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Abstract

The purpose of this project is to optimize a convolutional neural network algorithm

called YOLO via high-level synthesis based on an FPGA board.

The work is divided into two main parts, the first part is the transformation of YOLO

C++ tensor-based code into an implementation for Vivado HLS and Catapult com-

piler; The second part is optimizing the network in the two HLS tools for hardware

implementation and compare the power and utilization for the two cases.

The HLS tools which are Vivado hls and Catapult, use a series of steps to generate the

hardware. Vivado is the third tool used in this project to compare the results between

these different cases.

In this work, C++ language is used to write the code, Vivado hls and Catapult are used

to transfer the code into hardware, VHDL is used to package the IP and the hardware.
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Chapter 1

Intoduction

1.1 Deep Learning

Deep learning is a branch of machine learning based on a set of algorithms that learn to

represent the data.

One of the promises of deep learning is that they will substitute hand-crafted feature

extraction. The idea is that they will ”learn” the best features needed to represent the

given data.

Deep learning models are formed by multiple layers. A network with more than 2 hidden

layers is already a Deep Model.

1.2 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a deep learning algorithm that is composed

of layers which filter(convolve) the inputs to get useful information. A CNN is very

similar to an ordinary neural network, meaning that it consists of neurons with learning

weights and biases. The filters of a CNN are adjusted automatically to extract the most

useful information from the raw image pixels on one end and turn that information into

a class score on the other end.

Therefor just like a neural network, a CNN receives an input and transforms it through

a set of hidden layers. Each hidden layer consists of a set of neurons. The neurons in a

1



Chapter 1. Introduction 2

single layer do computations completely independently from other layers and they are

not connected to other neurons in the same layer.

The last layer or the output layer is where the class scores are represented.

So why use CNNs instead of regular neural networks? The answer is that in a neural

network each single neuron is connected to all the neurons in the previous layer. This

will make the neural network too complicated for image inputs.

As an example, with an input image of size 16x16x3 (height=16, width=16, depth=3)

each single neuron in a first hidden layer of a regular neural network must have 16*16*3

equal to 768 weights. Although this seems like a good number but this fully connected

structure can not scale to larger images.

So CNNs have the benefit of assuming that the inputs are strictly images and with that

assumption they can apply some sensible changes to the regular neural networks. For

example a neural network receives input as a vector, while a CNN has neurons arranged

in 3 dimensions: height, width, depth.

the neurons in a CNN will only be connected to a small region of the previous layer, but

to the full depth and this will save huge amount of computations. Also the full image

will be converted to a single vector of class scores for the last layer.

Figure 1.1: Neurons in each layer

As you can see in the figure 1.1, there are 5 neurons along the depth, all looking at the

same region in the input.

You can see a comparison between a regular neural network and a CNN in the following

picture:
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Figure 1.2: Neural Network and CNN comparison

The most common layers of a CNN are the following:

Convolution Layer

Max/Average Pooling Layer

Fully Connected Layer

Relu, Tanh, Sigmoid Layer (Non-Linearity Layers)

Softmax, Cross Entropy, SVM, Euclidean (Loss Layers)

So in summary a CNN in the simplest case is a series of layers that ”convole” the input

volume into the output volume.

Each layer receives a 3D input volume that is transformed into a 3D output volume

through different functions.

Each layer may or may not have parameters. For example convolutional and FC layers

do, but relu and pooling layers don’t.

In the following some of these layers will be explained in more details.

1.2.1 Convolutional Layer

As mentioned before, a convolutional layer extracts the different features of the input.

They are the core building block of the CNN with the heaviest computational parts and

are used to find a specific patch on an image.

The important parameters of this layer are:

F: Number of filters on the convolution layer

kW/kH: Kernel Width/Height (Normally we use square images, so kW=kH)

H/W: Image height/width (Normally H=W)

H’/W’: Convolved image height/width (Remains the same as input if proper padding is

used)
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Stride: Number of pixels that the convolution sliding window will travel.

Padding: Zeros added to the border of the image to keep the input and output size the

same.

Depth: Volume input depth (for example if the input is a RGB image depth will be 3)

The output size will be computed as follows:

Output height: (H-F+2Padding)/Stride + 1

Output width: (W-F+2Padding)/Stride + 1

Output depth: F

A common setting of the parameters is : F=3, Stride=1 and Padding=1.

In figure 1.3 you can see an example of the convolution process.

Figure 1.3: Convolution

The input elements must be multiplied element by element with the filter(kernel) and

the results must be summed.

This Process will result in extracting some specific features from the input image. (Figure

1.4)

By default when we’re doing convolution we move our window one pixel at a time

(stride=1), but some times in convolutional neural networks we want to move by more

than one pixel. For example on pooling layers with kernels of size 2 we will use a stride

of 2.

Figure 1.6 illustrates two examples on input and output volume calculations. The input

size is 5 with padding equal to 1. On the left neurons stride across the input with stride

of 1 and therefor with F=3 the output size will be: (5 - 3 + 2)/1+1 = 5

On the right the neurons stride across the input with stride of 2 and the output size will

be: (5 - 3 + 2)/2+1 = 3.
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Figure 1.4: Convolution Process

Figure 1.5: Feature Extraction

1.2.2 Relu Layer

The Relu layer will change all negative elements to zero while retaining the value of the

positive elements. No spatial/depth information is changed.
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Figure 1.6: Neurons spatial arrangments

Considering the neural networks, it’s just a new type of Activation function, but Easy

to compute the forward/backward propagation.

Figure 1.7: Relu function

1.2.3 Pooling Layer

The pooling layer, is used to reduce the spatial dimensions, but not depth, usually placed

between successive convolutional layers. Basically this is what we can gain:

1. By having less spatial information we gain computation performance.

2.Less spatial information also means less parameters, so less chance to over-fit.

If we assume that the input for the pooling layer has the following parameters:

Input height: H

Input width: W

Input depth: D

With the spatial extent F, and stride S, then the output size will be computed as follows:
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Output height: (W-F)/S+1

Output width: (H-F)/S+1

Output depth: D

On the diagram bellow you can see the most common type of pooling: the max-pooling

layer, which slides a window, like a normal convolution, and gets the biggest value on

the window as the output.

Figure 1.8: Max-pooling Layer

In addition to max-pooling, the pooling layer can perform other functions as well, such

as average pooling or l2-norm pooling.

Two common parameter sets for the pooling layer are: F=3, S=2 (also called overlapping

pooling) and more commonly F=2, S=2.

1.2.4 Fully Connected Layer

In the fully connected layer every neuron has full connections to all neurons in the

previous layer, as opposed to the convolutional layer in which the neurons are connected

only to a local region in the input.

Therefor a fully connected layer works exactly like a regular neural network.

1.3 CNN Architectures

Common architectures of CNN consist of a several convolutional-relu layers that are

followed by pooling layers. This pattern well continue until the image is small enough to

move to an FC layer. The very last FC layer maintains the output such as class scores.
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Figure 1.9: Fully connected layer

The CNN we are working on in this project is called YOLO. In the next chapter YOLO

architecture will be fully discussed.



Chapter 2

Computer Vision and YOLO

In this chapter, the concepts of YOLO and object detection algorithms will be detailed

respectively. In this project, the algorithm of YOLO is used for synthesis in Vivaso HLS

and Catapult and therefor, a description of the algorithm’s performance is necessary.

2.1 Introduction

Understanding the contents of an image or an image region is one of the core problems

of the computer vision, fundamental to image and scene understanding. There are three

different concepts related to computer vision :

Image classification

Classification with localization

Object detection

2.1.1 Image Classification

In image classification problems, the goal is to assign the input image one or more labels

from some predefined set of categories, for example the set of all animals. Therefor an

image classifier outputs only the class of the subject detected. The machine learning

approach to image classification is a two-stage pipeline. The first step of the pipeline

corresponds to extraction and encoding of meaningful features from the image pixels.

9



Chapter 2. Computer Vision and YOLO 10

The second step performs image classification in the space of features extracted from

the image.

Figure 2.1: Image classification

2.1.2 Classification with Localization

A classification with localization is one step forward where the algorithm defines also a

”bounding box” to localize the detected object. Localizing objects is aimed with regres-

sion. Regression is about returning a number instead of a class. Normally another fully

connected layer is attached to the last convolutional layer.

Figure 2.2: Image localization
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Now in training set, each example contains not only the class label but also four addi-

tional bounding box numbers:

bx - x coordinate of mid point of BB

by - y coordinate of mid point of BB

bw - width of BB

bh - height of BB

Now, our convolution neural network will learn to predict both class of object as well as

its bounding box.

2.1.3 Object Detection

An object detection refers to the fact that there are now multiple subjects in the picture

to be detected. The algorithm has to detect all subjects with their bounding boxes.

Figure 2.3: Object detection

2.2 YOLO

YOLO (You Only Look Once) is a state-of-the-art, real-time object detection system,

detecting objects on the Pascal VOC 2012 dataset. It can detect the 20 Pascal object

classes: person
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bird, cat, cow, dog, horse, sheep

aeroplane, bicycle, boat, bus, car, motorbike, train

bottle, chair, dining table, potted plant, sofa, tv/monitor

YOLO applies a single neural network to the full image, which is a totally different

approach with respect to prior networks. Therefor YOLO is extremely fast, more than

1000x faster than R-CNN and 100x faster than Fast R-CNN. This network divides the

image into regions and predicts bounding boxes and probabilities for each region. These

bounding boxes are weighted by the predicted probabilities.

2.2.1 Main Idea

The idea of this detector is that you run the image on a CNN model and get the de-

tection on a single pass. First the image is re-sized to 448x448, then fed to the network

and finally the output is filtered by a Non-max suppression algorithm.

Figure 2.4: YOLO main idea

2.2.2 YOLO Architecture

YOLO has a different architecture for training and detection.

The training network consists of the first 20 convolutional layers of the architecture in

figure 2.5, followed by an average-pooling layer and a fully connected layer. The network

is trained for approximately a week and a single crop top-5 accuracy of 88 percent on

the ImageNet 2012 validation set is achieved.
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Figure 2.5: YOLO architecture

To convert the network for detection, four convolutional layers and two fully connected

layers with randomly initialized weights are added. Since detection often requires fine-

grained visual information, the input resolution of the network is increased from 224

224 to 448 448.

2.2.3 YOLO Tiny Model

For the purpose of this project, YOLO tiny model is used. The tiny version is composed

of 9 convolution layers with leaky relu activations. The output of this model is a tensor

batch size 7x7x30. In this tensor the following information is encoded:

2 Box definitions: (consisting of: x,y,width,height,”is object” confidence)

20 class probabilities (only considered if the ”is object” confidence is high)

Tensor = S.S.(B.5 + C)

Where: S: Tensor spatial dimension (7 on this case)

B: Number of bounding boxes (x,y,w,h,confidence)

C: Number of classes

What this 7x7 tensor represents?

This 7x7 tensor can be considered as a 7x7 grid representing the input image, where

each cell of this tensor will hold the 2 box definitions and 20 class probabilities.
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Figure 2.6: Tensor information

Here it’s also useful to say that each cell has the probability to be one of the 20 classes.

(And each cell has 2 bounding box)

this information with the fact that each bounding box has the information if it’s below

an object or not will help to detect the class of the object.

The logic is that if there was an object on that cell, we define which object by using the

biggest class probability value from that cell.

2.2.4 Intersect over Union (IoU)

It’s a method used to evaluate how well an object detection output is related to some

ground truth, the IoU is normally used during training and testing by comparing how

the bounding box given during prediction overlaps with the ground truth (training/test

data) bounding box.

Calculating the IoU is simple we basically divide the overlap area between the boxes by

the union of those areas.

2.2.5 Non-Maxima Suppression (NMS)

During prediction time (after training) you may have lots of box predictions around a

single object. The NMS algorithm will filter out those boxes that overlap each other by

some threshold.
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Figure 2.7: IOU examples

In order to achieve this:

1. YOLO first detects the bounding box with the highest probability among all the

bounding boxes.

2. All the remaining bounding boxes which have a high IOU with the chosen box in first

phase will be omitted.

Figure 2.8: NMS Algorithm
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Vivado HLS v.s Catapult

3.1 Background

In this thesis project, the YOLO algorithm source code which is written as tensor-based

C++ code is optimized for hardware implementation. Since using Hardware Description

Language(HDL) is a very complex procedure, and its consumes a lot of time for the

designers to perform register transfer level(RTL), High Level Synthesis(HLS) is used to

facilitate the hardware development process.

HLS is the process of transforming an algorithmic description(C/C++) of a desired

behavior into hardware implementation(VHDL). In order to do that, the input code is

analyzed and is then scheduled to generate RTL. This method has the advantage for

the designer to use a higher level implementation of the algorithm and avid the RTL

process.

The HLS process consists of the following stages:

Resource allocation

Scheduling

Binding

RTL generation

In this thesis project, Vivado HLS and Catapult are the two tools used to perform

HLS for the YOLO algorithm. In this chapter each of these tools and the optimization

methods are described.

16
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3.2 Vivado HLS

3.2.1 Overview of Vivado HLS

The Xilinx Vivado HLS is an HLS tool that accelerates IP creation by enabling C, C++

and System C specifications to be directly targeted into Xilinx programmable devices

without the need to manually create RTL.

There are several steps to be performed in Vivado HLS:

1. Create a new project

2. Designing the IP core which is developed in C++ code.

3. Test bench design to perform the C simulation and test the functionality of the

algorithm

4. Prepare the IP core for synthesis: for this step the top-level function must be specified

which is the sub-function below main.

5. Verify the RTL implementation: this step also uses the C test bench to verify the

output of the top-level function and returns zero to main() if the RTL is functionally

identical.

3.2.2 Vivado HLS Optimization Methods

There are several methods to optimize a design using Vivado HLS including:

Inserting directives

Optimizing latency

Optimizing throughput

These different techniques result in a better hardware implementation of our design.

3.2.2.1 Inserting Directives

Inserting directives is a method to perform different architectural optimization on the

IP core. To apply any directive we must first choose the element in the information

panel and select ”add directives”.
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There are mainly two categories to be optimized: Arrays and loops. ARRAY MAP, AR-

RAY PARTITION, ARRAY RESHAPE, INTERFACE are the directives mostly used

to optimize arrays.

For each loop inside the top-level function, by using add directives, we can apply

ALLOCATION, DATAFLOW, DEPENDENCE, LOOP FLATTEN, LOOP MERGE,

LOOP TRIPCOUNT, PIPELINE, UNROLL,etc..after applying directives respectively,

the performance may improve.

3.2.2.2 Loop unroll

Syntax:

#pragma HLS unroll factor= <N> region

If factor is not specified, the loop is fully unrolled.

region: An optional keyword that unrolls all loops within the body (region) of the

specified loop.

By default loops are kept rolled in C++ functions. In this case synthesis creates the

logic for one iteration of the loop and the RTL performs this logic for each iteration of

the loop and this is repeated for the number of iteration defined by the loop induction

variable. Now with the UNROLL directive the loops can be partially or fully unrolled. If

the loop is unrolled fully, a separate copy of the loop is created in RTL for each iteration

and therefor the whole loop can run concurrently.

Here is an example:

for(i=0; i<5; i++)

{

a[i] = b[i] * [i];

}

Without the directive, this loop requires one multiplier and each RAM block can be

single-port because each iteration is executed in one clock cycle. This implementation

needs six clock cycles.

Now let’s say we unroll this loop by a factor of 2, then we have two reads and two writes

in the same clock cycle, which require two multipliers and dual port RAM hardware,

but the advantage is that the implementation need takes 3 clock cycles to complete.
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3.2.2.3 Loop flatten

Syntax:

#pragma HLS loop flatten off

off: If this option is active the current loop will not be flattened, while the other loops

in the specified location get flattened.

In Vivado HLS, the innermost loop is flattened automatically. Since in RTL implemen-

tation it takes one clock cycle to move from an outer loop to an inner loop and another

clock cycle for the opposite, loop flattening can save clock cycles by allowing nested

loops into a single loop hierarchy.

As an example, if we have the following nested loops:

Outerloop: while(j<50){

Innerloop: while(i<3){ //1 cycle to enter inner loop

...

LOOP BODY

...

} // 1 cycle to exit inner

}

In this example, if loop flattening is not used 100 additional clock cycles are needed to

move between the inner and outer loops.

While this is a very efficient method to reduce latency, we must take into account that

only perfect and semi-perfect loops can be flattened:

Perfect loop nests:

1.Only the innermost loop has loop body content.

2.There is no logic specified between the loop statements.

3.All loop bounds are constant.

Semi-perfect loop nests:

1.Only the innermost loop has loop body content.

2.There is no logic specified between the loop statements.

3.The outermost loop bound can be a variable.
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3.2.2.4 Loop merge

Syntax:

#pragma HLS loop merge force

force: this keyword forces the merge even if Vivado HLS produces a warning.

This directive merges loops into a single to reduce the overall latency. As en example:

Figure 3.1: Loop merging

Here we can see the loop needs 11 clock cycles by default, but after the loop merging,

the clock cycles are reduced to 6.

We must take into account that to apply this directive, the loop bounds MUST have

the same value if they are variables, and if the loop bounds are constant, the maximum

bound value is used for the merged loop.

3.2.2.5 Dataflow

Syntax:

#pragma HLS dataflow

In C++ code, all the sub functions and loops are executed in a series of sequential blocks.

These blocks might have data dependencies. Therefor each block such as a function or a

loop must wait for example for all the read/write operations, if it needs to access arrays.
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Figure 3.2: Sequential tasks inside top function

Now Vivado HLS aim is to reduce latency and improve concurrency. The dataflow

directive examines these data dependencies between the blocks and tries to execute

these blocks in parallel if the blocks can start before the previous task has finished

executing. Therefor the overall latency is reduced and the throughput is improved.

The dataflow directive applies the parallelism by creating a channel based on pingpong

RAMs or FIFOs.

Figure 3.3: Parallel tasks inside top function

Let’s consider the following picture as an example:

Figure 3.4: Applying dataflow directive

For the three sub-functions in this example, the latency and throughput are 8 clock

cycles. After applying the dataflow directive, the latency is reduced to 5 clock cycles

and throughput to 3 cycles.
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However as we have seen in previous sections, there are limitations in applying some

directives. For the dataflow directive to work the data must flow through the design

from one task to the next. Some coding styles such as bypassing tasks, feedback between

tasks, loops with multiple exit conditions may prevent Vivado HLS from performing the

dataflow optimization.

3.2.2.6 Pipeline

Syntax:

#pragma HLS pipeline II=<int>

The pipeline directive is one of the most common optimization methods in HLS and it is

also used effectively in this project. By using pipeline we allow the concurrent execution

of operations ina loop.

The initiation interval(II) of a loop is the number of clock cycles it takes for a loop to

process new inputs. When we add the pipeline directive, the II is set to one by default

which means the loop will process new data each clock cycle. Otherwise we can specify

the II manually.

Here is an example:

Figure 3.5: Pipeline directive

As shown in the picture, for the sequential operation of the loop, 8 clock cycles are

required, but with II set to 1, it is reduced to 4 clock cycles.
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3.2.2.7 Dependence

Syntax:

#pragma HLS dependence variable=<variable><class><type><direction> distance=<int>

<dependent>

Vivado HLS can automatically detect dependencies within loops or between different

iterations of a loop. But sometimes the tool is maybe too conservative and does not

consider all the false dependencies. In these cases we can manually detect and specify

these false dependencies with the dependence directive.

We can specify 2 kinds of dependencies: intra and inter.

Inter: Means the dependency is between different iterations of the same loop.

Intra: Means the dependency is between the same iteration of the loop.

3.2.2.8 Array partition

Syntax:

#pragma HLS array partition variable=<name> factor=<int>

In cases where we have large arrays, we can insert this directive to split the array into

smaller partitions. The result will be an RTL with multiple smaller memories or multiple

registers.

This will of course effect the amount of read and write ports of the memory and requires

more memory resources or registers. But the advantage is that using this directive with

the UNROLL directive will result in a much better throughput of the design.

3.2.2.9 Array reshape

Syntax:

#pragma HLS array reshape variable=<name> <type> factor=<int> dim=<int>

<name>: Indicates the chosen array to be reshaped.

<type>: This field is optional and specifies the type of reshape which can be cyclic,

block or complete.
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Factor: For example a factor of 2 divides the array in half and doubles the bit-width.

Dim: By indicating this field we specify which dimension of the array we want reshaped.

The array reshape directive combines array partition and array map. Therefor while we

have the benifits of array partitioning, by increasing the bit-widths we also reduce the

number of block RAMs.

Here is an example of applying array reshape of type ”complete”:

Figure 3.6: Array reshape optimization

While applying the array reshape of type ”cycle” with factor of 2 will lead to the following

optimization:

Figure 3.7: Cyclic array reshape

3.2.2.10 Interface

Syntax:

#pragma HLS interface <mode> port=<name> bundle=<string>

<mode>: By mode we specify the I/O protocol for the function argument. Vivado HLS

supports many protocols but in this project we are using AXI4 interface which is set

through m axi and s axilite.

Port: which is the name of the function argument

Bundle: which groups the function arguments into AXI interface ports. All function

arguments in AXI4-lite and AXI4 are by default grouped into a single AXI4 port.

Since in an RTL design, inputs and output operations must be performed through a

port in the design interface, we must use the interface directive in order to specify how

RTL ports are created during the interface synthesis.
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The Interface directive is used for all kinds of ports in the RTL implementation but in

this thesis project we are exclusively using it for the top-level function arguments.

Each function argument can have its own I/O protocol interface such as a valid hand-

shake (ap vld) or acknoledge handshake (ap ack). The important thing is that each

argument must have a port level interface protocol created for it, including the function

return value.

3.2.2.11 Latency Optimization with Loop Tiling

In case of the CNNs, the weights that are used for the training and also the inputs for

different layers of the network are too large to be stores in on-chip memory of FPGAs.

Therefor external DRAMs must be used to store this data. While it could be a good

enough solution for some cases, DRAM accesses are costly in terms of energy and latency

and data cashes must be implemented by means of on-chip buffers and local registers.

One solution to solve this problem is the loop tiling technique. In this method the nested

loops of the convolutional layer are ”tiled”. Meaning that the inputs and the weights of

each convolutional layer are divided into multiple blocks that can fit in on-chip buffers.

Figure 3.8: Tiling

The parallelism to be applied on the code can be implemented in the following method:

While the tile sizes for inputs and the filter can be determined by the designer, the

output tile size must be calculated based on the other two:
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Figure 3.9: Tiling implementation

To = (Tr-1) x STRIDE + F

Ti = (Tc-1) x STRIDE + F

Where To and Ti are the height and width of the output tile, Tr and Tc are the height

and width of the input tile, and F is the filter size.

3.3 Catapult

3.3.1 Overview of Catapult

Catapult is a tool designed by the Mentor, which can help the designer describe func-

tions and move to an abstraction level.It Has three main parts in sense of high-level

synthesis:

1. C/C++/SystemC HLS

The Catapult is the only high-level synthesis platform that supports the high-level de-

scription by ANSI C++ and System C, and then based on codes written by an abstract

level description language such as C, Catapult can generate optimized Verilog or VHDL,

ready for production of RTL synthesis and verification flows.

2.HLS verification
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In Catapult, there are three types of verification, the first is checking user’s C code before

synthesis in order to find errors; the second is verification during simulation, comparing

the functionality of user’s C source with generated RTL; the third is verifying the code

with the RTL from Catapult design checks.

3.Low power HLS

Catapult low power(LP) is a tool that targets power as an optimization goal.The de-

signer can use Catapult LP to explore different hardware architecture and measures the

power, performance, and area of each solution.



Chapter 4

HLS and Comparison of the

Results

In this chapter, the optimization directives that were described in the previous chapter

are applied on YOLO software implementation using two HLS tools: Vivado HLS and

Catapult. For the comparison of the results between these two tools, Vivado is used.

4.1 Optimization Techniques

Using the Vivado HLS tool to optimize the YOLO C++ code for hardware implemen-

tation, the most used directives are:

Interface

Array partition

Pipeline

Unroll

4.1.1 Top-level Arguments

As it was mentioned in the previous chapter, in this project we are using the interface

directive for the arguments in the top-level function for convolutional layer.

The arguments include:

1. img[H][W][C]: The input image

28
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2. kernel[F][F][C][K]

3. bias[K]

4. out[nH][nW][K]: Output of the conv layer

These arguments are defined not in a single dimension vector to avoid the conversion

and using on-chip memory arrays during the convolution process.

Each of these arguments must have a port level protocol created for it.

AXI4 interface is a kind of interfaces that transfers data in sequential streaming method.

We are using the AXI4 protocol for each argument through m axi and s axilite modes

and a seperate bundle for each argument. For example for the input image we will have:

#pragma HLS INTERFACE m axi port=img offset=slave bundle=gmem3

#pragma HLS INTERFACE s axilite port=img bundle=control

4.1.2 Conv Layer Nested Loops

We are using the loop tiling technique for the conv layer in this project and as we need

to transfer the interface arguments to the tiles on the on chip memory, there are quite

a few nested loops in the code.

The first two loops are to transfer the input image and the kernel into the input and

kernel tiles respectively.

The pipeline directive is used here directly on the innermost loops because we are working

with the function arguments.

For example for transferring the input image pixels you can see the following in the code:

#pragma HLS PIPELINE

input[ii][jj][cc] = img[ii + row][jj + col][cc + ti];

In which ”input” is the on-chip tile.

The main convolution process is performed through six nested loops:

The kernel rows and columns, the output tile rows, columns and channels, and the input

tile channel.

For the convolution we are using unroll and pipeline directives.

The pipeline is applied on the input tile channel loop. The important issue to notice is
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that because of the unroll and pipeline directives applied here, the third dimension of

the ”input” and ”kernel” tiles must be array partitioned as well.

After the main convolution process, another pipeline is applied on the last loop for

transfering the final results from the output tile to the ”out” function argument.

So far by applying these directives we have managed to reach initiation interval(II) equal

to 2. Although this is an acceptable result, we can still optimize the design more.

One technique is to automatic loop pipelining that enables loops to be pipelined auto-

matically based on the iteration count. To do this:

1. Right click on the solution

2. Solution settings

3. General -> Add

4. Command -> config compile

The pipeline loops option sets the iteration limit. All loops with an iteration count below

this limit are automatically pipelined. The default is 0: no automatic loop pipelining is

performed. Therefor if there are loops in the design that we don’t want to use automatic

pipelining, we can apply the pipeline directive with the off option to that loop. The off

option prevents automatic loop pipelining.

The other technique is to take care of the load/store dependencies. If Vivado HLS gives

us the warning about memory port limitations in the report, we can change the block

RAM with a multi-port RAM. To do this:

1. Right click on the variable in the directive panel

2. Insert directive

3. Choose resource

4. Click on code

5. Choose a RAM with two ports for example RAM-2p-BRAM

Applying these two techniques we now reach the II equal to 1.

4.1.3 Catapult

To perform the optimization in Catapult, the exact same directives are used for the

loops including:
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#pragma hls pipeline init interval 1

#pragma hls unroll yes

However there are two main differences between Vivado HLS and Catapult optimiza-

tions:

1. The interfaces for the top-level function arguments are applied automatically and im-

plicit in Catapult. So we don’t use the ”interface” and the ”array partition” directives

here.

2. Catapult does not support float data type, so integer data type is used for the function

arguments.

4.2 Comparison of the Results

In this section the results between Vivado HLS and Catapult are compared. In order

to have a fair comparison we use integer data types for both tools. Also we skip the

interface directives in Vivado HLS to have a fair comparison of the utilization resources

between the two tools.

We are using Vivado as the tool to compare the Verilog files.

The device chosen for both synthesized files must be the same so a Kintex Ultrascale

FPGA is chosen that is available on both tools and the device model is: xcku115-flvf1924-

3-e

Also the clock period for both files is set to 10ns.

In Vivado the timing constraints are set the same for both Verilog files. In order to

achieve the correct comparison between the latency for the two files, the timing report

in Vivado must be checked to control if the user specified timing constraints are met or

if the actual clock period achieved in Vivado is different.

Based on this clock period and the number of clock cycles achieved in Vivado HLS and

Catapult, the latency is 0.4 ms and 0.5 ms for Vivado HLS and Catapult respectively.

The initiation interval (II) achieved for both files is 1.

You can see the utilization reports obtained in Vivado for both files in the following

figures:
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Figure 4.1: Utilization graph for Catapult

Figure 4.2: Utilization table for Catapult
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Figure 4.3: Utilization graph for Vivado HLS

Figure 4.4: Utilization table for Vivado HLS
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