional physical connection between two hosts. It’s charac-
terized by:

• A source and a destination

• The avgLatency attribute that represents the average latency on the physical link between the
source and the destination.

30

6.1 – XML Input Format

Listing 6.22. Connections Example

1 <Connections>
2 <Connection sourceHost="host1" destHost="host2" avgLatency ="1"/>
3 <Connection sourceHost="host1" destHost="host3" avgLatency ="10"/>
4 </Connections>

NetworkForwardingPaths
The NetworkForwardingPaths is an optional element that consists in a list of Paths each one of them
containing a list of nodes, from a client to a server. This list represents the exact sequence of nodes a
packet must traverse during the evaluation of a property characterized by that exact combination of client
and server. If more than one path has the same client and server, the corresponding properties must be
satisfied in all of them.

Listing 6.23. NetworkForwardingPaths Example

1 <NetworkForwardingPaths>
2 <Path id="0">
3 <pathNode name="nodeA"/>
4 <pathNode name="node1"/>
5 <pathNode name="node2"/>
6 <pathNode name="nodeB"/>
7 </Path>
8 <Path id="1">
9 <pathNode name="nodeC"/>

10 <pathNode name="node3"/>
11 <pathNode name="node1"/>
12 <pathNode name="node2"/>
13 <pathNode name="node3"/>
14 <pathNode name="nodeD"/>
15 </Path>
16 </NetworkForwardingPaths>

Parsing String
This element contains the string that is obtained as the raw output of Verifoo execution. It is used only
by the converter REST API of Verifoo.

Listing 6.24. An extract of ParsingString Example

1 <ParsingString>
2 ...
3 (define-fun check_isolation_n_0_nodeA_nodeB () Node
4 node5)
5 (define-fun integer_host1 () Int
6 1)
7 (define-fun node3@host7 () Bool
8 false)
9 (define-fun node3@host2 () Bool

10 true)
11
12 </ParsingString>

31

6 – Verifoo Extensions Implementation

6.2 SONATA integration implementation
In this section a complete description on how SONATA has been integrated with Verifoo will be given,
following the general ideas outlined in section 5.1.

In order to work correctly, the Verifoo module needs to know the root directory of the SONATA li-
braries, which can be specified by setting the system property called it.polito.verifoo.rest.sonata.rootDirectory,
otherwise it uses the default value “/home/sonata”.

6.2.1 Service Graph Simulation
In this paragraph further details will be given on how the output from Verifoo is used to run the SONATA
emulator. As anticipated in chapter 2, some modifications to the original SONATA code have been made
in order to achieve an optimal deployment in the simulated network. In particular, the dummygate-
keeper.py file, included in the library, has been modified in such a way that, when a service package is
received, before attempting to deploy the network functions in the round-robin, default way, it first tries
to call a function imported from a file called CustomPlacement.py, dynamically generated by Verifoo,
that will provide the right deployment. If something goes wrong during this call, it tries deploying the
nodes using the default method and then it continues with the normal execution of the program.
Along with the various steps of the algorithm used to run the simulation, there will be some example
files that will refer to the following simple scenario in which the only possible deployment is to have
each of the nodes of the service graph installed on a different host (n1 on h1, n2 on h3 and n3 on h3):

Physical Topology

Client C (fixed) h1 h2 h3
Server S (fixed)

Service Graph

Client C

Server S

n1 n2 n3

Figure 6.1. SONATA Example Topology

The first step is to start the simulation of the physical network and for this purpose, a python file is
dynamically generated; following a syntax very similar to the containernet one, it describes all the hosts,
with their available resources, and how they are connected, specifying also the delay of the connection.
Lastly, in this file are also declared the REST API endpoint, useful to interact with the simulation via
HTTP requests, and the SONATA Dummy Gatekeeper endpoint, needed to allow the deployment of the
network functions through the upload of a specific package; these endpoints are then hooked to each of
the host in the topology. It is important to notice that in the file the net object has its enable_learning
attribute equal to false in order to prevent communication between all the hosts, as it would happen in
a switched network, and enable the creation of paths based on entirely on the network service chaining,
as it happens in an SDN network.

32

6.2 – SONATA integration implementation

Listing 6.25. Extract of Topology file

1 def create_topology1():
2 net = DCNetwork(controller=RemoteController, monitor=False, enable_learning=False)
3 hostA = net.addDatacenter("hostA", metadata="{\"name\":\"hostA\", \"cores\":\"2\",

↪→ \"cpu\":\"2\", \"memory\":\"4\", \"diskStorage\":\"10\", \"maxVNF\":\"null
↪→ \", \"type\":\"CLIENT\", \"fixedEndpoint\":\"nodeA\", \"supportedVNF\":[]}"
↪→)

4 host1 = net.addDatacenter("host1", metadata="{\"name\":\"host1\", \"cores\":\"4\",
↪→ \"cpu\":\"1\", \"memory\":\"16\", \"diskStorage\":\"50\", \"maxVNF
↪→ \":\"0\", \"type\":\"MIDDLEBOX\", \"supportedVNF\":[{ \"functionalType\":
↪→ \"FIREWALL\"},{ \"functionalType\": \"CACHE\"},{ \"functionalType\": \"DPI
↪→ \"}]}")

5 ...
6 net.addLink(hostA, host1, delay="1ms")
7 net.addLink(host1, host2, delay="1ms")
8 net.addLink(host2, host3, delay="1ms")
9 net.addLink(host3, hostB, delay="1ms")

10 rapi1 = RestApiEndpoint("0.0.0.0", 5001)
11 rapi1.connectDCNetwork(net)
12 rapi1.connectDatacenter(hostA)
13 rapi1.connectDatacenter(host1)
14 ...
15 rapi1.start()
16 sdkg1 = SonataDummyGatekeeperEndpoint("0.0.0.0", 5000, deploy_sap=True)
17 sdkg1.connectDatacenter(hostA)
18 sdkg1.connectDatacenter(host1)
19 ...
20 sdkg1.start()

The package pushed to the Dummy Gatekeeper is essentially an archive, that contains folders and files
in a particular structure, that models the requested service. The archive is obtained through a specific
SONATA CLI command that, in addition to the packaging, also performs the validation of the service
descriptors assuring their correctness.

Listing 6.26. Package Folder Structure

1 service-folder/
2 project.yml
3 sources/
4 nsd/
5 nsd.yml
6 vnf/
7 node1/
8 node1-vnfd.yml
9 node2/

10 node2-vnfd.yml
11 ...

The second step consists in creating the CustomPlacement.py file. It is dynamically generated in the ap-
plication classpath and then it is moved to the right SONATA library folder. It translates the information
of the actual deployment computed by Verifoo into the instructions needed by the Dummy Gatekeeper
in order to achieve that deployment, as it can be seen in the following example.

Listing 6.27. Placement file

1 class CustomPlacement(object):
2 def place(self, nsd, vnfds, saps, dcs):
3 vnfds[’nodea’]["dc"] = dcs[’hostA’]
4 vnfds[’node1’]["dc"] = dcs[’host1’]
5 vnfds[’node2’]["dc"] = dcs[’host2’]

33

6 – Verifoo Extensions Implementation

6 vnfds[’node3’]["dc"] = dcs[’host3’]
7 vnfds[’nodeb’]["dc"] = dcs[’hostB’]

After this, for each node, a VNF descriptor file is generated. It models the docker that will run the
chosen VNF applying all the information about the node metrics (memory, storage, etc.) if present in
the Verifoo output XML, otherwise the default values of 1, which is the lowest accepted value, is used
for each metric in order to prevent an exception during the SONATA validation process. This file also
declares the network interfaces available in the docker that later will be used to connect the VNFs.

Listing 6.28. VNF Descriptor file (node2-vnfd.yml)

1 descriptor_version: "vnfd-schema-01"
2 vendor: "eu.sonata-nfv"
3 name: "node2-vnf"
4 version: "0.1"
5 author: "Verifoo"
6 description: "VNF descriptor automatically generated for node2"
7 virtual_deployment_units:
8 - id: "1"
9 vm_image: "sonatanfv/sonata-empty-vnf"

10 vm_image_format: "docker"
11 resource_requirements:
12 cpu:
13 vcpus: 1
14 memory:
15 size: 1
16 size_unit: "GB"
17 storage:
18 size: 1
19 size_unit: "GB"
20 connection_points:
21 - id: "vdu01:cp00"
22 interface: "ipv4"
23 type: "internal"
24 - id: "vdu01:cp01"
25 interface: "ipv4"
26 type: "internal"
27 virtual_links:
28 - id: "input0"
29 connectivity_type: "E-Line"
30 connection_points_reference:
31 - "vdu01:cp00"
32 - "input0"
33 - id: "output0"
34 connectivity_type: "E-Line"
35 connection_points_reference:
36 - "vdu01:cp01"
37 - "output0"
38 connection_points:
39 - id: "input0"
40 interface: "ipv4"
41 type: "external"
42 - id: "output0"
43 interface: "ipv4"
44 type: "external"

After all the VNF descriptors have been created, the service descriptor file is generated. This file contains
the indications on how to connect the VNF dockers while, at the same time, a script file is populated with
all the SONATA CLI commands needed to instruct the physical topology to enable the communication

34

6.2 – SONATA integration implementation

between the hosts that contains those dockers. The commands need only to specify the dockers that are
being connected while the SONATA tool will set the appropriate rules in the physical topology.

Listing 6.29. Extract of Service Descriptor file (nsd.yml)

1 descriptor_version: "1.0"
2 vendor: "eu.sonata-nfv"
3 name: "sonata-service"
4 version: "0.1"
5 network_functions:
6 - vnf_id: "nodea"
7 vnf_vendor: "eu.sonata-nfv"
8 vnf_name: "nodea-vnf"
9 vnf_version: "0.1"

10 - vnf_id: "node1"
11 vnf_vendor: "eu.sonata-nfv"
12 vnf_name: "node1-vnf"
13 vnf_version: "0.1"
14 ...
15 virtual_links:
16 - id: "link-nodeA_to_node1"
17 connectivity_type: "E-Line"
18 connection_points_reference:
19 - "nodea:output0"
20 - "node1:input0"
21 - id: "link-node1_to_node2"
22 connectivity_type: "E-Line"
23 connection_points_reference:
24 - "node1:output0"
25 - "node2:input0"
26 ...

Listing 6.30. Network Script file

1 #!/bin/sh
2 son-emu-cli network add -b -src nodea:output0 -dst node1:input0
3 son-emu-cli network add -b -src node1:output0 -dst node2:input0
4 son-emu-cli network add -b -src node2:output0 -dst node3:input0
5 son-emu-cli network add -b -src node3:output0 -dst nodeb:input0

When all the files are ready, the emulator is lunched with the prepared topology file. The basic folder
structure required by the SONATA tool, is created and filled with the descriptor files and then it is fed
into the SONATA validator that creates the package that will be pushed to the Dummy Gatekeeper which
will deploy the service graph following the Verifoo placement. At this point the simulation is up and
running and can be interacted with through the already available REST API of the SONATA libraries.

6.2.2 Description of the simulation REST API
Following the guidelines described in section 5.1.2, a low-level usage example of the REST API will be
given, emphasizing the different type of information exchanged during the interaction.

The first step of the interaction is to save the physical topology and create a running simulation of the
service in the SONATA environment. Therefore, the fist operation is execute a POST request containing
the result of the Verifoo execution (i.e. the physical topology with the information about the deployment
of the requested service). Performing a GET without a running simulation will return a server error
since there is no information to be retrieved. Consecutive POST will overwrite the simulation previously
stored since for now only one topology at a time can be saved.
Example POST request

• POST http://localhost:8080/verifoo/rest/simulation

35

6 – Verifoo Extensions Implementation

• Accept: APPLICATION_XML;

• Content: XML file with the desired service chain and the physical topology with integrated de-
ployment information (it’s the output of the Verifoo deployment REST API).

An example of the content of a POST request could be the following:

Listing 6.31. POST body Example
1 <NFV>
2 <graphs>
3 <graph id="0">
4 <node name="nodeA" functional_type="MAILCLIENT">
5 <neighbour name="node1"/>
6 <configuration name="confA" description="A simple description">
7 <mailclient mailserver="nodeB"/>
8 </configuration>
9 </node>

10 <node functional_type="FIREWALL" name="node1">
11 <neighbour name="nodeA"/>
12 <neighbour name="node2"/>
13 <configuration description="A simple description" name="conf1">
14 <firewall>
15 <elements>
16 <source>nodeC</source>
17 <destination>nodeD</destination>
18 </elements>
19 </firewall>
20 </configuration>
21 </node>
22 <node functional_type="CACHE" name="node2">
23 <neighbour name="node1"/>
24 <neighbour name="nodeB"/>
25 <configuration description="A simple description" name="conf2">
26 <cache>
27 <resource>nodeA</resource>
28 <resource>node1</resource>
29 </cache>
30 </configuration>
31 </node>
32 <node name="nodeB" functional_type="MAILSERVER">
33 <neighbour name="node2"/>
34 <configuration name="confB" description="A simple description">
35 <mailserver>
36 <name>nodeB</name>
37 </mailserver>
38 </configuration>
39 </node>
40 </graph>
41 </graphs>
42 <Constraints>
43 <NodeConstraints/>
44 <LinkConstraints/>
45 </Constraints>
46 <PropertyDefinition>
47 <Property name="ReachabilityProperty" graph="0" src="nodeA" dst="nodeB" isSat="

↪→ true"/>
48 </PropertyDefinition>
49 <Hosts>
50 <Host name="hostA" cpu="2" cores="2" diskStorage="10" memory="16" type="CLIENT"

↪→ fixedEndpoint="nodeA"/>
51 <Host name="host1" cpu="1" cores="4" diskStorage="40" memory="16" maxVNF="1"

↪→ type="MIDDLEBOX" active="true">
52 <SupportedVNF functional_type="FIREWALL"/>
53 <SupportedVNF functional_type="CACHE"/>
54 <NodeRef node="node1"/>
55 </Host>
56 <Host name="host2" cpu="3" cores="8" diskStorage="0" memory="16" maxVNF="3"

↪→ type="MIDDLEBOX" active="true">
57 <SupportedVNF functional_type="FIREWALL"/>
58 <SupportedVNF functional_type="CACHE"/>
59 <NodeRef node="node2"/>

36

6.2 – SONATA integration implementation

60 </Host>
61 <Host name="host3" cpu="4" cores="4" diskStorage="50" memory="16" maxVNF="4"

↪→ type="MIDDLEBOX">
62 <SupportedVNF functional_type="FIREWALL"/>
63 <SupportedVNF functional_type="CACHE"/>
64 </Host>
65 <Host name="hostB" cpu="2" cores="2" diskStorage="10" memory="16" type="SERVER"

↪→ fixedEndpoint="nodeB" active="true">
66 <NodeRef node="nodeB"/>
67 </Host>
68 </Hosts>
69 <Connections>
70 <Connection sourceHost="hostA" destHost="host1" avgLatency="1"/>
71 <Connection sourceHost="host1" destHost="host2" avgLatency="1"/>
72 <Connection sourceHost="host2" destHost="host3" avgLatency="1"/>
73 <Connection sourceHost="host3" destHost="hostB" avgLatency="1"/>
74 </Connections>
75 </NFV>

At this point it is possible to perform a GET to retrieve the stored information about the physical topol-
ogy.
Example GET request

• GET http://localhost:8080/verifoo/rest/simulation

Example GET response

• 200: OK

• Content-Type: APPLICATION_XML;

• Content: An XML file containing the hosts of the physical topology previously stored with a POST
request.

The GET result in the previous example would be:

Listing 6.32. POST body Example
1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <Hosts>
3 <Host name="hostA" cpu="2" cores="2" diskStorage="10" memory="16" type="CLIENT"

↪→ fixedEndpoint="nodeA"/>
4 <Host name="host1" cpu="1" cores="4" diskStorage="40" memory="16" maxVNF="1" type="

↪→ MIDDLEBOX" active="true">
5 <SupportedVNF functional_type="FIREWALL"/>
6 <SupportedVNF functional_type="CACHE"/>
7 <NodeRef node="node1"/>
8 </Host>
9 <Host name="host2" cpu="3" cores="8" diskStorage="0" memory="16" maxVNF="3" type="

↪→ MIDDLEBOX" active="true">
10 <SupportedVNF functional_type="FIREWALL"/>
11 <SupportedVNF functional_type="CACHE"/>
12 <NodeRef node="node2"/>
13 </Host>
14 <Host name="host3" cpu="4" cores="4" diskStorage="50" memory="16" maxVNF="4" type="

↪→ MIDDLEBOX">
15 <SupportedVNF functional_type="FIREWALL"/>
16 <SupportedVNF functional_type="CACHE"/>
17 </Host>
18 <Host name="hostB" cpu="2" cores="2" diskStorage="10" memory="16" type="SERVER"

↪→ fixedEndpoint="nodeB" active="true">
19 <NodeRef node="nodeB"/>
20 </Host>
21 </Hosts>

At an time a DELETE request can be sent. This action stops the simulation and erases any information
about the topology.
Example DELETE request

• DELETE http://localhost:8080/verifoo/rest/simulation

37

6 – Verifoo Extensions Implementation

6.3 Neo4j Integration
The integration of the Neo4j database in Verifoo has been explored, however only a proof of concept
has been introduced in the code. Currently, the Neo4j database is used more like a visualization tool
made available for the developer. In fact, during the debugging, it could be very useful to have this kind
of tool to check the consistency and the correctness of the input graphs included in the requests. The
present section elaborates on this aspect. An automatic evolution of this feature could be using Neo4j as
a database to implement a layer of data persistence.

As described in section 5.2, the Verifoo service and the Neo4j service are two separated process,
potentially running in two separate machines and because of this Verifoo needs to know the address of
the server and the credentials for the authentication. This information can be provided to Verifoo through
specific system property that are the following:

• it.polito.verifoo.rest.neo4j.neo4jURL, following the pattern address:port for declaring the address

• it.polito.verifoo.rest.neo4j.neo4jUsername and it.polito.verifoo.rest.neo4j.neo4jPassword for spec-
ifying the credentials

If some of them are not configured, default values will be used (currently they are “127.0.0.1:7687” for
the address, “neo4j” for the username and “password” for the password). These system properties can
be set in the code or, for instance, in an ant script to avoid the recompiling, as shown in the following
example.

Listing 6.33. Ant Script Example

1 <target name="main" description="Run main">
2 <java classname="it.polito.verifoo.rest.main.Main" failonerror="true" fork=

↪→ "yes">
3 <sysproperty key="it.polito.verifoo.rest.neo4j.neo4jURL" value="

↪→ 127.0.0.1:7687"/>
4 <sysproperty key="it.polito.verifoo.rest.neo4j.neo4jUsername" value="

↪→ user"/>
5 <sysproperty key="it.polito.verifoo.rest.neo4j.neo4jPassword" value="

↪→ pwd"/>
6 </java>
7 </target>

Using the dedicated drivers, Verifoo contacts the Neo4j database server at the specified address using
the bolt protocol which is a “connection-oriented network protocol used for client-server communication
in database applications that operates over a TCP connection or WebSocket” [15]. It has been initially
developed precisely for Neo4j graph database. Of course, as the application expects to communicate with
the bolt protocol, it’s important to specify a bolt endpoint in the URL property (usually it is automatically
instantiated by the Neo4j server).
After having received an input XML composed by a certain number of graphs, using the information
retrieved in the previously mentioned system properties, Verifoo tries to authenticate into the Neo4j
database, If the connection is successful, Verifoo first runs a query to remove overlapping information
(i.e. the graphs already stored that have the same id of the ones that are going to be committed). After
cleaning, it runs the query that stores the graphs present in the input file as entities with the label Graph.
It also stores the nodes of the graphs as entities with the label Node that have as properties all the metrics
(memory, disk requirement, etc.) of that specific node. Each graph references the nodes contained
in it with a relationship called CONTAINS. The links between the various nodes are represented as
relationships named CONNECTED_WITH.
This information can be accessed afterwards using the Neo4j GUI having a result similar to the one in
Figure 6.2. At the moment Neo4j is used only as a visualization tool for debugging purposes but this
initial implementation is the first block that allows the developing of a series of features that, exploiting
the same driver, can access all the available Neo4j APIs.

38

6.3 – Neo4j Integration

Figure 6.2. Neo4j Interaction Example

39

6 – Verifoo Extensions Implementation

6.4 Verifoo Improvements
This section contains all the information about changes and improvements introduced in the Verifoo
model and in the framework itself. Besides the basic aspects already described in previous chapters,
more information will be given in following paragraphs regarding some of the concepts that are neces-
sary to understand the reasons behind the improvements that have been made. In particular, the topics
that will be discussed are:

• The use of a pre-processing task in Verifoo that allows the computation of the right deployment
scenarios

• The new possibility of having more than one client and/or more than one server in a network
service

• The addition of new constraints that formally model the new node and host metrics added in the
XML schema

• The addition of a new policy, the isolation policy, that Verifoo can formally check

• The modifications made on the Verifoo network model in order to allow also the deployment of
service graphs and not only of service chains

• The refinement of the firewall model in order to have a more realistic behaviour

• The addition of new functionalities, the auto-configuration and the auto-placement, that expand
further the Verifoo capabilities, adding the possibility to perform a completely automated policy
refinement (for now limited only to three VNFs)

6.4.1 Pre-Processing
One of the limitations Verifoo had, was the necessity to manually enumerate the variables that repre-
sented the possible deployments, together with the cost that those deployments would have had (in the
form of the latency between each pair of sequential nodes). Obviously, this raised various issues on the
scalability and the error-proneness of the approach. In this paragraph, it will be discussed the algorithm
adopted in order to compute the right set of formulas using a completely automated pre-processing job.
During this phase, the solution space is explored to define all the possible deployment scenarios leaving
afterwards to z3, the task of choosing the optimal one taking also into account all the boundary condi-
tions (e.g. the disk storage available on the host or the memory, etc.).
Initially, the algorithm considers the physical topology described in the input XML. It extracts from the
topology all the paths that lead from all the client hosts, that are fixed in the topology, to all the server
hosts, that may or may not be fixed. If no fixed server is specified, during the enumeration of the paths,
in turn, each host in the topology that is not a client, is considered as a server. A client is considered to
be fixed in the topology because usually, when requesting a service, its position is known a priori. On
the contrary, the position of a server can be flexible since it can be both in a known location or included
among the nodes that needs to be deployed. Given the extracted paths, the algorithm proceeds to eval-
uate the deployment of the service graph on each of them, extrapolating on which hosts a specific node
can be deployed. The constraints that are considered in order to define a correct deployment are:

1. The position of the client node is fixed on the first host (which, for construction, is the client host),
and the position of the server node is fixed on the last host (which, for construction, is the server
host)

2. Each sequential node in the graph needs to be deployed either on the same host (in which case the
latency between the two nodes is considered to be zero), or on hosts that are directly reachable (in
which case the latency is considered to be equal to the latency of the physical connection between
the two hosts)

40

6.4 – Verifoo Improvements

About the reachability mentioned in 2, in reality all the hosts are usually directly reachable thanks to the
routers that can deliver packets to any of those hosts. However, the need for an explicit direct reachability
allows to include also the cases where two hosts are not connected (e.g. network failure) or should not
be (e.g. for security reasons). Anyway, the direct reachability among all the hosts can be achieved with
the declaration of a full mesh in the input XML (see the Chapter 3.1 to have further details on how this
can be easily done). For each path, the pre-processing task uses a recursive algorithm that proceeds to
deploy all the nodes in the service graph on the hosts, taking care that the order of the nodes is preserved,
thus reducing significantly the solution space. In fact, a node will always be deployed on hosts that, in
the path, are located after the ones on which its previous nodes are deployed, so not all the possibility
are explored, as it will be better described in a next example. When it finds a configuration in which
the previous two constraints are satisfied, the recursive algorithm backtracks and saves the information
relative to the exact positioning of each node in the physical topology together with the latency towards
the node that follows in the current configuration.
To visualize the approach better, a simple example will be presented, considering the requested service
graph and the physical topology depicted in Figure 6.3:

Physical Topology

Client C (fixed) h1

h2

h3

h4
Server S (fixed)

5ms

10ms

20ms

40ms

30ms

5ms

Service Graph

Client C

Server S

n1 n2 n3

Figure 6.3. Simple Scenario

The first step is to extract from the physical topology all the paths that from a client bring to a server.
In this case they are only two and are the ones listed in Figure 6.4:

41

6 – Verifoo Extensions Implementation

Extracted Paths

Client C (fixed) h1 h2 h4
Server S (fixed)

5ms 10ms 40ms 5ms1)

Client C (fixed) h1 h3 h4
Server S (fixed)

5ms 20ms 30ms 5ms2)

Figure 6.4. Extracted Paths

For each path, the execution of the recursive algorithm extracts the possible configurations that satisfy
both constraints 1 and 2, as shown in Figure 6.5:

Deployment Scenarios

Client C (fixed) h1 h2 h4
Server S (fixed)

5ms 10ms 40ms 5ms1)

Client C (fixed) h1 h3 h4
Server S (fixed)

5ms 20ms 30ms 5ms2)

n1 n2 n3

n1 n2 n3

Figure 6.5. Possible configurations

At the end of the pre-processing job, the important obtained knowledge is that n1 can be deployed
on h1, n2 can be deployed either on h2 or h3, and n3 can be deployed on h4. Moreover, also the latency
of the links that connect the nodes after the deployment on the hosts is stored. So between C and n1, and
between n3 and S, only one value is stored (5ms in both cases), while between n1 and n2, and between

42

6.4 – Verifoo Improvements

n2 and n3, two values for each couple (i.e. n1-n2, n2-n3) are stored because it depends on whether n2
will be deployed on h2 or h3, as will be further described in the example below. In detail, considering
the scenario in which z3 chooses to deploy n2 on h2, between n1 and n2 the latency is equal to 10ms,
while between n2 and n3 it is 40ms. In the configuration where z3 chooses to deploy n2 on h3, the
latency is 20ms between n1 and n2 and 30 ms between n2 and n3. From here, the approach followed is
the same that is described in [9]. To sum up, the approach uses two functions:

• the So f t function which allows to declare a soft constraint. It takes two arguments, one is the
expression that will be checked, and the other is a weight associated with the expression.

• the route function which models the choice of a next hop considering also the latency between the
nodes

Applying the same methodology, the variables extracted during the pre-processing in the previous ex-
ample are then transformed into the following formulas:
For n1:

So f t((route(n1,n2, l12)⇒ n1@h1∧n2@h2),10)
So f t((route(n1,n2, l13)⇒ n1@h1∧n2@h3),20)

For n2:

So f t((route(n2,n3, l24)⇒ n2@h2∧n3@h4),40)
So f t((route(n2,n3, l34)⇒ n2@h3∧n3@h4),30)

For n3:

So f t((route(n3,S, l4S)⇒ n3@h4),5)

Taking as example the two conditions derived for n1, it can be seen how the route function refers to
the same nodes but the latency is different. In fact, the implications state different deployments for n2
which obviously affect the latency that will be present between the nodes. In general, for each next
hop, a distinct soft clause is declared. A similar discussion can be made for the conditions extracted for
n2. The sequentiality of the nodes, requested in the service graph, is maintained also in the deployment
thanks to the AND operation between in the conditions on the right side of the implication (e.g. if, for
n1, z3 verifies n1@h1∧n2@h2, for n2 the only valid configuration is the one that implies that n2@h2 is
true, and so on). For n3, since the positioning of the server is fixed and assumed as known, on the right
side of the implication there is only the condition about n3 without specifying the server.
Using these formulas, together with all the other ones about the resources available in the hosts, z3 will
then compute which configuration is the optimal one.

6.4.2 Multiple Endpoints
Among all the improvements that have been made on Verifoo, the possibility of handling multiple clients
and servers is one of the most important. Initially Verifoo was able to deploy only service chain in which
the number of client and server was limited to one for each. Being capable of deploying service graph
in which could be present more clients and servers, has favoured an improvement in the expressivity of
the tool, which is now able to accept a wider range of different types of scenarios. In fact, having more
clients that access the same network is a very common situation, as well as having more than one server
in the same topology that may offer different services (e.g. one handles the mails and another the web
pages). The introduction of this feature contributed also to the development of the auto-configuration
feature, since it allowed to depict more interesting and realistic scenario for a policy refinement job. An
example of this improvement can be seen in Figure 6.6, where two endpoints are used.

43

6 – Verifoo Extensions Implementation

NAT

WebServer SFirewall 1 Firewall 2

Web Client A

Web Client B

Figure 6.6. Policy Refinement Example

Allowing this type of scenario also gave the possibility to express a series of policies for each in-
dividual endpoint, increasing the complexity of the problem to a level where it can be advantageous to
have a software that automates the policy refinement task.
To enforce this new functionality the pre-processing task, described in the previous chapter, has been
slightly modified in order to take into account the possibility of having multiple endpoints. The issue
about this thematic is in how the clients communicate with the servers (i.e. which VNFs are traversed
and which servers are actually meaningful for the communication). In this regard, the NFV ETSI IGS,
in one of its group specifications [5], has introduced the concept of network forwarding path as an "or-
dered list of connection points forming a chain of NFs, along with policies associated to the list". The
use of this list gives the possibility to specify a path that connects a client to a server, thus resolving the
previously mentioned issues. As described in chapter 3.1, an entity responsible to express this concept
has been introduced as an XML element (the NetworkForwardingPaths element). Following the ETSI
specification, it will serve as a way for the user to specify the actual communication paths. If no Net-
workForwardingPaths element is defined in the input XML, Verifoo considers that every client could
potentially communicate with every server and so it extracts the variables about the possible deployment
considering all the cases. If there is a NetworkForwardingPaths element in the input XML, only the
described paths are considered. A deployment variable (i.e. a variable to express that a specific node can
be deployed on a specific host) is then passed to z3 for its computation, only if it has been encountered
at least once in every client-server combination (i.e. every combination allows a specific node to be
deployed on a specific host), otherwise it is discarded. Formally, the set of variables passed to z3, V , is
the intersection of all the sets that are computed for each combination.

V = ∩iVi (6.1)

(where Vi is the set of variables obtained for the i-th client-server combination).
This single addition however, is not enough to cover all the possible scenarios. In fact, if for a specific
client-server combination, a node is never traversed in order to reach the server, during the pre-processing
no variables are computed for that node, expressing implicitly that no deployments are possible for it.
This, however, would be the exact opposite of what is the true meaning of this kind of situation: for
a specific client-server combination, if a node is not on the path that leads to the server, it doesn’t
matter where that node will be deployed because it introduces no constraint (i.e. it can theoretically
be deployed on any of the hosts). Due to the intersection operation, explicitly expressing these further
variables allows to avoid the exclusion of correct possibilities.
An example, portrayed in Figure 6.7, will be used to clarify this aspect.

44

6.4 – Verifoo Improvements

Physical Topology

Client C1 (fixed)
h1 h2

Server S (fixed)

Service Graph

Client C1

Server S

n1

n2 n3

Client C2 (fixed)

Client C2

Figure 6.7. Multiple Endpoints Example

In this scenario, there are two client-server combination, C1-S and C2-S. For the first one, C1-S,
the structure of the physical topology imposes that n1 can be deployed only on h1 (because it must be
directly connected to C1), while n3 must be deployed on h2 (because it must be directly connected to
S), leaving to n2 the possibility to be deployed either on h1 or h2. Now, considering the second combi-
nation, C2-S, n2 acquires the new constraint of being directly connected to C2 discarding the possibility
of being deployed on h1. In fact, if n2 had been deployed on h1, C2 would not have been able to reach it
directly, thus breaking the sequence imposed in the service graph. Lastly, n3 can still be only deployed
on h2. To reach the server, C2 never goes through n1, hence it doesn’t matter where it will be deployed.
Normally no variable about n1 would be enumerated, however, to avoid the unwanted exclusion of vari-
ables present in the previous computed set, they are explicitly added.

V1 (variables for C1-S)

n1@h1
n2@h1
n2@h2
n3@h2

V2 (variables for C2-S)

n1@h1 (expl. added)
n1@h2 (expl. added)
n2@h2
n3@h2

V (variables fed to z3)

n1@h1
n2@h2
n3@h2

Finally, the set of variables V that is fed to z3, is the intersection of the previous two sets. The listed
variables are the result of the pre-processing algorithm described in Chapter 3.4.1 and are used to enu-
merate the possible deployments of nodes that will be useful in the declaration of the soft constraints
that express the different routing options.
Using multiple endpoints in specific type of scenarios can also cause behaviours that can seem unex-
pected at first. To explain this, the scenario in Figure 6.8 will be considered.

45

6 – Verifoo Extensions Implementation

Physical Topology

Client C1 (fixed)
h1 h3

Server S (fixed)

Service Graph

Client C1

Server S

n1

n2 n3

Client C2 (fixed)

Client C2

h2

Figure 6.8. Multiple Endpoints Example 2

The network service is the same as in the previous example, while the physical topology is slightly
different. A scenario like this, however, will always result in an undeployable service. The problem in
this type of request is to be found in the constraints introduced by the fixed positions of the clients in the
physical topology in contrast with the ones required for the service graph. In particular, the constraints
for the graph are:

• n1 must be directly reachable from C1

• n2 must be directly reachable from C2

• n2 must be directly reachable from n1

Considering the physical topology however, there is no configuration that can fulfill the combination of
these three requirements, that is, there is no deployment that can make n2 directly reachable from C2
and from n1, at the same time, without violating the constraint for C1 and n1, thus the always unsatisfied
result. This is indeed the desired behaviour since there is no link connecting C2 to h2, if there were
the scenario would become very similar to the one presented in Figure 6.7 and Verifoo would return the
deployment.

6.4.3 Constraints
Initially, Verifoo supported a model of the nodes that considered only the disk space occupied by a VNF
as a deployment constraint. With the addition of other node metrics in the schema, it was possible to
extend the Verifoo expressivity enriching it with a number of new optional constraints for a more precise
modelling of a real scenario, considering other possible requirements a node can have. These constraints
are based on formulas that were already present in the initial Verifoo model. They can be summarized,
as described below, with variables that assume specific values based on certain conditions. Formally,
they can be expressed as follows:

46

6.4 – Verifoo Improvements

• h j represents a generic host and is equal to one if at least one node is deployed on that host;
(property)h j expresses that the <property> of the host h j is considered. The set that includes all
the host will be referred as H

• ni represents a generic node, it is only used to specify a requirement for that node with the notation
(< property >)ni with the same meaning as before. The set that include all the nodes will be
referred as N

• dnih j is a generic deployment condition that states that the node ni is deployed on the host h j and
it’s computed during the pre-processing; this condition is true only if the node will actually be
deployed on that host, false otherwise. When dnih j is true, the respective h j is equal to one. The
set that include all the dnih j will be referred as D

• int(< booleancondition >) transforms the boolean condition into an integer, following the con-
vention that true is translated into a one and false into a zero

Using the previous variables, the new constraints can be formally described:

• For all the deployment conditions, the computational latency a node will have after the deployment
must be less or equal to a maximum latency declared as requirement; the latency of a node is
calculated dividing the number of operations that a VNF performs, by the computational power of
the host on which it will be deployed.
With formulas, ∀dnih j ∈ D:

(nr_o f _operations)ni

(cpu)h j ∗1000000000
× int(dnih j)≤ (max_node_latency)ni× int(dnih j) (6.2)

(the cpu frequency is multiplied by 1000000000 because in the schema it’s expressed in GHz,
while the latency is expressed in ms)

• For all the deployment conditions, the cores required by each node deployed on a certain host must
be less or equal than the cores that host has.
With formulas, ∀dnih j ∈ D:

(cores)ni× int(dnih j)≤ (cores)h j ×h j (6.3)

• For each host, the sum of the RAM required by the nodes deployed on the host must be less or
equal than the RAM present on that host.
With formulas, ∀h j ∈ H:

∑
ni∈Mh j

((memory)ni× int(dnih j))≤ (memory)h j ×h j (6.4)

Where Mh j ⊆ N and represents the set that contains all the nodes that can be deployed on the host
h j

• For each host, the number of the nodes deployed on the host must be less or equal than the maxi-
mum number of VNFs that host can have.
With formulas, ∀h j ∈ H:

∑
ni∈Mh j

dnih j ≤ (max_vn f)h j ∗h j (6.5)

Where Mh j ⊆ N and represents the set that contains all the nodes that can be deployed on the host
h j

• For all the pairs of sequential nodes, the latency between them must be less or equal than a maxi-
mum latency specified as a requirement. In this case, the nodes and the host are considered in pair
in order to define a link. During the verification the latency between two nodes that are deployed
on the same host is considered to be equal to zero, while if they are deployed on different hosts, the
latency is considered to be equal to the one of the connection between the two hosts, which must

47

6 – Verifoo Extensions Implementation

be directly reachable in the physical topology. A valid pair of sequential nodes is modelled with
an AND between two deployment conditions, whose nodes are sequential in the service graph and
whose host are directly reachable in the physical topology. The set that contains all these valid
pairs will be referred as Dpair
With formulas, ∀(dni1h j1 ,dni2h j2) ∈ Dpair:

(latency)h j1h j2× int(dni1h j1 ∧dni2h j2)≤ (max_latency)ni1ni2× int(dni1h j1 ∧dni2h j2) (6.6)

• For all the hosts, a deployment condition that is true implies that the functional type of the node is
supported by the host.
With formulas, ∀h j ∈ H:

dnih j ⇒ (f unctional_type)ni ∈ (supported_ f unctional_types)h j (6.7)

To visualize better all the previous constraints, a simple example will be considered, using the scenario
presented in Figure 6.9:

Physical Topology

Client C (fixed) h1 h2 h3
Server S (fixed)

Service Graph

Client C

Server S

n1 n2 n3

Figure 6.9. Example Scenario

In this scenario, the pre-processing will return the following sets:

D = {n1@h1,n2@h1,n2@h2,n3@h2,n3@h3}
Dpair = {(n1@h1,n2@h1),

(n1@h1,n2@h2),
(n2@h1,n3@h2),
(n2@h2,n3@h2),
(n2@h2,n3@h3)}

The nodes constraints and the host attributes are listed in the following extract of the input XML of
Verifoo

Listing 6.34. Extract of input XML

1 ...
2 <node functional_type="FIREWALL" name="n1">

48

6.4 – Verifoo Improvements

3 ...
4 <node functional_type="DPI" name="n2">
5 ...
6 <node functional_type="CACHE" name="n3">
7 ...
8 <Constraints>
9 <NodeConstraints>

10 <NodeMetrics node="n1" nrOfOperations="1000" maxNodeLatency="10" memory="2"
↪→ cores="1"/>

11 <NodeMetrics node="n2" nrOfOperations="1000" maxNodeLatency="20" memory="1"
↪→ cores="2"/>

12 <NodeMetrics node="n3" nrOfOperations="4500" maxNodeLatency="10" memory="8"
↪→ cores="1"/>

13 </NodeConstraints>
14 <LinkConstraints>
15 <LinkMetrics src="n1" dst="n2" reqLatency="20"/>
16 <LinkMetrics src="n2" dst="n3" reqLatency="50"/>
17 </LinkConstraints>
18 </Constraints>
19 ...
20 <Hosts>
21 <Host name="C" cpu="2" cores="2" memory="16" diskStorage="10" type="CLIENT"

↪→ fixedEndpoint="nA"/>
22 <Host name="h1" cpu="1" cores="4" memory="16" diskStorage="50" maxVNF="2" type="

↪→ MIDDLEBOX">
23 <SupportedVNF functional_type="FIREWALL"/>
24 <SupportedVNF functional_type="CACHE"/>
25 </Host>
26 <Host name="h2" cpu="3" cores="8" memory="16" diskStorage="60" maxVNF="3" type="

↪→ MIDDLEBOX">
27 <SupportedVNF functional_type="FIREWALL"/>
28 <SupportedVNF functional_type="DPI"/>
29 </Host>
30 <Host name="h3" cpu="4" cores="2" memory="8" diskStorage="80" maxVNF="4" type="

↪→ MIDDLEBOX">
31 <SupportedVNF functional_type="CACHE"/>
32 <SupportedVNF functional_type="DPI"/>
33 </Host>
34 <Host name="S" cpu="2" cores="2" memory="32" diskStorage="10" type="SERVER"

↪→ fixedEndpoint="nB"/>
35 </Hosts>
36 <Connections>
37 <Connection sourceHost="C" destHost="h1" avgLatency ="1"/>
38 <Connection sourceHost="h1" destHost="h2" avgLatency ="10"/>
39 <Connection sourceHost="h2" destHost="h3" avgLatency ="20"/>
40 <Connection sourceHost="h2" destHost="S" avgLatency ="1"/>
41 <Connection sourceHost="h3" destHost="S" avgLatency ="1"/>
42 </Connections>
43 ...

The computed constraints are:

1. Computational latency

• n1:

1000
1×1000000000Hz

× int(n1@h1)≤ 10ms× int(n1@h1)

49

6 – Verifoo Extensions Implementation

• n2:

1000
1×1000000000Hz

× int(n2@h1)≤ 20ms× int(n2@h1)

1000
3×1000000000Hz

× int(n2@h2)≤ 20ms× int(n2@h2)

• n3:

4500
3×1000000000Hz

× int(n3@h2)≤ 10ms× int(n3@h2)

4500
4×1000000000Hz

× int(n3@h3)≤ 10ms× int(n3@h3)

2. Cores

• n1:

1× int(n1@h1)≤ 4× int(n1@h1)

• n2:

2× int(n2@h1)≤ 4× int(n2@h1)
2× int(n2@h2)≤ 8× int(n2@h2)

• n3:

1× int(n3@h2)≤ 8× int(n3@h2)
1× int(n3@h3)≤ 2× int(n3@h3)

3. RAM

• h1 with Mh1 = n1@h1,n2@h1:

2× int(n1@h1)+1× int(n2@h1)≤ 16×h1

• h2 with Mh2 = n2@h2,n3@h2

1× int(n2@h2)+8× int(n3@h2)≤ 8×h2

• h3 with Mh3 = n3@h3

8× int(n3@h3)≤ 32×h3

4. Max VNFs

• h1 with Mh1 = n1@h1,n2@h1:

int(n1@h1)+ int(n2@h1)≤ 2×h1

• h2 with Mh2 = n2@h2,n3@h2

int(n2@h2)+ int(n3@h2)≤ 3×h2

• h3 with Mh3 = n3@h3

int(n3@h3)≤ 4×h3

5. • link between n1 and n2:

0× int(n1@h1∧n2@h1)≤ 20× int(n1@h1∧n2@h1)
10× int(n1@h1∧n2@h2)≤ 20× int(n1@h1∧n2@h2)

50

6.4 – Verifoo Improvements

• link between n2 and n3:

10× int(n2@h1∧n3@h2)≤ 50× int(n2@h1∧n3@h2)
0× int(n2@h2∧n3@h2)≤ 50× int(n2@h2∧n3@h2)

20× int(n2@h2∧n3@h3)≤ 50× int(n2@h2∧n3@h3)

6. Supported VNFs

• n1:

n1@h1⇒{”FIREWALL”} ⊂ {”FIREWALL”,”CACHE”}

• n2:

n2@h1⇒{”DPI”} ⊂ {”FIREWALL”,”CACHE”}
n2@h2⇒{”DPI”} ⊂ {”FIREWALL”,”DPI”,}

• n3:

n3@h2⇒{”CACHE”} ⊂ {”FIREWALL”,”DPI”}
n3@h3⇒{”CACHE”} ⊂ {”DPI”,”CACHE”}

Not all of the previous constraints can be satisfied for the considered scenario. The task of z3 is to discern
the deployments that can fulfill the requirements and those that cannot; then, to find among those that
meet the requirements, the one that is the optimal.
In this example the set S⊆ D, that contains all the deployment conditions that are true, would be:

S = {n1@h1,n2@h2,n3@h3}

as can be easily derived seeing only the constraint 6.7.

6.4.4 Isolation Policy
The first policy Verifoo has supported is the reachability policy which tests if there is at least one path
that a packet can follow to reach a specific destination from a specific source. An extension, made
during this thesis work, has been to implement a new type of policy, the isolation policy, and make it
compliant with all the available VNFs. The introduction of this new policy has been possible thanks to
the extension of the XML schema and the addition of new formulas in the internal Verifoo model. The
example below shows how to request to verify an isolation policy between a client and a server.

Listing 6.35. Policy Example

1 <PropertyDefinition>
2 <Property graph="0" name="IsolationProperty" src="nodeA" dst="nodeB" src_port="

↪→ 5000" dst_port="80">
3 <HTTPDefinition url="polito.it" body="cats"/>
4 </Property>
5 </PropertyDefinition>

The isolation policy checks if not exists any packet that from the specified source is able to reach the
specified destination. The type of packet that is checked to be reachable can be enriched with various
characteristics (e.g. ports, application protocol, etc.) as better described in the chapter about the Verifoo
XML schema. As regards the model, the isolation policy has been modelled as follows:

∀{n0, p0} :
recv(n0,dest, p0) =⇒ p0.origin /= src

(6.8)

51

6 – Verifoo Extensions Implementation

∃{n1, p1} :
send(src,n1, p1)∧ p1.dest == dest

(6.9)

Where src and dest are the source and destination specified in the XML. The formula (6.8) states that
if the destination specified in the XML has received a packet, it must not have been originated from the
source specified in the XML. The formula (6.9), instead, ensure that exists a packet that is generated
from the source with the specified destination. This last constraint is useful because, without it, z3
will simply not generate any packet from the source making the first constraint true, thus mistakenly
satisfying the isolation policy.
Another constraint has been added for each VNF to ensure the correctness implementation of the new
policy. Each VNF has an additional constraint that can be generalized as follows:

∀{n0, p0} :
recv(n0,vn f , p0)∧ satis f y_vn f _constraints(p0) =⇒

∃{n1} : send(vn f ,n1, p0)

(6.10)

The satis f y_vn f _constraint function is a function that depends on the specific VNF and tests if the
packet is allowed to be forwarded. For instance, for a firewall it translates into the function that checks
if a packet matches a rule in the ACL, while for an antispam, it translates into the function that ensures
that a packet has not been sent from an address contained in the blacklist, and so on. In general, formula
(6.10) obliges a VNF to forward a packet that is received, if it does not break any VNF rules. This
constraint is useful because without it, in order to satisfy formula (6.8), any VNF would avoid forwarding
the received packets.
A future improvement could be further increase the number of policies that can be requested.

6.4.5 Extended Model
Another assumption the Verifoo model introduced, was that the type of service graphs that it could
deploy on physical topologies was not properly a graph but a simple chain. In order to include also the
possibility to have a real service graphs, some modification have been made on the formulas computed by
z3, extending the work presented in [9]. As described in that paper, in Verifoo each VNF in the network
service has its behaviour modelled with a set of formulas. These formulas represent the routing tables
and specify which node is the next hop in order to reach a destination. However, the approach described
in the paper only considered chains, so the presence of more than one next hop in the routing table was
not expected. To take into account the possibility that a node can have more than one neighbour that
reaches a specific destination, the formulas have been enhanced to allow z3 to choose between multiple
nodes. Formally, declaring:

• n0, n1 as generic nodes

• p0 as a generic packet that goes through a node

• dest as the final destination of the packet

• Nn as the set of all the neighbours of n1 that can reach the destination

∀{n0, p0} :

[send(n1,n0, p0)∧destAddr(p0,dest)]⇒
∨

∀i|ni∈Nn

n0 = ni (6.11)

The previous formula states that every packet p0 that arrives at n1 with destination equal to dest, must
have as next hop n0, that is one of its neighbours. This formula modifies the network behaviour, ensuring
that every packet follows only paths that are expected in the requested service graph, but it does not
affect in any way the deployment. To have a deployment that is coherent with the service graph, i.e.
all the sequential nodes are deployed either on the same host or on hosts that are directly reachable, the
following formula is used. Declaring:

• N as the set of the nodes

52

6.4 – Verifoo Improvements

• Ni as the set of all the neighbours of a generic node i

• H as the set of the hosts

• di j as a generic deployment condition that specify on which host (j) is deployed which node (i),
and it is true if that node is actually deployed on that host

• int(di j) as a function that translate the boolean condition di j into its integer value, following the
convention that true is equal to one and false to zero

• D as the set of all the deployment condition

• Dpair as the set that contains all the couple of deployment conditions that refer to sequential nodes

• Dpairik as a sub set of Dpair where all the deployment conditions refer to the same nodes i and k,
which must be sequential, but have different hosts

∀i : ni ∈ N :

∧
∀k|nk∈Ni

 ∑
Dpairik

int(dpairik)

= 1

 (6.12)

This second formula states that for each node, every one of its neighbours must be deployed on eligible
hosts and that only one configuration among all is chosen (i.e. every neighbour must be deployed on one
and only one host).
To have a practical demonstration of the previous formulas, the scenario in Figure 6.10 will be consid-
ered. It could be seen as a section of a bigger topology but, for the sake of simplicity, only this part will
be taken into account.

Figure 6.10. Example Scenario

The various sets that can be extracted from the previous scenario are:

• the set of all the nodes N = {node1,node2,node3}

• the set of the neighbour nodes N1 = {node2,node3},N2 = N3 = {node1}

• the set of hosts H = {host1,host2,host3}

53

6 – Verifoo Extensions Implementation

• the set of deployment condition

D = {node1@host1,node2@host1,node2@host2,node3@host1,node3@host2}

; since only a small part of the topology is considered, these last conditions can not be retrieved
from the picture itself, but assuming that node1 can only be on host1, the other conditions can be
immediately deduced because both node2 and node3 must be deployed on hosts that are directly
reachable from node1

• Dpair =
{(node1@host1,node2@host1),(node1@host1,node2@host2),(node1@host1,node3@host1),
(node1@host1,node3@host2)}

Taking into consideration the formulas only for node1, equation 6.11 becomes

[send(node1,n0, p0)∧destAddr(p0,dest)]⇒ (n0 = node2∨n0 = node3)

while equation 6.12 becomes

[int(node1@host1∧node2@host1)+ int(node1@host1∧node2@host2) = 1]
∧

[int(node1@host1∧node3@host1)+ int(node1@host1∧node3@host2) = 1]

Similar formulas are computed also for node2 and node3.
The application of the previous two equations to all the nodes present in a service graph ensures its
correct the deployment on any physical topology.

6.4.6 Packet Extensions and wildcards
Initially, in Verifoo, an IP address was modelled as single entity, like a symbolic name, thus allowing an
IP address to be for example node1, node2, etc., but excluding the possibility to handle an IP. Moreover,
since Verifoo was in early development, for the sake of simplicity the packets in the z3 were modelled
without considering the source and destination ports. One of the extension made on Verifoo, changed
the handling of IP addresses and included the source and destination ports in the packet model. At the
moment, the only VNF that exploits these new additions is the firewall, hence a future improvement
could be to extend their compatibility also to the other VNFs whose behaviour could take advantage of
those additions, in order to get closer to their real counterpart. Thanks to the IP extension, using a real
IP address like 10.0.0.1, has now a real impact on a firewall on how it handles the rules. In fact, with
a real IP, it has been also possible to introduce the concept of wildcards, even though in a simplistic
way that does not use the netmasks. Nevertheless it is an approach supported also by some commercial
firewall products [16]. Both the wildcards and the ports can now be used to define a firewall rule (as
shown below) to decide if a packet needs to be dropped or not.

Listing 6.36. Firewall Configuration Example

1 <configuration name="confFW">
2 <firewall>
3 <elements>
4 <source>20.0.-1.-1</source>
5 <destination>30.0.5.-1</destination>
6 <src_port>5000-8000</src_port>
7 <dst_port>80-110</dst_port>
8 </elements>
9 </firewall>

10 </configuration>

In Verifoo a wildcard is considered to be the number -1, which can replace any of the four decimal
number an IP address is composed of. So, for instance, the address that represents any address (*.*.*.*)

54

6.4 – Verifoo Improvements

is translated into -1.-1.-1.-1. The reason behind this translation is that the variable assigned to the IP
is an integer, so it cannot be a character like "*". To correctly handle this new concept of IP, also the
equality between two addresses has been revised, introducing the following constraint:∧

∀i∈{0,1,2,3}
[ip1i == ip2i∨ ip1i ==−1∨ ip2i ==−1] (6.13)

The formula (6.13) states that two IP addresses are equal if the value of the numbers in the same position,
is exactly the same or at least one among the two is equal to -1. The formula (6.13) has been the key to
allow a firewall to be able to understand rules that use the wildcards during the verification. In this way,
in a scenario similar to the one presented in Figure 6.11, the packets of both clients will be dropped.

Firewall 10.0.0.3

10.0.0.1

10.0.0.2

RULE
Src: 10.0.0.*
Dst: 10.0.0.3

Figure 6.11. Wildcards Example Scenario

The corresponding firewall configuration in the input XML is the following:

Listing 6.37. Firewall Configuration Example

1 <configuration name="confFW">
2 <firewall>
3 <elements>
4 <source>10.0.0.-1</source>
5 <destination>30.0.5.2</destination>
6 </elements>
7 </firewall>
8 </configuration>

If, for a node, a symbolic name is used instead of a real IP (for example “node1”), Verifoo derives an
IP address from the hash code of that symbolic name which will be used internally for the computation,
however, externally, it will be always shown the symbolic name. The use of a hash code could also intro-
duce collision problems but since the number of the nodes in a real service graph is usually restrained,
the probability of collision is very low.

55

6 – Verifoo Extensions Implementation

With the introduction of the wildcards has also been possible to explore the possibility of including it in
the declaration of a policy in the source or in the destination field as shown in listing 6.38 with the idea
of expanding further the input XML expressivity.

Listing 6.38. Property Definition Example

1 <PropertyDefinition>
2 <Property graph="0" name="IsolationProperty" src="10.0.0.-1" dst="

↪→ 100.100.100.-1"/>
3 </PropertyDefinition>

Inserting any of the two field with a wildcard without any further processing into z3 caused some issues.
In fact, those field are used to formulate the conditions on the network behaviour through the send and
the recv functions which expect that the node specified as source (and/or destination) is one of the node
included in the service graph. Moreover, the concept of a wildcards is obviously not built-in in the z3
code, so when z3 tries to satisfy the condition send(“10.0.0.− 1”,nexthop, p0), it tries to satisfy it for
a possible node referred as “10.0.0.-1” without knowing that it can also be referring to, for instance,
10.0.0.1. Since the send and the recv functions are the core of the network behaviour, a modification
in those functions could have meant rethinking a significant part of the network model. To avoid this
process, a workaround has been implemented, specifically a pre-processing task has been added that
translates every policy that involves a wildcard in the source or in the destination, to a list of policy that
enumerates the nodes in the network included by that wildcard. Taking as example the scenario depicted
in Figure 6.12, the policies transforms following the pattern shown in listing 6.39.

Figure 6.12. Example Scenario

Listing 6.39. Property Definition Transformation

56

6.4 – Verifoo Improvements

1 <PropertyDefinition>
2 <Property graph="0" name="IsolationProperty" src="10.0.0.1" dst="

↪→ 100.100.100.100"/>
3 <Property graph="0" name="IsolationProperty" src="10.0.0.1" dst="

↪→ 100.100.100.200"/>
4 <Property graph="0" name="IsolationProperty" src="10.0.0.2" dst="

↪→ 100.100.100.100"/>
5 <Property graph="0" name="IsolationProperty" src="10.0.0.2" dst="

↪→ 100.100.100.200"/>
6 </PropertyDefinition>

Regarding the TCP/UDP ports, they have been added as packet fields, as well as in the firewall rules, in
order to model more realistic scenarios. In a firewall rule, the ports indications are optional and when
none is specified, the firewall uses a more general approach that considers only the addresses. It is also
possible to have partial rule in which only the destination port or the source port is specified, giving
the possibility to have a wider variety of rules types. To request the verification of a policy for a well-
defined set of ports, the correspondent attributes in the input XML must be set. An example could be
the following:

Listing 6.40. Policy Example

1 <PropertyDefinition>
2 <Property graph="0" name="IsolationProperty" src="A" dst="B" src_port="

↪→ 1000-2000" dst_port="80"/>
3 </PropertyDefinition>

In this case, the property definition imposes that all the packets generated from the client nodeA must
contain those ports. If a rule in the firewall matches the fields in the packet, it will apply the specified
rule action (forward or drop).
A possibility that the addition of the ports has opened up, was to specify different policies with the same
source and destination differing from other characteristics, as can be seen in the XML example in listing
6.41.

Listing 6.41. Policies Example

1 <PropertyDefinition>
2 <Property graph="0" name="IsolationProperty" src="A" dst="B" src_port="

↪→ 1000-2000" dst_port="80"/>
3 <Property graph="0" name="ReachabilityProperty" src="A" dst="B" src_port="

↪→ 4000-5000" dst_port="443"/>
4 </PropertyDefinition>

Internally, applying this type of policies creates a contradiction that is caused by the following condition:

∀p0 :
send(endhost,nexthop, p0) =⇒ p0 has well de f ined characteristics

(6.14)

As shown in formula (6.14), to ensure that z3 sends the right packet from a specific endhost, a universal
quantifier is used. However, this also limits the possibility to have different packets sent from the same
endhost. For this reason, to overcome this problem the solution found uses a pre-processing task that
creates from a single node used as a source in a certain number of policies, an equal number of abstract
nodes with each its own policy.

57

6 – Verifoo Extensions Implementation

WebClient A Firewall 1 WebServer S1

WebClient A1

Firewall 1

WebClient A2

WebServer S1

Figure 6.13. Pre-Processing Task

Listing 6.42. Policies translated

1 <PropertyDefinition>
2 <Property graph="0" name="IsolationProperty" src="A1" dst="B" src_port="

↪→ 1000-2000" dst_port="80"/>
3 <Property graph="0" name="ReachabilityProperty" src="A2" dst="B" src_port="

↪→ 4000-5000" dst_port="443"/>
4 </PropertyDefinition>

Each of the abstract node can be seen as a single flow of packets that comes from a specific endhost,
hence after the z3 computation, if all the policies that refer to the abstract nodes are satisfied, the orig-
inal problem can also be considered satisfied. Before showing the output, the abstract nodes are then
regrouped in the original node, hiding this internal complexity from the final user.

6.4.7 New Firewall Model
A firewall is one of the VNFs that Verifoo supports and models with with FOL (First Order Logic)
formulas. It is possible to build a network service with one or more firewalls, specifying for each of
them its configuration with a high-level abstraction (i.e. a set of firewall rules declared following the
XML schema) and let Verifoo perform its evaluation to know if their current configurations are enough
to satisfy a set of requested policy. Initially, the firewall was modelled to work only in blacklist mode,
hence the rules specified which packets to drop, while the firewall let all the packets that were not
covered by any of the rules pass. Moreover, the rules only included the source and the destination as
packet fields to check in order to decide if it was needed to drop a packet or not. During this thesis
work, the VNF of a firewall has been completely revamped, improving its model in order to have the
possibility to work also in a whitelist mode and enriching its rules expressivity with other packet fields
to let the administrator set up a finer behaviour. The input XML has been modified accordingly to
reflect those changes as depicted in Figure 6.14. As shown, in the configuration element of a firewall the
default action can be specified and represents the behaviour that the firewall adopts for all the packets
that don’t match any of the specified rules. The default action can be ALLOW (forward the packets that
are not included in any of the rules) or DENY (drop the packets) and if no indication is given, the default
action is assumed to be DENY in order to have a more conservative behaviour. In addition, the rules
contain a field that explicitly specifies the action (always ALLOW or DENY) for a packet with certain
characteristics. More information about the XML schema can be found in chapter 3.1. Specifying a
type of default action and listing only rules of the opposite type allows the definition of firewall that
works in blacklist mode or whitelist mode in a simple way. However, it is also possible to define rules
with mixed types of actions to have a more complex firewall behaviour. Internally, Verifoo translates
the indications given in the XML in formulas that can be understood by z3. The forwarding actions of
a firewall (i.e. if the firewall has to forward a packet or not) is determined by a function declared in
the z3 context called acl_ f unc(). This function is a function that returns a boolean, true or false that
respectively map the ALLOW or DENY action. Each received packet is forwarded only if acl_ f unc()
returns true. Therefore, correctly modelling that function translates in the right forwarding behaviour.

58

6.4 – Verifoo Improvements

<configuration>
 <firewall>
 <elements>
 <source>fw_admin</source>
 <destination>server</destination>
 </elements>
 </firewall>
</configuration>

<configuration>
 <firewall defaultAction=”ALLOW”>
 <elements>

<action>DENY</action>
 <source>fw_admin</source>
 <destination> server </destination>

<protocol>TCP</protocol>
<src_port>1000-5000</ src _port>

 <dst_port>0-1023</dst_port>
<directional>true<directional>

 </elements>
 </firewall>
</configuration>

Figure 6.14. Firewall XML Schema Extensions

For each rule the following constraint is added:

∀{p0} :
rule.match(p0) =⇒ acl_ f unc(p0) == rule.action

(6.15)

where the rule.match(∗) expression is an abstraction of the following formula:

p0.src == rule.src ∧
p0.dst == rule.dst ∧
p0.lv4proto == rule.lv4proto ∧
p0.src_port.start ≥ rule.src_port.start ∧
p0.src_port.end ≤ rule.src_port.end ∧
p0.dst_port.start ≥ rule.dst_port.start ∧
p0.dst_port.end ≤ rule.dst_port.end ∧

(6.16)

The formula (6.15) models the firewall behaviour in order to act correctly based on the specified rules.
In conjunction with it, there is one more condition, added only once for each firewall, to model the
behaviour of the default action:

∀{n0, p0} :
recv(n0, f w, p0)∧ (@rule : rule.match(p0)) =⇒

acl_ f unc(p0) == f w.de f aultAction
(6.17)

At the moment, the model does not consider the possibility of conflict between overlapping rules. This
means that if for the same packet two or more rules match with it, the actions of those rules must be the
same otherwise it would create a contradiction, which would return an UNSAT result regardless of all
the other constraints. A future development could be to assign different priorities to the various rules
and apply only the one that has the highest priority. However, modelling the concept of priority directly
in z3 could be very difficult, or even impossible. In fact, z3 only provides to the developer hard and soft
constraints to solve MaxSAT problems. Obviously, using only hard constraints creates the contradiction

59

6 – Verifoo Extensions Implementation

problem mentioned previously. A direct evolution of this approach would be to model the rules using
the soft constraints, giving more weight to the rules with higher priority. In addition, there could be
one hard constraint to ensure that, for each packet only one soft constraint at a time (i.e. one rule) is
satisfied to avoid inconsistencies. The problem introduced by this approach is that the soft constraints
are like suggestions given to z3, which may also prefer to satisfy a soft constraint with lower priority
just to avoid contradicting some hard constraints. An example of this behaviour can be observed in the
following example:

Firewall 130.192.54.135

20.0.0.1

20.0.0.2

RULES
ALLOW Src: 20.0.0.1 Dst: 130.192.54.135 Priority 1
DENY Src: 20.0.0.* Dst: 130.192.54.135 Priority 2

Figure 6.15. Example Scenario

The rules modelled as soft constraints are:

A) ALLOW(from 20.0.0.1 to 130.192.54.135) weight:2 (higher priority)

B) DENY(from 20.0.0.* to 130.192.54.135) weight:1 (lower priority)

In addition there is one hard constraint to ensure that there are no inconsistencies: A + B = 1 If, among
the other policies (in Verifoo they are modelled as hard constraints), there is one similar to:

• Isolation Policy between 20.0.0.1 and 130.192.54.135

It will happen that in order to avoid a contradiction with the hard constraint introduced by the policy,
the soft constraint A is falsified, allowing B to be true, thus the result is SAT even though it should not
because the node 20.0.0.1 should not be blocked.
Another approach could be to create a pre-processing algorithm in java that delivers to z3 a conflict-free
set of rules.

6.4.8 Auto-Configuration
An important extension added to Verifoo is the possibility to have VNFs without any configuration or
with partial configuration, giving to the tool itself the task of providing the missing configurations at the
end of the computation. The tool will generate the configuration with the objective of satisfying all the

60

6.4 – Verifoo Improvements

requested policies while minimizing the number of generated rules in order to achieve it. For instance,
for a firewall, this translates into the generation of the rules that decide if a received packet needs to be
dropped or not. The auto-configuration does not affect the deployment in any way, since all the VNFs
that are declared in the service graph will be deployed onto a host in the physical topology even if they
still have an empty configuration after the z3 computation (this would mean that even without adding
any rules, the policies are satisfied).
Internally, Verifoo describes the VNFs that require the autoconfiguration differently from the already
configured counterpart of the same type. It uses a set of soft clauses that can be falsified, that have “null”
as a default value (or a value that has the same meaning for the specific context, e.g. zero for a TCP port,
more information are given below). In conjunction with these soft clauses, also new hard constraints
are declared to model the behaviour of the specific VNF. The general idea is that following the VNF
model, z3 decides which soft clauses will have values different from their default ones in order to satisfy
the requested policies. Not using the default value will introduce a penalty that z3 will try to minimize,
hence the resultant number of significant rules will be the least possible. In particular, for a firewall, the
rules that are generated express an action (ALLOW or DENY) that is always the opposite of the default
one in order to avoid any conflicts.
The soft clauses that are declared for a firewall for each rule are the following:

So f t(src == null,k,“rules“)
So f t(dst == null,k,“rules“)
So f t(protocol == 0,k,“rules“)
So f t(src_port == null,k,“rules“)
So f t(dst_port == null,k,“rules“)

(6.18)

where the first argument of the So f t function represents the constraint that can be falsified, k is a constant
that define its weight and the third argument is a label assigned to differentiate between the classes of soft
clauses (the weights of the constraints in each class are optimized independently from each other). The
previous soft clauses represent all the fields that will compose a firewall rule. In (6.18), only protocol
is an integer variable and is mapped in the output XML with an enumeration to have a human-readable
string. The src, dst, src_port and dst_port variables are DatatypeSort, instead. A DatatypeSort is
a particular type that z3 provides to the developers that allows the definition of more complex data
structures. In fact, the src and dst variables are an abstraction of an IP address and, as such, they are
made of four different decimal numbers (integers) that compose the address DatatypeSort. Moreover,
also the port fields are declared as a particular DatatypeSort in order to consider the possibility to have an
interval (e.g. 10-80) and not only a single value. This latter DatatypeSort is therefore composed by two
integers that represent the start and the end of the interval. To instruct z3 on which values are possible
for the mentioned DatatypeSort, new hard constraints have been added.
For the IPs:

∀{n0,n1, p0} :
recv(n0,n1, p0) =⇒

p0.src._0 > 0∧ p0.src._0 < 255 ∧
p0.src._1 > 0∧ p0.src._1 < 255 ∧
p0.src._2 > 0∧ p0.src._2 < 255 ∧
p0.src._3 > 0∧ p0.src._3 < 255 ∧
p0.dst._0 > 0∧ p0.dst._0 < 255 ∧
p0.dst._1 > 0∧ p0.dst._1 < 255 ∧
p0.dst._2 > 0∧ p0.dst._2 < 255 ∧
p0.dst._3 > 0∧ p0.dst._3 < 255

(6.19)

The formula (6.19) ensures that every packet that is exchanged between the VNFs has correct IPs. This
is because for every packet that is received, there is one that is sent and vice versa, if it doesn’t break any
other constraints (e.g. the packet has some blacklisted fields). Therefore, it would be redundant to repeat
the same constraint also for the send function since whenever is possible, if there is a send, there is also

61

6 – Verifoo Extensions Implementation

a receive. The only exceptions for this assumption are the clients and the server. The former sends a
packet without receiving one, while the latter receive a packet but it doesn’t send any. For this reason,
between the two function, the implication has been based on the recv one instead of the send, because
for the client (which sends only), the code builds the packet, thus it is certain to be correct. On the other
hand, the server receive a packet that is built by z3 though the various conditions and implications, hence
it is necessary to specify the range of the addresses otherwise some unwanted results may appear. So
with (6.19) only, all of the cases are covered with the minimum number of additional conditions. For
the ports intervals:

∀{n0,n1, p0} :
recv(n0,n1, p0) =⇒

p0.src_port.start > 0∧ p0.src_port.end < MAX_PORT
∧ p0.dst_port.start > 0∧ p0.dst_port.end < MAX_PORT

(6.20)

where MAX_PORT is defined as a constant and it’s equal to 65535.
For the IP related fields, the assignment in (6.18) can be therefore considered as a view at a higher level
of the following formulas (which are the ones that effectively are fed into z3):

So f t(src0 == 0,k,“rules“)
So f t(src1 == 0,k,“rules“)
So f t(src2 == 0,k,“rules“)
So f t(src3 == 0,k,“rules“)

(6.21)

with src = (src0,src1,src2,src3). To keep this consistency, one hard constraint is added to correlate the
src variable, that will be used to check for matching fields in the packets as shown afterwards, with the
srci, to which a value will be assigned by z3.
To improve the potential of the autoconfiguration task, the decimal numbers of the IP addresses can also
be assigned to be equal to a wildcard in order to allow z3 to generate rules that exploit that feature. This
obviously leads to a further minimization of the total number of rules. To express this possibility in z3,
the assumption that has been made is that the value "-1" is considered to be the wildcard. Therefore, to
implement this feature the following declarations must be added:

So f t(src0 ==−1,c,“wildcards“)
So f t(src1 ==−1,c,“wildcards“)
So f t(src2 ==−1,c,“wildcards“)
So f t(src3 ==−1,c,“wildcards“)

(6.22)

In (6.22) it is important to notice that the class is different from the previous declaration (the weight c
can also be different from the previous k but it doesn’t matter as they are in different classes). Using a
different class makes z3 capable of distinguish between a “null” rule and a rule with wildcards otherwise
it will use them indistinctly. Here only the src variable is shown but deriving the variables for the dst
one is straightforward.
A generic rule is then declared as a boolean condition that returns true if the fields of a generic packet
p0 match the soft clauses declared in (6.18). At a high level, the rule declaration can be seen as follows:

rule = (p0.src == src ∧
p0.dst == dst ∧
p0.protocol == protocol ∧
p0.src_port == src_port ∧
p0.dst_port == dst_port)

(6.23)

where the equalities p0.scr == src and p0.dest == dst, also consider the possibility to have wildcards
(e.g. the comparison between 10.0.0.1 and 10.0.0.-1 returns true). This is achieved transforming the
mentioned equalities as follows: ∧

∀i∈{0,1,2,3}
p0.srci == srci∨ srci ==−1 (6.24)

62

6.4 – Verifoo Improvements

The condition declared in (6.23) defines the way a packet matches a firewall rule. For each requested
policy, one rule is created to work as a placeholder considering the worst-case scenario (i.e. every policy
needs one rule to be satisfied), however z3 will always assign significant values only to the least number
of rules. Nevertheless, every firewall in the service graph will have a number of placeholder rules equal
to the number of the policies even if a particular firewall is never traversed by some of the flows declared
in those policies (i.e. the firewall is in neither of the paths that link a source to a destination specified
in a policy, thus it will never be able to affect that specific flow) leading to the declaration of some
unnecessary variables. A brief discussion about the performance is carried out in the next section.
At this point the firewall behaviour is modelled with a set of hard constraints that use the rules declared
in (6.23). The model differs based on the default action that has been declared in the input XML (if no
default action is declared by the user, to have a more conservative approach, the default action is DENY,
i.e. drop every packet). If the default action is ALLOW, the firewall is then modelled by means of the
following formulas:

∀{next, p0} :
send(f irewall,next, p0) =⇒

∃{previous}|recv(previous, f irewall, p0)∧¬rule
(6.25)

∀{previous, p0} :
recv(previous, f irewall, p0)∧¬rule =⇒
∃{next}|send(f irewall,next, p0)

(6.26)

The formula (6.25) states that if a firewall wants to send a packet p0, that same packet must have been
received and the rule condition returns false (this means that p0 does not match the rule). The formula
(6.26) obliges the firewall to send every packet p0 that has been received and does not match the rule.
The previous formulas assume that there is only one placeholder rule (i.e. only one requested policy). If
there are more than one policy, instead of the rule condition there is∨

∀i|ri∈R

ri (6.27)

where R is the set of all the placeholder rules. This ensures that the correct behaviour is applied even if
there are multiple rules to consider. If the default action is DENY the constraints are the same as before
but there is no negation in front of the rule condition as shown below:

∀{next, p0} :
send(f irewall,next, p0) =⇒

∃{previous}|recv(previous, f irewall, p0)∧ rule
(6.28)

∀{previous, p0} :
recv(previous, f irewall, p0)∧ rule =⇒

∃{next}|send(f irewall,next, p0)
(6.29)

In (6.28) and (6.29) the logic is inverted respect to the one described previously to fit the opposite default
action.
When enforcing the requested policies, one last condition is added to enforce the constraints of the
specified flow. The constraint for each policy is the following:

∀{next, p0} :
send(f irewall,next, p0) =⇒

p0.lv4proto == speci f ied_lv4proto
∧ p0.src_port == speci f ied_scr_port
∧ p0.dst_port == speci f ied_dst_port

(6.30)

63

6 – Verifoo Extensions Implementation

where the speci f ied∗ variables are extracted from the XML element of that particular policy. Having the
possibility to falsify the assignments in (6.18), z3 can choose the right value for a soft clause in order
to satisfy the requested policies in accordance with the default action of the firewalls, using as few as
possible rules.
To have a practical example, the scenario in Figure 6.16 will be considered. For the sake of simplicity,
the assumption made in this scenario is that both firewalls have been configured by the user with a
default action of ALLOW, so that all the packets that do not match any rule are forwarded, and the auto
generated rules only contain the IPs.

NAT

WebServer SFirewall 1 Firewall 2

Web Client A

Web Client B

Figure 6.16. Example Scenario

Requiring that both A and B can reach S, will result in no auto-configured rule, while, when the
requested policies require that S should be reachable from A, but not from B, there will be one auto-
configured rule in the first firewall that drops all the packets from B that are directed to S. The optimiza-
tion capability of z3 can be seen when the policies state that neither A nor B must be able to reach S. In
fact, the presence of a NAT that hides both clients, allows to have a single rule in the second firewall that
is able to drop the packets of both clients which will have as source address the NAT address (another
possibility would be to have a single rule in the first firewall with a wildcard). A summary of all the
cases can be seen in Figure 6.17. The same scenario with both firewalls configured with a default action
of DENY, (i.e. if a packet does not match any rule, it is dropped) will give the results shown in Figure
6.18.

64

6.4 – Verifoo Improvements

Configuration Firewall 1Configuration Firewall 1 Configuration Firewall 2Configuration Firewall 2

Configuration Firewall 1Configuration Firewall 1 Configuration Firewall 2Configuration Firewall 2

Configuration Firewall 1Configuration Firewall 1 Configuration Firewall 2Configuration Firewall 2

A and S Reachable
B and S Isolated Src: B Dst: S ➔ Drop

A and S Isolated
B and S Isolated Src: NAT Dst: S ➔ Drop

A and S Reachable
B and S Reachable

Figure 6.17. Autoconfiguration Result

Configuration Firewall 1Configuration Firewall 1 Configuration Firewall 2Configuration Firewall 2

Configuration Firewall 1Configuration Firewall 1 Configuration Firewall 2Configuration Firewall 2

Configuration Firewall 1Configuration Firewall 1 Configuration Firewall 2Configuration Firewall 2

A and S Reachable
B and S Isolated Src: A Dst: S ➔ Forward

A and S Isolated
B and S Isolated

A and S Reachable
B and S Reachable

Src: NAT Dst: S ➔ Forward

Src: A Dst: S ➔ Forward Src: NAT Dst: S ➔ Forward
Src: B Dst: S ➔ Forward

Figure 6.18. Autoconfiguration Result

6.4.9 Auto-placement
Directly correlated with the auto-configuration feature described in the previous chapter, there is the
auto-placement. With the auto-configuration, Verifoo can generate the rules needed in a VNF in order
to satisfy the requested policies and with the auto-placement it extends further its capabilities. In fact,
with the proper input, Verifoo can understand that not all the VNFs are needed in the final solution and
it can decide which one can be omitted keeping the policies satisfaction unaltered. A VNF is considered
to be unnecessary if the set of its auto-configured rules is empty and there is an alternative path towards
the destination that does not include that VNF (otherwise it will be deployed even if it has an empty
configuration because its presence is requested for network needs). At the moment this feature, like the
auto-configuration, has been implemented only for the firewall, the DPI and the antispam. A node of
one of those functional types, can be enhanced with the auto-placement feature if properly indicated in
the input XML, as shown below:

65

6 – Verifoo Extensions Implementation

Listing 6.43. XML Example
1 <graphs>
2 <graph id="0">
3 ...
4 <node functional_type="FIREWALL" name="fw1">
5 <neighbour name="client"/>
6 <neighbour name="nat"/>
7 <configuration description="A simple description" name="conf1">
8 <firewall/>
9 </configuration>

10 </node>
11 ...
12 </graph>
13 </graphs>
14 <Constraints>
15 <NodeConstraints>
16 <NodeMetrics node="fw1" optional="true"/>
17 </NodeConstraints>
18 <LinkConstraints/>
19 </Constraints>

Thanks to the indication in the NodeMetrics XML element, Verifoo will keep track of the optional nodes
and of all the paths that include those nodes. These paths will be available only if the correspondent
optional node is actually used. This last aspect has been enforced modifying the network behaviour
formulas to correlate the choice of a next hop with its state (i.e. used or not used). This choice needs to
be made only on those nodes that have an optional node as a possible next hop.
Formally, declaring:

• n1 as a generic node that is directly connected with optional nodes

• p0 as a generic packet that goes through a node

• dest as the final destination of the packet

• Nn1_opt as the set of all the neighbours of n1 that can reach the destination and are optional

• Nn1_no_opt as the set of all the neighbours of n1 that can reach the destination and are not optional

• ni.used to refer to the boolean variable that defines if ni is used or not

the formulas that model a correct network behaviour are the following:

∀{n0, p0} :
[send(n1,n0, p0)∧ p0.dest == dest]

⇒

 ∨
∀i|ni∈Nn1_opt

n0 == ni∧ni.used

 (6.31)

∀{n0, p0} :
[send(n1,n0, p0)∧ p0.dest == dest]

⇒

 ∨
∀i|ni∈Nn1_no_opt

n0 == ni

∧
 ∧
∀ j|n j∈Nn1_opt

¬(n j.used)

 (6.32)

The previous two formulas are an extension of the ones presented in [9] and ensure that a packet will
only be sent to nodes that are actually used. The formula (6.31) ensures that if an optional node ni is
chosen as a next hop for a certain packet, the correlated boolean value of its used attribute is true. For a
generic node n1, the formula (6.32) excludes the possibility that if a non-optional node has been selected
as a next hop, the used attribute of the optional nodes directly connected with n1 is set as true (i.e. if a
non-optional neighbour is used, all the optional neighbours must be unused). The previous two formulas
are required to have a correct network behaviour. Further extensions have been made in order to model

66

6.4 – Verifoo Improvements

how z3 decides if a VNF is used or not, and how the deployment of the nodes onto the physical topology
is coherent with this new variable.
As said previously, the used variable is a boolean expression, handled by z3, present only in those VNFs
that support the auto-placement feature. Its actual value is decided by z3 based on the following formulas
where n1 represents a VNF that supports the auto-placement:

∀n1 : ∨
∀rule∈R

(rule /= null) =⇒ n1.used (6.33)

∀n1 :

¬(n1.used) =⇒
∧

∀rule∈R

(rule == null) (6.34)

where R is the set of all the auto-generated rules, while the meaning of a “null” rule depends on the
specific type of VNF (e.g. for a firewall this translates in a rule that has source and destination equal
to 0.0.0.0). Since this feature is an extension of the auto-configuration, how rule is generated follows
the same pattern as in the previous chapter. Defined the firewall default action (ALLOW or DENY), z3
generates only rules of the other type (e.g if the default action is ALLOW, all the rules express a DROP
action) in order to satisfy the requested policy.
In addition to the auto-configuration, the previous formulas force a not used VNF to have all its rules
equals to null (6.34) and ensure that if at least one rule is not null, the VNF is used (6.33).
As concerns the deployment behaviour, an extension has been made on the assertions presented in [9].
The variables that indicate on which host h j a node ni can be deployed, have been modified (in [9] they
were referred to as xi j while here are referred to as dnih j , but they have the same meaning). In particular,
for an optional node:

dnih j

becomes
dnih j ∨¬(ni.used)

(6.35)

Therefore: ∑
∀i|ni∈Mh j

int(dnih j)

= 1

becomes ∑
∀i|ni∈Mh j

int
(

dnih j ∨¬(ni.used)
)= 1

(6.36)

where Mh j ⊆ N and represents the collection that contains all the nodes that can be deployed on the host
h j (N represents the set of all nodes, instead). This modification ensures that even if a node is not used
(i.e. all the dnih j are equal to false) the sum is still equal to one, avoiding an inaccurate z3 behaviour.
Finally, to have the minimum number of deployed VNFs a soft constraint is added for each optional
node n1:

∀n1 :
So f t([int(¬n1.used) == 1],k,“placement“)

(6.37)

To have a practical example, the scenario in Figure 6.19 will be considered. For the sake of simplicity,
only the graph and the network behaviour will be analyzed since the deployment is its direct consequence
(i.e. only the the used VNFs are deployed). An intuitive view of the scenario is depicted in the following
image:

67

6 – Verifoo Extensions Implementation

Web Client A

Web Client B

WebServer S

Firewall 1 Firewall 2

NAT

Figure 6.19. Example Scenario

The firewalls are both optional VNFs and the dashed lines, in contrast to the normal ones, highlight
the path that can be taken only if the optional node is used. It is important to notice that even without
the firewalls, the clients are still able to reach the destination thanks to the direct links with the NAT. If
these links were not present, the firewall would be deployed even without having significant rule, only
for a network necessity. The XML that represents the scenario in Figure 6.19 is the following:

Listing 6.44. XML Example

1 <graphs>
2 <graph id="0">
3 <node functional_type="WEBCLIENT" name="a">
4 <neighbour name="fw1"/>
5 <neighbour name="nat"/>
6 <configuration description="A simple description" name="confA">
7 <webclient nameWebServer="s"/>
8 </configuration>
9 </node>

10 <node functional_type="WEBCLIENT" name="b">
11 <neighbour name="fw1"/>
12 <neighbour name="nat"/>
13 <configuration description="A simple description" name="confA">
14 <webclient nameWebServer="s"/>
15 </configuration>
16 </node>
17 <node functional_type="FIREWALL" name="fw1">
18 <neighbour name="a"/>
19 <neighbour name="b"/>
20 <neighbour name="nat"/>
21 <configuration description="A simple description" name="conf1">
22 <firewall/>
23 </configuration>
24 </node>
25 <node functional_type="NAT" name="node2">
26 <neighbour name="a"/>
27 <neighbour name="b"/>
28 <neighbour name="fw1"/>
29 <neighbour name="fw2"/>
30 <neighbour name="s"/>
31 <configuration description="A simple description" name="conf2">
32 <nat>
33 <source>nodeA</source>

68

6.4 – Verifoo Improvements

34 <source>nodeC</source>
35 </nat>
36 </configuration>
37 </node>
38 <node functional_type="FIREWALL" name="fw2">
39 <neighbour name="nat"/>
40 <neighbour name="s"/>
41 <configuration description="A simple description" name="conf1">
42 <firewall/>
43 </configuration>
44 </node>
45 <node functional_type="WEBSERVER" name="s">
46 <neighbour name="nat"/>
47 <neighbour name="fw2"/>
48 <configuration description="A simple description" name="confB">
49 <webserver>
50 <name>s</name>
51 </webserver>
52 </configuration>
53 </node>
54 </graph>
55 </graphs>
56 <Constraints>
57 <NodeConstraints>
58 <NodeMetrics node="fw1" optional="true"/>
59 <NodeMetrics node="fw2" optional="true"/>
60 </NodeConstraints>
61 <LinkConstraints/>
62 </Constraints>

The automated generation of the rules follows the same pattern as for the auto-configuration as shown
below (there is the assumption that the firewalls have been configured with a default action of ALLOW):

Configuration Firewall 1Configuration Firewall 1 Configuration Firewall 2Configuration Firewall 2

Configuration Firewall 1Configuration Firewall 1 Configuration Firewall 2Configuration Firewall 2

Configuration Firewall 1Configuration Firewall 1 Configuration Firewall 2Configuration Firewall 2

A and S Reachable
B and S Isolated Src: B Dst: S ➔ Drop

A and S Isolated
B and S Isolated Src: NAT Dst: S ➔ Drop

A and S Reachable
B and S Reachable

Figure 6.20. Auto generated rules

The only difference is that, a firewall with no rules is excluded from the final graph as can be seen in
Figure 6.21 that depicts the situation where the policies require that S should be reachable from A, but
not from B (similar behaviours can be seen for the other situations).

69

6 – Verifoo Extensions Implementation

ACL Firewall 1ACL Firewall 1 WebServer S

Firewall 1

Web Client A

Web Client B

NAT

Src: B Dst: S ➔ Drop

Figure 6.21. Auto generated rules

70

Chapter 7

Experimental Results

7.1 Verification & Deployment Performance
The new model has been evaluated by performing a number of experiments with real data sets. The
data set consists of real physical topology characterized by a different number of hosts and connections
between hosts. For each topology scenario, the evaluation has been performed by trying to deploy a
defined number of VNFs, changing the position of the fixed end points. The result is the average time
taken by all iterations. The need of a series of iterations is crucial to avoid that fluctuations caused by
other operation on the machine affect the final result. Moreover, the z3 computation itself has a certain
degree of variance for the resolution of the same problem.
All experiments have been executed in a virtual machine on a workstation with 32GB of RAM and an
Intel i7-6700 CPU at 3.40GHz, in the JVM environment version 8.

7.1.1 Old Model and New Model
In the first experiment, the average time taken using the new model, is compared with the time taken by
the old one and the results have been reported in table 7.1.1.

Topology Hosts Connections VNFs Old Model New Model Difference in %
Internet2 12 15 4 2.857 s 2.876 s +0.67 %
GEANT 23 74 4 5.256 s 5.103 s -2.91 %
UNIV1 23 43 4 10.571 s 10.515 s -0.53 %

The results show that the introduction of the new model affects the average time in a negligible way.
This is very important as it introduces no need to repeat all the past evaluations which are still valid.

7.1.2 Deployment Constraints
The next experiment provides a comparison between the different time taken by the new model consid-
ering an increasing number of types of deployment constraints for the VNFs (e.g. the memory that the
VNF will occupy, or the minimum number of cores it requires). This constraints are added for each node,
so the total number of hard constraints that are added to the z3 computation is equal to the number of
types of constraints multiplied by the number of nodes that require a deployment. The constraints have
values that do not prevent any of the deployment to be considered (e.g. all nodes require 1GB of RAM
while every host has more than enough RAM to satisfy the needs of all the nodes), as this experiment
only wants to retrieve the additional computational time needed by z3 to verify these further constraints.
If there are not enough resources available for the placement plan then the solver returns UNSAT without
any model. The methodology applied for the experiment, as well as the physical topologies used, are
the same that were described previously.

71

7 – Experimental Results

Topology 0 Constr. 1 Constr. 2 Constr. 3 Constr. 4 Constr. 5 Constr.
2.876 s 3.519 s 3.498 s 3.250 s 3.628 s 3.401 sInternet2 (+22.36%) (+21.63%) (+13.00%) (+26.15%) (+18.25%)
5.103 s 6.257 s 6.331 s 6.368 s 6.599 s 6.919 sGEANT (+22.61%) (+24.06%) (24.79%) (29.32%) (+31.64%)

10.515 s 11.855 s 11.433 s 11.854 s 11.228 s 11.621 sUNIV1 (+12.74%) (+8.7%) (+12.73%) (+6.78%) (+10.52%)

In the table only the number of constraints is specified because similar performances are obtained re-
gardless of the type of constraints. Moreover, the results show that adding the constraints led to a
performance degradation, but the main difference is made by the presence or absence of constraints and
not by their number. This is due to the internal optimization of the z3 tool respect to the hard constraints.

Figure 7.1. Constraints Performance Results

7.1.3 Service Graph and Chains
The third experiment evaluates the performance of Verifoo when the service graph that is being deployed
is an actual graph and not only a chain, applying no other constraints. The service graph in Figure 7.2 is
taken as example.

72

7.2 – Scalability Performance

n1 n2 n3

n4 n5

Figure 7.2. Graph Example

As shown in the figure, deploying this service graph is comparable to deploying two different chains,
i.e. one formed by the nodes n1-n2-n3 and the other formed by n1-n4-n5-n3. In the following experiment
the two chains are deployed sequentially, with the result of the first deployment that impacts on the
second one, i.e. if n1 has been deployed on a certain host after the first deployment, z3 will be forced
to have it there during the computation of the second deployment. Taken this into account, table 7.1.3
provides the experimental results.

Topology Two Chain Service
Internet2 3.308 s 2.429 s (-26.57 %)
GEANT 7.341 s 3.995 s (-53.75%)
UNIV1 11.092 s 9.224 s (-16.84%)

The results show a great performance improvement that can also be explained by the fact that a graph has
some intrinsic constraints on how the nodes can be deployed (e.g. n1 must be deployed on a host that can
directly reach both the hosts on which n2 and n4 are deployed), resulting in a fewer number of possible
deployment scenario and consequently in a fewer number of formulas computed by z3. Moreover, the
total number of the nodes in the two chains is greater than the total number of the nodes in the graph, as
n1 and n3 are shared among the chains but they are treated as if they were different. The new model of
Verifoo ensures that the graph is deployed as a whole and not as the consequential deployment of more
chains, contributing to the performance boost.

7.2 Scalability Performance
A series of experiments have been performed to evaluate the scalability of the current model of Verifoo.
For these tests, a set of random inputs, generated using a random generator developed exactly for Verifoo,
has been used. For all the input for which it was possible to define a deployment (i.e. z3 returned
a SAT result), the total computational time was registered. All the shown data represents the average
computation time, determined on scenarios with different number of nodes and hosts.

7.2.1 General Model Performance
In this section, the performance tests, and their obtained results, all refer to scenarios in which there
is no auto-configurable VNF and the task given to Verifoo is to find the optimal placement for a net-
work service onto a physical topology, performing also a verification of the requested policies. These
assumptions are important because some scalability issues appear when using the autoconfiguration for
a firewall, but this will be discussed afterwards. The evaluation has been performed separately for hard
and soft constraints because they introduce different level of complexity. In fact, while the former is

73

7 – Experimental Results

simpler for z3 because it only checks if a constraint is verified or not, the latter introduces a higher
complexity since z3 also tries to optimize the weight of non-falsified constraints.

y = 9,8238x

0

2000

4000

6000

8000

10000

12000

200 300 400 500 600 700 800 900

Ti
m

e
(m

s)

Hard Constraints

Time per hard constraint

Figure 7.3. Performance results for hard constraints

y = 83,013x

0

5000

10000

15000

20000

25000

0 50 100 150 200

Ti
m

e
(m

s)

Soft Constraints

Time per soft constraint

Figure 7.4. Performance results for soft constraints

As shown in the previous charts, with the current models implemented in Verifoo, one hard constraint
adds on average 9ms to the total computation, so only a significant increase in their number can cause a
perceivable slowdown in performance. Regarding the soft constraints, instead, the correspondent chart
shows that one of them slows down the execution of Verifoo of about 83ms, an order of magnitude
greater respect to the hard constraints. The practical implications this value has, can be seen considering
figure 7.5.

74

7.2 – Scalability Performance

y = 7,0911x2 - 4,1727x

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

160,00

180,00

2 3 4 5 6

So
ft

 C
o

n
st

ra
in

ts

Nodes

Soft Constraints per Node

Figure 7.5. Soft Constraints per node

This chart shows how the number of soft constraints increases with the number of VNFs present in
the network service. The relation is not linear because the deployment of a node affects also the one
of its neighbours. For example, increasing the nodes from 3 to 4, adds on average 25 soft constraints
which, considering figure 7.4, brings about a slowdown of 2 seconds.
The presented data shows that, even though z3 is a powerful tool that allows to model very complex
realities, the performance do not scale well with bigger scenarios when using the z3Opt module.

7.2.2 Autoconfiguration Performance
In this section, the autoconfiguration performance will be discussed with a particular focus on the scala-
bility issues that currently affect the firewall. In fact, performance-wise, experimental results show that,
for a firewall, enabling all the features described in the autoconfiguraton chapter, causes a significant
slowdown. To understand how the performance degrades, some charts will be shown. In these charts,
the plotted lines represent the temporal trend of the autoconfiguration task when the number of policies
increases (the number of firewalls is fixed to one). To have an idea of which feature causes the great-
est slowdown, the measurements have been performed considering various types of autoconfiguration,
which are:

• Basic autoconfiguration, where the firewall generates rules that are composed only by IPs, with-
out the possibility of using the wildcards (in this case the addresses are modelled in z3 using an
EnumSort instead of a DatatypeSort)

• Quintuple autoconfiguration, which adds the possibility to generate rules that include also the
protocol and the source and destination ports (the IPs are still EnumSort).

• Wildcards autoconfiguration, where the addresses are considered as a more complex data structure
(here the DatatypeSort is used) and the firewall can use the wildcards to further minimize the
number of rules. However, in this configuration only the IPs are present in the generated rule,
therefore there are no protocol nor ports.

• All features autoconfiguration, in which the generated rules contain IPs, protocol and ports, with
the IPs that can also have wildcards.

75

7 – Experimental Results

y = 282,8x

y = 609,67x

y = 2914,8x

y = 3869x

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3 4

Ti
m

e
(m

s)

Policies

Refinement Comparison with 1 VNF

FW Basic FW Quintuple

FW Wildcards FW All features

Linear (FW Basic) Linear (FW Quintuple)

Linear (FW Wildcards) Linear (FW All Features)

Figure 7.6. Performance results

As shown in chart 7.6, using a DatatypeSort to model the IPs (wildcard autoconfiguration), causes a
significant slowdown with respect to its counterpart with a simple EnumSort (basic autoconfiguration).
This concept can be further analyzed in the next chart. In that chart, both the basic and the quintuple
autoconfigurations are the same as in the chart above, however, in addition, two other lines have been
plotted. One of them refers to the temporal trend of the autoconfiguration task for a DPI, whose model
is exactly the same as the firewall one, but the packet field that the DPI checks is set to be the body of
the packet (modelled as an integer). The other added line is the result of a firewall that checks only the
protocol field, which is also an integer field. This last configuration has been evaluated only for testing
purposes and has obviously no real application.

76

7.2 – Scalability Performance

y = 282,8x

y = 609,67x

y = 167,13x

y = 156,93x

0

500

1000

1500

2000

2500

3000

1 2 3 4

Ti
m

e
(m

s)

Policies

Refinement Comparison with 1 VNF

FW Basic FW Quintuple DPI

FW Protocol Linear (FW Basic) Linear (FW Quintuple)

Linear (DPI) Linear (FW Protocol)

Figure 7.7. Performance results

As shown in chart 7.7, firewall and DPI have comparable performance when they both check an
integer field. The performance begins to degrade when the field is an EnumSort to the point where the
firewall has serious scalability issues when a DatatypeSort is used (the wildcards autoconfiguration in
the previous chart).
In order to limit the scalability problem some modifications have been made on the behavioural model
of the involved VNFs. In particular, these modifications improved the VNF formulas that were using the
existential quantifier ∃ when referring to some neighbour in a send or recv function. For example, for a
firewall:

∀{next, p0} :
send(f irewall,next, p0) =⇒

∃{previous}|recv(previous, f irewall, p0)∧¬rule
(7.1)

To resolve this kind of pattern, z3 uses the skolemization in order to work only with universally quanti-
fied formulas. In fact, the skolemization is a special procedure that substitute every existentially quan-
tified variable with a free function f based on the variable quantified by the universal quantifier that
precedes the existential quantifier. To have an example, consider the following formulas:

∀x [someConditionOn(x)∧∃{y}|someOtherConditionOn(y)]
becomes

∀x [someConditionOn(x)∧ someOtherConditionOn(f (x))]
(7.2)

Resolving this type of formulas can be heavy on the performance.
Considering formula (7.1), since in a graph the neighbours of a node are known, the existential quanti-
fier can be replaced by the enumeration of the neighbours. Currently in Verifoo there is no distinction
between previous nodes and next nodes, therefore in the enumeration are listed all the neighbours, how-
ever this does not creates any inconsistencies in the results because of how it is modelled the network

77

7 – Experimental Results

behaviour (i.e. the formulas introduced by the network behaviour excludes the possibility to send a
packet to a specific destination back to a previous node). The formula becomes:

∀p0 : ∨
∀i|ni∈N

send(f irewall,ni, p0)

 =⇒

 ∨
∀ j|n j∈N

recv(n j, f irewall, p0)

∧¬rule

(7.3)

where N is the set of all the neighbours of the firewall. The performance before the modifications can
be seen in figure 7.8, while the changes introduced by them can be observed in the figure 7.9. The
performance has been evaluated with the simpler type of autoconfiguration, the BASIC one which is
composed only by IPs and there is no possibility of using the wildcards. As can be seen, the modifica-
tions have halved the computational for the more complex scenario (more firewall and more policies),
but the improvement effect fades in the simpler one.

y = 282,8x

y = 1727,7x

y = 4050x

0

5000

10000

15000

20000

25000

1 2 3 4

Ti
m

e
(m

s)

Policies

1 Firewall 2 Firewalls 3 Firewalls

Linear (1 Firewall) Lineare (2 Firewalls) Lineare (3 Firewalls)

Figure 7.8. Firewall with BASIC autoconfiguration and no modifications

78

7.2 – Scalability Performance

y = 297x

y = 1521x

y = 2296,9x

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4

Ti
m

e
(m

s)

Policies

1 Firewall 2 Firewalls 3 Firewalls

Linear (1 Firewall) Lineare (2 Firewalls) Lineare (3 Firewalls)

Figure 7.9. Firewall with BASIC autoconfiguration and modifications

79

80

Chapter 8

Conclusions and future improvements

This thesis work gave the possibility to enhance a tool, Verifoo, that was in its early stages of develop-
ment. The tool fits into the new virtualization paradigms of SDN and NFV. In particular, it can be seen as
a modular addition to an NFV Orchestrator in order to enhance its functionalities and cover those prob-
lems that the ETSI standardization left open as study items. Exploiting a theorem prover software like
z3 and using Verigraph as a starting point, Verifoo sets its field of operations mainly in the deployment
domain, obtaining the optimal solution with mathematical certainty.

The foundation of the work has been the developing of an XML schema that conveys the various
information needed for the internal computation. Its structure presents a high degree of flexibility and
modularity that allows future extensions with very few additions. Anyhow, in its current version, the
XML schema already ensures the possibility to express a wide range of scenarios that can reproduce
realistic network infrastructures and network services. This also allowed to improve the deployment
algorithm, adding a series of new variables that enable a finer control on which resources of the physical
hosts should be taken into consideration.

The first important extension implemented in the Verifoo model has been to extend the support for
complex graphs with the possibility to include multiple endpoints, thus removing the previous limitation
of being capable to handle only chains with one client and one server. Non-sequential graphs are widely
used in an SDN architecture because they provide a globally consistent view of the network in real time
which is aligned with the centralized approach of SDN. Therefore, the model extension in Verifoo allows
to natively elaborate services designed with advanced virtualization technology.

An important part of this thesis work has been to explore new solutions for modelling the behaviour
of a firewall. A first step towards this objective has been to improve the network simulation model
computed by z3, adding some new packet headers like the level 4 protocol and the TCP/UDP ports.
Moreover, in order to push to the limits z3 and have even more realistic use cases, the concept of
wildcards has been introduced and modelled. However, the current formulas present in Verifoo only
allow a classful addressing, but this can be obviously improved in future works evolving the wildcards
into the concept of netmasks.

The aforementioned additions, allowed the evolution of the firewall model from a blacklist-only type
to a more freely configurable one that behaves almost like the real counterpart. An open challenge
remains though, namely the impossibility of using overlapping conflicting rules, an issue that is still
debated for the real firewall implementations. Following the traces of the plentiful present literature, a
series of solutions have been theorized and they could be used as a starting point for future works. The
use of some more high-level concept, like the wildcards, caused conflicts when indicating some type of
policies with the low level z3 implementation on which Verifoo was built on. To overcome these issues,
a pre-processing task has been implemented in order to hide from the user the implementation details,
thus avoiding limiting the expressivity of the tool.

A completely new opportunity arisen during the developing of the tool, was the idea of exploiting
the already built framework to introduce the possibility to automatically generate configurations for the
VNFs and remove from the final solution those that receive an empty one at the end of the computation.
The auto-configuration module provides the rules, while the auto-placement module checks that the
VNFs that are removed with empty configuration are indeed not necessary also from a network point of
view. A study was conduct to explore the real applicability of these functionalities. Unfortunately, the

81

8 – Conclusions and future improvements

optimization nature of the computation led to some unsatisfactory results since solving a NP-complete
problem caused the execution time to grow exponentially with the increasing complexity.

Besides the extensions applied to the tool itself, two interesting interface modules towards external
tools have been developed. The integration with SONATA highlighted the feasibility to include Verifoo
in an NFV framework as a verification and deployment service that can directly instruct a VIM. A future
development could be to explore the possibility to integrate Verifoo with the Resource Orchestrator of
the OSM project to have a completely automated interaction.

An initial integration of Neo4j has also been explored. Currently, it serves only as a debugging tool
but helpful indications were given on how to expand further its utilization in the design chapter.

The performance tests executed on the final solution showed that the extended network model for
service graphs and the new constraints add a reasonable amount of computational time. However, as
mentioned, for the auto-configuration module the experimental results express a clear impracticality of
the proposed methodology for the solution space exploration.

In conclusion, this work tried to extend the capabilities of Verifoo preserving a high-level of modu-
larity in order to delineate the guidelines needed to keep the tool evolving. Particular attention was paid
to the key features of the NFV and SDN paradigms that are seen as the founding stones of this project.
However, Verifoo is to be considered still in development and is not free of limitations. Future works can
further improve the software by polishing some of the outlined issues and improving its interoperability
with the other NFV products present on the market.

82

Bibliography

[1] NFV ETSI, “GS NFV 002 V1.1.1 Network Functions Virtualisation (NFV); Architectural Frame-
work,” 2013. https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/
gs_nfv002v010101p.pdf.

[2] “OpenMANO Github Page.” https://github.com/nfvlabs/openmano. [Online; accessed 19-
04-2018].

[3] “Floodlight Website.” http://www.projectfloodlight.org/floodlight/. [Online; accessed
26-08-2018].

[4] “ISG NFV community publications.” https://www.etsi.org/standards-search#page=1&
search=&title=1&etsiNumber=1&content=0&version=1&onApproval=1&published=1&
historical=0&startDate=1988-01-15&endDate=2018-08-26&harmonized=0&keyword=
&TB=789,,832,,831,,795,,796,,800,,798,,799,,797,,828&stdType=&frequency=
&mandate=&collection=&sort=3:.

[5] “Network Functions Virtualisation (NFV); Terminology for Main Concepts in NFV,” 2014. ETSI
GS NFV 003 V1.2.1.

[6] “Z3 Github Page.” https://github.com/Z3Prover/z3. [Online; accessed 20-04-2018].
[7] F. L. Bjørner Nikolaj, Dung Phan Anh, “vZ - An Optimizing SMT Solver,” Proceedings of the 21st

International Conference on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS 2015, pp. 194–199, 2015.

[8] “Verigraph Github Page.” https://github.com/netgroup-polito/verigraph. [Online; ac-
cessed 20-04-2018].

[9] G. Marchetto, R. Sisto, J. Yusupov, A. Ksentiniy, “Virtual network embedding with formal reach-
ability assurance,” p. 5, 2017.

[10] H. K. M. Peuster and S. v. Rossem, “MeDICINE: Rapid Prototyping of Production-Ready Network
Services in Multi-PoP Environments,” IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN), (Palo Alto, CA, USA), pp. 148–153, 2016.

[11] “Containernet Github Page.” https://github.com/containernet/containernet. [Online;
accessed 28-05-2018].

[12] “Neo4j Website.” https://neo4j.com/. [Online; accessed 21-04-2018].
[13] “Neo4j Graph Algorithms.” https://neo4j.com/developer/graph-algorithms/. [Online;

accessed 28-08-2018].
[14] “Neo4j OGM Introduction.” https://neo4j.com/docs/ogm-manual/current/

introduction/. [Online; accessed 28-08-2018].
[15] “Bolt Protocol.” https://en.wikipedia.org/wiki/Bolt_(network_protocol). [Online; ac-

cessed 26-04-2018].
[16] “Barracuda Firewall.” https://campus.barracuda.com/product/nextgenfirewallf/doc/

70586675/how-to-create-wildcard-network-objects/. [Online; accessed 12-04-2018].

83

https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf
https://github.com/nfvlabs/openmano
http://www.projectfloodlight.org/floodlight/
https://www.etsi.org/standards-search#page=1&search=&title=1&etsiNumber=1&content=0&version=1&onApproval=1&published=1&historical=0&startDate=1988-01-15&endDate=2018-08-26&harmonized=0&keyword=&TB=789,,832,,831,,795,,796,,800,,798,,799,,797,,828&stdType=&frequency=&mandate=&collection=&sort=3:
https://www.etsi.org/standards-search#page=1&search=&title=1&etsiNumber=1&content=0&version=1&onApproval=1&published=1&historical=0&startDate=1988-01-15&endDate=2018-08-26&harmonized=0&keyword=&TB=789,,832,,831,,795,,796,,800,,798,,799,,797,,828&stdType=&frequency=&mandate=&collection=&sort=3:
https://www.etsi.org/standards-search#page=1&search=&title=1&etsiNumber=1&content=0&version=1&onApproval=1&published=1&historical=0&startDate=1988-01-15&endDate=2018-08-26&harmonized=0&keyword=&TB=789,,832,,831,,795,,796,,800,,798,,799,,797,,828&stdType=&frequency=&mandate=&collection=&sort=3:
https://www.etsi.org/standards-search#page=1&search=&title=1&etsiNumber=1&content=0&version=1&onApproval=1&published=1&historical=0&startDate=1988-01-15&endDate=2018-08-26&harmonized=0&keyword=&TB=789,,832,,831,,795,,796,,800,,798,,799,,797,,828&stdType=&frequency=&mandate=&collection=&sort=3:
https://www.etsi.org/standards-search#page=1&search=&title=1&etsiNumber=1&content=0&version=1&onApproval=1&published=1&historical=0&startDate=1988-01-15&endDate=2018-08-26&harmonized=0&keyword=&TB=789,,832,,831,,795,,796,,800,,798,,799,,797,,828&stdType=&frequency=&mandate=&collection=&sort=3:
https://github.com/Z3Prover/z3
https://github.com/netgroup-polito/verigraph
https://github.com/containernet/containernet
https://neo4j.com/
https://neo4j.com/developer/graph-algorithms/
https://neo4j.com/docs/ogm-manual/current/introduction/
https://neo4j.com/docs/ogm-manual/current/introduction/
https://en.wikipedia.org/wiki/Bolt_(network_protocol)
https://campus.barracuda.com/product/nextgenfirewallf/doc/70586675/how-to-create-wildcard-network-objects/
https://campus.barracuda.com/product/nextgenfirewallf/doc/70586675/how-to-create-wildcard-network-objects/

84

Appendices

85

Appendix A

Developer’s guide to future extensions

The Verifoo project includes a detailed javadoc which describes all the classes and methods. In this
chapter an overview of the most important packages will be presented, with a particular focus on those
classes that might have a central role in future extensions.

A.1 it.polito.verifoo.random
This package contains all the classes that are assigned to the generation of a random input for Verifoo.
It contains four classes, each deals with a different part of the input:

• RandomGraph: it generates a random service graph with random requirements and set of policies.
This is a slightly modified version of the graph generator available for Verigraph

• RandomTopology: it generates a random physical topology ("Hosts" element and "Connections"
element)

• RandomConstraints: it generates a random set of requirements for a service graph

• RandomInputGenerator: it wraps the creation of a completely random input file

To create a new input, it is enough to create a new instance of the RandomInputGenerator and then call
the getRandomInput() method on it that return the NFV object. The class constructor accepts various
parameters that defines the dimensions of the network service graph and the topology. In the debugging
phase, the object randomly created can be serialized to have the actual XML file.

Listing A.1. Random Input Generation Example

1 RandomInputGenerator r = new RandomInputGenerator(maxClients, maxServers,
↪→ maxInternalNodes, maxProperties, maxHosts);

2 NFV root = r.getRandomInput();
3 JAXBContext jc= JAXBContext.newInstance("it.polito.verifoo.rest.jaxb");
4 Marshaller m = jc.createMarshaller();
5 OutputStream out = new FileOutputStream("./random.xml");
6 m.marshal(root, out);

This package could be used to help during a debugging phase of the project to check if there are some
corner case that are not addressed.

A.2 it.polito.verifoo.rest.common
This package includes the classes that deal with the translation from the XML input to the z3 formulas
and vice versa.

Among all the classes, those that are noteworthy are:

87

A – Developer’s guide to future extensions

• PhyResourceModel: this is the interface that describes the actions for an interaction with a VIM.
For now only a SONATA module has been developed that implements this interface. Other mod-
ules that set up the same objective should also implement this.

• VerifooProxy: this is the main class that coordinates the XML deserialization in z3 formulas. A
useful method is setConditions() which gathers all the formulas that express the resource allocation
constraints (e.g. disk storage, CPU, memory, etc.). If new variables will be considered, it would
be appropriate to add there the new constraints.

• Translator: this class extracts all the information from the z3 model after the computation. If new
data needs to be retrieved, new methods should be implemented here.

• z3Translator: this class provides all the patterns that match the strings in the z3 model to retrieve
the important information. It also declares an enumeration class that gathers all the complex data
types used in the model, which should be extended with all the future ones. Moreover, if the
version of the z3 libraries used by Verifoo will be updated, this class should be replaced with one
that provides the new patterns.

A.3 it.polito.verifoo.rest.medicine
This package contains the classes that set up the SONATA simulation environment. Modifications in
newer versions of the tool should be propagated also in these classes. The package is composed by the
following Java classes:

• MedicineSimulator: this class runs the SONATA simulation for a physical topology. In particular
in the deployVNF() method, SONATA CLI commands are used. Future modification in the libraries
should be reflected also here.

• PhysicalTopology: this class creates the file that represents the topology that will be simulated

• ServiceDescriptor: this class create the service descriptor for a specific graph. The descriptor
version is the 1.0. Future modifications to the ETSI standard should be applied also to this class.

• VNFDeployment: this class creates the custom placement file that SONATA will read to know
how to deploy the service.

• VNFDescriptor: this class creates a VNF descriptor file following the ETSI specifications.

• TopologyDB: this class implements the singleton pattern to store the information about the running
SONATA simulation. The singleton is used to have only one simulation at a time, but it can be
generalized to more than one. The simple method to do that would be to differentiate the ports for
the SONATA service REST API among different simulations.

A.4 it.polito.verigraph.mcnet.components
This package include all the classes that model the formulas which simulate the network behaviour. It
derives from Verigraph but there are some unique feature implemented for Verifoo. The most useful
classes in this package are the following:

• NetContext: this class represents the foundation of the z3 model since all the basic constraints are
declared here. For instance, it declares formulas that avoid receiving unwanted behaviour from z3
(e.g. the range of the IP addresses that needs to be from 0 to 255, how the packet exchange should
happen without modifying the destination field, etc.). Other future fundamental constraints should
be added in the baseCondition() function. In addition to that, in this class are also initialized all
the complex data type that z3 needs to know. This is done in the mkTypes(...) function. New
types should be added preferably here. All the constraints declared in this class are added to the
z3 context in the addConstraints() function.

88

A.4 – it.polito.verigraph.mcnet.components

• Network: this is the class that models the network behaviour. All the conditions are built in
the routingOptimizationSGOptional(...) that includes the support for complex service graph with
optional nodes (which the auto-placement feature tries to minimize). Other changes on how the
network behaves should be introduced in this function. This constraints are added to the z3 context
in the addConstraints() function.

• Checker: it is the class that formalizes the policies constraints and triggers the z3 resolution
process. The general pattern followed in Verifoo, as well as in Verigraph, is to maintain a list of
constraints in each class and fill it as the deserialization of the input goes on. For instance, there
is one list of constraints for each of the VNFs that are instantiated and it is filled when the model
of that VNF is initialized, after reading its configuration. Only at the end, all the constraints are
added to the solver, which is an instance of the Optimize class that is an interface towards the z3
libraries. The Checker class has a knowledge on what are the objects that have a constraints list
and before triggering the z3 resolution, it ensures that all of them are included in the problem. This
is achieved in the addConstraints() method which calls in cascade the addConstraints() function
of the other classes. This adds all the constraints to the same solver, thus creating a single context
for the z3 execution. An extract of the code can be found below.

Listing A.2. Constraints addition pattern

1 public void addConstraints() {
2 // add the constraints of the different network object (i.e. VNFs)
3 for(NetworkObject el:network.elements) el.addConstraints(solver);
4 // add the constraints about the network routing
5 network.addConstraints(solver);
6 // add the constraints about the service deployment
7 netContext.addConstraints(solver);
8 }

The only thing that needs to be paid attention to, is the fact that in z3 the order of the constraints
addition is meaningful for the soft clauses (it is not for the hard clauses). In particular, the classes
of soft constraints that are added before, are the first that are optimized.

Listing A.3. Constraints ordering example

1 // for example, adding the constraints in this order
2 network.addConstraints(solver);
3 netContext.addConstraints(solver);
4 // or in this order
5 netContext.addConstraints(solver);
6 network.addConstraints(solver);
7 // gives totally different results

When introducing a new policy, the point of contact with the XML deserialization is designed to
be the propertyAdd(...) method which then calls the specific function that models each policy as
highlighted below.

Listing A.4. Property addition pattern

1 switch (property) {
2 case ISOLATION:
3 addIsolationProperty(...);
4 break;
5 case REACHABILITY:
6 addReachabilityProperty(...);
7 break;
8 }

89

A – Developer’s guide to future extensions

The same pattern should be maintained also for future policies.

A.5 Other packages
In this section some other interesting minor packages are described, emphasizing what is their role in
the project.

it.polito.verifoo.rest.neo4j
This package should contain all the classes that interact with Neo4j. At the moment, only the Neo4jClient
class is present and contains a simple proof of concept on how to use the Cypher Query Language to
store graph information in the database.

it.polito.verifoo.rest.test
This package contains all the classes that exploit the jUnit framework to automate the tests. Each class
tests a different feature of Verifoo to have a more precise indication on what is working and what not.

it.polito.verifoo.rest.webservice
This package contains all the classes that build the web service of Verifoo. The REST API of the
deployment service are collected in the RestFoo class, while the APIs that allow to interact with the
SONATA simulation are in the RestMeD class.

90

	Introduction
	NFV and SDN
	Network Function Virtualization
	NFV Introduction
	NFV ETSI Framework
	Open Source MANO

	Software Defined Networking
	The role of Verifoo in an NFV framework

	Terminology and exploited tools
	Concepts
	Service Graph
	Physical Topology

	Tools
	z3
	Verigraph
	Verifoo
	SONATA
	Neo4j

	Thesis objectives
	Thesis motivations
	Design and implementation of Verifoo extensions
	Tests and performance evaluation

	Verifoo Extensions design
	SONATA integration design
	Verifoo interaction
	RESTful API

	Neo4j integration design
	Verifoo workflow

	Verifoo Extensions Implementation
	XML Input Format
	SONATA integration implementation
	Service Graph Simulation
	Description of the simulation REST API

	Neo4j Integration
	Verifoo Improvements
	Pre-Processing
	Multiple Endpoints
	Constraints
	Isolation Policy
	Extended Model
	Packet Extensions and wildcards
	New Firewall Model
	Auto-Configuration
	Auto-placement

	Experimental Results
	Verification & Deployment Performance
	Old Model and New Model
	Deployment Constraints
	Service Graph and Chains

	Scalability Performance
	General Model Performance
	Autoconfiguration Performance

	Conclusions and future improvements
	Bibliography
	Appendices
	Developer's guide to future extensions
	it.polito.verifoo.random
	it.polito.verifoo.rest.common
	it.polito.verifoo.rest.medicine
	it.polito.verigraph.mcnet.components
	Other packages

		Politecnico di Torino
	2018-10-12T08:56:07+0000
	Politecnico di Torino
	Guido Marchetto
	S

