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Abstract

Industrial robots are able to interact with the external environment and perform given
appointed tasks by moving specific working tools, therefore it is extremely important to
estimate correctly the position and the orientation of the robot end effector in the 3D
space, in order to operate properly a certain tool as desired. This implies the knowledge
of the robot kinematic model, i.e. the mathematical expression describing the relation
between the displacements of the robot joints and the pose of the robot end effector.

The kinematic model typically stems from the design developed by the manufacturer,
hence it cannot suit perfectly any specific robot unit, because of countless unavoidable
issues, e.g., deviations from nominal architecture (interface slacks, dimension tolerances,
etc.) or variations of operating conditions (motion speed, payload weight, etc.). For this
reason, the default accuracy of the vast majority of industrial robots is rather poor and
definitely represents a crucial bottleneck especially in those applications involving either
precise inspection and measurement tasks or CAD based off-line programmed tasks.

This research activity is primarily aimed at improving significantly the volumetric
accuracy of 6DOF articulated robots, by investigating and compensating the model
errors driven by geometry discrepancies and temperature changes in the robots structure.
Geometric errors constantly affect kinematics and are studied by means of a thorough
analysis of the model limitations and the numerical issues. Thermal errors variably affect
kinematics and are studied indirectly, i.e. relating, through a simple heuristic model, the
robot thermal gradient changes to the robot kinematic parameters variations.

An exhaustive experimental study is set up and carried out on a real articulated
robot unit and an entirely genuine software implementation is developed in MATLAB®

environment. The algorithmic procedure designed for parameters identification is first
simulated numerically and then tested on actual robot specimens in order to prove its
speed and reliability. The practical achievements corroborate the theoretical specula-
tions, laying sound bases for further developments.
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Chapter 1

Introduction

1.1 Research Traits

The position in the three dimensional space of the working tool installed on the flange of
industrial robots is usually described and evaluated by means of their kinematic model,
starting from the knowledge of the corresponding joint displacements. Being only an
abstract representation, the kinematic model of any real industrial robot is unavoidably
subject to imperfections and deficiencies.

In general, the tool positioning performances of a given robot manipulator are essen-
tially determined by two crucial indices characterising that robot manipulator, namely
the repetitive precision, that is a measure of the tool position spread, and the absolute
accuracy, that is a measure of the tool position error: the vast majority of industrial
robots generally feature quite decent repeatability but rather poor accuracy; on the
other hand, repeatability is assessed and reported by the manufacturer but may not be
adjusted by the user, whereas accuracy is not assessed nor reported by the manufacturer
but may be adjusted by the user.

The enhancement of the default level of accuracy provided by industrial robots,
better known as robot manipulator calibration, represents a need of utmost importance
for all of those practitioners willing to implement, safely and reliably, a certain range of
applications. Unlike the early stages of industrial automations, when the error in the tool
position was almost irrelevant for the quality standard of the production process and the
manipulator movements were mainly programmed on-line by means of teach pendants,
nowadays, industrial robots are also entrusted with delicate or sophisticated tasks, where
precision represents a very strict requirement (or even configured as proper measuring
instruments) and their motion is often programmed off-line in order to integrate the
information included in the CAD models of the objects within the work-cell and to
optimise the overall efficiency of the industrial process.

The accuracy of an industrial robot is essentially determined by the discrepancy
between the ideal kinematic behaviour expected by that robot model and the real kine-
matic behaviour exhibited by that robot unit. From a practical point of view, there exist
countless elements capable of affecting significantly the accuracy, although only some of
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2 CHAPTER 1. INTRODUCTION

them may be taken into account at the same time by from a practical point of view. In
any case, these detrimental elements are routinely grouped according to their nature.
In particular, the defects in the kinematic model induced by geometry deviations and
temperature variations represent the most significant sources of inaccuracy in industrial
robots equipped with light payload.

The kinematic model of a robot manipulator gets usually derived starting from the
mechanical description of that robot manipulator provided by its manufacturer. On
the other hand, the spatial characteristics of an actual unit necessarily differ from the
spatial characteristics of the design model, because of dimension tolerances, interface
slacks and lock plays originating as a result of machining and assembling processes,
hence the kinematic model is intrinsically subject to geometric errors.

Moreover, industrial robots regularly deal with very large levels of mechanical and
electrical power, which necessarily translate into massive dissipation as heat: the conse-
quent variable temperature gradient across the body of a certain unit further modifies
its spatial characteristics, hence the kinematic model is also subject to thermal errors.

The primary goal of this activity was thus first to weigh and then to damp the effect of
geometric defects and thermal deformations on the accuracy performances of six degrees
of freedom articulated robots. More specifically, such a task was carried out studying
the kinematic characteristics of 6DOF articulated robots in general, investigating the
kinematic and thermal behaviour of the robot manipulator unit under study, formulating
a nominal kinematic model with its corresponding parameters from the design data and
eventually devising a strategy to adjust that raw model.

The issue of thermal drift is normally addressed simply turning on the controller
and standing by a certain amount of time in order for the robot manipulator to warm
up sufficiently prior to operating it, which necessarily translates in a loss of time and
resources, therefore a real time compensation scheme may give the possibility to keep
robots working with stable performances, dramatically boosting the efficiency of the pro-
ductive process. Considering that thermal error compensation was hinged on repeated
trials of geometric error compensation at different temperature conditions, great care
has been paid in order to generate a really fast and trustworthy algorithmic parameter
identification software implementation by means of an extremely careful analysis of the
relation between modelling features and numerical issues.

The applied work has been carried out within the facilities of Axist research and de-
velopment department on a 6DOF articulated robot specimen there hosted and provided
especially for calibration purposes. The core business of Axist consists in providing a
wide range of products and services in the field of dimensional measurement and inspec-
tion, taking advantage of automated machinery, among which articulated robots often
become protagonist thanks to their good level of usage flexibility and motion dexterity.
The accuracy of a robot is a major concern for the company as it unavoidably affects
the reliability and the quality of the overall measurement system that robot is part of,
hence robot calibration becomes an issue of paramount importance in the economy of
this enterprise engineering activities.

Owing to the large volume of work daily performed by the department staff, no
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research effort had been diverted yet in the area of robot calibration, the management
of which was normally entrusted to general purpose professional 3D graphical software
solutions. For this reason, the set-up of a fresh scheme of robot calibration of its own
was rather desirable by the company, for both incorporating the missing functionalities
into some of the projects that have been already developed and replacing the existing
functionalities into some of the projects that are still to be developed.

The full project of geometric and thermal calibration has been entirely developed and
coded using MATLAB® software environment. Such a development framework proved
especially useful also to check preliminarily the dependability of the devised algorithmic
procedure through sheer numerical simulation, before actually testing it in the field on
a real robot unit. The achieved experimental results are quite promising and represent
thus the first step forward towards the development of a project with greater breadth,
upon conversion into the software framework compliant with the company needs.

1.2 Contents Structure

The various thematic contents, ranging from pretty general topics to more specific issues,
are organised and presented according to their different levels of insight and complexity.
Specifically, the thesis is arranged as follows.

� Chapter 2 illustrates the fundamentals of manipulators kinematics, delineating
both architectures and characteristics of robotic spatial linkages, laying the the-
oretical bases for kinematic modelling and reviewing the kinematic performances
along with the alternative programming methods as a pretext to introduce the
concept of calibration.

� Chapter 3 presents a comprehensive outline of manipulators calibration, specifying
the basic framework, investigating the most significant possible target sources of
error, itemising the crucial operative stages that make up the whole process and
discussing the major issues that may be encountered when the problem is addressed
from a practical point of view.

� Chapter 4 reports a complete applied case study of a robot manipulator calibra-
tion aimed at both geometric and thermal error compensation, stating first briefly
means and goals and detailing then carefully all the devised operative steps of the
experimental implemented strategy.

� Chapter 5 describes the target numerical optimisation techniques, portraying the
characteristics of problems that originate from model identification along with the
most relevant iterative methods aimed at their solution, framing the problem of
kinematic parameters identification within the scope of non linear least squares
optimisation and surveying its specific numerical properties.

� Chapter 6 develops a kinematic error model, studying infinitesimal perturbations
of rigid transformations along with the asymptotic behaviour of the homogeneous
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transformation matrices and applying the general results to the reference frames
transformations included in the manipulator kinematic model.

� Chapter 7 reviews the overall research activity, recapitulating the attained results
and bridging with potential future works.

� Appendix A retraces the basic notions of linear algebra, revising concepts and
properties of vectors, matrices, bases and elements of Euclidean geometry.

� Appendix B provides the mathematical tools of rigid body kinematics, character-
ising rigid transformations, analysing the possibilities for attitude representation
and introducing the formalism of homogeneous coordinates.



Chapter 2

Manipulator Kinematics

2.1 Robot Manipulators

2.1.1 Introduction

The Robot Institute of America (RIA) gives its definition of industrial robot as “a
reprogrammable, multifunctional manipulator designed to move material, parts, tools
or specialized devices through variable programmed motions for the performance of a
variety of tasks”. Such a definition perfectly reflects all the main aspects of machine
automation applied to the industrial production context, such as equipment adaptabil-
ity and reconfigurability, flexible task completion, supervised behaviour scheduling and
motion planning, specific application tool handling and object manipulation.

Industrial robot manipulators normally feature very low autonomy, as they are
required to operate in specific, familiar and established structured environments, but
very high versatility, as they are able perform a practically infinite set of different
operations simply by mounting the proper tools.

Some of the most famous sources in the robotics literature, e.g., [1], [2], [5], [6] and
[7], are behind the essential notions regarding robot manipulators hereinafter presented.

2.1.2 Kinematic Chain

From a merely mechanical point of view, a manipulator is a system of rigid bodies,
termed links, connected by movable articulations, termed joints: links erect the frame
of the structure while joints provide the mobility to the structure. The constrained
aggregation of fixed and movable elements constituting the mechanical structure of a
manipulator is termed kinematic chain. One end of the chain is constrained to a fixed
surface and is called base; the other end of the chain is attached to a working tool and
is called flange or end effector.

According to the number of kinematic paths between base and flange, it is customary
to distinguish between open and closed kinematic chains. The chain is said to be open if
there is only one sequence of links and joints connecting base and flange; a manipulator
with an open kinematic chain is termed serial manipulator, as it consists of a series of
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6 CHAPTER 2. MANIPULATOR KINEMATICS

links and joints in alternating fashion. The chain is said to be closed if there is more than
one sequence of links and joints connecting base and flange; a manipulator with a closed
kinematic chain is termed parallel manipulator, as it consists of parallel branches of links
and joints. The chain is said to be hybrid if only a part of it is closed; a manipulator
with a hybrid kinematic chain is termed hybrid manipulator.

Serial manipulators are way more wide-spread because they are endowed with quite
good flexibility, maneuverability and dexterity. Parallel manipulators are instead em-
ployed to handle heavy payload at high speed as they provide fairly large stiffness, though
at the price of limited range of motion and narrow work volume. Hybrid manipulators
combine the advantages of both structures: for instance, manipulators designed to lift
heavy loads over a wide volume are typically equipped with parallelogram linkages.

2.1.3 Joints Motion

A manipulator manages to move only thanks to the presence of joints. Each joint
provides a simple motion, adding a degree of freedom to open kinematic chains. This
is the reason why serial manipulators with N joints are improperly termed N -DOF
manipulators. The correspondence between number of joints and degrees of freedom is
lost for dependent joints and closed kinematic chains.

A joint is composed of two elements, one proximal, called base, and one distal, called
follower, in relative motion between them: focusing on a single joint, the follower moves
while the base remains still. Joints managing to withstand an external effort without
moving are said to be active, while joints collapsing under the stress are said to be
passive. Sometimes the same joint might behave in both ways.

Joints are also classified according to the kind of motion they yield; even though
there exist several types of joints, only two are involved in industrial robotics, namely
prismatic joints, i.e. sliding pairs providing a linear (translational) motion between
the links connected to them and revolute joints, i.e. hinged pairs providing an angular
(rotational) motion between the links connected to them.

A manipulator is essentially a means of operating tools or handling objects conve-
niently within a certain volume, therefore its basic purpose is to control the motion of
its flange, in terms of position and/or orientation. Rotations are necessarily required to
orient bodies, hence revolute joints are required when the attitude of the flange has to
be adjusted. On the other hand, revolute joints are sometimes preferred to prismatic
joints even to modify the position of the flange, owing to the better degree of dexterity
they lend to the overall kinematic structure.

2.1.4 Joint Drives

The joints of a manipulator have to be properly driven by a dedicated control system,
in order to operate the manipulator as desired. In this respect, active joints are always
equipped with actuators, i.e. devices entrusted with maneuvering the joint motion,
and sensors, i.e. devices entrusted with monitoring the joint motion. The combination
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of actuators and sensors gives rise to so called servo-mechanisms, i.e. devices able to
perform active position control.

Joint Actuators

Joints may be actuated in different ways, according to the desired kinematic and dynamic
performances: joints actuators are typically hydraulic, pneumatic or electric. In the vast
majority of industrial manipulators, joints are electrically driven, that is to say actuated
by means of electric motors, such as brushless DC motors or stepper motors.

Gears are customarily inserted in the joint motion transmission system for a two-
fold reason: motion reduction and motion conversion. Reduction is especially useful
because high speed motors can be employed even when the desired joint motion is quite
slow and, at the same time, the effective load applied to the motor shaft is weakened.
Conversion is mandatory whenever the desired kind of joint motion is different from the
motion provided by the actuator, in terms of type, e.g., linear and rotary, or alignment,
e.g., axis offset or skew. Actuators able to provide directly the motion to the joints, that
is with no geared transmission buffer whatsoever, are said to be direct drive.

Joint Sensors

Several diverse transducers may be employed for measuring linear or angular joint po-
sitions, namely potentiometers, linear encoders, linear variable differential transformers
for prismatic joints and potentiometers, resolvers, rotary encoders, rotary variable dif-
ferential transformers for revolute joints.

Some joint transducers, called absolute transducers, manage to measure the absolute
position of a joint, whereas some others, called incremental transducers, manage to
measure only the relative position of a joint, i.e. the displacement from a reference
position. Joint position transducers are ordinarily installed inside the manipulator shell,
on the motor shaft, upstream of the transmission gears. For this reason, de facto, they
sense the displacement of the shaft which sometimes might be quite different from the
actual displacement of the joint.

2.1.5 Manipulator Anatomies

Manipulators meant to work in a 3D volume are typically made up of two clearly distinct
fundamental pieces: the arm, providing mobility to the manipulator and the wrist,
providing dexterity to the manipulator. According to the sequence of joint types of the
arm, different families of manipulators can be defined:

� PPP joint sequence, with mutually perpendicular translation axes, gives rise to
cartesian manipulators, suited for tasks defined using rectangular variables, since
each degree of freedom of the arm corresponds to a rectangular coordinate of the
3D space;
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� RPP joint sequence, with one translation axis parallel and the other translation
axis perpendicular to the rotation axis, gives rise to cylindrical manipulators, suited
for tasks defined using cylindrical variables, since each degree of freedom of the
arm corresponds to a cylindrical coordinate of the 3D space;

� RRP joint sequence, with the second rotation axis perpendicular to both the first
rotation axis and the translation axis, gives rise to spherical manipulators, suited
for tasks defined using spherical variables, since each degree of freedom of the arm
corresponds to a spherical coordinate of the 3D space;

� RRR joint sequence, with rotation axes not all parallel to each other, gives rise
to articulated manipulators, suited for tasks defined in different or variable ways,
since there is no correspondence between degrees of freedom of the arm and any
kind of coordinates of the 3D space.

The same RRP joint sequence of spherical manipulators, but with all rotation and trans-
lation axes parallel to each other, gives rise to a further architecture, called SCARA,
acronym of Selective Compliance Assembly Robot Arm: the mechanical arrangement
of such manipulators is compliant in the horizontal direction and stiff in the vertical
direction, making them suitable for precise and fast vertical assembling processes.

The most common industrial robots are undoubtedly articulated manipulators. Their
arm is characterised by three (or more) consecutive revolute joints; typically, the rotation
axes of the second joint and the third joint are parallel to each other and perpendicular
to the rotation axis of the first joint. Articulated manipulators with such a standard
framework are sometimes referred also as anthropomorphic manipulators, owing to their
resemblance with a human upper limb: along these lines, the first three joints are re-
spectively called waist, shoulder and elbow, while the first three links are respectively
called trunk, upper arm and forearm; the remaining three joints make up the wrist
and the end interface is called hand.

The peculiar morphology of articulated manipulators provides them with a rather
good level of dexterity and mobility, making them suitable for a full range of applica-
tions, though at the price of losing the correspondence between joints degrees of freedom
and Cartesian space coordinates, with the result that the position and the orientation
of the hand are quite complex functions of the joint displacements.

Serial robot manipulators may be schematically represented through very simple
geometric elements. For instance, links are often depicted as beams or rods, regardless
of their actual shape and volume, while prismatic joints and revolute joints are often
depicted as prisms and cylinders, respectively. The simplified schematics of a standard
articulated manipulator is shown in Figure 2.1.

Arm

The kinematic structure of the arm described above is the same for all articulated ma-
nipulators. Since the hand must be able to move with respect to the base, then one end
of the arm is constrained to a fixed framework by means of a mounting surface.
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The kinematic and dynamic performances of a manipulator substantially depend on
mechanical characteristics of the arm: the quickness of its joints conditions the maximum
speed, the size of the its links is responsible for the overall reach, the strength of both
its joints and links determines the maximum payload. Articulated manipulators are
supposed to span a wide area, bear a significant weight and move pretty fast, hence
their arm is customarily rather large, massive and bulky.

Wrist

The peculiar kinematic structure of articulated manipulators proves especially conve-
nient because it decouples the position and the orientation of the end effector: the three
degrees of freedom of the arm serve to position the wrist while the three degrees of
freedom of the wrist serve to orient the hand.

For the sake of honesty, such a statement is not completely true and is considered
factually valid only when the three rotation axes of the wrist joints do intersect in a single
point, giving rise to the so called spherical wrist. Manipulators with non spherical wrists
are obviously easier to design and build, although they cannot provide the decoupling
between position and orientation, that results in a much more complicated kinematic
control of the hand.

Nevertheless, even though the six degrees of freedom of articulated manipulators
cannot be precisely split into two separate groups, the arm is mainly entrusted with
positioning the hand and the wrist is mainly entrusted with orienting the hand. This
is the reason why the dimensions of the wrist of a manipulator are normally far more
compact than those of the arm of the same manipulator.

Hand

The ultimate purpose of the whole manipulator kinematic structure is the motion of its
hand in the 3D space; the hand indeed carries a tool, which is a characteristic device
designed to perform a certain operation within the work-cell. The tool installed on the
hand is always application specific, therefore a given tool is the distinctive element of
a manipulator, in the sense that it identifies uniquely the function of that manipula-
tor, i.e. the way in which it is expected to interact with the surrounding environment.
Sometimes the tool itself is erroneously referred as end effector as well.

Most common tools include: handling grippers, welding torches, grinding wheels,
milling cutters, drilling bits, milling spindles, painting spray guns, suction cups, grasping
claws, screw drivers, laser and water jet cutters, glue dispensers, blow torches, flame
throwers, touch-trigger probes, laser scanners, collision detectors and so on. When a
manipulator is required to handle more than one tool, a suitable tool changer has to
be employed: in order to be interchangeable, the different tools must share the same
mechanical interface with the mounting plate on the flange.

Some tools need to be energised, e.g., by means of electric, hydraulic or pneumatic
actuators, therefore the manipulator must be capable of transmitting the corresponding
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power through its entire kinematic chain, from the base up to the hand, either inter-
nally, i.e. housing the cables within the cover when they are thin enough, or externally,
i.e. fixing the cables to the outer shell through guides. When the tool can also move
with respect to the hand, e.g., if it is extensible/retractable, the overall kinematic chain
has more than six degrees of freedom.

xE

yE
zE

yB

xB

zB

Figure 2.1: Stylised graphical representation of a standard articulated manipulator.

2.1.6 Work-space

A manipulator is capable of performing a certain task by moving its end effector, that
holds the tool, in the three dimensional space surrounding it, therefore, in order to
operate correctly the manipulator, it is essential to identify clearly the space in which it
is effectively able to work.

The work-space of a manipulator can be defined as that region of the 3D space
the manipulator is capable of placing its end effector within, or, alternatively, as that
region of the 3D space spanned by the end effector as the manipulator joints perform
every admissible motion. When Cartesian coordinates are used, since the displacements
provided by the joints are neither unlimited nor discontinuous, then the work-space is a
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bounded and connected subset of R3.

The characteristics of the work-space are determined by the geometry of all possible
configurations of the manipulator: in particular, its volume mainly depends on the size
of the links and the travel of the joints, whereas its shape is mainly comes from the
sequence of joint types. To make some blatant examples, the work-space of a cartesian
manipulator is a rectangular sector, the work-space of a cylindrical manipulator is a
cylindrical sector, the work-space of a spherical manipulator is a spherical sector, and so
on. The work-space of an articulated manipulator is far more complicated: it is normally
a portion, with spherical symmetry, of the volume between two spheres with different
radii; the radius of the outer sphere is ruled by the reach, i.e. the longest distance the
manipulator end effector is capable of arrive at, approximately equal to the length of the
fully extended arm, whereas the radius of the inner sphere is determined by the physical
constraints between the links.

There are some particular portions of the working volume that are not nimbly reached
by the manipulator, and, as a consequence, the orientation of the end effector may prove
tough to control in those regions. For this reason, it is then customary to distinguish
between different subsets of the manipulator surrounding volume, according to the at-
tained level of dexterity. The locus of points in the 3D Cartesian space the end effector
manages to reach with some orientation is referred manipulator primary or reachable
work-space, whereas the locus of points in the 3D Cartesian space the end effector man-
ages to reach with any orientation is referred as secondary or dexterous work-space. The
dexterous work-space is clearly a subset of the reachable work-space, which is typically
termed thus simply work-space.

2.2 Kinematic Spaces

Manipulator kinematics generally refers to the motion of the system of bodies making
up the manipulator without explicitly discerning between the motion of the joints and
the motion of the tool. In this regard, the same motion of the kinematic chain as a
whole, required by a given task, may be analytically represented focusing the attention
on either the coordinates of the joints or the pose of the end effector, thus two distinct
but interconnected topological layers may be defined, namely joint space and task space.

2.2.1 Joint space

The motion of each joint can be analytically described by means of a single kinematic
variable, therefore joints kinematics is usually studied assigning an univocal coordinate
to each joint displacement: clearly, if the joint is prismatic, the joint coordinate is a
linear position along a line, whereas, if the joint is revolute, the joint coordinate is an
angular position about a line.

The set of all permissible joint coordinates is referred as manipulator joint space; its
dimension is equal to the number of joints in the manipulator. The i-th joint coordinate,
that is to say the real variable describing the motion of the i-th joint, is denoted by
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qi ∈ R. Such a notation naturally suggests to define, for a a manipulator with n joints,
the n-dimensional array

q := (q1, . . . , qn) ∈ Rn

having the n joints coordinates as its entries. Every real joint is capable of providing
only a finite displacement, either linear or angular, within a given range, called joint
stroke, therefore the joint space is a bounded subset of Rn.

The set of all admissible links kinematic configurations1 is referred as manipulator
configuration space; its dimension is equal to the number of independent motions in the
kinematic chain, which is also called degree of actuation, degree of motion, degree of
mobility or more simply mobility.

The configuration variables can be transformed into a subset of the joint coordinates,
therefore, in general, the degree of actuation is bounded by the number of joints and
the two may not coincide. Nevertheless, mechanical linkages are usually endowed only
with the indispensable number of mechanisms, because they are complex and expensive
components, thus manipulators normally have independent joints only, otherwise there
would be two or more joints acting as one, resulting in an unjustified waste: since different
values of joint coordinates yield different link kinematic configurations and the degree of
actuation is equal to the number of joints, within the framework of industrial robotics,
configuration space and joint space are often used interchangeably as synonyms.

2.2.2 Task space

From the mechanical point of view, a manipulator is a more or less complex system of
rigid bodies, each of which has its own specific motion, though only the motion of the
end effector, which is indeed a rigid body itself, is normally subject of interest. A body
in 3D space has, in principle, six degrees of freedom, resulting from the combination
between the three position and the three orientation degrees of freedom; when some
constraints are applied to the rigid body, though, the available degrees of freedom may
decrease, thus, more in general, a body in 3D space has up to six degrees of freedom.

The set of all end effector poses permissible by a given task, is referred as manipulator
task space or operational space; its dimension is equal to the task degrees of freedom,
i.e. the degrees of freedom of the end effector demanded by that task: it depends on the
constraints set by that task and, in any case, can be six at most.

From an abstract point of view, the pose of a rigid body is the collection of the
position and the orientation of that body; it is always a well defined mathematical
entity, regardless of the actual representation of the orientation. The end effector position
r ∈ R3 is a point in the 3D Cartesian space, while the end effector orientation φ ∈ SO(3)
is an element of the Special Orthogonal Group of degree 3; the pose of the end effector,
i.e. the juxtaposition of the position and the orientation of the end effector, belongs to

1In rigid body mechanics, the configuration of a rigid body or a system of rigid bodies, is any col-
lection of variables with minimum cardinality, called generalised coordinates, able to describe completely
the position of any point of the rigid body or the system of rigid bodies.
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the to the Special Euclidean group of degree 3

p ∈ SE(3)

where SE(3) := R3 ⊗ SO(3). Also the orientation is sometimes described by a triple of
numbers, i.e. three Euler angles; for instance, when the roll-pitch-yaw angles are adopted,
the position and the orientation may be respectively described by r = (x, y, z) and
φ = (α, β, γ), even though only the position is a proper vector, whereas the orientation
is just an array of numbers. That is the reason why, with a slight abuse of notation, the
pose is sometimes considered a vector of R6. Since the task may limit the motion of the
end effector, then, in general,

p ∈ Rm

where m ≤ 6 is the number of task degrees of freedom.
Even though the concepts may sound quite similar, task space and work-space are

not synonyms: the former is the unlimited mathematical space a certain task is formally
represented in whereas the latter is a circumscribed physical region of the work-cell the
end effector may move within. Nevertheless, they might also be described according
to a common analytical framework: in this case, a given task may be performed by a
manipulator only if the intersection between the (position) task space and the work-
space is non empty and the dimension of the (pose) task space is not larger than the
manipulator degrees of freedom.

2.2.3 Degrees of Freedom and Redundancy

Depending on the relationship between the number of joints and the number of degrees
of freedom demanded by a given task, three situations lie ahead. When n < m, the
manipulator is unsuitable for that task, therefore the task requires a minimum number
of joints, i.e. n ≥ m: when n > m, the manipulator is said to be redundant for that
task, whereas, when n = m, the manipulator is said to be non redundant for that task.
The difference n−m measures the level of redundancy and is thus termed redundancy
degree or degree of redundancy.

Redundancy means that not all the joints are actually required to achieve the desired
degrees of freedom, and that the same end effector pose might be attained by means
of several combinations of joint coordinates, dramatically improving the manipulator
dexterity over the space. Redundant manipulators are extremely hard to control but
they may prove especially useful for applications demanding high levels of agility.

Sometimes the manipulator is redundant in relation to a particular task, that is when
that task does not need all manipulator degrees of freedom. This situation is not that
unlikely, in fact it often occurs, for instance, when the end effector of a manipulator
designed to operate routinely in the space, is constrained on portions of planes (e.g., a
panel or a wall) or lines (e.g., a track or a groove). For this reason, the same manipulator
may happen to be redundant for a given task, but non-redundant for another task. There
exist indeed two different types of kinematic redundancy: when the degree of motion
is larger than the task degree of freedom, the manipulator is said to be functionally
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redundant, whereas, when the degree of motion is larger than the manipulator degree of
freedom, the manipulator is said to be intrinsically redundant.

2.3 Kinematic Model

2.3.1 Definition and Motivation

Kinematics is the branch of mechanics that studies the motion of bodies without inves-
tigating the causes that generate it. The only physical quantities involved in kinematics
are usually linear and angular positions and their derivatives, such as velocities, accel-
erations, jerks, and so on. Kinematics applied to manipulators is called manipulator
kinematics: it studies the motion of the manipulator kinematic chain as a whole, focus-
ing its attention mainly on the motion of the joints and the motion of the end effector,
along with their relationship.

In order to fulfil a given task assigned in the framework of a certain application, the
end effector is required to carry out a designated motion in the work-space. Considering
that a manipulator is operated only by driving its joints servos, the control system
must be able to relate the motion of the end effector to the motion of the joints, in
order to command properly the manipulator movements, that is to say consistently
with the desired kinematic behaviour. It immediately follows that the development
of the manipulator kinematic model, i.e. the mathematical relationship between the
end effector kinematic quantities and the joints kinematic quantities, is a problem of
paramount importance in robot control.

2.3.2 Kinematic Notation

As just mentioned, manipulator kinematics essentially investigates the motion of the
end effector in relation to the motion of the joints, therefore it is necessary to represent
somehow the pose of the end effector with respect to a privileged reference frame, which
customarily sticks to some fixtures, with easily identifiable geometry, in the space sur-
rounding the manipulator, such as floors, roofs, walls, objects with regular shapes or the
manipulator base itself.

A rigid body can be represented kinematically through a reference frame rigidly
attached to that body. The kinematics of a manipulator may be thus investigated de-
scribing a reference frame tied to the manipulator end effector, with respect to a reference
frame tied to the manipulator base. The fixed reference frame attached to the base is
referred as base frame RB or world frame RW and is habitually selected according to
the geometry of the environment around the manipulator. The mobile reference frame
attached to the end effector is referred as end frameRE or tool frameRT and is habit-
ually selected according to the geometry of the tool held by the manipulator. A popular
choice of these reference frames for articulated manipulators is shown in Figure 2.1.

Exploiting homogeneous coordinates notation, the pose of the end effector with re-
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spect to the base is described through the homogeneous transformation matrix

TB
E =

(
RB

E tBE
0T 1

)
(2.1)

where RB
E is the rotation matrix giving the orientation of the end effector with respect

to the base and tBE is the translation vector giving the position of the end effector with
respect to the base.

2.3.3 Link Frames

When developing the kinematics of manipulators with many joints, such as articulated
manipulators, a direct approach, that is the immediate computation, by means of plain
geometric inspection, of the kinematic relationship between the world frame and the
tool frame is practically infeasible, and an indirect approach, based on several relative
transformations between reference frames deployed along the kinematic chain from the
base up to the flange, is definitely preferable. In this light, the overall kinematic trans-
formation between the world frame and the tool frame may be imagined as the cascade
of more transformations between pairs of reference frames coming from a sequence that
starts with the world frame and ends with the tool frame.

Since the links are proper rigid bodies with their distinctive motion, then it makes
sense to assign a different reference frame to each link. This choice is especially ap-
propriate because the relationship between reference frames attached to adjacent links
may be described by means of fixed quantities except for a single joint variable. The
number of interposing reference frames along the kinematic chain of the manipulator is
thus not arbitrary, in fact it is imposed by the number of links. The reference frames
the manipulator links have to be tied to are referred as link frames.

A n-DOF serial manipulator is composed of n joints and n + 1 links. The links are
labelled according to their number: conventionally, the first one is called link 0 while
the last one is called link n, then the i-th joint connects the (i− 1)-th link and the i-th
link. The relation between two consecutive link frames Ri and Ri−1 is thus affected by
the i-th joint motion only and is described by the homogeneous transformation matrix

T i−1i =

(
Ri−1
i ti−1i

0T 1

)

as Ri−1
i describes the orientation of Ri with respect to Ri−1, whereas ti−1i describes the

position of Ri with respect to Ri−1.
The homogeneous transformation matrix describing the total relationship between

the 0th link frame and the nth link frame is the product of the homogeneous transfor-
mation matrices relative to all partial relationships between subsequent link frames

T 0
n = T 0

1T
1
2 · · ·T n−2n−1T

n−1
n =

n∏
i=1

T i−1i
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and the homogeneous transformation matrix TB
E describing the complete relationship

between base frame and end frame is

TB
E = TB

0 T
0
nT

n
E = TB

0 T
0
1 · · ·T n−1n T nE

where TB
0 describes the further relationship between the base frame and the first link

frame, while T nE describes the further relationship between the last link frame and the
end frame, whenever these frames are not coincident.

The relationship between adjacent links come out once the reference frames are
clearly identified over the manipulator kinematic chain. A systematic procedure is there-
fore needed to determine precisely how to define the link frames. There exist several
guidelines and directives devised to address this matter, commonly gathered into dif-
ferent collections of rules, better known as kinematic conventions, among which the
most widespread and renowned is undoubtedly the Denavit-Hartenberg convention.

2.3.4 Denavit-Hartenberg Convention

Coordinate Frames Selection

In principle, the frame representing the position and the orientation of a link might be
arbitrarily set, that is to say choosing whatever origin and axes, provided that it moves
along with the link. Up to six degrees of freedom are associated to a generic reference
frame transformation, thus six parameters would be required to describe it. Nonetheless,
it is possible to define some reasonable rules to constrain link frames in order to reduce
the number of parameters required to describe the relative transformations.

Specifically, if one of the three coordinate axes of the link frame is directed along the
spatial line defining the motion, either linear or rotary, of a joint, then a single elemental
transformation with respect to that axis would suffice to represent the joint displacement:
several conventions intended to model manipulator kinematics set the z axis of link
frames following this argument indeed. According to the kinematic convention proposed
by Denavit and Hartenberg (see [9]), the link frames are assigned following some precise
criteria based on the geometric concepts of motion axis and common normal.

Geometric Tools

The 3D oriented line a revolute joint rotates about or the 3D oriented line a prismatic
joint slides along is generically referred as joint motion axis. The notion of joint
motion axis surely represents the milestone of Denavit-Hartenberg convention.

The common normal between the motion axes of two consecutive joints is defined
as the segment with minimum distance connecting those axes, in a narrow sense, or the
line containing such a segment, in a broad sense. By definition, the common normal
between two motion axes is orthogonal to both of them, as shown in fig. 2.2. The notion
of common normal is another key element of Denavit-Hartenberg convention.

This abstract concept gives a quite good insight of the spatial linkages geometry
although it reveals its limits in two particular cases, namely axes intersection and align-
ment: when two motion axes converge in a single point, the common normal segment
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degenerates into that point, therefore the common normal line is undefined, because
there exist infinite lines containing that point; when two motion axes have the same ori-
entation, the common normal segment is undefined, because there exist infinite parallel
segments orthogonal to both axes.

common normal

(i+ 1)-th joint motion axis

i-th joint motion axis

Figure 2.2: Common normal between consecutive joint motion axes.

Systematic Procedure

The Denavit-Hartenberg kinematic convention proposes a systematic procedure with the
rules for defining the relation between two adjacent links frames. The origin position
and the coordinate axes orientation of Ri with respect to Ri−1 are set after detecting
the couple of joint motion axes and identifying the corresponding common normal:

� the origin of Ri must lie on the intersection between the common normal and the
(i+ 1)-th joint motion axis;

� the z axis of Ri must be parallel to the (i+ 1)-th joint motion axis, following the
positive direction of motion;

� the x axis of Ri must be parallel to the common normal, following the direction
from the i-th joint motion axis to the (i+ 1)-th joint motion axis;

� the y axis of Ri must be orthogonal to the common normal and the (i+1)-th joint
motion axis, following the direction that yields a right-handed frame.
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The (i−1)-th i link frame is therefore transformed into the i-th link frame, performing
first a translation along the z axis in order to reach the intersection between the i-th
joint motion axis and the common normal, and a rotation about the z axis in order to
orient the x axis with the common normal, then a translation along the x axis in order
the reach the intersection between the common normal and the i + 1-th joint motion
axis, and a rotation about the x axis in order to orient the z axis with the (i + 1)-th
joint motion axis.

Symbolic Notation

Four elemental transformations, two translations and two rotations, are needed to bring
the link frame Ri−1 to overlap with the link frame Ri; four quantities, two lengths and
two angles, are thus required to specify either symbolically or numerically the complete
transformation: they are generally referred as Denavit-Hartenberg parameters, or, some-
times, simply as kinematic parameters. The i-th DH parameters, i.e. the DH parameters
related to the i-th transformation, are called di, θi, ai, αi. In particular:

� di is the translation distance along the i-th joint motion axis;

� θi is the rotation angle about the i-th joint motion axis;

� ai is the translation distance along the i-th common normal;

� αi is the rotation angle about the i-th common normal.

The i-th kinematic parameters and the corresponding transformations that relate Ri−1
and Ri are graphically portrayed in fig. 2.3.

The first two elemental transformations are defined with respect to the joint motion
axis, therefore they might integrate directly the motion of the joint, that is to say one of
the first two kinematic parameters di and θi might represent the i-th joint coordinate,
up to a constant offset: more specifically, if the joint is prismatic, di accounts for the
i-th joint linear displacement, whereas, if the joint is revolute, θi accounts for the i-th
joint angular displacement. The other kinematic parameters not related to the joint
displacement must be inferred from the geometry of the link connected to the pair of
joints under consideration. In summary, among the Denavit-Hartenberg parameters,
there are three constants that depend only on the geometry of the i-th link, and one
variable that depends also on the motion of the i-th joint.

The homogeneous transformation matrix describing the relationship between Ri−1
and Ri according to the Denavit-Hartenberg convention is constructed as

T i−1i := Trans (k, di) Rot (k, θi) Trans (i, ai) Rot (i, αi)

multiplying the homogeneous transformation matrices corresponding to the four ele-
mental transformations parametrised by the kinematic parameters, observing the order
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defined above. The complete homogeneous transformation matrix is

T i−1i =

(
Ri−1
i ti−1i

0T 1

)
=


cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi cαi di
0 0 0 1


therefore the orientation of Ri in Ri−1 depends only on the angles θi and αi, while the
position of Ri in Ri−1 depends on both the lenghts di and ai and the angle θi. depends
on both lengths and angle parameters, but not on the angle of the last rotation.

di

ai

ii−1

ji−1

ki−1

θi

ii

ji

ki αi

Figure 2.3: Denavit-Hartenberg transformation between the (i− 1)-th and the i-th link frames.

Ambiguity

As already anticipated in the introductory discussion about the notion of common nor-
mal, there exist two particular geometric configurations that give rise to ambiguity when
following the rules of Denavit-Hartenberg convention given before.
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When the two consecutive joint motion axes are parallel, the common normal is not
unique. The origin oi of the i-th link frame might be thus arbitrarily placed along the
(i + 1)-th joint motion axis; for the sake of simplicity, it is customarily located at the
point of intersection between the i-th joint motion axis and the common normal line
that passes through the origin oi−1 of the (i− 1)-th link frame too, in order to yield no
offset along the joint motion axis, i.e. di = 0. On the contrary, the orientation of the
x axis ii of the i-th link frame is still distinctly defined, because every common normal
line shares the same spatial direction. Such an eventuality usually occurs for instance in
articulated manipulators between the motion axes of the 2nd and the 3rd joints.

When two consecutive joint motion axes are incident, the common normal does not
exist. The x axis ii of the i-th link frame cannot be thus directed by following the
aforementioned criteria, and, in principle, it might be arbitrarily oriented on the plane
orthogonal to the (i + 1)-th joint motion axis; nevertheless, bearing in mind that the
common normal line has to be perpendicular to both joint motion axes, it is conven-
tionally oriented by setting the condition ii = ki−1 × ki. Such a constraint could be
universally used in place of the classical one based on the common normal, as it would
return the same result except for the sense, the cross product being not commutative, if
not for parallel joint motion axes, in which case it fails of course. In contrast, the origin
oi of the i-th link frame is still uniquely defined, because it coincides with the point of
intersection. Such a circumstance usually occurs in articulated manipulators between
the motion axes of the 4th and the 5th joints or between the motion axes of the 5th and
the 6th joints.

Arbitrariness

The Denavit-Hartenberg convention sets the rules for transforming reference frames at-
tached to subsequent links basing on the respective joint motion axes. For this reason,
it cannot provide any useful hint whatsoever about the specification of the base frame
and the end frame.

The base frame RB normally corresponds to the first link frame, i.e. the reference
frame R0 attached to the 0th link. The z axis is the only element of R0 that can be
unequivocally assigned, for it must coincide with the 1st joint motion axis. The origin
and the coordinate axes x and y of R0 are not constrained in any way by the rules
of Denavit-Hartenberg convention, because there is no joint upstream of the first link,
which is anchored to a fixed surface. The base frame might be then conveniently defined
in compliance with the geometry of the manipulator base: for instance, the origin o0 is
usually placed at the centre of the mounting surface, while the coordinate axes i0, j0
and k0 are usually oriented respectively with the frontal direction, the lateral direction
and the vertical direction.

The end frame RE normally corresponds to the last link frame, i.e. the reference
frame Rn attached to the nth link. No element of Rn can be unequivocally assigned,
because there is no joint downstream of the nth link, which is firmly attached to the
tool. The end frame Rn might be then conveniently defined in compliance with the
geometry of the manipulator end effector: for instance, the origin on is usually placed
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at the centre of the equipped tool, while the coordinate axes, in, jn and kn are usually
oriented respectively with the normal direction, the sliding direction and the approach
direction.2 In any case, in−1 and kn must be orthogonal, owing to the specific sequence
of transformations of the Denavit-Hartenberg convention.

2.3.5 Direct Kinematics

Manipulator direct kinematics or forward kinematics studies the direct relationship
between the motion of the joints and the motion of the tool. Specifically, given certain
joint coordinates q ∈ Rn in the joint space, direct kinematics seeks to find the value of
the end effector pose p ∈ Rm in the task space that are given by that coordinates. The
function fk : Rn → Rm, defined by the relation

p = fk (q) (2.2)

is termed direct kinematic function.
The practical task of finding a mathematical relationship relating the joint coordi-

nates to the corresponding tool poses is usually quite easy; when the problem is feasible,
a solution always exists and is unique: as long as the joint coordinates lie within the
joint space, that is to say all the joints do not exceed their admissible strokes, there
exists necessarily only one end effector pose generated by that joint coordinates. For
this reason, direct kinematics is always a well-posed3 problem, provided that the joint
coordinates are picked inside the manipulator joint space.

The direct kinematic function of a manipulator can be derived analytically by exploit-
ing all the information already available about the kinematic model of that manipulator.
For instance, if the Denavit Hartenberg convention is adopted to model the kinematic re-
lationships between pairs of subsequent links frames, as already mentioned, the ordered
product of all the corresponding homogeneous transformation matrices may already give
a compact description of the end effector position and orientation with respect to the
base, as a function of the joint coordinates q, which can be written as

T 0
n(q) =

n∏
i=1

T i−1i (qi) = T 0
1(q1)T

1
2(q2) · · ·T n−2n−1(qn−1)T

n−1
n (qn) (2.3)

as the matrix T i−1i is a function of the i-th joint coordinate qi only.
The position and the orientation of the end effector can be extracted separately,

writing the homogeneous transformation matrix T 0
n as in eq. (2.1): specifically, the

orientation of the end effector is represented by orientation matrix R0
n, computed as

R0
n = R0

1 · · ·Rn−1
n (2.4)

2The normal direction is the direction orthogonal to the hand working plane, the sliding or orientation
direction is the direction along which the hand can slide, the approach direction is the direction along
which the hand can approach an object.

3According to the definition given by Jacques Hadamard, a problem is said to be well posed, whenever
a solution to the problem does exist, is unique and changes with continuity with the conditions.
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because the rotation block of the product of a sequence of homogeneous transformation
matrices is the product of the rotation blocks of the sequence of homogeneous transfor-
mation matrices; whereas the position of the end effector is represented by the position
vector t0n, computed recursively as

tin = tii+1 +Ri
i+1t

i+1
n (2.5)

with the straightforward starting condition tnn = 0. The direct kinematic function im-
mediately comes out simply by making explicit the dependence on the joint coordinates
in the orientation matrix and the position vector just computed, bearing in mind that
the coordinates of prismatic joints may affect only the position, while the coordinates of
revolute joints may affect both the orientation and the orientation.

If the i-th joint is revolute, then the joint coordinate qi is an angle that modifies the
rotation around the i-th joint motion axis, therefore both Ri−1

i and ti−1i are functions
of that angle, whereas, if the i-th joint is prismatic, then the joint coordinate qi is a
distance that modifies the translation along the i-th joint motion axis, hence only ti−1i

is a function of that distance while Ri−1
i is a constant matrix. Since 6-DOF articulated

manipulators have six revolute joints, then the orientation matrix of end effector, written
out in full as

R0
6 = R0

1R
1
2R

2
3R

3
4R

4
5R

5
6

is a function of all six joint coordinates, whereas the position vector of the end effector,
written out in full as

t06 = t01 +R0
1

(
t12 +R1

2

(
t23 +R2

3

(
t34 +R3

4

(
t45 +R4

5t
5
6

))))
is a function of the first five joint coordinates.

Relying on the simplified geometric elements of the nominal manipulator design in
order to reduce the complexity the direct kinematic function, albeit rather tempting,
frequently proves to be of very little practical help, because the ideal geometry of the
manipulator design is normally pretty far from the actual geometry of a manipulator
unit. The manipulator user might indeed desire to give a more accurate mathematical
description of the manipulator kinematics, by identifying and trimming the values of the
kinematic parameters and then updating the kinematic model with those values, in such
a way the predicted behaviour could match as closely as possible the actual behaviour.
However, such a correction may be carried out only whether those parameters, the value
of which is subject to modification, are explicitly included into the analytical expression
of the kinematic function, which is not the case with the nominal model, where some
parameters are completely wiped out for the sake of simplification.

2.3.6 Inverse Kinematics

Manipulator inverse kinematics or backward kinematics studies the inverse rela-
tionship between the motion of the joints and the motion of the tool. Specifically, given
a certain end effector pose p ∈ Rm in the task space, inverse kinematics seeks to find
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the values of the joint coordinates q ∈ Rn in the joint space that give that pose. The
function fk

−1 : Rm → Rn, defined by the relation

q = fk
−1 (p) (2.6)

is termed inverse kinematic function.

The practical task of finding a mathematical function relating the tool pose to the
corresponding joint coordinates is usually quite tough and may be addressed in several
ways, e.g., by means of geometric inspection, numeric optimisation, iterative solution,
symbolic engines, etc., according to the available resources, the desired precision and the
specific degree of complexity.

The desired end effector position completely determines the feasibility of the inverse
kinematics problem: as a matter of fact, if the position lies within the work-space,
there exists necessarily at least one combination of joint coordinates that brings the
end effector to that position, with a certain orientation. Moreover, if the position lies
within the dexterous work-space, there exists even a combination of joint coordinates
that brings the end effector to the desired position with the desired orientation. In
the end, inverse kinematics is a well posed problem, provided that the input position is
picked inside the manipulator work-space.

As regards articulated manipulators, and, in general, all other types of manipula-
tors endowed with revolute joints, since the expression of the end effector position and
orientation involves some trigonometric functions of the joints coordinates , then direct
kinematics features neither linearity, that is to say joints displacements do not yield
linearly proportional tool pose variations, nor injectivity, that is to say different joint
postures might yield the same tool pose.

These issues give rise to some annoying consequences in the practical implementation
of inverse kinematics: firstly, the solution depends on the local properties of the problem,
hence the solution corresponding to some conditions, cannot be extended or updated
when those conditions change; secondly, even though certain conditions can guarantee
the existence of the solution, they cannot ensure the uniqueness of the solution, even for
non-redundant manipulators, hence it is necessary to devise a suitable criterion to single
out a specific solution among all the admissible ones. For all these reasons, an analytical
approach to inverse kinematics is virtually infeasible.

Simple Manipulators

Nevertheless, most articulated manipulators, although fairly different in shapes and sizes,
are designed according to a common framework based on simplified geometries involv-
ing exact perpendicularity and parallelism between subsequent joint motion axes. Such
peculiar spatial features simplify the requested analytical effort, thus making the kine-
matics of articulated manipulators relatively easy to investigate.

Manipulators with such a standard simplified geometry have been labelled kine-
matically simple manipulators, or directly simple manipulators. The inverse kinematic
function of a simple manipulator may be computed analytically and has a closed-form
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expression, as discussed in [12]. A systematic procedure to solve inverse kinematics of
simple articulated manipulators, is outlined hereinafter.

All quantities are represented in the base frame R0, therefore, in order to ease the
notation, the superscript 0 is dropped for all vectors and matrices, without ambiguity;
moreover, when only base frame is involved, the subscript 0 is avoided as well. The joint
angles θ1, . . . , θ6 that yield a desired hand pose pH are computed; the array with the
six joint coordinates q immediately comes out from the joint angles just found, after
subtracting the respective offset angles. The tool pose pH is split into its fundamental
components: the hand position rH and the hand orientation φH; the angles in the
orientation vector can be used to build the orientation matrix RH, according to the
selected attitude representation.

Arm Coordinates

Simple manipulators have spherical wrists, that is to say the last three joints motion
axes all intersect in a single point, thus a4, a5, a6 = 0. The intersection point is located
at the centre of the wrist therefore it is called wrist position and is denoted by rW. The
hand position could be obtained shifting the wrist position along the 6th motion axis by
the distance offset, i.e. rH = rW + d6k5, hence the wrist position can be computed as

rW = rH − d6RHk

where rH is the desired hand position vector, and RH is the desired hand orientation
matrix. The rotated z axis RHk represents the hand approach direction.

On the other hand, the wrist is constrained by the base through the kinematic chain
consisting of the trunk, the upper arm and the forearm, so the position of the wrist can
be also deduced from the sequence of DH translations along z and x axes of link frames
0, 1, 2 and 3

rW = d1k0 + a1i1 + d2k1 + a2i2 + d3k2 + a3i3 + d4k3 =

= d1k0 + a1Rz(θ1) i0 + d2Rz(θ1)Rx(α1)k0 + a2Rz(θ1)Rx(α1)Rz(θ2) i0 +

+ d3Rz(θ1)Rx(α1)Rz(θ2)Rx(α2)k0 + a3Rz(θ1)Rx(α1)Rz(θ2)Rx(α2)Rz(θ3) i0 +

+ d4Rz(θ1)Rx(α1)Rz(θ2)Rx(α2)Rz(θ3)Rx(α3)k0

brought back in link frame 0. The above expression might be significantly simplified
by considering the peculiar geometric features of simple manipulators: the motion axis
of the shoulder and the motion axis of the waist are perpendicular, thus α1 = ±π

2 ; the
motion axis of the elbow and the motion axis of the shoulder are parallel, thus d2 = 0
and α2 = 0 ∧ π; the first motion axis of the wrist and the motion axis of the elbow are
perpendicular, thus α3 = ±π

2 .

The angles α1 = −π
2 , α2 = 0, α3 = +π

2 are here assumed, because they reflect the
geometric layout of the majority of articulated manipulators, though the reasoning re-
mains still valid even if the other angles are used instead, for they would yield equivalent
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results, only with different signs. Substituting the simplified DH parameters into the
expression of the wrist position gives

rW = xWi+ yWj + zWk =

= d1k + a1Rz(θ1) i+ a2Rz(θ1)Rx

(
−π

2

)
Rz(θ2) i+ d3Rz(θ1)Rx

(
−π

2

)
Rz(θ2)k +

+ a3Rz(θ1)Rx

(
−π

2

)
Rz(θ2 + θ3) i+ d4Rz(θ1)Rx

(
−π

2

)
Rz(θ2 + θ3)Rx

(
+π

2

)
k =

= d1k + a1Rz(θ1) i+ a2Rz(θ1)Ry(θ2)Rx

(
−π

2

)
i+ d3Rz(θ1)Rx

(
−π

2

)
k +

+ a3Rz(θ1)Ry(θ2 + θ3)Rx

(
−π

2

)
i+ d4Rz(θ1)Ry(θ2 + θ3)Rx

(
−π

2

)
Rx

(
+π

2

)
k =

= d1k + a1Rz(θ1) i+ a2Rz(θ1)Ry(θ2) i+ d3Rz(θ1) j +

+ a3Rz(θ1)Ry(θ2 + θ3) i+ d4Rz(θ1)Ry(θ2 + θ3)k =

= d1k + a1(cθ1i+ sθ1j) + a2Rz(θ1) (cθ2i− sθ2k) + d3(cθ1j − sθ1i) +

+ a3Rz(θ1) (cθ2+θ3i− sθ2+θ3k) + d4Rz(θ1) (cθ2+θ3k + sθ2+θ3i) =

= (a1cθ1 + a2cθ1cθ2 − d3sθ1 + a3cθ1cθ2+θ3 + d4cθ1sθ2+θ3)i+

+ (a1sθ1 + a2sθ1cθ2 + d3cθ1 + a3sθ1cθ2+θ3 + d4sθ1sθ2+θ3)j +

+ (d1 − a2sθ2 − a3sθ2+θ3 + d4cθ2+θ3)k

where the basic properties of elemental rotations sequences have been applied.
The waist angle θ1 can be easily extracted from the equation

− sin θ1xW + cos θ1yW = d3

substituting the polar coordinates xW = ρW cosφW and yW = ρW sinφW of the wrist
position on the xy-plane of the waist frame R0. The resulting equation

−ρW sin θ1 cosφW + ρW cos θ1 sinφW = d3

can be transformed in an equation in the angle difference φW − θ1 only

ρW sin(φW − θ1) = d3

by making use of the sine subtraction identity. This equation is solvable only when
ρ2W = x2W +y2W ≤ d23, in which case it yields two4 distinct values for φW−θ1 and thus for
θ1, corresponding to the so called shoulder left and shoulder right configurations.

Once the waist angle θ1 has been found from the projection of the wrist position on
the xy-plane, the elbow angle θ3 may be computed. The sum of the squares of

cos θ1xW + sin θ1yW − a1 = +a2 cos θ2 + a3 cos (θ2 + θ3) + d4 sin (θ2 + θ3)

zW − d1 = −a2 sin θ2 − a3 sin (θ2 + θ3) + d4 cos (θ2 + θ3)

gives the following equation

(cos θ1xW + sin θ1yW − a1)2 + (zW − d1)2 = a22 + a23 + d24 + 2a2a3 cos θ3 + 2a2d4 sin θ3

4The equation a sinx = b has solutions x =

{
arcsin b

a
+ 2kπ

π − arcsin b
a

+ 2kπ
, k ∈ Z, when a 6= 0.
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after simplifying many terms by means of the sine and cosine subtraction identities
cθ2+θ3cθ2 + sθ2+θ3sθ2 = cθ2+θ3−θ2 = cθ2 and sθ2+θ3cθ2 + cθ2+θ3sθ2 = sθ2+θ3−θ2 = sθ2 . As
before, it is better to study the above equation in the elbow angle θ3 through the change
of variable to polar coordinates a3 = ρE sinφE and d4 = ρE cosφE, justified by the fact
that d4 and a3 are the rectangular coordinates of the wrist on the zx-plane of the elbow
frame R2. The resulting equation

2a2ρE(sinφE cos θ3+cosφE sin θ3) = (cos θ1xW+sin θ1yW−a1)2+(zW−d1)2−a22−a23−d24

can be transformed in an equation in the angle difference φE − θ3

2a2ρE sin (φE − θ3) = (cos θ1xW + sin θ1yW − a1)2 + (zW − d1)2 − a22 − a23 − d24

by making use of the sine subtraction identity. This equation admits a solution only
when

(
(cos θ1xW + sin θ1yW − a1)2 + (zW − d1)2− a22− a23− d24

)2 ≤ 4a22ρ
2
E, in which case

it yields two distinct values for φE − θ3 and thus for θ3, corresponding to the so called
elbow up and elbow down configurations.

Once the elbow angle θ3 has been found, the shoulder angle θ2 may be inferred
studying the following equations

cos (θ2 + θ3) (cos θ1xW + sin θ1yW − a1)− sin (θ2 + θ3) (zW − d1) = a2 cos θ3 + a3

sin (θ2 + θ3) (cos θ1xW + sin θ1yW − a1) + cos (θ2 + θ3) (zW − d1) = a2 sin θ3 + d4

through the change of variable to polar coordinates cos θ1xW + sin θ1yW− a1 = ρS sinφS
and zW− d1 = ρS cosφS, justified by the fact that zW− d1 and cos θ1xW + sin θ1yW− a1
are the rectangular coordinates of the wrist on the zx-plane of the shoulder frame R1.
The resulting equations

ρS sinφS cos (θ2 + θ3)− ρS cosφS sin (θ2 + θ3) = a2 cos θ3 + a3

ρS sinφS sin (θ2 + θ3) + ρS cosφS cos (θ2 + θ3) = a2 sin θ3 + d4

can be transformed in two equations in the angle difference φS − θ2 − θ3

ρS sin (φS − θ2 − θ3) = a2 cos θ3 + a3

ρS cos (φS − θ2 − θ3) = a2 sin θ3 + d4

by making use of the sine and cosine subtraction identity. These equations admit a
solution only when max

{
(a2 cos θ3 + a3)

2, (a2 sin θ3 + d4)
2
}
≤ ρ2S, and have to be solved

simultaneously in order to give a unique value for φS − θ2 − θ3 and thus for θ2 + θ3.
Finally, the shoulder angle θ2 is immediately found subtracting the value of θ3 from the
value of the sum θ2 + θ3 just computed.

Wrist Coordinates

Once the waist angle, the shoulder angle and the elbow angle have been found, the wrist
angles can be inferred from the orientation component of the desired hand pose. The
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hand orientation may be obtained adjusting the orientation of the hand with respect to
the wrist through the wrist orientation, i.e. RH = RWR

W
H , hence the hand orientation

relative to the wrist can be computed as

RW
H = RW

TRH

where RH is the desired hand orientation matrix and RW is the wrist orientation matrix,
that can be computed as

RW = R0
1R

1
2R

2
3 = Rz(θ1)Ry(θ2 + θ3)

from the values of the joint angles θ1, θ2, θ3 of the arm.
On the other hand, the hand is constrained by the forearm through the kinematic

chain of the wrist, so the orientation of the hand with respect to the wrist can be also
deduced from the sequence of rotations about z and x axes of links frames 4, 5 and 6

RW
H = R3

4R
4
5R

5
6 = Rz(θ4)Rx(α4)Rz(θ5)Rx(α5)Rz(θ6)Rx(α6)

starting from link frame 3. As before, the above expression may be significantly simplified
by considering the specific geometric features of simple manipulators: the motion axes of
the wrist are mutually orthogonal, thus α4 = ±π

2 , α5 = ±π
2 and the approach direction

is aligned to the last motion axis, thus α6 = 0 ∧ π.
The angles α4 = −π

2 , α5 = +π
2 and α6 = 0 are here assumed, because they reflect the

geometric layout of the majority of articulated manipulators, while the other angles give
equivalent results, only with different signs. Substituting the simplified DH parameters
into the above expression of the hand orientation relative to the wrist gives

RW
H = Rz(θ4)Rx

(
−π

2

)
Rz(θ5)Rx

(
+π

2

)
Rz(θ6)Rx(0) = Rz(θ4)Ry(θ5)Rz(θ6)

therefore θ4, θ5 and θ6 can be easily extracted because they are the z-y-z Euler angles
of this attitude matrix.

2.4 Manipulator Performances

In addition to sheer manufacturing operations, such as machining, processing, finishing,
assembling, etc.also testing becomes of paramount importance in the economy of a reli-
able productive process, because it is required to assess the quality and the conformity
of the single product, in particular, or the entire manufacture, in general. Customary
testing operations include inspection of mechanical parts, detection of defects and iden-
tification of contours. This further step clearly requires the manufacturers to perform
several and diverse measurements on the samples. Commercial manipulators equipping
specific tools tailored for measuring purposes, such as touch probes and laser scanners,
perfectly fit for that purpose; since the end effector manages to span the 3D space
surrounding the manipulator, the measuring tool carried by the flange can be moved
and operated by that manipulator, giving rise to a flexible and automated measuring
instrument, thanks to its good level of dexterity and mobility.
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The kinematic performances of manipulators may be assessed by means of a reliable
external instrumentation, adapting some concepts borrowed from metrology, i.e. the sci-
ence of measurement. The following discussion makes indeed full use of the technical
jargon of metrology, entirely gathered and extensively explained in [29]. Manipulator
kinematics is now investigated as if the manipulator were a proper measuring instru-
ment; as a matter of fact, any manipulator can be thought as a three-dimensional posi-
tion transducer: the measurand5 is the 3D spatial coordinate of the centre of the tool
installed on the manipulator end effector, also referred as tool centre point (TCP), and
the indication6 is the position value computed processing the joints readings though the
manipulator kinematic function, which is the measurement model7. Most of the prop-
erties involved in the description of the kinematic performances of manipulators can be
quantified through some numerical indices; such quantities must be carefully interpreted,
because lower values mean better performances and vice versa.

2.4.1 Precision

In metrology, precision is one of the main properties of a measuring instrument and
is defined as the degree of concordance among indications given in repeated measure-
ments of the same measurand under certain conditions. Basing on such conditions,
measurement precision gives rise to measurement repeatability, when the successive
measurements are performed in same location within a brief time period, and measure-
ment reproducibility, when the successive measurements are performed in different
locations within a long time period. In any case, the precision is normally quantified by
means of statistical measures of dispersion, e.g., variance or standard deviation.

In the scope of manipulator kinematics, precision represents the capability of a ma-
nipulator to move its end effector to the same position in the work-space with the same
spatial orientation, when subject to the same command. From a technical point of view,
the precision of a manipulator can be characterised driving the end effector to the same
target pose several times, surveying the position actually attained at each trial, and
computing a numerical estimate of the amount of spread in the collected readings.

Since the manipulator precision is normally assessed by processing the results coming
from a set of measurements taken in the same place and in a limited time, the term
precision can be informally confused with the term repeatability, which is far more
widespread in the industrial robotics community. Manipulator manufacturers generally
report the position repeatability in the manipulator technical specifications; nevertheless,
as the measurement protocol adopted to characterise the repeatability might differ from
one manufacturer to another, e.g., owing to very diverse load and speed conditions
or to the work-space target volume, it is virtually impossible to compare the values
of this specification among different manipulator models. To overcome this problem,

5The measurand is the target quantity under measurement.
6The indication is the reading value yield by the measuring instrument.
7The measurement model is the mathematical relationship relating the directly measured quantities

to the actually provided quantities.
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all manipulator manufacturers should gauge and declare the repeatability by means of
procedures compliant with current international standards (see [30] and [31]).

The manipulator repeatability is essentially due to the quality of the components
constituting the manipulator, in general. More specifically, it is heavily determined by
backlash effect in the geared transmission system, mechanical clearances in the support-
ing frame, finite numeric precision of the manipulator controller and limited resolution
of joints position transducers. Repeatability of standard industrial robots is commonly
quite satisfactory as it typically ranges between some hundredths and few tenths of mms
although it cannot be improved by the manipulator user at all.

2.4.2 Accuracy

In metrology, accuracy is one of the main properties of a measuring instrument and
is defined as the degree of proximity between the indication and the true value of the
measurand. It is thus intimately connected to the concept of measurement error, i.e. the
numerical deviation between the estimated value and the real value of the measurand.
Accuracy must not be confused with trueness, which is the degree of proximity be-
tween the average of the indications given by many reiterated measurements and the
true value of the measurand.

In the scope of manipulator kinematics, accuracy represents the capability of a ma-
nipulator to move its end effector to a desired position in the work-space with the desired
spatial orientation, when subject to the corresponding command. From a technical point
of view, the accuracy of a manipulator can be characterised driving the end effector to
the same target pose several times, or to several different target poses, sampling the
position actually reached at each trial, and computing the error between the achieved
positions and the aimed positions.

The average position error gives an estimate of the average accuracy, earlier defined
as trueness, whereas the maximum position error gives an estimate of the maximum
accuracy, earlier defined as accuracy. The strict definition of accuracy cannot distinguish
between systematic errors, exclusively taken into account by trueness, and random errors,
exclusively taken into account by precision: for this reason, low accuracy may be due to
either low precision or low trueness (or even both).

The manipulator accuracy is due to the unavoidably incomplete knowledge of the ma-
nipulator mathematical model. Imperfections and limitations in practically any constitu-
tive element of a manipulator, e.g., interface slacks, lock plays and dimensions tolerances
due to machining and assembling processes, materials flexibility, structural compliances,
thermal drift, motion transmission system hysteresis, transducers resolution, controller
round-off errors, may contribute to restrict the overall accuracy.

Manipulator manufacturers frequently omit the position accuracy in the manipulator
technical specifications, even though there exist international standards prescribing the
modality of accuracy assessment and statement (see [30] and [31]). The accuracy of
standard industrial robots is normally rather poor as it usually ranges from some tenths
up to tens of mms and, in general, it is far worse than the repeatability, although, unlike
the latter, it can be partly improved by the manipulator user by means of rigorous
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ad hoc procedures. The enhancement of the manipulator accuracy is the subject of
manipulator calibration, widely discussed in chapter 3.
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Figure 2.4: 3D tool position in repeated trials for assessing precision and accuracy.

2.4.3 Resolution

In metrology, resolution is one of the main properties of a measuring instrument and
is defined as the smallest change of the measurand that is capable of determining an
appreciable change in the indication.

In the scope of manipulator kinematics, resolution represents the smallest displace-
ment of the end effector the manipulator is able to yield and mainly depends on the
resolution of joints transducers, i.e. the position sensors measuring the displacement of
the joints. For instance, the resolution of a rotary incremental encoder installed on a
revolute joint is the minimum angular deviation of the joint the encoder manages to
detect and depends on the number of segments on the entire round periphery of the
disk, corresponding to the number of different angular measurement per revolution.

Finite resolution deeply affects the kinematic performances of manipulators for it
automatically limits both precision and accuracy, in fact it gives rise to a rough estimate
of the lower bound for those properties: if the misplacement of the manipulator end
effector from a certain reference position induces a deviation in a joint smaller than
the joint resolution, the transducer is not able to recognise the occurred change and
continues to provide the same reading.

On the other hand, the resolution of transducers located in different joints may
condition the overall resolution in different way; for instance the resolution of the waist,
the shoulder or the elbow transducers is far more critical than the resolution of the wrist
transducers because it gets amplified by a longer kinematic structure. Manipulator
manufacturers customarily report the resolution of the joint position transducers in the
manipulator technical specifications.
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2.5 Manipulator Programming

Industrial robots embody the bridge between rigid automation, that is the world of fixed
automated processes, and flexible automation, that is the ensemble of programmed au-
tomated processes. Manipulators have indeed spread considerably in industry, because
they provide an adequate degree of adaptability, i.e. they manage to deal with very di-
verse applications; they are thus flexible machines that have to be suitably programmed
to perform specific tasks and to accommodate the needs of the user.

Programming a manipulator means developing a software code meant to be exe-
cuted by the controller to drive appropriately the servo actuators, in such a way that
the manipulator end effector could perform the expected motion in the work-space. The
programmer is thus required to describe, somehow, the spatial motion of the manipu-
lator under programming. Manipulator programs are also the basic intelligent interface
between the mechanical machine and its human user.

In the vast majority of standard industrial applications, manipulators are usually
required to perform repetitive tasks, following recurring paths patterned on fixed se-
quences of points within the work-space. Manipulator programs emerging from this
standard operating procedure are thus compiled once by the manipulator user and run
continually by the manipulator controller.

2.5.1 On-line Programming

The aforementioned points, needed to trace a desired geometric path in the work-space,
may be directly defined by performing materially the motion of the manipulator end
effector along that path, giving rise to the so called on-line programming.

After defining the task the manipulator is supposed to execute, the operator selects
a suitable set of points in the work-space pivotal for that task, sequentially brings the
manipulator TCP into such points one at a time and records the values of the joints at-
tained at each point. The complete motion is eventually programmed through a suitable
interpolation of the stored tool poses.

The joint coordinates corresponding to the target tool positions are instructed, or
‘taught’, by the manipulator user through a dedicated panel, called teach pendant, which
is capable of controlling either individual joints motion or separate Cartesian degrees of
freedom independently. This is the reason why this sort of programming method is also
also known as learn mode or teach mode.

This kind of programming strategy has been universally adopted in the early stage of
industrial automation, because it is intrinsically straightforward, low cost and it provides
a deep level of visual insight to the user; in particular, it proves especially useful when
the manipulator is intended to perform uncomplicated tasks managing objects with ele-
mentary geometries. Manually moving the manipulator body step by step makes it easier
and safer to avoid obstacles in the work-space environment and to handle constraints
set by the robot structure.

Despite its intrinsic simplicity, intuitiveness and cheapness, teach mode comes in with
many handicaps. First, physically engaging the manipulator to program may generate
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a severe production downtime: teach method programming makes the manipulator un-
available for as long as it takes to reach all the target points and record the corresponding
data in the controller memory, or even to test the entire completed program for valida-
tion and safety reasons, forcing the production process that manipulator takes part in
to be halted. The application program developed by means of taught poses is closely
related to the manipulator specimen under programming, therefore it is intimately tai-
lored to a specific unit and it is not easily reproduced on different units of the same
model. Last but not least, since the teaching procedure requires the close intervention
of the manipulator operator, on-line programming is very prone to human error and the
overall resulting performance may be heavily affected also by the skill of the operator.

In any case, such a programming philosophy relies on the assumption that repeated
commands get translated into equal movements of the manipulator. Unfortunately, as
discussed in subsection 2.4.1, the end effector position is always changeable and this
stability is numerically measured by the manipulator precision. The absolute error in
positioning the tool is not an issue, as long as it keeps relatively stable among different
repeated runs: the performance provided by the program are still good, even if the the
achieved poses are rather different from the computed poses, therefore the manipulator
accuracy does not affect the result whatsoever. Since manipulators are typically designed,
constructed and assembled in order to minimise their overall repeatability, they are
already inherently suitable enough for tasks programmed by teach mode.

2.5.2 Off-line Programming

The aforementioned points, needed to trace a desired geometric path in the work-space,
may be indirectly defined by reproducing virtually the motion of the manipulator end
effector along that path, giving rise to the so called off-line programming.

The movements involved by the task are commonly emulated by means of a dedicated
simulation environment. In order to recreate a virtual representation of the manipulator
work-cell, this software obviously expects all the geometrical data not only about the
manipulator unit, but also about all tools, equipment, machinery and objects involved in
the definition of task, and the environment in general: these data are habitually referred
as computer-aided-design (CAD) models. Any object, more or less complex, may be
taken into account and managed by the simulation software, provided that it has been
preventively modelled in terms of shapes and volumes.

Once the task the manipulator is intended to perform has been assigned, the manip-
ulator operator segments the path into smaller tracts and picks a significant set of key
points needed to trace the path, then inputs them to the simulation environment, where
a suitable computing engine calculates the values of the joint coordinates when the TCP
reaches those points. As for teach mode, the complete motion is eventually programmed
by means of a proper interpolation of the stored tool poses.

Simulating the manipulator movements makes more difficult to take into account the
manipulator joints strokes and links constraints, which have to be clearly reflected by
dedicated software limitations; collision avoidance may also represent an issue, because
geometrical models may be quite different from the physical objects they reproduce.
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Unlike programming via teach pendant, in which the extraction of the joint coordinates
from the tool poses is a transparent and straightforward process, in this case both
a satisfactory computational power and a rather deep understanding of manipulator
kinematics are respectively demanded to the computer and the user.

In spite of these minor drawbacks, off-line programming brings many benefits to
manipulator users. First, it is the most natural choice when accurate CAD data are
available and it represents the only way to integrate effectively these design tools into
the whole productive process. Representing schematically a task by means of a tailored
software provides an excellent for performing process optimisation, needed to minimise
the times required by specific phases of the production process. Manipulators need not
to be at programmer’s disposal during coding and the whole program development can
be carried out far from the target manipulator work-cell. Moreover, for the same reason,
manipulators can be also reprogrammed in a much easier and faster way. In the end,
when manipulators are programmed off-line, the production throughput is affected only
by the program deployment time and not by the program development time.

This kind of programming strategy has not been extensively adopted in the early
stage of industrial automation, for it is inherently intricate, high cost and provides a
poor level of visual insight to the user, and its importance has been acknowledged only
recently; in particular, it proves notably crucial whenever the manipulator is supposed
to perform complicated tasks handling objects with complex geometries. Even though
off-line programming is by far more widespread nowadays, on-line programming is some-
times still used in the final phase for verification purposes only.

Such a programming philosophy is based on the belief that the virtual work-cell ge-
ometry exactly matches the real work-cell geometry. Unfortunately, as already discussed
in subsection 2.4.2, the mathematical model of a manipulator is always imprecise, be-
cause of innumerable undesired issues related to the construction of actual manipulator
units, and its verisimilitude is numerically measured by the manipulator accuracy. If the
performed movements are far from the expected movements, because of model poorness,
the quality of the task may be severely compromised. On the other hand, the CAD
models of tools and equipment required by the task have to be reliable too, otherwise
the overall performances may be equally jeopardised.

Unlike teach mode, decent repeatability only is not sufficient, because the program
entirely stems from the manipulator nominal model, without taking into account the
target unit whatsoever : off-line programming demands a good level of both trueness and
precision, that is to say of accuracy, in order to yield satisfactory results. The default
accuracy of standard industrial robots is seldom adequate, thus the manipulator user
willing to implement effectively off-line programming has to devise a suitable strategy to
improve the manipulator accuracy to the point at which it becomes at least acceptable.





Chapter 3

Manipulator Calibration

3.1 Overview

3.1.1 Motivation

The pose of the end effector of a manipulator is normally computed on-line, by feeding
the joint transducers readings into a software application which implements the kine-
matic function of that manipulator, already defined in section 2.3. Such an abstract
mathematical relationship is derived once by either the manipulator manufacturer or
the manipulator user, basing on the mechanical design or a specific specimen selected
as reference; either way, it cannot be applied exactly to all manipulator units of the
same model, owing to several unavoidable issues, such as deviations from nominal de-
sign, effect of unpredictable environmental operating conditions etc., therefore the level
of absolute accuracy provided by a certain manipulator unit might be rather poor, in
general, or, in any case, inadequate for a particular task.

The goal of any manipulator calibration procedure is to improve the accuracy of a
manipulator modifying its kinematic model, by means of a sheer software correction,
i.e. without the need for actually modifying its mechanical construction or redesigning
it all over again. Moreover, when the manipulator structure is subject to minor changes
over time, e.g., due to wear, drift, maintenance, disassembly, etc., or even worse, when the
entire manipulator is replaced with another unit of the same model, the same program
operating the robot, even if complex, can be recycled after very few adjustments.

As mentioned before, great care is taken by the manufacturer at design and construc-
tion stage, for the purpose of reducing the impact of random and unpredictable effects
in joint motion as much as possible, therefore industrial manipulators typically feature a
quite satisfactory repeatability, which is clearly reported in the specifications, as it is a
crucial requirement to implement decently teaching method programming. In contrast,
systematic effects are far trickier to avert, whereby industrial manipulators reveal defi-
nitely mediocre accuracy, of which no guarantee is provided, and in any case far worse
than repeatability. This intrinsic lack prevents practitioners from effectively employing
manipulators in those tasks for which off-line or shared programming is required: from

35
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this perspective, the manipulator calibration proves especially valuable, for it attempts
to bring the accuracy closer, or at least comparable, to the repeatability.

3.1.2 Definition

The process of manipulator calibration consists in selecting a suitable mathematical
relationship, inside a certain function class, as kinematic function for a manipulator.
Whichever function class can hardly describe the limitless complexity of a real manipu-
lator unit, regardless of its level of refinement, hence the discrimination has to be per-
formed in the light of an optimality criterion, which is of course, in this case, accuracy
enhancement. Calibration focuses therefore on trimming the available mathematical
model of a manipulator, in order to approximate and reflect, as closely as possible, the
physical behaviour of that manipulator.

Since the kinematic function is usually parametrised, then the whole process is equiv-
alent to looking for a suitable set of parameters such that the function obtained substi-
tuting these parameters is capable of modelling the manipulator kinematics with higher
accuracy: from this perspective, calibration can be considered as a particular kind of
parameter identification problem. Unlike adaptive control applications, where model
identification must be continually performed in order to tune dynamically a controller,
calibration is carried out only occasionally : if the process proves successful, the iden-
tified values of the parameters are stored and read by the application designated to
manipulator positioning operations, at least until the next calibration.

Besides, manipulators intended to be employed for measurement purposes, e.g., by
installing specific sensors and probes on their hand, become measurement instruments
themselves, and, as such, they have to be calibrated. In the context of metrology,
as indicated in [29], calibration denotes the act of assessing the accuracy of a given
measurement instrument, termed device under test, by means of a comparison with a
standard, i.e. an object or another device able to provide corresponding values by far
more reliable; very often, the outcome of this operation leads to a correction of the
measurement model, technically named adjustment, for which the proper calibration
is a prerequisite, and a following verification, technically named recalibration.

3.2 Target Errors Compensation

3.2.1 Sources of Inaccuracy

The most general definition of manipulator calibration, given so far, focuses its atten-
tion on the fundamental purpose only, which is essentially the overall improvement of
the volumetric accuracy achieved by the manipulator end effector in a specific context,
through a revision of the manipulator kinematic model. On the contrary, the definition
gives no clues whatsoever about the feasible measures that may be actually taken to
achieve the desired goal practically.

As a matter of fact, there are numerous elements that might affect significantly the
positioning accuracy of actual manipulators; nevertheless, only some of them, among
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all the possible ones, have been thouroughly investigated and clearly identified until
now, while others are currently a challenging subject of research. The nature and the
impact of these adverse effects are so assorted that cannot be taken into account all at
once, therefore a calibration procedure can be designed in order to counterbalance only
a certain selected subset of them, basing on particular reasonable criteria. According to
the targeted source of error, different levels of calibration could be defined, as already
codified extensively in [15] and [16].

3.2.2 Joint-Level Calibration

This kind of calibration seeks either to establish or to refine the measurement model of
the manipulator joint sensors, i.e. the mathematical relationship between the reading of
position transducers installed on the manipulator joints, and the actual displacement of
that joints. In the first case, the procedure is performed once by the manipulator man-
ufacturer and possibly repeated by the manipulator user whenever the unit undergoes
damage or disassembly, while in the second case, the procedure is performed several
times by the manipulator user for diverse reasons.

Most of the famous kinematic conventions adopted to describe the kinematics of
industrial robots, and spatial linkages in general, are based on the widely accepted
assumption that joints might be mechanically modelled as pure lower-pair1 mechanisms.
Although this simplification turned out to be quite realistic for several manipulator
specimens, because great care is generally taken by manufacturers with the construction
of the joint mechanisms, there exist still minor imperfections in the joint drives chain that
can be taken in consideration only through the development of more complex models.

If the manipulator joints feature reduction gears, the motion of the motors is not
the same as the motion of the joints, because of the reduction. In such a case, which
is also the most common, when the transducer is physically installed on the motor,
the actual joint displacement is only a fraction of the transducer reading, due to the
reduction: this effect may be modelled through a dimensionless gain coefficient. If the
manipulator joints host incremental transducers, which are capable of measuring only
the joint relative displacements, the joint absolute positions have to be inferred from the
additional knowledge of the initial joint positions: the transducer are usually reset by
moving the manipulator into a reference configuration, termed zero position or home
position and identified thanks to dedicated mechanical stops or optical marks: this
effect may be modelled through a homogeneous offset.

Lastly, some joints might exhibit quite strange irregular motions, due to mechanical
imperfections, e.g., shaft compliance or gear eccentricity, or the transducer themselves
might have some minor flaws; these defects of different nature introduce undesired effects
that could be corrected only by adding suitable complex functions in the model.

1In mechanics, a pair, or joint, is a connection between two rigid bodies, or links, that allows a
certain relative motion between them: when the bodies are in contact through a surface, the connection
is termed lower pair.
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3.2.3 Geometric Calibration

This kind of calibration aims to enhance the accuracy of the entire kinematic model,
i.e. the mathematical relationship between the end effector pose and the joint coordi-
nates, by adjusting solely the elements modelling the geometric features of a manipulator,
in order to match, as much as possible, the real shapes and sizes of that manipulator.
At this stage, it is assumed that a joint-level calibration has been previously performed,
ergo the joint positions are already available, even though a model of the joints is often
partially embedded into the complete geometric calibration. In any case, all links are
considered rigid bodies and all joints are considered lower pairs, therefore no unexpected
motion is taken into consideration.

The most investigated and acknowledged source of inaccuracy in the kinematics of
manipulators is indubitably the geometric error, i.e. the discrepancy between the ideal
geometry of the general manipulator design and the real geometry of the particular
manipulator specimen. Any modifications in the mechanical structure of a manipulator,
not related to the motion or the loading condition, may be considered geometric errors:
these alterations are inescapably present in all industrial robots and, in general, all
complex machines, for they are due to mechanical tolerances arising from manufacturing
and assembling processes, and mechanical changes coming from natural drift, wear, and
routine maintenance operations2.

Even though whatever element of the physical structure of a manipulator might
potentially exhibit variations with respect to the nominal design, only the errors in
those geometric quantities involved in the spatial relationships between joint motion
axes actually impact the accuracy of the manipulator kinematics: such quantities, such
as the length or the width of the links, the distance and the orientation between joints,
are indeed the same parameters used to describe the manipulator kinematics, thus the
accuracy can be improved estimating precisely these parameters.

Extracting the geometric features of a manipulator from its mechanical design, which
relies on several devised elements of the desired mechanical architecture, such as exact
parallelism, incidence and orthogonality of subsequent joint motion axes, naturally leads
to a very compact and elegant form of the kinematic model, involving very few param-
eters, because all the available analytical simplifications can be fully exploited. For this
reason, in the scope of kinematic compensation, it is not sufficient to adjust only the
parameters already contemplated to improve the model accuracy but it is necessary to
introduce additional parameters accounting for all the feasible geometric irregularities.

3.2.4 Structure Deformation Calibration

This kind of calibration strives to further improve the accuracy of the entire kinematic
model, by including and fitting exclusively those elements that go beyond the scope of
sheer manipulator geometry, in the effort to capture the alterations in the manipulator

2More details about a tailor-made calibration meant to be performed after disassembly and replace-
ment for maintenance and failure, can be found in [17].
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kinematic behaviour due to the current operating conditions. At this stage, the manip-
ulator is assumed to be already geometrically calibrated, for this procedure is normally
conceived as correction of the residual errors left out by the geometric compensation.

The usual geometric calibration is based on the belief that the manipulator kinematic
model could be completely described just by means of a set of geometric parameters and
the joint displacements, for the links are regarded as rigid bodies and joints are regarded
as lower pairs. Sometimes, this assumption may prove overstrict, because other more
or less relevant additional effects, not explainable in terms of geometry, are thus wholly
ignored: the result is an incomplete modelling that leads to only partial, and sometimes
disappointing, accuracy refinement achievement.

All the physical effects and phenomena, other than flaws in shapes and sizes, able
to affect the kinematics of a manipulator and thus degrade its position accuracy, are
termed non geometric errors. They clearly have deeply diversified nature. Some of them
are mainly related to the mechanical transmission of the joint motion, from the drive up
to the load, e.g., gear backlash, bearing clearance or seal friction, hence their influence
is primarily trimmed by the manipulator manufacturer directly at the production stage,
in proportion to the outlined performance targets. Some others are the major sources
of deformation in the overall mechanical framework, such as the temperature of the
environment or the manipulator itself and the flexibility of the manipulator components.
these factors cannot be taken into account by the manipulator manufacturer, for they are
intimately related to the variable conditions the manipulator is required to operate in.
As regard the above mentioned effects, the conditions may be the ambient temperature,
the working speed and the payload.

Since deformations of the manipulator structure are extremely hard to model and
closely depend on the specific operating conditions, then less study has been carried out
in this area so far and such kind of calibration is thus not as popular as the standard ge-
ometric calibration. Nevertheless, there is great interest, as far as research is concerned,
in weighting the diverse error sources and determining which are the most critical among
them: considering that experimenter discoveries and claims are rather discordant, it is
evident that the degree of relevance of a particular issue could be related to the emphasis
placed on it by the manipulator manufacturer, at design, cast or assembly stage.

Elastic Deflection

As the majority of real mechanical machines, also manipulators are subject to elasticity;
the end effector frequently exhibits indeed a limited elastic behaviour, that is to say
a reciprocal proportionality between the stress, i.e. forces and torques, and the strain,
i.e. displacement distances and twist angles: when subject to a stress, it gets deformed,
and, conversely, when subject to a deformation, it develops a resistance.

The end effector is not a stand-alone object with well defined physical properties
and its overall elastic behaviour is clearly determined by the flexibility of the entire
manipulator. All families of manipulators ordinarily feature two separate dominant
sources of flexibility: the link compliance, i.e. the elasticity due to the finite stiffness
of the arms body and shell, and the joint compliance, i.e. the elasticity due to the
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finite stiffness of the drives servomotors and transmission.

The compliance of the link frame is generally fairly substantial and depends on the
materials employed to fabricate it. For this reason, the links of manipulators are not
perfect rigid bodies whatsoever and might be slightly deformed when subjected to a
considerable mechanical stress, such as tension, compression, bending or torsion.

Although the compliance of the joint motor is quite significant, this is not a real
problem, because, as soon as the motor shaft gets strained, the misplacement is im-
mediately sensed and properly compensated. On the contrary, the limited compliance
of the transmission, i.e. rods, couplings and gears, might actually give rise to errors,
for the joint position sensors are customarily installed at the motor side, upstream of
the transmission, hence relative motions along the chain cannot be appreciated: such a
problem might be solved either by placing the transducers downstream of the transmis-
sion (though at the cost of losing the resolution enhancement provided by the reduction
ratio) or by mounting tailored transducers on the links themselves. On the other hand,
minor displacements inconsistent with the kind of motion allowed by the joints e.g., ra-
dial and axial slide or bending in rotary joints, cannot be detected at all, regardless of
the charged compliant element.

In any case, whatever compliant component is actually interested, the manipulator
is elastically deformed by the same major loading contributions: the distributed weight
of the the payload or the manipulator structure itself and the localized force applied to
the manipulator tool. As regards link bending and joint torsion, the farther the load is
applied from the proximal link end, the larger is the extent of the deflection.

Thermal Strain

As all physical systems, also manipulators are fairly sensitive to temperature. In this
regard, there are two primary thermal sources in a manipulator, namely the ambient
temperature, that is the average temperature of the environment the manipulator has
to work within, and the body temperature, that is the temperature inside the shell
of the manipulator, due to self heating.3

Manipulator can be required to operate in rather diverse environments, therefore
the ambient temperature, which is normally the temperature of the air surrounding the
manipulator, might likely range within quite large intervals and even change substan-
tially over time. In any case, the ambient temperature should never exceed the bounds
normally reported by the manipulator manufacturer in the technical specifications, for
they represent alert levels for critical performance degradation.

On the contrary, the body temperature is not a single quantity, but rather a com-
plex distribution, therefore observing or describing its effect is a far more delicate task.
The temperature gradient over the frame of a manipulator is essentially due to the heat
produced by two physical phenomena, namely joule effect and friction. Friction arises in
gears, bearings and links, owing to the manipulator motion, for several reasons, e.g., lu-

3A quantitative analysis with finite element simulation of the thermal behaviour of a standard indus-
trial robot has been carried out in [22].
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bricant viscosity or contact surface asperity and strictly depends on the joint speed
profile but also on the temperature. The joint servomotors dissipate power via joule
heating in the windings and the wires in general, because of the high current levels, all
the time the manipulator is powered, even if still, though the losses sensitively grow
when the joints do move. In any case, the manipulator starts warming up, as soon as is
turned on, until a steady state condition is reached; that is the reason why the manip-
ulator manufacturer typically reports a minimum warm up period to wait in order for
the manipulator performances to stabilise.

The thermal strain induced by the manipulator self heating is generally far larger
than the one induced by the environment heating, though the ambient temperature
changes may start to affect significantly the performances once the warm up has been
completed already. Nonetheless, higher joint speed might further increase the tempera-
ture, worsening the performances even more, or, whenever the manipulator is turned off
or even only left idle for a certain amount of time, the air might cool down the frame,
possibly bringing the manipulator outside its thermal steady state. In any case, the
amount of thermal expansion is related to the thermal properties of the materials, such
as cast iron, aluminium, etc.constituting the manipulator armour.

3.3 Calibration Process

The calibration of a manipulator is a delicate and complex technical operation and should
be thus treated as such: in this light, it would be highly advisable to break up the whole
problem into several recognisably circumscribed operative steps, that deal with as many
clearly defined aspects and are to be carefully addressed separately, one after the other.

As thoroughly pointed out in [15] and [16], any manipulator calibration process rou-
tinely goes through the same four phases, namely selection of a proper kinematic model,
collection of a suitable set of significant measurement data, solution of the parameters
identification problem and correction of the control program.

3.3.1 Modelling Phase

No calibration procedure can be productively developed without a clear understanding
of the basic notions of manipulator kinematics, possibly narrowed down to the manip-
ulator family under consideration. Even though black-box4 approaches are absolutely
legitimate and not so uncommon, they typically constitute only a fraction of the whole
calibration process and still require a minimum insight about the system.

The first step in the calibration agenda is thus the investigation of the manipulator
kinematics and the consequent formulation of a corresponding mathematical model. In
the scope of calibration, modelling means building a suitable analytic representation of

4In system and control theory, black box refers to an abstract description of the external behaviour
of a system, i.e. in terms of excitation (input) and response (output) only, without any knowledge
whatsoever about the actual internal structure and functioning (just like black boxes hide their content
from visual inspection).
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the kinematic behaviour of a manipulator, that is to say an explicit and preferably closed
form for the kinematic function of that manipulator.

There are infinitely many possibilities to address the problem of kinematic modelling
for calibration purposes, although not all of them turn out to be worthy choices. As
already pointed out above, kinematic models that blindly trust the flawless features of
nominal designs are not capable of providing acceptable results, even after correction,
because of their exaggerated intrinsic simplicity, and may be thus useful for specula-
tive purposes only.5 On the other hand, even the boundless inclusion of innumerable
disparate elements is of very little help, for most of the them cannot be singled out de
facto, therefore such models would necessarily lead to infeasible calibrations.

In any case, it is rather clear from the above admonitions that adequately modelling
the manipulator kinematics is not a straightforward and methodical task, in fact it de-
mands a deep level of discernment and, sometimes, even foresight. Several different
modelling strategies can prove equally valid hence there exists no ultimate model for
calibration. Unfortunately, no simple rule of thumb is available in this respect, although
there exist some reasonable guide lines based on three fundamental criteria: complete-
ness, proportionality and equivalence. This incisive terminology has been coined
for the first time in [13] and derives from concept of parametric function in differential
geometry, as thoroughly highlighted in [14].

Completeness

A mode is said to be complete whether it is sufficiently complex, i.e. it has enough
elements to completely describe the kinematics, according to the target source of error.
Completeness may be also defined as the capability of a model to explain any arbitrary
deviation from the nominal kinematics. Involving the required number of parameters
does not automatically make a model complete, owing to possible redundancy. In order
for a model to be complete, it must contain a minimum number of independent pa-
rameters. For instance, as regards geometric calibration, a complete model should be
able to represent all the spatial features of a manipulator capable of affecting its kine-
matics. From the analytical point of view, completeness corresponds to the property of
surjectivity of the model parametrisation.

Definition. A parametric function is said to be surjective (or onto) if and only if the
image of the parameters domain is equal to the codomain.

Proportionality

A model is said to be proportional whether it is able to relate corresponding variations
between the kinematics and the parameters, according to the target source of error.
Proportionality may be also defined as the capability of a model to reflect any finite

5This statement in no way implies that kinematic models based on the nominal design are useless in
practice: as a matter of fact they are simple enough to allow straightforward manipulations and might
be thus effectively employed to compute the inverse kinematics, as exemplified in subsection 2.3.6.
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deviation from the nominal kinematics with finite changes of the parameters. A non
proportional model is subject to singularities, i.e. configurations in which the model
is discontinuous so a slight shift in the kinematics may be mirrored by huge changes in
some of the parameters.6 For instance, as regards geometric calibration, a proportional
model should be capable of accounting for small errors in the manipulator geometry
by means of small corrections of the parameters. From the analytical point of view,
proportionality corresponds to property of regularity of the model parametrisation.

Definition. A parametric function is said to be regular if and only if it is differentiable
with respect to the parameters and the Jacobian matrix is non singular for every value
of the parameters.

Equivalence

A model is said to be equivalent whether it is able to transform into another model
simply by changing its parameters, according to the target source of error. Equivalence
can be also defined as the capability of the model to describe any deviation from the
nominal kinematics just as well as other models with the same degree of complexity. Dif-
ferent incomplete but proportional models with the same number of parameters might
account for different subsets of the possible kinematics variations and are thus not nec-
essarily equivalent. For instance, as regards geometric calibration, equivalent models
should be equally capable of describing the errors in the manipulator geometry. From
the analytical point of view, proportionality corresponds to the property of congruence
between model parametrisations.

Definition. Two parametric functions are said to be congruent if and only if there ex-
ists a differentiable change of variables between their sets of parameters able to transform
one into another.

3.3.2 Measurement Phase

The developed kinematic model of the manipulator should be capable of relating the
displacement of the joints to the pose of the end effector, through a suitable set of
variables, prudently chosen at modelling stage in order to account for the target error
sources. The calibration procedure aims at pinpointing a reliable value for such quantities
after probing the actual kinematic behaviour of the specific manipulator unit under
observation; for this purpose, the input and output quantities of the kinematic model,
namely the joint coordinates and the end effector pose respectively, have to be repeatedly
sampled in different kinematic configurations. The measurement step is perhaps more

6The terms singularity and jacobian are here used with a slightly different acceptance than in the
usual context, even though their mathematical meaning is still the same. In manipulator mechanics, a
kinematic singularity denotes those combinations of joint positions such that the end effector loses one
or more degrees of freedom, that is to say there are no joint motions able to produce certain end effector
motions; it is strictly related to the concept of kinematic Jacobian, which denotes the matrix mapping
joint velocities into flange pose time derivatives and loses indeed rank at singularities.
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straightforward than the modelling step, though it still requires great awareness, because
the remaining steps strongly rely on its quality.

The measurement configuration must honour the selected model and the collected
data must be relevant enough, in the sense that they have to permit the determination of
the parameters included in the model: if the collection of data is scarce or not sufficiently
rich and assorted, the identification step starts off disadvantaged already and may even
fail completely. On the other hand, only the indispensable number of measurement data
should be stored, because there is no substantial advantage in adding measurements at
will beyond a certain threshold, in fact both the measurement step and the identification
step would last longer and the numerical procedure could even freeze when forced to
handle too large data clusters.

The region of the three dimensional volume around the manipulator containing the
target set of tool points selected for calibration has to be consistent with the portion of
the work-space where the improvement of the tool position accuracy is desired. Exploit-
ing the results returned by calibration to determine the pose of the manipulator end
effector very far from the region actually explored during the collection of the measure-
ment data is typically not advisable.

By definition, the measurement phase is the only one of the four that must be
necessarily carried out on line, in the field, although it may be automated in such a way
that the human intervention is not strictly mandatory. There exist several configurations
to collect kinematic data, though not all of them prove suitable for the task, because of
different limitations, such as cost, speed, size, accuracy, and so on. Moreover, there are
two alternative ways for sampling the kinematics of the end effector: the measurement
method is said active or open-loop, when the end effector is detected by measuring
instruments, such as theodolites, coordinate-measuring machines (CMM), cameras or
laser interferometers; the measurement method is said to be passive or closed-loop,
when the end effector is constrained by tailored fixtures, such as shaped plates, reference
planes, cubes and tooling balls. In any case, the adopted measurement set-up should
not alter the physical characteristics of the manipulator, at least the ones the calibration
seeks to detect with adequate precision.

Catching the complete pose of the end effector would require, in principle, the sepa-
rate measurement of its position and its orientation. Considering that the vast majority
of instruments or tools actually available are not able to provide measures of both the
position and the orientation of a body at the same time, whenever the data about the
position alone are not enough, some work around has to be conceived. Very often, the
information about the orientation of the end effector may be either literally extrapolated
from or virtually embedded in the measurement of the position of more points, however
not less than three, on the flange at pose of the end effector, for the coordinates of three
points intrinsically define a reference frame.

Since the enhancement of the end effector accuracy is the prime goal of manipulator
calibration, it follows that the pose of the end effector should be estimated with an overall
corresponding level of accuracy far better than the desired level of manipulator accuracy,
irrespective of whether an active measurement device or a passive reference fixture is
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practically adopted. On the contrary, there is no use in employing position transducers
with better specifications than the ones already integrated in the manipulator joints,
because the controller relies on those devices for all operations regarding the manipulator,
unless such superior transducers are mounted permanently on the manipulator and used
in place of the built in transducers.

3.3.3 Identification Phase

The result of measurement phase is the generation of an ordered set of kinematic data
or other kinds of data regarding the manipulator, corresponding to a certain number
of kinematic configurations. If the measurement have been correctly performed, then
the gathered data should represent different samples of the manipulator true kinematic
behaviour, excluding the influence of the measurement noise, and can be thus juxta-
posed with the corresponding data coming from the kinematic behaviour predicted by
the model and eventually processed by a tailored algorithm that seeks to lower the dis-
crepancy between them, in some sense, by setting the numerical value of the parameters
designated at modelling stage.

As already anticipated before, the success of this step inevitably depends on the
quality of the two previous steps, because they are intimately related: in particular, the
selected model provides the symbolic expressions and determines the structure of the
problem whereas the collected data supply the numerical values and set the size of the
problem. For this reason, if either the model is redundant, incomplete or discontinuous,
or the measurement data are deficient, corrupt or correlated, the identification process
will axiomatically fail, no matter how robust and efficient it may be.

The identification of the numerical values for the model parameters, performed for
the purpose of reducing the difference between the predicted kinematic behaviour and
the measured kinematic behaviour, is definitely the core of the whole calibration pro-
cedure and is sometimes thus symbolically considered as the proper calibration itself.
Nevertheless, despite its importance, identification is the only phase that does not require
any insight whatsoever about the kinematics of manipulators, for it essentially consists
in applying standard numerical techniques to the problem of manipulator calibration,
even though a minimum knowledge of the characteristic mathematical structure may be
of great help for speeding up the algorithm or improving its performances in general.

Linearity

The most widespread numerical identification techniques typically involve linear models,
for they are far simpler to study and reveal some meaningful properties. On the contrary,
the kinematics of manipulators is generally non linear with respect to both geometric
and non geometric quantities, although, fortunately, these non linearities are often quite
weak, therefore the kinematic model of manipulators is said to be mildly non linear.
Such a property partially justifies the adoption of standard linear identification tech-
niques, that essentially perform model linearisation, for parameter identification in the
framework of manipulator calibration. On the other hand, if the performances provided
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by those methods that treat the model as purely linear, are not satisfactory enough,
then it might be necessary to switch to non linear identification techniques.

Recursion

If the measurement system is pretty fast, the collection of observations is not too large
and the available computational resources are rather high, then data batch processing is
possible: in such a case, the entire set of measurement data is stored and processed all
at once, and the result is found right away; this kind of approach, used for instance by
standard least squares or minimum variance, is called non recursive identification.
On the contrary, if the above conditions are not concomitantly met, data sequential
processing is definitely preferable, otherwise the calibration might become a dramatically
slow and slack procedure: in such a case, at each step, a new single measurement is
stored, added to a growing data structure, and used to correct the estimation computed
at the previous step; this kind of approach, used for instance by recursive least squares
or Kalman filtering, is called recursive identification.

Error Handling

All quantities included in the manipulator kinematic model sampled at measurement
stage bring a certain degree of uncertainty and get inevitably corrupted by a minimum
amount of noise, hence the data are always affected by measurement errors. If the mea-
surement error is treated as unknown variable, then the parameters are determined using
only the main data and ignoring the error; this kind of approach, used for instance by
several least squares variations, is termed deterministic identification. In contrast,
if the magnitude of the measurement error may be somehow estimated, for instance
using the available specifications about the instrumentation employed for measurement
purposes, then the parameters are computed either using only the main data or embed-
ding also the information about the error, but, in any case, they may be characterised
stochastically, i.e. the spread in their values due to noise and uncertainty is represented as
random variable, with mean value and variance; this kind of approach, used for instance
by minimum variance or Kalman filtering, is termed probabilistic identification.

Approximation

Most of the numerical identification methods make use of some differential quantities of
the model. When the differentiation is performed on line, numerically, by the computer
designated as solver, the identification method makes use of approximate derivatives:
this approach requires lower modelling effort but higher computational effort. When
the differentiation is performed off line, symbolically, either by hand or by a custom
software tool, the identification method makes use of exact derivatives. This approach
requires higher modelling effort but lower computational effort.
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3.3.4 Adjustment Phase

The identification stage must produce, as a result, a set of values for the model param-
eters, or, sometimes, a set of corrections for each model parameter, and possibly, some
useful information about the attained numerical performances. Once the identification
has been successfully performed, the initial nominal kinematic model is updated using
the new parameter values, in order to finalise the calibration procedure. This operation
is carried out via software, first into the calibration specific application, for validation
purposes, then into the main control application, for implementation purposes.

Validation

The identified values of the model parameters are substituted in the model function, in
the same application occasionally used for the calibration of the manipulator, in order
to verify the quality and the reliability of the results achieved at identification stage.

Performing another cycle of measurement, during which the manipulator must reach
a set of configurations which is different but comparable to the set of configurations used
for identification purposes and generating the corresponding data simulating the updated
model, makes it possible to cross check the parameters values and try the attained end
effector accuracy in an new independent context.

On the other hand, if the tool position error is checked in different locations pretty
far from the ones that provided the data for identification, then the attained accuracy
performances can be robustly sieved: even if the selected target volume of the workspace
is well circumscribed, it is customary to specify the levels of the acquired accuracy in
both the target volume and the entire workspace.

In any case, the collections of data resulting from the measurement round used for
identification and verification purposes, are typically referred respectively as estimation
data set and validation data set.

Implementation

The identified values of the model parameters are substituted in the model function, in
the main application systematically used for the operation of the manipulator, in order to
exploit the performance improvement brought by the results obtained at identification
stage. At first sight, it would seem that such a task could be accomplished simply
by incorporating the calibration results in the manipulator controller, overriding the
nominal model; unfortunately, this is seldom the case. Implementation is hardly a
straightforward task, for a series of reasons related to the degree of flexibility of the
program running on the manipulator controller.

Some controllers do not allow the modification of their internal global variables, like
the addition of new parameters or the correction of the ones already existing, hence
the only way to benefit from the performances improvement of calibration is to make
use of an external preprocessor, upstream of the controller, exchanging with it only
joint positions data. Even when controllers do allow changes, the parameters they rely
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on are seldom the same as the ones modelled and then identified by calibration, thus
the user must formulate a method for reconstructing the kinematics from the calibrated
parameters and pulling out again a new set of parameters compatible with the controller
application. Moreover, some controllers may even further process the parameters, once
fed by the user, and slightly modify them, according to some internal criteria, ineluctably
undermining the performances.

Another important problem arises from the management of the manipulator posi-
tioning operations. Controllers are often able to compute the joint displacements corre-
sponding to the desired tool poses commanded by the user, basing on the manipulator
inverse kinematics; when the kinematics is based on the nominal design, the inversion
of the kinematic model might be performed making the joint variables explicit, because
the ideal geometric characteristics of simple manipulators ensure that an inverse re-
lationship exists and has a closed form. Unfortunately, this may not always be the
case for the kinematics updated by calibration, which is usually far more sophisticated,
therefore the controller cannot rely on calibration data for positioning the manipulator
to the requested locations with better accuracy. If a given specific task demands higher
kinematic accuracy in both locating and positioning operations, then the user must de-
sign a complementary procedure to compensate the joint commands required to reach a
reference tool pose, according to the calibration results, by means of suitable strategies,
e.g., iterative methods, optimal control, interpolation, etc., broadly discussed in [15].

3.4 Calibration Issues

As discussed far and wide above, the calibration of a manipulator is definitely not a a
straightforward operation that can be lightly performed without the proper technical
background. There are several problems that arise and should be carefully considered
when facing the challenge of manipulator calibration in practical terms. If such crucial
issues are not cautiously taken into consideration before either scheduling or engaging a
calibration procedure, the results could be poor if not even detrimental, to the point of
jeopardising the production process the manipulator is part of.

3.4.1 Time

As most of the operations that require high precision, also manipulator calibration is a
very long process; manipulators cannot be used for their routine tasks, thus becoming
unproductive, for as long as it takes to collect and store all the measurement data required
for identification.

In particular, the manipulator under calibration has to move quite slowly, in order
to minimise and stabilise the heat generation, and, after reaching each location, it must
remain still for a while, in order to allow its mechanical structure to damp sufficiently
all the oscillations due to the motion; several configurations have to be reached and
numerous samples per configuration have to be collected, in order to reduce the effect
of random noise and instrument uncertainty as much as possible. Moreover, the mea-
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surement equipment is typically not fixed nor permanently left close to the manipulator
area and must be thus assembled and then disassembled whenever the measurement has
to be performed; sometimes, it also requires precise set-up waiting times prior to use.

All the other steps of calibration can be executed off line, without interrupting the
manipulator working schedule at all, even though the time may still represent an issue:
as a matter of fact, modelling analysis is time consuming for the researcher in charge of
calibration, while identification and implementation computations are time consuming
for the computer devoted to calibration.

3.4.2 Cost

Precision becomes an issue also as regards the cost of the calibration: the success of
calibration demands that the kinematic quantities of the end effector are measured with
a considerable level of accuracy, a large investment is normally required to get ade-
quate measurement equipment, including both external measurement instrumentation,
e.g., measuring machines, reference tools, sensors, data acquisition systems, etc., and
manipulator appliances, such as the tool mounted on the effector, specifically designed
and tailored for calibration purposes, or accurate joint positions transducers. Moreover,
complex devices can be generally handled only by specialised and trained staff.

Employing already available commercial software tools for numerical optimization
such as applications, packages, libraries, routines and so on, may significantly raise the
overall budget demanded by calibration. On the other hand, also the development of
brand new custom procedures involves quite high costs in terms of human resources.

As already mentioned above, manipulators remain completely inoperative, and thus
unprofitable, during the entire measurement operations involved by calibration, for the
interruption of the productive process clearly represents an economic loss.

3.4.3 Target

It is rather evident from the above considerations that manipulator calibration is re-
ally far from being considered a fast and cheap procedure; this is the reason why it is
essential to determine carefully when and whether a calibration should be performed
for the application under examination: the need for calibration depends indeed on the
characteristic of both the manipulator itself and the task it is entrusted with.

For instance, when the accuracy provided by a manipulator is already quite good,
even if this is rarely the case, calibration would be utterly useless. Similarly, and more
realistically, when the specific task to be performed does not require a given level of
accuracy, very little help may derive from calibration. When the manipulator is intended
to be programmed on-line by means of a teach pendant, absolute accuracy is likely not a
strict requirement, for the main concern is the repetitive precision, as widely explained
in section 2.5. In all of these cases, a calibration may be required only when the required
standard of accuracy gets raised for whatever reason.

On the other hand, when the accuracy of a manipulator is not up to the task,
calibration should be repeated periodically, in order to meet the demanded performance
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standards. If the manipulator is not replaced nor dismantled, then there is typically no
need for executing several calibrations; once compensated, the manipulator may continue
to operate normally, even though a fast check of the accuracy might be occasionally
performed in order to determine whether a new calibration is actually necessary.

In general, before setting up and performing a calibration, it is always advisable that
the manipulator user clearly delineates the desired target, in order not to be disappointed
by the results, when not compliant with the expectations.

3.4.4 Expectation

When devising or performing the calibration of a manipulator, it is very important to
get a rough idea about what to expect in terms of performances achievement. The
disappointment induced by the attained results does not necessarily imply a faulty com-
pensation, in fact it typically comes simply from quite unrealistic expectations.

According to the description outlined in section 2.4, accuracy is only one of the differ-
ent metrological features of manipulators, therefore other elements should be taken into
consideration in order to evaluate correctly the performances provided by calibration.
As a matter of fact, if the manipulator is poorly designed or cheaply constructed so that
the repeatability and/or the resolution of the joint transducers are not quite decent, then
the accuracy cannot be enhanced beyond a certain threshold and calibration may prove
rather disappointing: as already stated, bringing the manipulator accuracy to the same
order of magnitude of the manipulator repeatability represents the best achievement
than could be expected from manipulator calibration.

For the same reason, the attained end effector accuracy cannot be superior, in fact
not even comparable, to the accuracy of the measurement equipment employed for cali-
bration. However, in no way the accuracy performances of a standard industrial robots
can be made comparable to those of coordinate measuring machines.

The results of calibration are generally valid only at operating conditions similar
to the ones under which calibration took place. For instance, if the manipulator were
then employed far from the volume sampled during calibration, the accuracy could be
rather poor, and another calibration should be performed; similarly, if a manipulator
geometrically compensated under certain loading and thermal conditions were required
to move at high speed and/or to lift heavy payloads, the actual tool position error could
be exceptionally larger, for it would be affected by new sources of inaccuracy, not present
and not compensated at calibration stage.

3.4.5 Complexity

One of the key properties of a mathematical model is complexity: In simple terms, the
complexity of a model refers to the number of elements required to describe that model.
As widely demonstrated, the results of calibration are deeply affected by the charac-
teristics of model developed at the beginning. Once the target error source has been
selected, a model accounting for that effect is developed by following some reasonable
criteria. Some assumptions and simplifications are also made during this phase, in order
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to single out the most relevant features of the problem. Eventually, the proposed model
is tuned through calibration in order to provide better accuracy.

As all the next steps of the calibration process are closely sensitive to the choices
made at modelling stage, if the attained performances are not satisfactory enough, then
a reasonable choice could be to revise the model: this can be achieved by either dropping
some simplifying assumptions or embedding also additional sources of error. In any case,
the upgraded model is more complex, of course, but the refinement may lead to better
results. The same process of revision can be repeated many times, until the outcomes
start to resemble each other; at this point, if the model complexity were further increased,
no significant changes could be appreciated in the results of calibration.

Such a paradoxical cycle makes clear that, even though more complex models do
reflect in more precise results, there exists a limit given by the degree of relative im-
provement: when adding complexity to the model gives little contribution to the attained
performances, the additional labour resulting from the augmented complexity is not le-
gitimate; in this regard, [18] investigates the effect of increasing model complexity into
the overall resulting accuracy improvement.

Higher model complexity does not come for free, as it implies deeper understanding,
more observations, larger data sets, harder optimisation, longer procedure and overall
weaker insight. A worthy calibration procedure must thus rely on a suitable trade off
between the complexity of the model and the efficiency of the method.

3.4.6 Reliability

The calibration of a manipulator is not only a technical operation, but also a scien-
tific experiment, as it involves the assessment of a hypothesis by means of empirical
verification: in the case of calibration, the hypothesis is the possibility to describe the
manipulator kinematics for improving its accuracy.

As all valid scientific experiments, a good calibration should be reproducible: other
researchers must be able to find the same results using the same data and the same
method. Moreover, unlike several unrepeatable experiments, a good calibration should
be also replicable: other researchers must be able to perform again the same procedure,
finding consistent results when using comparable data.

Beyond the technical speeches, a worthwhile manipulator calibration procedure must
be sufficiently reliable, that is to say capable of yielding similar results at similar condi-
tions, when repeated in time, i.e. on the same manipulator unit in different times, and
in space, i.e. on different manipulator units of the same model.

3.4.7 Autonomy

As extensively argued above, designing a full procedure of manipulator calibration from
scratch demands massive research effort: first, the practitioner has to attentively examine
the manipulator specimen to calibrate, assess its performances with respect to the desired
task, identify the significant elements eligible for correction and formulate a preliminary
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target; then he has to engineer all the different steps of the complete procedure, put the
pieces together, and possibly debug them both separately and jointly, if necessary.

Nevertheless, the actual process of calibration is a sheer sequence of operations,
therefore it can be made automatic. Once a satisfactory and reliable procedure has been
successfully set up, all the involved executive steps may be safely delegated to machines,
without the need for direct human intervention. Whether the calibration can be fully or
partially automated depends, of course, on the capability of the available hardware: the
manipulator motion pattern might be programmed off-line, the tool might be fastened
by the manipulator itself, a computer program might perform the computations as soon
as the measurement data are available, and so on; moreover, nowadays, there even exist
measurement devices capable of interfacing with a computer, and synchronising their
activity to perform automatically the acquisition of measurements.

If the measurement equipment is already a part of the manipulator work-cell, for
instance, when the tool position error is assessed by means of compact fixed references,
and the manipulator is able to switch between tools rather quickly, for instance, when a
tool changer is available, then the calibration of that manipulator may become a fairly
fast automated operation, that can be seamlessly performed, when needed, as an integral
part of the entire production process.



Chapter 4

Experimental Case Study

4.1 Study Outline

4.1.1 Activity Objective

The experimental research work is entirely aimed at developing a calibration strategy in
order to improve considerably the accuracy performances of articulated robot manipu-
lators with moderate payload, by correcting the modelling flaws due to both geometric
and thermal errors. Nearly every operation regarding robot manipulators relies on their
kinematic model, i.e. the abstract mathematical description of their spatial motion. For
this reason, the overall working performances of robot manipulators, not only position
accuracy, might indirectly benefit from the refinement of the model achieved through by
means of error compensation.

From a merely numerical point of view, the desired goal is considered to be ade-
quately accomplished as soon as the level of position accuracy attained by manipulator
calibration becomes comparable with the level of position repeatability declared by the
robot manufacturer, for striving for a further improvement would be an utterly pointless
aspiration, according to the argumentations presented in chapter 3.

Unlike geometry, temperature is not a fixed source of inaccuracy, therefore its effect
on kinematics may not be corrected once and for all. As broadly explained in subsec-
tion 3.2.4, the accuracy performances of robots typically degrade dramatically when the
joints start to dissipate electrical and mechanical power loss as heat and the resulting
temperature rise induces links deformation; on the other hand, they practically settle
down with the temperatures as soon as the rate of heat removed by air and ground
balances the rate of heat produced by friction and current.

A standard workaround to such a problem normally consists in waiting for a suitable
warm up time for the manipulator to reach an adequately stable thermal condition
before actually operating it, though with a significant waste of time, money and energy.
For these reasons, a real time thermal compensation, allowing users to operate robot
manipulators with neither working interruptions nor performance degradation, would
remarkably improve the efficiency of the production process throughput.

53
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4.1.2 Research Work

All the research activities have been conducted within the facilities of Axist R&D depart-
ment, which commissioned the study. Axist deals with articulated robots on a regular
basis, exploiting their peculiar dexterity and flexibility and installing specialised tools
to implement a wide range of tasks for dimensional measurement and inspection.

Since the position accuracy of the manipulator end effector unavoidably affects the
overall accuracy of the measuring system made up of the robot and the equipped tool,
then perfecting the manipulator kinematic model by means of an efficient calibration
scheme is of paramount importance in order to guarantee a good quality of the provided
dimensional measurement service. Furthermore, the reliability of the kinematic model is
also highly desired because several tasks are programmed off line in order to exploit work-
piece CAD models and to share applications among either different robot manipulators
or different work-cells.

The manipulator under study is a 6 DOF articulated robot COMAU NJ-130-2.0, a
member of the high payload line of the COMAU robot fleet, featuring 130kg maximum
wrist payload, 2050mm maximum horizontal reach and 0.07mm declared repeatability.
The model unit has been delivered by the manufacturer precisely for calibration devel-
opment purposes.

Figure 4.1: COMAU NJ-130-2.0 articulated robot.
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The development of the geometric compensation scheme has been carried out first
simulated numerically and then assessed testing another manipulator specimen, namely
a 6 DOF articulated robot STÄUBLI TX90, routinely employed in the department for
development purposes.

Figure 4.2: STÄUBLI TX90 articulated robot.

4.1.3 Approach Scheme

The two target sources of kinematic inaccuracy are tackled separately: first, the geomet-
ric error, i.e. the tool position error due to imperfect knowledge of the robot geometric
features, then, the thermal error, i.e. the tool position error due to thermal strain of
the robot body components, are compensated. Such a course of action is automatically
inspired by the straightforward observation that geometry statically affects the model ac-
curacy, thus its effect must be compensated only once, whereas temperature dynamically
affects the model accuracy, thus its effect must be compensated from time to time.

On the other hand, the geometry of a robot manipulator actually changes with
temperature, hence, thermal errors are technically still geometric errors, but subject to
change over time. In this regard, a clarification needs to be made in order to avoid
confusion: taking the room temperature as reference for the entire manipulator body,
then the geometric error is the model error at reference temperatures whereas the thermal
error is the difference between the model error at some temperatures and the model error
at reference temperatures. Hereinafter, the compensation of the errors thus defined is
respectively referred simply as geometric calibration and thermal calibration.

As regards geometric calibration, a parametric approach is here adopted, that is to
say the actual geometric features of the manipulator are not directly inferred by per-
forming single joint movements and virtually rendering the corresponding motion axes,
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but indirectly determined by identifying the numerical value of a given set of kinematic
parameters. Since the characteristics of the kinematic model chosen for calibration
dramatically reflect in the performances of the identification procedure, the paramet-
ric method inevitably demands a mindful modelling effort crucial in order to lay the
foundations of a valiant compensation strategy.

As regards thermal calibration, since the error genesis is ruled by several complex
physical laws, such as heat transfer and thermal expansion, applied to an extremely het-
erogeneous and anisotropic mechanical structure, no precise modelling can be proposed.
Nevertheless, sensing the temperature gradient in a small number of key points and pre-
suming a simple model for the thermal strain might represent a reasonable approximation
of the actual robot thermal behaviour. As already said before, temperature indirectly
affects accuracy by altering the geometry, hence identification of the coefficients selected
to render the thermal error may be naturally hinged on standard geometric calibration
performed at different temperature conditions.

In summary, the overall calibration is eventually made up as follows: the kinematic
parameters are identified several times repeatedly, sampling the manipulator kinematics
as the temperatures across the robot body span over a quite wide range, then the thermal
coefficients are estimated basing on the empirical correlation between temperatures and
kinematics. Following the systematic paradigm outlined in chapter 3, this experimental
study of robot calibration is divided in four specific phases, each of which needs special
care thus it is reported separately in the following.

4.2 Kinematic Modelling

4.2.1 Kinematic Rules

Whenever calibration is aimed at geometric error compensation only, the modelling
process consists in developing an expression of the end effector pose as function of the
joints coordinates, using solely geometric quantities, namely angles and distances, with
respect to a certain fixed reference structure, such as the room framework, through rigid
body kinematics tools. The first moves of kinematic modelling stage retrace indeed the
steps of basic manipulator kinematics, outlined in section 2.3.

Considering that a joint allows a certain degree of relative motion between two links,
each link is a sheer body with its own motion, even if it is not completely free, being
mechanically constrained by its previous links. This is the reason why a reference frame
is routinely attached to each link to describe its position and the orientation; moreover,
an additional reference frame fixed to the floor of the work-cell is used as reference for
both the robot and the objects within its work-space: 8 frames are thus required for
a 6DOF manipulator. Link frames are related to each other by rigid transformations,
i.e. combinations of rotations and translations. Among all transformations, it is sufficient
to know just the relative transformation between subsequent link frames, because the
transformation between any other couple of link frames can be immediately derived by
chaining all transformations between the interposing link frames.
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Reference frames transformations may be described using several different mathemat-
ical tools, such as dual quaternions, homogeneous matrices or screw matrices, properly
parametrised by some geometric quantities. Calibration seeks to determine the value of
these quantities, hence the construction of the kinematic model requires the selection
of a set of parameters. The fundamental criteria of completeness, equivalence and pro-
portionality must be borne in mind during this step, in order to model the manipulator
kinematics employing the proper parametrisation, i.e. the one that is both capable to de-
scribe comprehensively the manipulator geometry and suitable to allow the identification
of the parameters.

Joint Motion Axis

A complete kinematic model must feature a given level of complexity, which is translated
into a minimum cardinality of the parameter set. The number of parameters required
to describe the relationship between link frames have to be determined. In general, an
arbitrary 3D rigid transformation requires six parameters, as it defines an arbitrary po-
sition and an arbitrary orientation, or equivalently, it consists of an arbitrary translation
and an arbitrary rotation. However, link frames cannot be arbitrarily selected, because
they have to be compliant with the constraints set by the mechanical configuration of
the kinematic chain.

As stated in subsection 3.2.3, the joints are assumed to be already calibrated and
are modelled as lower pairs. Nonetheless, even though the joint sensors measurement
model is neither investigated nor refined, the static shift in the joints motion is a genuine
geometric error, and, as such, has to be included in the kinematic model. Lower pairs are
simple mechanisms providing a unidirectional motion, i.e. either a translation along (for
prismatic joints) or a rotation about (for revolute joints) a certain axis, termed motion
axis or axis of motion. By virtue of this simplification, only one quantity is needed
to describe the motion of a joint, provided that one axis of the reference frame attached
to the link that joint is moving, is oriented with its axis of motion. In the industrial
robotics literature, z axis has been conventionally aligned to the motion axis with no
loss of generality, as the same reasoning would apply also for x or y axes.

Link Frames Constraints

Link frames are not freely assigned, being subject to some kinematic constraints: first
of all, as explained above, to represent the motion of a joint, the z axis must be oriented
with the joint motion axis; more specifically, to portray the positive direction of motion,
the z axis must have the same direction of the motion axis, that is to say both orientation
and sense, defined intuitively for translations and according to the right hand rule for
rotations. Furthermore, to represent a rotation about the actual joint motion axis, the
origin must lie on such axis, or, in other words, the z axis must coincide exactly with
the motion axis, whenever the joint is revolute.

The minimum number of independent parameters required to specify the transfor-
mation yielding a given link frame, is equal to the number of kinematic constraints that
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frame is subject to, or, equivalently, the complement of the number of degrees of freedom
left to that frame with respect to the total number. As regards revolute joints, because
z axis has to lie on the motion axis, four constraints are set and two degrees of freedom,
out of the original six, remain, hence four parameters are needed.

This statement can be mathematically justified in several ways, by identifying either
the constraints set or the degrees of freedom left to a pair of subsequent link frames
through the geometric tools described in section A.5; three equivalent arguments are
here proposed. The new link frame is identified with respect to the old link frame, by
means of four vectors, namely its origin o and its coordinate axes i, j and k.

1. Once z axis is made coincident with the motion axis, the link frame is not fully set
yet, as neither the position of its origin o on the motion axis nor the orientation of
its other axes i and j on the plane perpendicular to the motion axis are constrained.
Two further transformations, namely a translation along and a rotation about k,
can be still performed, because they give rise to other valid link frames. Two
degrees of freedom are thus left.

2. The motion axis line is described by the parametric equation r = r0 + tv, where
r0 is a point belonging to the axis and v is the direction of the axis. The z axis
must be parallel to the line direction, then

k =
v

‖v‖

which gives two constraints, and the origin must lie on the line, then

‖(o− r0)× v‖ = 0

which gives another two constraints. Four constraints are thus set.

3. The motion axis line is perpendicular to the plane described by the parametric
equation r = r0 + su+ tv, where r0 is a point belonging to the axis and u,v are
two non-parallel vectors orthogonal to the axis. The z axis must be parallel to the
vector normal to the plane, then

k =
u× v
‖u× v‖

which gives two constraints, and the segment joining the origin and the point r0
must be orthogonal to the plane, then

(o− r0) · u = 0, (o− r0) · v = 0

which gives another two constraints. Four constraints are thus set.
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Number of Parameters

The same reasoning can be obviously applied also to the transformation between the
world frame and the first link frame. This further transformation is required because
the absolute reference frame cannot be bound by a joint motion axis. In contrast, the end
frame, i.e. the the reference frame mirroring the pose of the manipulator end effector, can
be arbitrarily assigned, because there are is no joint motion axis after the last link. It is
unconstrained and six degrees of freedom are available, therefore the last transformation
requires six independent parameters.

In summary, the kinematic model of serial manipulators with p prismatic joints and
r revolute joints must include

n = 2p+ 4r + 6

parameters, then the kinematic model of articulated manipulators requires

n = 4 · 6 + 6 = 30

parameters. The same formula, or an equivalent expression, has been derived also in
[13], [14], [15] and [21], following various lines of reasoning.

Any kinematic model featuring at least 30 independent kinematic parameters is com-
plete. Incomplete models may still provide satisfactory accuracy enhancement, but they
lack the capability to take into account all possible errors due to the manipulator geom-
etry. On the other hand, adding more parameters cannot further improve the accuracy
because those parameters would be not independent and thus redundant. A certain
degree of redundancy gives room for less specificity, making models suitable for general-
ization; owing to their simplicity, redundant models may be easier to study but usually
create great troubles in the identification procedure, because the same geometric errors
might be explained by infinite different combinations of parameters values.

4.2.2 Kinematic Parametrisation

There exist many mathematical tools, such as dual quaternions, homogeneous matrices,
screw matrices, product of exponentials, etc., available to describe rigid transformations,
poses or reference frames. Homogeneous matrices are here adopted to represent the
transformations involved in manipulator kinematics, following the formalism outlined in
section B.3. Specifically, the relationship between the (i−1)-th link frame Ri−1 and the
i-th link frame Ri is described by the matrix

T i−1i =

(
Ri−1
i ti−1i

0T 1

)
=

(
ii−1i ji−1i ki−1i oi−1i

0 0 0 1

)

where oi−1i is the position of the origin of Ri in Ri−1, and ii−1i , ji−1i , ki−1i are the
directions of the coordinate axes of Ri in Ri−1.

As shown above, four independent variables are needed to specify adjacent link frames
transformations, therefore this homogeneous transformation matrix must be a function
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of four kinematic parameters. As the origin and the orientation of link frames are
constrained, both angles and distances must be included in the matrix parametrisation.
Even if the task of collecting four geometric quantities to parametrise homogeneous
matrices is rather trivial per se, great care has to be paid in this phase, in order to
render kinematic transformations by means of parameters that vary continuously with
the geometry of joint axes. In other words, the target parametric transformation must
be able to track smoothly whichever variation of the kinematic model from the nominal
configuration, used to select the parametrisation in the first place.

Among all the possible choices of kinematic parametrisations, only those guaran-
teeing proportionality are suitable to set up models for calibration purposes, because
proportionality is a crucial prerequisite for stable and reliable numerical optimisation.
Non proportional models miss the possibility to map the spatial configuration of the
joint motion axes evenly and without jumps in the parameters, hence they may account
for slight geometric variations by means of huge parametric changes.

Near Perpendicular Joint Motion Axes: Denavit-Hartenberg

The most popular and widespread parametrisation for manipulator kinematics is cer-
tainly the Denavit Hartenberg convention, extensively used even by robot controllers
owing to its simplicity. It proposes a selection of link frames absolutely compliant with
the rules given so far and involves indeed four independent parameters, therefore it is
the first reasonable candidate for kinematic modelling.

As described in subsection 2.3.4, the Denavit-Hartenberg convention is essentially
based upon the identification of the common normal, i.e. the line orthogonal to both
motion axes. A couple of transformations with respect to z axis brings the link frame
to the intersection between the first motion axis and the common normal and directs x
axis with it; a couple of transformations with respect to x axis, brings the link frame to
the intersection between the common normal and the second motion axis and directs z
axis with it. The DH homogeneous transformation matrix is thus given by

TDH :=


0
0

+sθ

+cθ

0
0

+cθ

−sθ

0
1
0
0

1
d
0
0



0
0
0
1

0
+sα

+cα

0

0
+cα

−sα

0

1
0
0
a
 =

=


cθ −sθcα sθsα acθ
sθ cθcα −cθsα asθ
0 sα cα d
0 0 0 1


cascading all these elemental transformations in the proper sequence.

The four DH parameters represents only one of the many possible choices to bind
geometrically link frames between each other: the orientation and position constraints
described above are respectively rendered by two angular parameters, θ and α, and by
two linear parameters, d and a, even though the position is affected by both groups
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of parameters, as the elemental transformations are not decoupled. In case of revolute
joints, the parameter θ is the joint angle, so it is actually a variable rather than a fixed
parameter; this observation would leave only three out of four kinematic parameters
prescribed by the requirement of completeness. Nonetheless, as mentioned before, the
joint displacement may be affected by a static error, i.e. a geometric bias present all
over the work-space, irrespective of the actual posture. For this reason, the joint angle
is usually decomposed in two contributions: a variable term, accounting for the angular
displacement measured by the incremental transducer, and a constant term, accounting
for the initial angular position. The total joint angle is then given by

θ := θo + θr

where θo is the joint angle offset and θr is the joint angle reading; the former is the actual
parameter included in the kinematic model liable to correction via calibration.

As pointed out in subsection 2.3.4, two situations cannot be handled by means of
the DH convention rules. If two consecutive motion axes intersect, all DH parameters
are completely defined, as the common normal degenerates into a single point, then the
common normal distance is zero and the direction of x axis is defined by the cross product
constraint. In contrast, if two consecutive motion axes are parallel, there exist infinite
segments orthogonal to both axes, thus the common normal is actually undefined.

In such a case, it is typically up to the designer or the user make a choice; the
offset distance along the motion axis automatically comes out once a certain common
normal is selected. As there are no reasonable preference criteria, it is customary to set
the common normal in such a way that no translation along z is required, i.e. d = 0.
Although such a choice proves very convenient for the simplification of the kinematic
function, for it does not add any arbitrary complication, it fails to reflect the robot
geometry: even the slightest relative misalignment between motion axes, making them
barely skew, would yield a well defined and unique common normal, possibly very far
from the one conventionally set.

This issue has a dramatic practical repercussion on the numerical identification pro-
cedure: at the beginning, the joint motion axes are assumed to be exactly parallel, as
per design, and the nominal DH parameters are used, i.e. zero distance offset and com-
mon normal length equal to the length of the link between the joints; because the joint
motion axes are lightly slanted, they might almost intersect far away from the physi-
cal location of the joints, hence the offset distance d suddenly becomes very large and
the common normal length a suddenly becomes very small. More in general, in this
situation, the numeric value of all DH parameters may be subjected to a sharp jump
discontinuity. Conversely, when two non parallel joint motion axes become near parallel,
the location of the common normal grows indefinitely. Tiny modifications of the manip-
ulator geometry reflects in huge modifications of the kinematic parameters, therefore the
proportionality is lost when using DH parametric transformation for near parallel axes.
Mathematically speaking, parallelism of adjacent joint motion axes is the singularity of
Denavit-Hartenberg parametrisation.

Even when the manipulator design involves exact parallelism, consecutive joint axes
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are virtually never parallel. All 6DOF articulated robots always feature two nominally
parallel motion axes, namely the second and the third, among all nominally perpendic-
ular motion axes. This is the reason why the DH kinematic parametrisation cannot be
universally applied to the whole kinematic chain and a different parametrisation, able
to handle parallel axes while satisfying all model requirements, has to be found.

Geometric Insight

In order to understand geometrically the issue just mentioned, two generic skew and non
orthogonal joint motion axes are considered. The unit vectors u, bmv and n respectively
represents the directions of the first motion axis, the second motion axis and the common
normal. The second motion axis is the line with equation r = p + tv, where p is the
intersection between the axis and the plane r · u = 0 perpendicular to the first motion
axis and passing through the origin of the first link frame.

The origin of the second link frame may be reached, starting from the origin of the
first link frame, through a couple of translations, in two different ways: moving first to
p and then sliding along v, or, sliding first along u and then moving on n, giving

du+ an = p+ tv (4.1)

where d is the displacement along the first motion axis, a is the distance between the
two motion axes on the common normal, t is the displacement along the second motion
axis. Since n is the common normal direction, then n · u = n · v = 0, by definition.
Performing the dot product of both sides of eq. (4.1), first with the unit vector u

du · u+ an · u = p · u+ tv · u ⇔ d = (u · v) t

then with the unit vector v

du · v + an · v = p · v + tv · v ⇔ d (u · v) = p · v + t

and substituting the former into the latter multiplied by u · v

d (u · v)2 = (p · v) (u · v) + t (u · v) = (p · v) (u · v) + d

gives in the end the expression of the offset distance

d =
(p · v) (u · v)

(u · v)2 − 1

which, as u · v = ‖u‖ ‖v‖ cosϕ = cosϕ and p · v = ‖p‖ ‖v‖ cos
(
π
2 ± ϕ

)
= ∓‖p‖ sinϕ,

may be also expressed as

d =
∓‖p‖ sinϕ cosϕ

cos2 ϕ− 1
=
∓‖p‖ sinϕ cosϕ

− sin2 ϕ
= ± ‖p‖

tanϕ
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like a function of the angle ϕ := |α| ∈ [0, π] between the joint motion axes. Since

lim
v→±u

|d| = lim
ϕ→0,π

‖p‖
tanϕ

=∞

then, as the the direction of the second joint motion axis approaches the direction of the
first joint motion axis, the length of this distance grows, becoming infinitely large as the
axes become either parallel (ϕ = 0) or anti parallel (ϕ = π).

Near Parallel Joint Motion Axes: Hayati-Mirmirani

The Hayati-Mirmirani convention is a very simple and elegant workaround, skilfully
described in [10], which exploits a minor modification of the Denavit-Hartenberg con-
vention, in order to accommodate parallel joint motion axes without giving rise to para-
metric singularities. As exemplified in subsection 2.3.4, the prime obstacle of Denavit-
Hartenberg formalism is the strict reliance on the concept of common normal; since the
identification of such an abstract geometric entity is not possible for parallel axes, and
anyway practically infeasible for near parallel axes, the most reasonable solution consists
in dropping this abstract concept completely.

The Hayati-Mirmirani formalism relies instead on the normal plane, i.e. the xy-plane
perpendicular to the first joint motion axis and passing through the origin. A rotation
about z orients x axis with the segment joining the two motion axes on the normal plane,
then a translation along x axis brings the origin of the reference frame to the intersection
between the normal plane and the next motion axis, finally a rotation about x, followed
by a rotation about y, aligns z axis with the next motion axis. The HM homogeneous
transformation matrix is thus given by

THM :=


0
0

+sθ

+cθ

0
0

+cθ

−sθ

0
1
0
0

1
0
0
0



0
0
0
1

0
+sα

+cα

0

0
+cα

−sα

0

1
0
0
a



0
−sβ

0
+cβ

0
0
1
0

0
+cβ

0
+sβ

1
0
0
0
 =

=


cθcβ − sθsαsβ −sθcα cθsβ + sθsαcβ acθ
sθcβ + cθsαsβ cθcα sθsβ − cθsαcβ asθ
−cαsβ sα cαcβ 0

0 0 0 1


cascading all these elemental transformations in the proper sequence.

Quite evidenty, the HM transformation is almost the same as the DH transformation,
except it misses a translation along z at the beginning and it adds a rotation about y
at the end. The reason behind such modifications is pretty easy to understand: the
DH sequence needs the first translation along z in order to reach the location of the
common normal, while the HM sequence works directly on the normal plane z = 0; the
DH sequence directs x axis along the common normal, thus ensuring that both z axis
and the next joint motion axis lie on a plane perpendicular to it, just a simple rotation
about x suffices to make them overlap, whereas the HM sequence aligns x axis on the
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normal plane towards the intersection with the second motion axis, hence a rotation
about x may bring z axis on the plane perpendicular to y, so that a further rotation
about y is required to align z axis with the next joint motion axis.

The four HM parameters are an alternative choice for defining the geometric con-
straints required by kinematic transformations. Remembering the discussion about the
joint angle offset contribution, HM transformation provides four independent kinematic
parameters too, in compliance with completeness requirement. Besides, the transformed
link frame is again consistent with the conventional rules given before, as its origin gets
placed on the motion axis and its z axis gets oriented with the motion axis. Thanks to the
absence of the common normal, no abrupt parameters changes occur if it emerges that
two consecutive joint motion axes are not exactly parallel, hence this parametrisation
restores the missing proportionality requirement.

Anyhow, HM parameters are just a replacement of DH parameters for near parallel
joint motion axes and cannot be applied to the whole kinematic chain either. In a
complementary way to DH parametrisation, there exists a situation that cannot be
handled by HM parametrisation. If two motion axes are perpendicular, the second
one is parallel the normal plane, so there are either infinite or no points in common,
depending on whether or not the second axis lies on the plane. Even when that axis
is embedded in the normal plane, no unique intersection point can be identified, and,
without entering too much into the detail, an arbitrary selection would lead to the same
numerical problems discussed before about DH transformation between parallel motion
axes. Mathematically speaking, the perpendicularity of adjacent joint motion axes is
the singularity of Hayati-Mirmirani parametrisation.

End Frame

As mentioned before when discussing model completeness, the end frame is not con-
strained whatsoever, because there is no joint at the distal end of the last link, therefore
the last transformation requires six parameters. In principle, any sequence of six inde-
pendent elemental transformations may be employed to model the relationship between
the last two link frames; however, since the z axis of the second to last link frame coin-
cides with the last joint motion axis, then only those sequences of transformations that
begin with a rotation about z axis may be taken into consideration, for the motion of
the last joint must be represented by a single variable, which is indeed the reason why
that link frame is thus constrained.

Considering that a complete rotation and a complete translation must be included,
the end transformation might consist of three independent rotations, such as z-x-z, z-y-z,
z-y-x, followed by three independent translations, the order of which is irrelevant. On the
other hand, even though the end frame does not have to meet any particular constraints
given by kinematic conventions, when the nominal model of the whole kinematic chain
relies on a particular formalism, the last group of parameters might be saved and still
used, simply by adding other two parameters to complete the transformation.

As the robot is entirely modelled using the DH convention, a further rotation about
y and a further translation along y are appended to the last transformation. The end
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homogeneous matrix is thus given by

TE :=


0
0

+sθ

+cθ

0
0

+cθ

−sθ

0
1
0
0

1
d
0
0



0
0
0
1

0
+sα

+cα

0

0
+cα

−sα

0

1
0
0
a



0
−sβ

0
+cβ

0
0
1
0

0
+cβ

0
+sβ

1
0
b
0
 =

=


cθcβ − sθsαsβ −sθcα cθsβ + sθsαcβ acθ − bsθcα
sθcβ + cθsαsβ cθcα sθsβ − cθsαcβ asθ + bcθcα
−cαsβ sα cαcβ d+ bsα

0 0 0 1


cascading all these elemental transformations in the proper sequence.

4.2.3 Kinematic Singularities

A more rigorous analysis about the singularities of the proposed kinematic parametrisa-
tions can be laid out recollecting the mathematical definition of proportionality given in
subsection 3.3.1: a parametric transformation is said to be proportional if the parametri-
sation is regular. The regularity of a parametric function can be investigated by checking
the rank of the Jacobian matrix of the function with respect to the parameters: the val-
ues of parameters such that the Jacobian matrix loses rank give the singularities of the
parametric function.

As clarified above, the kinematic transformations are defined up to another two more
degrees the freedom, because the position of the origin along the motion axis, and the
orientation of the x and y axes about the motion axis, are not set. There are two
possibilities to bypass this obstacle: the first one consists in taking into account only
the elements actually constrained by the parametric transformation, that is to say the
direction of z axis and the coordinates of the position of the origin on a plane perpen-
dicular to z, which are four quantities indeed; the second one consists in adding two
other independent transformations in order to achieve an arbitrary complete kinematic
transformation. The latter approach is here followed.

Denavit-Hartenberg Singularity

The DH transformation may be completed by adding another translation along z and
another rotation about z. The resulting frame is thus described by the homogeneous
transformation matrix

Trans (k, d) Rot (k, θ) Trans (i, a) Rot (i, α) Trans (k, t) Rot (k, γ) =

=

(
R(k, θ)R(i, α)R(k, γ) dk + aR(k, θ) i+ tR(k, θ)R(i, α)k

0T 1

)
=

=

(
R(k, θ)R(i, α)R(k, γ) (acθ + tsθsα) i+ (asθ − tcθsα) j + (d+ tcα)k

0T 1

)
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or, alternatively, by the pose vector

p =

(
r
φ

)
=



x
y
z
θ
α
γ

 =



acθ + tsθsα
asθ − tcθsα
d+ tcα
θ
α
γ


where r is the Cartesian position of the origin and φ includes the z-x-z Euler angles
giving the orientation of the coordinate axes. Stacking all parameters into a single vector

η :=



d
a
t
θ
α
γ


makes the pose a vector valued function of a vector variable. Its Jacobian matrix

Jηp =


0
0
0
1
0
0

0
0
0
0
sθ

cθ

0
0
0
cα

−cθsα

+sθsα

0
0
1
0

+acθ + tsθsα

−asθ + tcθsα

0
1
0
0

−tsθcα
+tsθcα

1
0
0
0
0
0


is rank deficient when the determinant is zero

detJηp = −c2θsα − s2θsα = −sα = 0 ⇔ α = 0 ∨ π

that is to say when the two joint motion axes are parallel. In this case, the homogeneous
transformation matrix degenerates into(

R(k, θ ± γ) acθi+ asθj + (d± t)k
0T 1

)

hence the two rotations about z and two translations along z are not decoupled anymore,
making two parameters redundant.

Hayati-Mirmirani Singularity

The HM transformation may be completed by adding another translation along z at
the beginning and another translation along y at the end. The resulting frame is thus
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described by the homogeneous transformation matrix

Trans (k, d) Rot (k, θ) Trans (i, a) Rot (i, α) Rot (j, β) Trans (j, b) =

=

(
R(k, θ)R(i, α) Rot (j, β) dk + aR(k, θ) i+ bR(k, θ)R(i, α) j

0T 1

)
=

=

(
R(k, θ)R(i, α)R(j, β) (acθ − bsθcα) i+ (asθ + bcθcα) j + (d+ bsα)k

0T 1

)
or, alternatively, by the pose vector

p =

(
r
φ

)
=



x
y
z
θ
α
β

 =



acθ − bsθcα
asθ + bcθcα
d+ bsα

θ
α
β


where r is the Cartesian position of the origin and φ includes the z-x-y Cardan angles
giving the orientation of the coordinate axes. Stacking all parameters into a single vector

η :=



d
a
t
θ
α
γ


makes the pose a vector valued function of a vector variable. Its Jacobian matrix

Jηp =


0
0
0
1
0
0

0
0
0
0
sθ

cθ

0
0
0
cα

+cθcα

−sθcα

0
0
1
0

+acθ − bsθcα
−asθ − bcθcα

0
1
0
0

−bcθsα
+bsθsα

1
0
0
0
0
0


is rank deficient when the determinant is zero

detJηp = c2θcα + s2θcα = cα = 0 ⇔ α = ±π
2

that is to say when the two joint motion axes are perpendicular. In this case, the
homogeneous transformation matrix degenerates into(

R(k, θ ± β)R
(
i,±π

2

)
acθi+ asθj + (d± b)k

0T 1

)
hence the rotations about z and y and the translations along z and y are not decoupled
anymore, making two parameters redundant.
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4.2.4 Kinematic Parameters

No modelling had been already developed and no kinematic parameters were already
available for the robot manipulator unit under calibration. The manufacturer provided
only a schematics reporting the values of the most relevant robot links dimensions, shown
in fig. 4.3. Basing on these raw dimensional values, a nominal kinematic model has been
created from scratch, following the rules of Denavit-Hartenberg convention.
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Figure 4.3: COMAU NJ 130-2.0 links size and workspace volume.

As extensively discussed above, for calibration purposes, DH parameters are not suit-
able for the entire kinematic chain, hence the model structure has been properly modified,
adding and removing parameters according to the fundamental rules of proportionality
and completeness. In the end, the complete and proportional target kinematic model
features a total of thirty kinematic parameters, arranged as follows: Denavit-Hartenberg
kinematic parameters are used for T 0

1, T
2
3, T

3
4 and T 4

5, kinematic Hayati-Mirmirani pa-
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rameters are used for TB
0 and T 1

2, and six kinematic parameters are used for T 5
6. The

numeric values of these parameters are displayed table 4.1.

j θo (rad) d (m) α (rad) a (m) β (rad) b (m)

0 −π/2 \ π -2.000 0 \
1 0 -0.550 +π/2 0.400 \ \
2 −π/2 \ π 0.860 0 \
3 +π/2 0 −π/2 0.210 \ \
4 0 -0.76158 −π/2 0 \ \
5 0 0 +π/2 0 \ \
6 π -0.210 π 0 0 0

Table 4.1: Nominal Kinematic Parameters for Complete and Proportional Model.

4.2.5 Thermal Deformation

As anticipated in subsection 3.2.4, evaluating the detrimental effect of temperature over
manipulator kinematics is a quite challenging task. The ambient temperature of the
work cell displays rather small variations hence it is expected to play a minor role
in thermal error generation. On the contrary, the effect of the body temperature is far
more critical for at least two reasons: quite far points of the robot shell may be at totally
different temperature because self heating takes place not uniformly; the temperatures
of the robot frame may range over fairly large intervals because the joint motors are
really strong thermal sources. The inconsistency between ambient temperature and
body temperatures denotes a state of thermal imbalance inducing heat flow between the
robot manipulator and the surrounding environment, which may occur via conduction
through the floor, convection through air and radiation through infra-red emission.

An exact quantitative analysis of the robot manipulator thermal behaviour is nearly
infeasible, for it would require to know shapes, sizes and materials of every single robot
component, and process this huge amount of information through an immensely power-
ful simulation environment able to replicate virtually the thermal phenomena that take
place in the robot manipulator work-cell, exploiting the thermal properties of materials
and the laws of thermodynamics. On the other hand, even if it were possible, metic-
ulously examining every thermal phenomenon regarding robot manipulators would be
of very little practical help in the scope of volumetric accuracy compensation, since the
analysis of manipulator kinematics essentially revolves around the construction of an ab-
stract geometrical model featuring a set of conventional parameters the value of which
is numerically assigned and may or may not have a strict physical equivalent.

This is the reason why it is certainly preferable to investigate the effect of temper-
ature dynamics on manipulator kinematics indirectly, that is to say by checking and
evaluating the relationship between the kinematic parameters and the thermal gradient.
All links, in general, are subject to thermal deformation, therefore, at least in theory,
all kinematic parameters might vary owing to temperature gradient time evolution. In
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practice, only some of them, i.e. those with a more definite physical meaning, actually
display a significant correlation with temperatures changes: more specifically, uniform
thermal variations induce link elongation only, resulting in a modification of linear pa-
rameters, whereas non uniform thermal variations induce link bending too, resulting in
a modification of angular parameters.

Bearing in mind the simplified law of thermal expansion1, the kinematic parameters
are reasonably expected to vary in a roughly linear fashion with respect to the tem-
perature rise. In more formal terms, the thermally induced error in the j-th kinematic
parameter might be expressed approximately as

∆kj ≈ γj1∆T1 + . . .+ γjnS
∆TnS

(4.2)

where ∆T1, . . . ,∆TnS
are the temperature changes of nS relevant robot points.

4.3 Measurement Set-up

The experimental set-up for the designed kinematic compensation strategy of the tar-
get robot manipulator unit consists of a 3D position measurement system, the standard
equipment required for geometric error compensation, and a real time temperature mon-
itor, the additional hardware needed for thermal error compensation. Within the limits
of available precision, the set of experimental data collected in this step represents a
snapshot of the actual kinematics of the robot manipulator, that is indeed at the very
heart of the concept of calibration.

The robot equips a tool plate holding four optical targets, whose 3D Cartesian
position is accurately measured, at each flange pose, by means of a laser tracker.
As said earlier, the position of at least three tool points per joint posture should be
measured, in order to incorporate virtually the information of the complete end effector
pose; four targets are here employed to honour the quadrangular geometry of the tool.

As reasonably prescribed in subsection 3.3.2, the mechanical tolerances of the tool
components and the measurement performances of the laser tracker have to be far better
than the level of position accuracy provided by the end effector, otherwise the success
of calibration would be inexorably compromised. Furthermore, for the same reason, the
tool plate is entirely constructed of aluminium, in order to limit the overall weight of
the tool burdening on the robot wrist as much as possible.

The temperatures distribution across the robot body is monitored by means of an
array of five micro-controller boards, anchored respectively to the five largest links, each
of which collects and sends via Wi-Fi the data of four temperature transducers attached
to some selected spots of the link armour. Such a wireless configuration has been pre-
ferred for the temperature data acquisition system, because the manipulator is required
to move vigorously, in order to stress adequately the joints and thus engender enough
heat. Since all adjacent links experience relative motion between each other, wiring all

1A beam of length l, when subjected to a small temperature change ∆T , shows a relative strain given
by ∆l

l
= α∆T , where α is the coefficient of thermal expansion of the material the beam is made of.
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the sensors to a common data acquisition board would be a definitely uncomfortable
and hazardous solution.

4.3.1 Tool Targets

The tool installed on the end effector of the robot manipulator under study is a base
mounting surface clutching the optical targets, namely four corner cube retroreflectors
(CCR). The whole mounting surface is composed of two elements anchored together: a
round plate bolted to the robot flange and a square plate, bound to the targets.

The square tool hosts four target holders in its sides and four round pins in its
vertices. Each reflective target is fastened to a pin, that serves as sort of spherical joint,
allowing the rotation of the target with respect to a fixed pivot: such a degree of freedom
is very important to orient properly all the four retroreflectors towards a common point,
that is the source of the beam emitted by the optical measuring instrument.

Figure 4.4: Tool plate with Corner Cube Retroreflectors.

The tool plate has been geometrically calibrated in advance, probing, by means of
a coordinate measuring machine, the position of the four target holders with respect to
some mechanical references on the mounting interface, that define the coordinate frame
of the robot flange. Once the tool has been firmly installed, by means of the round plate
interface, on the robot flange, and the orientation of all targets has been set, by tightly
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fastening the appropriate screw knobs, then the position of the actual reflective targets
in the end effector frame has to be determined.

To this aim, a further optical target, namely a 0.5′′ spherically mounted retroreflec-
tor (SMR), is magnetically attached, in sequence, to the four target holders, and their
position in the absolute coordinate frame is measured through the laser tracker; then
the flange coordinate frame can be recreated, from the knowledge of the target holders
position in that frame, already evaluated by means of the CMM. Eventually, the actual
Cartesian position of the tool targets, i.e. the centre of the retroreflectors, can be accu-
rately determined in the world frame by the laser tracker and then transformed into the
flange frame, thanks to the relationship found before.

The round plate mounted on the robot flange is also endowed with some dedicated
holes, designed to host suitable dowel pins, allowing to place, remove or replace the
tool plate on the robot wrist, without modifying significantly their relative position and
orientation. Such a sophisticated mechanical interface is of paramount importance, not
only for the calibration process per se, but also to take advantage of the volumetric
accuracy enhancement provided by calibration, in different practical operating contexts,
with the robot manipulator equipping other application specific tools.

4.3.2 3D Coordinate Measurement

A FARO® ION, a high precision interferometer-based laser tracker, is employed to read
the position of the tool targets in the work-space; it features a resolution of 0.5µm and
an accuracy (half of the maximum permissible error) of 16µm + 0.8µm/m.

Figure 4.5: FARO® Laser Tracker ION.

The flexible measurement software platform SpatialAnalyzer®, able to interface con-
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currently with multiple instruments and integrate their data together, is entrusted with
the synchronisation of the laser tracker with the robot controller. Whenever the robot
manipulator is stopped at a given desired pose, the laser tracker is instructed to record
accurately the Cartesian position of the four reflecting targets on the flange.

All joint postures are roughly selected so that the flange plate faces the laser tracker
column, which lies approximately in front of the robot base. Furthermore, basing on the
nominal kinematic model of the robot manipulator, the measurement software environ-
ment processes each flange pose and generates the corresponding joint posture, in such a
way that the four targets are correctly pointed at the laser tracker simultaneously, that
is to say the laser beam is able to reach all of the corner retroreflectors.

The position measurement of each 3D point is computed by averaging multiple re-
peated readings of that point, in order to minimise the random error due to instrument
precision, environmental conditions, and robot residual vibrations. The laser tracker is
set to record the position of 3D points with a sample rate of 100Hz, and 50 samples per
point are collected, therefore each point measurement requires 0.5 sec. Averaging over
50 samples brings the residual RMS error down to about 1÷ 3µm.

4.3.3 Temperature Monitor

The package of each temperature sensor board consists of a thermal transducer em-
bedded within a digital integrated module featuring an I2C serial communication in-
terface: the main chip is a human body temperature sensor device integrating a 16 bit
analog-to-digital converter, able to provide 0÷64◦C operating range, 0.3◦C accuracy and
0.00390625◦C resolution. Three dedicated external pins have to be properly connected
to certain logic voltage levels, in order to assign the sensor board a specific address.

Figure 4.6: Thermal sensor board glued to a robot link.
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All the thermal sensors adhering to selected spots of the same robot link are wired, by
means of tailored strip headers, to a common breadboard hosting an Arduino® inspired
development board equipped with an integrated 802.11 b/g/n protocol based Wi-Fi chip.
A compact rechargeable lithium-ion battery powers the micro-controller board, which
supplies in turn the power to the sensor boards connected to it.

Figure 4.7: Breadboard with connected micro-controller, wire terminals and power supply.

Each micro-controller has been programmed in order to query sequentially all ther-
mal sensors through their specific I2C address, decode their raw output and send the
corresponding temperature data as numeric strings over the air, via a dedicated wireless
local network. The computer tasked with all robot operations continuously scans all
micro-controllers, logging the temperature readings coming from all the thermal sensors
distributed throughout the robot framework.

It is worth noting that the adopted experimental set-up for monitoring temperatures
provides great flexibility, thanks to its enhanced modularity: the whole temperature
monitor indeed consists of an array of several identical modules, each one including a
fixed number of temperature sensors wired to a common Wi-Fi capable board. If, for
instance, some more thermal sensors were needed for sensing the temperature of the
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robot itself or other equipment on the production line, other complete modules may be
handily added, without altering the pre-existing configuration whatsoever.

4.3.4 Operations

A single computer is dedicated to all measurement operations concerning the calibration
of the manipulator unit under study. It is entrusted with commanding the robot motion,
instructing the laser tracker to measure the position of the tool targets and downloading
the temperature data from the micro-controllers via Wi-Fi local network.

The complete test designed for thermal calibration consists of a warm up phase and
cool down phase, each of which in turn composed of a measurement step and a movement
step, repeated in alternating fashion. In the movement step, the robot manipulator
continually performs a series of few simple repetitive movements, planned in the joint-
space especially for exercising all joints. In the measurement step, the robot manipulator
reaches the fifteen joint postures selected for calibration and the laser tracker measures
the position of the tool targets at each corresponding flange pose.

Figure 4.8: Laser tracker pointing at a tool target.

The two phases are qualitatively equal, what differentiates them is the speed override
set for the robot joints. During warm up, because of the faster motion, the temperatures
rise up to their upper steady state value, whereas during cool down, because of the slower
motion, the temperatures drop down to their lower steady state value. Considering
that, after a full cycle of warming and cooling, the temperatures return to the same
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value, acquiring kinematic and thermal data during both stages may sound apparently
superfluous. The time rate of change of robot temperatures can be rendered realistically
by means of simple exponential rises and falls: they grow quickly at the beginning and
slowly at the end, during warm up, whereas they drop quickly at the beginning and
slowly at the end, during cool down. For this reason, performing measurements on both
stages gives the possibility to sample the robot kinematics while spanning the entire
temperature range with a good level of granularity.

After performing the first experimental tests, an interesting phenomenon has been
observed: the temperature readings of most of the thermal transducers grew softly
while the robot was fidgeting and sharply as the robot was stopping at the desired
postures. This paradoxical behaviour may be explained by looking at the time trend of
the temperature values yielded by three thermal sensors attached to links 0, 2 and 4.
As evidently shown in fig. 4.9, no spikes are present in the temperature reading of the
sensor attached to link 0, that is the robot base, therefore the phenomenon was likely
related to the links motion.
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Figure 4.9: Spikes in readings of links temperature sensors.

Owing to the quite large thermal inertia of the links frame, the heat generated by
motors and gears, albeit massive, does not get immediately translated in a corresponding
temperature rise; on the other hand, the temperature sensors have instead fast thermal
response, because of their very small sizes. For this reason, as long as the robot was
moving quickly, the air flow generated directly chilled the sensor themselves, whereas, as
soon as the robot became still again and the cooling effect of air ventilation was over, the
transducers began to sense the actual links temperatures. Basing on such considerations,
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this thermal issue has been addressed by covering all sensors with blocks made of foam
rubber, properly sized and shaped in order not to impede any movement of the robot
links, clearly visible in fig. 4.8: acting as insulators, the blocks prevent the sensor boards
from being cooled faster than the robot frame.

Moreover, a more or less small pause has been inserted between a movement step
and a measurement step of each cycle, in order to further damp any annoying ripple
of the link temperatures during the whole acquisition of tool targets positions, which
typically requires some minutes. The sum of the time required by the movement step
and the time required by the measurement step including the pause, gives the full cycle
time. Some minor corrections have been made at a later stage to extend the spread
of the robot thermal gradient and, at the same time, to keep the temperature changes
between consecutive cycles quite moderate. To this aim, both times and speeds have
been finely sized: in the end, the cycle time has been set between 10 min and 20 min,
while the speed override has been set between 50% and 100% for warm up and between
0% and 50% for cool down.

4.4 Numerical Identification

The whole calibration of the robot manipulator under study is carried out by means of a
genuine program entirely written in MATLAB® software environment. The program is
based on basic functions regarding matrices handling only, and no built-in MATLAB®

functions or packages whatsoever have been employed; hence, by virtue of this choice,
the application designed for calibration may be easily translated into any desired pro-
gramming language and encapsulated into a larger software project as a separate library,
according to the company desires.

The result of the measurement stage is a huge mass of heterogeneous data regard-
ing the robot manipulator under calibration, namely the joints angular displacements
encoder readings, the tool targets position laser tracker readings and the links temper-
atures thermometers readings. A supplementary routine is dedicated to scan all files
and pack the measurement data they contain into several suitable structures with man-
ageable format, for numerical processing purposes. The large data collection actually
originates from sampling the same quantities in different moments, hence it is important
to arrange these numeric structures in such a way that all groups of data referring to a
given cycle may be easily indexed.

Each measurement cycle accounts for a different thermal condition, therefore putting
the temperatures aside, the other data, which regard the robot kinematics only, are used
to perform geometric calibration many times, and subsequently these results are used
to perform also thermal calibration. Along the lines of what already outlined before,
first the kinematic parameters variations are identified for each temperatures level, then
the thermal coefficients are identified by fitting the kinematic parameters changes with
respect to the corresponding test temperatures changes. The total error compensation
is eventually achieved by modifying the nominal kinematic parameters using the data
obtained from identification.
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In more formal terms, gathering all kinematic parameters into a large vector, the
calibrated value k is obtained from the nominal value kn as

k = kn +∆k|geom +∆k|therm (4.3)

where ∆k|geom is the amount of correction needed for adherence to (cold) geometrical
traits, while ∆k|therm is the amount of correction accounting for thermal alteration. Only
the values of those parameters present in the kinematic model devised for calibration
are indeed subject to amendment.

4.4.1 Kinematic Parameters Estimation

The first step of calibration is geometric error compensation consisting in the numerical
estimation of the kinematic parameters; model identification is carried out as an optimi-
sation problem, through the minimisation of the all target position errors over the set of
the kinematic parameters: according to the reasoning made in section 5.2, the residual
sum of squares of all position errors is chosen as performance index.

The i-th target position error is the difference

∆ri := ri − ri(k)

where ri is the i-th target position read by the laser tracker while ri(k) is the t-tharget
position given by the kinematic model. The loss function is then

L(k) =
N∑
i=1

1

2
‖∆ri(k)‖2

where N = 4 · 15 = 60 is the total number of target positions. The gradient

∇L(k) = −
N∑
i=1

Jri(k)T∆ri(k)

and the approximate Hessian matrix

HL(k) ≈
N∑
i=1

Jri(k)T Jri(k)

are computed piece by piece, exploiting the Jacobian matrix of a target position with
respect to the kinematic parameters.

According to eq. (5.25), at least 5 tool poses in the work-space would be strictly
needed to identify 30 independent kinematic parameters, then 15 joint postures abun-
dantly suffice and may help to reduce any undesired random effect. Thanks to the
gift of proportionality guaranteed to the model designed for calibration, the kinematic
parameters taken in consideration induce differential variations uncorrelated from each
other, hence the Jacobian matrix is always full rank. As explained in section 5.2, the
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computational effort required to calculate the full Hessian matrix (83700 second deriva-
tives have to be evaluated to compute the second order remainder in eq. (5.24)) does
not get reflected in better convergence performances whatsoever, in fact the algorithm
is heavily slowed down. For these reasons, the parameter vector is updated, according
to the Gauss-Newton method, as

∆k = −HL(k)−1∇L(k)

and the precess is repeated iteratively, posing k +∆k as initial value for the next step,
until |∆L(k)| ≤ max{δ, ε |L(k)|} or ‖∇L(k)‖ ≤ γ where δ, ε are respectively the absolute
and relative tolerance on the function change and γ is the tolerance on the gradient norm.

The Jacobian matrix, fundamental to evaluate the gradient and the Hessian matrix,
is exactly calculated by following closely the methodological guidelines of the differential
error model developed in section 6.2. The differential matrices of any group of kinematic
parameters d, θ, a, α, β are first evaluated in the local reference frame via sheer numerical
substitution into eqs. (6.38) to (6.42), and then brought back in the global reference
frame performing properly the products with the homogeneous transformation matrices
TB

0 ,T
0
1, . . . ,T

5
6. For the sake of conformity, the differential matrices thus obtained are

used to evaluate, remembering eq. (6.36), the derivatives of the target positions with
respect to all kinematic parameters, giving rise to a larger Jacobian matrix, though all
columns corresponding to those parameters not involved in the model, namely d0, β1,
d2, β3, β4, β5, are simply deleted. Finally, the Jacobian matrix of the i-th tool target
position with respect to the 30 kinematic parameters is given by

Jri(k) =

(
∂ri(k)

∂k1
· · · ∂ri(k)

∂k30

)
=
(
S
(
δk1
)
ri(k) + dk1 · · · S

(
δk30

)
ri(k) + dk30

)
where δkj and dkj are respectively the differential orientation and position error vectors
induced by the j-th kinematic parameter.

The designed algorithmic procedure implementing the numerical optimisation for
kinematic parameters identification, has been exhaustively assessed, first by means of
a numerical simulation, where it managed to find all parameters up to the machine
precision, then by means of an actual test on a smaller robot with another articulated
robot unit, a Stäubli TX90.

4.4.2 Thermal Coefficients Estimation

The second step of calibration is thermal error compensation consisting in the numer-
ical identification of the thermal coefficients. In principle, this further step might be
addressed as an optimisation problem too, that is to say looking for the values of some
additional parameters that minimise the prediction error of a the thermal model. How-
ever, as already said before, since no precise analysis of the robot thermal behaviour
of may be proposed, then there is no information whatsoever about the structure of
the model describing the relationship between temperatures and kinematics. That is
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the reason why the thermal coefficients, relating the variation of the kinematic param-
eters versus the variation of the links temperatures outlined in eq. (4.2), are eventually
estimated by means of a simple linear regression technique.

The previous step returned a collection of corrections of the kinematic parameters
numerical values at different temperatures. According to the result of the repeated
calibrations, practically all kinematic parameters are subject to changes over the entire
time span. Nevertheless, after observing thoroughly the trend of parameters values and
comparing it with the trend of the link temperatures, it is deemed reasonable to assume
that only some of the parameters are significantly correlated with thermal effects. In
particular, the largest thermal strain observed in the robot manipulator unit under study
is the stretching of links 0, 2 and 4 and the skewing between joints 2 and 3, described
respectively by kinematic parameters d1, a2, d4 and β2.

The general expression of eq. (4.2) induces the thermally induced parametric error

∆kj = ∆Tjcj (4.4)

where ∆kj is an array made up of the j-th kinematic parameter corrections identified
at different moments, ∆Tj is a matrix made up of the variations of the link tempera-
tures reasonably associated to the j-th kinematic parameter with respect to the initial
reference temperatures measured at different times, and cj is an array of thermal co-
efficients. If several calibrations at different thermal conditions are performed and the
corresponding link temperatures are recorded, then the j-th thermal coefficients can be
computed, applying least square regression, as

ĉj = ∆T+
j ∆kj (4.5)

where ∆Tj is the pseudoinverse of ∆Tj .

4.5 Correction Outcomes

4.5.1 Regression Data

Applying eq. (4.5) to the target kinematic parameters d1, a1, a2, β2, d4, using only the
readings of the thermal sensors attached to spots of the robot framework reasonably
connected to the value of those parameters, returns a collection of thermal coefficients.
The corresponding predicted parametric errors are thus given by

∆k̂j := ∆Tj ĉj

that is to say substituting the estimated thermal coefficients into eq. (4.4). The thermal
parametric corrections predicted by such a relationship are then compared with the
thermal parametric corrections identified by repeated calibrations, as shown in figs. 4.10
to 4.14, in order to verify the success of the performed regression.
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Figure 4.10: Calibrated and Predicted value of d1.
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Figure 4.11: Calibrated and Predicted value of a1.
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Figure 4.12: Calibrated and Predicted value of a2.
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Figure 4.13: Calibrated and Predicted value of β2.
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Figure 4.14: Calibrated and Predicted value of d4.

4.5.2 Validation Results

The assessment of the quality of the designed error compensation scheme is performed
following precisely the methodology described in subsection 3.3.4: the accuracy perfor-
mances provided by the updated kinematic model are evaluated at conditions different
from the ones under which calibration took place.

The reliability of the geometric calibration performed over the restricted front work-
ing volume is verified moving the end effector and checking the corresponding position
error given by the kinematic model with the corrected parameters, over a new set of
poses still consistent with the portion of work-space explored at calibration stage. The
maximum and average tool position errors of the STÄUBLI TX90 are respectively low-
ered from 1.158mm and 0.676mm down to 0.116mm and 0.059mm; the maximum and
average errors of the COMAU NJ-130-2.0 are respectively lowered from 5.703mm and
2.810mm down to 0.578mm and 0.265mm. The plots of the tool position errors at all
flange poses are shown in figs. 4.15 and 4.16.

The reliability of the thermal calibration performed over the entire working volume
is verified by executing two trials of the complete test described in subsection 4.3.4, at
different values of speed override, different times of the day and different cycle periods,
in order to induce different profiles of the link temperatures. The movements required
by warm up and cool down are performed respectively at 75% and 25% of the rated joint
speed during the run intended for estimation purposes and at 90% and 30% of the rated
joint speed during the run intended for validation purposes. As a result, the results of the
thermal calibration are double-checked over a broader span of the link temperature and
an opposite trend of the ambient temperature, as evidently shown in fig. 4.17. The initial
tool position error of about 3.4mm is reduced by more than 10 times after geometric
calibration at room temperature; from this point on, the tool position error given by the
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kinematic model with the kinematic parameters calibrated at room temperature grows
up to 0.5mm owing to the effect of the links temperature rise, whereas the tool position
error given by the kinematic model with the thermally predicted kinematic parameters
remains practically constant at about 0.26mm, as shown in the plot of fig. 4.18.
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Figure 4.15: Validation of the STÄUBLI TX90 calibration
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Figure 4.16: Validation of the COMAU NJ-130-2.0 calibration
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Figure 4.17: Estimation and Validation test temperatures.
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Figure 4.18: Average tool position error at different thermal conditions.





Chapter 5

Optimisation Strategies

5.1 Unconstrained Optimisation for Regression

5.1.1 Non Linear Least Squares Unconstrained Optimisation

Model Identification

Numerical methods may be effectively employed to carry out model identification,
that is to discover the model of a certain system. The mathematical model of a physical
system is a quantitative description of some of its relevant phenomena, needed to inves-
tigate that system. A physical system is typically modelled by means of a mathematical
function, termed model function, representing the relationship between quantities in-
volved in that system. From a purely analytical point of view, the model function is a
vector valued function of vector variable; nevertheless, since only some of the quanti-
ties are actually subject to variation while some others remain fixed, it may be better
described as parametric function. From this perspective, the model function gives a nu-
merical relationship between some input quantities and some output quantities, accord-
ing to the value of some parameters: as the parameters change, the overall relationship
changes. In analytical terms, the model function can be expressed as

z = φ (x,y) (5.1)

where x is a vector of model parameters, y is a vector of input variables and z is a
vector of output variables.

The quality of a given model depends on how close it manages to predict the actual
behaviour of the physical system it seeks to describe. No model, regardless of how
accurate it could be, may account for every single aspect of a real system; for this
reason, the actual value of a certain system quantity may differ from the value of the
same quantity predicted by the model. In general, it is not possible to determine perfectly
the model function, although in practice it is usually assumed that the functional form of
the relationship is sufficiently correct, whereas the values of the parameters are unknown,
or at least only roughly known. Improving the quality of a model thus means to look
for a value for the parameters in such a way that the predicted behaviour gets closer

87
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to the exhibited behaviour. In this sense, model identification is in fact equivalent to
parameter identification.

For a given value y of the input quantities, the actual value ζ of the output quantities
may be estimated directly or indirectly, basing on the measurement of some quantities,
and compared to the nominal value z of the output quantities given by the model function
in eq. (5.1). The difference between these two values

e(x) := ζ − φ(x,y) (5.2)

is called residual. Performing several measurements in different conditions and generat-
ing the corresponding residuals ei(x) := ζi − φ(x,yi), may give a reasonable indication
of the overall prediction error given by the model for a certain value x of the parameters.
The goal of model identification is to find a value of the parameters that gives the lowest
possible prediction error.

The problem of fitting a parametric function to a collection of experimental data by
tuning the value of the parameters, is called regression. As regards model identification,
the model parameters are the variables of the regression problem, whereas all the other
model quantities are sampled to generate the data of the regression problem. The model
function is non linear, in general, therefore, if no assumptions about the linearity can
be made, the problem is termed non linear regression. It is worth noting that all the
model quantities may be thus either constants or variables, depending on the specific
context: when the model is employed, the output quantities z are computed processing
the input quantities y, basing on the value of the parameters x, whereas, when the
model is identified, the parameters x are estimated basing on the samples of the output
quantities z and the input quantities x.

Function Minimisation

The term optimisation comes from the Latin word optimum, which means best: math-
ematical optimisation indeed consists in looking for the best element among some
several possible alternatives, according to some given criteria. Optimising means thus
improving something, in general; specifically, it implies either to increase or to decrease
the value of a certain performance index changing the value of some quantities, meeting
certain constraints. The performance index is analytically rendered by means of a real
valued function, called objective function, and the target quantities are represented
by its independent variables, called decision variables, which must lie inside a certain
region, called feasible set.

When the problem requires to reduce a certain indicator gauging the performances,
the objective function is also termed cost function or loss function, in order to highlight
that it is a measure of the penalty associated to a given value for the decision variables.
In such a case, optimisation is essentially a synonym of function minimisation, hence it
is important to define clearly the concept of minimum of a function.

Let f : X ⊆ Rn → R be a real valued function defined over the domain X and let
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x ∈ X̊ be an interior point1. When

∃δ > 0: f(x+∆x) ≥ f(x) , ∀∆x : x+∆x ∈ X, ‖∆x‖ ≤ δ

the point x is said to be a local minimum point of f ; the value of the function at a
local minimum point is termed local minimum. When

f(x+∆x) ≥ f(x) , ∀∆x : x+∆x ∈ X

the point x is said to be a global minimum point of f ; the value of the function at a
global minimum point is termed global minimum. A function may have several local
minima, in general, but only a global minimum. Depending on whether the inequality is
actually strict or not, the value f(x) is called strong minimum or weak minimum,
respectively. At strong minima, the value of the function locally increases along every
directions. In contrast, at weak minima, there exists at least a direction along which the
value of the function remains locally constant.

When the feasible set coincides with the entire domain of the function, the optimisa-
tion problem is said to be unconstrained, as the decision variable is not subject to any
constraint. An unconstrained optimisation problem may be analytically represented as

x∗ = argmin
x∈X

f(x)

that is to say x∗ is the argument of the function f that minimises its value. Such a
problem might be extremely hard and complex; for this reason, it may not always be
solved exactly, and sometimes finding a local minimum may be satisfactory enough in
many practical situations.

Problem Structure

As mentioned before, model identification and regression in general may be addressed
through the tools of numerical analysis: parameter regression can be indeed seen as a
particular case of optimisation problem, using the model parameters as decision vari-
ables, and some gauge of the magnitude of the model residuals as objective function.
From this perspective, parameter identification consists in finding the optimal values for
the parameters, namely the ones minimising the model prediction error in some sense.
Since the parameters of a model are typically not required to be bounded, parameter
identification is an unconstrained optimisation problem.

Even when the model output quantity under observation is more than one, it is still
better to consider each component of the residual vector in eq. (5.2) separately, that is
to say as a different scalar quantity; by virtue of this choice, there are, in general, m
residuals ei(x) , i = 1, . . . ,m that may come from either different observing conditions or
different model quantities. The selected performance index should account for the overall

1In topology, the interior X̊ of a set X ⊆ Rn is the open set of all the points of that set which do not
belong to the its boundary ∂X, i.e. X̊ := X \∂X. The points lying within the interior are called interior
points.
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model prediction error, therefore all the residuals have to be considered simultaneously.
To this aim it is useful to define the m-dimensional residual vector

e(x) :=
(
ei(x)

)
1≤i≤m

obtained gathering all the m scalar residuals together. Several different measures of the
size of the model prediction error might be devised, for instance by making use of some
mathematical norm of this residual vector, among which the most common choice is
undoubtedly the Euclidean norm: its square coincides with the sum of all the squared
residuals and is thus commonly called residual sum of squares (RSS). In this case,
the regression problem consists in the minimisation of a sum of squares and is thus
ordinarily called also least squares.

The objective function is given by

f(x) :=
1

2
‖e(x)‖2 =

1

2

m∑
k=1

e2k(x)

that is half the residual sum of squares. Such function features some peculiar convenient
traits: thanks to the square, it is always non negative and everywhere differentiable;
besides these analytical properties, it is also particularly suited for regression problems
as it tends to amplify residuals in proportion to their magnitude.

Most of the methods aimed at function minimisation, rely upon some differential
quantities, therefore the derivatives of the objective function have to be be either derived
exactly or estimated approximately. The gradient vector of a function f(x) is defined as

∇f(x) :=

(
∂f(x)

∂xi

)
1≤i≤n

that is the vector made up of all its first partial derivatives. The Hessian matrix of a
function f(x) is defined as

Hf(x) :=

(
∂2f(x)

∂xi∂xj

)
1≤i≤n
1≤j≤n

that is the matrix made up of all its second partial derivatives. Thus, in order to give
an expression of such differential quantities, all the first and second partial derivatives
of the objective function have to be evaluated first.

The first partial derivative of the objective function with respect to the i-th decision
variable is given by

∂f(x)

∂xi
=

1

2

∂

∂xi
‖e(x)‖2 =

∂

∂xi

1

2

m∑
k=1

e2k(x) =
1

2

m∑
k=1

∂e2k(x)

∂xi
=

=
m∑
k=1

ek(x)
∂ek(x)

∂xi
=
∂e(x)

∂xi

T

e(x)
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and the second partial derivative of the objective function with respect of the i-th and
the j-th decision variables is given by

∂2f(x)

∂xi∂xj
=

∂

∂xi

∂f(x)

∂xj
=

∂

∂xi

m∑
k=1

ek(x)
∂ek(x)

∂xj
=

m∑
k=1

∂ek(x)

∂xi

∂ek(x)

∂xj
+ ek(x)

∂2ek(x)

∂xi∂xj

=
∂e(x)

∂xi

T∂e(x)

∂xj
+

m∑
k=1

ek(x)
∂2ek(x)

∂xi∂xj

exploiting the chain rule. Eventually, the gradient vector and the Hessian matrix of the
objective function may be further rewritten more succinctly as

∇f(x) = Je(x)Te(x) (5.3a)

Hf(x) = Je(x)TJe(x) +
m∑
i=1

ei(x)Hei(x) (5.3b)

where

Je(x) =

(
∂ei(x)

∂xj

)
1≤i≤m
1≤j≤n

=


∂e1(x1)
∂x1

· · · ∂e1(xn)
∂xn

...
. . .

...
∂em(x1)
∂x1

· · · ∂em(xn)
∂xn

 =
(
∂e(x)
∂x1

· · · ∂e(x)
∂xn

)

is the Jacobian matrix of the aggregated residual e(x).

5.1.2 Iterative Methods

Differential Approximation

Unlike direct search methods, such as Fibonacci search or Golden Section search, which
look for a local minimum of the objective function by evaluating only the function
at a proper grid of points, indirect search methods, also called iterative methods,
exploit also the information about the derivatives of the objective function. Indirect
methods thus require that the objective function is smooth enough and its derivatives
are available, by means of either symbolic derivation or numeric approximation, whereas
direct methods may also be employed also when the objective function is non smooth or,
for some reason, its derivatives are not available whatsoever. The particular approach
to optimisation adopted by iterative methods provides a tool to explore the behaviour
of the objective function in more consecutive steps, starting from a certain initial point
and stopping when a local minimum is spotted. For this reason, there is no guarantee
that the solution found is necessarily a global minimum of the objective function.

The function derivatives are used to build a suitable local approximation of the
objective function, i.e. valid only in the neighbourhood of the current value of the decision
variables at a given step: the approximated function f̃(x) is minimised at each step in
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place of the actual objective function f(x). In formal terms, an iterative method is
required to solve, at each step, the following sub problem

∆x∗ = argmin
∆x∈Rn

f̃(x+∆x) (5.4)

which is equivalent to determine the increment of the decision variable that minimises
the local approximation of the objective function. The solution ∆xk to the sub problem
at a certain step, corresponding to the value xk for the decision variable, is fed back to
the relaxed problem and the updated variable xk+1 = xk+∆xk is used as starting point
for the next step; the procedure is thus iteratively repeated, starting from an initial guess
x0, until a certain condition, set by one or more suitable stopping criteria, is met.

The most used local differential approximation of the objective function is normally
based on the first order Taylor series expansion

f(x+∆x) = f(x) +∇f(x)T∆x+ o
(
‖∆x‖

)
, ∆x→ 0 (5.5)

or also on the second order Taylor series expansion

f(x+∆x) = f(x) +∇f(x)T∆x+
1

2
∆xTHf(x)∆x+ o

(
‖∆x‖2

)
, ∆x→ 0 (5.6)

when the objective function is twice differentiable and its second derivatives are available.

Optimality Conditions

The derivatives of the objective function satisfy some important conditions at minimum
points. In order to investigate them, let gv : R→ R be the auxiliary function defined as
gv(t) := f(x+ tv), where x ∈ X̊ is an interior point, v ∈ Rn is a vector and t ∈ R is a
scalar. In this way, the value of the objective function at x corresponds to the value of
the auxiliary function at the origin, i.e. gv(0) = f(x). Its first derivative is

dgv(t)

dt
=
∂f(x+ tv)

∂t
= ∇f(x+ tv)Tv

thus giving, in particular, g′v(0) = ∇f(x)Tv. Its second derivative is

d2gv(t)

dt2
=
∂2f(x+ tv)

∂t2
=
∂∇f(x+ tv)

∂t

T

v = vTHf(x+ tv)v

thus giving, in particular, g′′v(0) = vTHf(x)v.

If x is a minimum point of f(x), then 0 must be a minimum point of gv(t). At
interior minimum points, functions of single variable feature horizontal tangent line,
i.e. g′v(0) = 0, and non negative concavity, i.e. g′′v(0) ≥ 0. Since the reasoning holds
independently of the selected direction v, eventually

∇f(x)Tv = 0,∀v ∈ Rn ⇒ ∇f(x) = 0 (5.7)
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that is to say x is a stationary point or critical point, which represents the first
order necessary condition for an interior point x to be a minimum point and

vTHf(x)v ≥ 0, ∀v ∈ Rn ⇒Hf(x) � O (5.8)

that is to say the Hessian at x is positive semi definite, which represents the second
order necessary condition for an interior point x to be a minimum point.

When considered together, they give rise to a sufficient condition for an interior
point x to be a minimum point. The two necessity optimality conditions are valid
irrespectively of whether the minimum is weak or strong. On the other hand, the strict
inequality in the second order condition, implying positive definite Hessian at x, together
with the first order condition, represents a sufficient condition for an interior point x to
be a strong minimum point.

Rate of Change

More in general, when x is not a stationary point, i.e. ∇f(x) 6= 0, remembering that
g′v(0) = ∇f(x)Tv, the auxiliary function gv(t) = f(x+ tv) may have any local behaviour
at 0, depending on the specific direction v. The scalar product ∇f(x)Tv is termed rate
of change of f at x along v.

When the vector v is perpendicular to the gradient, i.e. ∇f(x)Tv = 0, then the
objective function remains locally constant moving along the direction v, which is thus
tangent to the level set {x ∈ Rn : f(x) = f(x)}. When ∇f(x)Tv > 0, the function
is locally increasing moving along the direction v, whereas, when ∇f(x)Tv < 0, the
function is locally decreasing moving along the direction v. Because of eq. (A.3), the
rate of change is bounded by the following inequality

−‖∇f(x)‖ ‖v‖ ≤ ∇f(x)Tv ≤ + ‖∇f(x)‖ ‖v‖

and, in particular, remembering eq. (A.4), the function displays the highest rate of
increase at x, when the direction v is parallel to the gradient and the highest rate of
decrease at x, when the direction v is anti parallel to the gradient. Such a direction,
called anti-gradient, plays an important role in function minimisation. In the scope of
optimisation, v is usually a unit vector, called search direction and t is usually a
positive scalar, called step size.

Termination Criteria

Except for few trivial objective functions, the optimal solution cannot be exactly found
in a finite number of steps, thus iterative methods might also go on indefinitely. For
this reason, some reasonable criteria are required to terminate the algorithm whenever
additional iterations would not be of any benefit to the problem. First, in order to prevent
the algorithm from performing too iterations, regardless of whether the convergence is
actually achieved or not, a maximum number of iterations kmax should be set, giving
the simple stopping condition k = kmax.
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In general, in the final steps, the objective function should start to change less and
less, hence it may be reasonable to check whether the absolute variation or the relative
variation of the objective function go below a given threshold at a each step, giving
respectively the stopping conditions

|∆f(xk)| = |f(xk+1)− f(xk)| ≤ δf (5.9a)

|∆f(xk)|
|f(xk)|

=
|f(xk+1)− f(xk)|

|f(xk)|
≤ εf (5.9b)

where δf is the absolute tolerance and εf is the relative tolerance on the objective function
variation. The above conditions may be checked in parallel, avoiding to divide by too
small numbers, as |∆f(xk)| ≤ max{δf , εf |f(xk)|}.

On the other hand, in the final steps also the decision variable begin to change less
and less, therefore, if it is composed of homogeneous terms, it might be reasonable to
check also whether the absolute variation or the relative variation of the decision variable
go below a given threshold at a each step, giving respectively the stopping conditions

‖∆xk‖ = ‖xk+1 − xk‖ ≤ δx (5.10a)

‖∆xk‖
‖xk‖

=
‖xk+1 − xk‖
‖xk‖

≤ εx (5.10b)

where δx is the absolute tolerance and εx is the relative tolerance on the decision variable
variation. As for the objective function, the two conditions may be checked in parallel
as ‖∆xk‖ ≤ max{δx, εx ‖xk‖}.

In virtue of the first order optimality condition in eq. (5.7) and the continuity of the
objective function, as the decision variable approaches a stationary point, the gradient of
the objective function vanishes. For this reason, it might be reasonable to check, at each
step, whether the norm of the gradient go below a given threshold, giving the additional
stopping condition

‖∇f(xk)‖ ≤ γ (5.11)

where γ is the tolerance on the gradient norm.

Steepest Descent Method

Gradient methods seek to find a suitable search direction exploiting only the first
derivatives of the objective function; they are based on the fundamental concept of
descent direction, that is to say a search direction along which the value of the
objective function locally decreases. In formal terms, a vector wk ∈ Rn is said to
be a descent direction of f at xk, if there exists a positive scalar αk > 0, such that
f(xk + αkwk) ≤ f(xk) ,∀αk ∈ [0, αk]. Defining the decision variable increment ∆xk us-
ing the above criterion at each step, i.e. as ∆xk = αkwk, ∀k, where wk ∈ Rn is a descent
direction and αk is a suitable step size, generates a sequence of values f(xk) for the ob-
jective function, called relaxation sequence, which is convergent whenever the function
is bounded below. If the step size is not chosen properly, the relaxation sequence does
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not necessarily converge to a local minimum, although, it still provides an improvement
of the initial value f(x0).

As already shown, the anti-gradient, that is the search direction wk opposite to
the gradient

wk = −∇f(xk) (5.12)

provides the steepest descent of the objective function, hence it is also known as steepest
descent direction. For this reason, if a small value for the step size is chosen, the
resulting increment on the decision variable is able to produce the largest local decrease
of the objective function value. The decision variable is thus updated as

xk+1 = xk − αk∇f(xk)

giving rise to the steepest descent method for unconstrained optimisation. As regards
non linear least squares, remembering the expression of the gradient in eq. (5.3a), the
steepest descent direction is given by

wk = −Je(xk)
Te(xk)

therefore it requires only the knowledge of the residuals first derivatives.
The update of the algorithm could have been obtained also by considering the linear

approximation of the objective function. The objective function locally behaves as the
linear function in the decision variable increment

l(∆x) := f(x) +∇f(x)T∆x

coming from the first order approximation of the objective function in eq. (5.5). Min-
imising this function over the set of small increments gives exactly the same result.

Several different schemes may be devised to select the proper step size αk at each
iteration. The ideal approach would be to solve the single variable optimisation problem

α∗k = argmin
α>0

f(xk + αkwk)

called exact line search, although it is practically infeasible. In any case, the optimal
step size satisfies the condition

∂

∂αk
f(xk + αkwk) = ∇f(xk + αkwk)

Twk = 0

that, combined with eq. (5.12), yields the constraint ∇f(xk+1)
T∇f(xk) = 0: the gradi-

ent at the (k + 1)-th iteration becomes orthogonal to the gradient at the k-th iteration,
giving rise, on the whole, to an undesired zigzag path in Rn, from the initial point x0 to
the optimum point x∗.

Since the extent of the update strictly depends on the size of the gradient, it is fairly
evident that the steepest descent method dramatically slows down as the gradient vector
becomes rather small; also for this reason, the algorithm should stop whenever the norm
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of the gradient, which is a measure of its size, goes below a certain set threshold, as in
the termination criterion of eq. (5.11).

Unfortunately, even when only descent directions are taken, there is no guarantee
whatsoever that the critical point found is actually a minimum point: as a matter of
fact, the method might also get trapped in saddle points, for it ignores the second order
optimality condition of eq. (5.8). In order to find out whether a minimum point or
a saddle point has been found, it is necessary to evaluate the Hessian matrix of the
objective function at that stationary point. When there is no way of estimating or
even only approximating the Hessian matrix, some additional iterations checking search
directions different from the last one, are required in order to rule out the existence of
negative curvature directions at critical points.

Newton-Raphson Method

Newton methods exploit also of the second derivatives of the objective function to
find directly a minimiser, using the optimality condition of stationary points directly,
without looking for search directions. Newton-Raphson was originally a numerical
root finding algorithm: formally, the problem consists in looking for the zeros of a vector
field h : Rn → Rn, that is solving the system of non linear equations h(x) = 0. Taking
the first order Taylor series expansion of the function h(x) at x

h(x+∆x) = h(x) + Jh(x)∆x+ o (∆x) , ∆x→ 0 (5.13)

the problem may be numerically addressed by solving iteratively the linearised system of
equations h(xk +∆xk) ≈ h(xk) + Jh(xk)∆xk = 0, called Newton system. At each
iteration, the estimate of the root is thus updated as ∆xk = −Jh(xk)

−1 h(xk), whenever
the Jacobian matrix is full rank.

Remembering that minimum points have to be stationary points, in view of eq. (5.7),
employing the gradient of the objective function as vector field, such a method may be
easily adapted to unconstrained optimisation problems. In this case, the series expansion
of eq. (5.13) becomes

∇f(x+∆x) = ∇f(x) +Hf(x)∆x+ o
(
‖∆x‖

)
, ∆x→ 0

because J∇f(x) = Hf(x)T and the Hessian matrix is symmetric. If the Hessian matrix
is non singular, the increment is computed as

∆xk = −Hf(xk)
−1∇f(xk) (5.14)

therefore the decision variable is updated as

xk+1 = xk −Hf(xk)
−1∇f(xk)

giving rise to the Newton-Raphson method for unconstrained optimisation. As re-
gards non linear least squares, remembering the expression of the gradient and the
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Hessian in eqs. (5.3a) and (5.3b) respectively, the Newton-Raphson update is given by

xk+1 = xk −
(
Je(x)TJe(x) +

m∑
i=1

ei(x)Hei(x)
)−1

Je(xk)
Te(xk) (5.15)

therefore it requires the knowledge of the residuals second derivatives too.

The update of the algorithm could have been obtained also by considering the
quadratic approximation of the objective function. The objective function locally be-
haves as the quadratic function in the decision variable increment

q(∆x) := f(x) +∇f(x)T∆x+
1

2
∆xTHf(x)∆x

coming from the second order approximation of the objective function in eq. (5.6). Dif-
ferentiating this function and zeroing the gradient gives exactly the same result.

Again, the extent of the update is partly determined by the size of the gradient,
therefore also the Newton-Raphson method tends to slow down considerably as the
gradient becomes smaller. Again, a suitable lower bound on the norm of the gradient,
as in eq. (5.11), may constitute a reasonable termination criterion for the algorithm.

The Newton-Raphson method makes use only of the first order optimality condition,
thus the solution might be whichever critical point, not necessarily a minimum point:
the optimum point x∗ is a minimum point only when the Hessian matrix of the objective
function there evaluated Hf(x∗) is positive semi definite, according to eq. (5.8). If the
Hessian matrix becomes indefinite or negative semi definite somewhere, the algorithm
gets attracted to a saddle point or a maximum point, respectively; hence it is crucial to
check whether Hf(xk) is positive semi definite at each step, and switch to a different
strategy, e.g., the gradient method, otherwise. Moreover, when Hf(xk) is only positive
semi definite, it may even be singular, therefore eq. (5.14) cannot be employed and the
decision variable increment must be computed solving the system of linear equations

∇f(xk) +Hf(xk)∆xk = 0 (5.16)

using a suitable method.

Gauss-Newton Method

The Newton-Raphson method typically provides better convergence performances than
the steepest descent method, but each iteration is definitely far more time and resource
consuming, as it requires the evaluation of all the second derivatives of the objective
function with respect to the decision variables, in order to build the Hessian matrix.

When the Newton-Raphson method is applied to a non linear least squares problem,
the Hessian matrix of the objective function given by eq. (5.3b) is made up of the
sum of two terms. It includes a term involving the Hessian matrices Hei(x) of all m
individual residuals; remembering the number of free entries in a symmetric matrix given
by eq. (A.18), it thus requires the computation of mn(n+ 1)/2 second derivatives in
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total. On the other hand, it includes also the term Je(x)TJe(x) involving the Jacobian
matrix of the aggregated residual, that is to say the first derivatives of the individual
residuals only. However, the Jacobian matrix of the aggregated residual is required to
evaluate also the gradient of the sum of squares function, as put in evidence by eq. (5.3a),
therefore it is already available for computing that term of the Hessian matrix. In light of
this consideration, it might be reasonable to neglect all the second derivatives, resulting
in the following estimation of the Hessian matrix of the sum of squares function

Hf(x) = Je(x)TJe(x) +
m∑
i=1

ei(x)Hei(x) ≈ Je(x)TJe(x)

called Gauss-Newton approximation.
If the product Je(x)TJe(x) is non singular, the increment can be computed as

∆xk = −
(
Je(x)TJe(x)

)−1
Je(xk)

Te(xk) (5.17)

therefore the decision variable is updated as

xk+1 = xk −
(
Je(x)TJe(x)

)−1
Je(xk)

Te(xk)

giving rise to the so called Gauss-Newton method for non linear least squares opti-
misation. More in general, the increment must satisfy the system of linear equations

Je(x)TJe(x)∆xk = −Je(xk)
Te(xk)

also called least squares normal equation. Such a matrix equation has solution

∆xk = −Je(x)+e(xk)

where Je(x)+ is the pseudo inverse of Je(x). When the Jacobian matrix is full rank,

its pseudo inverse is indeed given by Je(x)+ =
(
Je(x)TJe(x)

)−1
Je(xk)

T.
The Gauss-Newton approximation of the Hessian matrix significantly reduces the

computational effort for each iteration and it is especially valid under certain circum-
stances, namely when the individual residuals are quite small, when the model function
is only mildly non linear or when the terms in the summation annihilate one another
each other owing to sign differences. In all of these situations the second term of the
Hessian matrix becomes almost negligible, hence the Gauss-Newton method converges
to the Newton-Raphson method.

The update of the algorithm could have been obtained also by considering the first
order Taylor series expansion of the aggregated residual

e(x+∆x) = e(x) + Je(x)∆x+ o (‖∆x‖) , ∆x→ 0

to build the second order Taylor series expansion of the objective function

f(x+∆x) =
1

2
‖e(x+∆x)‖2 =

1

2
‖e(x) + Je(x)∆x+ o (‖∆x‖) ‖2 =

=
1

2

(
e(x)T e(x) + 2e(x)TJe(x)∆x+

(
Je(x)∆x

)T
Je(x)∆x+ o

(
‖∆x‖2

))
=

=
1

2
‖e(x)‖2 +

(
Je(x)Te(x)

)T
∆x+

1

2
∆xT

(
Je(x)TJe(x)

)
∆x+ o

(
‖∆x‖2

)
, ∆x→ 0
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using only the first derivatives of the residuals. Differentiating it with respect to ∆x
and setting the gradient to zero gives exactly the same solution.

Levenberg-Marquardt Method

Using the Newton-Raphson update as search direction w := −Hf(x)−1∇f(x) with a
small step size α > 0, gives the asymptotic expansion

f(x+ αw) = f(x)− α∇f(x)THf(x)−1∇f(x) + o (α) , α→ 0

therefore −Hf(x)−1∇f(x) is a descent direction whenever Hf(x) is positive semi def-

inite. In contrast, the search direction w := −
(
Je(x)TJe(x)

)−1
Je(x)T e(x), corre-

sponding to the Gauss-Newton update, is always a descent direction, as the approximate
Hessian matrix is intrinsically positive semi definite.

Unfortunately, the update of the Newton methods, in either case, does not guarantee
a decrease of the value of the objective function, because, even if it provides a descent
direction, the ‘equivalent’ unit step size α = 1 implicitly adopted by such these methods,
might be also excessively large. All of the above considerations suggest the possibility to
employ either the Newton-Raphson method or the Gauss-Newton method only to yield
a valid search direction, and then to perform a line search to single out the proper step
size, giving rise to so called damped Newton methods.

In any case, such an enhancement is of no help when the Hessian matrix, either exact
or approximate, is only positive semi definite. Such a problem may be though overcome
by slightly modifying the matrix subject to inversion as

∆xk = −
(
Hf(xk) + µkI

)−1∇f(xk) (5.18)

where µk > 0 is a suitable correction factor. Provided that the factor µk is large enough,
the additional correction based on the identity matrix ensures that the overall matrix is
positive definite2 and thus invertible. The decision variable is then updated as

xk+1 = xk −
(
Hf(xk) + µkI

)−1∇f(xk) (5.19)

giving rise to the so called Levenberg-Marquardt method for unconstrained optimi-
sation.

The factor µk has to be properly sized on line at each iteration. In this regard, it is
worth noting that, as the factor gets smaller and smaller

∆xk = −
(
Hf(xk) + µkI

)−1∇f(xk) ∼ −Hf(xk)
−1∇f(xk) , µk → 0

it degenerates into standard Newton method, while, as the factor gets larger and larger

∆xk = −
(
Hf(xk) + µkI

)−1∇f(xk) ∼ −
1

µk
∇f(xk) , µk →∞

2If v ∈ Rn is an eigenvector associated to the eigenvalue λ of a square matrix A ∈ Rn×n, then λ+ µ
is an eigenvalue of A + µI, since (A + µI)v = Av + µv = λv + µv = (λ+ µ)v.
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it degenerates into standard gradient method. Bearing in mind these considerations,
a reasonable strategy could be to adopt higher values in the initial phases, far from
the optimum, in order to guarantee a decrease by taking small steps along the steepest
descent direction, and switch to lower values in the final phase, near the optimum, in
order to speed up the convergence by taking into account also the curvature of the
objective function. In any case, the choice might even be adjusted from time to time,
e.g., by lowering the coefficient when the objective function does not exhibit a decrease
of its value.

The Levenberg-Marquardt method could have also been derived considering, at each
step, a modified version of the optimisation sub problem in eq. (5.4), namely

∆x∗ = argmin
∆x∈Rn

f̃(x+∆x) +
1

2
µ ‖∆x‖2

called regularised optimisation problem. Such a modified formulation involves also
a penalty for larger step sizes, controlled by the value of the coefficient µ. The second
order Taylor series expansion of the regularised function is

f(x+∆x) +
1

2
µ ‖∆x‖2 =

= f(x) +∇f(x)T∆x+
1

2
∆xTHf(x)∆x+

1

2
µ∆xT∆x+ o

(
‖∆x‖2

)
=

= f(x) +∇f(x)T∆x+
1

2
∆xT

(
Hf(x) + µI

)
∆x+ o

(
‖∆x‖2

)
, ∆x→ 0

therefore applying the Newton method to this function gives exactly the same result.

5.2 Kinematic Parameters Identification

5.2.1 Problem Elements

Decision Variables

The ultimate goal of geometric calibration is the accurate determination of the manipu-
lator kinematic model, therefore the problem may be addressed following the reasoning
outlined in subsection 5.1.1. In this context, mathematical optimisation is called into
question for the numerical identification of the kinematic parameters.

There are 7 groups of parameters k0, . . . ,k6 in the articulated manipulator kinematic
model selected for calibration purposes, corresponding to the different reference frame
transformations of the manipulator kinematic chain. They are packed all together into
a large array

k :=

k0...
k6

 ∈ Rnk

which constitutes the vector decision variable of the optimisation problem set up for
manipulator calibration.
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The actual kinematic parameters in each group kj with j = 0, . . . , 6, depend on the
specific parametrisation of the corresponding kinematic transformation. In particular,
for the complete, minimal and proportional model described in section 4.2, the
kinematic parameters are

kj :=


dj
θoj
aj
αj

 , j = 1, 3, 4, 5, kj :=


θoj
aj
αj
βj

 , j = 0, 2, kj :=



dj
θoj
aj
αj
βj
bj

 , j = 6

because Denavit-Hartenberg convention is adopted by default but in the case of parallel
axes, for which Hayati-Mirmirani convention is adopted instead, whereas the last trans-
formation requires a full set of six parameters, therefore the total number of kinematic
parameters is nk = 5 · 4 + 6 = 30.

Objective Function

As described in subsection 5.1.1, the identification of the kinematic parameters is carried
out through minimisation of the position error given by the targets on the manipulator
end effector, over a certain set of kinematic configurations. The h-th position error
∆rh ∈ R3 is the 3D vector defined as

∆rh := rh − rh (5.20)

where rh is the actual h-th position, measured through an external instrument, and r
is the nominal h-th position computed through the kinematic model.

The different points come from either different manipulator postures or different tool
targets; specifically, if the manipulator is in the i-th encoder joint angle configuration,
and the position measuring instrument is pointing at j-th tool target, then the position
index is given by h := (i − 1)nT + j, where nT is the total number of tool targets,
i.e. j = 1, . . . , nT. Because the kinematic model depends on the values of the kinematic
parameters, eq. (5.20) can be rewritten as

∆rh(k) := rh − rh(k)

therefore each position error is actually a function of the parameter vector k. If the
manipulator moves in NP different joint postures and the coordinates of the tool targets
are recorded for all corresponding flange poses, then nTNP positions are available. The
N = nTNP position errors are stacked and bundled into a compact vector

∆r(k) :=

∆r1(k)
...

∆rN (k)

 ∈ R3N (5.21)
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called piled or aggregated position error.
In the framework of robot calibration, the goal of optimisation is to reduce the

position errors in all 3D points concurrently. To this aim, the Euclidean norm of the
piled position error ∆r is selected as performance index; since the norm is a non negative
quantity by definition, minimising it is equivalent to minimising its square, then the
standard residual sum of squares

L(k) :=
1

2
‖∆r(k)‖2 =

1

2
∆r (k)T∆r (k)

is ultimately designated as loss function. Thanks to the properties of the squared norm,
the loss function is separable into the sum of N loss terms, as

L(k) =

N∑
i=1

Li(k) =

N∑
i=1

1

2
‖∆ri(k)‖2

where each

‖∆ri(k)‖2 = (xi − xi(k))2 + (yi − yi(k))2 + (zi − zi(k))2

is the square of the i-th distance error.
The differential elements required for optimisation may be indeed computed applying

eqs. (5.3a) and (5.3b) to all individual terms. The gradient vector of the loss function is

∇L(k) =
N∑
i=1

∇Li(k)

where
∇Li(k) = −Jri(k)T∆ri(k) (5.22)

is the gradient vector of Li(k). The Hessian matrix of the loss function is

HL(k) =

N∑
i=1

HLi(k)

where

HLi(k) = Jri(k)T Jri(k)−∆xi(k)Hxi(k)−∆yi(k)Hyi(k)−∆zi(k)Hzi(k) (5.23)

is the Hessian matrix of Li(k).

5.2.2 Iterative Update

Identification Jacobian

The unconstrained non linear least squares optimisation problem is solved using the
iterative methods described in section 5.1; in view of this aim, the differential quanti-
ties computed above may be rewritten by making use of a more convenient notation,
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exploiting eq. (5.21). Definining the aggregated Jacobian matrix,

Jr(k) :=

Jr1(k)
...

JrN (k)

 ∈ R3N×nk

also called identification Jacobian, the overall gradient vector of the loss function, defined
by eq. (5.22), can be compactly rewritten, as

∇L(k) = −
N∑
i=1

Jri(k)T∆ri(k) = −Jr(k)T∆r(k)

and the overall Hessian matrix of the loss function, defined by eq. (5.23), can be com-
pactly rewritten as

HL(k) =

N∑
i=1

Jri(k)T Jri(k) +

N∑
i=1

Ci = Jr(k)T Jr(k) +C (5.24)

where Ci := −∆xi(k)Hxi(k)−∆yi(k)Hyi(k)−∆zi(k)Hzi(k).

Numerical Issues

In general, the number of samples has to be large enough to allow identification of all
model parameters. Specifically, since each group of tool position errors related to the
same posture may be seen as a complete kinematic constraint, corresponding thus to six
independent scalar constraints3, then the number of points must spring from

6NP ≥ nk (5.25)

where NP is the number of joint postures and nk is the number of kinematic parameters.
Such a lower bound is though only necessary, but not sufficient, because some of the
postures might correlate the differential parametric variations.

In theory, only 5 robot postures, cleverly selected, would thus suffice to achieve
complete identification of the 30 target kinematic parameters; in practice some more
measurements may help to reduce the undesired effects of measurement noise, gravity,
vibrations, and so on. In any case, whenever eq. (5.25) is met, since nT ≥ 3, the total
number of residuals 3N = 3nTNP ≥ 9NP is far larger than the number of parameters
nk, therefore the identification Jacobian Jr(k) ∈ R3N×nk is naturally a tall matrix.

When the kinematic model adopted for calibration purposes iscarefully selected and
corrected in order to meet all the modelling requirements, as deeply explained in sec-
tion 4.2, the aggregated Jacobian matrix Jr(k), which represents the differential varia-
tion of the target positions in all configurations with respect to all parameters variation,

3In principle, each group might indeed be processed to yield three tool position errors and three tool
orientation errors.
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is full rank, therefore the square matrix Jr(k)T Jr(k) ∈ Rnk×nk is non singular. The
direct kinematic function is mildly non linear, sines and cosines being the only non linear
contributions, and the position errors are reasonably small, hence the remainder C of
the Hessian matrix based on the second derivatives is made up of relatively modest en-
tries, and the full Hessian matrix is mostly due to the product Jr(k)T Jr(k): it follows
that, whenever the identification Jacobian is full rank, the Hessian matrix is usually non
singular and thus invertible.

That is the reason why, with a proper kinematic model, the parameters update can
be computed, according to either the Newton-Raphson or the Gauss-Newton method,
by means of sheer matrix inversion. On the contrary, when the kinematic model is
quite poor or not good enough to guarantee that the identification Jacobian is full rank,
the Hessian matrix, either exact or approximate, may become almost singular, or ill-
conditioned in general, thus more prudent iterations based on Levenberg-Marquardt
method are definitely advisable in such cases.

Performance Evaluation

In the framework of geometric calibration, as for other regression problems, iterative
methods based on the second order expansion of the cost function display far better
convergence performances than those based exclusively on the concept of descent di-
rection. Following on from the above argument about the rank of the identification
Jacobian, the increment of the kinematic parameters may be computed as

∆k = −HL(k0)
−1∇L(k0) = −

(
Jr(k0)

T Jr(k0) +C
)−1
Jr(k0)

T∆r(k0)

if the exact Hessian is used, or as

∆k = −
(
Jr(k0)

T Jr(k0)
)−1
Jr(k0)

T∆r(k0) = −Jr(k0)
+∆r(k0)

if the approximate Hessian is used. The kinematic parameters are then updated as

k = k0 +∆k

and the process is repeated, by setting k0 = k for the next iteration. The iterative
optimisation algorithm starts with the nominal values as initial guess, and stops as
soon as the attained values are sufficiently close to the optimal ones, according to some
termination criterion, such as the ones defined by eqs. (5.9) and (5.11); the termination
criterion defined by eq. (5.10) is not that suitable because the decision variable is not
homogeneous, being composed of both angles and lengths.

Depending on the selected type of Hessian matrix, that is to say exact or approx-
imate, the iterative update of the kinematic parameters is computed according to the
Newton-Raphson method or the Gauss-Newton method, respectively. In principle, up to
3Nnk(nk + 1)/2 (corresponding to 1395N for a 6DOF articulated manipulator) second
derivatives must be computed, at each iteration, to evaluate the term C in the exact
Hessian matrix, even though such number is usually reduced, for most of the second
order terms, either pure or mixed, are identically zero.
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Besides, there is no significant enhancement of the algorithm performance, in terms
either of required iterations number, at equal value of the cost function reached, or
conversely of value of the attained cost function value, at equal number of iterations
performed, in fact quite often such performances are even downgraded when using the
exact Hessian matrix of the cost function.4 The considerable computational effort re-
quired both from the practitioner, at design time, and from the computer, at execution
time, by the evaluation of the kinematic parameters second derivatives, is then not re-
paid by a boost in the convergence performances of the iterative algorithm, therefore, in
this case, it is not sufficiently justified.

4Such apparently paradoxical phenomenon of Newton-based iterative methods for least squares opti-
misation has been investigated, from a theoretical and practical point of view, in [27].





Chapter 6

Kinematic Error Model

6.1 Rigid Transformation Error Model

As explained in appendix B.3, homogeneous transformation matrices are a powerful
mathematical tool often used to represent frames of reference in the three-dimensional
space. If a reference frame is firmly attached to a given rigid body, the corresponding
homogeneous transformation matrix might represent kinematically the body itself, that
is to say its position and its orientation in the three-dimensional space; whenever the
body moves or its actual configuration differs from the expected configuration, that
is a kinematic variation, either real (displacement) or virtual (error), takes place, the
associated homogeneous transformation matrix is subject to a corresponding variation.

6.1.1 Additive Error

In order to investigate the variation of a kinematic transformation, two generic homo-
geneous transformation matrices T1 and T2 are considered. The homogeneous transfor-
mation matrix variation is simply defined as the arithmetic difference between the two
matrices ∆T = T2 − T1: in this way, the second matrix can be expressed by adding the
matrix variation to the first matrix

T2 = T1 +∆T

therefore the matrix variation represents how much the second matrix differs from the
first matrix in terms of additive error.

When the homogeneous transformation matrix under consideration is a function of
a certain variable ξ, then a change in the independent variable ξ + ∆ξ naturally yields
the homogeneous transformation matrix variation

∆T := T (ξ +∆ξ)− T (ξ) (6.1)

which is, in this case, a proper function increment.
From now on, regardless of the actual reason behind the kinematic variation, T will

represent a reference homogeneous transformation matrix while T + ∆T will denote

107
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the same homogeneous transformation matrix subjected to a change. Even though the
two homogeneous transformation matrices might be completely arbitrary, this kind of
notation proves to be especially useful when they are different, and yet similar: in such
a case, the two matrices have nearly equal entries, therefore the matrix difference ∆T is
a relatively small matrix.

6.1.2 Multiplicative Error

The modification of the matrix may be achieved either through matrix sum or through
matrix product: the former determines the additive error already considered before,
whereas the latter determines the multiplicative error. The same alteration of the trans-
formation matrix T could be represented by means of a small roto-translation, i.e. a
combination of a small translation and a small rotation, pre multiplying the homoge-
neous transformation matrix

T +∆T = (Trans (v, ∆t) Rot (u, ∆θ))T (6.2)

if the error rotation and translation take place in the original frame, or post multiplying
the homogeneous transformation matrix

T +∆T = T (Trans (v, ∆t) Rot (u, ∆θ)) (6.3)

if the error rotation and translation take place in the transformed frame. The actual
values of the quantities defining the error rigid transformation are different in the two
cases, in general. In any case, the multiplicative error matrix is a proper homogeneous
transformation matrix itself : its expression can be easily derived by packing the rotation
and the translation transformations into a single matrix

Trans (v, ∆t) Rot (u, ∆θ) =

(
I v∆t

0T 1

)(
R (u∆θ) 0

0T 1

)
=

(
R (u∆θ) v∆t

0T 1

)
as explained in subsection B.3.2.

The following discussion is based on the multiplicative error matrix coming from pre
multiplication. Rearranging eq. (6.2) as

∆T =
(
Trans (v, ∆t) Rot (u, ∆θ)

)
T − T =

(
Trans (v, ∆t) Rot (u, ∆θ)− I

)
T

suggests to define the following matrix

F := Trans (v, ∆t) Rot (u, ∆θ)− I (6.4)

hereinafter called full error matrix, in order to write

∆T = FT (6.5)

and, substituting this value back in eq. (6.2), also

T +∆T = (I + F )T
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that is an expression of the multiplicative error based on the full error matrix. On
the other hand, post multiplying both sides of eq. (6.5) by the inverse homogeneous
transformation matrix yields

F = ∆TT−1

which is nothing but an explicit definition of the full error matrix.

Left and Right Error

Since matrix product is not a commutative operation, in general, the order of multipli-
cation is relevant; the perturbation of the homogeneous transformation matrix may be
obtained, using the multiplicative error formalism, by either pre or post multiplication,
as the alteration may occur in either the original or the transformed frame.

Specifically, the perturbed matrix T +∆T is obtained, from the unperturbed matrix
T , by means of a rigid transformation, consisting of a translation and a rotation, defined
by two unit vectors, namely the displacement direction and the revolution axis: if they
are represented in the original frame, the perturbed matrix is given by

∆T = LFT (6.6)

where LF is termed left error matrix; conversely, if they are represented in the trans-
formed frame, the perturbed matrix is given by

∆T = TRF (6.7)

where RF is termed right error matrix.

On the other hand, the two expressions in eqs. (6.6) and (6.7) must be equal for the
perturbed matrix T +∆T is unique irrespective of the representation: the condition

LFT = TRF

gives the two fold relationship

LF = TRFT−1 (6.8a)
RF = T−1LFT (6.8b)

which can be used to switch between left and right errors.

6.1.3 Infinitesimal Error

The structure of the full error matrix can be investigated expanding eq. (6.4) as

F =

(
R(u, ∆θ) v∆t

0T 1

)
−

(
I 0

0T 1

)
=

(
R(u, ∆θ)− I v∆t

0T 0

)
(6.9)
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that is partitioning the homogeneous transformation matrices into their corresponding
blocks; first, the full error matrix is not a homogeneous transformation matrix anymore,
as f44 = 0. If the rotation matrix is represented as in eq. (B.13)

R(u, ∆θ) = I + sin (∆θ)S(u) + (1− cos (∆θ))S2(u)

then the rotation block of the full error matrix is given by

R(u, ∆θ)− I = sin (∆θ)S(u) + (1− cos (∆θ))S2(u)

which is indeed the matrix giving only the modification, due to the rotation, of the vector
it multiplies, therefore it does not represent an actual rotation.1

As already mentioned before, this discussion derives its meaning from the fact that
the perturbation is typically moderate: in that case, the angular displacement ∆θ is
relatively small. The following fundamental trigonometric limits

sin (∆θ) = ∆θ + o (∆θ) ∆θ → 0

1− cos (∆θ) =
1

2
∆θ2 + o

(
∆θ2

)
, ∆θ → 0

may be employed to write the asymptotic behaviour of the error rotation matrix

R (u∆θ)− I ∼ ∆θS(u) +
1

2
∆θ2S2(u) = S(u∆θ) +

1

2
S2(u∆θ) , ∆θ → 0

as the rotation angle gets smaller and smaller. Embedding it within eq. (6.9) leads to
the asymptotic error matrix EII

F ∼ EII =

(
S(u∆θ) + 1

2S
2(u∆θ) v∆t

0T 0

)
, ∆θ → 0

where EII represents the second order approximation of the full error matrix.
Neglecting also the second order infinitesimal in the rotation block

R (u∆θ)− I ∼ S(u∆θ) , ∆θ → 0

gives the asymptotic error matrix EI

F ∼ EI =

(
S(u∆θ) v∆t

0T 0

)
, ∆θ → 0

where EI represents the first order approximation of the full error matrix and is called
infinitesimal error matrix. Whenever the assumption of first order approximation
is quite clear from the context, the roman superscript is dropped to streamline the
notation.

1In general, the difference between two rotation matrices is not a rotation matrix anymore.
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The rotation axis and the translation direction are unit vectors, therefore the vectors
defined as follows

∆θ := ∆θu

∆t := ∆tv

have respectively the rotation angle and the translation distance as magnitude. The
infinitesimal error matrix may be thus succinctly written as

E =

(
S(∆θ) ∆t

0T 0

)
(6.10)

using only two infinitesimal vectors.

Single Axis Procedure

The nature of the multiplicative error might be also investigated using individual axis
transformations, i.e. dealing with each coordinate axis separately. To this aim, eq. (6.2)
can be written as

T +∆T =
(
Trans

(
ex, ey, ez

)
Rot

(
εx, εy, εz

))
T

while eq. (6.4) can be written as

F := Trans
(
ex, ey, ez

)
Rot

(
εx, εy, εz

)
− I (6.11)

where

Trans
(
ex, ey, ez

)
:= Trans (i, ex) Trans

(
j, ey

)
Trans (k, ez)

Rot
(
εx, εy, εz

)
:= Rot (i, εx) Rot

(
j, εy

)
Rot (k, εz)

are two homogeneous transformation matrices based on a sequence of translations along
and rotations about each coordinate axis one after the other.

The block structure of the multiplicative error matrix can be thus written as

Trans
(
ex, ey, ez

)
Rot

(
εx, εy, εz

)
=

(
R(i, εx)R

(
j, εy

)
R(k, εz) exi+ eyj + ezk

0T 1

)
remembering eq. (B.26). As before, the attention must be focused on the rotation block
only: as the angles of rotation get smaller and smaller

R(i, εx) =


0
0
1

+sεx

+cεx

0

+cεx

−sεx

0
 ∼


0
0
1

+εx

1
0

1
−εx

0
 = I + S(εxi) , εx → 0

R
(
j, εy

)
=


−sεy

0
+cεy

0
1
0

+cεy

0
+sεy

 ∼

−εy

0
1

0
1
0

1
0

+εy
 = I + S

(
εyj
)
, εy → 0

R(k, εz) =


0

+sεz

+cεz

0
+cεz

−sεz

1
0
0
 ∼


0

+εz

1

0
1
−εz

1
0
0
 = I + S(εzk) , εz → 0
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all elementary rotation matrices become infinitesimal. Performing the product, the
asymptotic behaviour of the error matrix rotation block is given by

R(i, εx)R
(
j, εy

)
R(k, εz)− I ∼ (I + S(εxi))

(
I + S

(
εyj
))

(I + S(εzk))− I ∼
∼ I + S(εxi) + S

(
εyj
)

+ S(εzk)− I =

= S
(
εxi+ εyj + εzk

)
, εx → 0, εy → 0, εz → 0

because all higher order terms may be neglected. Packing the six error variables in two
vectors

e :=

exey
ez

 , ε :=

εxεy
εz


the error matrix first order asymptotic behaviour can be compactly written as

F ∼ EI =

(
S(ε) e

0T 0

)
, ε→ 0

where EI represents the first order approximation of the full error matrix.
It is worth noting that the infinitesimal error matrix

E :=

(
S(ε) e

0T 0

)
(6.12)

can be obtained performing the substitution

∆t = e, ∆θ = ε

into the expression of the infinitesimal error matrix given by eq. (6.10). As far as first
order approximation is concerned, the sequence of elemental rotations is not relevant
whatsoever, therefore both forms of the infinitesimal error matrix may be be used inter-
changeably. For this reason, the structure given by eq. (6.12) is universally employed,
regardless of the actual attitude representation behind it. Whenever the kinematic error
is small enough, eq. (6.5) can be approximated as

∆T ≈ ET (6.13)

using the infinitesimal error matrix in place of the full error matrix.

6.1.4 Rigid Body Kinematic Error

As mentioned at the beginning, homogeneous transformation matrices can be exploited
to describe the pose of rigid bodies. Specifically, if a certain rigid body is kinematically
described by means of the homogeneous transformation matrix

T =

(
R t

0T 1

)
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then the rotation matrix R represents its orientation and the translation vector t rep-
resents its position. If at least one of them is subject to a change, the homogeneous
transformation matrix changes accordingly, becoming

T +∆T =

(
R+∆R t+∆t

0T 1

)

where

∆T :=

(
∆R ∆t

0T 0

)
(6.14)

is the homogeneous transformation matrix variation due to an additive error in both
orientation and position. Performing the product in eq. (6.13) blockwise

ET =

(
S(ε) e

0T 0

)(
R t

0T 1

)
=

(
S(ε)R S(ε) t+ e

0T 0

)

and comparing it with eq. (6.14) gives the approximate orientation error

∆R ≈ S(ε)R (6.15)

which is due to infinitesimal rotation only, and the approximate position error

∆t ≈ S(ε) t+ e (6.16)

which is due to both infinitesimal rotation and translation.

6.1.5 Reference Frame Kinematic Error

On the other hand, as explained in subsection B.3.2, homogeneous transformation ma-
trices can be used also to describe the change of reference frame. Specifically, considering
a point P and two reference frames RA and RB, since

hA
P = TA

Bh
B
P (6.17)

the matrix TA
B transforms the homogeneous coordinates of point P in RB into the ho-

mogeneous coordinates of point P in RA . If the relationship between the two reference
frames changes, the homogeneous transformation matrix reflects this change: the homo-
geneous coordinates in RA are then modified accordingly

hA
P +∆hA

P :=
(
TA

B +∆TA
B

)
hB
P = TA

Bh
B
P +∆TA

Bh
B
P = hA

P +∆TA
Bh

B
P

therefore the homogeneous coordinates variation

∆hA
P := ∆TA

Bh
B
P (6.18)
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is proportional to the homogeneous transformation matrix variation. Substituting

∆hA
P :=

(
∆rAP

0

)
, ∆TA

B :=

(
∆RA

B ∆tAB
0T 0

)
into eq. (6.18), gives

∆rAP = ∆RA
Br

B
P +∆tAB (6.19)

which is the position error of point P in RA.
With regard to the multiplicative error representation, the error matrices are denoted

using the label of the frame in which the modification occurs, as superscript

∆TA
B = AFTA

B (6.20a)

∆TA
B = TA

B
BF (6.20b)

giving then two alternate expressions

∆hA
P = ∆TA

Bh
B
P = AFTA

Bh
B
P = AFhA

P (6.21a)

∆hA
P = ∆TA

Bh
B
P = TA

B
BFhB

P = TA
B

(
BFhB

P

)
(6.21b)

of eq. (6.18). Using eq. (6.8), the two error matrices can be thus related by

AF = TA
B
BFTB

A

BF = TB
A
AFTA

B

that is a special case of reference frame matrix transformation defined in eq. (B.35).

Infinitesimal Position Error

Using the same fashion of eq. (6.13), it is possible to approximate eq. (6.20) as

∆TA
B ≈ AETA

B (6.22a)

∆TA
B ≈ TA

B
BE (6.22b)

and, consequently, also eq. (6.21) as

∆hA
P = ∆TA

Bh
B
P ≈ AETA

Bh
B
P = AEhA

P (6.23a)

∆hA
P = ∆TA

Bh
B
P ≈ TA

B
BEhB

P = TA
B

(
BEhB

P

)
(6.23b)

where

AE :=

(
S
(
Aε
)

Ae

0T 0

)
, BE :=

(
S
(
Bε
)

Be

0T 0

)
(6.24)

are respectively the infinitesimal error matrices in RA and RB. Performing the products
in eq. (6.23) blockwise finally gives the following two approximations

∆rAP ≈ S
(
Aε
)
rAP + Ae (6.25a)

∆rAP ≈ RA
B

(
S
(
Bε
)
rBP + Be

)
(6.25b)
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of eq. (6.19).

Sometimes the kinematic error is easily computed in a certain frame, but, for some
reason, it must be expressed in another frame, thus a way to transform error vectors
between frames is needed. To this aim, equating the right hand sides of eq. (6.22) gives

AE = TA
B
BETB

A (6.26)

which is again a special case of eq. (B.35). Remembering, from eq. (B.34), that

TB
A =

(
RB

A −RB
At

A
B

0T 1

)

eq. (6.26) may be expanded as(
S
(
Ae
)

Ae

0T 0

)
=

(
RA

B tAB
0T 1

)(
S
(
Be
)

Be

0T 0

)(
RB

A −RB
At

A
B

0T 1

)
=

=

(
RA

BS
(
Bε
)
RB

A RA
B
Be−RA

BS
(
Bε
)
RB

At
A
B

0T 0

)
=

(
S
(
RA

B
Bε
)
RA

B
Be− S

(
RA

B
Bε
)
tAB

0T 0

)

where eq. (A.40) has been used. Comparing the matrices corresponding blocks gives the
transformations between error vectors from RB to RA

Aε = RA
B
Bε (6.27a)

Ae = RA
B
Be− S

(
RA

B
Bε
)
tAB (6.27b)

or, vice versa, from RA to RB

Bε = RB
A
Aε (6.28a)

Be = RB
A
Ae+RB

AS
(
Aε
)
tAB (6.28b)

applying few manipulations. Such a result is perfectly consistent with what had been
already found before: substituting eq. (6.28) into the right hand side of eq. (6.25b)

RA
B

(
S
(
Bε
)
rBP + Be

)
= RA

B

(
S
(
RB

A
Aε
)
rBP +RB

A
Ae+RB

AS
(
Aε
)
tAB

)
=

= RA
BR

B
AS
(
Aε
)
RA

Br
B
P +RA

BR
B
A
Ae+RA

BR
B
AS
(
Aε
)
tAB =

= S
(
Aε
)
RA

Br
B
P + Ae+ S

(
Aε
)
tAB =

= S
(
Aε
) (
RA

Br
B
P + tAB

)
+ Ae = S

(
Aε
)
rAP + Ae

returns indeed the right hand side of eq. (6.25a).
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6.1.6 Differential Error Model

The derivative of a matrix is the matrix having, as entries, the derivative of the cor-
responding matrix entries. The derivative of a homogeneous transformation matrix T
with respect to a certain independent variable ξ is thus simply

∂T

∂ξ
:=


∂t41
∂ξ

∂t31
∂ξ

∂t21
∂ξ

∂t11
∂ξ

∂t42
∂ξ

∂t32
∂ξ

∂t22
∂ξ

∂t12
∂ξ

∂t43
∂ξ

∂t33
∂ξ

∂t23
∂ξ

∂t13
∂ξ

∂t44
∂ξ

∂t34
∂ξ

∂t24
∂ξ

∂t14
∂ξ


where tij is the entry of T in the i-th row and the j-th column. Despite its simplicity,
this might not the best choice to differentiate homogeneous transformation matrices,
for it requires the computation of 16 different derivatives all at once; in the scope of
differential kinematic modelling, a different approach should be followed instead.

To this aim, the homogeneous transformation matrix derivative can be also written
according to the definition of derivative, i.e. as limit of the difference quotient

∂T

∂ξ
= lim

∆ξ→0

∆T

∆ξ
= lim

∆ξ→0

T (ξ +∆ξ)− T (ξ)

∆ξ
(6.29)

where ∆T is the matrix increment due to the variable increment ∆ξ, already defined in
eq. (6.1). Such an expression suggest to exploit the theory developed so far about homo-
geneous transformation matrix infinitesimal variations. Making use of the multiplicative
error notation of eq. (6.5), the matrix change can be expressed as

∆T = T (ξ +∆ξ)− T (ξ) = F (ξ,∆ξ)T (ξ)

the error matrix being the only term depending on the variable change. As the variable
increment gets smaller and smaller, the matrix increment approaches

T (ξ +∆ξ)− T (ξ) ∼ E(∆ξ)T (ξ) , ∆ξ → 0

because the error matrix asymptotically depends upon the variable change only. The
infinitesimal error matrix may be written as a linear function of the variable change

E(∆ξ) := Dξ∆ξ (6.30)

since only the first order behaviour is considered. Substituting this into eq. (6.29) gives

lim
∆ξ→0

T (ξ +∆ξ)− T (ξ)

∆ξ
= lim

∆ξ→0

E(∆ξ)T (ξ)

∆ξ
= lim

∆ξ→0

Dξ∆ξ

∆ξ
T (ξ) = DξT (ξ)

hence the homogeneous transformation matrix derivative can be finally written as

∂T

∂ξ
= DξT (ξ) (6.31)
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using the same compact fashion of eq. (6.13).
When the homogeneous transformation matrix change is due to an infinitesimal

change of a given variable ξ, the infinitesimal error matrix is called differential error
matrix and is denoted by Eξ, in order to stress the variable responsible for that error.
It can be written, using the differentials notation, as

Eξ := Dξdξ (6.32)

where Dξ is termed left differential matrix: it is the matrix which yields the left
differential error matrix Eξ when multiplied by the differential variable change dξ.
As put in evidence by the partial differential

dT =
∂T

∂ξ
dξ = DξTdξ = EξT (6.33)

the differential error matrix and the differential matrix play a similar role but the former
is an absolute quantity while the latter is a relative quantity. Moreover, the two matrices
clearly must share the same block structure: denoting the differential error matrix as

Eξ :=

(
S
(
εξ
)
eξ

0T 0

)
and the differential matrix as

Dξ :=

(
S
(
δξ
)
dξ

0T 0

)
where

εξ = δξdξ (6.34a)

eξ = dξdξ (6.34b)

because of eq. (6.32), gives the differential orientation error

dR = S
(
εξ
)
R = S

(
δξ
)
Rdξ (6.35)

and the differential position error

dt = S
(
εξ
)
t+ eξ = S

(
δξ
)
tdξ + dξdξ (6.36)

representing the differential version of of eqs. (6.15) and (6.16), respectively.

6.2 Manipulator Pose Error Model

6.2.1 Kinematic Modelling Convention

The kinematic model of any manipulator requires the selection of some conventions
to represent the transformation between each pair of adjacent link frames through a
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suitable set of parameters. As thoroughly explained in section 4.2, the model chosen
for the calibration of articulated manipulators is based upon the combination of two
conventions, namely Denavit-Hartenberg, handling quasi-orthogonal joint motion axes
and Hayati-Mirmirani, handling quasi-parallel joint motion axes.

The following augmented transformation with five kinematic parameters

TVW =


cθcβ − sθsαsβ −sθcα cθsβ + sθsαcβ acθ
sθcβ + cθsαsβ cθcα sθsβ − cθsαcβ asθ
−cαsβ sα cαcβ d

0 0 0 1

 (6.37)

based on Veitschegger-Wu convention2, is chosen as basis to develop the differential
kinematic model, for it embeds both target conventions: zeroing the parameter β

TVW

∣∣
β=0

=


cθ −sθcα sθsα acθ
sθ cθcα −cθsα asθ
0 sα cα d
0 0 0 1

 ≡ TDH

Veitschegger-Wu becomes Denavit-Hartenberg, while zeroing the parameter d

TVW

∣∣
d=0

=


cθcβ − sθsαsβ −sθcα cθsβ + sθsαcβ acθ
sθcβ + cθsαsβ cθcα sθsβ − cθsαcβ asθ
−cαsβ sα cαcβ 0

0 0 0 1

 ≡ THM

Veitschegger-Wu becomes Hayati-Mirmirani. For the sake of simplicity, such a homoge-
neous transformation matrix is hereinafter indicated merely as T .

The adopted choice provides both flexibility, for the transformation adapts to each
pair of links, and uniformity, for a unique transformation is needed for all pairs of links.
Case by case, the kinematic parameter not involved in the transformation is set to zero
and the corresponding derivative is simply discarded.

6.2.2 Individual Joint Kinematic Error Model

In principle, any of the five kinematic parameters involved in the generalised transfor-
mation defined by eq. (6.37) may vary, resulting in as many corresponding changes of
that kinematic transformation; for this reason, in order to build a complete parametric
kinematic error model, it is necessary to evaluate the derivative of the homogeneous
transformation matrix with respect to each kinematic parameter.

To this aim, the approach based on the differential error described in subsection 6.1.6
is here followed. For each kinematic parameter, the differential orientation and position
error vectors, due to a differential change of that parameter, are computed, performing, if

2The non-minimal five parameters Veitschegger-Wu convention, named after the authors of [11] and
[19], is nothing but a mixture of Denavit-Hardenberg and Hayati-Mirmirani conventions.
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necessary, the transformations provided by eq. (6.26) to express them in the right frame;
the resulting differential matrix is then multiplied by the homogeneous transformation
matrix itself to give the desired derivative.

Differentiation with respect to d parameter

The kinematic parameter d is the length of translation along the original z axis, therefore
the differential increment dθ induces the differential orientation error vector

εd =

0
0
0


and the differential position error vector

ed =

 0
0

dd


that give rise respectively to

δd =

0
0
0

 , dd =

0
0
1


using eq. (6.34). Embedding them in the differential matrix

Dd =


0
0
0
0

0
0
0
0

0
0
0
0

0
1
0
0
 (6.38)

the partial derivative with respect to d can be easily computed as

∂T

∂d
= DdT =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


thanks to eq. (6.31).

Differentiation with respect to θ parameter

The kinematic parameter θ is the angle of rotation about the original z axis, therefore
the differential increment dθ causes the differential orientation error vector

εθ =

 0
0
dθ
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and the differential position error vector

eθ =

0
0
0


that give rise respectively to

δθ =

0
0
1

 , dθ =

0
0
0


using eq. (6.34). Embedding them in the differential matrix

Dθ =


0
0

+1
0

0
0
0
−1

0
0
0
0

0
0
0
0
 (6.39)

the partial derivative with respect to θ can be easily computed as

∂T

∂θ
= DθT =


−sθcβ − cθsαsβ −cθcα −sθsβ + cθsαcβ −asθ
cθcβ − sθsαsβ −sθcα cθsβ + sθsαcβ acθ

0 0 0 0
0 0 0 0


thanks to eq. (6.31).

Differentiation with respect to a parameter

The kinematic parameter a is the length of translation along the x axis modified by
the first rotation about z, therefore the differential increment da causes the differential
orientation error vector

εa =

0
0
0


and the differential position error vector

ea =


0

+sθ

+cθ

0
+cθ

−sθ

1
0
0
da

0
0

 =

cθda
sθda

0


that give rise respectively to

δa =

0
0
0

 , da =

cθ
sθ
0
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using eq. (6.34). Embedding them in the differential matrix

Da =


0
0
0
0

0
0
0
0

0
0
0
0

0
0
sθ

cθ
 (6.40)

the partial derivative with respect to a can be easily computed as

∂T

∂a
= DaT =


0 0 0 cθ
0 0 0 sθ
0 0 0 0
0 0 0 0


thanks to eq. (6.31).

Differentiation with respect to α parameter

The kinematic parameter α is the angle of rotation about the x axis modified by the
first rotation about z, therefore, the differential increment dα causes the differential
orientation error vector

εα =


0

+ sin θ
+ cos θ

0
+ cos θ
− sin θ

1
0
0

dα
0
0

 =

cθdα
sθdα

0


and the differential position error vector

eα = −


−sθdα

0
0

+cθdα
0
0

0
−cθdα
+sθdα

acθ
asθ
d

 =

−dsθdα
+dcθdα

0


that give rise respectively to

δα =

cθ
sθ
0

 , dα =

−dsθ
+dcθ

0


using eq. (6.34). Embedding them in the differential matrix

Dα =


0
−sθ

0
0

0
+cθ

0
0

0
0
−cθ

+sθ

0
0

+dcθ

−dsθ
 (6.41)

the partial derivative with respect to α can be easily computed as

∂T

∂α
= DαT =


−sθcαsβ sθsα sθcαcβ 0
cθcαsβ −cθsα −cθcαcβ 0
sαsβ cα −sαcβ 0

0 0 0 0


thanks to eq. (6.31).
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Differentiation with respect to β parameter

The kinematic parameter β is the angle of rotation about the y axis modified by the first
rotation about z and by the second rotation about x, therefore the differential increment
dβ causes the differential orientation error vector

εβ =


0

+sθ

+cθ

0
+cθ

−sθ

1
0
0


0
0
1

+sα

+cα

0

+cα

−sα

0
 0

dβ
0

 =

−sθcαdβ
+cθcαdβ

sαdβ


and the differential position error vector

eβ = −


−cθcαdβ
+sαdβ

0

−sθcαdβ
0

−sαdβ

0
+sθcαdβ
+cθcαdβ

acθ
asθ
d

 =

+asθsαdβ − dcθcαdβ
−acθsαdβ − dsθcαdβ

acαdβ


that give rise respectively to

δβ =

−sθcα
+cθcα

sα

 , dβ =

+asθsα − dcθcα
−acθsα − dsθcα

acα


using eq. (6.34). Embedding them in the differential matrix

Dβ =


0

−cθcα

+sα

0

0
−sθcα

0
−sα

0
0

+sθcα

+cθcα

0
acα

−acθsα − dsθcα

+asθsα − dcθcα
 (6.42)

the partial derivative with respect to β can be easily computed as

∂T

∂β
= DβT =


−cθsβ − sθsαcβ 0 cθcβ − sθsαsβ 0
−sθsβ + cθsαcβ 0 sθcβ + cθsαsβ 0
−cαcβ 0 −cαsβ 0

0 0 0 0


thanks to eq. (6.31).

Full Parametric Differential Model

The partial derivatives of the homogeneous transformation matrix with respect to the
kinematic parameters give the total differential

dT =
∂T

∂d
dd+

∂T

∂θ
dθ +

∂T

∂a
da+

∂T

∂α
dα+

∂T

∂β
dβ (6.43)

therefore they measure the sensitivity of the reference frame transformation to the varia-
tion of the corresponding parameters. If these parametric variations are due the variation
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of another generic quantity ζ, e.g., the temperature of a link, the total differential can
be converted into the total derivative of the homogeneous transformation matrix with
respect to that quantity

dT

dζ
=
∂T

∂d

∂d

∂ζ
+
∂T

∂θ

∂θ

∂ζ
+
∂T

∂a

∂a

∂ζ
+
∂T

∂α

∂α

∂ζ
+
∂T

∂β

∂β

∂ζ

measuring the sensitivity of the reference frame transformation to the variation of the
target quantity.

If all derivatives in eq. (6.43) are represented using the corresponding differential
matrices, according to eq. (6.31)

dT = DdTdd+DθTdθ +DaTda+DαTdα+DβTdβ =

=
(
Dddd+Dθdθ +Dada+Dαdα+Dβdβ

)
T = (Ed +Eθ +Ea +Eα +Eβ)T

the homogeneous transformation matrix T can be factored out as common term. Hence,
by embedding all differential terms into a cumulative differential error matrix

E := Ed +Eθ +Ea +Eα +Eβ = Dddd+Dθdθ +Dada+Dαdα+Dβdβ (6.44)

the differential in eq. (6.43) can be implicitly written as

dT = ET (6.45)

with the same fashion of eq. (6.33).

6.2.3 Entire Manipulator Error Model

As widely clarified in subsection 2.3.4, the kinematic model of a manipulator essentially
consists in a description of the kinematic relation between the base reference frame and
the end effector reference frame. In the case of 6DOF manipulators, the homogeneous
transformation matrix T 0

6, describing the total kinematic transformation between the
base frame R0 and the end frame R6, is simply given by the product of each homoge-
neous transformation matrix T i−1i , with i = 1, . . . , 6, describing the partial kinematic
transformation between the (i− 1)-th link frame and the i-th link frame, function of the
i-th kinematic parameters only.

By virtue of such a representation of the manipulator kinematic chain, the differ-
ential kinematic error model developed before characterises only the dependence of the
differential error of the relative kinematic relation between two adjacent manipulator
link frames from the differential error of the kinematic parameters involved in that re-
lation. In order to formulate a complete differential kinematic error model of the entire
manipulator, it is thus necessary to assess the differential error for each pair of adjacent
links frames and properly transpose it into a common absolute reference frame, which
may be, in the most straightforward case, the base frame.
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Single Joint Differential Error Matrix in Base Frame

The first step consists in representing the differential change of a relative frame trans-
formation in base frame. The i-th kinematic error has to be propagated along the entire
kinematic chain, down to frame 0: since

T 0
6 + dT 0

6 =
i−1∏
j=1

T j−1j

(
T i−1i + dT i−1i

) 6∏
j=i+1

T j−1j = T 0
i−1
(
T i−1i + dT i−1i

)
T i6 =

= T 0
i−1T

i−1
i T i6 + T 0

i−1dT
i−1
i T i6 = T 0

6 + T 0
i−1dT

i−1
i T i6

then
dT 0

6 = T 0
i−1dT

i−1
i T i6 (6.46)

gives the differential change of T 0
6, due to a differential change of T i−1i . On the other

hand, these differential changes can be respectively written as

dT 0
6 = 0ET 0

6 (6.47)

and
dT i−1i = i−1ET i−1i (6.48)

adding the proper labels to eq. (6.32). Substituting them into eq. (6.46) gives

0ET 0
6 = T 0

i−1
i−1ET i−1i T i6 = T 0

i−1
i−1ET i−16

hence the differential error matrix is transformed into base frame through

0E = T 0
i−1

i−1ET i−10 (6.49)

which is a special case of eq. (6.26) applied to the manipulator kinematic chain.

All Joints Differential Error Matrices in Base Frame

The second step consists in evaluating the differential change of all relative frame trans-
formations. All kinematic errors have to be propagated along the entire kinematic chain,
down to frame 0: since

T 0
6 + dT 0

6 =

6∏
i=1

(
T i−1i + dT i−1i

)
=

6∏
i=1

T i−1i +

6∑
i=1

i−1∏
j=1

T j−1j

 dT i−1i

 6∏
j=i

T j−1j

 =

= T 0
6 +

6∑
i=1

T 0
i−1dT

i−1
i T i6

neglecting all higher order terms, then

dT 0
6 =

6∑
i=1

T 0
i−1dT

i−1
i T i6 (6.50)
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gives the differential change of T 0
6, due to the differential change of all T i−1i , which is

just the summation of all terms defined in eq. (6.46). In the case of multiple errors,
eqs. (6.48) and (6.49) must be respectively rewritten as

dT i−1i = i−1EiT
i−1
i (6.51)

and
0Ei = T 0

i−1
i−1EiT

i−1
0 (6.52)

where the right subscript denotes the source of perturbation, whereas the left superscript
denotes the frame of representation. Substituting them into eq. (6.50) gives

0ET 0
6 =

6∑
i=1

T 0
i−1

i−1EiT
i−1
i T i6 =

6∑
i=1

T 0
i−1

i−1EiT
i−1
6 =

6∑
i=1

0EiT
0
6

hence the differential error matrix in base frame, due to the differential error of all
parameters, is given by

0E =
6∑
i=1

0Ei =

6∑
i=1

T 0
i−1

i−1EiT
i−1
0 (6.53)

which is just the summation of all differential error matrices defined in eq. (6.52).

Differential Error Vectors in Base Frame

The total differential error matrix in global frame is expanded as

0E =

(
S
(
0ε
)

0e

0T 0

)
(6.54)

and each partial differential error matrix in local frame is expanded as

i−1Ei =

(
S
(
i−1εi

)
i−1ei

0T 0

)
using the same standard block structure based on differential error vectors. Using them
to perform the products in eq. (6.53) blockwise, and applying eq. (6.27), it is possible to
relate the orientation total differential error vector

0ε =

6∑
i=1

0εi =

6∑
i=1

R0
i−1

i−1εi (6.55)

to the orientation partial differential error vectors only, and the position total differential
error vector

0e =
6∑
i=1

0ei =
6∑
i=1

(
R0
i−1

i−1ei − S
(
i−1εi

)
t0i−1

)
(6.56)

to both the position and the orientation partial differential error vectors.
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End Effector Pose Differential Error

As said repeatedly, the goal of manipulator kinematics is the description of the pose of
the end effector with respect to the base. Whenever the reference frame 6 is attached
to the end effector and the reference frame 0 is attached to the base, the homogeneous
transformation matrix

T 0
6 =

(
R0

6 t06
0T 1

)
describes the end effector pose, as the translation vector t06 represents the end effector
position, while the rotation matrix R0

6 represents the end effector orientation. For this
reason, the homogeneous transformation matrix T 0

6 is often considered as the kinematic
model itself and its differential change

dT 0
6 =

(
dR0

6 dt06
0T 1

)

compactly describes the manipulator differential kinematic error. The error matrix in
eq. (6.54) yields the differential end effector orientation error

dR0
6 = S

(
0ε
)
R0

6

and the differential end effector position error

dt06 = S
(
0ε
)
t06 + 0e

applying respectively eqs. (6.35) and (6.36).
On the other hand, when the end effector equips a specific tool, the goal of manip-

ulator kinematics is the description of the tool pose in the work-space. Since, typically,
the tool is firmly mounted to the manipulator flange by means of suitable mechanical
couplings, in principle, there is no relative motion of the tool with respect to the flange,
then the tool pose is related to the flange pose by means of constant rigid transfor-
mation. Besides, the tool orientation is usually the same as the flange orientation, or,
sometimes, it differs by an elemental rotation only, thus difference concerns only the
tool position, which, by the way, is not just an offset flange position, as it depends on
the flange orientation too. If r6T is the position of the tool in the flange reference frame,
then

r0T = R0
6r

6
T + t06

gives the position of the tool in the base reference frame; the same relation may be also
written succinctly as

h0
T = T 0

6h
6
T

using homogeneous coordinates representation. The differential variation of the tool
homogeneous position in base frame is given by

dh0
T = d

(
T 0

6h
6
T

)
= dT 0

6h
6
T = 0ET 0

6h
6
T = 0Eh0

T (6.57)
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since the tool position in flange frame is fixed; the differential tool position error is
eventually computed as

dr0T = S
(
0ε
)
r0T + 0e (6.58)

using again eq. (6.54) into eq. (6.36).

Kinematic Function Jacobian

Adding the proper labels to eq. (6.44)

i−1Ei = i−1Ddi
ddi + i−1Dθi

dθi + i−1Dai
dai + i−1Dαi

dαi + i−1Dβi
dβi

it is possible to expand eq. (6.52) as

0Ei = T 0
i−1
(
i−1Ddi

ddi + i−1Dθi
dθi + i−1Dai

dai + i−1Dαi
dαi + i−1Dβi

dβi
)
T i−10 =

= 0Ddi
ddi + 0Dθi

dθi + 0Dai
dai + 0Dαi

dαi + 0Dβi
dβi

using only differential matrices. Substituting this indexed term into eq. (6.47) gives

0E =

6∑
i=1

(
0Ddi

ddi + 0Dθi
dθi + 0Dai

dai + 0Dαi
dαi + 0Dβi

dβi
)

that allows to compute the total differential of the tool homogeneous coordinates as

dh0
T =

6∑
i=1

(
0Ddi

ddi + 0Dθi
dθi + 0Dai

dai + 0Dαi
dαi + 0Dβi

dβi
)
h0
T (6.59)

applying eq. (6.57). If all kinematic parameters are gathered into a large vector

k :=

k1...
k6

 ∈ R30

with

ki :=


di
θi
ai
αi
βi


the above total differential might be compactly written as

dh0
T = Jkh

0
Tdk

using the Jacobian matrix

Jkh
0
T =

(
Jk1h

0
T · · · Jk6h

0
T

)
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where each

Jkih
0
T :=

(
0Ddi

h0
T

0Dθi
h0
T

0Dai
h0
T

0Dαi
h0
T

0Dβi
h0
T

)
(6.60)

is the Jacobian matrix of the tool homogeneous coordinates in base frame with respect
to the i-th kinematic parameters. The corresponding i-th Jacobian matrix of the tool
position in base frame

Jkir
0
T =

(
∂r0T
∂di

∂r0T
∂θi

∂r0T
∂ai

∂r0T
∂αi

∂r0T
∂βi

)
=

=
(
S
(
0δdi
)
r0T+0ddi S

(
0δθi
)
r0T+0dθi S

(
0δai
)
r0T+0dai S

(
0δαi

)
r0T+0dαi S

(
0δβi
)
r0T+0dβi

)
easily comes out by exploiting the peculiar structure of differential matrices.

As mentioned in subsection 6.2.1, the kinematic transformation chosen for deriving
the differential error model is generic enough to suit both kinematic conventions required
by the kinematic model especially designed for calibration purposes. For this reason,
the Jacobian matrix required by the numerical identification procedure may be easily
extracted from the full Jacobian matrix above computed, by deleting all the columns
corresponding to the kinematic parameters not involved in that kinematic model.



Chapter 7

Conclusion

7.1 Objectives Fulfilment

The prime goal of this study was the investigation and the compensation of the geometric
and thermal errors in the kinematic model of a 6DOF articulated robot able to affect
its volumetric accuracy. In light of the achieved experimental outcomes and results, it
is rather reasonable to claim that the objectives set have been satisfactorily fulfilled.
Nevertheless, the obtained achievements have not come without some difficulty and
obstacle, some of which are here briefly reported.

Special attention has been devoted to planning and developing the numerical tools
on MATLAB®. In this regard, a blind approach involving a generic and redundant kine-
matic model was abandoned in favour of a more approach solution involving a custom
revised kinematic model in order to avoid heavy numeric processing and employ only
very simple computational tools such as matrix product and inversion; for this reason,
the proposed solution required high research effort at design time but very low compu-
tational effort at run time. In the end, the algorithmic software procedure implementing
the iterative solution of the numerical optimisation problem proved extremely fast and
stable. Such an achievement has a two fold advantage in practical terms, for it gives
the possibility to integrate effectively the implemented procedure within even bigger
complex projects without introducing a performance bottleneck and to port entirely the
implemented procedure into a different target software framework, embedding very basic
matrices libraries, without any special precaution or difficulty by the programmers.

Great care has been taken also in the mechanical aspects regarding the design of the
robot tool employed for calibration purposes. Since only the geometric characteristics
of the robot sheer kinematic chain can be observed and then trimmed after numerical
identification, the spatial relationship between the robot hand and the tool targets comes
into play as a constant and certain rigid transformation. For this reason, designing
a reliable tailored mechanical interface between the tool plate and the robot flange
represented immediately an issue of paramount importance, in order to allow placement
and replacement avoiding the introduction of undetectable sources of error.

Another important issue has been definitely the cost and the ease of the temperature
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measurement chain to employ as real-time robot temperatures monitor. The original
project, involving generic data acquisition systems and standard analog thermal probes
requiring compensation, extremely expensive and cumbersome, was deemed infeasible
and thus subsequently set aside. A long inquiry was then necessary in order to pinpoint
all elements that make up the modular, convenient and low-cost measurement solution
eventually adopted, namely the compact transducers endowed with built in digital-to-
analog converter and serial interface and the cheap microcontroller board equipped with
serial interface and wireless module.

The working experience connected to the research activity has also represented an
opportunity to handle a large and complex all-round project from start to finish and a
pretext to acquire priceless scientific knowledge and valuable technological expertise. The
study and the work carried out while addressing a matter not yet sufficiently investigated
in the current landscape of research advancements, might open the way for several
stimulating future works.

7.2 Further Developments

Despite the quite promising results, there still remains room for further improvement.
The first interesting idea could be to set up a temperature monitor and perform

a thermal calibration of another industrial robot constructed in a completely different
way. For instance, robots made of aluminium could exhibit larger thermal strain, be-
cause aluminium features higher thermal expansion and higher thermal conductivity
than standard cast iron. Moreover, robots constructed with a full outer shell that en-
velops the mechanical framework and covers all joint motors, could experience larger
thermal strain too, for the heat produced in the joints is trapped within the robot body
and cannot be dissipated directly by the air flow.

It might be useful to identify and single out the most relevant spots in the robot links
that give an approximate picture of the robot thermal gradient, in order to either keep
only the necessary thermal transducers or to select the minimum number of thermal
transducers in view of performing the thermal calibration of another articulated robot
unit possibly different from the one already studied.

Investigating the thermal error due to self heating of single joints, that is to say
performing repetitive simple joint motions and checking periodically the induced tool
position error, could represent a valid though very time consuming alternative strategy
for probing the effect of temperature variations, due to local sources separately, on the
geometry of the manipulator kinematic chain.

Finally, the implementation stage of robot calibration, in which the results are rou-
tinely applied to correct the robot direct kinematic function, may be considered perfect
whenever the results of calibration are exploited to refine the robot inverse kinematic
function too. In this regard, for instance, it might be reasonable to adopt an itera-
tive optimisation scheme similar to the one designed for identification of the kinematic
parameters, after the due modifications.



Appendix A

Linear Algebra

A.1 Vectors

A.1.1 Fundamentals

Real vectors are arrays of real numbers: a vector x of dimension n is an ordered
sequence of n scalars

x = (xi)1≤i≤n = (x1, . . . , xn) ∈ Rn

that is an element of the n-dimensional Euclidean space. The entries of a vector x ∈ Rn
are actually its components with respect to the standard basis E = (e1, . . . , en) of Rn

x =
n∑
i=1

xiei

briefly1 defined as ei =
(
δij
)
1≤j≤n , 1 ≤ i ≤ n.

A set of p vectors x1, . . . ,xp ∈ Rn, with p ≤ n, is said to be linearly independent
if a linear combination of the vectors is zero only when all coefficients are zero

λ1x1 + . . .+ λpxp = 0⇐⇒ λ1, . . . , λp = 0

or, equivalently, none of them may be written as a linear combination of the others. The
set is said to be linearly dependent, otherwise.

Dot Product

The scalar defined by

x · y := x1y1 + . . .+ xnyn =

n∑
i=1

xiyi.

is called scalar product or dot product between x and y. It is commutative, as
verifiable from the definition. Two vectors giving zero dot product are said orthogonal.

1The symbol δij =

{
1, i = j

0, i 6= j
denotes the Kronecker Delta.
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Euclidean Norm

The dot product naturally induces the norm

‖x‖ :=
√
x · x =

√√√√ n∑
i=1

x2i

termed euclidean norm, or euclidean distance, as it yields a measure of the length,
or magnitude, of the vector x. As any norm, it satisfies

‖x‖ ≥ 0, ∀x ∈ Rn, ‖x‖ = 0⇔ x = 0

called positivity property, and

‖λx‖ = |λ| ‖x‖ , ∀x ∈ Rn,∀λ ∈ R

called homogeneity property.
Vectors with unit norm are termed unit vectors and typically represent spatial

directions, that is to say vectors with unimportant length. Generic vectors can be
transformed into corresponding unit vectors by means of normalisation: if x 6= 0, then
x̂ = x

‖x‖ is a unit vector.

Projections

Any vector can be decomposed into the sum of two vectors, one parallel and one per-
pendicular to another vector. The orthogonal projection of y onto x 6= 0 gives

y‖ :=
x · y
‖x‖2

x (A.1)

called axial component of y with respect to x, while the orthogonal projection of
y onto a plane orthogonal to x gives

y⊥ := y − x · y
‖x‖2

x (A.2)

called normal component of y with respect to x.

Norm Inequalities

If x = 0, then x · y = 0, whereas, if x 6= 0, the squared norm of eq. (A.2)

0 ≤
∥∥∥∥y − x · y‖x‖2x

∥∥∥∥2 = ‖y‖2 − 2
(x · y)2

‖x‖2
+

(x · y)2

‖x‖2
= ‖y‖2 − (x · y)2

‖x‖2

leads to the property
‖x‖ ‖y‖ ≤ |x · y| , ∀x,y ∈ Rn (A.3)
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known as Cauchy-Schwarz inequality. Since

y − x · y
‖x‖2

x = 0 ⇐⇒ y =
x · y
‖x‖2

x

and, conversely, |x · λx| = |λ|x · x = |λ| ‖x‖2 = ‖λx‖ ‖x‖, then

‖x‖ ‖y‖ = |x · y| ,x 6= 0 ⇐⇒ ∃λ ∈ R : y = λx, (A.4)

that is to say eq. (A.3) becomes an equality only if the vectors are linearly dependent.
The inequality also justifies the alternative expression of the dot product

x · y = ‖x‖ ‖y‖ cos θ (A.5)

where cos θ is termed direction cosine and θ ∈ [0, π] is the angle between x and y.
Expanding, through eq. (A.3), the squared norm of the vector sum between x and y

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2x · y ≤ ‖x‖2 + ‖y‖2 + 2 ‖x‖ ‖y‖ = (‖x‖+ ‖y‖)2

leads to the additional property

‖x+ y‖ ≤ ‖x‖+ ‖y‖ , ∀x,y ∈ Rn (A.6)

known as triangle inequality.

A.1.2 3D Vectors

Spatial geometry studies mainly 3D vectors, i.e. vectors of the 3-dimensional Euclidean
space R3. The vectors of the standard basis of R3 are usually denoted as i, j and k.

Cross Product

The vector defined by

x× y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1)

is called vector product or cross product between x and y. It is linear

x× (λy + µz) = λ (x× y) + µ (x× z) , ∀x,y, z ∈ R3 (A.7)

but not commutative, in fact it is anti-commutative

y × x = −x× y, ∀x,y ∈ R3 (A.8)

as verified from the definition. The cross product of two parallel vectors is zero

λx× x = 0, ∀x ∈ R3, ∀λ ∈ R (A.9)

because of the above properties.
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Mixed Product

The dot product of the cross product between two vectors x and y with another vector
z is called scalar triple product or mixed product. Since

(x× y) · z = z1x2y3 − z1x3y2 + z2x3y1 − z2x1y3 + z3x1y2 − z3x2y1 =

= x1 (y2z3 − y3z2) + x2 (y3z1 − y1z3) + x3 (y1z2 − y2z1) = (y × z) · x

and, from eq. (A.8), (x× y) · z = −(y × x) · z = −(x× z) · y = (z × x) · y, then the
scalar triple product satisfies the property

(x× y) · z = (y × z) · x = (z × x) · y, ∀x,y, z ∈ R3 (A.10)

called invariance under cyclic permutations of the vectors. Putting z = x ∨ y gives

(x× y) · x = (x× x) · y = 0, ∀x,y ∈ R3 (A.11a)

(x× y) · y = (y × y) · z = 0, ∀x,y ∈ R3 (A.11b)

so the cross product between two vectors is a vector perpendicular to both. The mixed
product is used to characterise triples of linearly independent vectors: the triple x, y, z
is said right handed if (x× y) · z > 0, or left handed if (x× y) · z < 0.

Triple Product

The cross product of a vector with the cross product between other two vectors is called
vector triple product. Considering that

x× (y × z) = (x2 (y1z2 − y2z1)− x3 (y3z1 − y1z3)) i+

+ (x3 (y2z3 − y3z2)− x1 (y1z2 − y2z1)) j +

+ (x1 (y3z1 − y1z3)− x2 (y2z3 − y3z2))k =

= (y1 (x2z2 + x3z3)− z1 (x2y2 + x3y3) + x1y1z1 − x1y1z1) i+

+ (y2 (x3z3 + x1z1)− z2 (x3y3 + x1y1) + x2y2z2 − x2y2z2) j +

+ (y3 (x1z1 + x2z2)− z3 (x1y1 + x2y2) + x3y3z3 − x3y3z3)k

the vector triple product satisfies the property

x× (y × z) = (z · x)y − (x · y) z, ∀x,y, z ∈ R3 (A.12)

also known as Lagrange’s formula.

Properties

Using concurrently eqs. (A.10) and (A.12) yields

(x× y) · (x× y) = (y × (x× y)) · x = ((y · y)x− (y · x)y) · x
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thus the squared norm of the cross product is given by

‖x× y‖2 = ‖x‖2 ‖y‖2 − (x · y)2 (A.13)

or, alternatively, applying eq. (A.5), by ‖x× y‖2 = ‖x‖2 ‖y‖2 sin2 θ.

As x× y = 0⇔ ‖x× y‖ = 0, eqs. (A.13) and (A.4) give, combined with eq. (A.9)

x× y = 0,x 6= 0 ⇐⇒ ∃λ ∈ R : y = λx (A.14)

that is the cross product of two vectors is zero only if they are linearly dependent.

A.2 Matrices

A.2.1 Fundamentals

Real matrices are 2-dimensional arrays of real numbers: a m×n matrix A is collection
of mn real scalars

A =
(
aij
)
1≤i≤m
1≤j≤n

∈ Rmn

arranged in a rectangular fashion with m rows and n columns

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


where aij is the entry in the i-th row and j-th column. A m×n matrix is thus made up
of m n-dimensional vectors, i.e. its rows, or n m-dimensional vectors, i.e. its columns;
when m > n, the matrix is said to be tall, when m < n, the matrix is said to be fat
and when m = n, the matrix is said to be square. A n× n matrix is said to be square
of order n. The set of m × n matrices is a vector space, denoted by Rm×n or Rm,n,
isomorphic to the Euclidean space Rmn.

Vectors can be seen as special matrices: a n-dimensional vector b ∈ Rn can be
represented either as a column

b =

b1...
bn

 ∈ Rn×1

or as a row

b =
(
b1 · · · bn

)
∈ R1×n

in order to define operations involving both matrices and vectors.
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Linearity

Since matrices with same size make up a vector space, the operations of sum and
product by scalar on matrices, over the field of real numbers, are naturally defined.
If A,B ∈ Rm×n and λ, µ ∈ R, then C = λA+ µB ∈ Rm×n is the matrix with

cij := λaij + µbij , 1 ≤ i ≤ m, 1 ≤ j ≤ n

as entry in the i-th row and the j-th column.

Matrix Product

A matrix product can be defined for conformable matrices, i.e. if the number of
columns of a matrix equals the number of rows of the other matrix. If A ∈ Rl×m and
B ∈ Rm×n, the product C = AB ∈ Rl×n is the matrix with

cik :=
m∑
j=1

aijbjk, 1 ≤ i ≤ l, 1 ≤ k ≤ n

as entry in the i-th row and j-th column. It is not commutative, in general.
Let x,y ∈ Rn×1 be two vectors. The scalar given by

xTy := x1y1 + . . .+ xnyn ∈ R

is called inner product between x and y and corresponds to the dot product x · y
written using matrix product. The matrix given by

xyT :=

y1x1 · · · ynx1
...

. . .
...

y1xn · · · ynxn

 =
(
y1x · · · ynx

)
=

x1y
T

...
xny

T

 ∈ Rn×n

is called outer product between x and y and coincides with the dyadic product x⊗ y
written using matrix product.

Block Matrices

A partitioned matrix or block matrix A is a matrix made up of smaller sub-matrices

A =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn


arranged in m row partitions and n column partitions. Let A be a block matrix with
l row and m column partitions, and B be a block matrix with m row and n column
partitions: if they are conformable and conformably partitioned, i.e. Aij and Bjk
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are conformable ∀1 ≤ i ≤ l, 1 ≤ j ≤ m, 1 ≤ k ≤ n, the product C = AB has l row
partitions and n column partitions, with the sub-matrix

Cik =

m∑
j=1

AijBjk

as block in the i-th row partition and j-th column partition.

Transposition

The matrixAT ∈ Rn×m obtained switching the indices of rows and columns ofA ∈ Rm×n

AT :=


a11 a21 · · · am1

a12 a22 · · · am2
...

...
. . .

...
a1n a2n · · · amn


is called transpose of A; the transposition trivially satisfies (AT)T = A.

Let C = AT, D = BT be the transposes of A ∈ Rl×m, B ∈ Rm×n: since

m∑
j=1

akjbji =

m∑
j=1

bjiakj =

m∑
j=1

dijcjk

then the transposition satisfies

(AB)T = BTAT, ∀A ∈ Rl×m,B ∈ Rm×n (A.15)

that is to say the transpose of the product of two matrices is the product of their
transposes with reverse order.

A.2.2 Linear Map

Image and Kernel

Any matrix A ∈ Rm×n is closely connected to a linear map between euclidean spaces,
namely the vector-valued vector function f : Rn → Rm defined as f(x) := Ax.

The Image imA or Range Space R(A) of A ∈ Rm×n is the subspace of Rm

R(A) := {y ∈ Rm : y = Ax,x ∈ Rn}

that is the set of values of Ax. Its dimension is denoted as ρ(A) := dimR(A).
The Kernel kerA or Null Space N (A) of A ∈ Rm×n is the subspace of Rn

N (A) := {x ∈ Rn : Ax = 0}

that is the set of zeros of Ax. Its dimension is denoted as ν(A) := dimR(A).
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As R(A) is a subspace of Rm, using the direct sum2 of complementary subspaces,
the m-dimensional Euclidean space may be decomposed as Rm = R(A)⊕R⊥(A), where
R⊥(A) is the orthogonal complement3 of R(A). Every y ∈ Rm can be thus uniquely
written as y = Ax + b, with x ∈ Rn and b ∈ R⊥(A). By definition, b is orthogonal
to R(A), therefore it satisfies 0 = (Ax)T b = xTATb, ∀x ∈ Rn ⇔ ATb = 0, implying
that b ∈ N (AT) and R⊥(A) = N (AT). By applying the same reasoning to AT, the
n-dimensional Euclidean space may be decomposed as Rn = R(AT) ⊕R⊥(AT), where
R⊥(AT) = N ((AT)T) = N (A). The four subspaces thus satisfy

Rn = R(AT)⊕N (A) (A.16a)

Rm = R(A)⊕N (AT) (A.16b)

which is known as fundamental theorem of linear algebra.
If ν = ν(A), there exist ν linearly independent vectors ζ1, . . . , ζν ∈ Rn spanning

N (A) and n−ν linearly independent vectors ξ1, . . . , ξn−ν ∈ Rn spanning N⊥(A), hence
ζ1, . . . , ζν , ξ1, . . . , ξn−ν make up a basis of Rn; every x ∈ Rn is uniquely written as a linear
combination of these vectors x = λ1ζ1+ . . .+λνζν+µ1ξ1+ . . .+µn−νξn−ν that gives im-
age Ax = A(λ1ζ1 + . . .+ λνζν + µ1ξ1 + . . .+ µn−νξn−ν) = µ1Aξ1 + . . .+ µn−νAξn−ν .
The condition µ1Aξ1 + . . .+ µn−νAξn−ν = A(µ1ξ1 + . . .+ µn−νξn−ν) = 0 requires that
µ1ξ1 + . . .+ µn−νξn−ν ∈ N (A), but, since µ1ξ1 + . . .+ µn−νξn−ν ∈ N⊥(A), then it au-
tomatically requires also that µ1ξ1 + . . . + µn−νξn−ν = 0. As ξ1, . . . , ξn−ν are linearly
independent, such a condition can be met only when µi = 0, ∀i = 1, . . . , n− ν, proving
that Aξ1, . . . ,Aξn−ν ∈ Rm are n−ν linearly independent vectors spanning R(A), which
has thus dimension n−ν. The dimension of the range and of the kernel therefore satisfy

ρ(A) + ν(A) = n (A.17)

also known as dimension theorem.

Rank

The column rank of a matrix is the dimension of its column space, i.e. the subspace
spanned by its columns, or, equivalently, its greatest number of linearly independent
columns. For the column space of A is the range space of A, the column rank is ρ(A).
The row rank of a matrix is the dimension of its row space, i.e. the subspace spanned
by its rows, or, equivalently, its greatest number of linearly independent rows. For the
row space of A is the range space of AT, the row rank is ρ(AT). Remembering that
ρ(AT)+ν(A) = n and ρ(A)+ν(A) = n because of eqs. (A.16a) and (A.17) respectively,
the row rank and the column rank actually coincide and are referred simply as rank. The
rank of a matrix A is then the non negative integer rkA ∈ N equal to the maximum
number of linearly independent columns or rows in the matrix.

2The direct sum between two subsets of the same set X ⊆ Z and Y ⊆ Z, is the subset defined by
X ⊕ Y := {z ∈ Z : z = x+ y, x ∈ X ∧ y ∈ Y }.

3The orthogonal complement of a subspace V ⊆W of vector space equipped with a scalar product,
is the subspace V ⊥ ⊆W defined as V ⊥ := {w ∈W : 〈w, v〉 = 0,∀v ∈ V }.
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The rank of a matrix cannot exceed the number of either its rows or its columns,
thus, in general, rkA ≤ min{m,n},∀A ∈ Rm×n: in particular, if the equality holds,
A is said to be full rank, otherwise A is said to be not full rank or rank deficient.
Transposing means swapping column space and row space, thus rkAT = rkA, ∀A ∈
Rm×n, that is the rank is invariant under transposition. Since each column of AB is a
linear combination of the columns of A while each row of AB is a linear combination
of the rows of B, then rk (AB) ≤ min {rk (A) , rk (B)} , ∀A ∈ Rm×n,B ∈ Rn×p.

A.2.3 Square Matrices

The main diagonal of a square matrix A ∈ Rn×n is the set of the entries with equal
row and column indices, i.e. a11, . . . , ann. Among square matrices, there are some of
them with a particular structure with respect to the main diagonal.

A square matrix is said to be triangular if its entries either below or above the main
diagonal are all zero: a square matrix U ∈ Rn×n is said to be upper triangular if its
entries below the main diagonal are all zero, i.e. uij = 0,∀i, j = 1, . . . , n : i > j; a square
matrix L ∈ Rn×n is said to be lower triangular if its entries above the main diagonal
are all zero, i.e. lij = 0,∀i, j = 1, . . . , n : i < j.

A square matrix S ∈ Rn×n is said to be symmetric if its entries symmetric about
the main diagonal are equal, i.e. sji = sij , ∀i, j = 1, . . . , n, or ST = S. There are

n2 − n
2

+ n =
n2 + n

2
=
n(n+ 1)

2
(A.18)

free entries in a symmetric matrix of order n. A symmetric matrix S ∈ Rn×n is
said to be positive definite if xTSx > 0,∀x ∈ Rn\{0}, positive semi-definite if
xTSx ≥ 0, ∀x ∈ Rn, negative definite if xTSx < 0, ∀x ∈ Rn\{0}, negative semi-
definite if xTSx ≤ 0,∀x ∈ Rn and indefinite otherwise. The product ATA, where
A ∈ Rm×n, is always positive semi-definite, as xTATAx = ‖Ax‖2.

A square matrixA ∈ Rn×n is said to be anti-symmetric or skew-symmetric, if its
entries symmetric about the main diagonal are opposite, i.e. aji = −aij ,∀i, j = 1, . . . , n,
or AT = −A. There are

n2 − n
2

=
n(n− 1)

2
(A.19)

free entries in a skew-symmetric matrix of order n.
A square matrix D ∈ Rn×n is said to be diagonal if its entries outside the main

diagonal are all zero, i.e. dij = 0,∀i, j = 1, . . . , n : i 6= j. A diagonal matrix can be
denoted also as D = diag (d), where d ∈ Rn is a vector made up of the diagonal entries.

The most important diagonal matrix is the identity matrix I ∈ Rn×n

I :=
(
δij
)
1≤i≤n
1≤j≤n

that is the matrix with 1 on the main diagonal and 0 elsewhere. The notation In is
used when the order n has to be specified. The identity matrix is the identity element
of matrix product as trivially satisfies ImA = A, AIn = A, ∀A ∈ Rm×n.
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Inversion

If there exists a square matrix B ∈ Rn×n such that AB = BA = I, then the square
matrix A ∈ Rn×n is said to be invertible and the matrix B is said the inverse matrix of
A. If A is invertible, its inverse A−1 is the matrix satisfying

A−1A = AA−1 = I

that is multiplying matrix and its inverse, in either order, gives the identity matrix.
If A ∈ Rn×n is full rank, all vectors in Rn, and in particular the columns of I, may

be expressed as unique linear combinations of the columns of A, hence full rank matrices
are invertible. If A ∈ Rn×n is invertible, n = rk I = rkAA−1 ≤ min

{
rkA, rkA−1

}
and

rkA ≤ n give rkA = n, hence invertible matrices are full rank.
If A ∈ Rn×n is invertible, since (A−1)TAT = (AA−1)T because of eq. (A.15), then

(AT)−1 = (A−1)T

that is inverse of the transpose is the transpose of the inverse.
If A,B ∈ Rn×n are both invertible, since B−1A−1AB = I, then

(AB)−1 = B−1A−1

that is the inverse of a product is the product of the inverses with reversed order.
A square matrix Q ∈ Rn×n is said to be orthogonal if its columns and rows are

orthonormal vectors, that is QQT = QTQ = I, or, equivalently Q−1 = QT.

Trace

The trace of a square matrix A ∈ Rn×n is the number trA ∈ R defined as

trA :=
n∑
i=1

aii (A.20)

that is the sum of all the elements on the matrix main diagonal. The trace is linear

tr (λA+ µB) = λ tr (A) + µ tr (B) ,∀A,B ∈ Rn×n,∀λ, µ ∈ R

and is invariant to transposition

trAT = trA, ∀A ∈ Rn×n

as verifiable from the definition. Considering A ∈ Rm×n and B ∈ Rn×m, since
m∑
i=1

n∑
j=1

aijbji =
n∑
j=1

m∑
i=1

bjiaij

then the trace satisfies the property

tr (AB) = tr (BA) , ∀A ∈ Rm×n,B ∈ Rn×m

of trace invariance under cyclic permutations. Applied to M−1AM gives the property

tr
(
M−1AM

)
= tr (A) , ∀A,M ∈ Rn×n : rkM = n

of trace invariance under similarity transformations.
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Determinant

The determinant of a square matrix A ∈ Rn×n is the number detA ∈ R recursively
defined through the Laplace’s rule with respect to the i-th row or the j-th column

detA :=
n∑
j=1

(−1)i+jaij detAij =
n∑
i=1

(−1)i+jaij detAij (A.21)

where Aij is the (n− 1)× (n− 1) matrix obtained removing the i-th row and the j-th
column from A and det aij := aij . The term detAij is called ij first minor, while the
term (−1)i+j detAij is called ij cofactor. The determinant is multi-linear

det (λA) = λn detA, ∀A ∈ Rn×n, ∀λ ∈ R

and is invariant to transposition

detAT = detA, ∀A ∈ Rn×n

as verifiable from the definition.
The basic properties of the determinant can be inferred directly from its definition:

if two rows/columns are swapped, the determinant changes sign; if two rows/columns
are equal, the determinant is zero, as swapping them does not alter the matrix but the
determinant changes sign. If a row/column is multiplied by a scalar λ and added to
another row/column, the determinant does not change, as the expansion with respect to
the modified row/column yields the sum between the original determinant and λ times
the determinant of a matrix with two equal rows or columns, which is zero.

The determinant of block triangular matrices comes from the product of the deter-
minants of all diagonal blocks; in particular

det

(
A11 A12

O A22

)
= det

(
A11 O
A21 A22

)
= detA11 detA22

∀A11 ∈ Rm×m,A12 ∈ Rm×n,A21 ∈ Rn×m,A22 ∈ Rn×n
(A.22)

and

det

(
O A12

A21 A22

)
= det

(
A11 A12

A21 O

)
= (−1)mn detA12 detA21

∀A11 ∈ Rn×m,A12 ∈ Rm×m,A21 ∈ Rn×n,A22 ∈ Rm×n
(A.23)

as verifiable from eq. (A.21). Considering that in the following product between con-
formably partitioned block matrices(

I L
O I

)(
M N
P Q

)
=

(
M +LP N +LQ

P Q

)
the rows of

(
M +LP N +LQ

)
are the sum between rows of

(
M N

)
and a linear

combination of the rows of
(
P Q

)
, then taking the determinant of both sides of(

I A
O I

)(
A O
−I B

)
=

(
O AB
−I B

)
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gives the fundamental property, known as Binet formula

detAB = detA detB, ∀A,B ∈ Rn×n (A.24)

that is the determinant of a product is the product of the determinants.
If detA = 0, then A is said to be singular, whereas if detA 6= 0, then A is said to

be non singular. A rank deficient matrix is always singular, because at least one of its
rows/columns can be written as a linear combination of its other rows/columns.

The adjugate matrix adjA of a n× n matrix A is the n× n matrix

adjA =


detA11 −detA21 · · · (−1)n+1 detAn1

−detA12 detA22 · · · (−1)n+2 detAn2
...

...
. . .

...
(−1)1+n detA1n (−1)2+n detA2n · · · detAnn


that is the transpose of the matrix with the cofactors of A as entries. Since

n∑
k=1

aik(−1)j+k detAjk =
n∑
k=1

(−1)i+k detAkiakj = δij detA

then
AadjA = adjAA = (detA)I (A.25)

which gives an expression of the inverse of A

A−1 =
1

detA
adjA

whenever detA 6= 0.

A.2.4 Spectral Theory

Complex vectors

The following analysis cannot be restrained to real numbers only. Complex vectors are
arrays of complex numbers: a n-dimensional complex vector z = (zi)1≤i≤n ∈ Cn, is
defined as z := x + iy, where x = (xi)1≤i≤n ∈ Rn and y = (yi)1≤i≤n ∈ Rn are termed
respectively real part and imaginary part.

A scalar product between two complex vectors z,w ∈ Cn can be defined as

z ·w :=

n∑
i=1

ziwi
?

that is the standard dot product between z and the conjugate of w. It is not com-
mutative, but satisfies the conjugate symmetry property (z ·w)? = z · w. This scalar
product induces the euclidean norm

‖z‖ :=
√
z · z =

√√√√ n∑
i=1

zizi
? =

√√√√ n∑
i=1

|zi|2 =

√√√√ n∑
i=1

|xi + iyi|2 =

√√√√ n∑
i=1

x2i + y2i
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the square of which satisfies the condition

‖z‖2 = z · z = (x+ iy) · (x+ iy) = x · x+ iy · x− ix · y − i2y · y = ‖x‖2 + ‖y‖2

thus the norm of complex vectors come from the norm of their real and imaginary part.

Complex matrices are defined similarly; in this regard, it is useful to introduce the
hermitian transpose of a matrix A, that is the transpose of the conjugate AH := A?T.
Writing complex vectors as columns z,w ∈ Cn×1, the scalar product becomes wHz.

Eigenvalues and Eigenvectors

The scalar λ ∈ C is called eigenvalue or characteristic value of a square matrix
A ∈ Rn×n if there exists a non zero vector v ∈ Cn satisfying the condition

Av = λv (A.26)

called eigenequation of A: pre-multiplying v by A returns still v scaled by λ. The
zero vector is not a case of interest, as it trivially satisfies this equation for any scalar.
Any vector v satisfying eq. (A.26) is called eigenvector or characteristic vector of
the matrix A associated to the eigenvalue λ; the pair (λ,v) is called eigenpair of A.

The eigenequation can be rewritten as the homogeneous system of linear equations

Av − λv = (A− λI)v = 0 (A.27)

which is consistent, as it always admits at least the trivial solution v = 0 while other
solutions v 6= 0 may exist only if the columns of A − λI are linearly dependent, or in
other words, if λ satisfies

det (λI −A) = 0 (A.28)

called characteristic equation of A. Once an eigenvalue λi is determined solving
det (λiI −A) = 0, the related eigenvectors vi are determined solving (A− λiI)vi = 0.

Spectrum

The left hand side of eq. (A.28) is a polynomial of degree n in λ with real coefficients

p (λ) = det (λI −A) = λn + an−1λ
n−1 + . . .+ a1λ+ a0 (A.29)

known as characteristic polynomial of A. Its r roots are the eigenvalues of A hence

p (λ) = (λ− λ1)µ1 · · · (λ− λr)µr =

r∏
i=1

(λ− λi)µi ,
r∑
i=1

µi = n

where, of course, p (λi) = 0, ∀i = 1, . . . , r. The exponent µi is called algebraic multi-
plicity of λi, as it is the number of times it appears in the polynomial. The eigenvalue
λi is called simple, if µi = 1, or multiple, if µi > 1.
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According to the principle of polynomials identity, comparing

p (λ) = det


λ− a11 −a1n · · · −a1n
−a21 λ− a22 · · · −a2n

...
...

. . .
...

−an1 −an2 · · · λ− ann

 = λn − tr (A)λn−1 + . . .+ (−1)n det (A)

with

p (λ) =
n∏
j=1

(
λ− λj

)
= λn −

 n∑
j=1

λj

λn−1 + . . .+ (−1)n
n∏
j=1

λj

where λj , j = 1, . . . , n are the n eigenvalues, single or repeated, of A, gives an alternative
expression for the trace and the determinant of A

trA =
n∑
j=1

λj (A.30a)

detA =

n∏
j=1

λj (A.30b)

in terms of its eigenvalues.
The set λ (A) = {λ1, . . . , λr} containing all eigenvalues ofA is called spectrum ofA.

Because the characteristic polynomial has only real coefficients, from the fundamental
theorem of algebra, if the complex value λ = σ + iω is a root, its complex conjugate
λ? = σ − iω must also be a root: the spectrum contains either real eigenvalues or pairs
of complex conjugate eigenvalues. Besides, if (λ,v) is an eigenpair of a real matrix A,
then (λ?,v?) is also an eigenpair, since Av? = (Av)? = (λv)? = λ?v?.

Transformations

The determinant is invariant to transposition

det(λI −AT) = det (λI −A)T = det (λI −A)

thus a matrix and its transpose have equal eigenvalues.
If A is non singular, pre-multiplying eq. (A.26) by A−1 gives

A−1v =
1

λ
v

thus a matrix and its inverse have equal eigenvectors and reciprocal eigenvalues.
If detM 6= 0, another square matrix B can be obtained from A via the similarity

transformation B = M−1AM . As A = MBM−1, eq. (A.26) becomes

BM−1v = λM−1v

thus, if (λ,v) is an eigenpair of A, (λ,M−1v) is an eigenpair of M−1AM .
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Eigenspace

An eigenvalue may give rise to more eigenvectors. The subspace Vλi := N (λiI −A)
spanned by the eigenvectors associated to the eigenvalue λi is termed eigenspace as-
sociated to λi; ts dimension νi := ν(λI − A), i.e. the maximum number of linearly
independent eigenvectors associated to λi, is called geometric multiplicity of λi.

The matrix Vi :=
(
vi1 · · · viνi

)
∈ Rn×νi made up of νi linearly independent eigen-

vectors vi1, . . . ,viνi of A, associated to the same eigenvalue λi, is full rank, hence the

square matrix Pi =
(
Vi Ni

)
, where the matrix Ni :=

(
ni1 · · · nin−νi

)
∈ Rn×n−νi is

made up of n− νi linearly independent vectors orthogonal to Vλi , is non singular. If its

inverse Pi
−1 = Qi

T is written through a similar block structure, that is Qi =
(
Ui Mi

)
with Ui ∈ Rn×νi ,Mi ∈ Rn×n−νi , the similarity transformation via Pi gives

Pi
−1APi =

(
Ui

TAVi Ui
TANi

Mi
TAVi Mi

TANi

)
=

(
λiIνi Ui

TANi

On−νi,νi Mi
TANi

)
because Ui

TAVi = Ui
TλiInVi = λiUiVi andMi

TAVi = Mi
TλiInVi = Mi

T Vi. Thanks
to spectrum invariance under similarity transformation, eq. (A.29) is written as

p(A) = det (λI −A) = det
(
λIνi − λiIνi

)
det(λIn−νi −M

T
i ANi) =

= det
(
(λ− λi)Iνi

)
det(λIn−νi −M

T
i ANi) = (λ− λi)νip(MT

i ANi)

using eq. (A.22). This expansion shows that λi appears at least νi times in p(A), proving
the multiplicity inequality µi ≥ νi. If µi = νi, the eigenvalue λi is called semi-simple.

Diagonalisation

There are as many eigenspaces as distinct eigenvalues. Let v = α1v1 + α2v2 be a
linear combination of two eigenvectors v1 ∈ Vλ1 ,v2 ∈ Vλ2 associated to two distinct
eigenvalues λ1, λ2; if v = 0, then (A − λ1I)v = α2(λ2 − λ1)v2 = 0, implying α2 = 0,
as λ1 6= λ2; consequently v = α1v1 = 0, implying also α1 = 0: v1 and v2 are linearly
independent. Let v = α1v1 + . . . + αpvp + αp+1vp+1 = 0 be a linear combination
of p linearly independent eigenvectors v1 ∈ Vλ1 , . . . ,vp ∈ Vλp associated to p distinct
eigenvalues λ1, . . . , λp, and the eigenvector vp+1 ∈ Vλp+1

associated to another eigenvalue
λp+1; if v = 0, then (A−λp+1I)v = α1(λ1−λp+1)v1+. . .+αp(λp−λp+1)vp = 0, implying
α1, . . . , αp = 0, as λi 6= λp+1, ∀i = 1, . . . , p and v1, . . . ,vp are linearly independent;
consequently v = αp+1vp+1 = 0, implying also αp+1 = 0. This proves by induction that
eigenvectors associated to distinct eigenvalues are linearly independent.

A matrix with r distinct eigenvalues has at least r linearly independent eigenvectors.
Besides, there exist νi linearly independent eigenvectors per each eigenvalue λi. Since
µ1 + . . .+µr = n, if νi = µi, ∀i = 1, . . . , r, then there are exactly n linearly independent
eigenvectors. The n eigenequations Avj = λjvj can be written in matrix form

AV = V Λ (A.31)
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where V :=
(
v1 · · · vn

)
and Λ := diag (λ1, . . . , λn). Because v1, . . . ,vn are lin-

early independent, V , termed modal matrix, is full rank and thus non singular: pre-
multiplying eq. (A.31) by V −1 gives

A = V ΛV −1 (A.32)

therefore A is similar to a diagonal matrix via V .

Symmetric Matrices

If a symmetric matrix A has the conjugate eigenpairs (λ,v) and (λ?,v?), then

λ ‖v‖2 = λvHv = vHAv = vHATv = vHAHv = (Av)Hv = λ?vHv = λ? ‖v‖2

implies λ? = λ,⇔ λ ∈ R: eigenvalues of symmetric matrices are all real. If vi and vj
are two eigenvectors associated to a couple of distinct eigenvalues λi and λj , then

λiv
T
i vj = (Avi)

Tvj = vTi A
Tvj = vTi Avj = vTi (λjvj) = λjv

T
i vj

implies vTi vj = 0 if i 6= j: eigenspaces of symmetric matrices are mutually orthogonal.

There are νi orthogonal eigenvectors associated to the eigenvalue λi. The matrix
Pi =

(
Ui Ni

)
, where Ui :=

(
ui1 · · · uiνi

)
∈ Rn×νi is made up of νi orthonormal

eigenvectors and Ni :=
(
ni1 · · · nin−νi

)
∈ Rn×n−νi is made up of n− νi orthonormal

vectors orthogonal to Vλi , is orthogonal. The similarity transformation of A via Pi gives

Pi
TAPi =

(
Ui

TAUi Ui
TANi

Ni
TAUi Ni

TANi

)
=

(
λiIνi Oνi,n−νi
On−νi,νi Ni

TANi

)
because Ui

TAUi = Ui
TλiInUi = λiUi

TUi, Ni
TAUi = Ni

TλiInUi = λiNi
TUi and

Ui
TANi = Ui

TInλiNi = λiUi
TNi. Again, eq. (A.29) can be written as

p(A) = det (λI −A) = det
(
λIνi − λiIνi

)
det(λIn−νi −Ni

TANi) =

= det
(
(λ− λi)Iνi

)
det(λIn−νi −Ni

TANi) = (λ− λi)νip(Ni
TANi)

using eq. (A.22). This expansion shows that µi > νi could occur only if λi were a root
of p(Ni

TANi) too, i.e. if there were at least one non zero vector z ∈ Rn−νi such that(
Ni

TANi − λiIn−νi
)
z = Ni

T(A − λiIn)Niz = 0. Since R(Ni) = N⊥(A− λiI) and

ρ(A−λiI) = n−νi, then R(Ni
T(A− λiI)Ni) = R(Ni

T(A− λiI)) = R(Ni
T) = Rn−νi ,

so the eigenequation is satisfied by z = 0 only, and consequently µi = νi,∀i = 1, . . . , r.

Symmetric matrices have only semi-simple eigenvalues, thus they always admit di-
agonalisation; moreover, the matrix U :=

(
u1 · · · un

)
made up of n normalised

eigenvectors, is orthogonal: using it into eq. (A.31) gives

A = UΛUT (A.33)
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therefore a symmetric matrix is similar to a diagonal matrix via an orthogonal matrix.
Performing the product block-wise gives

A =
n∑
j=1

λiuiu
T
i

hence symmetric matrices can be decomposed into the sum of rank one matrices (dyads).

A.2.5 Orthogonal Matrices

If vectors are transformed by an orthogonal matrix Q, applying the orthogonality con-
dition QTQ = I to the dot product and the norm give respectively

(Qx)T(Qy) = xTQTQy = xTy, ∀x,y ∈ Rn (A.34)

that is dot product invariance under product by orthogonal matrices, and

‖(Qx)‖2 = (Qx)T(Qx) = xTx = ‖x‖2 , ∀x ∈ Rn (A.35)

that is norm invariance under product by orthogonal matrices.
The set of all orthogonal matrices of order n is a group called orthogonal group

of degree n and is denoted with O(n). Applying eq. (A.24) to QTQ = I returns
1 = det I = detQTQ = detQT detQ = (detQ)2 ⇔ detQ = ±1, thus orthogonal matri-
ces have unitary determinant, in general. Writing eq. (A.25) for Q yields adjQ = ±QT.
If detQ = +1, Q is said special orthogonal; the set of special orthogonal matrices is
also a group called special orthogonal group of degree n and is denoted with SO(n).

Let (λ,v) be an eigenpair of an orthogonal matrix Q: since

‖v‖2 = vHv = vHQHQv = (Qv)H (Qv) = (λv)H (λv) = λ?λvHv = |λ|2 ‖v‖2

then |λ| = 1, that is the eigenvalues of orthogonal matrices lie on the unitary circle.

A.3 Matrices and Vectors in Three Dimensions

A.3.1 Cross Product Matrix

Definition

Using column vectors to write the vector product in fullx1x2
x3

×
y1y2
y3

 =

x2y3 − x3y2x3y1 − x1y3
x1y2 − x2y1


suggests to define the 3× 3 skew symmetric matrix S(x)

S(x) :=

 0 −x3 +x2
+x3 0 −x1
−x2 +x1 0
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in order to express the cross product as x × y = S(x)y, by means a sheer matrix
product, which is possible indeed for the cross product is a linear operator; S(x) is also
called cross product matrix. As ST(x) = −S(x) = S(−x), transposing the matrix
corresponds to changing the sign of the associated vector.

Properties

All the cross product properties must be mirrored also by the skew symmetric matrix
product operator. Applying it to a linear combination of vectors gives

S(λx+ µy) = λS(x) + µS(y)

which reflects the linearity property in eq. (A.7). Swapping the role of the vectors gives

S(y)x = −S(x)y

which reflects the anti-commutativity property in eq. (A.8). Multiplying the skew sym-
metric by the vector it is associated to gives

S(λx)x = λS(x)x = 0

which reflects the linear dependence property in eq. (A.9). The dot product between
S(x)y and another vector z gives

zTS(x)y = yT(ST(x) z) = yT (−S(x) z) = yTS(z)x

which is equivalent to the triple product property in eq. (A.10). The dot product between
S(x)y and y itself gives

yTS(x)y = yTS(y)x = 0

which reflects the orthogonality property in eq. (A.11). The product between two skew
symmetric matrices has the particular structure

S(x)S(y) =

−x2y2 − x3y3 x2y1 x3y1
x1y2 −x3y3 − x1y1 x3y2
x1y3 x2y3 −x1y1 − x2y2

 = yxT−(xTy)I (A.36)

that can be used to compute the square of a skew symmetric matrix

S2(x) = S(x)S(x) = xxT − (xTx)I = xxT − ‖x‖2 I (A.37)

which is actually a symmetric matrix. Multiplying the double matrix S(x)S(y) by
another vector z and exploiting eq. (A.36) gives

S(x)S(y) z =
(
yxT − (xTy)I

)
z = yxTz − (xTy)z = (zTx)y − (xTy)z

which reflects the triple product property in eq. (A.12). Substituting eq. (A.37) into the
squared norm of S(x)y gives

‖S(x)y‖2 = (S(x)y)TS(x)y = yTST(x)S(x)y = −yTS2(x)y =

= yT
(

(xTx)I − xxT
)
y = (xTx)(yTy)− (xTy)(xTy)

which reflects the norm property in eq. (A.13).
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Features

Since adj (S(x)) = xxT, as verifiable from the definition, then det (S(x)) = 0, ∀x ∈ R3

because det (S(x)) I = S(x) adj (S(x)) = S(x)xxT = 0xT = O.
S(x) has a zero eigenvalue associated to the eigenvector x, because S(x)x = 0 = 0x.

Moreover, its characteristic polynomial is

det (λI − S(x)) = λ3−x1x2x3 +x1x2x3 +x22λ+x23λ+x21λ = λ3 +‖x‖2 λ = λ(λ2 +‖x‖2)

therefore S(x) has also a couple conjugate imaginary eigenvalues ±i ‖x‖ ∈ C, associated
to the couple of complex conjugate eigenvectors y ∓ iz ∈ C3, where y, z ∈ R3 are any
vectors such that ‖y‖ = ‖z‖, x · y = y · z = z · x = 0 and (x× y) · z > 0, because
S(x) (y ∓ iz) = ‖x‖ z ± i ‖x‖y = ±i ‖x‖ (y ∓ iz).

A.3.2 Square Matrices of order 3

Matrix row vectors

A matrix M ∈ R3×3 can be written as

M =

 aT

bT

cT

 =

a1 a2 a3
b1 b2 b3
c1 c2 c3


putting in evidence its rows a, b, c ∈ R3×1 as separate vectors. In this way, vector algebra
may be used to give alternative expressions of some matrix quantities: its adjugate

adj (M) =
(
S(b) c S(c)a S(a) b

)
(A.38)

has the cross products of all rows cyclic permutations as columns, thus its determinant

det (M) = aTS(b) c = bTS(c)a = cTS(a) b (A.39)

is the mixed product of the three rows.

Cross Product Transformation

Considering that, in general

MS(x)MT =

aTbT
cT

S(x)
(
a b c

)
=

aTS(x)a aTS(x) b aTS(x) c
bTS(x)a bTS(x) b bTS(x) c
cTS(x)a cTS(x) b cTS(x) c

 =

=

 0 −xTS(a) b +xTS(c)a
+xTS(a) b 0 −xTS(b) c
−xTS(c)a +xTS(b) c 0

 = S
(
adjMTx

)
thus, when Q ∈ O(3), adjQT = ±Q gives

QS(x)QT = ±S(Qx) (A.40)
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or equivalently
QS(x) = ±S(Qx)Q (A.41)

which can be used to prove the fundamental property

QS(x)y = ±S(Qx)Qy (A.42)

of the cross product between vectors transformed by special orthogonal matrices.

Spectrum

Rearranging the terms in the characteristic polynomial of M as

det (λI −M) = (λ− a1) (λ− b2) (λ− c3)− a3b1c2 − a2b3c1+
− a3 (λ− b2) c1 − a2b1 (λ− c3)− (λ− a1) b3c1 =

= λ3 − (a1 + b2 + c3)λ
2 + (a1b2 − a2b1 + b2c3 − b3c2 + c3a1 − c1a3)λ+

+ a1b2c3 + a3b1c2 + a2b3c1 − a3b2c1 − a2b1c3 − a1b3c2

gives p (M) = λ3 − trMλ2 + tr (adjM)λ− detM . In particular, if Q ∈ O(3)

p (Q) = λ3 − trQλ2 ± trQλ∓ 1 = (λ∓ 1)
(
λ2 − (trQ∓ 1)λ+ 1

)
(A.43)

because tr adjQ = ± trQT = ± trQ and detQ = ±1.
In general, 3×3 matrices have either three distinct real eigenvalues or one real eigen-

value and two complex conjugate eigenvalues. As the eigenvalues of orthogonal matrices
lie on the unit circle and there are not three distinct real numbers with unit modulus,
3 × 3 orthogonal matrices have only one real eigenvalue and two complex conjugate
eigenvalues. Q has real eigenvalue λ1 = ±1, depending on the sign of the determinant,
since detQ = λ1λ2λ3 = λ1λ2λ2

? = λ1 |λ2|2 = λ1. Let x be the unit eigenvector associ-
ated to the eigenvalue λ1, i.e. Qx = ±x. Let y, z be any two unit vectors such that
x,y, z are mutually orthogonal and make up a right handed triple; since orthogonal
matrices preserve the dot product, then Qy has to be orthogonal to Qx and can be thus
expressed as a linear combination of y and z. If Qy = αy + βz, applying eq. (A.42)
gives Qz = Q (x× y) = ±Qx×Qy = x× (αy + βz) = αz − βy, thus

Q (y ∓ iz) = (αy + βz)∓ i(αz − βy) = (α± iβ)y + (β ∓ iα)z =

= (α± iβ)y ∓ i(α± iβ)z = (α± iβ) (y ∓ iz)

eventually shows that λ2,3 = α ± iβ is a couple of complex conjugate eigenvalues asso-
ciated to a couple of complex conjugate eigenvectors y ∓ iz.

A.4 Bases

A.4.1 Basis Vectors

A basis of a vector space with dimension n is a list of n linearly independent vectors that
belong to that vector space. By virtue of the linear independence, any other element of
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the vector space can be represented as a unique linear combination of the elements of
the basis, termed basis vectors.

The concept of basis concerns whichever abstract vector space, although it becomes
definitely more intuitive when applied to Euclidean spaces: a basis B = (b1, . . . , bn) of
Rn is an ordered collection of n-dimensional linearly independent vectors, therefore any
n-dimensional vector v ∈ Rn can be uniquely expressed as

v = x1b1 + . . .+ xnbn =
n∑
i=1

xibi

where the n coefficients x1, . . . , xn ∈ R of the linear combination are called the compo-
nents of v with respect to the basis B.

In any case, the n components of a vector with respect to a certain basis make
up a n-dimensional vector themselves, i.e. x := (x1, . . . , xn) ∈ Rn. The vector of the
components is often unambiguously used in place of the actual vector, whenever the
basis is tacitly implied.

A.4.2 Change of Basis

Any vector space admits infinite bases, therefore the same vector can be expressed with
respect to different bases, that is to say by means of different suitable linear combinations
of their respective basis vectors. For instance, a vector v in a vector space with dimension
n may have representation

v = x1e1 + . . .+ xnen =

n∑
i=1

xiei (A.44)

in the base E = (e1, . . . , en), and representation

v = y1f1 + . . .+ ynfn =
n∑
i=1

yifi (A.45)

in the base F = (f1, . . . ,fn).

On the other hand, the elements of bases must be vectors too, therefore f1, . . . ,fn
might be expressed with respect to e1, . . . , en as

fj = p1je1 + . . .+ pnjen, j = 1, . . . , n

where pij is the component of the j-th element of the F basis with respect to the i-th
element of the E basis. Substituting these expressions into eq. (A.45)

v =
n∑
j=1

yjfj =
n∑
j=1

yj

n∑
i=1

pijei =
n∑
i=1

 n∑
j=1

pijyj

 ei
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and comparing the result with eq. (A.44) gives the relation

xi =

n∑
j=1

pijyj i = 1, . . . , n

between the components of v with respect to the F basis and the components of v with
respect to the E basis; gathering all these coefficients into a n× n matrix, this relation
can be rewritten succinctly as

x = Py (A.46)

where P is the change of basis matrix between the F and E bases or transition
matrix from the F basis to the E basis.

Conversely, repeating the same reasoning in reverse, e1, . . . , en might be expressed
with respect to f1, . . . ,fn as

ej = q1jf1 + . . .+ qnjfn, j = 1, . . . , n

where qij is the component of the j-th element of the E basis with respect to the i-th
element of the F basis; gathering all these coefficients into a n× n matrix, this relation
can be rewritten succinctly as

y = Qx (A.47)

where Q is the change of basis matrix between the E and F bases or transition
matrix from the E basis to the F basis.

Since f1, . . . ,fn are linearly independent by definition, then the vectors made up of
their components with respect to e1, . . . , en must be linearly independent as well: these
vectors are exactly the rows of the change of basis matrix P , which is thus full rank
and invertible. Multiplying both sides of eq. (A.46) by P−1 provides the inverse relation
P−1x = y, which, matched with eq. (A.47), eventually proves that Q = P−1.

A.4.3 Orthonormal Bases

Bases that consist of orthogonal vectors only are said to be orthogonal. Among or-
thogonal bases, those made up of unit vectors only are said to be orthonormal. The
basis vectors of an orthonormal base N = (n1, . . . ,nn) are subject to the orthonormality
constraint ni · nj = δij , 1 ≤ i, j ≤ n.

Let E = (e1, . . . , en) and F = (f1, . . . ,fn) be two orthonormal bases. By virtue of
orthonormality, the dot product of v with the elements of E basis

v · ei =

n∑
j=1

xjej · ei = xi

gives the components of v with respect to the E basis. If v is already represented in the
F basis, performing the dot product as before

v · ei =

n∑
j=1

yjfj · ei
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and comparing this result with the one found before gives the relation

xi =

n∑
j=1

(
fj · ei

)
yj

which can be rewritten, defining the transition matrix from the F basis to the E basis

P :=

f1 · e1 . . . fn · e1
...

. . .
...

f1 · en . . . fn · en

 (A.48)

in the compact form x = Py.

Swapping the role of the E and F bases leads to

yi =
n∑
j=1

(
ej · fi

)
xj

which can be rewritten, defining the transition matrix from the E basis to the F basis

Q :=

e1 · f1 . . . en · f1
...

. . .
...

e1 · fn . . . en · fn

 (A.49)

in the compact form y = Qx.

It is worth noting that the transition matrix from E basis to F basis is nothing
but the transition matrix from the F basis to the E basis only with rows and columns
exchanged, therefore Q = P T. On the other hand, as shown before, the transition
matrix from the E basis to the F basis is the inverse of the transition matrix from the
F basis to the E basis, therefore also Q = P−1. These two considerations together
imply that P−1 = P T, that is to say transition matrices between orthonormal bases are
orthogonal. The orthogonality of transition matrices is a very important property and
justifies the use of orthonormal bases: for instance, observing that

‖x‖2 = xTx = (Py)T (Py) = yTP TPy = yTy = ‖y‖2

it ensures norm invariance under change of representation between orthonormal bases.

A.5 Euclidean Geometry

A.5.1 Planes

Planes in three dimensions are hyperplanes in R3, therefore they are affine subsets of
R3 with dimension 2. Two alternative analytical descriptions of a 3D plane, namely the
cartesian equation and the parametric equation, may be given.
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Cartesian Equation

A plane in 3D space may be defined as the locus of points such that the vector connecting
them to a fixed point is orthogonal to a certain direction. Such a description gives rise
to the plane cartesian equation

(r − r0) · n = 0 (A.50)

where r0 ∈ R3 is any point that belongs to the plane and n ∈ R3 is a non zero vector
perpendicular to the plane, termed normal vector. The vector n specifies only the spatial
inclination of the plane, therefore its magnitude is actually not relevant: for this reason,
without loss of generality, a unit vector is usually chosen. Labelling each component
of the normal vector as n := (a, b, c) the plane equation can be rewritten in the more
familiar form

ax+ by + cz + d = 0

where d = −r0 · n = −ax0 − by0 − cz0.
The orthogonal projection of the origin onto the plane is the point p ∈ R3 on the

plane closest to the origin. The vector joining the origin with its orthogonal projection on
the plane must be orthogonal to the plane, or, equivalently parallel to the normal vector,
i.e. ∃λ ∈ R : p = λn. Moreover, the point p must also lie on the plane, i.e. p ·n+ d = 0.
Putting together such conditions gives p · n+ d = λn · n+ d = λ ‖n‖2 + d = 0, and, if
n is a unit vector, then λ = −d and p = −dn. The length ‖p‖ = |λ| = d of this vector
is the distance of the plane from the origin.

Parametric Equation

A plane in 3D space may be defined as the locus of points given by the sum between a
fixed point and the linear combination of two linearly independent vectors orthogonal
to a certain constant orientation. Such a description gives rise to the plane parametric
equation

r = r0 + su+ tv

where r0 ∈ R3 is any point that belongs to the plane, u,v ∈ R3 are two non zero and non
aligned vectors parallel to the plane and s, t ∈ R are two free scalar parameters: only
two free parameters are required because the plane is an affine set of dimension 2. The
vectors u and v define only the spatial inclination of the plane, therefore their magnitude
and their relative orientation are actually not relevant: for this reason, without loss of
generality, two orthonormal vectors are usually chosen.

Relationship between Planes Representations

Different representations of the same plane have to be equivalent, of course.
The conversion from a parametric representation to a cartesian representation may

be carried out by observing that the normal vector has to be orthogonal to all vectors
lying on the plane. A unit vector perpendicular to the plane might be given by

n = ± u× v
‖u× v‖
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where the double sign indicates that both choices are equally valid. The same point r0
might be used as reference or any other point might be selected by fixing some values
for the couple of parameters (s, t).

The conversion from a cartesian representation to a parametric representation may
be carried out by observing that all vectors lying on the plane have to be orthogonal
the normal vector. Two vectors parallel to the plane might be given by u = r1− r0 and
v = r2−r0, where r1, r2 are two points of the plane such that (r1 − r0)× (r2 − r0) 6= 0.
If two orthonormal vectors are desired, they might be given instead by

u =
r − r0
‖r − r0‖

, v =
n× u
‖n‖

where r is a point of the plane.

A.5.2 Lines

Lines in three dimension are affine subsets of R3 with dimension 1. Two alternative
analytical descriptions of a 3D line, namely the cartesian equation and the parametric
equation, may be given.

Cartesian Equation

A line in 3D space may be defined as the locus of points given by the intersection between
two non parallel planes; such a description gives rise to the line cartesian equation,
that is the system of two planes cartesian equations{

(r − r1) · n1 = a1x+ b1y + c1z + d1 = 0

(r − r2) · n2 = a2x+ b2y + c2z + d2 = 0

with the straightforward condition n1 × n2 6= 0, otherwise the intersection would be
either empty, whether d1 6= d2 (parallel planes) or the entire plane, whether d1 = d2
(coincident planes).

Parametric Equation

A line in 3D space may be defined as the locus of points given by the sum between a
fixed point and a vector with constant orientation. Such a description gives rise to the
line parametric equation

r = r0 + tv, t ∈ R

where r0 ∈ R3 is any point that belongs to the line, v ∈ R3 is any vector parallel to the
line, and t ∈ R is a free scalar parameter: only one free parameter is required because
the line is an affine set of dimension 1. The vector v specifies only the spatial direction
of the line, therefore its magnitude is actually not relevant: for this reason, without loss
of generality, a unit vector is usually chosen.
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Relationship between Lines Representations

Different representations of the same line have to be equivalent, of course.
The conversion from a cartesian representation to a parametric representation may

be carried out by observing that the line has to lie on both planes thus it has to be
orthogonal to both their normal vectors. A unit vector v parallel to the line might be
given by

v = ± n1 × n2

‖n1 × n2‖
where the double sign indicates that both choices are equally valid. The solution of the
system of equations yields infinite solutions depending on a certain free variable, thus a
point r0 might be found singling out a specific value for this variable.

The conversion from a parametric representation to a cartesian representation may be
carried out by observing that any two distinct planes fashioning the system of equations
might be selected within the sheaf of planes through the line.



Appendix B

Rigid Body Kinematics

B.1 Rigid Transformations

B.1.1 Proper Rigid Transformations

A transformation of 3D space is called rigid transformation if it does not change the
relative distance between any points subjected to it; for this reason, it is also called
isometry, from the ancient greek words ἴσος (equal) and μέτρον (measure). Rigid trans-
formations are strictly related to the displacement of rigid bodies, i.e. bodies that move
without modifying their shape and size.

Formally, reflections are rigid transformations but do not represent feasible rigid
body displacements, hence the above notion should be slightly amended to reject them.
A transformation of 3D space is called proper rigid transformation if it does not
change either the relative distance or the relative orientation between any points sub-
jected to it; from a mathematical point of view, a (proper) rigid transformation is a
vector field f : R3 → R3 such that the properties

‖f(x)− f(y)‖ = ‖x− y‖ (B.1)

(f(x)− f(0))× (f(y)− f(0)) = f(x× y)− f(0) (B.2)

hold ∀x,y ∈ R3; they account respectively for relative distance and relative orientation
invariance. Moreover, applying ‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2u · v, ∀u,v ∈ R3 gives

(f(x)− f(0)) · (f(y)− f(0)) =

1

2

(
‖f(x)− f(0)‖2+ ‖f(y)− f(0)‖2− ‖f(x)− f(y)‖2

)
=

=
1

2

(
‖x− 0‖2 + ‖y − 0‖2 − ‖x− y‖2

)
=

1

2

(
‖x‖2 + ‖y‖2 − ‖x− y‖2

)
= x · y

therefore the additional property

(f(x)− f(0)) · (f(y)− f(0)) = x · y (B.3)

is inferred from the one in eq. (B.1).

157
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Considering the auxiliary function g : R3 → R3, defined as g(x) := f(x) − f(0),
which has the origin as fixed point, i.e. g(0) = 0, eqs. (B.1), (B.3) and (B.2) can be
homogeneously rewritten respectively as

‖g(x)− g(y)‖ = ‖x− y‖ , ∀x,y ∈ R3 (B.4a)

g(x) · g(y) = x · y, ∀x,y ∈ R3 (B.4b)

g(x)× g(y) = g(x× y) , ∀x,y ∈ R3 (B.4c)

because g(x)− g(y) = (f(x)− f(0))− (f(y)− f(0)) = f(x)− f(y).

B.1.2 Affine Map

Applying eq. (B.3) to the convex combination of two points x and y, i.e. λx+ (1− λ)y
where λ ∈ [0, 1], and to another point z, gives the condition

(f(λx+ (1− λ)y)− f(0)) · (f(z)− f(0)) =

= (λx+ (1− λ)y) · z = λx · z + (1− λ)y · z =

= λ(f(x)− f(0)) · (f(z)− f(0)) + (1− λ) (f(y)− f(0)) · (f(z)− f(0)) =

= (λf(x)− λf(0) + (1− λ)f(y)− (1− λ)f(0)) · (f(z)− f(0)) =

= (λf(x) + (1− λ)f(y)− f(0)) · (f(z)− f(0))

which must hold ∀z ∈ R3, hence necessarily

f(λx+ (1− λ)y) = λf(x) + (1− λ)f(y) , ∀x,y ∈ R3, ∀λ ∈ [0, 1] (B.5)

that is all isometries are affine maps. The converse implication is not true in general:
not all affine maps may represent isometries, just those satisfying distance conservation.

Any affine map f : R3 → R3 can be written as f(x) = Ax+ b, where A ∈ R3×3 and
b ∈ R3×1. Applying eq. (B.1) to Ax+ b gives the constraint

(x− y)T (x− y) = ‖x− y‖2 = ‖(Ax+ b)− (Ay + b)‖2 = ‖Ax−Ay‖2 =

= ‖A (x− y)‖2 = (x− y)TATA (x− y) , ∀x,y ∈ R3

on A only. The matrix M := ATA of the quadratic form is symmetric positive semi-
definite thus it is similar to a diagonal matrix Λ = diag (λ1, λ2, λ3) with non-negative
entries, via an orthogonal matrix U , i.e. M = UΛUT. Let p ∈ R3 be a generic vector
and q := UTp: the above condition can be expanded as

q21 + q22 + q23 = qTq =
(
UTp

)T(
UTp

)
= pTUUTp = pTp = pTMp = pTUΛUTp =

= qTΛq = λ1q
2
1 + λ2q

2
2 + λ3q

2
3, ∀p ∈ R3 ⇔ ∀q ∈ R3

which, because λ1, λ2, λ3 ≥ 0, necessarily implies λ1 = λ2 = λ3 = 1, i.e. Λ = I3, thus
M = ATA = UI3U

T = UUT = I3 and A is orthogonal: for this reason

detA = ±1 (B.6)
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represents a compact condition to characterise isometries.

On the other hand, among affine maps, just those satisfying the orientation conserva-
tion may represent proper isometries. Applying eq. (B.2) to Ax+ b gives the constraint

A (x× y) = (A (x× y) + b)− (A0 + b) =

= ((Ax+ b)− (A0 + b))× ((Ay + b)− (A0 + b)) = Ax×Ay, ∀x,y ∈ R3

on A only. Writing A :=
(
a1 a2 a3

)
, the right hand side can be expanded as

Ax×Ay = (x1a1 + x2a2 + x3a3)× (y1a1 + y2a2 + y3a3) =

= (x1y2 − x2y1) (a1 × a2) + (x2y3 − x3y2) (a2 × a3) + (x3y1 − x1y3) (a3 × a1) =

= adjAT (x× y) , ∀x,y ∈ R3

thanks to eq. (A.38), which implies A = adjAT: applying eqs. (A.25) and (A.24) to
ATA = AT adjAT gives (det (A))2 = (det (A))3 ⇔ det (A) = 0∨ 1 that combined with
eq. (B.6) finally yields the condition det (A) = 1 for proper isometries. Conversely, the
specular property Ax×Ay = −A(x× y) leads to the opposite condition det (A) = −1
for improper isometries.

If A is orthogonal, the affine map is a rigid transformation: this matrix is denoted by
R, for it represents a rotation, when detR = +1, or a reflection, when detR = −1.
In constrast, no constraint is applied to b: this vector is denoted by t, for it represents a
translation. Proper rigid transformations are the only kind of motion rigid bodies may
undergo, hence, in the scope of kinematics, they are sometimes called rigid motions.

B.1.3 Rigid Displacement

Let R ∈ R3×3 and t ∈ R3; if

detR = 1 (B.7a)

RRT = RTR = I (B.7b)

then the map f : R3 → R3 defined as f(r) := Rr + t is a proper rigid transformation.
The overall action of the rigid displacement can be split in two step: r is transformed
first into r′ := Rr by the rotation and then into r′′ := r′+t = Rr+t by the translation;
these vectors are made up of the coordinates

r :=

xy
z

 , r′ :=

x′y′
z′

 r′′ :=

x′′y′′
z′′


of three corresponding points with respect to a given coordinate frame R with origin o
and axes i, j, k. Let R′ be another coordinate frame with origin o and axes i′, j′, k′,
such that the coordinates of the rotated point in R′ are the same as the coordinates of
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the original point in R, i.e. x′i + y′j + z′k = xi′ + yj′ + zk′. This equation might be
equivalently rewritten in matrix form as

(
i j k

)x′y′
z′

 =
(
i′ j′ k′

)xy
z


or, considering that matrices with orthonormal columns are orthogonal, also asx′y′

z′

 =

iTjT
kT

(i′ j′ k′
)xy

z

 =

iTi′ iTj′ iTk′

jTi′ jTj′ jTk′

kTi′ kTj′ kTk′

xy
z


giving thus the following expression of the rotation matrix

R =

iTjT
kT

(i′ j′ k′
)

=

iTi′ iTj′ iTk′

jTi′ jTj′ jTk′

kTi′ kTj′ kTk′

 (B.8)

called direction cosine matrix, as its entries are the cosines of the angles between
frame R′ axes and frame R axes. Remembering eq. (A.48), the direction cosine matrix
is nothing but a particular case of transition matrix between orthonormal bases.

The axes of R′ can be computed from the axes of R, by rearranging eq. (B.8), from(
i′ j′ k′

)
=
(
i j k

)
R, or, alternatively from

(
i′ j′ k′

)
= R̄

(
i j k

)
where

R̄ :=
(
i j k

)
R

iTjT
kT


is the matrix representing the same rotation for vectors expressed in the coordinate frame
having the standard basis vectors as axes. In the end, the direction cosine matrix is thus
subject to a two fold interpretation: as rotation matrix, it takes the coordinates of a
given point with respect to a certain frame and transforms them into the coordinates
of the rotated point with respect to the same frame; as transition matrix, it takes the
coordinates of a given point with respect to the rotated frame and transforms them into
the coordinates of the same point with respect to the original frame.

B.2 Attitude Representation

The Swiss mathematician Leonhard Euler deeply studied the motion of rigid bodies in
three dimensional space and laid the foundations of attitude kinematics, the branch
of mechanics dealing with angular motions: he formulated the fundamental theorem
for rotations, which states that, if at least a point of a rigid body remains still, the
displacement of that body is a rotation about a certain axis that fixed point belongs
to and there exists a unique spatial direction which is not altered by the displacement.
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Such a claim is perfectly consistent with the characteristics just derived for rotation
matrices: let R ∈ SO(3) describe a rotation, then

Rv = v (B.9)

for all vectors v ∈ R3 parallel to the eigenvector associated to the eigenvalue 1.

B.2.1 Axis-Angle Representation

The matrix representing a rotation can be defined by considering the axis the rotation
occur about, termed axis of rotation or rotation axis, and the angle the rotation occur
by, termed angle of rotation or rotation angle. The rotation matrix is accordingly
denoted as R(u, θ), where the unit vector u ∈ R3 represents the rotation axis, while the
scalar θ ∈ R represents the rotation angle. In such a case, eq. (B.9) becomes

R(u, θ)u = u (B.10)

because the rotation axis is not modified by the rotation.
When the rotation axis coincides with one of the unit vectors i, j, k, the rotation

matrices are denoted as

Rx(θ) := R(i, θ) (B.11a)

Ry(θ) := R(j, θ) (B.11b)

Rz(θ) := R(k, θ) (B.11c)

using the labels x,y,z of the coordinate axes for the sake of conciseness.

Matrix Parametrisation

A vector v ∈ R3 subject to the rotation is decomposed, through eqs. (A.1) and (A.2), as

v = v‖ + v⊥

where
v‖ =

(
vTu

)
u = u

(
uTv

)
= uuTv

is the axial component of v with respect to u, and

v⊥ = v −
(
vTu

)
u = v − u

(
uTv

)
=
(
I − uuT

)
v

is the normal component of v with respect to u: the axial component is left as it is,
whereas the normal component is rotated of an angle θ away from the plane identified
by the axis u and the vector v itself.

The vectors v‖, v⊥, u× v clearly make up a right-handed triple that serves as basis
of R3: the original vector v has only two orthogonal components v‖ and v⊥, while the
rotated vector R(u, θ)v has also a component along u× v. The vectors v⊥ and u× v
define a plane orthogonal to the rotation axis and have the same magnitude, because
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‖v⊥‖2 = (v − (v · u)u) · (v − (v · u)u) = ‖v‖2 − (u · v)2 = ‖u× v‖2, thus the vector
rotated by θ has components cos θ v⊥ and sin θu×v along v⊥ and u×v respectively, on
the plane perpendicular to the rotation axis, in compliance with the sense of rotation.
The transformation due to the rotation is thus given by

R(u, θ)v = v‖ + cos θ v⊥ + sin θu× v

or equivalently, making v explicit, by

R(u, θ)v = uuTv + cos θ
(
I − uuT

)
v + sin θS(u)v

which holds ∀v ∈ R3 hence

R(u, θ) = (cos θ) I + (sin θ)S(u) + (1− cos θ)uuT (B.12)

is the parametrisation of the rotation matrix based on u and θ. Applying eq. (A.37) to
u yields S2(u) = uuT − I, thus the rotation matrix may be compactly expressed as

R(u, θ) = I + (sin θ)S(u) + (1− cos θ)S2(u) (B.13)

using only trigonometric functions of the rotation angle and the skew symmetric matrix
associated to the rotation axis. Its entries are given by

R(u, θ) =

 cθ + (1− cθ)u
2
1 (1− cθ)u1u2 − sθu3 (1− cθ)u1u3 + sθu2

(1− cθ)u2u1 + sθu3 cθ + (1− cθ)u
2
2 (1− cθ)u2u3 − sθu1

(1− cθ)u3u1 − sθu2 (1− cθ)u3u2 + sθu1 cθ + (1− cθ)u
2
3

 (B.14)

where the shrunk notation cθ := cos θ and sθ := sin θ is used for the sake of conciseness.
Only three out of the four parameters u1, u2, u3 and θ are actually independent because
u21 + u22 + u23 = 1 must hold; in compliance, six constraints are implicitly set by the
orthogonality condition R(u, θ)TR(u, θ) = I.

Power Series

Skew symmetric matrices associated to unit vectors feature an interesting property: since

S3(u) = S(u)S2(u) = S(u)
(
uuT − I

)
= −S(u)

S4(u) = S(u)S3(u) = −S(u)S(u) = −S2(u)

then, in general, all successive powers of S(u) are given by

S2k+1(u) = (−1)k S(u) , S2k(u) = (−1)k S2(u) (B.15)

so S(u) generates a cyclic group. Therefore, remembering the Taylor series expansions

sin θ =
∞∑
k=0

θ2k+1

(2k + 1)!
, cos θ =

∞∑
k=0

θ2k

(2k)!
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the rotation matrix can be further rewritten as

R(u, θ) = I + S(u)
∞∑
k=0

(−1)k (θ)2k+1

(2k + 1)!
+ S2(u)

∞∑
k=1

(−1)k (θ)2k

(2k)!
=

= I +
∞∑
k=0

(S(u) θ)2k+1

(2k + 1)!
+
∞∑
k=1

(S(u) θ)2k

(2k)!
=
∞∑
k=0

(S(u) θ)k

k!

or, more concisely as

R(u, θ) =
∞∑
k=0

(S(u) θ)k

k!
= eS(u)θ (B.16)

using the matrix exponential notation.1 Sometimes it gets alternatively denoted as

R (θ) =
∞∑
k=0

Sk(θ)

k!
= eS(θ) (B.17)

where θ := θu is a vector, termed rotation vector, having the rotation axis as its
direction and the rotation angle as its magnitude.

Properties

The rotation matrix is manifestly a periodic function of θ with period 2π, for it appears
only within trigonometric functions. All the entries are even functions of θ, u1, u2, u3,
for all odd functions of the parameters appear only inside products or squares, therefore

R(−u,−θ) = R(u, θ)

R(u,−θ) = R(−u, θ)

that is rotations are invariant under reversion of both sense and axis.
Thanks to eq. (B.15), the product of R(u, θ1) and R(u, θ2) is given by(
I + sin θ1S(u) + (1− cos θ1)S

2(u)
)(
I + sin θ2S(u) + (1− cos θ2)S

2(u)
)

=

= I + (sin θ1 + sin θ2)S(u) + (1− cos θ1 + sin θ1 sin θ2 + 1− cos θ2)S
2(u) +

+ ((1− cos θ1) sin θ2 + sin θ1(1− cos θ2))S
3(u) + (1− cos θ1)(1− cos θ2)S

4(u) =

= I + (sin θ1 + sin θ2 − sin θ2 + cos θ1 sin θ2 − sin θ1 + sin θ1 cos θ2)S(u) +

+ (1− cos θ1 + sin θ1 sin θ2 + 1− cos θ2 + 1 + cos θ1 + cos θ2 − cos θ1 cos θ2)S
2(u) =

= I + (cos θ1 sin θ2 + sin θ1 cos θ2)S(u) + (1 + sin θ1 sin θ2 − cos θ1 cos θ2)S
2(u) =

= I + sin(θ1 + θ2)S(u) + (1− cos(θ1 + θ2))S
2(u)

hence it yields
R(u, θ1)R(u, θ2) = R(u, θ1 + θ2)

1The matrix exponential is defined as eA :=

∞∑
k=0

Ak

k!
.
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that is a sequence of rotations about the same axis is equivalent to a single rotation.
The symmetries of the rotation matrix imply that

RT(u, θ) = R(u,−θ) = R(−u, θ)

hence reversing either the rotation axis or the rotation sense gives the inverse rotation.
Substituting θ = ±π into eq. (B.12) gives

R(u,±π) = R(−u,±π) = −I + 2uuT

thus rotations by a straight angle are invariant under axis reversion.
Let R̄ be another rotation: performing it and its inverse respectively after and before

the rotation R(u, θ) gives

R̄IR̄T + (sin θ) R̄S(u) R̄T + (1− cos θ)R̄S(u) R̄TR̄S(u) R̄T =

= I + (sin θ)S
(
R̄u
)

+ (1− cos θ)S2
(
R̄u
)

thanks to eq. (A.40), implying that

R̄R(u, θ) R̄T = R
(
R̄u, θ

)
(B.18)

which is a rotation by the same angle θ about the rotated axis R̄u.

Parameters Extraction

The rotation matrix is here denoted by

R =
(
rij
)
1≤i≤3
1≤j≤3

for the sake of simplicity. Observing eq. (B.14) easily gives the trace

trR = 3 cos θ + (1− cos θ) ‖u‖2 = 1 + 2 cos θ (B.19)

which in turn gives the rotation angle

θ = arccos

(
trR− 1

2

)
inverting the cosine. If sin θ 6= 0, remembering eq. (B.13) suggests that

S(u) =
1

2 sin θ

(
R−RT

)
therefore the rotation axis can be computed as

u =
1

2 sin θ

r32 − r23r13 − r31
r21 − r12
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once the rotation angle has been found. If cos θ = 1, R degenerates into I hence u is
undefined, whereas if cos θ = −1, R degenerates into I + 2S2(u) = 2uuT − I, hence u
can be computed normalising any non zero column of the dyad R + I = 2uuT. Using
eq. (B.19) into eq. (A.43) gives the characteristic polynomial

p (R) = (λ− 1)
(
λ2 + (1− trR)λ+ 1

)
= (λ− 1)

(
λ2 − 2 cos θλ+ 1

)
=

= (λ− 1)
(
λ2 − e+iθλ− e−iθλ+ 1

)
= (λ− 1)

(
λ− e+iθ

)(
λ− e−iθ

)
which highlights the eigenvalues 1, e+iθ and e+iθ.

B.2.2 Euler Angles

Furthermore, Euler proved that a rotation may be described also by means of a sequence
of three rotations, where the axes are vector constants while the angles are scalar variable;
specifically, the overall rotation matrix is given by the product

R
(
uφ, φ

)
R(uθ, θ)R

(
uψ, ψ

)
(B.20)

where φ, θ, ψ are known as Euler angles.

Necessity and Sufficiency

The Euler angles formulation can be used in place of the axis-angle representation,
provided that it is capable of representing whichever rotation simply by tuning the
values of the angles. In particular, there must exist two combinations of angles φ, θ, ψ
such that the resulting rotation transform uψ into uφ and −uφ: the condition

±uφ = R
(
uφ, φ

)
R(uθ, θ)R

(
uψ, ψ

)
uψ = R

(
uφ, φ

)
R(uθ, θ)uψ ⇐⇒

R(uθ, θ)uψ = ±R
(
uφ,−φ

)
uφ = ±uφ

implies the two fold constraint ±uφ · uθ = uψ · uθ, satisfied only if

uφ · uθ = uψ · uθ = 0 (B.21)

which gives a necessary condition for the matrix in eq. (B.20) to represent any rotation.
In order to prove that this condition is also sufficient, it must be shown that the ma-
trix in eq. (B.20) is capable of transforming a given orthonormal basis into any other
orthonormal basis. Let θ be the angle such that uφ = R(uθ, θ)uψ; since

R
(
R(uθ, θ)uψ, φ

)
R(uθ, θ)R(uψ, ψ) = R(uθ, θ)R(uψ, φ)R(uθ,−θ)R(uθ, θ)R(uψ, ψ)

owing to eq. (B.18), then eq. (B.20) may be rewritten as

R
(
uφ, φ

)
R(uθ, θ)R

(
uψ, ψ

)
= R(uθ, θ)R

(
uψ, φ

)
R(uθ, θ̃)R

(
uψ, ψ

)
(B.22)

where θ̃ := θ − θ.
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The three unit vectors uψ, uθ, uψ ×uθ clearly make up an orthonormal basis of R3.
Let R(uθ, θ)u1 = R(uθ, θ)R

(
uψ, φ

)
R(uθ, θ̃)R

(
uψ, ψ

)
uψ: since

R(uψ, φ)R(uθ, θ̃)R(uψ, ψ)uψ = R(uψ, φ)R(uθ, θ̃)uψ =

= R(uψ, φ)
(
cos θ̃uψ + sin θ̃S(uθ)uψ

)
= cos θ̃uψ + sinφ sin θ̃uθ − cosφ sin θ̃S(uθ)uψ

then u1 is a linear combination of uψ, uθ, uψ×uθ. The angles θ̃ and ψ may be properly
tuned to transform uψ into any desired unit vector R(uθ, θ)u1, while θ is automatically
given by θ = θ̃ + θ. Let R(uθ, θ)u2 = R(uθ, θ)R

(
uψ, φ

)
R(uθ, θ̃)R

(
uψ, ψ

)
uψ: since

R(uψ, φ)R(uθ, θ̃)R(uψ, ψ)uθ = R(uψ, φ)R(uθ, θ̃) (cosψuθ + sinψS(uψ)uθ) =

= R(uψ, φ)
(

sin θ̃ sinψuψ + cos θ̃ sinψS(uψ)uθ + cosψuθ
)

= sin θ̃ sinψuψ +

+ (cosφ cosψ − sinφ cos θ̃ sinψ)uθ + (cosφ cos θ̃ sinψ + sinφ cosψ)S(uψ)uθ

then also u2 is a linear combination of uψ, uθ, uψ × uθ. Moreover

u1 · u2 = cos θ̃ sin θ̃ sinψ + sinφ sin θ̃ cosφ cosψ − sinφ2 sin θ̃ cos θ̃ sinψ +

− cosφ2 sin θ̃ cos θ̃ sinψ − cosφ sin θ̃ sinφ cosψ = 0

shows that u2 and u1 are orthogonal as well, in compliance with eq. (A.34) applied to
eq. (B.21). The other angle φ may be properly tuned to transform uθ into any desired
unit vector R(uθ, θ)u2 on the plane orthogonal to the unit vector R(uθ, θ)u1. Let
R(uθ, θ)u3 = R(uθ, θ)R(uψ, φ)R(uθ, θ̃)R(uψ, ψ) (uψ × uθ): since, from eq. (A.42),

R
(
uψ, φ

)
R(uθ, θ̃)R

(
uψ, ψ

)
(uψ × uθ) =

= R
(
uψ, φ

)
R(uθ, θ̃)R

(
uψ, ψ

)
uψ ×R

(
uψ, φ

)
R(uθ, θ̃)R

(
uψ, ψ

)
uθ = u1 × u2

then R(uθ, θ)u3 = R(uθ, θ) (u1 ×u2) = R(uθ, θ)u1 ×R(uθ, θ)u2 completes the basis.

Axes Sequence

When the unit vectors uφ, uθ, uψ representing the axes of the Euler rotations are taken
among the standard basis vectors e1, e2, e3, the rotation matrix is denoted as

Rijk (ψ, θ, φ) = R(ek, φ)R
(
ej , θ

)
R(ei, ψ)

with i, j, k ∈ {1, 2, 3} and j 6= i, j 6= k, in compliance with eq. (B.21).
According to the axes sequence, two families of Euler angles can be identified: when

i = k, the angles are said proper or symmetric, whereas, when i 6= k the angles are
said improper or asymmetric; angles of symmetric sets are also termed simply Euler
angles, while angles of asymmetric sets are also termed Tait-Bryan angles, Cardan
angles, or Roll-Pitch-Yaw, terms borrowed from nautical and aeronautical jargon.

If the rotation axes are picked among the coordinate axes i, j, k of a given reference
frame, the individual rotation matrices are traditionally denoted as in eq. (B.11). The
most common symmetric Euler rotations are the zxz sequence Rz(φ)Rx(θ)Rz(ψ) and
the zyz sequence Rz(φ)Ry(θ)Rz(ψ), while the most common asymmetric Euler rota-
tions are the zyx sequenceRx(φ)Ry(θ)Rz(ψ) and the xyz sequenceRz(φ)Ry(θ)Rx(ψ).
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Ambiguity

Putting R
(
uψ,−π

)
R
(
uψ, π

)
= I before and after R(uθ, θ̃) into eq. (B.22) yields

R(uθ, θ)R
(
uψ, φ

)
R(uθ, θ̃)R

(
uψ, ψ

)
=

= R(uθ, θ)R
(
uψ, φ

)
R
(
uψ,−π

)
R
(
uψ, π

)
R(uθ, θ̃)R

(
uψ,−π

)
R
(
uψ, π

)
R
(
uψ, ψ

)
=

= R(uθ, θ)R
(
uψ, φ− π

)
R
(
R
(
uψ, π

)
uθ, θ̃

)
R
(
uψ, ψ + π

)
=

= R(uθ, θ)R
(
uψ, φ− π

)
R(−uθ, θ̃)R

(
uψ, ψ + π

)
=

= R(uθ, θ)R
(
uψ, φ− π

)
R(uθ,−θ̃)R

(
uψ, ψ + π

)
=

= R(uθ, θ)R
(
uψ, φ− π

)
R(uθ,−θ)R(uθ, θ − θ̃)R

(
uψ, ψ + π

)
because of eq. (B.18), giving rise to the equality

R
(
uφ, φ

)
R(uθ, θ)R

(
uψ, ψ

)
= R

(
uφ, φ− π

)
R(uθ, 2θ − θ)R

(
uψ, ψ + π

)
(B.23)

which puts in evidence that this attitude representation is intrinsically subject to an
ambiguity. Euler rotations feature θ = 0, because the first and the third rotation axes
are coincident, whereas Roll-Pitch-Yaw rotations feature θ = ±π

2 , because the three
rotation axes are all orthogonal to each other.

B.3 Homogeneous Representation

B.3.1 Homogeneous Coordinates

The homogeneous coordinate or projective coordinate representation of a point in
a n-dimensional space is a (n+ 1)-tuple2 that returns the original point when subject to
a certain perspective projection transformation; the original point is the perspective
projection of the homogeneous point over a certain hyperplane in the (n+ 1)-dimensional
space, termed projection hyperplane or viewplane, with a certain centre of projection.
The perspective projection of the homogeneous coordinates h into the point x they
represent can be rendered through the matrix product


x1
x2
...
xn

 =
k

hn+1


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . . 0 0

0 0 · · · 1 0




h1
h2
...
hn
hn+1


succinctly written as

x =
k

hn+1

(
In 0

)
h.

where k 6= 0 is a scalar constant.

2In mathematics, a tuple is a finite sequence of elements; specifically, an n-tuple, where n is a non
negative integer, is a sequence of n elements.
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Perspective Camera Example

A perspective camera is considered for the sake of illustration: the aperture is located
at the origin of the 3D space and the viewing direction is oriented with the z axis; the
image plane is orthogonal to the viewing direction and is located behind the aperture,
at a distance equal to the focal length, so it has equation z = −f . A 3D point with
coordinates (x, y, z) is located in front of the camera, i.e. z ≥ 0: a light ray emitted by
the point goes through the aperture and hits the image plane. The coordinates (u, v)
of the point mapped on the image plane depend not only on the (x, y) coordinates, but
also on the z coordinate, of the original point and may be computed, provided that the
value of the focal length is known, as

u = −f
z
x, v = −f

z
y

or, in compact form, as (
u
v

)
= −f

z

(
x
y

)
therefore the map on the image plane is obtained scaling and reflecting the point.

The 3D point (x, y, z) is just one homogeneous coordinate representation of the 2D
point (u, v) among all possible ones; for instance, another point (x′, y′, z′) with the same
abscissa-applicate and ordinate-applicate aspect ratios

x′

z′
=
x

z
,

y′

z′
=
y

z

yields the same perspective projection on the image plane and gives thus a homogeneous
coordinate representation of (u, v) too. More in general, any 3D point

(
− w

f u,−
w
f v, w

)
with w 6= 0, is a valid homogeneous coordinate representation of the 2D point (u, v).

Three dimensional space

The same concept may be generalised to points in spaces with any dimension: a ho-
mogeneous coordinate representation of a certain point can be given if there exists a
perspective projection capable of recreating that point from a point in a space with
augmented dimension. A point with coordinates

r =

xy
z


may be represented by means of the homogeneous coordinates

h =


a
b
c
d
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provided that the condition

x =
a

d
, y =

b

d
, z =

c

d
, d 6= 0

is satisfied. Different values of the scaling factor d give rise to as many valid homo-
geneous coordinate representations of the same point, hence multiplying homogeneous
coordinates by a non zero constant does not modify the point they represent. As par-
ticular case, if the scaling factor is chosen to be unitary, the homogeneous coordinates
can be immediately derived as

h =


x
y
z
1

 =

(
r
1

)
(B.24)

by simply adding 1, to the original 3D coordinates, as fourth coordinate. Homogeneous
coordinates with zero scaling factor are linked to points at infinity and represent thus
pure directions by convention.

B.3.2 Homogeneous Transformation

Any transformation a point in the three dimensional space could be subject to, e.g., ro-
tation, dilation, translation, reflection, etc., might be elegantly and compactly rendered,
making use of homogeneous coordinates representation, through a simple linear map,
even when the transformation is not linear per se. The 4× 4 matrices that pre-multiply
arrays of homogeneous coordinates in order to apply some transformation to the 3D
points they represent, are called homogeneous transformation matrices.

In order to reflect the structure of homogeneous coordinates, a homogeneous trans-
formation matrix T is partitioned as

T =

(
A b

cT d

)
(B.25)

where A ∈ R3×3 is a matrix that accounts for linear transformation, e.g., rotation,
reflection, selective scaling, shear, b ∈ R3×1 is a vector that accounts for translation,
c ∈ R3×1 is a vector that accounts for perspective transformation and d ∈ R is a
scalar that accounts for overall scaling. Exactly like homogeneous coordinates, multi-
plying homogeneous transformation matrices by a non zero constant does not modify
the transformation they represent.3

3For the sake of simplicity, everything that follows is derived using homogeneous coordinates and
matrices with unitary scaling factor, but this is not mandatory whatsoever, as the results are valid
regardless.
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Translation

A point r subject to a translation defined by t becomes r+ t, hence, if it is represented
with homogeneous coordinates, then

T =

(
I t

0T 1

)

is the homogeneous transformation matrix corresponding to the translation. When the
translation is defined parametrically, this matrix is also denoted as

Trans (v, d) =

(
I dv

0T 1

)

where d is translation distance and v is the translation direction.

Rotation

A point r subject to a rotation defined by R becomes Rr, hence, if it is represented
with homogeneous coordinates, then

T =

(
R 0

0T 1

)

is the homogeneous transformation matrix corresponding to the rotation. When the
rotation is defined parametrically to a certain axis, this matrix is also denoted as

Rot (u, θ) =

(
R(u, θ) 0

0T 1

)

where θ is the rotation angle and u is the rotation axis.

Reflection

A point r subject to a reflection with respect to the plane defined by nTr + d = 0
becomes

r − 2
n · r + d

n · n
n =

(
I − 2

nnT

nTn

)
r − 2

dn

nTn

because of eq. (A.1), hence, if it is represented with homogeneous coordinates, then

T =

(
I − 2nn

T

nTn
−2 dn

nTn

0T 1

)

is the homogeneous transformation matrix corresponding to the reflection.
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Full Transformation

Points in the three dimensional space may be modified by several subsequent transfor-
mations of diverse nature: using homogeneous coordinates, a sequence of transforma-
tions could be easily represented through consecutive multiplication by corresponding
homogeneous transformation matrices. Only proper rigid transformations, that is to say
rotations and translations, are hereinafter contemplated.

The combination of a rotation, described by the matrix R, and a translation, de-
scribed by the vector t, is considered: the overall transformation depends on the order
in which they are performed. In particular, the homogeneous transformation matrix

T =

(
I t

0T 1

)(
R 0

0T 1

)
=

(
R t

0T 1

)
(B.26)

represents the transformation r → Rr → Rr + t that corresponds to performing first
the rotation and then the translation, whereas the homogeneous transformation matrix

T =

(
R 0

0T 1

)(
I t

0T 1

)
=

(
R Rt

0T 1

)
(B.27)

represents the transformation r → r + t → R (r + t) that corresponds to performing
first the translation and then the rotation.

Inverse Transformation

The homogeneous transformation matrix of the inverse transformation is, of course, the
inverse of the homogeneous transformation matrix of the direct transformation. Inverting
the matrices in eq. (B.26) gives the homogeneous transformation matrix

T−1 =

(
R 0

0T 1

)−1(
I t

0T 1

)−1
=

(
RT 0

0T 1

)(
I −t
0T 1

)
=

(
RT −RTt

0T 1

)
(B.28)

that represents the inverse transformation, because multiplying the matrix by the ho-
mogeneous coordinates of the transformed vector(

RT −RTt

0T 1

)(
Rr + t

1

)
=

(
RTRr +RTt−RTt

1

)
=

(
r

1

)

gives back exactly the original point. Homogeneous transformation matrices are always
invertible: applying eq. (A.22) to eq. (B.26) indeed yields detT = detR det 1 = 1.

B.3.3 Reference Frames

A reference frame is completely specified through the position of its origin and the
orientation of its three coordinate axes. Reference frames are of paramount importance
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in the study of rigid body kinematics: as a matter of fact, attaching a reference frame
to a given rigid body naturally gives a convenient tool for describing its kinematics, as
the origin may be related to the body displacement while the orientation of the axes
represent the body attitude. Let RE be a reference frame: the translation vector

tE := oE =

oExoEy
oEz


describes the position of RE, while the rotation matrix

RE :=

iE jE kE

 =

iEx jEy kEz
iEy jEy kEz
iEz jEz kEz


describes the orientation ofRE. For this reason, the homogeneous transformation matrix

T E :=

(
RE tE
0T 1

)
=

(
iE jE kE oE
0 0 0 1

)
=


iEx jEx kEx oEx
iEy jEy kEy oEy
iEz jEz kEz oEz
0 0 0 1


compactly gives a full representation of RE. This matrix might be interpreted also as a
collection of the homogeneous coordinates related to the vectors defining the reference
frame: the origin is a point, so its homogeneous coordinates have scaling factor 1, whereas
the axes are directions, so their homogeneous coordinates have scaling factor 0.

Relationship between Reference Frames

Homogeneous transformation matrices are nothing but a mathematical tool to represent
tightly the combination of rotations and translations. As regard reference frames de-
scription, they may be employed to represent the rigid transformation relating reference
frames to an absolute reference frame. Sometimes, it might be necessary to describe a
reference frame with respect to another generic reference frame, which may or may not
be a preferable choice. In such a case, the homogeneous transformation matrix gives just
the representation of the relative relationship between two reference frames, that have
different roles, e.g., world frame and body frame, fixed frame and moving frame, ideal
frame and real frame, and so on.

The homogeneous transformation matrix describing the representation of a frame RF

into another frame RE is denoted as T E
F, where the subscript designates the represented

frame while the superscript designates the representing frame. It has the following
straightforward block structure

T E
F :=

(
RE

F tEF
0T 1

)
(B.29)

where RE
F represents the orientation of the coordinate axes of RF in RE, and tEF repre-

sents the position of the origin of RF in RE.
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Change of Reference Frame

Considering that a reference frame is essentially a tool necessary for unambiguously
representing a physical object in the three dimensional space, it might be seen as a
generalisation of the concept of basis of the euclidean space. In the light of this inter-
pretation, the homogeneous transformation matrix describing the relationship between
two reference frames takes the role of a change of basis matrix.

For better clarification, even though the position of a point P in the space is an
obviously unequivocal concept, it might have two different representations rEP and rFP in
two different reference frames RE and RF respectively. If the relationship between these
frames is known, the position in frame E can be computed as

rEP = RE
Fr

F
P + tEF (B.30)

whenever the orientation and the position of RF in RE are known. Thanks to eq. (B.29),
this relation may be rewritten succinctly as

hE
P = T E

Fh
F
P (B.31)

where hE
P and hF

P are respectively the homogeneous coordinates of P in RE and RF.
Similarly, T F

E describes the representation of RE into RF thus

hF
P = T F

Eh
E
P (B.32)

is the inverse of eq. (B.31), and

T F
E = T E

F
−1

(B.33)

because, trivially, T E
F
−1
hE
P = T E

F
−1
T E

Fh
F
P = hF

P. Applying eq. (B.28) gives the relation

RF
E = RE

F
T

(B.34a)

tFE = −RE
F
T
tEF (B.34b)

between the rotation and translation blocks of eqs. (B.31) and (B.32). The same result
could have been proved also by computing rFP from eq. (B.30) as

rEP = RE
Fr

F
P + tEF ⇔ rEP − tEF = RE

Fr
F
P ⇔ RE

F
T (
rEP − tEF

)
= RE

F
T
RE

Fr
F
P ⇔

RE
F
T (
rEP − tEF

)
= rFP ⇔ rFP = RE

F
T
rEP −RE

F
T
tEF

and matching it with rFP = RF
Er

E
P + tFE.

Interpretation

Transition matrices might be interpreted as either changes of coordinates or transforma-
tions of bases. It could be interesting to extend this binary perspective to homogeneous
transformation matrices representing the relationship between reference frames: the ho-
mogeneous coordinates relation in eq. (B.31) can be seen indeed in two different ways.
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According to the so called alias or passive interpretation, T E
F gives the description

of RF in RE, for RE
F describes the relative orientation of RF in RE and tEF describes

the relative position of RF in RE. From this point of view, RF and RE are two distinct
reference frames: the position of a point is represented in a different frame, though it
does not actually change (alias means “otherwise”).

According to the so called alibi or active interpretation, T E
F gives the transformation

of RF in RE, for the matrix RE
F transforms the axes of RE into the axes of RF and tEF

transforms the origin of RE into the origin of RF. From this point of view, RE and RF

are two versions of the same reference: the position of a point is represented in the same
frame, though it does actually change (alibi means “elsewhere”).

Reference Frame Matrix Transformation

Sometimes it might be useful to apply generic operators, not necessarily rigid transfor-
mations, to 3D points: some of them can be represented as linear maps when using
homogeneous coordinates. It is better to specify the frame of representation of the ho-
mogeneous coordinates multiplied by the matrix, as left superscript: for instance, the
action of a certain operator in RE to a point with representation in RF, may be de-
scribed by either transforming the homogeneous coordinates from RF to RE and then
multiplying them by EM , i.e. as EMT E

Fh
F, or, multiplying by FM the homogeneous

coordinates and then transforming them from RF to RE, i.e. as T E
F
FMhF.

The two descriptions must be completely equivalent, hence EMT E
Fh

F = T E
F
FMhF:

since this constraint must be satisfied independently of the specific homogeneous coor-
dinates, i.e. EMT E

F = T E
F
FM , then the two fold relation

EM = T E
F
FMT F

E (B.35a)
FM = T F

E
EMT E

F (B.35b)

gives the transformation of the matrix under change of reference frame.
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