
POLITECNICO DI TORINO

Department of Electronics and Telecommunications

Master’s Degree Course in Electronic Engineering

Master’s Degree Thesis

Analysis of Diffraction Gratings

of finite extent

Supervisors

Prof. Renato Orta

Dr. Alberto Tibaldi

Prof. Guido Perrone

Candidate

Fabio Bertuccio

October 2018





Contents

Introduction 1

1 Introduction 1

2 Foundations of the Rigorous Coupled-Wave Analysis applied to

diffraction gratings 5

2.1 Formulation of the scattering problem . . . . . . . . . . . . . . . . . . 6

2.1.1 Junction Problem . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Reconstruction of the dielectric profile . . . . . . . . . . . . . 16

2.2 MMT - Focus on Projection matrices . . . . . . . . . . . . . . . . . . 20

3 Simulations related to the diffraction grating behaviour 25

3.1 Grating excited by a plane wave . . . . . . . . . . . . . . . . . . . . . 26

3.2 Grating excited by a Gaussian beam . . . . . . . . . . . . . . . . . . 35

4 Conclusions 51

i





Chapter 1
Introduction

The realization of the first diffraction grating dates back to 1786 [1], when the as-

tronomer David Rittenhouse realized its prototype by using hairs bounded to a

couple of screws with a very narrow pitch. Nevertheless, some scientists considered

the physicist Joseph Ritter von Fraunhofer as the father of such structure[2] for his

contribution related to the development of this instrument in 1821, after that he

invented really important optical instruments such as achromatic objective lenses

and spectroscope (in which diffraction grating has been employed).

During the years, diffraction gratings played important roles in several applications

concerning electronics. Just to make an example, this device is employed in scat-

terometry, i.e. a technique used to verify the correctness of critical dimensions of the

semiconductor wafers after the photolithography process[3]. The role of diffraction

grating here is to diffract the suitable components (in terms of wavelengths) of a

light source able to penetrate in the semiconductor chip, towards the target layer.

Reflected light components provided by the sample layer are caught by photo de-

tectors in order to check if the produced wafer comply with the critical dimensions.

This kind of proof allows to calibrate the photolithography process for the successive

operations.

Although the physics behind the diffraction grating have been studied for about

two centuries, it is quite hard to simulate the behaviour of such device due to its

finiteness. There are already existent numerical methods such as the finite difference

time domain (FDTD), which uses discretized Maxwell’s equations to reconstruct the

electric fields. Nevertheless, FDTD requires big computational resources for precise

and accurate simulations. For this reason, a different approach concerned to modal

methods has been analysed in this thesis. In particular, the idea is to simulate a pe-

riodic structure behaving like a finite one, reconstructing each period with a central

grating and a long spacing layer of each its side, simulating the device finiteness.

As future work, the length of spacing layers could be reduced by introducing some
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Introduction

”absorption conditions”[4] in order to make negligible the field contribution at the

unit cell boundaries.

However, the first step of this work concerns the study of a diffraction grating of infi-

nite extent. The semi-analytic method of rigorous coupled-wave analysis (RCWA) is

used and it is based on the development of Floquet modes employed to describe the

behaviour of a periodic dielectric profile. All theory about RCWA and explanation

of the mode matching technique (MMT) have been carried out in Chapter 2.

As first approximation, the diffraction grating is considered illuminated by a plane

wave. In this case, it is possible to directly analyse the scattering parameters in the

simulation part (Chapter 3), since the scattering matrix describe, by definition, the

scattered behaviour of a dielectric structure stimulated by a plane wave.

Figure 1.1: Example of diffraction grating with infinite extents illuminated by a

plane wave incising normally.

Scattering parameters have been firstly theoretically expressed in section 2.1.1,

then they have been numerically calculated by means a MATLAB➤ function. Flo-

quet modes represent a basis for the electromagnetic fields in the homogeneous half-

spaces, while the ”grating modes” (even called phase-shift wall waveguide (PSWW)

modes) are defined by means a linear combination of the aforementioned modes with

coefficients related to the eigenvalue problem described in section 2.1.

An useful exercise aimed to understand how the periodic cell can be modified has

been done in section 3.1. The period of the diffraction grating of infinite extent is

initially considered to be composed by a single bar per unit cell. Then, referring to
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the same dielectric structure of before, the period taken into account groups now

three bars and in section 3.1 it is shown how scattering parameters fit the previous

ones properly changing the number of considered Floquet modes in the MATLAB➤

script. Furthermore, diffraction grating of infinite extent has been studied consider-

ing a Gaussian Beam as incident wave as well, which is a more realistic source than a

plane wave having infinitely extended wave fronts. Gaussian Beam is characterized

by a beam waist and the simulation regarding this kind of incident wave has been

developed in section 3.2. Such a wave can be summarized as a sum of several plane

waves having each one a different incident angle with respect to the others. At the

main value of the Gaussian beam, the whole set of plane waves result in phase,

having a constructive contribution. Far from the main value of the bell curve, plane

waves interfere one to each others in a destructive way providing a very small field

intensity, i.e. producing the so called ”tails” of the Gaussian curve.

The fact to describe this kind of incident wave by means a summation of plane

waves involves the huge advantage to use again RCWA, performing several times

the respective MATLAB➤ script for each incident angle ϑ. Once the grating with

infinite extent is simulated, a model which is closer to a diffraction grating of finite

extent has been realized: using RCWA, it has been described a new periodic cell

composed by a central grating and two spacing layers at its sides aimed to simulate

the finiteness of the device.

Figure 1.2: Periodic structure with Gaussian beam illuminating only one cell.

Clearly, the spacing layers are designed according to the beam waist in such a

way that the incident field at the unit cell boundaries is quite negligible. In section

3.2 all simulations concerning this model have been reported.
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Chapter 2

Foundations of the Rigorous

Coupled-Wave Analysis applied to

diffraction gratings

In this chapter, the foundations required to properly apply the Rigorous Coupled-

Wave Analysis (RCWA) are shown, which are used to evaluate the scattering pa-

rameters of a dielectric periodic structure like a diffraction grating. RCWA is based

on the modal expansions whose are used to describe both fields and dielectric struc-

ture.

In section 2.1, RCWA is formulated considering only the TE polarization and as-

suming in-plane incidence (i.e. ky = 0) in order to study with a simpler approach

the problem, without affecting the development of the method. Floquet modes are

defined according to some periodic boundary conditions and their are used to rep-

resent electromagnetic fields in the homogeneous regions.

The scattering matrices related to the device are achieved in section 2.1.1 by means

the so called mode-matching technique (MMT).

For sake of completeness, in section 2.2 the mode-matching technique is developed

considering a generalized approach to the problem, where both TM polarization and

general incidence are taken into account, as well.
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2. Foundations of the Rigorous Coupled-Wave Analysis applied to diffraction gratings

2.1 Formulation of the scattering problem

A diffraction grating is an optical device characterized by multiple dielectric waveg-

uides aimed to diffract an incident wave in several light components having different

wavelengths. The grating under examination is a periodic structure expanding only

in one dimension (along x, see Figure 2.1). In particular, rectangular shaped bars

have been taken into account for the analysis.

Figure 2.1: Dielectric grating with a period W, case of plane wave incident from the

left. (For simplicity nIN = n2)

Considering the structure as replica of infinite cells, a starting point is to fix a

periodic boundary condition in order to find a solution to Maxwell Equations at

z = 0 (left half space - grating interface). To do that, Floquet modes have been

employed.

P.B.C. : −W
2
≤ x ≤ W

2
(2.1)
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2.1. Formulation of the scattering problem

Floquet modes yield:eFm(x) = 1√
W
e−jξmxŷ

hFm(x) = − 1√
W
e−jξmxx̂

with ξm = m
2π

W
+ k0nIN sinϑi (2.2)

Considering only TE-polarized fields, Maxwell Equations hold:
−∂Ey

∂z
= −jωµHx

∂Ey
∂x

= −jωµHz

∂Hx
∂z
− ∂Hz

∂x
= −jωε(x)Ey

(2.3)

Using the transmission line theory, the entire fields can be expressed in terms of

modal current and voltage by means the modal field expansions.
ŷEy(x, z) =

P
m Vm(z)eFm(x)

x̂Hx(x, z) =
P

m Im(z)hFm(x)

Hz(x, z) = 1√
W

P
mHzme

−jξmx

(2.4)

The next step is to project (2.3) (after properly replacing modal functions (2.4))

into eFp (x), with the latter orthonormal to hFm(x)× ẑ, i.e. < eFp (x), hFm(x)× ẑ >= δpm

(more details can be found in section 2.2). Maxwell’s Equations take now a new

form:
−∂Vp

∂z
= −jωµIp

−jξpVp = −jωµHzp

∂Ip
∂z

+ jξpHzp = jωε0
P

mEpmVm

with Epm =
1

W

Z
n2(x)e−j(ξm−ξp)xdx (2.5)

Epm represents the Spatial Fourier Transform of n2(x), where n(x) indicates the

grating refractive index. However, the hypothesis of µ ≈ µ0 is assumed for the

dielectrics material of this study. Obtaining Hzp from the second equation above,

this value is replaced in the third row of (2.5) allowing to rewrite the system above

with only two equations:−
dVp
dz

= −jωµ0Ip
dIp
dz

= −j ξ2p
ωµ0

V p+ jωε0
P

mEpmVm
(2.6)
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2. Foundations of the Rigorous Coupled-Wave Analysis applied to diffraction gratings

Defining the following quantities

V = {Vp}, I = {Ip}, E = Epm =
1

W

Z
n2(x)e−j(ξm−ξp)xdx, ξ2 = diag{ξ2p}

(2.6) can be written in matrix form:−
dV
dz

= jωµ0I

−dI
dz

= j
ωµ0

(k20E − ξ2)V
(2.7)

Solving (2.7) with respect to V , the following steps are necessary. First of all, I

has been found from the first equation:

I = − 1

jωµ0

dV

dz
→ −dI

dz
=

1

jωµ0

d2V

dz2
(2.8)

Then, a second order ordinary differential equation (ODE) resulted replacing I

in the second row of (2.7):

d2V

dz2
+ (k20E − ξ2)V = 0 (2.9)

Assuming a solution as V (z) = V 0e
−jkzz, (2.9) has been simplified:

(k20E − ξ2)V 0 = k2zV 0 (2.10)

The equation above is an eigenvalue problem, whose eigenvalues and eigenvectors

are the kz and the expansion coefficients of the ”grating modes” (even called phase-

shift wall waveguide PSWW modes) in the Floquet mode basis, respectively.

Considering ePn (x) and hPn (x) = ẑ× ePn the grating modes, they are normalized with

respect to a single cell period. Z W
2

−W
2

|epn|2dx = 1 (2.11)

The grating modes expressed above are a linear combination of Floquet ones with

the eigenvectors of the eigenvalue problem of (2.10), i.e. epn =
P

m unme
F
m(x). They

must be normalized in order to be orthonormal in the whole dielectric structure,

therefore epn = 1
N

P
m unme

F
m(x).

1

N2

X
m

|unm|2 =

Z
|epn|2dx = 1 (2.12)
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2.1. Formulation of the scattering problem

N =

sX
m

|unm|2 (2.13)

By means the condition fixed in 2.13, N value is stated and it will be used in

MATLAB➤ as normalization factor.

2.1.1 Junction Problem

Considering the diffraction grating in analysis, it can be studied by means the transmission

line theory, according Figure 2.2.

Figure 2.2: Junction problem at z=0.

Continuity condition is enforced on the transversal field components in correspondence

of the two bars-air interfaces of Figure 2.2 in order to find the scattering parameters.

Firstly, starting to imposing this condition at z = 0:Ey(x, 0−) = Ey(x, 0+)

Hx(x, 0−) = Hx(x, 0+)
(2.14)

Projecting the fields on the Floquet modes, 2.14 assumes the following form:eA(V inc
A + V scat

A ) = eB(V inc
B + V scat

B )

hAYA(V inc
A − V scat

A ) = hBYB(V inc
B − V scat

B )
(2.15)
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2. Foundations of the Rigorous Coupled-Wave Analysis applied to diffraction gratings

At this point, the so called mode matching technique (MMT) has been performed under

the conditions of TE-polarized fields and in-plane incidence (ky = 0). Clearly, modes of

the same waveguide must be orthonormal among themselves:< h+B × ẑ, eB >= δ

< ẑ× e+A, hA >= δ
(2.16)

Then, projection matrices T and T+ have been defined below as the scalar product

among modes of different waveguides.< h+B × ẑ, eA >= T =
R
h∗B × ẑ · eAdx

< ẑ× e+A, hB >= T+ =
R
hB × ẑ · e∗Adx

(2.17)

Referring to the transmission line model of Figure 2.2, the interface at z = 0 has been

analysed and equations representing the equivalent voltages have been written below.T (V inc
A + V scat

A ) = V inc
B + V scat

B

YA(V inc
A − V scat

A ) = T+YB(V scat
B − V inc

B )
(2.18)

Now, the superposition principle has been exploited to solve the system above. Assuming

V inc
B = 0, (2.18) simplifies:

T (V inc
a + V scat

a ) = V scat
B

YA(V inc
A − V scat

A ) = T+YBV
scat
B

→

V scat
B = T (V inc

a + V scat
a )

YA(V inc
A − V scat

A ) = T+YBT (V inc
A + V scat

A )

(2.19)

Collecting V scat
A in the second equation of (2.19), it can be exposed in a simpler form.

QV scat
A = (YA − T+YBT )V inc

A , with Q = T+YBT + YA (2.20)

Concluding, equivalent voltages of the transmission line model related to the condition

V inc
B = 0 have been calculated, replacing (2.20) in (2.19).V scat

B = T [1 +Q−1(YA − T+YBT
)]V inc

A

V scat
A = Q−1(YA − T+YBT )V inc

A

(2.21)
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2.1. Formulation of the scattering problem

The condition V inc
A = 0 has been fixed now in order to find the last contributions of

scattered voltages in this junction. The way of proceeding is identical of that performed

in (2.19). V scat
B = TV scat

A − V inc
B

−YAV scat
A = T+YB(V scat

B − V inc
B )

(2.22)

V scat
B obtained in the first equation is used in the second one in order to express V scat

A :

−YAV scat
A = T+YB(TV scat

A − 2V inc
B )

(YA − T+YBT )V scat
A = 2T+YBV

inc
B

The system (2.22) is solved with respect to the scattered voltages and the equations are

expressed in (2.23), with the value of Q shown in (2.20).V scat
B = (2TQ−1T+YB − 1)V inc

B

V scat
A = 2Q−1T+YBV

inc
B

(2.23)

Scattering parameters can be represented by using the concept of wave amplitudes. In

general, this physical quantity is expressed as a =
√
YiV

inc
i if it is referred to an incident

wave or b =
√
YiV

scat
i in the scattering case. The scheme drawn in 2.3 could be useful for

understanding this concept.

Figure 2.3: Scattering block representing an interface.

Scattering parameters are defined according to the following linear system:b1 = a1S11 + a2S12

b2 = a1S21 + a2S22
(2.24)

Expressing ai and bi in terms of modal voltages, the first row of (2.24) has been solved

by considering the second rows of both (2.21) and (2.23), since b1 =
√
YAV

scat
A . On

11



2. Foundations of the Rigorous Coupled-Wave Analysis applied to diffraction gratings

the contrary, S21 and S22 have been found at the same manner by means the remained

equations of the aforementioned systems.



S11 = b1
a1
|a2=0 =

V scatA

√
YA

V incA

√
YA
|V incB =0 =

√
YAQ

−1(YA − T+YBT )
√
ZA

S12 = b1
a2
|a1=0 =

V scatA

√
YA

V incB

√
YB
|V incA =0 = 2

√
YAQ

−1T+YB
√
ZB

S21 = b2
a1
|a2=0 =

V scatB

√
YB

V incA

√
YA
|V incB =0 =

√
YBT [1 +Q−1(YA − T+YBT

)]
√
ZA

S22 = b2
a2
|a1=0 =

V scatB

√
YB

V incB

√
YB
|V incA =0 =

√
YB(2TQ−1T+YB − 1)

√
ZB

(2.25)

In order to evaluate the complete scattering matrix of the system, now the scattering

parameters related to the junction at z = z0 must be evaluated. The first step is, like in

the previous case, to enforce the continuity condition of the field transversal components

at the aforementioned bars-air interface.Ey(x, z−0 ) = Ey(x, z+0 )

Hx(x, z−0 ) = Hx(x, z+0 )
(2.26)

Performing projection on Floquet modes, (2.26) can be rewritten exactly as done in (2.15).

Clearly, what changes now with respect to the previous case is the disposition of the two

waveguides, with the one associated to the grating on the left of the junction and the

other one related to the half space is placed on the right. Applying the MMT, achieved

equations are quite similar of that one in (2.18).V inc
B + V scat

B = T (V inc
A + V scat

A )

T+YB(V inc
B − V scat

B ) = YA(V scat
A − V inc

A )
(2.27)

The way to proceed is identical to (2.19), indeed superposition principle has been exploited

again. Firstly, considering V inc
A = 0, (2.27) holds:

V scat
B = TV scat

A − V inc
B

T+YB(2V inc
B − TV scat

A ) = YAV
scat
A

→

V scat
B = TV scat

A − V inc
B

2T+YBV
inc
B − T+YBTV

scat
A = YAV

scat
A

(2.28)

From the second equation of (2.28) the V scat
A must be evaluated, therefore this term is

grouped in the first term:

(T+YBT + YA)V scat
A = QV scat

A = 2T+YBV
inc
B

Substituting the V scat
A value in the first equation of (2.28), the final result yields:

12



2.1. Formulation of the scattering problem

V scat
B = (2TQ−1T+YB − 1)V inc

B

V scat
A = 2Q−1T+YBV

inc
B

(2.29)

Now the hypothesis of V inc
B = 0 has been applied in (2.27) in order to obtain the remained

contributions used to find both S12 and S22, respectively.

V scat
B = T (V inc

A + V scat
A )

−T+YBV
scat
B = YA(V scat

A − V inc
A )

→

V scat
B = T (V inc

A + V scat
A )

−T+YBT (V inc
A + V scat

A ) = YA(V scat
A − V inc

A )

(2.30)

The method is identical to the previous one, with the scattering parameters evaluated

according to the incident voltage V inc
A . The second equation has been developed aiming

to express V scat
A :

−T+YBTV
inc
A − T+YBTV

scat
A = YAV

scat
A − YAV inc

A

(T+YBT + YA)V scat
A = (YA − T+YBT )V inc

A

QV scat
A = (YA − T+YBT )V inc

A

Replacing V scat
A in the first equation of the system (2.30), the last scattered term related

to the condition V inc
B = 0 has been obtained.V scat

B = T [1 +Q−1(YA − T+YBT )]V inc
A

V scat
A = Q−1(YA − T+YBT )V inc

A

(2.31)

The scattering matrix construction referred to the junction at z = z0 has been made

using the same principles already expressed in (2.24), considering the grating B on the left

and the homogeneous space A on the right.



S11 = b1
a1
|a2=0 =

V scatB

√
YB

V incB

√
YB
|V incA =0 =

√
YB(2TQ−1T+YB − 1)

√
ZB

S12 = b1
a2
|a1=0 =

V scatB

√
YB

V incA

√
YA
|V incB =0 =

√
YBT [1 +Q−1(YA − T+YBT )]

√
ZA

S21 = b2
a1
|a2=0 =

V scatA

√
YA

V incB

√
YB
|V incA =0 = 2

√
YAQ

−1T+YB
√
ZB

S22 = b2
a2
|a1=0 =

V scatA

√
YA

V incA

√
YA
|V incB =0 =

√
YAQ

−1(YA − T+YBT )
√
ZA

(2.32)

As expected, the scattering parameters of the junction at z = z0 are symmetric to that

ones at z = 0, since the formers refer to the same system of the latter but with different

orientation (at z = 0 grating is on the right, homogeneous space on the left).

The last step consisted perform the cascade among these two scattering matrices, as

conceptually shown in Figure 2.4.

13



2. Foundations of the Rigorous Coupled-Wave Analysis applied to diffraction gratings

Figure 2.4: The two junctions represented by two scattering matrices in cascade

configuration.

The connection of two devices like in this case is possible, assuming that the number of

output ports N of S’ is equal to the number of input ports of S”. Furthermore, supposing

that the ports whose must be connected have the same input impedance, the following

equation holds: a0 = b00

a00 = b0
(2.33)

Only mathematical calculation are made at this point [7], therefore the scattering param-

eters of the device have been completely reported just below.

S11 = S011 + S012S
00
11(1− S022S0011)−1S021

S12 = S012(1− S022S0011)−1S0012
S21 = S0021(1− S022S0011)−1S021
S22 = S0022 + S0021(1− S022S0011)−1S022S0012

(2.34)

The fields reconstruction has been made by means the modal voltages (and currents).

Fixing a2 = 0 from the system of Figure 2.4 and setting R = 1
1−S0

22S
00
11

, power waves in the

loop can be expressed in the following manner:

b0 = RS021a1

a0 = S0011b
0

a00 = e−jβ0zb0

b00 = S0011a
00

(2.35)

Considering also b1 = S11a1, the equivalent voltages yields:

14



2.1. Formulation of the scattering problem



V (z = 0−) =
√
ZF (a1 + b1)

I(z = 0−) =
√
YF (a1 − b1)

V (z = 0+) =
√
ZG(a0 + b0)

I(z = 0+) =
√
YG(a0 − b0)

V (z = z−0 ) =
√
ZG(a00 + b00)

I(z = z−0 ) =
√
YG(a00 − b00)

V (z = z+0 ) =
√
ZF b2

I(z = z+0 ) =
√
YF b2

(2.36)

In general, values obtained in (2.36) give an indication of the spatial Fourier transform

both of the y-component of electric field (Ey) by means the voltages, and the x-component

of magnetic field (Hx) using the current.

Numerically speaking, it is possible to build a matrix called FLOQMAT = e−jxξp (see

Section 2.1 for ξp) aimed to perform the inverse spatial Fourier transform. Moreover, in

order to execute correctly the mode matching, normalized modes (achieved in (2.12)) and

hence normalized eigenvector of the A matrix (A = k20E− ξ, according to (2.10)) must be

used for the fields outside the grating. Eigenvectors are arranged in Mv, a matrix having

a number of columns equal to the number of modes under analysis, while rows agree the

ξp resolution of the selected Floquet modes.

Ey(z = 0−) = FLOQMAT ×Mv × V (z = 0−)

Hx(z = 0−) = FLOQMAT ×Mv × I(z = 0−)

Ey(z = 0+) = 1√
W
× FLOQMAT × V (z = 0+)

Hx(z = 0+) = 1√
W
× FLOQMAT × I(z = 0+)

Ey(z = z−0 ) = 1√
W
× FLOQMAT × V (z = z−0 )

Hx(z = z−0 ) = 1√
W
× FLOQMAT × I(z = z−0 )

Ey(z = z+0 ) = FLOQMAT ×Mv × V (z = z+0 )

Hx(z = z+0 ) = FLOQMAT ×Mv × I(z = z+0 )

(2.37)
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2. Foundations of the Rigorous Coupled-Wave Analysis applied to diffraction gratings

For what concerns fields inside the grating in (2.37), normalization condition of the

mode has to be complied using the normalization factor 1√
W

, according to (2.11) with W

the stated cell period of the dielectric profile.

2.1.2 Reconstruction of the dielectric profile

Unit cell with single bar

As shown at the beginning of section 2.1, it is useful to find the square value of the profile

index n2(x) in such a way to check the matrix Epm = E of (2.5). By the way, description of

the refractive index referred to a unit cell is done passing from some analytical calculation.

Starting to consider a grating period like that one of Figure 2.5:

Figure 2.5: Dielectric profile of a single bar having a refractive index n1.

This dielectric profile is representable in the spectral domain using Spatial Fourier

Transform (SFT). In following, Figure 2.5 is described in an analytical form:

n2(x) = n22 + (n21 − n22)rect(x, 2a) (2.38)

Applying the spatial Fourier transform to (2.38) → N2(ξp) = F{n2(x)} =
R
n2(x)ejξxdx

:

N2(ξp) = n22
1

W

Z W
2

−W
2

ejξpxdx+ (n21 − n22)
2a

W

sin
2aξp
2

2aξp
2

N2(ξp) = n22δp0 + (n21 − n22)
2a

W

sin (aξp)

(aξp)
(2.39)
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2.1. Formulation of the scattering problem

The correctness of Epm matrix can be validated in the simulation by reconstructing

the cell dielectric profile using Floquet modes, comparing results with the exact value of

n2(x), as shown in Figure 3.3 of the Chapter 3.

Unit cell with multiple bars

Considering now a more complex case than before, with three bars in a single cell period

W greater 3 times the previous case. Although the cell structure is different with respect

Figure 2.5, maintaining the same bar-filler proportion (b = WPreviousCase−2a), the grating

in analysis is remained exactly the same of before. Therefore, in this subsection the new

value of N2(ξp) has to been evaluated in order to verify (in the next chapter), by means

MATLAB➤, that the scattering behaviour of the dielectric structure remained unchanged

with respect to the previous case having an unit cell like in Figure 2.5. Calculations are

quite similar to (2.39), with bars replicated and translated along the x direction.

Figure 2.6: Unit cell of grating profile composed by 3 bars and a duty-cycle of 67%.

The presence of two bars translated by ±(a+ b) quantity are now present in a single

elementary cell, hence the analytical description of the profile in Figure 2.6 is:

n2(x) = n22 + (n21 − n22){rect(x, 2a) + rect[x− (a+ b), 2a] + rect[x+ (a+ b), 2a]} (2.40)

Applying SFT to (2.40), translations are exponentials with imaginary argument:

N2(ξp) = n22δ(ξp) + (n21 − n22){
2a

W

sin(
2aξp
2 )

2aξp
2

+
2a

W

sin(
2aξp
2 )

2aξp
2

[e−j(a+b)ξp + ej(a+b)ξp ]} (2.41)

In (2.41) exponentials can be grouped in terms of a cosine:

N2(ξp) = n22δ(ξp) + (n21 − n22)
2a

W

sin(aξp)

aξp
{1 + 2 cos[ξp(a+ b)]} (2.42)
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2. Foundations of the Rigorous Coupled-Wave Analysis applied to diffraction gratings

Case of Figure 2.6 can be generalized for a greater odd number of bars per unit cell and

this fact is used in Chapter 3 in order to reconstruct a periodic cell behaving almost as a

”grating of finite extent”.

N2(ξp) = n22δ(ξp) + (n21 − n22)
2a

W

sin(aξp)

aξp
{1 + 2

nbars−1
2X

m=1

cos[mξp(a+ b)]} (2.43)

Case of extents at the cell boundaries

In the thesis’s introductory chapter, it has been explained how the construction of a

periodic profile, composed by a finite number of elementary cells replicated with a very

long period, could behave like a grating with finite extent. In order to analytically realize

such structure, it is possible to extend the filler dielectric material at the grating boundaries

for a very long length.

Figure 2.7: Unit cell with periodic bars and extents.

The analytical description of the model does not differ from the previous one, since

the presence of the ”spacing layers” at the grating sides is arithmetically justified with

the extension of period W. Greater unit cell involves to get also a smaller ξ according

to (2.2), therefore in the Chapter 3 is shown how the reconstructed index profile changes

accordingly.

From the exact to a good approximated dielectric profile

In section 2.1.2, bars have been seen as perfect squared entities with refractive index n1.

In the real case, raised-cosine shape is a better approximation to describe real refractive

index profile of the bars.
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2.1. Formulation of the scattering problem

Figure 2.8: Example of a raised-cosine function

Where α represents the so called ”roll-off” factor. When the latter is null, Figure 2.8

is a simple rect signal. On the contrary, if α = 1 the raised-cosine function degenerate

into a kind of Gaussian bell. In mathematical form, this kind of curve can be resumed as

shown in (2.44).

RC(x) =

1 if |x| < (1−α)L
2

1
2{1− sin[πα( |x|L −

1
2)]}

(2.44)

Without reporting any calculation, the SFT of a raised cosine has been written in

(2.45). It is interesting to see how the only difference with the spatial transform of the

rect used previously to describe the bar refractive index is the red coloured part, therefore

the value of N2(ξp) already evaluated before is still valid in this case by considering the

red term as well.

F{RC(x)} = L
sin( ξL2 )

ξL
2

cos(αξL2 )

1− (2απ
ξL
2 )2

(2.45)

The discontinuity in (2.45) at αξL
2 →

π
2 is solved as follow, renaming αξL

2 = x only in

(2.46) for simplicity.

lim
x→π

2

cos(x)

1− (2xπ )2
=
π

4
(2.46)
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2. Foundations of the Rigorous Coupled-Wave Analysis applied to diffraction gratings

2.2 MMT - Focus on Projection matrices

In section 2.1.1 the junction problem has already been faced considering the projection

matrices T and T+ as a result of the scalar product among modes, as seen in (2.63).

Although in Chapter 3 the studies are focused considering only TE polarization and in-

plane incidence (ky = 0), a general analysis of the projection matrices is surely useful to

better understand the method of mode-matching technique. Starting from the continuity

condition of (2.15), that system is rewritten using the modal field expansion.


P

p(V
inc
A,p + V scat

A,p )eA,p(x, y) =
P

m(V inc
B,m + V scat

B,m )eB,m(x, y)P
p YA,p(V

inc
A,p − V scat

A,p )hA,p(x, y) =
P

m YB,m(V inc
B,m + V scat

B,m )hB,m(x, y)
(2.47)

(2.47) refers to the junctions present in the model of Figure 2.2, where the system has been

resumed as three different wave guides (two related to the homogeneous media A and one

associated to the grating B) along z. Performing the modal projection at the junctions

(at z = 0 and z = z0, respectively), the so called Weak Formulation of the problem has

been built in (2.48).


P

p(V
inc
A,p + V scat

A,p ) < h+B,n × ẑ, eA,p >=
P

m < h+B,n × ẑ, eB,m > (V inc
B,m + V scat

B,m )P
p YA,p(V

inc
A,p − V scat

A,p ) < ẑ× e+A,n, hA,p >=
P

m YB,m < ẑ× e+A,n, hB,m > (V inc
B,m − V scat

B,m )

(2.48)

From the formulation above, the two projection matrices related to iteration among the

waveguides are fixed. In particular, in the case of a grating between two homogeneous

media, the latter are marked with a F subscript, instead the former is indicated with the

G letter. (T
(e)
GF )mp =< h+Gm × ẑ, eF,p >

(T
(h)
FG)pm =< ẑ× e+Fp, hG,m >

(2.49)

Clearly, the projection matrices just above correspond to that ones achieved in section

2.1.1, i.e. T
(e)
GF = T and T

(e)
FG = T+, respectively. First of all, the expression of Floquet

modes related to the half spaces[5] are exposed below:

e0p = j√
d
[
kxp
ktp

x̂ +
ky
ktp

ŷ]e−jkxpx

h0p = ẑ× e0p = j√
d
[
kxp
ktp

ŷ − ky
ktp

x̂]e−jkxpx

h00p = j√
d
[
kxp
ktp

x̂ +
ky
ktp

ŷ]e−jkxpx

e00p = h00p × ẑ = j√
d
[−kxp

ktp
ŷ +

ky
ktp

x̂]e−jkxpx

(2.50)
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2.2. MMT - Focus on Projection matrices

For what concerns the so called phase-shift wall waveguide (PSWW) devices[6], other

proper modes have been used for the grating structure and they are expressed in (2.51).

e0m = [ I
0
m(x)
n2(x)

x̂− V 0
m(x)
Z0
Gm

ky
k0zm

]

h0m = I 0n(x)ŷ

e00m = V 00m(x)ŷ

h00m = [−V 00m(x)x̂ + ZGmI
00
m

ky
k00zm

ŷ]

(2.51)

Now, it is possible to analyse a first interface having the grating on the left and homoge-

neous space on the right. According to that, modes have been handled in (2.52) in order

to perform projections.

h0+Gm × ẑ = I 0+n (x)x̂

h00+Gm × ẑ = [V 00m(x)ŷ + Z 00GmI
00+
m (x)

−ky
k00zm

x̂]

e0Fp = j
ktp

[kxpx̂ + kyŷ] e
−jkxpx√

d

e00Fp = j
ktp

[−kxpŷ + kyx̂] e
−jkxpx√

d

(2.52)

Besides to consider the ky contribution, even TM polarization have been taken into

account in this section. The latter assumption brings the projection matrix to be much

greater than that one used in section 2.1.1 (highlighted in red in (2.53)). Starting with

the analysis of the aforementioned interface (i.e. that one at z = z0, referring to Figure

2.2), complete projection matrix has been written just below.

T (e)
GF

=

T
(e)
GTEFTE T

(e)
GTEFTM

T
(e)
GTMFTE T

(e)
GTMFTM

 (2.53)

Developing (2.49) with (2.52) both for TE and TM cases, the projection matrices have

been completely obtained, remembering again that ky is no longer null. Starting with the

evaluation of T
(e)
GF :

(T
GTEFTE

)(e)mp =

Z d

0
[Z 00GmI

00+
m (x)

−ky
k00zm

x̂ + V 00+m (x)ŷ] · j
ktp

[−kxpŷ + kyx̂]
e−jkxpx√

d
dx =

= −j
Z 00Gmk

2
y

k00zmktp

1

d

Z d

0

X
n

I 00+mne
−j(kxp−ξn)xdx− j kxp

ktp

1

d

Z d

0

X
n

V 00+mne
−j(kxp−ξn)xdx =

= −j
Z 00Gmk

2
y

k00zmktp
(I 00+)mp− j

kxp
ktp

(V 00+)mp = −jk2ydiag{
Z 00Gm

k00zm
}I 00+diag{ 1

ktp
}− jV 00+diag{kxp

ktp
}

(2.54)
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2. Foundations of the Rigorous Coupled-Wave Analysis applied to diffraction gratings

(T (e)
GTEFTM

)mp =

Z d

0
[Z 00GmI

00+
m (x)

−ky
k00zm

x̂ + V 00+m (x)ŷ] · j
ktp

[kxpŷ + kyx̂]
e−jkxpx√

d
dx =

= −j
kxpkyZ

00
Gm

ktpk00zm

Z d

0
I 00+m (x)

e−jkxpx√
d

dx+ j
ky
ktp

Z d

0
V 00+m (x)

e−jkxpx√
d

dx =

= −j
kxpkyZ

00
Gm

ktpk00zm

X
n

I 00+mn

1

d

Z d

0
e−j(kxp−ξn)xdx+ j

ky
ktp

X
n

V 00+mn

1

d

Z d

0
e−j(kxp−ξn)xdx =

− jkydiag{
Z 00Gm

k00zm
}I 00+diag{kxp

ktp
}+ jkyV

00+diag{ 1

ktp
} (2.55)

(T (e)
GTMFTE

)mp =

Z d

0
[I 0+m (x)x̂] · j

ktp
[−kxpŷ + kyx̂]

e−jkxpx√
d

dx =

= j
ky
ktp

Z d

0
I 0+m (x)

e−jkxpx√
d

dx = j
ky
ktp

X
n

I 0+mn

1

d

Z d

0
e−j(kxp−ξn)xdx = jkyI

0+diag{ 1

ktp
}

(2.56)

(T (e)
GTMFTM

)mp =

Z d

0
[I 0+m (x)x̂] · j

ktp
[kxpx̂ + kyŷ]

e−jkxpx√
d

dx =

= j
kxp
ktp

Z d

0
I 0+m (x)

e−jkxpx√
d

dx = j
kxp
ktp

X
n

I 0+mn

1

d

Z d

0
e−j(kxp−ξn)xdx = j

kxp
ktp

I 0+mp = jI 0+diag{kxp
ktp
}

(2.57)

The next step is the construction of second projection matrix T
(h)
FG, according to the last

equation of (2.49), i.e. that one related to the junction having homogeneous halfspace on

the left (F) and grating on the right (G)(i.e. at z = 0). Before doing that, it is important

to highlight which modes have to be used, as already did in (2.52) in the G-F case.

ẑ× e0+Fp = j√
d
[−kxp

ktp
ŷ +

ky
ktp

x̂]ejkxpx

ẑ× e00+Fp = j√
d
[−kxp

ktp
x̂− ky

ktp
ŷ]ejkxpx

h0Gm = I 0n(x)ŷ

h00Gm = [−V 00m(x)x̂ + Z 00GmI
00
m(x)

ky
ktp

ŷ]

(2.58)
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2.2. MMT - Focus on Projection matrices

Exactly in as the previous case, the projection matrix is four times greater than the

case analysed in Section 2.1.1, where only TE polarization have been considered during

projection, as highlighted in red in (2.59). Clearly, ky = 0 condition would simplify the

projection matrix in that case, but general incidence is actually considered in this case.

T (h)
FG

=

T
(h)
FTEGTE T

(h)
FTEGTM

T
(e)
FTMGTE T

(e)
FTMGTM

 (2.59)

Such as in the G-F case, scalar products aimed to find all four matrices of (2.59) have

been developed below, considering now (2.58).

(T (h)
FTEGTE

)pm =

Z d

0

j

ktp
[−kxpx̂− kyŷ] · [−V 00m(x)x̂ + Z 00GmI

00
m(x)

ky
k00zm

ŷ]
ejkxpx√

d
dx =

= j
kxp
ktp

Z d

0
V 00m(x)

ejkxpx√
d
dx− j

Z 00Gmk
2
y

k00zmktp

Z d

0
I 00m(x)

ejkxpx√
d
dx =

= j
kxp
ktp

X
n

V 00mn

1

d

Z d

0
e−j(ξn−kxp)xdx− j

Z 00Gmk
2
y

k00zmktp

X
n

I 00mn

1

d

Z d

0
e−j(ξn−kxp)xdx =

= j
kxp
ktp

V 00mp −
Z 00Gmk

2
y

k00zmktp
I 00mp = j(V 00diag{kxp

ktp
})T − jk2y(diag{

Z 00Gm

k00zm
I 00diag{ 1

ktp
})T (2.60)

(T (h)
FTMGTE

)pm =

Z d

0

j

ktp
[kyx̂− kxpŷ] · [−V 00m(x)x̂ + Z 00GmI

00
m(x)

ky
k00zm

ŷ]
ejkxpx√

d
dx =

= −j ky
ktp

Z d

0
V 00m(x)

ejkxpx√
d
dx− j

Z 00Gmkykxp
k00zmktp

Z d

0
I 00m(x)

ejkxpx√
d
dx =

= −j ky
ktp

X
n

V 00mn

1

d

Z d

0
e−j(ξn−kxp)xdx− j

Z 00Gmkykxp
k00zmktp

X
n

I 00mn

1

d

Z d

0
e−j(ξn−kxp)xdx =

= −j ky
ktp

V 00mp −
Z 00Gmkykxp
k00zmktp

I 00mp = −jky(V 00diag{ 1

ktp
})T − jky(diag{

Z 00Gm

k00zm
I 00diag{kxp

ktp
})T

(2.61)
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2. Foundations of the Rigorous Coupled-Wave Analysis applied to diffraction gratings

(T
FTEGTM

)pm =

Z d

0

j

ktp
[−kxpx̂− kyŷ] · [I 0m(x)ŷ]

ejkxpx√
d
dx =

−j ky
ktp

Z d

0
I 0m(x)

ejkxpx√
d
dx = −j ky

ktp

X
n

I 0mn

1

d

Z d

0
e−j(ξn−kxp)xdx =

− j ky
ktp

I 0mp = −jky(I 0diag{ 1

ktp
})T (2.62)

(T
FTMGTM

)pm =

Z d

0

j

ktp
[kyx̂− kxpŷ] · [I 0m(x)ŷ]

ejkxpx√
d
dx =

−j kxp
ktp

Z d

0
I 0m(x)

ejkxpx√
d
dx = −j kxp

ktp

X
n

I 0mn

1

d

Z d

0
e−j(ξn−kxp)xdx =

− j kxp
ktp

I 0mp = −j(I 0diag{kxp
ktp
})T (2.63)

At this point, projection matrices related to the two wave guide junctions have been

achieved (always referring to the scheme of Figure 2.2), therefore equations related to

the continuity conditions at z = 0 and z = z0 already developed in section 2.1.1 can be

expressed even using both T
(e)
GF = T and T

(h)
FG = T+.
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Chapter 3
Simulations related to the diffraction

grating behaviour

Formulation related to the rigorous coupled-wave analysis (RCWA) has been carried out

analytically in the previous chapter.

First of all, the simplest case of plane wave as incident wave has been illustrated in section

3.1 in order to achieve the scattering parameters of a diffraction grating of infinite extent.

Related to this, the first step concerning the simulation was to define the geometry of the

structure required during the analysis, together with the parameters of the whole system

(wavelength under analysis, refractive indexes, incident angle and so on).

Even the number of the Floquet modes involved in the analysis as been setted previously,

since the number of harmonics must be evaluated. Then, the calculation of the Floquet

indexes and therefore the modal expansions have been achieved by means the evaluation

of the E matrix.

Successively, a function related to the evaluation of PSWW modes has been built, pro-

ceeding exactly as it has been already shown in Section 2.2 of the previous chapter. After

that, the reconstruction of the grating dielectric profile has been performed by using the

expansion of the Floquet modes in order to check the aforementioned matrix.

The evaluation of eigenvectors has been made by simply using the eig function, that is

already provided by MATLAB➤. The last steps concern the evaluation of the scattering

parameters by means the mode matching technique shown in 2.1.1. For simplicity, both

half spaces have been considered with the same refractive index nIN ≈ 1 (air). Some plots

concerning the scattered fields have been plotted in order to analyse grating behaviour.

All of what has been written for the plane wave just before has been performed even in

the more realistic case in section 3.2, where a Gaussian Beam is employed as source.
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3. Simulations related to the diffraction grating behaviour

3.1 Grating excited by a plane wave

The first case analysed consists, as already written before, to a plane wave incident from

the left (exactly as shown in Figure 2.1 of Chapter 2). The plane wave has, according

to its definition, infinite extended wave fronts whose hit uniformly each unit cell of the

grating. The choice to simulate the device stimulated by this kind of incident wave allows

to directly plot the scattering parameters of the simulated grating. To better understand

how the scattering parameters are produced, some concepts about the ”signal theory” are

used. Considering the system under analysis like in Figure 3.1:

Figure 3.1: Block representing the system by means its equivalent scattering matrix.

A(ξ) represents the spatial Fourier transform of the input stimulus, i.e. the plane

wave having a unitary spatial spectrum. For this reason, assuming the system under

analysis as a linear time-invariant (LTI) one, the output B(ξ) (which represents in this

case the scattered contributions of the device) gives the exact contribution of the scattering

parameters.

B(ξ) = A(ξ)S(ξ) = S(ξ) (3.1)

For what concerns the MATLAB➤ code, all steps described in the introduction of this

chapter has been written in the latter. For the simulation process, here are all data related

to the structure parameters and geometry.
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3.1. Grating excited by a plane wave

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Geometry of the structure

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 %-- Global structure parameters

5 Geometry.n_in =1; %-- Refractive index left/right half -spaces

6 Geometry.Lambda =1600; %-- Period of the structure , nm

7 Geometry.n1 =3.214; %-- Refractive index of the bar

8 Geometry.n2=1; %-- Refractive index of the bar surrounding material

9 Geometry.tg=220; %-- Grating thickness , nm

10 Geometry.eta =0.5; %-- Filling factor of the grating bars (from 0 to 1)

11 %

12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

13 % Parameters of the program

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15 Parameters.theta =-10; % plane -wave incidence angle , degrees

16 Parameters.lambdavet=linspace (1200 ,3200 ,105); % wavelengths vector , nm

17 %

18 %-- ALWAYS ODD numbers (generation of Floq. modes)

19 Parameters.NModes =15; %-- inner half -space

20 Parameters.NHarmonicsTE =2* Parameters.NModes +1; %-- Harmonics used to build TE ←-
PSWW modes

21 %

22 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

23 % Program

24 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

25 theta=Parameters.theta*pi/180; % conversion of degrees to radiants

Figure 3.2: Input data for this first simulation.

Indexes of Floquet modes have been evaluated and used to establish all the harmonics

related to the entire high-order modes. The expansions of the Floquet modes have been

even employed to reconstruct the dielectric profile of a single cell composed by a bar and

having a period Λ (Geometry.Lambda in the code of Figure 3.2), according to (2.39) of

section 2.1.2. This step is useful to check the correctness of E matrix.
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3. Simulations related to the diffraction grating behaviour

Figure 3.3: Exact (black line) and reconstructed (blue line) unit cell dielectric profile

n2(x).

Observing Figure 3.3, it is clear how the number of Floquet mode setted in the code

of Figure 3.2 is linked to xi and hence it influences the resolution of reconstructed profile

used in RCWA. Indeed, this fact is provable increasing from 15 to 75 the value Parame-

ters.NModes.
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3.1. Grating excited by a plane wave

Figure 3.4: Exact (black line) and reconstructed (blue line) unit cell dielectric profile

n2(x), with a number of 75 selected modes.

Clearly, the reconstructed profile approaches to the exact one increasing the number of

involved modes, since there are actual more harmonics to sum together in order to better

approximate the ideal profile. Nevertheless, limited calculation capability of the simulator

represents a constraint of selected number of modes.

Afterwards, reflectivity (S2
11) of the dielectric device has been plotted according to the

range of inserted input wavelength. For each of them, the program performs a calculation

concerning the evaluation of the scattering parameter at that input frequency.
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3. Simulations related to the diffraction grating behaviour

Figure 3.5: Reflectivity and S11 phase evaluated for each provided input wavelength.

With the settings of Figure 3.2, the diffraction grating is ”transparent” at a wavelength

of about 1900 nm, while it behaves like a mirror both at 2200nm and 2700nm of λ,

respectively. Using the latter value as input wavelength, it is interesting to observe how

the fields of TE mode behaves at (z = 0).
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3.1. Grating excited by a plane wave

Figure 3.6: Electric and magnetic field at z = 0.

Both Ey and Hx have been found in this script according to the calculations made in

(2.37), considering the continuity conditions at the interfaces. The most interesting stuff

of Figure 3.6 consists to the recognition of zones where bars are presents. In other words,

these fields track the grating ”shadow” considering each unit cell composed as Figure 3.4.

Coming back to the reflectivity of Figure 3.5, it has been used even to prove the concept

already exposed in the section 2.1.2. Instead to construct an elementary cell having a

single bar, three bars has been considered now, imaging to maintain the same periodic

structure as illustrated in Figure 3.7.

Figure 3.7: Infinite gratings under analysis, with the case of single bar per cell (red

period W’) and three bars per cell (blue period W”).

Since the dielectric grating has been described by fixing periodic boundary conditions
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3. Simulations related to the diffraction grating behaviour

for an elementary cell, the value of ξ changes according to period. Indeed, reporting the

ξ form from (2.2), it is clear how the mode expansions better fit the ideal index profile

when cell period is lowered and the number of involved Floquet modes m are increased.

The direct proportion of these two factors in ξ is quite visible even in the proof of Figure

3.8, where the number of modes has been tripled in order to compensate the greater cell

period.

Figure 3.8: Reconstruction of the dielectric profile in the case of a cell made with

three bars.

In the plot above, the number of selected modes is 45 (in contrast to the 15 modes

fixed initially in Figure 3.2) such that the reconstructed index profile is the same of the

previous case. In order to verify this fact, it is enough to compare the oscillations shown

in Figure 3.8 to those ones displayed for the case of Figure 3.3 (even though the x-axis in

these two plots has different resolution).
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3.1. Grating excited by a plane wave

A confirm of what is written before is the plot concerning reflectivity of the structure

in Figure 3.9. These curves perfectly matched with those ones of Figure 3.5 (the latter

are also included in the plots just below and they are perfectly superimposed by the new

reflectivity). These data confirm how the simulated diffraction grating is the same of the

first case.

Figure 3.9: Reflectivity plot in the case of an elementary cell composed by three

bars, compared to the plot of Figure 3.5.

What really changes with respect to the previous analysis with a single bar per cell are

the number of modes staying above cut-off, which is different in the two cases. Consid-

ering the Floquet theory [8], high-order modes contribution are distributed in harmonics

arranged in a way resembling a rake. The limits such that those high-order modes are

above cut-off is |ξm| < k0, i.e. their contribution must not be evanescent. Clearly, accord-

ing to ξm evaluated in (2.2), the ”teeth of the rake” are going to be closer one to each

others if the period W is greater. Concluding, this fact means that there are an higher

number of modes above cut-off in the last case.
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3. Simulations related to the diffraction grating behaviour

Figure 3.10: Example of spatial Fourier transform representing harmonics associated

to the high-order modes.

The number of modes above cut-off can be shown in the MATLAB➤ script by ob-

serving the number of real kzm =
q
k20n

2
IN − (2πmW )2 in the homogeneous space.

Figure 3.11: kz values referred to the case of a cell with single bar(left) and three

bars (right), respectively.

A ”rake” three times denser than one bar per cell case allows in the latter structure

to get triple modes above cut-off. However, the choice of using a cell composed by several

bars requires an augment of selected Floquet modes in the half spaces in order to maintain

a good modal expansions (verified by reconstructing the dielectric profile), but in that case

the simulation requires more computation costs.

Nevertheless, as explained in the thesis introduction, a single cell composed with several

bars followed by a long material with constant refractive index is employed in the next

section in order to simulate the behaviour of a possible grating with finite extent.
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3.2. Grating excited by a Gaussian beam

3.2 Grating excited by a Gaussian beam

Until now, plane wave has been used as incident source mainly in order to highlight

how scattering parameters change according to the input wavelength. In this section, a

Gaussian beam is used as incident wave because it represents a more realistic source.

Figure 3.12: Gaussian beam illuminating the dielectric grating.

Starting from a brief description of the Gaussian beam, it is a ”bell curve” signal mainly

characterized by both an amplitude (considered unitary for simplicity) and a beam waist

w.

A(x) = e−
x2

w2 (3.2)

Using the same nomenclature of (3.1), now the ”output” of the system shows even infor-

mation about the input. Nevertheless, the rigorous couple-wave analysis does not change,

but now the spatial Fourier transform of the input signal influences the output one.

A(x) =
1

2π

Z
A(ξ)e−jξxdξ → A(ξ) = w

√
πe−

w2ξ2

4 (3.3)
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3. Simulations related to the diffraction grating behaviour

Scattering parameters have been calculated using again the same approach of the plane

wave, but in this case the choice to fix a single input wavelength has been taken in order

to make lighter the MATLAB➤ execution. RCWA is still applicable because a Gaussian

Beam can be seen as a group of plane waves having different incident angles theta, there-

fore the previous script is performed several times for every value of the aforementioned

angles. Considering for instance the contribution resulted by the reflection (S11) of the

Gaussian beam, it has been calculated as follow:

B(x) =
X
n

X
ϑ

A(ϑ)S11(ϑ)e−jξnx (3.4)

Where the n subscript refers to the number of selected Floquet modes. Besides, theta

dependency of the spatial Fourier transform of the Gaussian beam A(ξ) has been high-

lighted remembering that the incident angle and the x component of the wave number are

correlated.

ξ = kx = k0nIN sin(ϑ) (3.5)

Just for completeness, a bell curve with a beam waist of 20µm and its SFT have

been plotted in Figure 3.13 (input parameters remained those ones in Figure 3.2, with a

single input wavelength of 3400 nm selected). It is possible to observe how the spatial

Fourier transform in theta domain is limited to ±pi
2 due to the sine presence in (3.5),

which correspond to the limit |ξm| < k0 already seen in section 3.1 and marked in Figure

3.10, which defines modes above cut-off.

Figure 3.13: Gaussian beam signal (top) and its Spatial Fourier Transform expressed

both in ξ (middle) and ϑ (bottom) domains.
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3.2. Grating excited by a Gaussian beam

In Figure 3.13 the Fourier Transform has been calculated both analytically and per-

forming a FFT (numerically) as proof, with the latter introducing a certain resolution. By

the way, this curve is the A(ξ) of (3.4), hence it is possible to study the results provided

by the scattering simply multiplying this spectrum with the scattering parameters defined

for each ϑ considering a simulated diffraction grating composed by periodic cell having a

single bar, as Figure 3.3.

Figure 3.14: Spatial Fourier Transform of the Gaussian curve versus the evaluated

scattering parameters for each theta.

As first approach, only the weight of the scattered fundamental mode has been anal-

ysed, hence the reflected and transmitted electric fields related to it has been plotted in

Figure 3.15. The generation of these data has been obtained by performing a inverse Fast

Fourier Transform (iFFT).
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3. Simulations related to the diffraction grating behaviour

Figure 3.15: Reflected (top) and transmitted (bottom) fundamental mode contri-

bution (in module) by the dielectric grating, considering fundamental mode of the

Gaussian Beam in Figure 3.13 the only incident one.

The plots of Figure 3.15 do not consider the scattered parts related to the others

modes, though. In order to take them into account, it is necessary to evaluate both for

each Floquet mode and thetas the respective scattering parameters and then summing

the entire contributions together according to (3.4), exploiting the linear properties of the

spatial Fourier Transform. The FLOQMAT matrix already expressed at the end of section

2.1.1 is aimed to both anti-transform ad sum the factors just cited before. In Figure 3.16

both reflected and transmitted contribution related to the all high-order modes has been

shown, ever considering for simplicity the fundamental mode as the only incident one.

Figure 3.16: Reflected and transmitted contributions considering all modes, studied

in the case of fundamental mode taken into account as the only incident one.
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3.2. Grating excited by a Gaussian beam

The employed Gaussian beam has a waist (20µm) in this simulation which is more

than 12 times the cell period of the diffraction grating. Therefore, what happens is that

the incident wave ”sees” the dielectric structure like a mirror with an equivalent refractive

index (which value depends by both the geometry and refractive indexes of the elementary

cells). Both reflected and transmitted fields of Figure 3.16 resemble the bell curve used

as input stimulus. Furthermore, it is interesting to observe how the reconstructed fields

shown in Figure 3.16 agree the expansion of Floquet modes, as shown in Figure 3.17.

Figure 3.17: Figure 3.16 zoomed from −6400nm < x < 6400nm. The cell period of

1600 nm leads the modal expansions.

However, it is important to remember again how the limit |ξ| < k0 states the number

of modes above cut-off, i.e. those ones such that kz is real. On the contrary, the modes

below cut-off are associated to imaginary kz ( i.e. to evanescent waves), exactly as in the

case of a dielectric wave guide[9]. Modifying the MATLAB➤ script related to Figure 3.16

in order to plot the contribution of modes above cut-off only, the scattered contributions

related to the diffraction grating of infinite extent with an incident Gaussian beam has

been reported in Figure 3.18. The entire set of parameters related to the Geometry has

been remained as in the previous case.
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3. Simulations related to the diffraction grating behaviour

Figure 3.18: Reflected and transmitted contributions considering modes above cut-

off only, studied in the case of fundamental mode taken into account as the only

incident one.

The case shown just above refers to the condition with a cell composed by a single

bar, exactly as Figure 3.3 with a number of 15 modes setted. In that case, it has been

shown in Figure 3.11 (left) how there is only one mode above cut-off. Reasonably, it is not

a randomness that the plot in Figure 3.18 is exactly the same of that one of Figure 3.15.

By the way, when in Figure 3.16 the entire set of modes below cut-off have been even con-

sidered, it is clear how the mutual interaction among them allows to get a non-negligible

contributions at the reflected and transmitted fields produced by the grating.

Enlarging the number of bars from one to three changing proportionally the quantity of

selected modes (exactly like in Figure 3.8), the situation doesn’t change since the struc-

ture is always the same and the three modes above cut-off combine together to provide

the contributions equals to those one shown in Figure 3.18.

The reconstructed dielectric profile resolution is a key point for the purpose of this

work, indeed using the same fixed number of modes for the intended long elementary cell

simulating the ”finiteness” of the device, reconstruction could be really bad. This fact

represent a check for E matrix, hence an index for the reliability of scattering parameters.

In order to get a kind of idea about the ”resolution” of a unit cell, an analysis of scattered

fields is performed changing both the period and the number of Floquet modes in the

script. Proceeding step by step, considering firstly a unit cell composed by 11 bars (bar

and filler dimensions unaltered) and 99 Floquet modes setted, like in Figure 3.19.
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3.2. Grating excited by a Gaussian beam

Figure 3.19: Dielectric profile in the case of 11 bars.

The case under analysis is maintained that one of infinite periodic grating, which is

used in order to make a comparison with the previous case with the purpose to test the

resolution goodness. Observing the results just below, 99 modes in this case are enough

to provide a good reconstructed dielectric profile, since the scattered contributions in

Figure 3.20 are exactly superimposed to that ones concerning the single bar per cell case

previously shown.

Figure 3.20: Reflected and transmitted contributions in the 11 bars per cell case

compared to those one of Figure 3.16.

After analysing the case of infinite grating, the next step is to reconstruct a periodic

cell in order to obtain a grating with ”fake” finite extents. Now, referring the Gaussian

beam of Figure 3.13 which has been employed as source, its waist is clearly the main

factor to consider in order to properly size the spacing layers (even called spacers) at
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3. Simulations related to the diffraction grating behaviour

the side of the grating zone aimed to simulate the finiteness of the device (for simplicity,

nspacer = nfiller = 1 during the simulation). A good way to establish a suitable dimension

of these ”extensions” is by considering negligible the Gaussian contribution at the next

cells, where new hypothetical bars would appear.

Supposing the Gaussian beam with a normal incidence at x=0 like Figure 1.2, a choice

(considering computational costs of simulations) could be to fix the beam intensity of

10% at the cell boundary in order to evaluate consequently the spacers length by the

cell period W. Considering meanwhile the scheme in Figure 3.21, a calculation can be

done remembering how the cell period (and hence the spacers length) is constrained by

the Gaussian waist in order to approach at a simulation of a diffraction grating of finite

extent.

Figure 3.21: Gaussian beam illuminating a single cell composed by 11 bars and two

”spacers”.

Using the image above, it is possible to state an equation in order to proper design

the cell in order to obtain a 10% of intensity at its boundaries, considering the maximum

value of the Gaussian beam incident exactly at x = 0.

e−
(W/2)2

w2 ≤ 0.1→W ≥ 2w
p

ln(10)

Finally, spacers are sized according to equation below:

Wspacer ≥
W −Wbf

2
= w

p
ln(10)−

Wbf

2
(3.6)

Fixed the bar-to-bar dimension according to the geometries present in code of Figure

3.2 and considering again 11 bars per cell, the grating inside the cell is long 17.6 µm.
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3.2. Grating excited by a Gaussian beam

The spacers length evaluation is now trivial using (3.6), which yields a value of 21.54µm

(considering that the neighbour cells starts with a spacers, though).

For sake of clarity, a bad case has been reported because it is interesting to see which is

the effect of the incident Gaussian beam to the other cells. Starting to fix, for instance,

a spacer length of 6 µm. Refractive index profile is reconstructed and reported in Figure

3.22 in order to give an idea of the actual unit cell.

Figure 3.22: Cell dielectric profile composed by 11 bars and 2 spacers long 6 µm at

the sides.

Comparing Figure 3.22 with the Gaussian beam of Figure 3.13, it is clear how the

incident wave illuminates over the ”spacers” zone in a significant manner, even arriving

to the bars of the other cells like illustrated in Figure 3.23.
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3. Simulations related to the diffraction grating behaviour

Figure 3.23: Gaussian source illuminating also bars of neighbour cells due to the

spacer shortness.

The fact to illuminate even the neighbour cells brings the device to behave in a similar

way to the case of grating with infinite periodic structure of Figure 3.16, where scattered

contributions resemble something similar to a bell curve, but with distortions related to

the spacers presence.

Figure 3.24: Reflected and transmitted contribution employing an elementary cell

as Figure 3.22.

Furthermore, it is interesting to analyse how the fixed periodic boundary conditions

(and therefore the Floquet modes) characterize the shapes in Figure 3.24, in particular
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3.2. Grating excited by a Gaussian beam

this fact is more clear in the ”tails zone”. Zooming for instance in the spatial range of

x = 30µm, both reflected and transmission contributions have null points after a cell

period W (taking into account the MATLAB➤ data cursor resolution in Figure 3.25),

agreeing to the stated boundary condition.

Figure 3.25: Contribution of Figure 3.24, with a zoom at about 30 µm.

Setting now the spacer length to 25µm according (3.6) , the incident wave affects even

less the neighbour cells. In this case, since the period is much greater than before, an

heavy calculation has been performed employing 151 modes. Just for comparison, the

reconstructed dielectric profiles both in this case and in the case of 99 modes have been

plotted below. It is clear how in the case with less modes in Figure 3.26, reconstructed

bars degenerates in curved shapes.
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3. Simulations related to the diffraction grating behaviour

Figure 3.26: Reconstructed dielectric profile of the cell with 99 modes (top) and 151

modes (bottom).

Even employing as source a bell curve with 20µm, the situation changes with respect

to before. The periodic boundary conditions still lead the behaviour of the scattered

contributions provided by the grating, but the results are more distorted than before since

the Gaussian beam hit only in a little part the region in which the grating is present,

hence the bell curve shape tends to get lost in plots of Figure 3.27. According to the wider

period, even the contributions at the tails proximity are sparser than the previous case.
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3.2. Grating excited by a Gaussian beam

Figure 3.27: Reflected and transmitted contribution provided by the device with

a cell like Figure 3.26 (bottom) with a Gaussian beam having a waist of 20 µm

employed as source with normal incident at x=0.

Amplitude of the contributions related to the periodicity can be lowered increasing the

spacers length, but the number of Floquet modes setted in the script should be increased

as well in order to maintain a reasonable resolution of the reconstructed index profile. In

the example made in Figure 3.28, the spacers length is 50µm.

Figure 3.28: Scattered contributions with a period W of 117.6µm and each spacer

long 50 µm.
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3. Simulations related to the diffraction grating behaviour

Maintaining a number of selected Floquet modes equal to 151 for the plots above (which

just involves a very heavy computation in MATLAB➤ ), the reconstructed index profile

degenerates into oscillation, providing a not excellent reconstruction resolution of the index

profile, as seen in Figure 3.29. Clearly, it represents an issue solvable by increasing the

number of modes, executing the script computation with a suitable hardware. By the way,

it is important to remember that the reconstruction of dielectric profile is an operation

exclusively used to check the E matrix, i.e. if the coefficients of modal expansions correctly

describe the device.

Figure 3.29: Zoomed grating zone in the case of 25µm (top) and 50 µm (bottom)

spacer length, with 151 Floquet modes employed in both cases.

Just for completeness, a particular case of an incident wave illuminating only the bars

of a single cell has been analysed. For this purpose, a Gaussian beam with a waist four

times smaller than the one used until now has been employed (i.e. w = 5µm).
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3.2. Grating excited by a Gaussian beam

Figure 3.30: Gaussian beam with a waist of 5µm (top) and its SFT in ξ (middle)

and ϑ (bottom) domains.

In this condition, maintaining the same elementary cell of Figure 3.26, the source

illuminates only the ”grating zone”, hence it should not take into account the finiteness

of the device.

Figure 3.31: Representation of the actual condition, with the Gaussian beam illu-

minating only the bars-fillers zone.
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3. Simulations related to the diffraction grating behaviour

What happens in the case of Figure 3.31 is that the grating should behave a bit more

similar to the case of a device with infinite periodic bars, indeed the two plots just below

in Figure 3.32 show two shapes at −W
2 < x < W

2 closer to a bell curve than the case of

w = 20µm.

Figure 3.32: Transmitted and reflected contributions provided by the same device

referring Figure 3.26 with a reduced beam waist of the bell curve.

.

Clearly, the effect of cell periodicity in this particular case is quite tiny (only few peaks

far from the range of x=0 are present) since the incident contribution at the neighbour

cells can be practically considered null.
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Chapter 4
Conclusions

As first step, rigorous coupled-wave analysis has been implemented as a modal method

used to evaluate the scattering parameters of a diffraction grating. Floquet modes have

been defined according to the fixed periodic boundary conditions, so Maxwell’s Equations

have been described (in the case of TE polarization and in-plane incidence assumptions)

and successively projected on the Floquet modes, obtaining in this way the associated

eigenvalue problem. The latter allows the achievement of the modal expansion coefficients

related to the ”grating waveguide” by means the eigenvectors, while the obtained eigen-

values represent the propagation constants of the grating modes.

Continuity conditions of the transversal field components at the bars-air interfaces have

been enforced, therefore the so called mode-matching technique is formulated. In this

way, scattering matrices related to the two junctions have been found and finally the

scattering parameters related to the device are achieved by performing the cascade of

aforementioned matrices. The unit cell simulating a diffraction grating of finite extent is

described by properly managing the MATLAB➤ code related to the coefficients of modal

expansions: it is composed by a grating zone and two spacing layers at its sides, aimed to

simulate the device finiteness.

The design of spacers in the unit cell plays a fundamental role, indeed if they are not

sufficiently long with respect to the beam waist, the scattered contributions related to the

neighbour periods are not negligible. A good trade-off between the length of the spacing

layers and the number of selected Floquet modes during the simulation must be done in

order to achieve a good analysis (i.e. results are affected by periodicity in a negligible

manner) with reasonable computation resources.

As future development of this work, a kind of improvement is represented by the intro-

duction of ”absorbing conditions” at the simulated grating boundaries. This approach

could allow to reduce the length of spacing layers and therefore obtaining more precise

scattering parameters of the modelled device with a smaller number of selected Floquet

modes in the simulation (i.e. with less computational costs).
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