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ABSTRACT 

Rotating machineries are widely used in modern industry and their continuous functioning is 

important in several industrial processes. However, their operating conditions have become more sever, 

involving high speeds, high loads, high temperatures, etc. In consequence, fault conditions are more 

likely to occur, requiring efficient conditions monitoring techniques and a reliable fault detection 

method. 

Nowadays, fault detection is performed remotely based on industrial Internet of Things (IoT) data 

processing and Cloud computing. In the traditional fault diagnosis method, data are collected by IoT 

devices following the Nyquist sampling theorem. Then, they are sent to the Cloud where they are 

stored and analysed using data analytics techniques. In particular, vibration signals from the rotating 

devices are commonly used to evaluate the status of the machinery. In fact, many characteristic 

features can be extracted from the vibration signals that make them the usual choice for condition 

monitoring and fault detection.  

A long-term and continuous monitoring requires the transmission of a continuous stream of data to the 

Cloud. Due to the complexity of the information embedded in the vibration signals and the 

ever-growing demand for the information of complex mechanical systems, the features extracted are 

not sufficient and the transmission and storage of the raw signals must be considered. According, a 

large amount of data is acquired by multiple sensors with high sampling rates over long operation 

periods, which imposes heavy burden on the acquisition hardware, data storage and transmission 

bandwidth.  

Taking into account the scenario previously depicted, two problems must be faced for fault detection 

of industrial machinery: 

1. The computational efforts at the Cloud are burdensome; 

2. The network traffic is high due to the huge amount of data collected. 

In order to overcome the problems related to the traditional fault detection method for industrial 

machinery, in this thesis, an intelligent IoT sensing system based on compressed sensing theory and 

Edge computing is proposed.  

In such a system compressed sensing is used in order to reduce the amount of measurements acquired 

by the sensors, while keeping the acquisition process simple. In addition, the compressive sensing 

mechanism allows maintaining the features of the raw signal, at the expense of a more complex 

mechanism to recover it from the low-dimensionality measurements. At the same time, according to 

the Edge computing framework, part of the computation efforts is delegated to devices that lie near the 

sources of data and that interact with them. Thus, data may be processed in real time, the latency can 

be reduced and useless data can be discarded.  

Specifically, the compressed sensing mechanism works only in presence of a basis, so called 
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dictionary, able to sparsify the signal of interest. In the proposed approach, the basis is constructed 

from a set of training signals applying dictionary learning algorithms. The trained dictionary is chosen, 

instead of a general one, because it is constructed on a specific class of data and it generates a very 

sparse representation only for signals in the same class as the training ones. Thus, according to the 

compressed sensing paradigm, the reconstruction quality, for a signal that carries the same features as 

the training signals, will differ from the reconstruction quality for a signal with different vibration 

signature.  

This characteristic is exploited in the proposed system to generate a fault detection algorithm, based on 

the low-dimension compressed measurements. This algorithm is supposed to run at the Edge of the 

network in order to produce a preliminary detection of a change in the machine condition. As a 

consequence, the latency in the fault detection can be reduced, taking preliminary decision directly at 

the edge terminal. Moreover, considering this approach, the network traffic to the Cloud can be 

reduced. In fact, only useful data and useful information on the machinery condition will be sent to the 

Cloud to be stored and to carry out further analysis.  

In this thesis, the feasibility of this system for fault diagnosis is studied in detail. In particular, the 

study focuses on two aspects: the reconstruction capability of the compressive sensing theory for 

vibration signals when a dictionary learning approach is followed and the automatic detection of a 

fault condition at the edge terminal using the compressed measurements. 

The first part of the thesis regards the simulation of the reconstruction algorithm for different types of 

signals and the evaluation of the reconstruction quality and the achievable dimensionality reduction.  

To start with, a dictionary is trained for each class of signals in order to catch the different vibration 

signatures and then later the signals are reconstructed using the dictionary that pertains to their class. 

As expected, when a correct dictionary is used, the quality of the reconstruction increases as the 

compression ratio increases. However, since the signal is affected by noise a perfect reconstruction is 

not possible. In fact, there will always be a certain amount of noise, even if it becomes smaller when 

the number of measurements is sufficiently high.  On the other hand, the lowest bound on the 

measurements required for a satisfactory reconstruction of the original signal is determined by the 

sparsity of the signal on the sparsifying basis. For these reasons a trade-off between the desired quality 

and the desired compression rate must be considered, according to the specific application. 

Once the reconstruction performance on a correct dictionary has been verified, in the second part of 

the thesis the fault detection algorithm based on the lower-dimension compressed measurements is 

tested. 

Compared to a general dictionary, the trained dictionary improves the quality of the sparsification and 

consequent reconstruction only on its specific class and, for this reason, a specific dictionary is needed 

for each class under study. When the basis does not encompass the features of the signal to be 

reconstructed, the latter will not be sparse in the chosen basis; then, the compressive sensing 

framework fails and the reconstructed waveform will not match the original one. Accordingly, the 

simulations reveal that, if the compression ratio is fixed, there is a difference in the quality of the 
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reconstruction on the four dictionaries. This difference may be smaller when there are some shared 

features between the different classes but it can be exploited to discriminate the fault states. 

Since the compressed measurements are supposed to convey the information embedded in the raw 

signals, the proposed fault detection exploits the reconstruction differences based on the received 

compressed measurements and on a estimate of the measurements based on the reconstructed signal. It 

is obvious that, compared to the case in which the discrimination is performed on the original signal, 

the ability to recognize the state decreases. Nevertheless, the results obtained show that the detection 

algorithm based on the trained dictionaries allows to achieve a good recognition rate for the fault 

conditions while decreasing the amount of measurements transmitted. 

Even if the presented algorithm considers the availability of some signals to train the dictionary, the 

presence of an unknown state is also taken into account. This means that actually, it can be supposed 

that the dictionary is trained only when a change of state is detected. Following a principle similar to 

the one exploited for fault recognition, then, in the third part of the thesis an online fault detection 

algorithm at the edge terminal has been considered.  

Considering a bi-directional transmission link from the sensor terminal to the edge terminal, a control 

on the dimension of the data sent from the sensors can be controlled. If the edge terminal does not 

have a dictionary for the current state, it can request the transmission of the raw data needed for the 

dictionary learning algorithm. Once the dictionary is trained, a request for the compressed data can be 

sent and the sensors start the transmission of the low-dimensional measurements. Then, a new training 

request is sent only when the reconstruction quality goes below a given threshold.  

According to the result of the simulations for the states taken into account, the system can follow the 

change of state when a fault condition appears. Moreover when the new dictionary is evaluated the 

acquisition of the low-dimensional system can be started again. The dictionaries can be stored at the 

cloud and they can be used with other machines. At the point then the signals can be completely 

transmitted at the Cloud for further analysis on the conditions. 

The last part of the thesis regards a preliminary study on real signals acquired in a real factory 

environment. The study was aimed at determining the capability of the reconstruction process and the 

possibility to use a dictionary for different machines of the same type has been verified. 

Concluding, compressive sensing appears to be a promising technique to reduce the burden on the data 

transmission for condition monitoring. It allow to keep the sensor terminal simple but at the same time 

not only the features are receive at the Cloud side but also the raw signals can be reconstructed to 

extract more features. Moreover, the trained dictionary permits a preliminary detection of a fault state 

at the Edge of the network. In this way a continuous stream of data to the Cloud can be avoided and 

the processing burden at the Cloud can be reduced. Even if the trained dictionary causes a delay, it can 

be considered acceptable for systems that do not have frequent fault states. Finally, considering a 

decrease on the performances or an increase in the compression ratio, the use of the same dictionary 

for different machines of the same type can be taken into account. 
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1. INTRODUCTION 

In today’s industry, maintenance is one of the main procedures that has considerably high 
amount of cost regularly. Moreover, studies reveal that more than one third of the 
maintenance money is wasted in ineffective methods. Due to the regularity of the expense, 
condition monitoring and fault diagnosis have always gained a lot of interest from researcher 
in the industrial field and more efficient and reliable methods are always needed. [1] 
The maintenance techniques can be divided into the following three main categories:  
Ø Run-to-failure method: the system is fixed only when it is not able to operate anymore. 

Nowadays it is not used because it implies a big waste of money, since at that point the 
failure may be impossible to fix; 

Ø Preventive maintenance: the maintenance is run on a periodic basis according to a fixed 
time schedule or based on expected life statistics deducted from past data. This is usually 
applied to critical machinery but the cost is still very high since the production is 
stopped during the maintenance period even if there are no actual failures; 

Ø Predictive maintenance: the maintenance is run based on the actual monitoring of the 
machine. Sensors and measurements are used in order to acquire signals used as 
indicator of the machinery conditions. This is the most effective method since tasks are 
performed only when needed. It reduces the cost of maintenance but at the same time it 
is the most difficult approach since it requires reliable techniques. 

Even if the three methods presented are usually combined, nowadays, predictive maintenance 
plays an important role due to the availability of a huge amount of data from low-cost sensors 
installed in the factories. All this information on the machinery can be used to better plan the 
maintenance work and several advantages may be envisioned: reduce cost, prevent 
unexpected equipment failures, increase equipment lifetime, increase plant safety, optimize 
spare parts handling.  
In this thesis work, the focus will be on the condition monitoring of rotating machinery and an 
intelligent IoT system for fault detection will be analysed. 
 
1.1 Rotating machinery and bearing fault detection 
 
Rotating machinery is widely used in modern industry and their continuous function is 
important in several industrial processes. However, their operating conditions have become 
more sever, involving high speeds, high loads, high temperatures, etc. In consequence, fault 
conditions are more likely to occur, requiring a well-schedule maintenance and a reliable fault 
detection method. 
Bearings are the most critical component in rotating machinery and their operation status 
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directly affects the overall performance of the equipment. Moreover, bearing faults are often a 
warning sign of other defects in the machine. For these reasons, the availability of a good 
predictive maintenance approach is particularly important for rotating machinery. 
Vibration signals from the rotating machine are commonly used to evaluate the status of the 
machinery. In fact, many characteristic features can be extracted from the vibration signals 
that make them the usual choice for condition monitoring and fault detection. 
Features are extracted from the measured signals based on various signal processing 
techniques in time domain, frequency domain or time-frequency domain. Several techniques 
have been applied such as time-domain statistical analysis and spectral analysis, 
time-frequency and other transform domain analysis, adaptive decomposition and entropy.  
However, these extracted features may include redundant information. Therefore, some 
dimensionality reduction method has been also widely applied to identify a 
lower-dimensional space that efficiently represents the high dimensional data. Some of the 
techniques commonly used are: Principal Component Analysis (PCA), Kullback-Leibler 
divergence, feature discriminant analysis. 

All these techniques rely on Nyquist theorem for signal acquisition. 
According to the theorem the sampling rate must be at least twice 
the bandwidth of the signal in order to accurately reconstruct it. 
Then the features can be extracted from the raw data and they are 
used by some artificial intelligence method, such as Artificial 
Neural Network (ANN), Support Vector Machine (SVM) or 
k-nearest neighbour, in order to determine the fault state. In figure 1 
this traditional approach is illustrated. 
 

1.2 1.2  Cloud and edge computing 
 
Nowadays, fault detection is performed remotely based on 
industrial Internet of Things (IoT) data processing and Cloud 
computing. 
In the traditional fault diagnosis method, data are collected by IoT 
devices following the Nyquist sampling theorem. Then, they are 
sent to the Cloud where they are collected and analysed using 
analytics techniques. 
A long-term and continuous monitoring requires the transmission of 
a continuous stream of data to the Cloud. Due to the complexity of 
the information embedded in the vibration signals and the 
ever-growing demand for the information of complex mechanical 
systems, the features extracted are not sufficient and the 

Figure 1. Traditional fault 

detection method for 

industrial machinery 



11 
  

transmission and storage of the raw signals must be considered. According, a large amount of 
data is acquired by multiple sensors with high sampling rates over long operation periods, 
which imposes heavy burden on the acquisition hardware, data storage and transmission 
bandwidth.  
In addition, the measurements acquired from industrial machinery for fault detection hide 
complex non-linear relationships. Moreover, the bearing fault information will be often 
interfered or lost in the background noise after the vibration signal has been transferred 
complicatedly. Thus, the feature extraction requires complex signal processing algorithm and 
the features extracted are affected by sample size and noise, making the analysis task at the 
cloud a complex process. 
Taking into account the scenario previously depicted, two problems must be faced for fault 
detection of industrial machinery: 
 

1. The computational efforts at the Cloud are burdensome; 
2. The network traffic is high due to the huge amount of data collected. 

 
These two problems can be mitigated considering a decentralized approach. In this sense, 
Edge Computing may come to the aid.  
This methodology can be defined as a set of techniques to optimize cloud computing systems 
by pushing some portion of an application, its data, or services away from centralized nodes 
(“the core”) to the other logical extreme (“edge”) of a network. Figure 2 shows the 
complementary approach between Cloud Computing and Edge Computing. In the Edge 
Computing concept, part of the computation efforts is delegated to devices that lie near the 
sources of data and that interact with them. Thus, data may be processed in real time; the 
latency can ben reduced and useless data can be discarded.  
Even thought it represents an obvious solution to decrease the burden on the Cloud, Edge 
Computing by itself cannot reduce the burden on the network caused by transmitted data. In 
fact, as depicted in figure 2, with the presence of billions of sensors and devices, the amount 
of data that pass through the network is still huge. Thus, in addition, it must be considered a 
compression technique that can reduce the transmitted data, keeping the embedded 
information consistent. 
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Figure 2. Cloud computing and edge computing 

 

1.3 Intelligent IoT sensing 
 

A system based on the Edge Computing framework is considered in order to try to overcome 
the problems related to the traditional fault detection method for industrial machinery.  
In such a system compressed sensing is used in order to reduce the amount of measurement 
acquired by the sensors keeping the acquisition process simple. In addition, the compressive 
sensing mechanism allows maintaining the features of the raw signal, at the expense of a more 
complex mechanics to recover it from the low-dimensionality measurements.  
The compressed sensing mechanism works only in presence of a basis, so called dictionary, 
able to sparsify the signal of interest. In the considered system, the basis is constructed from a 
set of training signals applying dictionary learning algorithms. As the dictionary is 
constructed on a specific set of signals, then its sparsifying capability will be different on 
different class of signals. Then, according to the compressed sensing paradigm, the 
reconstruction quality for a signal in the same class as the training ones will differ from the 
reconstruction quality for a signal with different vibration signature. 
Combining these two techniques, an intelligent IoT sensing system for condition monitoring 
and fault detection is envisioned. The entire system is illustrated in figure 3, where the three 
parts of the system are described: sensor terminal, edge terminal and cloud. 
At the sensor terminal, the signal is acquired using traditional acquisition methods that follow 
the Nyquist theorem. Then, the dimensionality of these signals is reduced following 
compressive sensing theory and the low-dimensional signals can be transmitted at the edge 
terminal. Only portions of the high-dimensional signals acquired are sent as they are at the 
edge terminal, as training signals, to construct the dictionary.  
Once the dictionary has been trained, it can be used to guarantee a high-quality reconstruction 
of the sensors data. At the same time, part of the efforts to determine the status of the 
machinery can be transferred at the edge terminal using the low-dimensional data or the 
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reconstructed one. As a consequence, the latency in the fault detection can be reduced, taking 
preliminary decision directly at the edge terminal.  
Finally, useful data and useful information on the machinery condition are sent to the cloud to 
be stored and to carry out further analysis. When a different condition is determined, the 
previous dictionary is stored on the cloud and new high-dimensional signals are acquired 
from the sensors to construct a dictionary for the new state. 
In the system described, two processes can be considered for fault detection that differs from 
the traditional one showed in figure 1. On one side, the signal can be reconstructed and a 
traditional fault detection method may be used on the reconstructed signal. This approach is 
depicted on the left side of figure 4. On the other hand, the dictionary may be used to 
determine the state of the machinery at the edge and only valuable information can be sent to 
the cloud for further analysis. This second approach is depicted on the right side of figure 4. 
In this thesis, the feasibility of this system for ball bearing fault diagnosis will be studied in 
detail. In particular, the study will focus on two aspects: the reconstruction capability of the 
compressive sensing theory when a dictionary learning approach is followed and the 
automatic detection of a fault condition at the edge terminal using the compressed 
measurements. 
The remainder of this thesis is organized as follow. Chapter 2 describe the theoretical 
foundation for compressive sensing acquisition and dictionary learning algorithms. Chapter 3 
describes the target signals utilized for machinery monitoring and the reconstruction 
performance. Chapter 4 analyses the considered algorithm for fault detection based on 
different trained dictionary for different class of signals. Chapter 5 considers the online 
detection of an unknown state based on the reconstruction performance on the current state 
dictionary. Finally, chapter 6 briefly describes the experiment conducted in a real 
environment as a preliminary analysis of the compressive sensing approach for vibration 
signals. 
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Figure 3. Block diagram of the proposed intelligent IoT sensing system 

 
Figure 4. Fault detection process using compressive sensing  
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2. THEORETICAL BACKGROUND 

In this chapter the theoretical foundations of compressive sensing and dictionary learning will 
be presented in order to understand how these techniques can be applied for predictive 
maintenance and condition monitoring. 
The following definitions provide a general description of their concepts: 

Ø Compressive sensing: A high dimensional signal can be recovered by means of only 
few linear measurements, provided that the signal is sparse or nearly sparse; 

Ø Dictionary learning: Representation method which aims at finding a sparse 
representation of the input data in the form of a linear combination of basic elements 
as well as those basic elements themselves. 

 
2.1 Compressed sensing 
 
Conventional approaches to acquisition and reconstruction of signals, images, video and 
many other types of data, follow the basic principle of the Nyquist sampling theorem. This 
theorem demonstrates that a general continuous-time band limited signal can be exactly 
recovered from a set of uniformly spaced samples. The necessary condition is that the 
samples must be acquired at the so-called Nyquist sampling frequency f!, defined as follow  
 𝑓! ≥ 2𝐵 ( 1 ) 

where B is the bandwidth of the signal that is the highest frequency present in the signal.  
The Nyquist theorem is so fundamental that nowadays almost every signal acquisition system 
is based on its principles. Nevertheless, this acquisition system may present two major 
problems in some applications: the resulting f! might be so high that a massive number of 
samples will be acquired, and it might be complex or even impossible to design a device 
capable to work at the desired f!. Moreover, the efforts to acquire a huge amount of samples 
are often useless, since the necessary information that must be conveyed can be compressed. 
Therefore, it is usual to add a compression stage after the sampling stage. This process leads 
to a paradox: massive amounts of data are collected at the acquisition stage but they are, in 
large part, discarded at the compression stage to facilitate storage and transmission.  
Compressed Sensing (CS) is a framework that allows overcoming - under certain hypothesis - 
the limitations that arise when sensing data under a Nyquist theorem-based approach. As 
Manuel Candès asserts, CS performs as “if it were possible to directly acquire just the 
important information about the object of interest” [2]. Rather than first sampling at a high 
rate and then compressing the sampled data, CS allows to find a way to directly sense the data 
in a compressed form so that - at least in principle – it is possible to obtain super-resolved 
signals from just a few sensors. 
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CS relies on two basic principles: the sparsity of the signal that must be acquired and the 
incoherence of the sensing process [2]: 
 

Ø Sparsity: the information content of a signal can be expressed using only the values 
and locations of the largest coefficients of the signal representation on a given basis. 

Ø Incoherence: generalization of the uncertainty principle. While the signal of interest 
has a sparse representation in the given basis, it must be spread out in the acquisition 
domain. This means that the sensing waveforms have an extremely dense 
representation in the basis domain. 

 
The CS is a well-established theory that came out from the work of Candès, Romberg and 
Tao and of Donoho. They showed and demonstrated that a finite-dimensional signal, that has 
a sparse or compressible representation on a certain domain, can be acquired – in a signal 
independent way – using a simple and efficient acquisition protocol and it can be recovered 
from a small set of its linear, incoherent measurements. [3] [4] [5] [6] [7] [8] [9] 
 

 
Figure 5. Established paradigm for data acquisition [9] 

 
Figure 6. Compressive sensing paradigm for data acquisition [9] 

 

In the following of this paragraph a brief overview of the CS theory will be given. 
First of all, normed vector spaced will be reviewed. Secondly, sparsity and incoherence will 
be widely explained, in order to understand the theoretical guarantees on the reconstruction of 
the original signal. Finally, the reconstruction algorithms will be explained. [2] 
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2.1.1 Vector space 

 
Signals generated from common physical systems can be modelled as vectors lying in an 
appropriate vector space. Typically, it is useful to consider a normed vector space, i.e. a 
vector space in which a norm is defined.  
The general definition of l! norm for p ∈ [1,∞) of a signal 𝐱 in the signal vector space is 
the following: 
 

𝐱 ! =
x! !

!

!!!

!
!
, p ∈ [1.∞)

max
!!!,!,…!

x! , p = ∞
 

 
( 2 ) 

In some cases, it is also convenient to define a norm for 0 < p < 1. In this way, we obtain a 
quasinorm, since it fails to satisfy the triangle inequality.  
A so-called l! norm is also defined in the following way: 
 x ! = supp x  

supp x = i: x ≠ 0  

 
( 3 ) 

Although this quantity does not satisfy the properties of a norm, this abuse of terminology is 
frequently used. Figure 7 shows a pictographic representation of the most used norm in the 
compressive sensing theory. 

 
Figure 7. Unit spheres in ℝ! for the 𝑙! norms with 𝑝 = 1,2,∞, 1 2 [10] 

 

We can also consider the standard inner product in ℝ!, defined as 
 

< x, z >= z!x = x!z!
!

!!!
 ( 4 ) 

A fundamental concept in the theory of vector spaces is the one of basis. A basis for the 
vector space ℝ! is a set ψ! !!!!  of vectors of the space with the following properties: 
 

Ø the vectors span the entire space ℝ!; 
Ø the vectors are linearly independent. 

 
This implies that each vector in the space can be uniquely represented as a linear combination 
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of the vectors in the basis. In particular, for each vector x ϵ ℝ!, there exist unique coefficients 
c! !!!!  s.t. 

 
x = Ψc = c!ψ!

!

!!!
 

( 5 ) 

If the basis is orthonormal, that is 
 

< ψ!,ψ! >< ψ!,ψ! >=
1, i = j
0, i ≠ j 

 
   ( 6 ) 

then the coefficients can be easily calculated as follow 
 c! =< x,ψ! > 

c = Ψ!x 
 

   ( 7 ) 

It is useful to generalize the concept of a basis considering a set of possibly linearly dependent 
vectors. Such a set of vectors is usually called frame. Frames allow for a better representation 
of a signal due to their redundancy: for a given signal x the coefficients c! !!!!  will not be 
unique anymore. 
Note that, in the context of sparse representation theory, basis and frames are usually referred 
as dictionary and overcomplete dictionary respectively, while the basis or frame vectors are 
called atoms. 
 
2.1.2 Sparse model 

 
The information contained in a high-dimensional signal is frequently small compared to its 
actual dimensionality. For this reason, such signals can often be well approximated using far 
fewer atoms of a dictionary compared to the signal support. If this approximation is exact the 
signal is said to be sparse; if the approximation is not exact the signal is said to be 
compressible. 
Mathematically, a signal x ϵ ℝ! is k-sparse if 
 x ! ≤ k ( 8 ) 

Usually, the signals of interest in real applications are not sparse by themselves. However, 
they can admit a sparse representation in some basis 𝛹. In this case, we will express the 
signal as x = Ψc and it will be k-sparse if 
 c ! ≤ k ( 9 ) 

In the context of the following discussion, we let 
 Σ! = x: x ! ≤ k  ( 10 ) 

be the set of all k-sparse signals. 
Actually, few real-world signals are precisely sparse; rather they are compressible. 
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It is possible to define a compressible signal considering the rate of decay of its coefficients. 
Specifically, consider an ordered version of the coefficients of a signal in a given sparsifying 
basis, that is c! ≥ c! ≥ ⋯ ≥ c! . Then, a signal is said to be compressible if its 
coefficients obey a power law decay, that is there exist constants C!,q > 0 s.t. 
 c! ≤ C!i!! ( 11 ) 

The larger q, the more compressible the signal is. Compressible signals can be accurately 
represented by k ≪ n coefficients with a negligible error. 
Since the choice of which dictionary atoms are used can change according to the specific 
signal considered, sparsity is a highly nonlinear model. In fact, a linear combination of two 
k-sparse signals will generate a signal that may not be k-sparse anymore, since their supports 
may not coincide.  
Figure 8 shows an example of wavelet approximation. The wavelet transform represent a 
sparsyfing basis Ψ. Even if image are not exactly sparse in the basis, they are compressibile 
and the approximation on the coefficients results very similar to the original image. 
In the theory of compressed sensing, we will consider that it will always exist a sparsifying 
basis; that is a dictionary of atoms ψ! !!!!  that generate a space in which the considered 
signal is sparse or compressible. Then, in the following of this thesis we will see how to 
choose this sparsifying basis. 

 
Figure 8. Wavelet approximation [2] 

 

2.1.3 The sensing problem 
 

Let consider x ∈ ℝ! a discrete signal, that is sparse or compressible. For this signal, the 
sensing mechanism of a compressed sensing framework can be described in the following 
way: 
                            y = Φx         i = 1… q 

y! =< Φ!, x > 
( 12 ) 

Where y!  for i = 1… q  represent the q  acquired measurements and Φ ∈ ℝ!"#  is the 
sensing matrix.  
More precisely, x may also be the sparse representation on a given basis Ψ of a non-sparse 
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signal f ∈ ℝ!; then it will result f = Ψx, in the sense that it is possible to approximate the 
signal f with is sparse representation x. In this last case the sensing mechanism will be 
described in a slightly different way: 
 y = Φf = ΦΨx ( 13 ) 

Where Ψ ∈ ℝ!"! is the sparsifying basis or dictionary.  
Then supposing that the signal of interest is sparse in some basis we can work with the 
general model: 
 y = Ax ( 14 ) 

considering Aϵℝ!"#  
Obviously, in the context of compressive sensing, we are interested in having q ≪ n; where 
n is the dimensionality of the signal and it is in general large, while q is typically much 
smaller than n;  
In this scenario, two main questions arise: 

Ø How should we design the sensing matrix in order to be able to acquire all the relevant 
information contained in x? 

Ø How can we recover the original signal x from the low-dimension measurements? 
First of all, we will define a number of properties that the sensing matrix should satisfy to 
ensure feasibility of the reconstruction. Secondly, we will describe the algorithms used to 
recover the original high-dimensional signal from the low-dimensional measurements. 
 
2.1.4 Sensing matrices 

 
Null space condition 
If we want to be able to recover all sparse signals x from the measurements y, then for any 
x, x′ϵΣ! it must be Ax ≠ Ax′, otherwise it would be impossible to distinguish x from x’ based 
only on y.  
More formally, we can define the null space of A as  
                         𝒩 A = z:Az = 0         ( 15 ) 

Then A uniquely represents all xϵΣ! iif 𝒩 𝐴  contains no vectors in Σ!". 
The most common way to characterize this property is known as sparks. 
 
DEFINITION 1.1 The spark of a matrix A is the smallest number of columns of A that are 
linearly dependent. [11] 
 

This definition lead to the following guarantee: 
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THEOREM 1.1 For any vector yϵℝ! there exists at most one signal xϵΣ! s.t. y = Ax iif 
spark A > 2k [11] 
COROLLARY 1.1 Since spark A ∈ [2, q+ 1] then Theorem 1.1 asserts that the theoretical 
number of measurements necessary to obtain a unique solution is q ≥ 2k. 
Theorem 1.1 holds for exactly sparse signals but it does not guarantee the recovery for 
compressible signals. For the latter, we have to guarantee that 𝒩 A  does not contain any 
vectors that are too compressible in addition to sparse vectors. 
Mathematically, defining T ⊂ {1,2,… ,n} as a subset of indices and T! = {1,2,… ,n} ∖ T.  
The, we can define the Null Space Property (NSP) 
 
DEFINITION 1.2 (NSP) A matrix A satisfies the NSP of order k if there exists a constant 
C>0 s.t.  
 

h! ! ≤ C
h!! !

k
 ( 16 ) 

for all h ∈𝒩(A) and for all T such that T ≤ k. 
Generally speaking, the NSP says that the vectors in the null space of A should not be too 
concentrated on a small subset of indices.  
 
Restricted isometry property 
The NSP is a necessary and sufficient condition to guarantee the recovery of a sparse or 
compressible signal. Nevertheless, it does not take into consideration the noise. 
In case of corrupted measurements, Candès and Tao introduced the so called Restricted 
Isometry Property (RIP) [12]. 
 
DEFINITION 1.3 (RIP) A matrix A satisfies the RIP of order k if for all xϵΣ! there exists a 
δ!ϵ 0,1  s.t. 
 1− δ! x !

! ≤ Ax !
! ≤ 1+ δ! x !

! ( 17 ) 

Generally speaking, if a matrix A satisfies the RIP of order 2k, it means that it approximately 
preserves the distance between any pair of k-sparse vectors. In fact, it means that the distance 
between any x!, x!ϵΣ! will be preserved by the corresponding measurements since 
 1− δ!" x! − x! !

! ≤ Ax !
! ≤ 1+ δ!" x! − x! !

! ( 18 ) 

This property assures that, if the measurements matrix satisfies the RIP, then the measurement 
process will be robust against noise. 
Moreover, it is also possible to consider how many measurements are necessary to achieve 
the RIP. If we only focus on the dimensions of the problem (n, m and q) then we can 
determine a lower bound on the number of measurements needed. 
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THEREOM 1.2 Let Aϵℝ!"# be a matrix that satisfies the RIP of order 2k with constant 

δ!" ∈ (0,
!
!
], then 

 
q ≥ Cklog(

𝑛
𝑘) 

( 19 ) 

Where C = !
!
log( 24+ 1) ≈ 0.28 

Coherence 
The spark, NSP and RIP provide theoretical guarantee on the reconstruction of the original 
signal. Nevertheless, it is typically difficult to determine whether a general matrix A satisfies 
the above conditions. In many cases, it is preferable to define a property of A that is easily 
computable. For this reason, the coherence of a matrix is generally used in the CS framework 
[11]. 
 
DEFINITION 1.4 (COHERENCE) The coherence of a matrix A, µ A , is the largest absolute 
inner product between any two columns 𝑎! and 𝑎! of A: 
 

𝜇 𝐴 = 𝑚𝑎𝑥
!!!!!!!

< 𝑎! ,𝑎! >
𝑎! ! 𝑎! !

 
( 20 ) 

It can be shown that µ A ∈ !!!
!(!!!)

, 1  where the lower bound is called Welch bound. 

Moreover, if n ≫ q, the then µ A ∈ !
!
, 1 . 

The coherence is useful because it can be related to the spark and the RIP.  
 
LEMMA 1.1 For any matrix A 
 

spark 𝐴 ≥ 1+
1

µ A  
( 21 ) 

From THEOREM 1.1 it can be deduced that to reduce the number of measurements required 
to recover the signal, spark(A) must be high so µ A  must be as low as possible. 
Moreover, merging THEOREM 1.1 with LEMMA 1.1 the following condition on A 
guarantees the uniqueness of the solution 
 
THEOREM 1.3 If 
 

k <
1
2 1+

1
µ A  ( 22 ) 

then for each measurements vector y ∈ ℝ! there exists at most one signal xϵΣ! such that 
y = Ax. 
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Theorem 1.7 together with the Welch bound, provides an upper bound on the level of sparsity 
k that guarantees uniqueness using coherence: k = O( 𝑞).  
Similarly, the coherence can also be related to the RIP 
 
LEMMA 1.2 If A has unit-norm columns and coherence µ = µ A , then A satisfies the RIP 

of order k with 𝛿! = (k− 1)µ for all k < !
!
. 

In the case in which A = ΦΨ, we consider the mutual coherence  µ Φ,Ψ  
 
DEFINITION 1.5 (MUTUAL COHERENCE) The mutual coherence  µ Φ,Ψ  is the 
maximum inner product between any two columns of Φ and Ψ. 
 

µ Φ,Ψ = max
!!!!!!!

< ϕ!,ψ! >
ϕ! ! ψ! !

 
( 23 ) 

2.1.5 Sensing matrices construction 
 
Summarizing the results from the previous section, we are searching for a matrix A that has 
high spark, low coherence and satisfies the RIP. As stated at the beginning of this paragraph, 
incoherence plays a major role in the robust reconstruction of the original signals.  
CS is mainly concerned with low coherence pairs. Examples of such a pair are: 
 

Ø the canonical spike basis ϕ! t = δ t− k  as sensing matrix and the Fourier basis 

ψ! =
!
!
e!!"!!! ! as sparsifying matrix that are maximal incoherent in any dimension. 

Ø the noiselets as sensing matrix and the wavelets as sparsifying matrix; 
 
These constructions make use of well know sparsifying basis that achieve very good results in 
many domains. Then in the construction of the sensing basis we need to take into account the 
specific sparsifying basis used in order to guarantee the conditions on the reconstruction.  
Nevertheless, if sensing with incoherent systems is good, then efficient mechanisms have to 
acquire correlations with random waveform. This is the reason why early works in CS has 
promoting the use of random matrices. 
It can be demonstrated that, a random matrix A whose entries are independent and identically 
distributed (i.i.d.), with continuous distributions, have spark A = q+ 1 with probability 
one. Moreover, it can also be shown that if the entries are chosen to a Gaussian, Bernoulli, or 
more generally any sub-gaussian distribution, then the resulting matrix will satisfy the RIP 
with high probability. 
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This means that random matrices guarantee the reconstruction of the original signal. 
Moreover, they have many additional benefits. First, it can be shown that, for random 
constructions, it is possible to recover the signal using any sufficiently large subset of the 
measurements. Thus, the system can be robust against any lost of corruption of small portions 
of the measurements. Secondly, as it will be explained in the next paragraph, the sparsifying 
matrix can also be adapted to the specific signal. In these cases, universality is required; that 
is, the reconstruction must be guaranteed independently from the actual sparsifying basis used. 
It happens that, random matrices have this useful property. In fact, they result to be maximally 
incoherent with almost all sparsifying basis. This means that a random matrix will guarantee 
the reconstruction independently from the domain in which the signal is sparse, if the number 
of measurements is sufficient.  
However, it worth to notice that there are some drawbacks of using random matrices. In fact, 
a fully random matrix is sometimes impractical to build in hardware. For this reason, they are 
usually replaced by a pseudorandom approach; though it can be very resource intensive, for 
large dimension signals. 
Despite these disadvantages, in the following it will be assume the usage of a random 
gaussian matrix. For the purpose of this thesis, in fact, the universality property of the random 
matrices plays an important role. Moreover, it allows concentrating the attention on the 
reconstruction quality of the signal using a simple mechanics for the acquisition.  
Obviously, the sensing matrix is one of the key theoretical aspects of compressive sensing. 
For this reason, many studies have been done on its construction and it is still an open field of 
study.  
This aspect falls outside the purpose of this thesis, for this reason it will be neglected in this 
overview. Nevertheless, it can represent an open path for further improvement of the present 
work.  
 
2.1.6 Signal recovery 
 
The reconstruction problem implies the solution of the under-determined system of equations 
 𝑦 = 𝐴𝑥 ( 24 ) 

Given the measurements y and the knowledge that our original signal is sparse or 
compressible, the natural way of attempt to recover x is by solving an optimization problem. 
The different approaches that can be followed differ from the objective function considered. 
Common approaches are summarized below: 

Ø Minimum 𝑙! norm reconstruction; the problem to be solved is of the form  
 𝑥 = min

!"ℝ!
𝑥 !  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥𝜖ℬ(𝑦) 

( 25 ) 
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where ℬ(𝑦) ensure that 𝑥 is consistent with the measurements y. In particular we 
will consider two cases: 
Ø Absence of noise: ℬ 𝑦 = 𝑥:𝑦 = 𝐴𝑥  
Ø Presence of noise: ℬ 𝑦 = 𝑥: 𝐴𝑥 − 𝑦 ! ≤ 𝜀  

This optimization problem leads to the reconstruction of the original K-sparse signal 
with 2K random measurements and it is possible to analyze theoretically its 
performance. Unfortunately, the objective function considered in this case is 
non-convex and for a general matrix A it results in a NP-hard problem; 

Ø Minimum 𝑙! norm reconstruction; the problem to be solved is of the form 
 𝑥 = min

!"ℝ!
𝑥 !  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥𝜖ℬ(𝑦) 

( 26 ) 

The main advantage of this approach is the simplicity of the solution but the solution 
is almost always an incorrect one. In fact, in this case we are looking for a sparse 
solution but we will find the least energy one. In the case in which the original signal 
is not sparse by itself, the sparsest solution does not necessarily have the least energy. 
For this reason, it may differ from the exact solution given by the l!  norm 
reconstruction. 

Ø Minimum 𝑙! norm reconstruction; the problem to be solved is of the form 
 𝑥 = min

!"ℝ!
𝑥 !  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥𝜖ℬ(𝑦) 

( 27 ) 

This approach corresponds to a convex relaxation of eq 25. Even if it is not 
immediately obvious, the solution to eq. 27 will be similar to the solution to eq 25. 
Even if, a theoretical explanation will be skipped in this context, figure 9 and figure 8 
show a geometric interpretation of the usage of 𝑙!  norm and the accurate 
reconstruction compared to the usage of 𝑙! norm. It is also possible to show that the 

exact solution can be recovered by q ≥ Cklog(!
!
) measurements when a random 

sensing matrix is used. Moreover, provided that ℬ(𝑦) is convex, this approach is 
computationally feasible.  

 
Figure 9. Best approximation of a point in R2 by a one-dimensional subspace using 𝑙! norms for 𝑝 = 1,2,∞, 1 2 [10] 
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The 𝑙!  norm represents a powerful tool for recovering sparse signal. The power of 𝑙! 
minimization is that not only will it lead to a probably accurate recovery, but the formulation 
in eq. 27 is a convex optimization problem for which there exist efficient and accurate 
numerical solvers. 

 

Figure 10. Difference in the reconstruction between 𝑙!-norm and 𝑙!-norm 

 

While the optimization problem could be solved using general-purpose convex optimization 
software, there now also exist several algorithms designed to explicitly solve this problem in 
the context of CS. These works have primarily focused on the case where ℬ 𝑦 = 𝑥: 𝐴𝑥 −
𝑦 ! ≤ 𝜀 . However, many works in literature have also considered the unconstrained version 
of this problem that is:  

 𝑥 = min
!"ℝ!

1
2
𝐴𝑥 − 𝑦 ! + 𝜆 𝑥 ! ( 28 ) 

Even if, convex optimization techniques are powerful methods for computing sparse 
representation, there is also a variety of greedy algorithms for solving such problems. [13] 
[14] 
Greedy algorithms rely on iterative approximation of the signal coefficients and support, 
either by iteratively identifying the support of the signal until a convergence criterion is met, 
or by obtaining an improved estimate of the sparse signal at each iteration that attempts to 
account for the mismatch to the measured data. 
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Some greedy method can actually be shown to have performance guarantees that match those 
obtained for convex optimization problems. However, the techniques required to prove 
performance guarantees are substantially different. 
One example of a greedy algorithm used for sparse signal recovery is the Orthogonal 
Matching Pursuit (OMP) [15]. It begins by finding the column of A most correlated with the 
measurements. Then, it repeats this step by correlating the columns with the signal residual, 
which is obtained by subtracting the contribution of a partial estimate of the signal from the 
original measurements vector.  
The algorithm is formally defined in figure 11. In this definition, supp () finds the location of 
non-zero values in a vector while 𝐻!(𝑥) denotes the hard thresholding operator on x that sets 
all entries to zero except for the k entries of x with largest magnitude. The stopping criterion 
can consist of either a limit on the number of iterations, that also limits the number of 
non-zeros in 𝑥, or a requirement that 𝑦 ≅ 𝐴𝑥 in some sense. 
Other examples of greedy algorithms used for CS reconstruction are: Matching Pursuit, 
Gradient Pursuit, Iterative Thresholding. [14] 

 
Figure 11. OMP algorithm for compression sensing reconstruction 

 

2.2 DICTIONARY LEARNING 
 
The theoretical results described in the previous section are correct under the hypothesis of 
sparsity of the original signal. Since the compression sensing theory is completely founded 
upon the sparsity hypothesis, crucial points are the sparse problem and the dictionary 
selection.  
Considering the general frame in (1.13), the original signal Y ∈ ℝ! must be represented as  
 Y = Ψx ( 29 ) 

where x ∈ ℝ!  is the sparse representation of Y and Ψ ∈ ℝ!"#  is the dictionary or 
sparsifying basis. 
In this context, given the original signal Y, two problems must be faced: 
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Ø How to select the dictionary Ψ; 
Ø Given a dictionary Ψ how to calculate the sparse representation x. 

 
In order to better understand the problem, Figure 12 represents a pictorial description of the 
sparsifying process. 

 
Figure 12. Sparse representation using dictionary 𝛹  

 
2.2.1 Sparse representation 

 
If the dictionary Ψ is given, then eq. 29 represents a system of linear equations to be solved 
in order to find the representation of the signal on the given dictionary. If K = n the 
representation of signal 𝑌 on the dictionary is unique. Although this case is useful to 
univoquely represent the signal, in the framework of sparse representation, it is much more 
interesting to consider two other cases: 
 

Ø Undercomplete dictionary: K < n; 
Ø Over-complete dictionary: K > n; 

 
In these conditions, the system of linear equation in eq. 29 is undetermined and it does not 
exist a unique solution to the representation problem. This allows us to seek the most 
informative representation of the signal, promoting sparsity. 
If we define the dictionary atoms as ψ!  i = 1,… ,K, then the representation will be sparse if 
only few atoms of the dictionary Ψ will be actively used in the linear combination. 
The problem of finding the atoms that represent the signal can be formulated as an 
optimization problem in the following way: 
 min

!
x ! subject to f−Ψx ! ≤ ε 

( 30 ) 

If we compare eq. 30 with eq. 25, it is clear that they represent two faces of the same problem. 
That is why the techniques used to solve this NP-hard problem are actually the same. In 
particular, the two classes of algorithms seen in the previous section will be used. The first 
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includes greedy algorithm such as OMP. In the second group, we find algorithms based on 
convex relaxation method such as LASSO.  
The performance of the algorithms in terms of approximation quality and sparsity level 
depends not only on the signal but also on the dictionary. In fact, considering a specific class 
of signals, not all the dictionaries provide the same approximation performance. There exist 
dictionaries that are more able to describe the intrinsic nature of the class of signals, leading 
to higher sparse solutions.  
Since the compression sensing reconstruction quality is tightly linked to the sparsity level of 
the signal – according to theorems highlighted in the previous section – then the dictionary 
itself plays a major role in the compression sensing framework.  
 
2.2.2 Dictionary learning 

 
Designing the dictionary in order to fit the structure in the original data is one of the most 
challenging tasks in the theory of sparsness.  
Earlier works made use of a predetermined set of basis function, such as Fourier transforms, 
discrete cosine transforms (DCT), wavelets, curvelets, etc. These dictionaries are simple, 
always lead to fast algorithms and they can be used for many different kinds of signals. 
However, their performances largely depend on how adaptive the atoms are to the signal 
structure. For this reason, when dealing with more complex signal data, it is often difficult to 
generate a very sparse representation and the representation error would be very large.  
In order to overcome these problems, another approach for designing the dictionary is to 
adapt the dictionary to the data set considered. In this second case, called dictionary learning, 
the dictionary is designed according to a learning process from a set of sample signals. Such a 
dictionary learning process can capture the inherent characteristic of the signal regardless of 
any prior knowledge. Moreover, it can reduce the representation sparsity and the 
representation error, since it is fitted on the class of signal used in the training phase. This 
means that the dictionary is not general anymore but it can only represent with high 
performances a specific class of signal. The drawback of this second type of dictionary is that 
the learning process is usually very slow compared to the fast algorithms available for general 
purpose dictionaries. 
Following this two main branches, in the past decades many techniques have been developed 
to construct the sparsifying basis. An overview of these methods can be found in [16] [17].  
In the following of this thesis, the advantages provided by a learned dictionary will be 
exploited. For this reason, in this section, the most frequently used learning techniques will be 
described; that is the Method of Optimal Directions (MOD) [18] and the K-singular value 
decomposition (K-SVD) [19]. First of all, a mathematical formulation of the dictionary 
learning problem is needed. 
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Given a set of training data {Y!}!!!! ∈ ℝ!, from the particular class of signals at hand, that are 
organized into a matrix Y ∈ ℝ!"#, the dictionary learning algorithm seek to find a dictionary 
Ψ ∈ ℝ!"#, in such a way that all training signals have a sufficiently sparse representation in it, 
and the sparse representation itself X ∈ ℝ!"#, where {X!}!!!! ∈ ℝ! represents the sparse 
representation coefficient vector corresponding to signal 𝑌!. 
The problem can be formulated as an optimization problem of the form: 
 Ψ,X = argmin

!,!
Y−ΨX !

!  s. t.∀j = 1,… ,M x! !
≤ k ( 31 ) 

The above problem is not convex with respect to the pair (Ψ,X) and, for this reason, it is 
difficult to solve. The usual approach that many dictionary learning algorithms follow 
consists in dividing the problem in two steps and iteratively perform them until a stopping 
criterion is met. 
The two steps are: 
 

1) Sparse representation:  
 X(!!!) = argmin

!
Y−Ψ(!)X

!
!  s. t.∀j = 1,… ,M x! !

≤ k  
( 32 ) 

The dictionary is fixed from the previous iteration and the sparse representations of all 
the training signals are computed using the current dictionary.  

2) Dictionary update: 
 Ψ(!!!) = argmin

!
Y−ΨX(!!!)

!
!   

( 33 ) 

The dictionary is updated to reduce the representation error of step 1. 
 
Since Step 1 is an ordinary sparse coding problem that can be solved with many different 
sparse coding algorithms [14], the main difference between many dictionary learning 
algorithms is Step 2. 
 
K-SVD 
K-SVD is a highly efficient dictionary learning method that exploits the Singular Value 
Decomposition (SVD) to update the dictionary. In the dictionary update stage, only one atom 
is updated at a time. Moreover, while updating each atom, the non-zero entries in the 
associated row vector of X are also updated. This leads to a matrix rank-1 approximation 
problem which is then solved via SVD operation.  
As we said previously, the general approach followed consists of two steps. In the K-SVD 
algorithm, Step 1 makes use of the OMP algorithm described in figure 11, in order to find the 
sparse representations of the training signals. 
Instead, in order to update the dictionary, eq 33 can be rewritten in the following way:  
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Y−ΨX !

! = Y− ψ!x!!
!

!!! !

!

= Y− ψ!x!!

!!!

− ψ!x!!

!

!

= E! − ψ!x!! !
!
 

( 34 ) 

Where 𝐸! means the error for all signal samples when the atom 𝜓! is removed. At this 
point, we may be tempted to perform SVD on 𝐸! directly and find alternative ψ! and x!! 
to reduce the error. However, a step must be done before performing SVD to be sure the 
updated x!! is not filled. 
A variable ω! is defined as: 
 𝜔! = 𝑖|1 ≤ 𝑙 ≤ 𝐾, 𝑥!!(𝑖) ≠ 0   ( 35 ) 

The sample signals Y!  that use the atom ψ! can be indexed by ω! and the positions of 
non-zero entries in x!! can be determined by parameter i in eq 35. Defining Ω! as a matrix 
of sizes m, ω! , with ones on the ω! i , i th entries and zeros elsewhere. The 
multiplication x!! = x!!Ω! changes the length of x!! to ω!  by removing the zero entries. 
In the same way we obtain the matrices Y!! = Y!Ω! of sizes n, ω!  and E!! = E!Ω! of 
sizes n, ω!  only include the sample signals or error columns that use the atom ψ! . 
Therefore, we define: 
 𝐸!Ω! − 𝜓!𝑥!!Ω! !

! = 𝐸!! − 𝜓!𝑥!! !
! ( 36 ) 

Figure 13 visually explains the procedure. 
At this point, we can process E!! = UΔV! using SVD. In this way, the atom ψ! can be 
changed to the first column of U and x!! to the first column of V multiplied by Δ(1,1). 
All the atoms in Ψ updated one by one and the iteration of sparse coding and dictionary 
learning is repeat until converge or the number of iteration reached.  
 

 
Figure 13. KSVD algorithm procedure [20] 
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3. COMPRESSED SENSING RECONSTRUCTION OF 

ROLLING ELEMENT BEARING VIBRATION SIGNALS 

 
3.1 Rolling element bearings and vibration signals  

 
Rolling elements bearing of different sizes are widely used in machinery in variety of 
different industrial applications: in production line, in electric motors, pumps, and gearboxes.  
In general, rolling element bearings are designed to carry axial and/or radial load while 
minimizing the rotational friction by placing rolling elements such as cylinders or balls 
between inner and outer races.  
There are different types of rolling element bearings. Among all of them, ball bearings are the 
cheapest, since balls are used instead of cylinders in their construction. Ball bearings have 
smaller sizes and limited load carrying capacity compared to the other rolling element 
bearings, but they can support both axial and radial loads. [21] 
There are also different types of ball bearings such as thrust, axial, angular, contact and deep 
groove ball bearing. In the following of this thesis, the latter will be considered and it is 
depicted in figure 14. 

 
Figure 14. Typical deep-grove ball bearing and its main elements [22] 

 

As it can be observed from figure 14, this type of ball bearing consists of an inner ring, an 
outer ring, balls and a cage holding the balls apart from each other. In most cases, the outer 
ring is held stationary while the inner ring and the balls rotate. 
There are several types of defects that can occur on a ball bearing including, mechanical 
damage, crack damage, lubrificant deficiency and corrosion [21]. Moreover, they can affect 
all the three principal components of the bearing: the outer ring, the inner ring and the rolling 
elements. 
Whichever is the cause that leads to deterioration of the machinery component, these defects 
will create a specific pattern in the vibration signals generated by the machine. The specific 
pattern is different according to the different position of the fault. In general, both inner and 
outer race faults conditions will generate a periodic modulation on the signal. In fact, the 
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rolling elements will periodically hit the defects, according to a certain frequency that can be 
related to the rotation period of the bearing. On the other hand, a damage on the rolling 
element may or may not generate a periodic vibration, depending on some factors such as the 
load and the degree of the defects.  
In figure15, the vibration signals for a fault free bearing (normal working condition), a 
bearing with an inner race fault, a bearing with an outer race and a bearing with a rolling 
element fault are represented. 
As can be seen, both the inner ring fault and the outer ring fault generate impulses in the 
vibration signals acquired, compared to the vibration signal in the absence of fault conditions. 
The outer ring fault signal is different from the inner ring fault signal because, in most case, 
the former is kept fixed while the latter and the ball rotate. Especially in the case of an outer 
ring fault, the pattern depends on the position of the load. On the other hand, the ball fault 
condition modifies the pattern of the vibration signal but it does not generate clear impulses in 
the signal. For this reason, it might result more difficult to detect this kind of fault compared 
to a ring fault. 

 

 
Figure 15. Time signal for different fault conditions 

 

The signal represented in figure 15 are taken from the Bearing Data Center of the Electrical 
Engineering lab at Case Western Reserve University. This data set will be used for most of 
the experiments in this thesis since they are commonly used to test bearing faults detection 
techniques [23]. The signal acquisition set up consists of a 2 hp Reliance Electric motor and 
the signals were collected using accelerometers, which were attached to the housing with 
magnetic bases. Motor bearings were seeded with faults using electro-discharge machining 
(EDM) and the faults were introduced separately at the inner ring, rolling element (i.e. ball) 
and outer ring. The digital signals were acquired at 12000 samples per second. The 
experimental set up taken from the Case Western site is shown in figure 16. In table 1, instead, 
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a summary of the type of signals used is depicted. For further specification on the signals 
refer to [23]. 
 

 
Figure 16. Case western experimental set up [23] 

 
Table 1. Type of signals used 

State of the signal Motor speed (r/min) State of the signal Motor speed (r/min) 

Normal state 1797 Outer ring fault 1797 
1772 1772 
1750 1750 
1730 1730 

Inner ring fault 
 

1797 Ball fault 1797 
1772 1772 
1750 1750 
1730 1730 

 
3.2 Vibration signals reconstruction  
 
In the acquisition of vibration signals of industrial machinery, different factors contribute to 
the entire signal, such as noise and undesired signal modulations. For this reason, the signal 
may carry redundant information, for what concern the features necessary to recognize a fault 
condition. This means that these features components might be sparse in the whole vibration 
signal or in a certain transform domain.  
The important features of the signal can be acquired by means of a learning process that 
generates a specific basis for the actual signal; this basis captures the underlying structure of 
the signal and it allows to represent it by its sparse representation only. If the resulting signal 
is sufficiently sparse in the generated domain then, according to the compressive sensing 
theory q ≪ n samples are sufficient to exactly reconstruct the signal with high probability.  
The acquisition and reconstruction procedures, according to the compressive sensing theory 
explained in Chapter 2, are depicted in figure 17. The vibration signal Y ∈ ℝ! from the 
machinery is supposed to be sparse on a basis Ψ ∈ ℝ!∙! , being X ∈ ℝ!  its sparse 
representation. This signal is acquired using a compressive sensing approach: by means of a 
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measurement matrix Φϵℝ!∙! the measurement vector y lies in a low-dimensional space of 
dimension q < n.  Then, the acquired measurement can be transmitted and the 
high-dimensional signal sparse coefficients are reconstructed solving the minimization 
problem in figure 17. Finally, the high dimensional signal is a linear combination of the atom 
in the basis Ψ  weighted by the corresonding coefficients in the estimated sparse 
representation vector X. 
 

 
Figure 17. Compressive sensing procedure 

 

A fundamental part of the compressive sensing framework is the availability of a sparsifying 
basis. For this reason, a dictionary is generated for each state under analysis: normal state, 
inner ring fault state, outer ring fault state, ball fault state. The dictionary generation 
procedure is depicted in figure 18.  
For each state, the available vibration signal is divided into a set of m overlapping segments 
{𝑌!}!!!! ∈ ℝ! with n = 1024. As it possible to observe from figure 15, this window size has 
been chosen because it is sufficient enough to include the signature of each fault state. The 
resulting matrix Y ∈ ℝ!∙! with m = 512 is used as input for the KSVD algorithm to train 
the dictionary. The output is a dictionary of size Ψ ∈ ℝ!∙!, where the number of atoms is set 
to K = 512, and the corresponding sparse representation of the training signals: X ∈ ℝ!∙!. 

 

Figure 18. Dictionary learning procedure 
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In figure 19 one of the generated atoms for each dictionary is compared to a snapshot of the 
training signals. This figure highlights the characteristic of the atoms for each dictionary. In 
particular, it is clear how each dictionary has caught the structure of the signal from which it 
is generated. Moreover, even if the picture illustrates only the dictionary atoms generated 
using the KSVD algorithm, the previous statement is also true if the MOD algorithm is 
applied.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



38 
  

 

 
Figure 19. Dictionary atoms for the different type of signals considered. 
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Once a good dictionary has been acquired, the second step requires testing the reconstruction 
of the signal from its compressed measurements. These initial results are performed according 
to the block diagram in figure 17. 
The two dictionary learning algorithms described in the previous chapter – MOD and KSVD - 
are compared according to the quality of the reconstructed signal after applying the 
compressive sensing framework.  
In order to evaluate the accuracy of the reconstruction, in the following of this thesis, the 
sample Pearson correlation coefficient has been used, which is defined as follow: 
 ρ =

(𝑥! − 𝑥)(𝑦! − 𝑦)!
!!!

(𝑥! − 𝑥)!!
!!! (𝑦! − 𝑦)!!

!!!
 

( 37 ) 

where 𝑥 and 𝑦 are two vectors of dimensione n and 𝑥 and 𝑦 are their respective sample 
mean. Moreover, the sensing matrix used in the following is a random matrix of i.i.d. random 
variables taken from a Gaussian distribution; as explained in chapter 2 this matrix satisfies the 
RIP and it allows the reconstruction in presence of noise.   
It must be highlighted that, in order to evaluate the effectiveness of the reconstruction on the 
desired class of signal, the compressive sensing algorithm is applied to a signal that does not 
belong to the training set used for the dictionary learning step. 
In figure 20 the effect of the compression ratio is evaluated. In particular, if the number of 
compressed measurement is 𝑞  and the original signal consists of 𝑛  samples, then the 
compression ratio is  
 

η =
𝑞
𝑛 

( 38 ) 

The signals are reconstructed using the dictionary that pertains to their class. As expected, 
when a correct dictionary is used, the quality of the reconstruction increases as the 
compression ratio increases. However, since the signal is affected by noise a perfect 
reconstruction is not possible. In fact, there will always be a certain amount of noise, even if it 
becomes smaller when the number of measurements is sufficiently high.    
On the other hand, the lowest number of measurements required for a satisfactory 
reconstruction of the original signal is determine by the sparsity of the signal on the 
sparsifying basis. 
Figure 20 also highlights that KSVD algorithm results in a better reconstruction compared to 
the MOD one. That is true for all the signals considered at the expense of a slower dictionary 
learning procedure. In fact, as showed in table 2 the time needed to train the dictionary with 
the KSVD algorithm is higher in all the four cases.  
Since, in the recognition of the fault states, the reconstruction quality is more important than 
the difference in computational time present between the two algorithms considered, then in 
the remaining part of the thesis KSVD will be used.  
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Table 2. Computational time for dictionary generation 

 KSVD MOD 
Normal condition 177.72 s 121.11 s 

Ball fault 131.66 s 109.51 s 
Inner ring fault 132.82 s 112.23 s 
Outer ring fault 167.05 s 152.15 s 

 
 
 

 

  
Figure 20. Reconstruction quality at variable compression ratio for the different class considered when two different 

dictionary learning methods are used 

 

In figure 21, the correlation values for the different states considered are compared when the 
KSVD algorithm is used to train the dictionary. 
According to what has been stated before, the reconstruction is never perfect even if, for what 

concern the normal condition and the outer ring fault, when !
!
≅ 0.2 the quality of the 

reconstruction is very high. On the other, the quality of the reconstruction for the inner race 
fault signal and the ball fault signal is lower. Then, it is possible to affirm that the outer race 
fault vibration signal and the normal condition signals have a sparser representation on its 
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dictionary since, given a certain number of measurements, their performance are better 
compared to the other signals. This means that, the formers have stronger features that can be 
easily captured by the dictionary atoms. 
 

 
Figure 21. Comparison of the reconstruction quality for the different type of signal considered when the dictionary is trained 

using KSVD algorithm  

Finally, in order to acknowledge the effective reconstruction of the signals considered, in 
figure 22 a comparison between reconstructed signal and the corresponding original raw 
vibration signal is showed for Q = 150. Using a compression ratio η ≅ 0.15, the normal 
condition signal and the outer race fault signal reconstruction has a very high correlation and 
visually speaking they look almost equal to the original raw signals. On the other hand, the 
ball fault signal and the inner race fault signal have lower correlation but the reconstruction 
quality it is sufficient to distinguish the signals and recognize the main characteristics. The 
correlation values are summarized in table 3. 

  

Table 3. Reconstruction quality for the different class of signal with a compression ratio 𝜂 ≅ 0.15 

SIGNAL CORRELATION 
FOR 𝛈 ≅ 𝟎.𝟏𝟓 

Normal condition 0.9058 
Inner ring fault 0.80676 
Ball fault 0.75308 
Outer ring fault 0.9406 
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Figure 22. Comparison between the reconstructed signal and the original raw signal for different machine states 
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4. FAULT DETECTION 

The results of the previous chapter show that the signals in a given state can be well 
reconstructed, from the compressed measurements, when the correct sparsifying basis for that 
specific state is used. The underlying hypothesis is the sparsity of the analysed class of signal 
on the trained dictionary. On the other hand, since the dictionary is generated on a specific 
class of signals, it only encompasses the features of the class considered. This means that, it 
can only be effective in the sparse decomposition of signals that share the same features as the 
training one. 
Compared to a general dictionary, the trained dictionary improves the quality of the 
sparsification and consequent reconstruction only on its specific class and, for this reason, a 
specific dictionary is needed for each class under study. This characteristic can be considered 
a disadvantage when a fast sparsifying and reconstruction algorithm is needed. In fact, general 
dictionaries, such as Fourier Transform and Wavelets, are always coupled with fast algorithm 
and a tuning on the class of signal is not needed. However, in the case of fault condition 
diagnosis, the uniqueness of the dictionary can be exploited to distinguish the class to which 
the signal belongs.  
In the following of this paragraph, the dictionaries and their sparsification capability will be 
exploited to recognize the fault states of the bearing based on the vibration signals. [24] [25] 
 
4.1 Reconstruction of a non-sparse signal 

 
In chapter 2, it was highlighted that the signal to be compressed must be sparse in some basis 
in order to be well-reconstructed from its low-dimension measurements. If the signal is not 
sparse in the chosen basis, the compressive sensing framework fails and the reconstructed 
waveform will not match the original one. In this paragraph some simulations are showed in 
order to better understand what happens when the dictionary is not able to generate a sparse 
representation of the signal. 
First of all, the reconstruction of the signal generated in the normal working condition is 
analysed. Figure 23 displays the performance when the dictionaries generated from the fault 
conditions are used compared to the performance when the correct dictionary is used. In 
particular, the reconstructed waveform when the dictionary generated from the outer race fault 
signal is used is depicted on the right side of figure 23. 
It can be observed that, even if the number of measurements increases, the reconstructed 
waveform is completely different from the original one. For the signal on the right part of 
figure 23, considering 𝜂 ≅ 0.15 , the correlation coefficient is 𝜌 = 0.0311  when the 
dictionary is the one for the outer race fault while the correlation is 𝜌 = 0.9058 using the 
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correct dictionary. For this reason, it can be inferred that the signal from a normal working 
condition presents completely different features compared to the vibration signal acquired 
when a fault condition arises. As a consequence, the sparsity level of the signal on the given 
dictionary is not sufficient in order to include its features in the low-dimensional 
measurements.  

 

Figure 23. Comparison of the reconstruction quality on different dictionaries for the normal condition signal. On the left: 

reconstruction performance using the four different dictionaries generated; on the right: Comparison between the 

reconstructed signal and the original raw signal for a normal condition signal reconstructed using the outer ring fault 

dictionary with 𝜂 ≅ 0.15 

 

On the other hand, in figure 24, the performance related to the fault condition signals 
reconstruction on different dictionaries is related to the one on the correct dictionary for the 
given state.  
Obviously, also in this case, a difference on the quality of the reconstruction and on the 
reconstructed signal itself can be recognized. In particular, as previously highlighted, this 
analysis reveals the huge differences between the fault conditions and the normal working 
conditions and this is true also for the ball bearing, even if in figure 15 the ball bearing 
appears to be similar to the normal condition signal. 
On the contrary, the differences between the three fault conditions considered are not as 
marked as it was for the normal condition. This behaviour can be ascribed to the presence of 
some shared feature between the fault conditions that are encompassed on all the dictionaries.  
As an example, in figure 25, the outer ring fault signal is considered. On the left side of figure 
25, the outer ring fault signal is reconstructed using the normal dictionary. The correlation 
coefficient is 𝜌 = 0.0311 and it is very low compared to its value in table 2, when the 
correct dictionary is used. On the right side of figure 25, the same signal is reconstructed 
using the dictionary for an inner fault condition. In this case, the correlation is 𝜌 = 0.6339. 
As explained before, when the dictionary pertains to a different fault condition the correlation 
difference is not as prominent as before. 
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Nevertheless, the simulations show a difference in the reconstruction and this means that the 
sparse representation on the different dictionaries is different and this characteristic may be 
exploited for the fault detection. 
In particular, it is evident that the fault condition signals carry a signature in contrast with the 
normal condition. For this reason, the recognition of a deviation from the normal behaviour 
may be simple. On the other hand, the possibility to recognize the different types of fault from 
the compressed measurements must be better explored. 

 

 
Figure 24. Comparison of the reconstruction quality on different dictionaries for the outer race fault signal, the ball fault 

signal and the inner race fault signal 
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Figure 25. Comparison between the reconstructed signal and the original raw signal for an outer race fault signal with 

𝜂 ≅ 0.15. On the left: the normal condition dictionary is used; on the right: the inner fault dictionary is used. 

 

4.2 Fault detection on the compressed measurements 
 
In the previous paragraphs, we have analysed how the compression sensing framework and 
the dictionaries trained from different class of signals interact. A low-dimensional sensed 
signal is sufficient to reconstruct, even in presence of noise, the original signal when the 
correct dictionary is used. On the other hand, the reconstruction differs when the dictionary 
from a different training states is used. This means that, the trained dictionary might be 
exploited not only to improve the quality of the reconstruction compared to a general 
dictionary, but also to recognize the class it pertains to. In this paragraph the detection 
procedure is first described and then it is tested on the class of faults previously analysed.  
 
4.2.1 Fault detection algorithm 
 
In order to perform a fault detection using the compressive sensing framework and the 
dictionary learning techniques, first of all a dictionary is trained for each fault condition, using 
the historical operating vibration data of the bearing. For each class of signals, the training 
procedure follows the block diagram in figure 18.  
The vibration signals from the bearing data centre are divided into two sets: a training set and 
a test set. In order to generate these sets, the time series of the vibration is divided into 
overlapping segments of length n=1024. The dictionary is trained with signals from the 
training set and they are considered to be the historical operating signals. On the other hand, 
the detection algorithm is analysed on the test sets in order to validate the performance. 
Moreover, for each class of signal different working condition for different load are taken into 
account, since this is a typical condition in a factory environment.  
In the training procedures a set of m=512 signals are extracted from the training set. These 
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signals are organized into a matrix {Y!}!!!! ∈ ℝ!. Then, the given matrix is used to train the 
dictionary according to the KSVD algorithm described in chapter 2. 
At the end of the training procedure, d dictionaries {Ψ!}!!!! ∈ ℝ!∗! are available, one for 
each state considered. In particular, in our experiments 4 dictionaries will be available: normal 
working condition state (Ψ!), ball bearing fault state (Ψ!), inner race fault state (Ψ!), outer race 
fault state (Ψ!).   
Once the dictionaries are trained, the compressive sensing framework is applied. The 
low-dimensional measurements y ∈ ℝ! are acquired from the high-dimensional signals in 
the test set using the sensing matrix Φ ∈ ℝ!"#. The measurements are used to reconstruct the 
sparse coefficients of the signal on the trained dictionaries Ψ! for j = 1… d. Denoting the 
reconstructed coefficients on the j-th dictionary as 𝑥!, than the original signal estimation from 
the j-th dictionary will be 𝑌! =  Ψ!𝑥!.  
The fault procedure relies on the different representation values when the selected dictionary 
is the correct one and when the selected dictionary is the wrong one. In particular, the 
representation value δ! for the j-th dictionary is related to the compressed measurements and 
the reconstructed sparse representation by the following formula: 
 δ! = 𝑐𝑜𝑟𝑟{𝑦,𝛷Ψ!𝑥!} 

( 39 ) 

where the correlation used is the one in eq. 37 
In this way we can obtain d representation errors δ! for j = 1… d and we can consider 
obtaining a good representation on the j-th dictionary when the δ! value is high. 
According to the way in which the dictionaries are trained, then, theoretically, the correlation 
will be maximum on the dictionary correspondent to the signal class, while it will be smaller 
for the other dictionary. Consequently, it can be inferred that the dictionary with the higher 
correlation corresponds to the signal class.  
Actually, a particular case must be considered: the signal may not pertain to any of the 
considered class. In order to cope with an unknown state, a threshold on the maximum 
correlation is set for each class, that is τ! for j = 1… d. 
The algorithm depicted in figure 26 implements the fault detection method based on the 
difference in the representation error.  
The algorithm steps are the following: 

Ø The dictionaries Ψ!  for j = 1… d are trained using the high-dimensional signals 
from the training set; 

Ø A threshold τ!  for j = 1… d  for each class of signal is set according to the 
representation value; 

Ø The measurements y ∈ ℝ! are acquired from a high dimensional signal in the test set 
using the sensing matrix 𝛷 ∈ ℝ!!!; 

Ø The estimate of the signal sparse representation on all the available dictionaries is 
reconstructed from the compressed measurements based on the compressive sensing 
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theory; for the j-th dictionary the reconstructed sparse representation will be 𝑥!; 
Ø The representation value on the different dictionaries is evaluated as  

δ! = 𝑐𝑜𝑟𝑟{𝑦,𝛷Ψ!𝑥!} for j = 1… d; 
Ø The maximum correlation δ = max {δ!… δ!} is evalauted; 
Ø If δ = δ! and δ ≥ τ! then the machine is in state j; 
Ø If δ = δ! and δ < τ! then the machine is in an unknown state. 

 

 
Figure 26. Fault detection algorithm block diagram 
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4.2.2 Fault detection experiments 
 

In order to evaluate the algorithm depicted in figure 26 the initial study will be performed for 
a fixed value of number of compressed measurements set to q=90, that means a compression 
ratio η ≅ 0.09. 
The low-dimensional signal y ∈ ℝ! are measured and they are used to reconstruct the signal 
coefficients 𝑥 on all the dictionaries available. Then, the representation values δ! on the 
dictionaries is evaluated.  
The results for the different signals considered are shown in figure 27. The top left figure 
represents the evaluation for the vibration signal related to a normal working condition; the 
top right represents the evaluation for the vibration signal related to an outer race fault 
condition; the bottom left represents the evaluation for the vibration signal related to a ball 
fault condition; the bottom right represents the evaluation for the vibration signal related to an 
inner race fault condition.  
The data can be divided in two groups; the blue group represents the reconstruction quality on 
the correct dictionary, while the red group represents the reconstruction quality on all the 
other dictionaries. Ideally, the two groups must be completely separated and the threshold 
must be set as the division limit between the reconstruction quality on the correct dictionary 
and the reconstruction quality on the wrong dictionaries. However, in the practical situation 
the reconstructions values are not perfectly separated, as can be seen in figure 27. For this 
reason, using the historical data, the following principle will be used in order to set the 
thresholds: for each state, the error threshold must be less than most of the values of 
reconstruction correlation on the correct dictionary. In the following tests a value of 95% will 
be use. This means that the threshold will be set in order to be less then 95% of the blue 
circles in the figures. As a results, the thresholds values are the following: tau!"## = 0.4, 
tau!" = 0,45, tau!"#$ = 0,7 and tau!" = 0,65. 
As considered in the previous paragraph, it is evident in figure 27 that the normal state can be 
well distinguished when its reconstruction is done with a wrong dictionary. While for the fault 
conditions, the reconstruction quality using a wrong dictionary may be sometimes confused 
with the one using the correct dictionary. 
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Figure 27. Reconstruction performance for signals from the different classes on all the dictionaries and a compression rate 

𝜂 ≅ 0.09. Blue label refers to the correct dictionary; red label refers to the incorrect dictionaries. On the top left: normal 

condition signals; on the top right: outer race fault signals; on the bottom left: ball fault signals; on the bottom right: inner 

fault signals. 

 

Once the threshold has been set, then the algorithm is applied to a set of random signals in the 
test bench. Table 4 shows the recognition rate and the false alarm rate for each class 
considered.  
The signal state is correctly recognized for more of the 85% of the cases for each state, with a 
compression rate of η ≅ 0.09. This means that even if the transmitted signal is highly 
compressed, it is still possible to recognize a fault condition and a normal working condition.  
The outer race fault presents the strongest features and for this reason is recognition rate is 
higher compared to the other classes. On the other hand, the inner race fault state has some 
shared features with the other dictionaries and for this reason sometimes it is difficult to 
distinguish it from the other classes.  
Specifically, most of the incorrect detections lie in the unknown class. According to the 
algorithm, these values strongly depend on the threshold that has been set based on the 
historical data. It is possible to affirm that the insertion of the threshold in the algorithm 
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decreases the detection rate but, on the other hand, it is necessary to take into consideration 
working condition that differs from the evaluated ones. 
 

Table 4. Fault detection percentage for a compression rate 𝜂 ≅ 0.09 

 PREDICTED CLASS 

A
C

T
U

A
L

 
C

L
A

SS
 

 Ball fault Inner fault Outer fault Normal Unknown 
Ball fault 92% 4% 0 0 4% 
Inner fault 0 86% 2% 0 12% 
Outer fault 0 0 96% 0 4% 
Normal  0 0 0 95% 5% 

 
Considering what previously stated, it is important to evaluate the role of the threshold. Using 
the same parameter as before, in figure 28, the evaluation of the recognition rate to each state 
is depicted, for various threshold values tau!"#$, tau!", tau!"## and tau!".  
It is evident that, a lower value of the threshold will allow a higher detection rate on the 
considered state. However, a drawback must be considered. In fact, at the same time, the 
misjudgement rate will increase. This means that also the amount of wrong fault detection 
will increase when the threshold is lowered.   
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Figure 28. Detection rate of the different class of signals for variable threshold. Top left: normal condition signal; top right: 

outer ring fault signal; bottom left: ball fault signal; bottom right: inner ring fault signal. 

 

In order to evaluate the effect of the threshold on the detection of an unknown state, one of 
the given states will not be considered known and the corresponding dictionary will not be 
used. Then, the algorithm will be applied on signals from the unknown class considered. 
Obviously, to have a correct detection, the algorithm must recognize the unknown state for all 
the signals studied. 
As an example, the ball fault signals are supposed to be unknown and the detection algorithm 
uses only the following dictionaries: the normal condition dictionary, the outer ring fault 
dictionary, and the inner ring fault condition. Then the misjudgement rate is evaluated varying 
the threshold for the inner ring fault tau!" and keeping the threshold for the normal condition 
tau!"#$ and the threshold for the ball fault tau!"## fixed.  
Following the procedure described, in figure 29 the misjudgement rate for the ball fault 
signals is showed. It is evident that a very small threshold will not be able to recognize an 
unknown state. In fact, the algorithm will consider the unknown state to be one of the known 
ones, leading to a wrong decision. On the other hand, as depicted in figure 28 the detection 
rate will be very high for a lower value of the threshold. Thus, it is obvious that a trade-off 
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must be taken into account in setting the threshold in order to have a good recognition rate 
while keeping the misjudgement rate low. For what concern the results previously shown, the 
threshold was set to tau!"## = 0.4 reaching a detection rate of 92% with a misjudgement rate 
of 30%. 

 
Figure 29. Misjudgement rate of the ball fault signal for variable threshold values 𝜏!" 

 

An important point is the strong dependence of the fault detection rate on the number of 
compressed measurements acquired. Obviously, the aim of this method is to reduce the 
burden on the data transmission; for this reason, it is desirable that the number of 
measurements will be as lower as possible. However, the information conveyed will be 
decreased when the compression ratio increases and the fault detection may fail.  
First of all, the thresholds are set according to the same principle used before: in the following 
test the 95% rule will be followed. Then, considering the same values as before for the 
high-dimensional signal and for the dictionary atoms, the recognition rate is evaluated when 
the compression ratio increases. In figure 30 the detection rate of the different class of signals 
for variable compression ratio is depicted. 
As expected, the detection rate exhibits a general increasing trend when the number of 
compressed measurements acquired increases. In fact, more measurements will correspond to 
an increase in the information acquired on the machinery state. This is particularly true for the 
states that are more difficult to recognize; that is the inner race fault and the ball fault state. 
On the other hand, the normal working state exhibits a good detection rate even with few 
acquired measurements. In fact, as we have previously highlighted, the normal condition 
signal displays sharper difference with respect to the fault conditions. It is also true that the 
outer ring fault signals have strong features compared to the other fault states in fact, in some 
cases, its detection rate is even higher than the normal working state. 
Considering the experiments conducted, it is possible to affirm that the detection algorithm 
based on the trained dictionaries allows to achieve a good recognition rate for the fault 
conditions while decreases the amount of measurements transmitted.  
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Figure 30. Detection rate of the different class of signals for variable compression ratio 
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5. ONLINE FAULT DETECTION 

The recognition of the type of fault that is affecting the bearing is based on a-priory training 
signals that allow generating the dictionaries for each fault condition. This can be useful for 
known fault conditions for which signals are available in a database and they can be used 
offline. On the other hand, it can happen that the fault condition is not known and it is 
necessary to recognize any deviation from the normal condition that may occur.  
The previous analysis shows that there is a difference in the reconstruction quality for the 
fault signals when a wrong dictionary is used. Then, the dictionary itself may be used at the 
edge to evaluate any change in the state of the machine. 
 
5.1 Online fault detection system 

 
The system considered is the one depicted in figure 3. The edge terminal and the cloud are 
supposed to work together in order to monitor the machinery; at the same time, the 
transmission burden and the computation burden must be reduced. 
In the previous chapters, the compressive sensing technique has been applied and the 
experimental results show that the signal can be reconstructed, either at the edge or at the 
cloud, with a high reconstruction quality. Then, the signal can be used to extract the statistical 
features necessary to detect the fault condition.  
The compressive sensing framework allows reducing the amount of measurements acquired at 
the sensors terminal but the computational burden for the features extraction cannot be 
reduced. Thus, a fault detection algorithm based on the trained dictionary has been examined. 
The results presented in the previous chapters reveal that different dictionaries for different 
fault conditions can discriminate between the machinery states and reveal the presence of 
unknown state. However, historical data are needed for the fault conditions in order to train 
the dictionaries. 
Following a principle similar to the one exploited for fault recognition, an online fault 
detection algorithm at the edge terminal can be envisioned. In this way, the data are 
previously analysed at the edge in order to detect a change in the machine state; then cloud 
detection is performed only if the preliminary analysis at the edge reveals an anomaly. This 
procedure permits to reduce the vibration data transmitted at the cloud, since they are not 
continuously sent, and it permits to transfer part of the complexity for the fault detection at 
the edge. 
A duplex transmission link is needed: the data flows from the sensor terminal to edge, while 
some request an control information are sent from the edge terminal to the sensor one. In 
figure 31 b, a time diagram of the transmitted data between edge terminal and sensor terminal 
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is depicted.  
At the beginning the edge terminal sends a training request to the sensor terminals. The 
sensors terminal will then send back the raw signals in order to train the dictionary for the 
current state. After the dictionary has been training, the edge terminal will request to the 
sensor terminal the transmission of the low-dimensional signals according to the compressive 
sensing paradigm. Then, the sensors will send only the compressed measurements until when 
a change of the state is detected at the edge terminal. At that point, the dictionary must be 
trained again for the new state; thus, the edge sends to the sensors a training request and the 
sensors will reply with new training signals for dictionary learning. Once the new dictionary 
has been acquired, the edge will be ready to receive the new compressed measurements.   
 
 

 
Figure 31. Intelligent online fault detection at the edge terminal. (a) fault detection algorithm; (b) time evolution of the data 

exchanged between edge terminal and sensors terminal 

 

In figure 32, the data frame is shown according to the change of the state. During the training 
period, the raw signals are sent to the edge terminal. When the training period ends, the 
low-dimension measurements are sent according to the compressive sensing mechanism. 
When a change of the state is detected, the raw signals will be sent for state B and the 
compressed measurements will be transmitted right after the training phase. 
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Figure 32. Transmitted data format 

 
 
5.2 Online fault detection algorithm and experiments 
 
The most important part of the system previously described is the definition of the change of 
state detection method. The online detection algorithm is based on the algorithm in figure 26. 
This means that, the detection will be based on the following value: 𝛿 = corr 𝑦,𝜱Ψ𝑥 ; 
where Ψ represents the current dictionary and 𝑥 represents the sparse estimation on the 
current dictionary. However at the beginning only the current state dictionary will be 
available and the normal state will be considered as starting state of the system. 
The quality of the reconstruction based on the correlation will be then compared to a 
threshold 𝜏! that is evaluated based on the previous signals from the current state. If the 
correlation goes below the given threshold for few consecutive times then the machine is 
considered in a new state: a new dictionary will be trained and a new threshold 𝜏! will be 
evaluated. At this point, two dictionaries are available so, the detection procedure will be 
performed considering 𝛿 = max 𝛿!, 𝛿! . The procedure will then be similar to the one in 
figure 26: the system will be consider in state 1 or state 2 according to the maximum 
correlation value 𝛿 and to the thresholds calculated, if a unknown state is determine than a 
new dictionary is evaluated and the procedure continues.  
The algorithm described is depicted in the state diagram in figure 31 a, while figure 33 shows 
some experiments with different fault conditions. 
The experiments are conducted using raw signals of dimension 𝑛 = 1024 and a compression 
ratio η ≅ 0.09; this means that during the training phase the entire signals is transmitted, 
while, during the compressed phase, the transmitted signals have length 𝑞 = 90. 
First, all the different states are considered. Starting from the normal condition the machine is 
supposed to change from one state to the other. Then, the algorithm is applied in order to 
follow the signals change. The results are shown on the top left part of figure 33. 
Once the dictionary is trained and the threshold 𝜏!"#$  is set up, the machine state is 
evaluated using the correlation. The machine is supposed to change state only when the 
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correlation is lower than 𝜏!"#$ for three consecutive signals. Then the new dictionary is 
trained, the new threshold 𝜏!"## is evaluated and the machine is considered to be in the new 
state. The same procedure is repeated for the other states. 
According to figure 33, the change of state is correctly detected when the signals changes 
from the first state to the second one and from the third state to the fourth one. On the other 
hand, the change from the second state to the third one is correctly detected only after few 
signals are considered to be in the wrong state. However, this delay can be accepted since few 
signals correspond to few seconds in the detection. It is important to underline that the 
correlation values may pass the threshold for some signals but they do not cause a change in 
the dictionary since a chain of bad reconstruction is needed. 
In the second part of the experiment, the online detection algorithm is used to determine a 
deviation from the normal working condition. As explained in the previous chapters, the 
normal state has very peculiar characteristics compared to the other signals; thus, the 
evaluation of a different working behaviour from the normal one may be simpler. Figure 33, 
on the top right, bottom left and bottom right corners shows what happens when the fault 
condition appears while the machine is in the normal state.  
The three fault conditions are correctly evaluated and then the machine is supposed to return 
in a normal working condition after the maintenance is performed. The transition seems to be 
correctly detected in all the cases. The only difficulty is encounter when the ball fault is 
recovered. However, as in the previous case, the effect is a small delay in the detection that 
can be accepted. 
Finally, the usage of pilot signal, inserted during the compressed data transmission, can be 
contemplated to better estimate the condition of the machine on the entire raw signal.  
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Figure 33. Online fault detection experiments. Top left: four states machine; top right: detection of an outer race fault from a 

normal condition; bottom left: detection of an ball fault from a normal condition; bottom right: detection of an inner race 

fault from a normal condition 

 

6. IWAMIZAWA FACTORY 

The previous chapters presented the simulation results for a bearing fault diagnosis method 
based on compression sensing theory and dictionary learning technique. In order to actually 
implement this method in a real environment, a preliminary study has been performed on real 
signals acquired from compressors in Hitachi Power’s factory in Iwamizawa. 
The aims of this preliminary study are the following: 
 

Ø Confirm the field of the environment; 
Ø Confirm the time required for dictionary learning; 
Ø Confirm the reconstruction quality and the compression ratio required. 

 
6.1 Experimental setup 

 
The vibration signals considered are acquired from two compressors systems of the model 
Hitachi HiScrew11 used inside Iwamizawa factory. 
In order to acquire the vibration signals two accelerometers have been positioned inside the 
compressor: the first one on the motor of the compressor and the second one on the pump of 
the compressor. Figure 34 shows the position of the sensors inside the compressor on the left 
and the experiment environment on the right. 
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Figure 34. Compressor and sensors setting 

 

The sensors used are 1-axis sensors made in Hitachi, which specifications are described in 
table 5 
 
 
 
 

Table 5. Sensor specifications 

Size 
20 x 20 x 5 mm 

 
Weight 2.8 g 

Substrate glass epoxy (t=0.9) 
Shield Bras(C2801P, t=0.3) w/ tin plating 
Output Analog, BNC-connector 

Resonance 
frequency 

90 KHz 

 
The signal is acquired using the Picoscope 4224 oscilloscope, that offers a high resolution of 
12 bits and 20 MHz bandwidth, and then filtered by an EF122 low-pass filter with a -3dB 
cutting frequency of 20 KHz.  
In figure 35, a general diagram of the experimental set-up is displayed. While, figure 36 
represents the real-time acquired signals: the red line is the signal from the motor and the blue 
line is the signal form the pump. 
 

Figure 35. Experimental setup 
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Figure 36. Real-time acquired signals. Blue line: motor sensor; red line: pump sensor 

In this preliminary experiment the fault conditions are not generated so the acquired signals 
are related to the normal working condition of the air compressor with variable load. 
In total 4 different time series have been acquired: 

Ø Motor sensor signal from Compressor 1; 
Ø Pump sensor signal from Compressor 1; 
Ø Motor sensor signal from Compressor 2; 
Ø Pump sensor signal from Compressor 2; 

 
6.2 Preliminary study 
 
During the acquisition process a dictionary is generated in order to verify the reconstruction 
performance using low-dimension measurements. The high-dimensional signal is first 
acquired in order to allow further analyses; then, from the high dimensional sampled signal, 
low-dimensional measurements are generated from which the signal is reconstructed using the 
trained dictionary. 
The spectra of the acquired signals are represented in figure 37. The vibration signals of the 
different compressors have the same spectrum components, even if their power spectrum 
densities differ. This means that if the dictionary is acquired for a given compressor then the 
reconstruction quality will differ for a signal acquired from the second compressor, but the 
features of the signals may be similar so the dictionary should be able to sparsify signals from 
different compressors.  
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Figure 37. Acquired signals spectrum 

 

The signals acquired are used as input for the KSVD algorithm in order to train the 
dictionaries. In this way, the time generation of the dictionaries is tested online and it appears 
to be similar to the one showed in table 2. Since the change of state of the machine is not fast, 
it is possible to confirm the feasibility of the application of this technology in a real 
environment. 
Then, the compressive sensing framework is applied to evaluate the reconstruction quality for 
the acquired signals. The results are shown in figure 38. 
Comparing this graph with the one in figure 21, the performance for the acquired signals 
seems to be better. In fact, at least for what concern the signals from the motor, with a 
compression ratio 𝜂 = 0.06, the correlation coefficient already reaches a value greater than 
0.90. On the other hand, the performance from the pump signals are not as good as the one 
related to the motor signals. This means that the position of the sensors makes a difference in 
the quality of the signal considered and for this reason only the signals from the motor are 
consider in this work. 

 
Figure 38. Reconstruction performance of the compressive sensing framework applied to the signals from Iwamizawa factory 

 

The availability of two different machines permits to better investigate the capacity of the 
dictionary to reconstruct signal that pertain to a similar class; that is, the signal taken from the 
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motor from another compressor. For this purpose, some of the signal from compressor 1 has 
been reconstructed using a dictionary trained with signals from dictionary 2 and vice versa; 
the results are shown in figure 39. 
As can be seen, the reconstruction performances are degraded when the dictionary is trained 
with signals acquired from another machine. However, the class of signal consider is still the 
same and, for this reason, the signal still can be reconstructed correctly but with a higher 
compression ratio. 

 
Figure 39. Reconstruction performance when the dictionary trained with signals from another machine is used. Left: Signal 

from compressor 1 and dictionary from compressor 2; right: Signal from compressor 1 and dictionary from compressor 2. 

 

This final analysis reveals that, not only the burden on the transmitted data can be actually 
decrease but also the training complexity can be reduced acquiring only one dictionary for the 
same type of machine. 
 
 
 
 
 
 
 
 
 
 
 



64 
  

7.  CONCLUSIONS 

Traditional methods for condition monitoring and fault detection present two main problems 
that must be faced in many factories. First of all, the computation is complex and it is mostly 
implemented at the cloud causing latency; secondly, the amount of data necessary is high and 
it generates a big traffic on the network.  
In this thesis, an intelligent IoT system based on edge computing has been considered for 
condition monitoring and fault detection of rotating machinery. The system implements a 
fault detection method supported by the compressive sensing theory and making use of 
trained dictionaries, in order to solve the problems of traditional methods. 
As the analysis shows, the compressive sensing framework represents a useful solution to 
compress the amount of data transmitted on the network while keeping the features of the 
signal intact. On the other hand, the trained dictionary can be used to discriminate between 
the different working conditions of the machine.  
It was shown that, the availability of a dictionary for each fault condition, trained with 
historical data, allows detecting the fault condition with high probability while using only the 
low-dimensional measurements received from the sensors. Moreover, setting a threshold 
based on the data can also allow detecting the presence of unknown fault conditions.  
This type of detection is greatly influenced by the amount of measurements acquired since a 
trade-off is needed between the reconstruction quality and the transmission burden. However, 
it seems to be effective in the case considered and the performances improve when the 
compression ratio is higher.  
The same principle can be also used to consider a first online detection at the edge terminal, to 
recognize a change in the machinery state. The simulations performed show that the data can 
be used to set a threshold on the quality of the reconstruction. Since the quality decreases 
when the signals features change, this can be considered as a sign that something is happening. 
Thus, this consideration permits to avoid a continuous stream of data to the cloud while 
sending only valuable information when needed. 
It is evident that one of the most important parts of the considered algorithm is the dictionary 
itself. The capability of the dictionary to sparsify the signals must be high in order to improve 
the detection performance. Moreover, the compressive sensing framework includes many 
parameters that can be modified and a further analysis must be performed on the types of 
sensing matrices that can be used. 
Finally, it is possible to say that the techniques considered seem to be promising for fault 
detection and future study may consider the possibility of using traditional artificial 
intelligence methods directly on the compressed measurements. 
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TABLE OF ABBREVIATIONS 

 
ANN  Artificial Neural Networks 
CS  Compressed Sensing 
DCT  Discrete Cosine Transform 
i.i.d.  Independent and Identically Distributed 
IoT  Internet of Things  
K-SVD  K-Singular Value Decomposition 
LASSO  Least Absolute Shrinkage and selection operator 
MOD  Method of Optimal Directions 
MP  Matching Pursuit 
NSP  Null Space Property 
OMP  Orthogonal Matching Pursuit 
PCA  Principal Component Analysis 
RIP  Restricted isometry property 
SVD  Singular Value Decomposition 
SVM  Support Vector Machine 
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