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Chapter 1

Introduction

1.1 Context

The IT world has made a huge leap forward in recent years. It has developed a plethora of
“smart” services, starting a revolution in digital services. For example, systems that automate
vehicle driving have been developed and smartphones are now able to recognize people’s
faces. Faced with this  technological gap, networking must adapt these recent innovations.
Actually, the network aims to connect and make available applications and services. 

   Nowadays, the network is still structured as in the early days, its language is limited by the
set of bits that make up a packet. The “Session” level-5, defined by the ISO/OSI1 standard, is
used  by  the  networks  to  interact  with  the  applications.  This  level  allows  bidirectional
exchange of packets and provides a limited number of attributes for control purposes (e.g.
start  time,  bandwidth  rate,  etc.).  To  date,  the  wired  network  architecture  does  not  allow
implementing  and  managing  the  needs  of  new  services,  such  as  achieving  low  costs,
increasing flexibility and speed, or performing more complex controls. 
   Therefore, the telecommunications world is evolving rapidly. Networks are changing their
structure by replacing hardware devices in favour of software. Several network devices, such
as firewalls and NATs, become applications executed on virtual machines [1]. At the current
state of the art there is a growing diffusion and a continuous evolution of the paradigms of
Network  Function  Virtualization  (NFV)  and  Software-Defined  Network  (SDN).  We  will
describe  them  briefly  because  this  thesis  work  relates  to  this  context.  Firstly,  the  basic
functionality of the paradigm known as SDN is the ability to program the network. This is a
remarkable advantage because it allows a more flexible and reliable network management.
Secondly,  SDN  provides  a  solution  to  add  new  applications  in  real  time  and  without
interruptions or reconfigurations of the whole network. With the SDN, network services are
managed through the abstraction of their functionality. Also, the NFV paradigm was born with
the  aim of  increasing  the  flexibility  of  networks.  In  fact,  this  network  model  allows  IT
professionals to modernize their networks with modular software to run on standard server
platforms [2].

1 The Open Systems Interconnection (OSI) from Cisco DocWiki: 
http://docwiki.cisco.com/wiki/Internetworking_Basics
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The  high-level  NFV  framework  is  shown  in  Figure  1.1  [3].  We  can  see  that  a  NFV
architecture has 3 different components:

The virtualization infrastructure of the network functions such as the hardware and
software infrastructure necessary to run the applications.

The Virtual Network Functions (VNFs) which are software applications that provide
specific network functions (e.g. firewall, NAT, anti-spammer, etc.).
The management, automation and orchestration part of the network which is the real
framework for the administration of the infrastructure and its functions (VNFs).

The main advantages of this architecture are the flexibility (elastic scale up and scale down of
capacity),  very  fast  deploy,  more  effective  in  power  and  space,  reduction  of  costs  in
purchasing network equipment. 
   On the other hand, NFV turned out to be complex and hard to use. Network virtualization
requires watchful verification before proceeding with the deployment, since it must safeguard
and guarantee the consistency of the network (such as the absence of loops, preservation of
traffic safety, etc.). The concepts of dynamism and security are becoming essential in modern
networks. In fact, corporate networks are increasingly complex and are made up of thousands
of integrated devices. Whether all these devices are not configured correctly, they can cause
numerous types of errors on the network. For example, they can cause disconnections, loss of
route,  black  holes  and  other  security  vulnerabilities.  For  that  reason,  there  is  a  growing
interest in the development of rigorous verification tools that can guard the correctness of the
network configuration. There are sophisticated verification tools called SAT solver2, which
deal with a formal verification of the properties of virtual networks. These tools are specific
and complex and are not always easily usable for those unfamiliar with formal methods. 

2 Boolean satisfiability problem, from Wikipedia: 
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem
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There are no systems that allow you to easily create network functions and verify them before
deployment. This feature is difficult to achieve especially in networks that need an automatic
reconfiguration (in response to the user events or traffic flood). 
   Finally, we arrived at  the framework object of the thesis. It is a tool that allows us to
automatically extract a model of the network functions to generate the input files related to
different verification instruments. More in detail, in the thesis work we want to demonstrate
that the framework allows to model the network functions in a format that is generic enough
to support the verification through different tools like VeriGraph[4], SymNet[5] and SFC-
Checker[6].

1.2 Tools and Language

1.2.1 The eXtensible Markup Language

The eXtensible Markup Language (XML) is a meta-language developed by W3C and derived
from SGML3. One of the main features about XML is that the data is standalone. This means
that data incorporate the type information. XML language has many advantages. For example
it is directly usable on the internet. Furthermore, it is widely open and compatible. 
   An XML document has a tree structure where each node is named element. An element can
have  attributes.  And both the element and the attributes can carry data.  The whole XML
document  must  follow  the  SGML syntax  in  order  to  be  well  formed.  For  example,  the
attribute values are always enclosed in quotes. We can also check if the XML application is
valid, that is when the XML document respects the given structure. This structure can be
specified with a Document Type Definition (DTD4) that is a sequence of element declarations
and attribute declarations called rules.  Furthermore,  there is  a  more powerful  language to
describe the rules of the XML document and it is the XML Schema[7]. Our framework uses
an XML Schema [7] to describe the XML applications, so now we can proceed with the
description of this language. The XML Schema[7] is itself an XML document and its basic
structure has a root element called  schema. This element has some important attributes that
are used for define namespace and targetnamespace. The first one is the default namespace, it
indicates  that  the  elements  and  data  types  used  in  the  schema  come  from  the  address
associated  with  the  attribute.  The second  one  indicates  that  the  elements  defined by this
schema  come  from  the  targetnamespace.  When  a  targetnamespace occurs,  the
elementFormDefault attribute must be set as  qualified to remember that all  types must be
qualified in the namespace. Valid nested element for the root are annotations, global element
and attribute declaration, type and group declaration. 

3 Standard Generalized Markup Language (SGML):  https://www.w3.org/MarkUp/SGML/
4 We can found more information on DTD in the W3C tutorial available at 

https://www.w3schools.com/xml/xml_dtd_intro.asp
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There are several techniques to write an XML schema:
All elements are declared globally, and they can be used by other elements with the
attribute ref. This structure is similar to the DTD style.

Nested style is a simple structure that does not use types or references, all elements are
anonymous and are inside the root element.
Global style is a structure that declares all types globally with a concrete definition.
Each element is nested in the root and is defined by a specific type. This style is used
by our framework.

1.2.2 The Abstract Syntax Tree

An Abstract Syntax Tree (AST) is a way to represent the source code of a program as a tree in
which its elements are described with a specific programming language[14]. The Java DOM/
AST5 package is the set of classes that models the source code of a Java program such as a
structured document. Figure 1.2 shows an example of AST of a general java program. In this
thesis work the DOM/AST package is used in the translation phase of the network model from
the Java language to a more generic representation in XML and vice versa.

1.2.3 The JAXB 

The JAXB6 is a Java API called the Java Architecture for XML Binding [13], a software
framework that provides methods for writing Java content trees in XML documents and vice
versa  for  reading  XML documents  in  Java  content  trees.  The  writing  phase  is  named
marshalling and the reading phase is named unmarshalling.

5 Eclipse IDE documentation of Java DOM/AST: https://help.eclipse.org/oxygen/index.jsp
6 JAXB: https://docs.oracle.com/javase/tutorial/jaxb/intro/arch.html
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   In Figure 1.3 is represented an architectural overview of JAXB. We can see a  Schema
compiler that has the role of associating a source schema with a set of program elements
derived from the schema. The inverse operation of the Schema compiler is performed by the
Schema generator.  It maps a set of existing program elements with a derived schema. The
mapping is  described  by program annotations.  Another  important  element  is  the  Binding
runtime framework  that  provides  unmarshalling and marshalling operations  for  accessing,
manipulating, and validating XML content using existing program elements. 
   Marshalling and unmarshalling are two phases of the JAXB data binding process. An XML
documents written according to the constraints in the source schema is  unmarshalled by the
JAXB binding framework. Unmarshalling provides a client application the ability to convert
XML data to Java objects derived from JAXB. In contrast, the marshalling phase provides to
a client application the ability to convert a Java object tree derived from JAXB into XML
data.

1.3 Outline

The objective of this thesis is to increase the functionalities of the framework, for verification
oriented VNF Modeling, already existing and in development. In the first part we tried to
enrich the set of functions available in the library of the framework. We created a virtual
network function that simulates the behaviour of a traffic classifier. This first part also aims to
explain and understand the operation of the tool. In the second part of the thesis work, we
wanted to show that the framework allows to generate network functions generic enough to be
tested with different tools. Specifically for SymNet[5], SFC-Checker[6] and VeriGraph[4]. A
semantic translation to SFC-Checker was performed and a parser was created to translate the
VNFs into the format supported by the SymNet. In the last part of the thesis, some tests were
developed to verify the correct operation of the carried out work. More specifically, several
tests have been created to control the behaviour of the new Traffic Classifier function. It has
been inserted in a specific VeriGraph service graph. Then, some tests were carried out to show
that  the  output  generated  by  the  framework produces  functions  that  are  compatible  with
SymNet. Even in this case the generated network modules were used in a network graph that
tests the reachability property.
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Chapter 2

Proposed Framework

The tool object of this thesis is the framework for user-friendly verification-oriented VNF
modeling. Its goal is to describe virtual network functions easily through Java classes and to
translate these functions into a model in compliance with the formal verification made by
several instruments (e.g. VeriGraph[4]). 
The framework is available at: https://github.com/netgroup-polito/vnf-modeling-verigraph.

Before modifying the tool, we will go on describing how each module works. There are three
main components:

The Library is the module used by users to define their virtual network functions.

The  Parser  analyses  the  classes  written  by  users  and  produces  an  abstract  formal
model of the forwarding behaviour of these input functions. The function model is an
XML document that should be complied to the XML Schema supplied by the tool.
The Translator performs a conversion from the abstract format model of the network
functions to the verification models. The first implementation of the tool generates a
VNF model for VeriGraph[4]. One goal of the thesis is the development of a translator
for the SymNet[5] and SFC-Checker[6] verification tools.

2.1 Library

The framework library[9] provides the resources to implement functions similar to existing
network systems. The Java classes of the library are in the it.polito.nfdev.lib package.
   Packet class represents an IP packet and illustrates the data exchanged between several
network components that we want analyse and check. The class contains all the header fields
of an IP packet (e.g. IP SOURCE, IP DESTINATION, PROTOCOL, etc.) as elements of a
Java Map. In addition, there are some public constants that define the possible values for the
header's  fields.  For example,  POP3_REQUEST is  an admissible  value for  the  PROTOCOL field.
However, this list of constants can be modified to cover a wider range of values. The methods
of the class are the basic ones: constructors, getters, setters and  equalsField. The last one
checks if a header field is equal to a value and it is used to define the behaviour of the VNFs. 

   NetworkFunction is the core class of the library. A user must extend this abstract class to
implement its own virtual network function. Each VNF can be associated with a set of logical
interfaces through which it is possible to receive and send packets. Those interfaces can be
tagged as internal or external to the network of the middle-box.
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The  interfaces  are  described  by  the  Interface class.  Each  instance  of  this  class  has  an
identifier, the type of interface (internal or external) and an IP address. The isInternal method
of the Interface class is useful for defining the behaviour of network functions. For example,
NAT uses this function to differentiate packets coming from inside the network from those
coming from outside the network.  The operation of the virtual  network function must be
defined in the onReceivedPacket method of the main NetworkFunction class. The method has
two parameters: the incoming packet and input interface. This method is the most important,
because its result will be examined by the Parser to extract the information needed to build the
middle-box policies. The onReceivedPacket returns an element of the RoutingResult class. It
carries all the information about the process of network function. More specifically there are:

The action, it is an enumeration that can be either  FORWARD or  DROP. It reports if the
packet will be forwarded or discarded.

The packet, eventually modified. 
The output interface.

Sometimes middle-boxes need to store information. For example, a firewall must be able to
store the denied addresses. So, the library makes a container for these information through the
Table and TableEntry classes.

2.2 Parser

The parsing of a virtual network function consists of 3 phases: it reads the input Java classes
and extracts  the information necessary to describe its  behaviour,  it  creates the model  and
finally it writes the result of the transformation. The output model must respect the structure
described  by  an  XML  Schema[7].  The  XML  Schema  used  by  the  parser  is  called
LogicalExpression.xsd and  is  located  in  the  NFDev\xsd folder.  The  schema  has  a
targetNamespace declaration.  Therefore,  each  type,  element  and  attribute  defined  in  the
schema, at global level, will belong to this namespace. And we must use the target namespace
label (xmlns:tns) for each type definition. In the definition of the XML schema, a global1

style was used and the elements can be divided into 4 categories. The first category contains
the basic element of the XML document, which is the root element (type: ExpressionResult).
All  the  rules  of  the  network  function  must  be  put  in  the  root  as  elements  of  the  type
ExpressionObject.  The  second  category  contains  all  logical  expressions.  The  possible
expressions are  defined through a series of complex types  such as  LO_AND,  LO_Equals,
LO_Less_Than and so on. The third category contains logical units. They model the elements
used in the definition of a rule, that is the nodes of the network (type:  LU_Node) and the
packets  that  contain  the  data  (type:  LU_Packet).  Finally,  the  last  category  of  the  model
contains  the  elements  related  to  the  basic  functions  of  a  network  device.  For  example,
LF_Send, LF_FieldOf.

   Firstly, the parser reads the Java source code of the network function and models it with an
AST[14] representation. The main class of the parser is in the it.polito.parser package and
is called  Parser.  This class has the instructions to create and initialize a new AST[14], the
source file path is given as an argument to Parser's main method.

1 Different types of XML Schema’s structure at Chapter 1.2.1
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The  parser  begins  to  visit  the  code  in the  root  node  of  the  AST.  The  root  is  the
CompilationUnit created  by  the  AST constructor.  Moreover, the  framework  uses  various
methods of the Context classes to analyse the compilation unit. (e.g. Context, MethodContext,
StatementContext, etc.). The second phase of parsing reads the gather data and produces the
rules  in  the  XML2 format.  The  core  class  of  this  phase  is  RuleGenerator of  the
it.polito.rule.generator package. Its methods scan each ReturnSnapshot nodes and build
the condition necessary to generate the final forwarding rule of the network function. The last
phase stores the rules in the XML file with JAXB[13].

2.3 Translator

The parser generates a model of the forwarding rules, which can be used to verify the basic
invariants of the network such as reachability and isolation. The first implementation of the
framework executes a translation for the use case VeriGraph[4]. It is a formal verification tool
for network properties such as reachability and isolation. VeriGraph sees the network as a
sequence  of  network  functions,  and  models  each  function  with  a  set  of  first  order  logic
formulas (FOL)[11] placed in a Java class. The role of the translator is to translate from the
XML model to the Java model for VeriGraph. 

   ClassGenerator and RuleUnmarshaller are the Java classes that executed the translation and
are located in it.polito.rule.unmarshaller. In order to perform the translation are used the
methods implemented by the JAXB[13] framework. 
   The translation phase starts when the  Parser creates a new instance of  ClsassGenerator.
This class generates the AST[14] nodes that represent the basic elements of the Java VNF
class for the VeriGraph tool. The constructor initializes all the header fields of the Java output
file. For example, it imports all the libraries used to process the network function (e.g. import
com.microsoft.z3.Solver).  Moreover,  it  assigns  some  information  used  to  generate  the
output  class,  such as the network function name (nfName)  variable.  The main method of
Classgenerator is startGeneration. It contains the Package Declaration and Type Declaration3

for  the  new  Java  class.  Furthermore,  the  method  calls  all  the  other  methods  of  the
ClassGenrator in order to create the AST[14] nodes of the features required by Verigrapgh[4]
such as initDeclaration, getZ3NodeDeclaration and so on. 

   RuleUnmarshaller is the class that generates the policies of the virtual network function
using the JAXB[13] framework. It reads the input XML document and create the VeriGraph
rules. There is a method for each type of XML Schema. For example the type  LF_Send  is
checked by the method generateSend that models the method for VeriGraph with the AST[14]
elements such as  MethodInvocations node and Expressions. The transformation starts at the
AST[14] root node of the XML document and recursively scans all the nested nodes. The
getType method identifies the node type and calls  the appropriate method to generate  the
corresponding rule. In this thesis we want to adapt the translator to several verification tools.
Therefore, the methods of the ruleUnmarshaller class change so that they translate the types
into the format required by the verification tool.

2 General introduction to eXtensible Markup Language is provided in Chapter 1.2.1
3 Type Declaration and Package declaration are classes of org.eclipse.jdt.core.dom library.
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Chapter 3

Library Extension

3.1 Traffic Classifier

Packet classifiers classify packets flowing through them according to policy and either select
them for special treatment or mark them, in particular for differentiated services [Clark95,
RFC 2475]. They may alter the sequence of packet flow through subsequent hops, since they
control the behaviour of traffic conditioners1. In this thesis work, we define the abstract model
of the Traffic Classifier network function, which will be described further.

3.1.1 Description

The Traffic  Classifier  is  non-data driven VNF because it  is  supposed that  its  table is  not
updated by incoming traffic but it is written by the user.  Data driven is an adjective used to
refer a process that is determined by incoming data. More specifically, in our case, a middle-
box  is  based  on  data  if  its  forwarding  rules  table  is  updating  entries  dynamically  with
incoming traffic. On the other hand, it's a middle-box called non-data driven when the rules
are static and independent of the traffic. 
   This middle-box can have many interfaces like in the following example. In Figure   3.  1   there
is a possible context where the Traffic Classifier has a behaviour like this: the HOST_IN send
one packet with field application = POP_REQUEST.  The traffic classifier  has a policy table
written  by  the  user  that  contains  some rules.  For  example,  if  the  incoming packet  has  a
POP_REQUEST protocol,  it  sends  the  packet  via  the  e4 interface.  The  Traffic  Classifier
checks its  policies and decides whether to drop the incoming packet or send it through a
specific interface. 

   We model the Classifier function in Java, a user friendly language. The class Classifier has a
table named  ClassifierTable where the user can write all the policies. This table has three
columns:

Priority, it is an integer type for defining the priority classification (e.g. 1=sensitive
traffic, 2=best effort traffic, etc.).

Application Protocol, it is a string type that represent the application protocol specified
in the packet. 
Next Hop, it  is  an interface type of the middle-box. It  is  used to decide in which
interface forward the packet.

1 Source: http://www.rfc-editor.org/info/rfc3234
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To manage this Table there are the methods described below:

addClassifierRule = Write one entry on the table
removeRule = Remove one entry from the table

clearTable = Delete the whole table
getClassifierTable = Return the whole table

setClassifierTable = Associate an already existing table to the middle-box
The  main  method  of  this  class  is  onReceivedPacket.  It  implements  the  behaviour  of  the
network function. First of all, it takes the applicationProtocol field of the incoming packet as
an input. Then it check if there is a line corresponding to this protocol in the classifier table.
When an entry exists, the middle-box can send the packet through the interface specified
inside this entry. But if the output interface is the same as the input interface the middle-box
drop the packet to avoid a loop. Finally, if the entry does not exist the packet is dropped,
because it is unclassified. 

1. public RoutingResult onReceivedPacket(Packet packet, Interface iface) 
2. {
3. TableEntry entry =classifierTable.matchEntry
4. (packet.getField(PacketField.APPLICATION_PROTOCOL));
5. if(entry!=null){
6. Interface ifSend = (Interface) entry.getValue(2);
7. if(ifSend!=null && ifSend!=iface)
8. return new RoutingResult(Action.FORWARD,packet,ifSend); }
9. return new RoutingResult(Action.DROP,null,null); }
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CFS = VNF Traffic Classifier; SPAM = VNF antispam; WEB = VNF Web Server;
HOST_IN = general host send/receive packet; e1,e2,e3,e4 = Interfaces of VNF
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3.1.2 Future possible changes

Use the port destination to classify the traffic.
Modify the behaviour, for example one packet with unknown protocol should be send
through one default interface.

Implement a data driven classifier. It can scan the application layer (of the ISO model)
of the packet, and create a new entry into the Classifier Table. 

3.1.3 Updated Framework

The parser2 analyses the classes that describe the virtual network functions. It generates an
AST[14] representation of existing Java source code to  perform a semantic  analysis.  The
parser  recursively  visits  the  AST[14] of  the  code  and  stores  in  local  variables  all  the
characteristics  such  as:  method  declarations,  variables,  conditions,  return  predicates  and
statements. The output of the parser is an XML format model. It is a generic format that can
be easily imported and unmarshalled3 by any application.
   The  main  behaviour  of  the  Traffic  Classifier  network  function  is  to  select  the  output
interface.  The parser  does  not  have  an  element  or  an  attribute  for  this  function.  So it  is
necessary to introduce a new component. The first improvement to the previous parser is the
introduction  of  the  concept  of  output  interface  in  the  XML Schema[7].  Within  the  Core
Element we need to update the complex type  LU_Node that represents a logical node from
which it is possible to send and receive packets. The basic structure has only a name attribute
(Value). We add a new attribute to represent the interface, which is called  IF_OUT [Listing
3.1]. The second step is to change the parser so that is possible to generate a LU_Node unit
with an associated output interface. The parser adds one IF_OUT attribute in the XML rules
only if the network function sends the packet through an interface different from the default
one. The rule generator explores all nodes of the AST[14] tree and when it finds a variable
declaration, it calls the method generateRuleForVariable of the RuleContext class. It has one
switch case on the type name of the analysed variable. We need to add a case for the interface
type in order to generate the corresponding rule in the XML document. The code in Listing
3.2 shows how to write a new rule about the interface selection. There is a flag variable called
ifSend.  It  is  declared as a  global variable  and its  role  is  to memorize whether the output
interface is already set up. The method check if the flag has already been set. Afterwards there
are some instructions to set negation, just in case the variable is in a negative declaration line.
The negation is set at lines 8 to 10 where a new expression is set to the value not. The rule is
generated at lines 15 to 30 with the construction of right and left expressions. The right-hand
expression  corresponds  to  the  IF_OUT attribute  of  the  XML Schema  and  the  left-hand
expression is the name of the selected interface. The method setLastExpression at line 31 adds
the rule to the model. Moreover, to complete the model, we have introduced the switch case to
identify the interface type in the  checkVariabl  and  getVariable  methods of the  RuleContext
class. 

2 See Chapter 2.2 Parser
3 See Chapter 1.2.3 The JAXB
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Listing of Chapter 3

1. <complexType name="LU_Node"> 
2.     <complexContent>
3.     <extension base="tns:LogicalUnit">
4.     <attribute name="Value" type="string"></attribute> 
5.     <attribute name="IF_OUT" type="string"></attribute>   
6.     </extension>
7.     </complexContent>
8. </complexType> 

Listing 3.1

1. case Constants.INTERFACE_TYPE:
2.  if (!ifSend) {
3. if (operator.equals(Operator.EQUALS))
4. negated = true;
5.
6. ExpressionObject exp = factory.createExpressionObject();
7.
8. if (negated) {
9. LONot not = factory.createLONot();
10. not.setExpression(factory.createExpressionObject());
11. exp.setNot(not);
12. exp = not.getExpression();
13. }
14.
15. if (containsLogicalUnit(netFunction)) {
16. LOEquals equals = factory.createLOEquals();
17. equals.setLeftExpression(
18. factory.createExpressionObject());
19. equals.setRightExpression(
20. factory.createExpressionObject());
21. if (checkVariable(Constants.INTERFACE_ID)
22. .compareTo(Constants.NONE) != 0) {
23. equals.getLeftExpression()
24. .setFieldOf(fieldOf(
25. netFunction, Constants.IF_OUT));
26. equals.getRightExpression()
27. .setParam(Constants.INTERFACE_ID);
28. exp.setEqual(equals);
29.
30. setLastExpression(exp);
31. this.ifSend = true;
32. }
33. }
34. }
35. // .…

Listing 3.2
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Translator Extension

4.1 Network Verification Tools

In this chapter we will look at how some verification tools work and how they can interact
with the VNF Modeling framework[16]. The aim of the thesis is proved that the VNFs of our
framework  can  be  easily  places,  after  a  suitable  translation,  as  modules  on  different
verification tools. A formal verification system provides a mechanism to prove or disprove the
correctness of a system's algorithms mathematically. It must verify that the system respects
the  properties  specified  for  it  and usually  returns  an  abstract  mathematical  model  of  the
system.  The  most  popular  Satisfiability  Module  Theories  (SMT)  solver  is  Z3[10].  It  is
released by Microsoft Research and its role is to decide if a set of formulas is satisfiable or
not. In the case of networks, we want to create a graph that connects different hosts, which
can  be  simple  end-nodes  or  specific  network  functions  that  modify  the  traffic.  Given  a
particular  configuration  of  the  network,  formal  verification  must  prove  the  properties  of
reachability and isolation. The reachability property controls that a host can send packets to
another host. In contrast, the isolation property controls that a source host can not send data to
a specific destination. VeriGraph[4] is one of the verification tools available. It models the
network as a set of First Order Logic (FOL) formulas that are analysed by Z3[10]. Another
verification tool, based on Z3[10], is SymNet[5]. It is a network analysis system based on
symbolic execution. We also analyse another tool that uses its own verification algorithm, it is
called SFC-Checker[6].

4.2 SFC-Checker

4.2.1 Description

The  main  objective  of  this  tool  is  checking  the  correct  forwarding  behaviour  of  Service
Function Chain (SFC). The SFC-Checker[6] can verify stateful service chain, by analysing
the  middle-boxes’ stateful  forwarding  behaviour.  It  examines  whether  packets’ flows  are
forwarded correctly according to the service chaining policies. More specifically, the SFC-
Checker[6] can control the sequence of network functions (NFs) any flow should traverse and
the NFs configurations. It is interesting that the service chain can be altered dynamically.
SFC-Checker[6] only handle the forwarding behaviour of an SFC and this is a similitude with
our VNF Modeling framework[16]. 

- 13 - 



Chapter 4 - Translator Extension -

 This verification tools is focuses on checking stateful reachability invariants.
   The aim of this thesis work is demonstrated that the VNFs models of our framework are
general enough to work in several network verification tools. Therefore, now we will see how
the  SFC-Checker[6]  models  the  network  functions  to  highlight  the  similarities  with  our
models. 

   The NF abstraction illustrated on SFC-Checker[6] consist of two parts: a match action table
and the state machine. The match-action table contains the NF’s rules, which can:

check the packet header and the internal states

perform the action on packets
change the internal state

The SFC-Checker[6] rules are modeled with a set of primitives. We list these primitives and
their description in Table 4.1.

Type Name Description

Units

f Flow f

f.p Packet p in flow f

f.p.field Header field in packet p in flow f

State
Operations

set(f,val) Set f’s state to val

get(f) Get f’s state

timeout(f,val) f’s state is removed after val ms

Pre-Conditions

IF(f.p,P) Match f.p on pattern P

IF(f,P) Match f on P

IF(protoAnalyzer(f),P) Match event from protoAnalyzer on P

Actions

Modify(f.p.field,val)
Modify the header field in packet p
in flow f with value val

forward(f.p,port) Send the packet p in flow f through
the port

drop(f) Drop the flow f

encap(fin,fout) Operation of encapsulation and 
decapsulationdecap((fin,fout)

rate_limit(f,val)

Table 4.1

4.2.2 Semantics Translation

The behaviour of our VNFs is modeled as match-action tuples such as in SFC-Checker[6].
Now it is possible to generate a mapping between the rules generated by our parser and those
used by SFC-Checker[6]. We list the mapping for the following virtual network functions:
AclFirewall, Antispam, IDS and Mail Server. 
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Each VNF in the list contains the description of forwarding behaviour, the match-action rules
of our framework and the SFC-Checker[6] match-action rules.

AclFirewall

This is a non-data driven middle-box. In its Table it stores a pair of IP addresses that represent
the source and destination of the packet. A packet in ingress on this middle-box is dropped if
the source address of the packet and the destination address of the packet are equal from one
pair in the Table of the AclFirewall.

   In Table 4.2 we can find the match-action rules of the firewall for both VNF Modeling and
SFC-Checker[6]. We can easily map the  LF_Send VNF Modeling type in a  forward SFC-
Checker[6] primitive and the LF_MatchEntry VNF Modeling type in an IF SFC-Checker[6]
primitive.  Our AclFirewall  function model  can  be translated in  SFC-Checker[6]  primitive
rules. 

- AclFirewall -
 Match-action in VNF Modeling

- AclFirewall -
 Match-action in SFC-Checker

Match Flow
recv(p_0,INTERNAL)

IF(f.p.src,IP_SRC),
IF(f.p.dst,IP_DST)!(matchEnty(p_1.IP_SRC,

p_1.IP_DST)) 

Action Flow send(p_0,EXTERNAL) forward(f.p,out)

Table 4.2

Antispam

This is a non-data driven middle-box. In its Table it stores one list of words that represent a
black-list. It performs application layer packet filtering. The Antispam controls two fields of
the incoming packet. Firstly, it checks if the transport protocol field is equal to POP3_REQUEST
or  POP3_RESPONSE. Secondly, it checks if the field  EMAIL_FROM produces a lookup match
within the Antispam table. Whether the two tests are true, the packet it is dropped. Otherwise,
it is forwarded.
   In Table 4.3 we can find the match-action rules of the antispam for VNF Modeling and in
Table 4.4 we can find the match-action rules of the antispam for SFC-Checker[6]. The VNF
Modeling types and the SFC-Checker[6] primitives used in this network function are the same
used in the AclFirewall, so it is possible translate the model. 

- Antispam -  Match-action in VNF Modeling

Match Flow

recv(p_0,INTERNAL)

p_1.PROTO == POP3_REQUEST||p_1.PROTO == POP3_RESPONSE

!matchEnty(p_1.EMAIL_FROM)

Action Flow send(p_0,EXTERNAL)

Table 4.3
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- Antispam -  Match-action in SFC-Checker

Match(f,s)  Action

IF(f.p.proto,POP3_REQUEST),
!IF(f.p.emailFrom,BLACK-LIST) forward(f.p)

IF(f.p.proto,POP3_RESPONSE),
!IF(f.p.emailFrom,BLACK-LIST)

forward(f.p)

Table 4.4

Intrusion Detection System

The Intrusion Detection System (IDS) is similar to the previous Antispam network function.
But on the contrary, it stores a black-list of URLs in the Table. This middle-box controls two
fields of the incoming packet.  Firstly,  it  checks  if  the transport  protocol  field is  equal  to
HTTP_REQUEST or  HTTP_RESPONSE.  Secondly,  it  checks  if  the  field  URL produces  a  lookup
match  within  the  IDS  table.  Whether  the  two  tests  are  true,  the  packet  it  is  dropped.
Otherwise, it is forwarded. The VNF Modeling types and the SFC-Checker[6] primitives used
in this network function are the same used in the Antispam, so it is possible translate the
model. 

Traffic Classifier

This is a non-data driven middle-box and the Java model of the NF was described in Section
3.1.1.  In  its  Table  it  saves  pairs  made  up  of  a  transport  protocol  and  an  interface.  The
incoming packet on this box is deleted if there are no pairs in the table corresponding to the
TRANSPORT_PROTOCOL field of the packet. Otherwise, the packet is forwarded through
the interface specified in the pair.  In Table 4.5 we can find the match-action rules of this
middle-box for both VNF Modeling and SFC-Checker[6]. The VNF Modeling types and the
SFC-Checker[6] primitives used in this network function are the same used in the Antispam,
so it is possible translate the model. 

- Traffic Classifier -
 Match-action in VNF Modeling

- Traffic Classifier -
 Match-action in SFC-Checker

Match Flow
recv(p_0,INTERNAL)

IF(f.p.proto,PROTO)
!matchEnty(p_0.PROTO)

Action Flow send(p_0,EXTERNAL) forward(f.p,out)

Table 4.5

Mail Server

This is a non-data driven middle-box. The network function Mail Server, compared to the
previous functions, does not have a rules Table. It has the following behaviour. First of all
there is a check on the  TRANSPORT_PROTOCOL field of the incoming packet. If it is the
same as POP_REQUEST, it makes some modifications to the packet.
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More in detail:  it  swaps the  ip-address-source with the  ip-address-destination,  assigns the
value POP_RESPONSE to the TRANSPORT_PROTOCOL field, assigns the value RESPONSE to the
EMAIL_FROM field. Finally, it forwards the packet. Otherwise, if the transport protocol is not
POP_REQUEST, the packet is dropped.
   In Table 4.6 we can find the match-action rules of this middle-box for both VNF Modeling
and SFC-Checker[6]. We can easily map the LF_Equal VNF Modeling type in a Modify SFC-
Checker[6] primitive. The others mapping of the types and primitives are like in the previous
middle-boxes.  Therefore,  the  Mail  Server  can  be  translated  from our  model  to  the  SFC-
Checker[6] model.

- Mail Server -
 Match-action in VNF Modeling

- Mail Server -
 Match-action in SFC-Checker

Match Flow
recv(p_0,INTERNAL)
p_0.PROTO == POP3_REQUEST

IF(f.p.proto,POP3_REQUEST)

Action Flow

p_0.SRC = p_0_DST
p_0.DST = p_0_SRC
p_0.PROTO = POP3.RESPONSE
send(p_0,EXTERNAL)

Modify(f.p.src,f.p.dst),
Modify(f.p.dst,f.p.src),
Modify(f.p.proto,POP3_RESPONSE),
forward(f.p,out)

Table 4.6

Overall, we list the mapping from our model to SFC-Checker[6] model in order to summarise
all possible rule’s elements and highlight the possibility to build a translation (Table 4.7). 

VNF Modeling’ types SFC-Checker’ primitives

LU_Packet Unit: f.p

Field Unit: f.p.field

TableFields Patterns: p

Param Patterns: p

LF_IsInternal Pre-Conditions: IF(f.p.src,INTERNAL)

LF_Send Action: forward(f.p,out)

LF_MatchEntry Pre-Condition: IF(f.p.field,P)

→ LO_Equals(p.1==x)
→ LO_Equals(p.0==x)

Pre-Condition: IF(f.p.field,P)
Action: Modify(f.p.field)

LO_And Pre-Condition

LO_Not Pre-Condition: !IF(someting)

LO_Or Pre-Condition

LF_FieldOf Action: IF(f.p.field,p)

Table 4.7
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4.3 SymNet

In this thesis work we want to demonstrate that the VNF Modeling framework[16] is able to
serialise the abstraction of the network function model across different languages and is able
to  target  different  verification  programs.  SymNet[5]  has  several  similarities  with  our
framework, so in this chapter we will evidence these similarities, and we make a translation
from VNF Modeling to SymNet. 

4.3.1 Description

SymNet[5] is a network static analysis tool based on symbolic execution. It is written in Scala
language1. The network behaviour is described through SEFL2 instructions. Static analysis of
network data planes is interesting for different reasons. For example, it allows economic, fast
and very thorough verification of packet reachability. It guarantees the absence of loop and
the bidirectional forwarding.

   Symbolic execution explores all possible values for each variable at every point. In the
context of network the symbolic analysis can detect the incoming packet headers to check if
they are allowed or whether need to be modified. Moreover, it is interesting to know that in
SymNet  each path  must  be  connected  to  an active  packet  passing through the  network’s
nodes.
   The only disadvantage of symbolic execution is the scalability. This is because the symbolic
execution explores all possible paths through the program, providing possible values for each
variable  at  each  point.  To  reduce  this  problem  SymNet  uses  a  model (a  simplified
representation  of  the  forwarding behaviour  of  network functions  through a  limited  set  of
instructions) of the code. One way used by SymNet, to reduce complexity, is unfolding loops
and executing both branches of an “if” conditional instructions. This means repeating a set of
instructions for each iteration of the loop and executing both the true and false branches of the
if statements. 

   The SEFL language simplifies programming and modelling network boxes. To analyse a
network configuration, SymNet requires as input the descriptions of all network elements and
their unidirectional connections. Values in SymNet can be concrete or symbolic. Each value
has a unique identifier and a list of constraints associated with it. 
   The network verifications performed by SymNet are reachability, loop detection, header
visibility (analysis of value stack of header field) and header memory safety (control the tags
setting).  Finally,  SymNet  uses  the  Microsoft  Z3[10]  solver  to  check  the  network  model
constraints described with SEFL instructions. We have chosen this tool to demonstrate that
our network modelling allows for a simple translation to different verification tools. The user
definition of a friendly Java model can easily be translated into the SymNet format.

   The  SymNet  tool  is  easy  to  install  and  use.  It  is  available  to  the  repository
https://github.com/nets-cs-pub-ro/Symnet. There is more information about the installation of
SymNet in Chapter 5.1.1. 

1 Scala is a new object-oriented and functional programming language. https://www.scala-lang.org/
2 See Chapter 4.3.2 SEFL Set Instructions
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4.3.2 SEFL Set Instructions

The Symbolic Execution Friendly Language (SEFL) is a language designed specifically to
SymNet[5] and it models the network’s behaviour. It generates safe code. In fact, its memory
usage is bounded and its termination is guaranteed. 
   Below there are all the instructions provided by SEFL:

Allocate(v[,s,m]). Allocates new stack for variable  v, of size  s. If  v is a string, the
allocation is handled as metadata and the optional m parameter controls its visibility; it
can be global (default) or local to the current module. If v is an integer it is allocated in
the packet header at the given address; size is mandatory.
Deallocate(v[,s]). Destroys the stack of variable v. If provided, the size s is checked
against the allocated size of v. The execution path fails when the sizes differ or there is
no stack allocated for variable v.

These instructions create header fields and metadata. To simplify access to header fields and
to enable layering, any number of tags can be defined. 

Assign(v,e). Symbolically evaluates expression e and assigns the result to variable v.
All constraints applying to variable v in the current execution path are cleared.

CreateTag(t,e). Creates tag t and sets its value e, where e must evaluate to a concrete
integer value.
DestroyTag(t). Destroys tag t. 

Constrain(v,cond). Ensures  that  variable  v always  satisfies  expression  cond.  The
execution path fails if it  doesn’t. Allows programmers to model filtering behaviour
without branching.
Fail(msg). Stops the current path and prints message msg to the console.

If (cond,i1,i2). Two execution paths are created; the first one executes  i1 as long as
cond holds. The second path executes i2 as long as the negation of cond holds.
For(v  in  regex,instr). Binds  v to  all  map  keys  that  match  regex and  executes
instruction instr for each match. The loop is unfolded before execution. 

Forward(i). Forwards this packet to output port i.
Fork(i1,i2,i3,…). Duplicates the packet and forwards a copy to each output port i1, i2,
etc.

InstructionBlock(i,…). Groups a number of instructions that are executed in order.
Should be used that groups more instructions into a single compound instruction.
NoOp. Does nothing. If any branch is empty, NoOp can be used instead. 

SEFL only supports simple expression such as referencing, subtraction, addition and negation.

   We can find the implementation of the SEFL instruction described above in the folder of the
SymNet[5] project called: 
   .\Symnet\src\main\scala\org\change\v2\analysis\processingmodels\instructions
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4.3.3 Mapping

SymNet[5], like our framework[16], models the network forwarding behaviour in the form of
“match-entry” formalism. We can easily translate the rules from our network’s models to the
SymNet  models.  The  SEFL model  for  network  uses  a  packet  layout  that  mimics  real
implementations. Packet headers are variables, but each header has an absolute offset at which
it  is  allocated.  All  SEFL headers  must  be  allocated  individually  including  the  size.  Both
SymNet and VNF Modeling[16] use the canonical network fields in the packet definition,
they are list below:

VNF  Models:  IP_SRC,  IP_DST,  PORT_SRC,  PORT_DST,  PROTO,  ORIGIN,
ORIG_BODY, BODY, INNER_SRC, INNER_DEST, SEQUENCE, EMAIL_FROM,
URL, OPTIONS, ENCRYPTED,

SymNet[5]: ("IP-Src", "IP-Dst", "IP-Proto", "IP-TTL", "IP-Version", "IP-IHL", "IP-
Length", "IP-ID", "IP-Checksum","Port-Src", "Port-Dst")

As we can see, the network fields are clearly similar and it is easy to modify them according
to the requirements. VNF Modeling represents a packet with a complex type LU-Packet that
contains  a  different  attribute  for  each  field.  Also  in  SymNet,  the  packet class  contains  a
different SEFL Tag for each field. For example, we can see the statements used to allocate the
IP source address in the first row of the Table 4.8.

VNF Modeling SEFL

2

<FieldOf>
   <Unit>p_0</Unit>
   <Field>IP_SRC</Field>
</FieldOf>

CreateTag("IPSrc"), 
Tag("L3HeaderStart") + 96),
Allocate(Tag("IPSrc"), 32),
Assign(Tag("IPSrc"),SymbolicValue())

3

<Send>
  <Source>n_AAA</Source>
  <Destination>n_0</Destination>
  <Packet_out>p_0</Packet_out>
</Send>

Forward("default"))

4

<Equal>
   <LeftExpression>
      <FieldOf>
          <Unit>p_1</Unit>
          <Field>PROTO</Field>
      </FieldOf>
   </LeftExpression>
   <RightExpression>
       <Param>HTTP_RESPONSE</Param>
   </RightExpression>

</Equal>

Constrain(Proto,
          :==:(ConstantValue(
               HTTPREQUEST.value))
)

Table 4.8
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The network’s policies are described by several complex types in the VNF Modeling such as
the  LO_Equals,  the  LF_MatchEntry,  the  LF-Send, etc.  In  contrast,  SymNet  uses  a
combination of SEFL instructions such as Constrain, If, Fail, etc. Below we going to list the
main rules implemented by the two tools. 

Forwarding rule

An important behaviour of network functions is the ability to send packets through a specific
port or interface. The VNF Modeling uses the LF-Send type to model the logical forwarding
functions.  It  has  three  attributes  with  which  indicates  the  source,  the  destination  and the
outgoing packet. In comparison, SymNet[5] uses a SEFL Forward. These instructions can be
found in the second row of the Table 4.8.

Equality rule

The VNF Modeling uses the LO_Equals type in order to check whether a header field of the
incoming packet  has  a  specific  value.  In  SymNet[5]  the  equivalent  function is  the  SEFL
Constrain. For instance, in Table 4.8 (line 3) we can see how the two tools represented the
equality rule for the Protocol field.

Lookup rule

The  LF_MatchEntry type checks whether the incoming packet has some fields that are the
same as those in the VNF’s table. This function has a variable number of parameters. These
are the header fields used in the lookup test. The VNF’s table can be a black-list or a white-
list. When the LF_MatchEntry is positive, the VNF’s table is a white-list because the packets
that do not match are dropped. In contrast, when LF_MatchEntry is in a negation statement,
the VNF’s table is a black-list because packets that have a match are dropped. There is no
corresponding function in SymNet, so we have to remake it with the basic functions of the
SEFL language. The algorithm of the positive LF_MatchEntry function scans the entire VNF's
table to see if it contains the values of the incoming packet. SEFL statements do not have
loops, so we need to create a function with the scala language that runs the loop and builds a
SEFL statement for each iteration. At the end, we will have a SEFL instruction for each row
and column in the table. The new scala method is called addrule [Listing 4.1]. This method
receives a list of parameters that are the fields in the VNF table. In line 6 of the Listing 4.1
there is the loop that iterates all table’s entries. In line 7 there is the SEFL InstructionBlock
generated for the current iteration. This InstructionBlock contains a variable numbers of SEFL
Constraint, one for each field in the entry. Whether all the entry match with the fields in the
packet, the addrule method generates a SEFL Fail. (line 13 of the Listring 4.1). In contrast,
whether the packet’s fields do not match, the  addrule generates a SEFL NoOp instruction
which means to proceed (line 14, 15 of the Listing 4.1). The addrule method returns a list of
all the SEFL InstructionBlock. The algorithm of the negative LF_MatchEntry function returns
a SEFL Fail only if there is no match at the end of the table scan [Listing 4.2]. To do this we
need a flag. When all the entry match the packet’s fields, the SEFL Assign sets the flag to true
(line 10 of Listing 4.2). There is an extra SEFL Constrain (line 18 of Listing 4.2) to check the
flag’s value at the end of the lookup in the table. Whether the flag is false, the SEFL Fail
statement is build, otherwise the SEFL NoOp is build.
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- addrule method for black-list VNF’s table -
1. def addrule(p:List[ConfigParameter]): Array[InstructionBlock] = {
2.     var rule: Array[InstructionBlock] = null
3.     var rules = Array(InstructionBlock(Nil))
4.     val limit = p.length / 2
5.     var i = 0
6.     while (i <= limit) {
7.        rule = Array(InstructionBlock(
8.        If(Constrain(
9.             IPSrc, :==:(ConstantValue(ipToNumber(p(i + 0).value)))), 
10.           InstructionBlock(
11.              If(Constrain(
12.                 IPDst, :==:(ConstantValue(ipToNumber(p(i + 1).value)))), 
13.                 Fail("Match-in-blacklist"), 
14.                 NoOp)), 
15.           NoOp)))
16.        rules = Array.concat(rules, rule)
17.        i = i + 2
18.     }
19.     rules
20.   }

Listing 4.1

- addrule method for white-list VNF’s table -
1. def addrule(p:List[ConfigParameter]): Array[InstructionBlock] = {
2.    [...]
3.     while (i < limit) {
4.       rule = Array(InstructionBlock(
5.       If(
6.          Constrain("flag", :==:(ConstantValue(0))),
7.          InstructionBlock(If(
8.               Constrain(Proto,:==:(ConstantValue(p(i + 0).value.toInt))),
9.               InstructionBlock(
10.                 Assign("flag", ConstantValue(1)), 
11.                 Assign("idIfSend", ConstantValue(p(i + 1).value.toInt))),
12.               NoOp)), 
13.          NoOp)))
14.       rules = Array.concat(rules, rule)
15.       i = i + 2
16.     }
17.     rule = Array(InstructionBlock(
18.     If(Constrain("flag", :==:(ConstantValue(0))), 
19.        Fail("No-Match"), 
20.        NoOp)))
21.     rules = Array.concat(rules, rule)
22.     rules
23.   }

Listing 4.2
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4.3.4 AST Translation

In this chapter, we are going to describe how translate the virtual network function from our
framework[16] to SymNet[5]. The translation of a network model takes place in three distinct
phases:

1. In the first phase, the network model written by the user in Java is translated in the
most generic XML format.

2. In the second phase, the generic network model is translated into a Java class that
contains the SEFL statements. We call this intermediate model SEFLinJava.

3. In the third phase, the ‘SEFLinJava’ model is translated in Scala language. This last
phase consists of two steps. The first step translates the ‘SEFLinJava’ class from the
Java language to the Scala language.  The second step simply have to reassign the
name of some SEFL functions that are not usable in Java.

We skip the first phase because it is described in the previous work[16]. In the second phase
of the translation we use the JAXB framework [13] to  access the XML document of the
VNF’s rules. Moreover, we use the Java package org.eclipse.jdt.core.dom[14] to generate the
new SEFLinJava class. Now we briefly describe the main AST[14] classes. We can find all
variables and methods of these classes in the UML diagram in Figure   4.1   and Figure   4.2  .
The SEFLinJava class of all virtual network functions translated has the same structure. It
contains:

A Compilation Unit node type

This type is the root of AST.
this.cu = ast.newCompilationUnit();

A Package Declaration AST node type
It indicates the name of the SymNet package in which all the translated VNFs will be inserted
in order to be verified by the tool. The translator uses only the method setName.

PackageDeclaration pd = ast.newPackageDeclaration();
pd.setName(ast.newName(new String[] 

{ "org", "change", "v2", "abstractnet", "click","sefl" }));
cu.setPackage(pd);

Import Declarations

The translator uses the Import Declaration AST type node to add all import statements needed
to  run  the  new  network  function  in  the  SymNet  environment.  In  more  detail,  there  are
imported the package of SEFL instructions description,  the package of State used for the
verifications, the package of conversion and definitions. The method used is setName where
the name is the package to be imported.

Method Declaration

The translator builds the public  generate_rules method which receives the configuration of
the network functions as parameter and returns the VNF’s SEFL rules.
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The classes that implement the translation can be found in the package:
it.polito.translator.symnet

The  second  phase  of  the  translation  begins  when  the  Parser creates  an  instance  of  the
ClassGeneratorS class and calls the startGeneration method. It builds the new ‘SEFLinJava’
class. First of all, it generates the basic structure of the class. Afterward it analysis the XML
file. The unmarshalling starts when the  ClassGeneratorS instantiate the  RuleUnmarshallerS
and initialise the JAXBContext. The  generateRule  method of the  RuleUnmarshallerS scans
all JAXBelement nodes to map the virtual network functions rules. The type associated with
each XML element is the core information for the transformation of the rules. The possible
types are those listed in the XML Schema and shown in the Figure 4.3. The type of each node
is captured by the getType method which in turn will call the methods for the SEFL mapping.
Below we are going to list and describe these methods.

generateNot
It maps the LO_Not type. It is placed in front of the expressions of which we want to have the
negation. In SymNet we can not put a ‘Not’ in front of the statements. We need to generate
different constraints. For example, if the type LO_Not it is put in front of LF_MatchEntry type
the translator have to generate a different set of SEFL instructions. The generateNot method
sets the  flagnot,  then calls  the  getType of  the nested type of the  LO_Not  expression,  and
finally resets the flagnot. In Listing 4.3 we can find the generateNot code.

generateMatchEntry
It maps the LF_MatchEntry type. This type depends on the configuration of the middle-box.
We must generate a Lookup rule described in the Chapter 4.3.3. The translator builds the
Lookup rule only at the end of the unmarshal phase because it must create a new Method
Declaration AST node type. For this reason, the generateMatchEntry sets two flags (match,
blacklist) and goes on to the next node. In Listing 4.3 we can find the  generateMatchEntry
code.
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- generateNot method of RuleUnmarshallerS -
1. private Expression generateNot(LONot not) {
2. flagnot = true;
3. Expression exp = getType(not.getExpression());
4. if(exp!=null) {
5. startblock.arguments().add(exp);}
6. flagnot = false;
7. return null;
8. }

- generateMatchEntry method of RuleUnmarshallerS -
1. private Expression generateMatchEntry(LFMatchEntry matchEntry) {
2. if (flagnot) {
3.    blacklist = true;
4. }
5. params = new ArrayList<String>();
6. for (LFFieldOf temp : matchEntry.getValue()) {
7. params.add(temp.getField());
8. }
9. match = true;
10. return null;
11.}

Listing 4.3

generateImplies, generateAnd

They  map  respectively  the  LO_Implies type  and  the  LO_And  type.  These types  do  not
generate a specific SEFL instruction. They call the getType method on the nested expressions
of the node. 

generateOr

It maps the LO_Or type. The logical operator or puts together a series of expressions among
which there must be at least one true. The basic instructions of the SEFL do not have the
logical operator OR. The function  generateOr generates a series of ‘if-then-else’ statements
that repeat the same behaviour of the  LO_Or. For example, the  LO_Or(A,B,C) expression is
mapped as: If(Constraint(A), NoOp, If(Constrain(B), NoOP, Constrain(C))).

   Once the unmarshalling phase is over,  ClassGeneratorS calls the method  generateMatch
method. It checks the value of the match flag, whether it is false, the translator has not found a
LF_MatchEntry and will do not generate a new method. Otherwise, the method will generate
a Lookup rule method. Now the ClassGeneratorS can write the ‘SEFLinJava’ output file.
   The last phase of the translator performs a language switch from Java to Scala. To do this,
we use an existing Java to Scala conversion tool called Scalagen[15]. It uses a Java based
parser  for  Java  sources  and provides  modular  transformation  of  the  AST to  match  Scala
idioms. The resulting transformed AST is serialized into Scala format. We use Scalagen with a
Maven plugin provided by the tool. It can be used directly via the command line like this:
mvn com.mysema.scalagen:scalagen-maven-plugin:0.2.2:main -DtargetFolder=scala
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The explicit configuration of Scalagen Maven plugin in a POM is:
<plugin>
  <groupId>com.mysema.scalagen</groupId>
  <artifactId>scalagen-maven-plugin</artifactId>
  <version>0.2.2</version>
</plugin>

   The last step of the translation is a post processing operation that changes the name of some
functions.  In  Java  we  used  symbolic  names  for  some  SEFL functions  that  could  not  be
represented. For example, we change the SEFL Constraint as follows:

Constrain("flag",postParsef(ConstantValue(0))) → 
Constrain("flag",:==:(ConstantValue(0)))

The post processing is built by the PostProcess Java class of the ‘it.polito.translator.symnet’
package of our framework.

4.3.5 Translated Network Functions

The general rules for the network functions of the VNF Modeling[16] are translated according
to  the mapping.  We have the  rules  of  Access  Control  List(Acl)  Firewall,  Antispam,  IDS,
Traffic Classifier, Mail Server and Web Server. We can find the rules of the AclFirewall in
[Listing 4.4] and the rules of Traffic Classifier [Listing 4.5] as examples. 

   Since the SymNet[5] verification tools can inject only one packet per execution, we can not
translate  the behaviour  of our  data  driven virtual  network functions  such as the Network
address translation (NAT) and Web Cache. In addition, these functions generate different rules
for packets that come from the internal or external network. There is no such network division
in  SymNet.  Anyhow,  we  have  translated  the  Web  Cache  into  a  non-data  driven
implementation without distinguishing the internal/external network. As for the NAT’s rules
we  have  many  dependencies  on  previous  packets  in  transit  on  the  network  and  these
dependencies  can  not  be  translated  into  SymNet.  Our  translator  generates  several  SEFL
statements describing the behaviour of the given function independently of the location in
which it will be installed. The NAT provided by SymNet combines basic elements such as
FromDevice, ToDevice,  IPClassifier and IPRewriter3. It performs a different implementation
of the NAT for each network graph that aims to verify. For this reason it is not possible to
achieve this  result  only with the SEFL instructions regardless of  the configuration of the
network graph to be verified. However, this aspect does not go to undermine the goodness of
our model. The framework correctly extracts a generic model of the behaviour of the network
function. In the case of the NAT there is not a problem related to the model generated but to
the behaviour of the same that as it was implemented is not compatible with SymNet.

3 The behaviour of some of these basic SymNet[5] elements are described in the Chapter 5. 
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- Rule_AclFirevall.sccala -

1. package org.change.v2.abstractnet.click.sefl
2. 
3. import org.change.v2.analysis.expression.concrete._
4. import org.change.v2.analysis.memory.State
5. import org.change.v2.analysis.memory.TagExp._
6. import org.change.v2.analysis.memory.Tag
7. import org.change.v2.analysis.processingmodels.instructions._
8. import org.change.v2.util.conversion.RepresentationConversion._
9. import org.change.v2.util.canonicalnames._
10. import org.change.v2.analysis.memory.Value
11. import org.change.v2.abstractnet.generic._
12. 
13. class Rule_AclFirewall {
14. 
15.   def generate_rules(params:List[ConfigParameter]): InstructionBlock = {
16.     val code = InstructionBlock(
17.         Assign("flag", ConstantValue(0)), 
18.         InstructionBlock(), 
19.         InstructionBlock(addrule(params)))
20.     code
21.   }
22. 
23.   def addrule(p:List[ConfigParameter]): Array[InstructionBlock] = {
24.     var rule: Array[InstructionBlock] = null
25.     var rules = Array(InstructionBlock(Nil))
26.     val limit = p.length / 2
27.     var i = 0
28.     while (i <= limit) {
29.       rule = Array(InstructionBlock(
30.       If(Constrain(IPSrc, :==:(ConstantValue(ipToNumber(p(i + 0).value)))), 
31.          InstructionBlock(
32.          If(Constrain(IPDst,:==:(ConstantValue(ipToNumber(p(i + 1).value)))),
33.             Fail("Match-in-blacklist"), 
34.             NoOp)
35.          ), NoOp)))
36.       rules = Array.concat(rules, rule)
37.       i = i + 2
38.     }
39.     rules
40.   }
41. }

Listing 4.4
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- Rule_Classifier.sccala -
1. package org.change.v2.abstractnet.click.sefl
2. 
3. import org.change.v2.analysis.expression.concrete._
4. import org.change.v2.analysis.memory.State
5. import org.change.v2.analysis.memory.TagExp._
6. import org.change.v2.analysis.memory.Tag
7. import org.change.v2.analysis.processingmodels.instructions._
8. import org.change.v2.util.conversion.RepresentationConversion._
9. import org.change.v2.util.canonicalnames._
10. import org.change.v2.analysis.memory.Value
11. import org.change.v2.abstractnet.generic._
12. 
13. class Rule_Classifier {
14. 
15.   def generate_rules(params:List[ConfigParameter]): InstructionBlock = {
16.     val code = InstructionBlock(
17.         Assign("flag", ConstantValue(0)), 
18.         InstructionBlock(), 
19.         InstructionBlock(addrule(params)))
20.     code
21.   }
22. 
23.   def addrule(p:List[ConfigParameter]): Array[InstructionBlock] = {
24.     var rule: Array[InstructionBlock] = null
25.     var rules = Array(InstructionBlock(Nil))
26.     val limit = p.length / 2
27.     var i = 0
28.     while (i < limit) {
29.       rule = Array(InstructionBlock(
30.            If(Constrain("flag", :==:(ConstantValue(0))), 
31.               InstructionBlock(
32.               If(Constrain(Proto,:==:(ConstantValue(p(i + 0).value.toInt))),
33.                  InstructionBlock(
34.                    Assign("flag", ConstantValue(1)), 
35.                    Assign("idIfSend", ConstantValue(p(i + 1).value.toInt))),
36.                  NoOp)), 
37.               NoOp)))
38.       rules = Array.concat(rules, rule)
39.       i = i + 2
40.     }
41.     rule = Array(InstructionBlock(
42.        If(Constrain("flag", :==:(ConstantValue(0))), 
43.           Fail("No-Match"), 
44.           NoOp)))
45.     rules = Array.concat(rules, rule)
46.     rules
47.   }
48. }

Listing 4.5
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Tests

5.1 VeriGraph

VeriGraph[4]  is  a  tool  for  the  formal  verification  on  SDN/NFV networks.  It  can  verify
network properties (such as reachability, isolation, traversal), and it is also able to model the
stateful middle-boxes (such as functions that may dynamically change the forwarding path of
a traffic flow according to their local algorithms and states)[12]. The network scenario (named
service graph) is modeled as a set of First Order Logic formulas [11] that express the network
policies, and then these formulas are analysed by the Z3[10] solver. In this context, a graph is
a set of virtual network functions (nodes) connected by directed arcs[12].

   Virtual network functions are represented in VeriGraph through Java classes.  The core
method of these classes is installVNF. Inside this method all the rules that were stored in the
XML are unmarshalled and saved in the appropriate Z3 format by our parser. This method
installs and adds all the constraints of the middle-box to the solver, this is necessary in order
to  make the  model  of  the  middle-box interact  with  the  other  elements  of  the  VeriGraph
network[9].
  Our framework performs a translation from the VNFs defined by the user to the Java classes
supported by VeriGraph. This process of transformation uses the JAXB framework[13] and
the  Java package  org.eclipse.jdt.core.dom[14]. We have added a new element in the XML
Schema of  our  framework to  model  the  new VNF traffic  classifier  (described in  Section
3.1.1), but this add-on is not yet supported in VeriGraph. Therefore, it is necessary to modify
the translation phase towards VeriGraph in order to skip the new rule linked to the selection of
the forwarding interface.

   In this chapter we will perform some tests in VeriGraph to understand how this verification
tool  works  and  to  check  if  the  VNF  models  behaves  in  the  same  way  in  different  test
environments.

5.1.1 Traffic Classifier

The following  examples report  the  test  cases  generate  in  VeriGraph[4] in  order  to  check
whether the Traffic Classifier generated by our parser works as expected.  All the test check
the isolation property between two hosts.
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Test chain n.1

In this first example we will use the service graph which is shown in Figure 5.1. There are
two hosts (Host_A, Host_B) and a network function (Traffic Classifier). These three nodes are
connected by two bidirectional links (l1, l2).

Host_A and the Host_B are modeled as two PolitoEndHost VNF of VeriGraph. They can be
configured as a simple end host that generates and receives packets or as Web Client or Mail
Client.  The  Traffic  Classifier node is  the  VNF generated  by our  parser  and described in
Section 3.1.1. It is called Rule_Classifier in VeriGraph. Briefly, his behaviour is the following:
delete all incoming packets that have a transport protocol different from those in the Table of
the node, which are specified during configuration.
   To write a new test in VeriGraph, the first thing to do is to list the nodes of the service graph
and specify the routing table for each one. Next, we have to give the configuration of the
nodes and install them. We can also give some indication on how the packet have to be when
it is crossing the graph. Finally we can write the main class that call the SAT solver.

   Test of satisfiability A
In  this  test  we  will  check  if  the  Host_A can  reach  the  Host_B  based  on  the  following
configurations. The packet crossing the graph must have an IP destination address equal to the
IP of the Host_B and the transport protocol equal to  HTTP_REQUEST. The table of the Traffic
Classifier has two items: HTTP_REQUEST and HTTP_RESPONSE protocols. These two protocols are
represented in VeriGraph with an integer value. Respectively 1 and 2.  The expected result is
the satisfiability of the policy, because the packet protocol constraint is known to the Traffic
Classifier  and the routing tables link the Host_A to the Host_B via the Traffic Classifier.
Moreover, we expect to see two packets. The first one in transit on the link l1, it is sent by the
Host_A to the Traffic Classifier, the second one is sent by the Traffic Classifier to the Host_B
on link l2. The Listing 5.1 shows the output of this test.  Here we can find the result of the
test. It is SAT, which means satisfiability. We can also find the packet that crosses the service
graph. For each packet there is the sender node, the receiver node and all header fields. 
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       - Output of the Test of satisfiability A in VeriGraph- 
1. SAT 
2. (define-fun send!85 ((x!0 Node) (x!1 Node) (x!2 packet)) Bool
3.   (ite (and (= x!0 cf)   //Sender node: Traffic Classifier(cf)
4.             (= x!1 b)    //Receiver node: Host_B(b)
5.             (= x!2 (packet ip_a ip_b null null a 14 14 15 1 16 17 18 false)))
6.   (ite (and (= x!0 a)    //Sender node: Host_A(a)
7.             (= x!1 cf)   //Receiver node: Traffic Classifier(cf)
8.            (= x!2 (packet ip_a ip_b null null a 14 14 15 1 16 17 18 false)))

Listing 5.1

The packet's fields given in the output of the test are:
ip_a = Source field, IP address of the node a (Host_A)
ip_b = Destination field, IP address of the node b (Host_B)
null = Inner source field
null = Inner destination field
a  = Source field, Host_A
14 = Origin body field
14 = Body field
15 = Sequence field
1 = Protocol field, HTTP_REQUEST
16 = Email From field
17 = URL field 
18 = Options field
false = Encrypted field

   Test of UnSatisfiability
In  this  test  we  will  check  if  the  Host_A can  not  reach  the  Host_B  based  on  previous
configurations with only one change. The packet crossing the graph must have the transport
protocol equal to POP3_REQUEST. The expected result is the one of UnSatisfiability because the
Traffic Classifier is configured to delete packet with POP3_REQUEST protocol. The output of the
test has only one line with the message “UNSAT”.
   These tests are available in the VNF Modeling project under the folder “.\src\it\polito\
verigraph\usecase\Test_Classifier_Base.java”.
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Test chain n.2

In the second example we will use the service graph which is shown in Figure 5.2. There are
two  hosts  (Host_A,  Host_B)  and  two  network  functions  (Traffic  Classifier_A,  Traffic
Classifier_B). These elements are connected by three bidirectional links (e1, e2, e3).

   Test of satisfiability B
In this test we will check if the Host_A can reach the Host_B given the follow configurations:

• The  Traffic  Classifier_A drop  all  the  incoming  packets  with  transport  protocol
different to HTTP_REQUEST or POP3_REQUEST. 

• The  Traffic_Classifier_B  drop  all  the  incoming  packets  with  transport  protocol
different to HTTP_REQUEST or HTTP_RESPONSE. 

• The packet crossing the graph must have the IP destination address equal to the IP of
the Host_B and the transport protocol equal to HTTP_REQUEST. 

The expected result is that of Satisfiability. Moreover, we expect to see three packets. The first
one in transit on the link e1, it is sent from the Host_A(a) to the Traffic Classifier_A. The
second one is sent from the Traffic Classifier_A(cf1) to the Traffic Classifier_B(cf2) on link
e2. The last one is sent from the Traffic Classifier_B to Host_B(b) on link e3. The Listing 5.  2  
reports the output of this test. 
  This test  is  available in the VNF Modeling project under the folder  “.\src\it\polito\
verigraph\usecase\Test_Classifier_Chain.java”.

    - Output of the Test of satisfiability B in VeriGraph - 

SAT 
(define-fun send!286 ((x!0 Node) (x!1 Node) (x!2 packet)) Bool
  (ite (and (= x!0 cf2)
            (= x!1 b)
            (= x!2 (packet ip_a ip_b null null a 14 14 15 1 16 17 18 false)))
    true
  (ite (and (= x!0 cf1)
            (= x!1 cf2)
            (= x!2 (packet ip_a ip_b null null a 14 14 15 1 16 17 18 false)))
    true
  (ite (and (= x!0 a)
            (= x!1 cf1)
            (= x!2 (packet ip_a ip_b null null a 14 14 15 1 16 17 18 false)))
    true
    false))))

Listing 5.2
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Test chain n.3

In the third example we will use the service graph which is shown in Figure 5.3. There are
two hosts (Host_A, Host_B) and two virtual network functions (Traffic Classifier, Firewall).
These elements are connected by three bidirectional links (l1, l2, l3).

   Test Satisfiability C
In  this  test  we  will  check  if  the  Host_A(a)  can  reach  the  Host_B(b)  given  the  follow
configurations:

• The Traffic Classifier(cf) is configured to drop all the incoming packets with transport
protocol other than HTTP_REQUEST or POP3_REQUEST. 

• The Firewall(fw) drops an incoming packet when it has the fields  IP address source
and IP address destination like at one pair present inside the Firewall’s Table. In the
example the Firewall’s Table contain only one pair: <ip_a, ip_fw>.

• The packet crossing the graph must have the IP destination address equal to the IP of
the Host_B and the transport protocol equal to HTTP_REQUEST. 

The expected result is that of Satisfiability. Moreover, we expect to see three packets. The first
one in transit on the link l1 (from a to cf). The second one is sent from Traffic Classifier to
Firewall on link l2. The last one is sent from Firewall to Host_B on link l3. The Listing 5.  3  
reports the output of this test. 
  This test  is  available in the VNF Modeling project under the folder  “.\src\it\polito\
verigraph\usecase\Test_Classifier_Firewall.java”.

    - Output of the Test of satisfiability C - 
SAT 
(define-fun send!387 ((x!0 Node) (x!1 Node) (x!2 packet)) Bool
  (ite (and (= x!0 fw)
            (= x!1 b)
            (= x!2 (packet ip_a ip_b null null a 14 14 15 1 16 17 18 false)))
    true
  (ite (and (= x!0 cf)
            (= x!1 fw)
            (= x!2 (packet ip_a ip_b null null a 14 14 15 1 16 17 18 false)))
    true
  (ite (and (= x!0 a)
            (= x!1 cf)
            (= x!2 (packet ip_a ip_b null null a 14 14 15 1 16 17 18 false)))
    true
    false))))

Listing 5.3
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5.2 SymNet

We  have  performed  several  tests  with  the  SymNet[5]  verification  tool.  These  tests
demonstrate that the VNFs generated with the VNF Modeling framework[16] are compatible
with the SymNet framework. More specifically,  we have generated tests  on the following
middle-boxes: Firewall, Antispam, Intrusion Detection System (IDS), Traffic Classifier, Mail
Server, Web Cache and Web Server.

   We have done some tests to verify the reachability policy and others to verify the isolation
policy. SymNet shows the path that a packet makes from the source to the destination. The
values of packet header can be analysed, at each port traversed by the packet, to find out
whether it is allowed to pass or not. In this chapter we will explain the main components of
the tests.

5.2.1 Basic elements 

The core elements used to perform tests in SymNet[5] are as follows:

The graph of the network. 
It  is  described  with  Click1 syntax.  We  have  listed  the  VNFs  of  the  network  and  the
connections between them in the graph. We can now list the middle-boxes that make up our
network in the following way:

label :: NomeNF(configuration)

label is a simple tag that we will use to describe the links, NameNf is the name of the class
that describes the behaviour of our virtual network function, configuration represents the data
necessary to initialize the middle-box. In order to list the links between the elements of the
network we use the following structure:

label1 -> label2[0] -> [0]label3
          label2[1] -> label4

The symbol ‘->’ represents the one-way connection between a network function and the other.
If nothing is specified, the packet transits on the default input and output ports. Otherwise, we
can specify a different entry or exit port in  square brackets. The brackets that precede the
label indicates the input port and the brackets that follow the label indicates the output port.
All the graphs used in the tests are in the folder: 

"./Symnet/src/main/resources/click_test_files/vnf_model"

The main class. 

It  performs  the  following  activities  to  execute  the  test.  The  main  takes  the  network
configuration  and  analyses  it  to  extract  the  SEFL models.  After,  it  runs  the  verification
process and prints the result. The listing   5  .  4   shows the core instructions of the main. All the
main classes written to run the tests are called  <nf_name> Runner and are located in the
folder:
 "./Symnet/src/main/scala/org.change.v2.runners.models"

1 Click is a new software for building routers.
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   - The main Scala class of the verification -

//clickConfig is the path of the network graph:
val clickConfig = 
"src/main/resources/click_test_files/vnf_model/GraphMailServer.click"
//absNet builds the VNFs:     
val absNet = ClickToAbstractNetwork.buildConfig(clickConfig)
//executor runs the solver:
val executor = ClickExecutionContext.fromSingle(absNet).setLogger(JsonLogger)
....
output.println(
    successful.map(_.jsonString).mkString("Successful: {\n", "\n", "}\n") +
         failed.map(_.jsonString).mkString("Failed: {\n", "\n", "}\n")
)

Listing 5.4

The elements of the network (VNFs). 

SymNet[5] provides a number of network elements, and we create new ones for our VNFs.
We are going to see better how these elements are made in the description of the tests. All
network elements are in the folder:

 "./Symnet/src/main/scala/org.change.v2.abstractnet.click.sefl"

The test results. 

They are saved in a file.output. We have to analyse the files in output in order to be able to
know the outcome of the test. Below there is a draft of the elements present in the file.output.

Successful: {{"status":"OK",
  "port_trace":[ .... ]
   "instruction_trace":[ ... ]
   "memory":{ .... }

}
Failed: {

 {"status": "message"
   "port_trace":[ .... ]
  "instruction_trace":[ ... ]
   "memory":{ .... }

}

Rechability tests are successful if there is a Successful element inside the file.output. To better
understand  what  happened,  we  can  look  the  internal  elements  of  Successful.  The  status
element reports an ‘Ok’ message. In the port_trace element there is a list of the ports that the
packet has traversed. For example, if the graph has three nodes (A → B → C), the port_trace
element will have the following list of ports: A-in, A-out, B-in, B-out, C-in, C-out. The
instructions_trace element  reports  a  list  of  all  the  SEFL instructions  executed  on  each
network nodes port. For example, for the graph (A → B → C), in the instruction_trace element
we will find ‘A-in: Forward (A-out)’. The data of the packet are in the memory element. 
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 - Set of valid values for the source IP address -
Allocate(IPSrc, 32),
Assign(IPSrc, SymbolicValue()),
Constrain(IPSrc,
     :&:(:>=:(ConstantValue(0)), :<=:(ConstantValue(4294967296L)))),

Listing 5.5

For instance,  in memory we can find the following information: the Protocol field of the
packet is at position ‘72’ and has value ‘30’. Each field which is in the packet is placed in a
specific memory location.  The memory mappings are into the  packet.scala  file.  It  can be
found in the folder:

"./Symnet/src/main/scala/org.change.v2.util".

Below we list some memory mapping values:

val IPSrcOffset = 96, val IPSrc = L3Tag + IPSrcOffset
val IPDstOffset = 128, val IPDst = L3Tag + IPDstOffset
val URLOffset = 16, val URL = L7Tag + URLOffset
val EmailFromOffset = 16, val EmailFrom = L7Tag + EmailFromOffset

The value we can assign to each field in the packet is limited by the number of bits used to
represent it.  We can look for the  State.scala  file in the folder  "./Symnet/src/main/scala/
org.change.v2.analysis.memory" in order to know the range of valid values for a field. For
example, the source IP field range is between 0 and 4294967296L [L  isting   5  .  5  ].
   Even if the test was successful, we can find more than one Fail element in the file.output.
These  elements  are  in  there  because  the  symbolic  verification  tool  explores  all  possible
values. For example, if a packet has the protocol field equal to 10. And there is an instruction
that checks if the value of this field is ‘10’. There are two possible results. One is Successful,
the protocol is equal to 10. Another is Failed, the protocol can not be different from 10. Both
results are true. The  Failed element contains a  state, it is a message that explains why the
execution was not successful. Moreover, it reports the path crossed by the packet from the
beginning to the point where a fail has occurred.
   Isolation policy can not be executed directly, but we can check the Rechability policy by an
inverse interpretation of  the  file.output.  We check whether  the reachability  is  denied.  For
example, given the graph A → B → C, we want to verify that A can not reach B. The isolation
property is true if the reachability returns a Failed statement and no one Successful.  
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5.2.2 Network graph with a Firewall

In this reachability test, we check if the VNF of the firewall generated by the VNF Modeling
framework[16] works properly in the SymNet[5] environment. To do this we insert the VNF
module in a specific network scenario. In Figure 5.4 there is the network topology of this test
and in L  isting 5.  6   we can find the equivalent network graph in the Click format. 

The graph is composed by 4 different elements:
FromDevice is a basic element of SymNet. This host generates and sends a standard
packet that initialises all header fields with symbolic values. 

The packet’s fields created by FromDevice is empty and the user can not set specific values
using the Click basic elements. In this way, we have generated some elements to set packet’s
fields specifically for our tests.  

Client is a new element that sets the IP source address and the IP destination address
of the packet. It receives a packet through the default input port, sets the  IPSrc and
IPDst fields with the two parameters received as configuration, and finally sends the
packet through the default output port. The class written with Scala language for the
Client is called ClientIPsrcIPdst (label cli). In the test, we use IPSrc equal to 0.0.0.24
and IPDst equal to 0.0.0.64 (line 1 of Listing 5.6).
Firewall  is a new element that contains the behaviour of the firewall generated by
VNF Modeling. The firewall is configured with a black-list as a list of <IPSrc, IPDst>.
Every packet with IPSrc and IPDst contained into the black-list will be blocked by the
firewall. The class written with Scala language for the firewall is called ZmodelFw. In
the test, we initialise the ZmodelFw (label mfw) with two pair:

  < 0.0.0.8, 0.0.0.16 >, < 0.0.0.24, 0.0.0.32 > (line 2 of Listing 5.6)
ToDevice is a basic element of SymNet. It is the terminal point of the packet.

- GraphFw.click -
1. Cli :: ClientIPsrcIPdst(0.0.0.24,0.0.0.64)
2. myf :: ZmodelFw(0.0.0.8,0.0.0.16,0.0.0.24,0.0.0.32)
3. FromDevice -> cli -> myf -> ToDevice

Listing 5.6
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- TestResultFirewall.output -
Successful: { {"status":"OK",
"port_trace":[
{"0":"fromDevice-0-in"}, {"1":"fromDevice-0-out"}, {"2":"cli-in"},
{"3":"cli-0-out"}, {"4":"myf-in"}, {"5":"myf-0-out"},
{"6":"toDevice-0-in"}, {"7":"toDevice-0-out"}],
"instruction_trace":[ [...] 
{"63":"Forward(fromDevice-0-out)"},{"65":"CreateTag(L3HeaderStart,+0)"},
{"66":"CreateTag(IPSrc,L3HeaderStart+96)"}, {"67":"AllocateRaw(IPSrc,32)"},
{"68":"CreateTag(IPDst,L3HeaderStart+128)"}, {"69":"AllocateRaw(IPDst,32)"},
{"70":"AssignRaw(L3+96,[Const(24)],GenericNumeric)"},
{"71":"AssignRaw(L3+128,[Const(64)],GenericNumeric)"},
{"72":"AssignNamedSymbol(flag,[Const(0)],GenericNumeric)"},
{"73":"Forward(cli-0-out)"},
{"75":"AssignNamedSymbol(flag,[Const(0)],GenericNumeric)"},
{"76":"ConstrainRaw(L3+96,:~:(:==:([Const(8)])),Some(~(==([Const(8)]))))"},
{"77":"org.change.v2.analysis.processingmodels.instructions.NoOp$@6166e06f"},
{"78":"ConstrainRaw(L3+96,:==:([Const(24)]),Some(==([Const(24)])))"},
{"79":"ConstrainRaw(L3+128,:~:(:==:([Const(32)])),Some(~(==([Const(32)]))))"},
{"80":"org.change.v2.analysis.processingmodels.instructions.NoOp$@6166e06f"},
{"81":"Forward(myf-0-out)"},
[...] 

Listing 5.7

The reachability test in SymNet starts with the parsing of the network's graph, which is then
translated it into SEFL instructions to be sent to the SAT solver[10]. 
   The expected result in this test is  Successful, since we insert in the graph a packet with
IPSrc and  IPDst different from the pairs blocked by the firewall. In the  file.output  [Listing
5.7] we can see all the ports traversed by the packet and the SEFL instructions executed by the
solver.  The  instructions  n.  70  and  n.71  are  about  the  assignment  of  IPSrc and  IPDst.
Instructions n. 76 and n. 78 check if the  IPSrc of the incoming packet is different from the
IPSrc addresses denied by the firewall. Since the IPSrc of the packet is equal to the IPSrc of
the second pair denied, it follows the instruction n. 79 that controls the IPDst field of that pair.
It is different from the IPDst of the packet, so the firewall can forward it (instruction n.81).
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5.2.3 Network graph with an Antispam 

In this reachability test, we check if the VNF of the antispam generated by the VNF Modeling
framework[16] works properly in the SymNet[5] environment. To do this we insert the VNF
module in a specific network scenario. In Figure 5.5 there is the network topology of this test
and in L  isting 5.  8   we can find the equivalent network graph in the Click format. 

The graph is composed by 4 different elements:

Host_A is  a  FromDevice element  of  SymNet.  The  behaviour  is  explained  in  the
section of the firewall test 5.2.2. 
Client is a new element that sets the protocol (Proto) field and the EmailFrom field of
the  packet.  It  receives  a  packet  through the  default  input  port,  sets  the  Proto and
EmailFrom fields with the two parameters received as configuration,  and finally it
sends the packet through the default output port. The class written with Scala language
for the Client is called ClientProtocol (label cli). In this test, we use Proto equal to 20
(POP3_REQUEST) and EmailFrom equal to 7 (line 1 of Listing 5.8).

Antispam is a new element that contains the behaviour of the antispam generated by
VNF Modeling. The antispam is configured with a black-list as a list of <EmailFrom>.
Every  packet  with  Proto equal  to  20  (POP3_REQUEST)  or  equal  to  30
(POP3_RESPONSE) and with EmailFrom contained in the black-list will be blocked
by the antispam. The class written with Scala  language for  the antispam is called
ZmodelAs (label as). In this test, we initialise the antispam with three values: 3, 4, 8
(line 2 of Listing 5.8).
Host_B is the ToDevice element of SymNet. It is the terminal point of the packet.

- GraphAntispam.click -
1. cli :: ClientProtocol(20,7)
2. as :: ZmodelAs(3,4,8)
3. FromDevice -> cli -> as -> ToDevice

Listing 5.8
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- TestResultAntispam.output -
Successful: {
{"status":"OK",
"port_trace":[
{"0":"fromDevice-0-in"}, {"1":"fromDevice-0-out"},
{"2":"cli-in"}, {"3":"cli-0-out"},
{"4":"as-in"},  {"5":"as-0-out"},
{"6":"toDevice-0-in"}, {"7":"toDevice-0-out"}],
"instruction_trace":[
[...] 
{"63":"Forward(fromDevice-0-out)"},
{"64":"org.change.v2.analysis.processingmodels.instructions.NoOp$@3ffcd140"},
{"65":"AssignRaw(L3+72,[Const(20)],GenericNumeric)"},
{"66":"AssignRaw(L7+16,[Const(7)],GenericNumeric)"},
{"67":"Forward(cli-0-out)"},
{"68":"org.change.v2.analysis.processingmodels.instructions.NoOp$@3ffcd140"},
{"69":"AssignNamedSymbol(flag,[Const(0)],GenericNumeric)"},
{"70":"ConstrainRaw(L3+72,:==:([Const(20)]),Some(==([Const(20)])))"},
{"71":"org.change.v2.analysis.processingmodels.instructions.NoOp$@3ffcd140"},
{"72":"ConstrainRaw(L7+16,:~:(:==:([Const(3)])),Some(~(==([Const(3)]))))"},
{"73":"org.change.v2.analysis.processingmodels.instructions.NoOp$@3ffcd140"},
{"74":"ConstrainRaw(L7+16,:~:(:==:([Const(4)])),Some(~(==([Const(4)]))))"},
{"75":"org.change.v2.analysis.processingmodels.instructions.NoOp$@3ffcd140"},
{"76":"ConstrainRaw(L7+16,:~:(:==:([Const(8)])),Some(~(==([Const(8)]))))"},
{"77":"org.change.v2.analysis.processingmodels.instructions.NoOp$@3ffcd140"},
{"78":"Forward(as-0-out)"},
{"79":"org.change.v2.analysis.processingmodels.instructions.NoOp$@3ffcd140"},
{"80":"Forward(toDevice-0-out)"},
[...] 

Listing 5.9

   The expected result for this test is  Successful, since we put into the graph a packet with
EmailFrom different from the values blocked by the antispam. In the file.output [Listing 5.  9  ]
we can see all the ports traversed by the packet and the SEFL instructions executed by the
solver. The instructions n. 65 is about the assignment of the Proto and the instruction n. 66 is
about the assignment of the EmailFrom. Instructions n. 70 checks if the Proto of the incoming
packet  is  different  from  the  value  20  (POP_REQUEST).  Since  it  is  equal,  there  is  the
instructions  n.72,  74,  76  that  control  the  EmailFrom field  of  the  incoming  packet.  It  is
different from the black-list’s values, so the antispam can forward it (statement n. 80).
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5.2.4 Network graph with an IDS

In this isolation test, we check if the VNF of the Intrusion Detection System(IDS) generated
by the VNF Modeling framework[16] works properly in the SymNet[5] environment. To do
this we put the VNF module in a specific network scenario. In Figure 5.6 there is the network
topology of this test and in L  isting 5.  10   we can find the equivalent network graph in the Click
format.

The graph is composed by 4 different elements:

FromDevice is a basic element of SymNet. The behaviour is explained in the section
of the firewall test 5.2.2. 

Client  is a new element that sets the protocol (Proto) field and the URL field of the
packet. It receives a packet through the default input port,  sets the  Proto and  URL
fields with the two parameters received as configuration, and finally sends the packet
through the default output port. The class written with Scala language for the Client is
called ClientIDS (label cli). In the test, we use Proto equal to 80 (HTTP_RESPONSE)
and URL equal to 7 (line 1 of Listing 5.15).
IDS  is  a  new element  that  contains  the  behaviour  of  the  IDS generated  by  VNF
Modeling. The IDS is configured with a black-list as a list of <URL>. Every packet
with Proto equal to 70 (HTTP_REQUEST) or equal to 80 (HTTP_RESPONSE) and
with the URL contained in the black-list will be blocked by the IDS. The class written
with Scala language for IDS is called ZmodelIDS (label ids). In the test, we initialise
this middle-box with three values: 10, 7, 30 (line 2 of Listing 5.15).

ToDevice is a basic element of SymNet. It is the terminal point of the packet.

- GraphIDS.click -
1. cli :: ClientIDS(80,7)
2. ids :: ZmodelIDS(10,7,30)
3. FromDevice -> cli -> ids -> ToDevice

Listing 5.10
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- TestResultIDS.output -
Failed: {
[...]{
"status":"Match-in-blacklist",
"port_trace":[
{"0":"fromDevice-0-in"},
{"1":"fromDevice-0-out"},
{"2":"cli-in"},
{"3":"cli-0-out"},
{"4":"ids-in"}],
"instruction_trace":[
[...]
{"63":"Forward(fromDevice-0-out)"},
{"64":"org.change.v2.analysis.processingmodels.instructions.NoOp$@3444d69d"},
{"65":"AssignRaw(L3+72,[Const(80)],GenericNumeric)"},
{"66":"AssignRaw(L7+48,[Const(7)],GenericNumeric)"},
{"67":"Forward(cli-0-out)"},
{"68":"org.change.v2.analysis.processingmodels.instructions.NoOp$@3444d69d"},
{"69":"AssignNamedSymbol(flag,[Const(0)],GenericNumeric)"},
{"70":"ConstrainRaw(L3+72,:~:(:==:([Const(70)])),Some(~(==([Const(70)]))))"},
{"71":"ConstrainRaw(L3+72,:==:([Const(80)]),None)"},
{"72":"ConstrainRaw(L7+48,:~:(:==:([Const(10)])),Some(~(==([Const(10)]))))"},
{"73":"org.change.v2.analysis.processingmodels.instructions.NoOp$@3444d69d"},
{"74":"ConstrainRaw(L7+48,:==:([Const(7)]),Some(==([Const(7)])))"},
{"75":"Fail(Match-in-blacklist)"}],
"memory":{"tags":[{"L4":160},{"START":0},
[...] 

Listing 5.11

   The expected result for this test is Failed, since we insert in the graph a packet with URL
equal from the value blocked by the IDS. In the file.output [Listing 5.1  1  ] we can see all the
ports traversed by the packet (before the failure) and the SEFL instructions executed by the
solver.  Failed is  the  first  element  of  the  file.output. The  failure  message  reports  the
correspondence in the black-list of the IDS. The instruction n. 65 is about the assignment of
Proto and the instruction n. 66 is about the assignment of URL. Instruction n. 70 checks if the
Proto of the incoming packet is different from the value 70 (HTTP_REQUEST). Instruction
n.  71  checks  if  the  Proto of  the  incoming  packet  is  different  from  the  value  80
(HTTP_RESPONSE). Since it is the same, it follows instructions n.72, 74 that control the
URL field of the incoming packet. It is equal to a value in the black-list, so the IDS drops the
packet with a Failed (statement n. 75).
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5.2.5 Network graph with a Traffic Classifier

In this reachability test, we check if the VNF of the Traffic Classifier generated by the VNF
Modeling framework[16] works properly in the SymNet[5] environment. To do this we insert
the VNF module into a specific network scenario. In Figure 5.7 there is the network topology
of this test and in Listing 5.12 you can find the equivalent network graph in the Click format. 

The graph is composed by 6 different elements:

Host_A is  a  FromDevice element  of  SymNet.  The  behaviour  is  explained  in  the
section of the firewall test 5.2.2. 
Client is the same as ClientProtocol (label hosta) used in the antispam test in section
5.2.3. In this test, we set the  Proto  field with the value 20 (POP3_REQUEST). The
EmailFrom field is  not important for this  test,  so we set the value to 0 (line 1 of
Listing 5.12).

Traffic Classifier is a new element that contains the behaviour of the Traffic Classifier
generated by VNF Modeling.  This VNF is  configured with a whit-list  as a list  of
<Proto, Interface>. Every packet with Proto contained into the white-list will be send
through the Interface selected in the pair. Otherwise, the packet is blocked. The class
written with Scala language for the Traffic Classifier is called ZmodelCf (label cf). In
the test, we initialise this middle-box with three pairs (line 2 and 7 of Listing 5.12): 
1. <20,1> If the Proto is equal to 20 (POP3_REQUEST), it sends the packet through

the Interface number 1 (Host_C). 

2. <10,0> If the Proto is equal to 10, it sends the packet through the Interface number
0 (Host_B).

3. <80,2>  If  the  Proto  is  equal  to  80  (HTTP_RESPONSE),  it  sends  the  packet
through the Interface number 2 (Host_D).

Host_B, Host_C and Host_D are modeled with the ToDevice element of SymNet. It
is the terminal point of the packet.
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- GraphClassifier.click -
1. hosta :: ClientProtocol(20,0)
2. cf :: ZmodelCf(20,1,10,0,80,2)
3. hostb :: ToDevice
4. hostc :: ToDevice
5. hostd :: ToDevice
6. FromDevice -> hosta -> cf[0] -> hostb
7.                        cf[1] -> hostc
8.                        cf[2] -> hostd

Listing 5.12

   The expected result for this test is  Successful,  since we insert  in the graph a packet with
Proto present in the white-list of the Traffic Classifier. In the file.output [Listing 5.1  3  ] we can
see all the ports traversed by the packet and the SEFL instructions executed by the solver. The
instruction  n.  65 is  about  the assignation  of  Proto and  the  instruction n.  66 is  about  the
assignation of  URL. Instructions n. 71 checks if the  Proto of the incoming packet is equal
from the value 20 (POP3_REQUEST). It is the same so the statement n.73 sets the output
interface. After, there are some SEFL instructions to check if the interface exist and the packet
is forwarded through the interface 1 to Host_C (label hostc). 

- TestResultClassifier.output -
Successful: { {"status":"OK",
"port_trace":[
{"0":"fromDevice-0-in"},{"1":"fromDevice-0-out"},
{"2":"hosta-in"},{"3":"hosta-0-out"},
{"4":"cf-in"},{"5":"cf-1-out"}, {"6":"hostc-in"},{"7":"hostc-out"}],
"instruction_trace":[ [...] 
{"63":"Forward(fromDevice-0-out)"},
{"65":"AssignRaw(L3+72,[Const(20)],GenericNumeric)"},
{"66":"AssignRaw(L7+16,[Const(0)],GenericNumeric)"},
{"67":"Forward(hosta-0-out)"},
{"69":"AssignNamedSymbol(flag,[Const(0)],GenericNumeric)"},
{"70":"ConstrainNamedSymbol(flag,:==:([Const(0)]),Some(==([Const(0)])))"},
{"71":"ConstrainRaw(L3+72,:==:([Const(20)]),Some(==([Const(20)])))"},
{"72":"AssignNamedSymbol(flag,[Const(1)],GenericNumeric)"},
{"73":"AssignNamedSymbol(idIfSend,[Const(1)],GenericNumeric)"},
[...] 
{"80":"ConstrainNamedSymbol(idIfSend,:==:([Const(1)]),Some(==([Const(1)])))"},
{"81":"Forward(cf-1-out)"},
{"85":"Forward(hostc-out)"},
[...] 

Listing 5.13
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5.2.6 Network graph with a Mail Server

In this  reachability  test,  we check if  the VNF of  the  Mail  Server  generated  by the VNF
Modeling framework[16] works properly in the SymNet[5] environment. To do this we insert
the VNF module in a specific network scenario. In Figure 5.8 there is the network topology of
this test and in Listing 5.1  4   you can find the equivalent network graph in the Click format. 

The graph is composed by 3 different elements:

Host_A is a  FromDevice element of SymNet[5]. The behaviour is explained in the
section of the firewall test 5.2.2. 

Client is a new element that sets the IPSrc, IPDst, Protocol and EmailFrom fields of
the  packet.  It  receives  a  packet  through  the  input  port  0,  sets  the  Proto to  20
(POP3_REQUEST) and sets IPSrc, IPDst and EmailFrom fields with the parameters
received as configuration. Finally, it sends the packet through the default output port.
The class written with Scala language for the Client is called ClientMail (label mc). In
the test, we use IPSrc equal to 0.0.0.22, IPDst equal to 0.0.0.28 and EmailFrom equal
to 6 (line 1 of Listing 5.14).
Mail Server is a new element that contains the behaviour of the Mail Server generated
by VNF Modeling. This VNF does not have input parameters. Packet with Proto equal
to 20 (POP3_REQUEST) will be send after some modification. Otherwise the packet
is blocked. The outgoing packet has:

1. switches the IPSrc and the IPDst fields;
2. the Proto field equal to 30 (POP3_RESPONSE)

3. the EmailFrom field equal to 1 (RESPONSE)
The class written with Scala language for the Traffic Classifier is called  ZmodelMS
(label ms).

- GraphMailServer.click -
1. mc :: ClientMail(0.0.0.16,0.0.0.32,6)
2. ms :: ZmodelMS()
3. FromDevice -> [0]mc -> ms -> [1]mc

Listing 5.14
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- TestResultMailServer.output -
Successful: {{
"status":"OK",
"port_trace":[
{"0":"fromDevice-0-in"},{"1":"fromDevice-0-out"},
{"2":"mc-fd-in"}, {"3":"mc-out"},
{"4":"ms-in"}, {"5":"ms-0-out"},
{"6":"mc-ms-in"}],
"instruction_trace":[
[...]
{"63":"Forward(fromDevice-0-out)"},
{"64":"org.change.v2.analysis.processingmodels.instructions.NoOp$@12028586"},
{"65":"AssignRaw(L3+72,[Const(20)],GenericNumeric)"},
{"66":"AssignRaw(L3+96,[Const(22)],GenericNumeric)"},
{"67":"AssignRaw(L3+128,[Const(28)],GenericNumeric)"},
{"68":"AssignRaw(L7+16,[Const(6)],GenericNumeric)"},
{"69":"Forward(mc-out)"},
{"70":"org.change.v2.analysis.processingmodels.instructions.NoOp$@12028586"},
{"71":"AssignNamedSymbol(flag,[Const(0)],GenericNumeric)"},
{"72":"ConstrainRaw(L3+72,:==:([Const(20)]),None)"},
{"73":"AssignRaw(L3+72,[Const(30)],GenericNumeric)"},
{"74":"AllocateSymbol(tmp)"},
{"75":"AssignNamedSymbol(tmp,Address(L3+96),GenericNumeric)"},
{"76":"AssignRaw(L3+96,Address(L3+128),GenericNumeric)"},
{"77":"AssignRaw(L3+128,Symbol(tmp),GenericNumeric)"},
{"78":"DeallocateNamedSymbol(tmp)"},
{"79":"AssignRaw(L7+16,[Const(1)],GenericNumeric)"},
{"80":"Forward(ms-0-out)"},
{"81":"org.change.v2.analysis.processingmodels.instructions.NoOp$@12028586"},
{"82":"org.change.v2.analysis.processingmodels.instructions.NoOp$@12028586"}],
"memory":{"tags":[{"L4":160},{"START":0},{"L3":0},{"L7":320},{"END":12320}],
"meta_symbols": [...]
Failed: {
}

Listing 5.15

   The expected result for this test is  Successful,  since we insert in the graph a packet with
Proto equal to 20 (POP3_REQUEST). In the file.output [Listing 5.15] we can see all the ports
traversed by the packet and the SEFL instructions executed by the solver. The instructions
from n. 65 to n. 68 are about the assignment of packet’s fields. Instructions n. 72 checks if the
Proto of the incoming packet is equal from the value 20 (POP3_REQUEST). It is equal so the
statements n.73,76,77,79 modifying the outgoing packet according to the Mail Server rules.
Finally, the instruction n. 80 forwards the packet. 

- 48 - 

mailto:org.change.v2.analysis.processingmodels.instructions.NoOp$@12028586
mailto:org.change.v2.analysis.processingmodels.instructions.NoOp$@12028586
mailto:org.change.v2.analysis.processingmodels.instructions.NoOp$@12028586


Chapter 5 - Tests -

5.2.7 Network graph with Web VNFs

In this reachability test, we check if the VNFs of the Web Server and Web Cache generated by
the VNF Modeling framework[16] work properly in the SymNet[5] environment. To do this
we insert the VNFs modules in a specific network scenario. In Figure 5.9 there is the network
topology of this test.

The graph is composed by 3 elements:

a is a new element that sets the IPSrc, IPDst, Protocol, EmailFrom, URL fields of the
packet. It receives a packet through the input port 0, sets the packet’s fields with the
parameters received as configuration. Finally, it sends the packet through the default
output port. The class written with Scala language for the Client is called ClientG. In
the test, we use  IPSrc equal to 0.0.0.16,  IPDst equal to 0.0.0.48,  Proto equal to 70
(HTTP_REQUEST), EmailFrom equal to 100, URL equal to 31.
Web Cache is a new element that contains the behaviour of the Web Cache generated
by VNF Modeling. This VNF receives as parameters one list of known URLs. Packet
with  Proto  equal to 70 (HTTP_REQUEST) and unknown URL field will be send to
the default next hop (Web Server). If the URL packet’s field is known, the Web Cache
modifies some packet’s fields and forward it. The new packet has:

◦ switches the IPSrc and the IPDst fields;
◦ the Proto field equal to 80 (HTTP_RESPONSE)

 Finally, the packet with Proto different from 70 is blocked. 
The class written with Scala language for the Web Cache is called ZmodelWC.

Web Server is a new element that contains the behaviour of the Web Server generated
by VNF Modeling. This VNF does not have input parameters. Packet with Proto equal
to 70 (HTTP_REQUEST) will be send after some modification. Otherwise the packet
is blocked. The outgoing packet has:
◦ switches the IPSrc and the IPDst fields;

◦ the Proto field equal to 80 (HTTP_RESPONSE). 
The class written with Scala language for the Web Server is called ZmodelWS.
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The expected result for this test is Successful, since we insert in the graph a packet with Proto
equal to 70 (HTTP_REQUEST). Furthermore, we expect to see that the packet does not reach
the Web Server when the URL is known by the Web Cache. The VNF behaves as expected. In
fact, the Web Cache responds without calling the Server. We repeated the test by entering
URL equal to 100. In this case we observed that the packet is correctly sent to the Web Server
as it is not known by the Web Cache. It follow the command line to launch the test in SymNet
project:  ‘sbt tweb’.
The  network  topology  is  in  the  folder  .\Symnet\src\main\resources\click_test_files\
vnf_model\GraphWebCache.click.
And the file.output is in the folder .\Symnet\output\TestResultWebCache.output
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5.2.8 Network graph with multiple VNFs

In  this  last  reachability  test,  we  check  if  the  VNFs  generated  by  the  VNF  Modeling
framework[16]  works  properly  in  the  SymNet[5]  environment.  To  do  this  we  insert  the
middle-boxes in a specific network scenario. In Figure 5.10 there is the network topology of
this test.

The graph is composed by 9 different elements:

Host_A is a FromDevice element of SymNet.

Client is a new element that sets the IPSrc, IPDst, Protocol, EmailFrom, URL fields
of the packet. It receives a packet through the input port 0, sets the packet’s fields with
the  parameters  received  as  configuration.  Finally,  it  sends  the  packet  through  the
default  output  port.  The  class  written  with Scala  language for  the  Client  is  called
ClientG. In the test, we use  IPSrc equal to 0.0.0.24,  IPDst equal to 0.0.0.48,  Proto
equal to 80, EmailFrom equal to 5, URL equal to 2.
Firewall  is  the  new  element  such  as  that  in  the  firewall  test.  His  behaviour  is
explained in the section 5.2.2.  In this test, we initialise the middle-box with two pairs:
< 0.0.0.8, 0.0.0.16 >, < 0.0.0.24, 0.0.0.32 >.
Traffic Classifier  is the new element such as that in the Traffic Classifier Test. His
behaviour is explained in the section 5.2.5.  In this test, we initialise this middle-box
with five pairs: 

◦ <20,0> If the Proto is equal to 20 (POP3_REQUEST), it sends the packet through
the Interface number 0 (the next hop is the Antispam).

◦ <30,0> If the Proto is equal to 30 (POP_RESPONSE), it sends the packet through
the Interface number 0.

◦ <10,2> If the Proto is equal to 10, it sends the packet through the Interface number
2 (next hop is the Host_C).
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◦ <70,1> If the Proto is equal to 70 (HTTP_REQUEST), it sends the packet through
the Interface number 1 (next hop is the IDS).

◦ <80,1>  If  the  Proto  is  equal  to  80  (HTTP_RESPONSE),  it  sends  the  packet
through the Interface number 1.

Antispam is the new element such as that in the Antispam test (section 5.1.3). In this
test, we initialise the antispam with three values: 3, 4, 8.
IDS  is the new element such as that in the IDS test (section 5.1.4). In this test, we
initialise this middle-box with three values: 10, 7, 30.

Mail Server is the new element such as that in the Mail Server test (section 5.1.6).
Host_B and Host_C are modeled with the ToDevice element of SymNet.

   In  this  test  we  will  check  if  the  Host_A can  reach  the  Host_B  based  on  previous
configurations. The expected result is  Successful.  Because, we insert in the graph a packet
with  IPSrc and  IPDst different from the pairs blocked by the firewall.  So the packet can
transit to the Traffic Classifier.  The packet has  Proto  field present in the white-list  of the
Traffic Classifier. And the packet can transit to the next hop. The Proto field is equal to 80
(HTTP_RESPONSE), so the next hop selected by the Traffic Classifier is the IDS node. The
packet has URL field different from those present in the IDS black-list so the packet is send to
the next hop (Host_B). This test can be performed in the SymNet project with the following
command line: ‘sbt tallvnf’.
   This last test brings together all the VNFs. So we have a more realistic network scenario that
brings together more functionality. If we change the input values to the VNFs we can 'play'
with  this  model  of  the  network  to  study  all  the  possible  combinations  and  analyse  its
behaviour. In the next part we will set up different configurations for the VNFs in the graph
(Figure 5.10) to analyse different behaviours of the middel-boxes. In order to run these tests
we  have  to  modify  the  configurations  in  the  graph  (.\Symnet\src\main\resources\
click_test_files\vnf_model\graphAll.click)  and  execute  the  following  command:  ‘sbt
tallvnf’.

Configuration_A: Packet blocked by the Firewall.

◦ The ClientG node sets the follow packet’s field
IPSrc = 172.21.81.8; IPDst = 195.24.65.215; 
Proto = 80 (HTTP_RESPONSE);
EmailFrom = 5;
URL = 7;

◦ The Firewall’s configuration has three pairs <IPSrc, IPDst> in the black-list:
<0.0.0.8 – 0.0.0.16>; <0.0.0.24 – 0.0.0.16>; <172.21.81.8 – 192.24.65.215>

◦ The others elements’ configuration does not change compared to the main test.
◦ The result is Failed.  Since,  we insert in the graph a packet with IPSrc and IPDst

equal from the pairs blocked by the firewall. In the file.output we can find a Failed
element with the message “Match-in-blacklist”. 
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Configuration_B: Packet blocked by the Traffic Classifier.

◦ The ClientG node sets the follow packet’s field
IPSrc = 172.21.81.8; IPDst = 195.24.65.215; 
Proto = 12 (Unknown);
EmailFrom = 5; URL = 7.

◦ The others elements’ configuration does not change compared to the main test.
◦ The result is Failed. Since, we insert in the graph a Packet which has Proto field

different from the white-list of the Traffic Classifier. In the file.output we can find
a Failed element with message “No-Match”.

Configuration_C: Packet blocked by the IDS

◦ The ClientG node sets the follow packet’s field
IPSrc = 172.21.81.8; IPDst = 195.24.65.215; 
Proto = 70 (HTTP_REQUEST);
EmailFrom = 5; URL = 7.

◦ The others elements’ configuration does not change compared to the main test.
◦ The result is Failed. We insert in the graph a Packet which has Proto field equal to

a pair in the Traffic Classifier (<70,1>). Then the Packet is forwarded to the IDS
node. Since the URL packet’s field is equal to a value in the IDS’s black-list, the
packet is deleted. In the  file.output  we can find a  Failed element with message
“Match-in-black-list”.

Configuration_D: Packet blocked by the Antispam

◦ The ClientG node sets the follow packet’s field
IPSrc = 172.21.81.8; IPDst = 195.24.65.215; 
Proto = 20 (POP3_REQUEST);
EmailFrom = 800; URL = 7.

◦ The Antispam’s black-list is initialised with seven values: 3, 4, 8, 300, 400, 800, 6.
◦ The others elements’ configuration does not change compared to the main test. 
◦ The result is Failed. We insert in the graph a Packet which has Proto field equal to

a  pair  in  the  Traffic  Classifier  (<20,0>).  Then  the  Packet  is  forwarded  to  the
Antispam node. Since the  EmailFrom packet’s field is equal from a value in the
Antispam’s black-list, the packet is deleted. In the file.output we can find a Failed
element with message “Match-in-black-list”.

- 53 - 



Chapter 5  - Tests - 

Configuration_E: Packet send from Host_A to Host_C

◦ The ClientG node sets the follow packet’s field
IPSrc = 172.21.81.48; IPDst = 195.24.65.128; 
Proto = 16;
EmailFrom = 33; URL = 1000.

◦ The Firewall’s configuration has six pairs <IPSrc, IPDst> in the black-list:
<0.0.0.8 – 0.0.0.16>; <0.0.0.24 – 0.0.0.16>; <172.21.81.8 – 192.24.65.215>
<0.0.0.16 – 0.0.0.8>; <0.0.0.16 – 0.0.0.24>; <172.21.81.215 – 192.24.65.8>

◦ The Traffic Classifier’s configuration has eight pairs <Proto, Interface>:
<20,0>; <30,0>; <10,2>; <70,1>; <80,1>; <16,2>;<200,2>; <300,2>;

◦ The others elements’ configuration does not change compared to the main test.
◦ The result is  Successful.  We insert in the graph a packet with  IPSrc and  IPDst

different from the pairs blocked by the firewall. So the packet can transit to the
Traffic Classifier. The packet has Proto field present in the white-list of the Traffic
Classifier. And the packet can transit to the next hop. The Proto field is equal from
16, so the next hop selected by the Traffic Classifier is the Host_C node.

Configuration_F: Packet send from Host_A to Mail Server
◦ The ClientG node sets the follow packet’s field

IPSrc = 172.21.81.48; IPDst = 195.24.65.128; 
Proto = 30 (POP3_RESPONSE);
EmailFrom = 33; URL = 1000.

◦ The others elements’ configuration does not change compared to the main test. 
◦ The result is Failed. We insert in the graph a packet with IPSrc and IPDst different

from the pairs  blocked by the firewall.  So the packet can transit  to the Traffic
Classifier.  The  packet  has  Proto  field  present  in  the  white-list  of  the  Traffic
Classifier. And the packet can transit to the next hop. The Proto field is equal from
30,  so the next  hop selected by the Traffic  Classifier  is  the Antispam node.  It
follow a check on the Proto and EmailFrom before transfer the packet to the Mail
Server.  The  Mail  Server  checks  the  Proto, and  since  it  is  different  from  20
(POP_REQUEST) the packet is dropped.
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5.3 SymNet and VeriGraph compared

In this  last  chapter we will  compare two verification tools to demonstrate that the virtual
network  functions  generated  by  our  framework  can  be  tested  both  in  SymNet[5]  and
VeriGraph[4] with the same result. On the other hand, we will also highlight the different
behaviour of these instruments.

5.3.1 Test Scenario A 

Given the network topology illustrated in Figure 5.11, we want to test the reachability policy
from the node ‘a’ to the node ‘b’. We will generate the same scenario both in VeriGraph and in
SymNet.

The first step for generate the reachability test is generating the graph and configuring the
node of the network.

Host a 
We use  a  PolitoEndHost element  in  VeriGraph.  And,  we  need  two different  elements  in
SymNet: the FromDevice to generate the packet and the ClientG to set the packet’s fields. As
can be seen here there is the first difference between the two tools: the packet which traverse
the network. As for SymNet, the node 'a' deals with the creation of a new packet and the
assignment of data to it. On the contrary, in VeriGraph the packet is a separate element. This
difference seems subtle but in reality hides a different behaviour in the verification phase.
Both tools perform a reachability check. But in the case of VeriGraph, the question that is
asked to the solver is: “is there AT LEAST A package that from node 'a' reaches node 'b',
given the specific network configuration?” For SymNet the reachability test makes a slightly
different question: “Is THE package generated on node ‘a’ able to cross the network graph and
reach node ‘b’? In the case of VeriGraph the answer can be yes or no. Whether ‘a packet’
exists, it tells us the path that the packet does. Otherwise, if ‘a packet’ does not exist, it can
not give us any other information. As far as SymNet is concerned, the answer can be yes, the
package crosses these nodes and gets to the node ‘b’. Or not, the packet runs through the
network up to node ‘x’ and then is interrupted. In this case, SymNet is better because in the
case of fail,  more information is returned to understand what has happened. Moreover, an
other difference of the tools concern some fields of the packet. We can insert a packet with
any value in SymNet. On the contrary,  we can not specify all the packet's fields in VeriGraph.
For example, the IPSrc field is decided by the solver when it looks for a possible packet to be
sent from node 'a' to node 'b'.
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Firewall (fw)

It is the VNF of our model translated in the two verifications tools. We want configure this
middle-box by setting the pairs of IP source address and IP destination address denied. Here
too, we find a difference between the two instruments. In SymNet we can insert any pair of
addresses  in  the  black-list.  VeriGraph,  on  the  other  hand,  is  more  restrictive.  It  allows
inserting in the black-list only the addresses that have been inserted in the configuration of the
service graph.  The Table 5.1 shows the configuration of the firewall’s  black-list  both for
VeriGraph and SymNet.

Tools Pair n.1 Pair n.2

VeriGraph ip_a, ip_fw 172.2.16.248(ip_a), 0.0.0.16(ip_fw)

SymNet ip_fw, ip-cf 0.0.0.16(ip_fw), 0.0.0.48(ip_cf)

Table 5.1

Antispam (as)
It is the VNF of our model translated in the two verifications tools. In this case there are not
differences. We initialise the black-list with three values: 3, 300, 42.

Traffic Classifier (cf)
It is the VNF of our model translated in the two verifications tools. There are some differences
in this middle-box. Because, VeriGraph can not give a rules to select the output interface.
More information on how this function is implemented on the two instruments is given in
chapter 5.1.1 and 5.2.4.
SymNet white-list: 

◦ <20,0> If the Proto is equal to 20 (POP3_REQUEST), it sends the packet through
the Interface number 0 (the next hop is Antispam).

◦ <70,0> If the Proto is equal to 70 (HTTP_REQUEST), it sends the packet through
the Interface number 0.

◦ <80,0>  If  the  Proto  is  equal  to  80  (HTTP_RESPONSE),  it  sends  the  packet
through the Interface number 0.

VeriGraph white-list: 1 (HTTP_RESPONSE), 2 (HTTP_REQUEST), 3 (POP3_REQUEST)

Packet’s fields

The Table 5.2 shows the configuration of the packet both for VeriGraph and SymNet. 

Packet’s fields VeriGraph SymNet

IP source address - 172.2.16.248 (ip_a)

IP destination address ip_b 172.2.32.128 (ip_b)

Protocol 3 (POP3_REQUEST) 20 (POP3_REQUEST)

EmailFrom 0 0

URL 0 0

Table 5.2
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Host b 
We use a PolitoEndHost element In VeriGraph. And, we use a ToDevice element in SymNet.
   Another difference between the two verification tools is the definition of the network graph.
SymNet lists the network nodes and links. VeriGraph is more specific, for each node we must
indicate an address and the routing table.
   Now we can go on to examine the result of the test. The expected result is Satisfiability. And
effectively we have the same result in both environments. VeriGraph return SAT and,  SymNet
return  Successful.  Moreover, both verification tools return the path that the packet follows.
SymNet gives this information in the port_trace element [Listing 5.16] and VeriGraph gives
this information in the send element [Listing 5.17]. 
 

- TestResult_A.output (SymNet)-
Successful: {
{"status":"OK",
"port_trace":[
{"0":"fromDevice-0-in"}, {"1":"fromDevice-0-out"},
{"2":"a-fd-in"},{"3":"a-0-out"}, {"4":"fw-in"},{"5":"fw-0-out"},
{"6":"as-in"},{"7":"as-0-out"}, {"8":"cf-in"},{"9":"cf-0-out"},
{"10":"b-in"},{"11":"b-out"}],
[...]

Listing 5.16

- TestResult_A.output (VeriGraph)-
SAT 
(define-fun send!410 ((x!0 Node) (x!1 Node) (x!2 packet)) Bool
  (ite (and (= x!0 cf)
            (= x!1 b)
            (= x!2 (packet ip_a ip_b null null a 14 14 15 3 16 17 18 false)))
  (ite (and (= x!0 aspam)
            (= x!1 cf)
            (= x!2 (packet ip_a ip_b null null a 14 14 15 3 16 17 18 false)))
  (ite (and (= x!0 fw)
            (= x!1 aspam)
            (= x!2 (packet ip_a ip_b null null a 14 14 15 3 16 17 18 false)))
  (ite (and (= x!0 a)
            (= x!1 fw)
            (= x!2 (packet ip_a ip_b null null a 14 14 15 3 16 17 18 false)))
    false)))))

Listing 5.17

This test can be performed:
1. In the SymNet project with the following command line: ‘sbt testa’.

2. In  the  VNF  Modeling  project  by  running  the  following  class:  .\vnf-modeling-
veriraph-ao\src\it\polito\verigraph\usecase\Test_Graph_A.java
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5.3.2 Test Scenario B 

Given the network topology illustrated in Figure 5.12, we want to generate several tests in
order to check the reachability policy. We will generate the same scenario both in VeriGraph
and in SymNet.

The basic configuration of this network's graph is:

Host_A (a)

◦ SymNet: FromDevice and ClientG.
◦ VeriGraph: PolitoEndHost 
Firewall_1 (fw1)
◦ Both in SymNet and VeriGraph we initialise the ‘fw1’ with two pair:  

< ip_a, ip_fw2 >, < ip_a, ip_fw2 >.
Traffic Classifier (tc)

◦ SymNet white-list: 
<20,1> If  the  Proto  is  equal  to 20 (POP3_REQUEST),  it  sends the packet
through the Interface number 1 (the next hop is the Antispam node).

<70,0> If  the  Proto  is  equal to 70 (HTTP_REQUEST), it  sends the packet
through the Interface number 0 (the next hop is the IDS node).
<80,0> If the  Proto  is equal to 80 (HTTP_RESPONSE), it sends the packet
through the Interface number 0.

◦ VeriGraph white-list: 
1 (HTTP_RESPONSE), 2 (HTTP_REQUEST), 3 (POP3_REQUEST)

IDS (ids)
◦ Both in SymNet and VeriGraph we initialise the ‘ids’ with the following black-list:

6, 66, 666, 16, 61, 601
Antispam (as)

◦ Both in SymNet and VeriGraph we initialise the ‘as’ with the following black-list:
3, 300, 42, 33, 333

Firewall_2 (fw2)
◦ Both in SymNet and VeriGraph we initialise the ‘fw2’ with two pair:  

< ip_b, ip_fw1 >, < ip_b, ip_as >.
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Host_B (b) and Host_C (c)

◦ SymNet: ToDevice. ◦ VeriGraph: PolitoEndHost 
IP addresses

Node VeriGraph SymNet

a ip_a 172.2.12.61

b ip_b 172.2.12.62

c ip_c 172.2.12.63

fw1 ip_fw1 172.2.16.1

fw2 ip_fw2 172.2.16.2

ids ip_ids 172.2.16.3

as ip_as 172.2.16.4

cf ip_cf 172.2.18.1

Packet’s fields
IPSrc = ip_a
IPDst = ip_b; 
Proto = HTTP_REQUEST;

EmailFrom = 100;
URL = 100.

   The Table 5.3 illustrates all the use-case tests generated on this network's topology. In the
first column of the table we can find the number of the test executed. In the second and third
columns  we  indicate  the  source  and  destination  nodes  on  which  the  reachability  test  is
performed. The Configuration column indicates the packet’s fields or/and the node’s table that
are modified to  run the test.  Finally,  the last  three columns report  the result  of  the tests.
Respectively we indicate: E for the expected result, V for the VeriGraph result and S for the
SymNet result. The results can be satisfied (SAT) or unsatisfied (UNSAT). 

N.
Node

Configuration
Results

Src Dst E V S

1 a b base SAT SAT SAT

2 a b URL = 666 UNSAT UNSAT UNSAT

3 a b fw1’s black-list: + <ip_a,ip_b> UNSAT UNSAT UNSAT

4 a b fw2’s black-list: + <ip_a,ip_b> UNSAT UNSAT UNSAT

5 a b Proto = HTTP_RESPONSE SAT SAT SAT

6 a c Proto = HTTP_REQUEST UNSAT UNSAT UNSAT

7 a c Proto = POP3_REQUEST SAT SAT SAT

8 a c Proto = POP3_REQUEST, EmailFrom = 333 UNSAT UNSAT UNSAT

9 a c
Proto = POP3_REQUEST,
fw1’s black-list: + <ip_a,ip_c> UNSAT UNSAT UNSAT

Table 5.3
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There is a clearly defined pattern to the Table 5.3, and this can be taken to mean that the VNFs
translated by our framework can be used both in VeriGraph and SymNet to achieve the same
behaviour. It follow the information to reproduce the same test in the two environments:

◦ SymNet project:

• Command line:  ‘sbt testa’
• Network's graph: 
.\Symnet\src\main\resources\click_test_files\vnf_model\
Graph_Test_B.click

• Result: .\Symnet\output\TestResult_B.output

◦ VNF Modeling projects (VeriGraph):
.\vnf-modeling-verigraph-ao\src\it\polito\verigraph\usecase\
Test_Graph_B.java

5.3.3 Test Scenario Bis 

It is easy represent links bidirectional in VeriGraph through the definition of the routing tables
of the nodes.  For that reason, the network’s graph of the previous example (Chapter 5.3.2
Test Scenario B) can be also used to check the reachability for the inverse configurations. For
instance, we can verify the reachability between the ‘b’ node and the ‘a’ node, and between
the ‘c’ node and the ‘a’ node. On the contrary, in SymNet the links are unidirectional and to do
the specular tests we have to write new graphs.
   Table 5.4 shows the use case tests generated on the topology of the specular network to the
test scenario B.

N.
Node

Configuration
Results

Src Dst E V S

1 b a base SAT SAT SAT

2 b a URL = 666 UNSAT UNSAT UNSAT

3 b a fw1’s black-list: + <ip_b,ip_a> UNSAT UNSAT UNSAT

4 b a fw2’s black-list: + <ip_b,ip_a> UNSAT UNSAT UNSAT

5 b a Proto = HTTP_RESPONSE SAT SAT SAT

6 c a Proto = HTTP_REQUEST UNSAT USAT UNSAT

7 c a Proto = POP3_REQUEST SAT SAT SAT

8 c a Proto = POP3_REQUEST, EmailFrom = 333 UNSAT UNSAT UNSAT

9 c a Proto = POP3_REQUEST, 
fw1’s black-list: + <ip_c,ip_a>

UNSAT UNSAT UNSAT

Table 5.4

It follow the information to reproduce the same tests in the two environments:
◦ SymNet project:

• Command line (Tests N. 1 to 5):  ‘sbt tstbb’ 
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• Command line (Tests N. 6 to 9):  ‘sbt tstbter’ 
• Network's graph (Tests N. 1 to 5): 
.\Symnet\src\main\resources\click_test_files\vnf_model\
Graph_Test_Bbis.click

• Result (Tests N. 1 to 5): .\Symnet\output\TestResult_Bbis.output

• Network's graph (Tests N. 6 to 9): 
.\Symnet\src\main\resources\click_test_files\vnf_model\
Graph_Test_Bter.click

• Result (Tests N. 6 to 9): .\Symnet\output\TestResult_Bter.output
◦ VNF Modeling projects (VeriGraph):

.\vnf-modeling-verigraph-ao\src\it\polito\verigraph\usecase\
Test_Graph_B.java

5.3.4 Test Scenario C 

Given the network topology illustrated in Figure 5.13, we want to generate several tests in
order to check the reachability policy. We will generate the same scenario both in VeriGraph
and in SymNet.

The basic configuration of this network's graph is:
Traffic Classifier (cf)

◦ SymNet white-list: 
<20,2> If  the  Proto  is  equal  to 20 (POP3_REQUEST),  it  sends the packet
through the Interface number 2 (Antispam).

<70,1> If  the  Proto  is  equal to 70 (HTTP_REQUEST), it  sends the packet
through the Interface number 1 (IDS).
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<80,0> If the  Proto  is equal to 80 (HTTP_RESPONSE), it sends the packet
through the Interface number 0 (Firewall).

◦ VeriGraph white-list: 

1 (HTTP_RESPONSE), 2 (HTTP_REQUEST), 3 (POP3_REQUEST)
IDS (ids)

◦ Both in SymNet and VeriGraph we initialise the ‘ids’ with the following black-list:
6, 66, 666, 16, 61, 601

Firewall (fw)
◦ Both in SymNet and VeriGraph we initialise the ‘fw’ with two pair:  

< ip_a, ip_fw >, < ip_b, ip_a >.
Firewall_2 (fw2)
◦ Both in SymNet and VeriGraph we initialise the ‘fw2’ with two pair:  

< ip_a, ip_fw >, < ip_a, ip_b >.
IDS_2 (ids2)

◦ Both in SymNet and VeriGraph we initialise the ‘ids2’ with the following black-
list:  26, 266, 2666, 216, 261, 2601

Antispam (as)
◦ Both in SymNet and VeriGraph we initialise the ‘as’ with the following black-list:

3, 300, 42, 33, 333
Firewall_3 (fw3)
◦ Both in SymNet and VeriGraph we initialise the ‘fw2’ with three pair:  

< ip_a, ip_fw >, < ip_a, ip_b > <ip_a, ip_ws>.

The others VNF do not have any specific configuration different from the previous examples. 
IP addresses

Node Symbol VeriGraph SymNet

End Host a ip_a 172.0.0.1

Traffic Classifier cf ip_cf 172.0.0.2

IDS(ids) ids ip_ids 172.0.0.3

Firewall fw ip_fw 172.0.0.4

End Host b ip_b 172.0.0.5

Firewall_2 fw2 ip_fw2 172.0.0.6

IDS_2 ids2 ip_ids2 172.0.0.7

Web Cache wc ip_wc 172.0.0.8

Web Server ws ip_ws 172.0.0.9

Antispam as ip_as 172.0.0.10

Firewall_3 fw3 ip_fw3 172.0.0.11

Mail Server ms ip_ms 172.0.0.12
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Packet’s fields
IPSrc = ip_a
IPDst = ip_b; 
Proto = HTTP_REQUEST;
EmailFrom = 100;
URL = 100.

  The Table 5.5 illustrates all the use-case tests generated on this network's topology. In the
first column of the table we can find the number of the test executed. In the second and third
columns  we  indicate  the  source  and  destination  nodes  on  which  the  reachability  test  is
performed. The Configuration column indicates the packet’s fields or/and the node’s table that
are modified to  run the test.  Finally,  the last  three columns report  the result  of  the tests.
Respectively we indicate: E for the expected result, V for the VeriGraph result and S for the
SymNet result. The results can be satisfied (SAT) or unsatisfied (UNSAT).

N.
Node

Configuration
Results

Src Dst E V S

1 a b Proto = HTTP_RESPONSE SAT SAT SAT

2 a b Proto = 16 UNSAT UNSAT UNSAT

3 a b Proto = HTTP_RESPONSE, URL = 61 UNSAT UNSAT UNSAT

4 a b
Proto = HTTP_RESPONSE, 
fw’s black-list: + <ip_a,ip_b> UNSAT UNSAT UNSAT

5 a ws base SAT SAT SAT

6 a ws fw2’s black-list: + <ip_a,ip_ws> UNSAT UNSAT UNSAT

7 a ws URL = 2666 UNSAT UNSAT UNSAT

8 a ms
Proto = POP3_REQUEST, 
fw3’s black-list: + <ip_a,ip_ms> UNSAT UNSAT UNSAT

9 a ms Proto = POP3_REQUEST SAT SAT SAT

10 a ms Proto = POP3_REQUEST, EmailFrom = 300 UNSAT UNSAT UNSAT

Table 5.5
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Conclusion

The telecommunications scenario is rapidly evolving towards the new SDN/NFV paradigms.
A lot of work has still to be done in the context of virtualization of network devices. One of
the aspects to be expanded is the representation of the network functions, that are becoming
increasingly numerous. Another important aspect is related to the verification of the systems
before their deployment. This thesis work is related to these themes. In the first part of the
work, the VNF Modeling tool [16] was analysed and extended, allowing a generic and user-
friendly representation of the VNFs. In the second part of the thesis work,  our purpose is to
show that the obtained model is generic and can be moved to different verification systems.
   Generated  network  models  have  been  tested  with  both  VeriGraph[4]  and  SymNet[5].
Despite the models very well represent the behaviour of forwarding network functions, there
are problems related to their configuration within a specific network context. In VeriGraph,
the  part  related  to  represent  network  functions  capable  of  selecting  a  different  network
interface according to the incoming traffic is still lacking. As regards SymNet, there are some
difficulties  in  representing  stateful  network  functions.  Nevertheless,  the  network  function
model is generic enough to describe the forwarding behaviour of a function independently of
the tool  that  will  be used to  verify it.  The translation phase allows to  insert  the rules of
behaviour of forwarding the VNF on different verification systems. However, the part related
to the configuration of the middle-boxes must be implemented by the verification tool and the
possibility  that  these  can  be  completely  integrated  depends  on  the  fact  that  the  desired
behaviour can be represented by the verification tool.

   Overall, an important aspect that can be appreciated during this thesis work is the possibility
of obtain a modular programming for some network functions. Our tool allows to describe a
network function in the widely used Java programming language and, after the translation, to
verify its behaviour simply by inserting the new module in a graph of the verification system.
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