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ABSTRACT  
 

Starting from a brief review about robotics and motion planning, the aim of my work was to program three 
ABB robots in a predefined industrial environment to perform pick and place tasks, trying to optimize them 
in terms of cycle time and of trajectories.  

In this specific case, we are discussing about the presence of three anthropomorphic robots, with 6 degrees 
of freedom able to guarantee the maximum possible dexterity used to pick and place objects of different 
types and weights. Articulated or anthropomorphic means that the shoulder has three revolute joints, the 
first one vertical and the other two horizontal and parallel. The structure is very similar to human body, 
with trunk, arm and forearm with a final wrist so it provides the best dexterity and this is why it is used in 
most of the industrial applications. Task space is a sort of sphere sector, even if there is no a direct 
correspondence between joint and Cartesian coordinates, but accuracy is not constant inside the task 
space.   

Particularly two of them are equal models of IRB4600, with a maximum capacity of 60 kg and are used to 
pick and place clutch’s mechanisms of a maximum weight of 8 kg, with a gripper of about 32 kg. The third 
one, instead, an IRB1200, is used to move rivets of few grams, so it is sufficient with a maximum capacity of 
5 kg. They both provide a double gripper to optimize the cycle time in order to be able to match the 
specification of 15s. 

The system scenario is composed of 13 stations, positioned in space in a pre-determined way, through 
which vehicular clutches are balanced, tested and finally marked.  

Since the area in which robots move is not regular and there are many obstacles as machines, laser cabinet 
and manipulators, it was necessary to declare some additional points to allow the movements. Due to this 
fact, all of them have been performed as linear through the instruction MoveL so that the minimum 
trajectory was followed. Moreover, since all the robots are equipped with a double gripper, it was 
necessary to declare two different tools and perform the movements with respect to one of them.  

Moreover, all the robots have been configured to meet safety requirements both in hardware and software 
through the Safe Move and WZones functionalities. Particularly, the two IRB4600 provided both of them 
due to the critical position inside the line, so their work area has been delimited by the Safe Move, while 
their movements around the pick and place areas have been managed by the WZones. The third one 
instead, since it is smaller and placed in a non critical position, provides only the software functionality 
through which it has been limited while approaching the rived feeder and the manipulator. This way, 
thanks to the Safe Move, the robot cannot be moved, even manually, outside the declared area, 
guaranteeing the integrity of the machines and gates around it. From the software point of view, instead, 
the encumbrance signals are set by the WZones themselves: in fact, every time the robot comes inside a 
certain area, the encumbrance signal is set to 1, so the PLC knows that for example the movements of the 
machines are limited while the robot is in that area. Then, to preserve machines integrity, I have defined 
also upper limits that guarantee that the robot, even in manual mode, cannot reach that altitude, so the 
mechanic is preserved. 
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1. INTRODUCTION  
The study of the motion of a robot inside an industrial production system starts from the definition of the 
environment. For the specific case in which a robot is asked to perform a pick and place task, it is needed to 
take care of all the constraints related to the space in which the robot has to work, as the presence of 
humans being or of others robots and machines around it, and also to the physical characteristics of its 
structure as the dexterity, the maximum values of elongation of its arm, the speed and many others.  

Besides all the possible features that could have been taken into consideration in this type of problem, I 
decided to concentrate my attention particularly on three of them which are the motion planning and the 
related trajectory optimization and finally the programming stage. 

 

1.1. MOTION PLANNING  
Motion planning of a robot can be studied from two completely different points of view which are 
the joint space and the task space.  
For joint space is intended the mathematical structure, so the vector space, whose elements are 
the joint variables qi(t). As they describe the motion of each joint, they are angles for revolute joints 
and distances for prismatic ones. This type of planning is quite difficult to be seen in practice, 
particularly because the relation between the two spaces is not linear, so to have even simple 
trajectories, as a straight one, in the joint space it is required something very different. The main 
characteristic of this type of planning is that it is very easy to find the correspondence between the 
joint space and the task space through the computation of the direct position and velocity KFs.  
However, in most of the cases it is better to plan the motion in the task space, which is the space of 
the tool centre point (TCP), the ideal point of the end effectors that the robot moves through 
space. This way the trajectory we want to see in space is exactly the same trajectory we need to 
impose to the robot in order to have the desired motion and this is very useful in all that cases 
where we need that the end effectors of the robot assumes some specific position or velocity at a 
certain time due, for example, to the environment characteristic or to the interaction with others 
robot. Since this information must be given to the joints because they are the only actuators of the 
whole structure and so only through them it is possible to obtain in practice constraints in motion, 
it is necessary to be able to describe the relation between the two representations. The 
transformation from the task space to the joint space is inside the computation of the so called 
inverse kinematic function, which requires the inverse of the functions related to both position and 
velocity in order to obtain the exact quantities to be given to the joints to obtain the desired 
motion. This procedure in general is not very easy, particularly because its computational cost is 
relevant and often it contains some approximations due to the iterations that must be done in 
order to obtain the final solution. 
 

1.1.1. DIRECT POSITION KINEMATIC FUNCTIONS 
Kinematics functions in general can be related to any point of the robot, but it is convenient if 
we consider them as position and velocity of the TCP. The first step is to define a reference 
frame for the base, called R0, and one for each arm of the robot. The transformation matrix 
needed to pass from one RF to the other considers 6 elements, divided in 3 translations of the 
origin and 3 angles for the rotation. However, to avoid to manage 6 parameters and particularly 
to be able to find a common way to represent the relative position between two RFs, 
roboticists introduced a large number of conventions, but the most used is the so called 
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Denavit-Hartenberg convention. Thanks to it, which is valid both for prismatic and revolute 
joints, the number of parameters is reduced to 4, two associated with translations, and the 
others to rotations. Between all of them, three are always constant in time because they 
depend only on the geometry, while the fourth is the joint variable and changes in time 
because it depends on the relative motion between two successive links. 
To define the number of links and joints of the structure, it is necessary to start from the base 
of the robot, which is defined as link 0. The first joint we find starting from the base is the joint 
1, then we find the link 1 and so on until we reach the TCP. In general, because of the 
convention, link I is between the joint i and the joint i+1. 

 
In order to place correctly all the RFs, the following rules must be followed: 

 The origin of Ri is located on the motion axis gi+1, at the intersection between the 
common normal to gi and gi+1. If the two axes intercept, the origin is located at the 
interception point. If the two axes are parallel, the origin can be located in a point of 
choice, usually on the arm. 

 Unit vector ki is aligned with the motion axis gi+1, with the positive direction coherent 
with the positive motion. 

 Unit vector ii is orthogonal to both ki-1 and ki. If they are parallel, ii belongs to the plane 
orthogonal to them; the direction chosen by the user. Usually is chosen to lie along the 
largest symmetry axis of the arm bi. 

 Unit vector ji completes the right-hand reference frame. 

This point two RFs are still undefined, but it is sufficient that: 

 For R0 the unit vector k0 is aligned with the motion axis g1. 
 The origin of R6 is located according to the preferences of the user since no RF will 

follow, but usually it is on the TCP. The only other condition is that i6 must be 
orthogonal to both k5 and k6. 

Resuming, the four parameters are: 

 di: it defines the translation along the motion axis ki-1, between the origin of Ri-1 and 
the intersection of the axis defined by ki-1 and the axis defined by ii. 

 ϑi: it defines the rotation angle around axis ki-1 such that ii-1 overlaps ii. The sign follows 
the RHR.  

 ai: it defines the minimum signed distance between axis ki-1 and ki along the common 
normal, measured along ii. 

Figure 1: joints and arms definition 
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 αi: it defines the rotation angle around motion axis ii such that ki-1 overlaps ki. The sign 
follow the RHR. 

 
DH parameters define the transformation from Ri-1 to Ri, but the joint variable changes 
depending on the joint. For prismatic joints the parameters ϑi , ai and αi are fixed, while di(t) is 
the joint variable. For revolute joints, instead, ϑi(t) is the joint variable while di, ai and αi are 
constant. 
Due to the fact that to move from RF to the next it is necessary to perform two translation and 
two rotations, the total transformation is a roto-translation composed as follow: 
 
       R         t 

T = T(R,t) =   
                                                         0T            1 
 

which, according to the pre-post rules, is composed by: 
 

Ti
i-1 = Trasl(k,d) Rot(k, ϑ) Trasl(i,a) Rot(i,α) 

 
In order to obtain the final TTCP

0 all the intermediate transformation matrices must be 
multiplied together. Finally, it is possible to extract the direct position KF tTCP

0(q(t)) and the 
direct Cartesian orientation KF RTCP

0(q(t)), usually expressed using the Euler angles. 
 

1.1.2. INVERSE POSITION KINEMATIC FUNCTIONS 
For the computation of the inverse position KF, the problem is much more complex and there is 
no clear recipe to solve it. A sufficient condition of existence is guarantee in case the wrist of 
the robot is spherical, which means that the axis of the joints which compose it always meet in 
a single point, but this doesn’t mean that it will be found. 
 

Figure 2: example of Denavit-Hartemberg convention

Figure 3: example of a spherical and a non 
spherical wrist 



Valentina TURCO  matricola 243901  

11 
 

Due to this fact, several possibilities can be taken into account, as: 
 brute force or previous solutions found for similar chains; 
 use the inverse velocity KF with a recursive approach which makes this computation 

easy to be solved; 
 use symbolic manipulation programs even if not suggested because very difficult; 
 iteratively compute an approximated numerical expression for the non linear 

equations, as the Newton method: 
p(t) = f(q(t)) 

p(t)-f(q(t)) = 0 
min{|p(t)-f(q(t))|} 

 

1.1.3. DIRECT VELOCITY KINEMATIC FUNCTIONS 
To compute the direct velocity kinematic function, means to find a relation between the 
quantities q(̇t) and ṗ(t) 

 q̇1(t)            ṗ1(t) 
                q2̇(t)            ṗ2(t) 

            q3̇(t)            ṗ3(t)                  v(q(t), q(̇t))                
                                          q̇(t) =      q4̇(t)                                          ṗ(t) =     ṗ4(t)         =              … 
                                                          q5̇(t)            ṗ5(t)                  ω(q(t), q(̇t)) 

                  q6̇(t)            ṗ6(t) 

       

Velocity kinematics is characterized by Jacobians: 
ṗ(t) = J(q(t))* q(̇t) 

even if it is necessary to make a distinction between the derivative of the angles and the 
angular velocity, so there are two types of Jacobians. If we consider the angular velocity as a 
vector, we speak about geometric Jacobian Jg and the relation becomes: 
                                                                                    ẋ 

vp(t) =            = Jg q ̇
                                                       ω 

In general it is not possible to find a vector u(t) as the integral of ω(t), the only relation 
between the two quantities depends both on the vector angle α(t), on its derivative and on the 
skew-symmetric matrix of u(t) as follows: 

ω(t) = α(̇t)u(t)+sin α(t)u(̇t)+(1-cos α(t))S(u(t)) u(̇t) 

The only case in which the formula can be integrated, but this happens very rarely, is when 
u(̇t)=0, because it means that the rotation axis does not change in time. 

The derivatives of the angles, instead, are contained inside the analytical Jacobian Ja, but they 
cannot be considered as a true vector since the vector addition does not hold to the correct 
value. This time we have that: 
                                                                                  ẋ 

ṗ =              = Ja* q̇ 
                                                                                  α ̇
which, because of its definition, it is possible to be integrated as: 
                                                                                         ẋ                 x(t) 

∫ṗ(τ)dτ = ∫           dτ =  
                                                                                         α̇                α(t) 
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In conclusion, the geometric Jacobian is used every time the physical interpretation of the 
rotation velocity is needed, while the analytical is adopted when it is necessary to treat 
differential quantities in the task space.  
 
With this distinction, if two points q(tk+1) and q(tk) are sufficiently near so that it is possible to 
make an approximation, the direct velocity KF can be used to compute the joint position using 
a recursive formula: 

q(tk+1) = q(tk)+q(̇tk)Δt 
where the parameter q̇(tk) can be computed using the geometrical or the analytical Jacobian 
obtaining: 

q(tk+1) = q(tk)+Jg
-1(q(tk))vp(tk)Δt 

or 
q(tk+1) = q(tk)+Ja

-1(q(tk))vp(tk)Δt 
 
The geometric Jacobian can be constructed through two steps: 

 every link has a reference frame Ri defined according to the DH conventions; 
 the position of the origin of Ri is given by: 

xi = xi-1 + Ri-1
0 ri-1,i

i-1 = xi-1 + ri-1,i
0 

 
doing the derivative with respect to time, we obtain: 

ẋi = ẋi-1 + Ri-1
0 ṙi-1,i

i-1 + ωI-1 x Ri-1
0 ri-1,i

i-1 = ẋi-1 + vi-1,I + ωI-1 x ri-1,i
0  

where the second term represents the linear velocity of Ri with respect to Ri-1, while 
the third is the angular velocity of Ri-1. 
Knowing that: 

Ṙ = S(ω)R = ω x R 
If we derive the composition of two rotations we obtain: 

Ri
0 = Ri-1

0 Ri
i-1 

Ṙi
0 = Ṙi-1

0 Ri
i-1 + Ri-1

0 Ṙi
i-1  

= S(ωi-1) Ri-1
0 Ri

i-1 + Ri-1
0 S(ωi-1,i)Ri

i-1 
= S(ωi-1) Ri-1

0 Ri
i-1 + S(Ri-1

0 ωi-1,i) Ri-1
0 Ri

i-1 
= [S(ωi-1) + S(Ri-1

0 ωi-1,i)] Ri
0 ≡ S(ωi) Ri

0 
Hence the angular velocity of RFi in RF0 is equal to the angular velocity of RFi-1 in RF0 
plus the angular velocity of RFi with respect to RFi-1 in RFi-1: 

ωi = ωi-1 + Ri-1
0 ωi-1,i 

Figure 4: computation of the geometric Jacobian 
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The geometric Jacobian can also be decomposed in two parts, one linear containing the 
contributes to the linear velocity of TCP, the other angular containing instead the contributes 
to the angular velocity of the TCP: 

                                                                   q1̇ 
                                            ẋ                          JL,1     JL,2     …     JL,n                    q2̇ 

v =           = Jg(q)q̇ =                                                   … 
                                           ω                         JA,1     JA,2     …     JA,n                   qṅ 

 
More in detail we have that: 

ẋ = ∑i=1
n JL,I qi̇ 

ω = ∑i=1
n JA,I qi̇ 

Depending on the type of joint we are considering, it is possible to know in advance what will 
be the values of the analytical and of the geometrical Jacobian, both represented with respect 
to R0. Moreover we know also that ri-1,TCP is the vector that represents (xTCP – xi-1) in R0. 
 
 JL,i JA,i 

Prismatic ki-1 0 
Revolute ki-1 x ri-1,TCP ki-1 

 
For what concerns the analytical Jacobian, instead, we know that its first three lines (related to 
the linear representation) are equal to the ones of the geometrical, while the last three 
(related to the angular representation) are usually different. To pass from the analytical to the 
geometrical values of these lines, it is necessary to choose the angle representation. In general 
we have that: 

ω = T(α)α ̇
     I          0 

                                                                                       Jg(q) =                             Ja(q) 
                                                                                 0       T(α) 
 
 If we consider the Euler angles, we obtain: 

α = {φ,ϑ,ψ} 
 

                                                                         0        cosφ       sinφsinϑ 
TE(α) =      0         sinφ      -cosφsinϑ 

                                                                                                1           0               cosϑ 
 
For the RPY angles, instead, we obtain: 

α = {ϑx, ϑy , ϑz } 
 

                                                                       cos ϑycos ϑz       -sin ϑz         0 
TRPY(α) =      cos ϑysin ϑz         cos ϑz         0 

                                                                                                  -sin ϑy                0               1 
 

For both the representations, the values of α that zeros the T(α) determinant correspond to an 
orientation singularity which means that there are geometric angular velocities that cannot be 
expressed by joint velocities. 
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For an anthropomorphic robot three singularity conditions exist: 

 completely extended or folded arm: it means that the robot cannot work at the 
maximum stage, but it works well inside the task space; 

 wrist centred on the vertical (which doesn’t mean always along the k axis); 
 wrist singularity  

In case we are using Euler wrists, to compute the singular configuration it is sufficient to start 
from the symbolic matrix: 

cφcψ - sφcϑsψ               -cφsψ - sφcϑcψ                 sφsϑ 

sφcψ + cφcϑsψ              -sφsψ + cφcϑcψ             -cφsϑ 

 sψsϑ                        cψsϑ                               cϑ 

 

it is possible to observe that if cϑ = 1, then ϑ = 0: 

cφcψ - sφsψ               -cφsψ - sφcψ                  0 

sφcψ + cφsψ              -sφsψ + cφcψ               0 

                                                                 0                        0                            1  

Due to the fact that singularity is only related to velocity and never to position, it means that 
when joint coordinates approach singularity the joint velocities become very large for small 
finite Cartesian velocities:  

𝑞̇ =  𝐽ିଵ(𝑞)𝑝̇ =  
ଵ

ௗ௘௧௃
𝐽𝑝̇̅ → ଵ

ఌ
𝐽𝑝̇̅ → ∞ 

Near singularity conditions it is not possible to follow a geometric path and at the same time a 
given velocity profile. This means that is necessary or to reduce the Cartesian velocity and 
follow the path, or to follow the velocity profile but with an approximated path because in 
exact singularity conditions nothing can be done, so it is better to avoid them. 

1.1.4. INVERSE VELOCITY KINEMATIC FUNCTION 
To compute the inverse velocity kinematic function, if the Jacobian is square, full-rank and non 
singular, it is sufficient to apply the following formula: 

q(̇t) = J-1(q(t))ṗ(t) 

When the Jacobian is a rectangular full-rank matrix instead, it means that the robot has a 
redundant robotic arm, but not singular so there are infinite possible solutions. To compute 
one of them it is possible to use the pseudo-inverse of the Jacobian, obtaining: 

q(̇t) = J+(q(t))ṗ(t) 

where, by definition: 

J+ = JT(JJT)-1 
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In case the initial position q(0) is known, it is also possible to compute the inverse velocity KF 
as an integral in continuous time and as an approximation in discrete time, assuming Δt 
intervals very small: 

q(t) = q(0)+∫0
t q(̇τ)dτ 

q(tk+1) ≈ q(tk) + q(̇tk)Δt 

When the Jacobian, square or rectangular, is not full-rank, it is not possible to invert the matrix 
using the pseudo-inverse, but it is necessary to use the Singular Decomposition of the 
Jacobian. 

1.1.5. JOINT SPACE TRAJECTORY PLANNING 
Before starting speaking about trajectory optimization, it is necessary to point out the 
distinction between the term path and the term trajectory. The path is the geometrical 
description of the desired set of points in the task space; this means that the control shall keep 
the TCP on the desired path. For trajectory, instead, it is intended the path and the time law 
required to follow it, from the starting to the end point.  
Usually in industrial environments for pick and place purposes there are constraints related to 
time so it is asked to minimize the time during which the item is moved from an initial to a final 
point. But it could be also the case that there are constraints related to trajectory, so it is 
better to pass through certain points at a certain speed in order to avoid collisions with others 
robotic arms and to minimize the time spent moving the item so that at the end the 
performances and the productivity of the whole system are increased. 
The trajectory planner of a robot can be seen as a “software node” that, given a desired path, 
the desired kinematic constraints (maximum speed) and the robot dynamic constraints 
(maximum acceleration and torque), is able to determine the joint reference samples qr for the 
control block. 
 

 
Having different types of constraint means to have different kinds of information: 

 Desired path (task space constraints) 
a) Initial and final positions 
b) Initial and final orientations 

 Trajectory (time-dependent task space constraints) 
a) Initial and final velocities 
b) Initial and final accelerations 
c) Velocities on a given part of the path (for example constant velocity) 
d) Accelerations (centrifugal acceleration affecting curvature radius) 
e) Fly-by points 

 Technological constraints (joint space constraints) 

Figure 5: trajectory planner 
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a) Motor maximum velocities 
b) Motor maximum accelerations 
c) Motor temperature 

If it is not important to follow a specific path, the trajectory is planned in the joint space 
implementing a point-to-point (PTP) linear path whose time law directly depends on the 
maximum velocity and acceleration values of the motors. In this case we obtain a convex 
combination between the initial and the final values using a unique scalar time-varying 
quantity called profile abscissa s(t) as follows: 

π’(q(t)) = (1-s(t))q0 + s(t)qf = q0 + s(t)(qf-q0) = q0 + s(t)Δq 

0 = s(t0) ≤ s(t) ≤ s(tf) = 1 

Thanks to this approach we obtain a coordinated motion, which means that the motion of all 
joints starts and ends at the same time, and we are able to guarantee the smoothness of the 
trajectory so that the mechanical structure has no vibrations added to a continuous curve that 
does not overshoot the final target. To satisfy kinematic and dynamic constraints, instead, we 
need to take care of some inequalities for velocity and acceleration, plus some other 
constraints related to the fact that s(t) is like the percentage of the path completed at time t: 

-ṡmax ≤ ṡ(t) ≤ ṡmax, ṡmax > 0 

-s ̈-max ≤ s(̈t) ≤ sm̈ax, s ̈-max > 0, s ̈+max > 0 

s(t0) = 0, s(tf) = 1 

ṡ(t0) = ṡ(tf) = 0 

s(̈t0-) = 0, s(̈t0+) = s ̈+max 

s(̈tf-) = s ̈-max, s(̈tf+) = 0 

Figure 6: position, velocity and acceleration profiles 
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Since the position, velocity and acceleration assume three different behaviour during time, 
they can be described by different time laws, each one corresponding to a certain interval. We 
define: 

L1 = {t : t0 ≤ t < t1} = [t0, t1) 
L2 = {t : t1 ≤ t < t2} = [t1, t2) 
L3 = {t : t2 ≤ t < tf} = [t2, tf) 

So that we obtain: 
         s̈+max            t є L1 

s(̈t) =       0  t є L2 

         -s̈-max            t є L3 
 

 
               s̈+max(t-t0) + ṡ0          t є L1 

ṡ(t) =       ṡmax                 t є L2 

               ṡmax - s̈-max(t-t2)  t є L3 
 

 
                ½ s̈+max(t-t0)2 + ṡ0(t-t0) + s0               t є L1 

s(t) =       ṡmax(t-t1) + s1                            t є L2 

               -½ s̈-max(t-t2)2 + ṡmax(t-t2) + s2           t є L3 
 

Imposing the continuity constraints between intervals it is possible to compute the partial 
percentages of space and some intervals in which the speed is constant or in which there is an 
acceleration or deceleration. However, there are cases in which it is not possible to reach the 
maximum velocity inside the trajectory, otherwise the joint will not be able to stop in the end 
point. This is what is called as ‘bang-bang trajectory’ in acceleration. 

 

Figure 7: bang-bang trajectory profiles 
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In order to be managed by discrete controllers, continuous variables need to be sampled in 
intervals with a period T directly related to control specifications. In practice, since it is very 
difficult that the commutation times will coincide with the sampling ones, it is necessary to 
consider also additional constraints, particularly in order to avoid violating profile constraints. 
This means that computing recursively the new profile, acceleration must be limited so that 
velocity does not exceed its maximum value. The same must be valid also for the deceleration 
phase, since the zero final speed must be reached uniformly and without exceeding the 
maximum acceleration. This point the computation of both velocity and position is made using 
some interpolation algorithms, able to guarantee fast results obtaining just one of the two 
quantities and then find the other by approximation. In case of incremental interpolation from 
the velocity, obtained as said before, it is possible to apply the Euler formula for derivatives 
using a backward or a forward relation, which must be chosen according to the available data, 
obtaining respectively: 

ṡk ≈ (sk – sk-1) ⅟T 

ṡk ≈ (sk+1 – sk) ⅟T 

while with the absolute interpolation from the position we compute velocity as: 

ṡk ≈ (sk – sk-1) ⅟T 

In order to define the geometric path inside the joint space, it is possible or to define a vector 
of 6 dimensional joint values, from the first q0 to the last qf, or, much more rarely, through a 
parametric curve. This way the definition of the joint values becomes a series of stop and go 
motions between two consecutive qi, so that the next is reached with zero velocity 

1.1.6. TASK SPACE TRAJECTORY PLANNING 
For the most used task trajectory planning, it is necessary to consider separately the position 
and the orientation variables, always taking care of their derivatives, particularly for what 
concerns the orientation angles. Also this time the position variables can be expressed through 
a vector or a parametric curve and then, in the first case all the adjacent points are linked 
together while in the second the parametric curve represents itself the motion law. For what 
concerns the orientation variables instead, there are three possibilities, both related to 
rotation matrices which must be kept orthonormal and with unitary determinant during the 
planning phase.  

The first method is the axis-angle, and consists on the computation of the incremental rotation 
RL, which links R0 and Rf.  

Rf = R0RL 

RL = R0
TRf 

From it we obtain the total variation of the rotation angle and then the u axis around which 
the rotation has took place.  

Δϑ = ± arccos (½ (tr RL -1)) 

S = ½( RL - RL
T)/(sin Δϑ) 
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At the end, if we keep constant the u axis, we are able to plan the angle necessary to pass from 
the starting to the end orientation.  

Rk = R(u,ϑk) 

ϑk = sk Δϑ 

This method is simple to implement and gives good geometrical for the performed movement, 
as can be seen in the following example: 

 For the planar sliding method, instead, the motion is seen as the composition of two rotations, 
one around a fixed axis u obtained as the one orthogonal to the plane composed by k0 and kf, 
and the second around the moving local axis k. 

Rk = R(u, βk) R(k, αk) 

Where 

β = arcsin ‖k0 × kf ‖ 

u = (k0 × kf)/sinβ 

α = arcsin ‖(R(u,β)Tj0) × jf ‖ 

αk = skα 

βk = skβ 

Figure 8: axis-angle interpolation example 

Figure 9: planar sliding interpolation 
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Finally the planning can be done easier using the three Euler angles, each of them planned 
according to the convex combination. 

Rk = R(k, φk) R(i, ϑk) R(k, ψk) 

φk  = φ0 + sk(φf – φ0) 

ϑk = ϑ0 + sk(ϑf – ϑ0) 

ψk = ψ0 + sk(ψk – ψ0) 

Once the task space trajectory planning has been computed, it is necessary to apply the 
inverse position KF in order to obtain the corresponding qk. In case the sampling period 
results too small to compute it, it is possible to use the micro-macro interpolation. This way 
the inverse KF is computed only on multiples of the sampling period and then the 
consecutive vectors are interpolated linearly to obtain approximated values. 

 

1.2. ANALYSIS OF THE STATE OF ART OF PROGRAMMING LANGUAGES FOR COMAU, 
FANUC AND ABB  
Many researchers studied, during the years, multiple types of interpolation methods, in order to 
allow the industries to adapt the robots to their specific needs. Beyond all of them, in 2014 
Menasri, Oulhadj, Daachi, Nakib and Siarry from University Paris-Est Creteil, concentrated their 
attention also on the avoidance of abrupt movements, ensuring this way at the same time the 
smoothness of the trajectory and the velocity and acceleration levels using position functions at 
least two times differentiable. The starting point of this procedure is based on the definition of a 
sets of points called knots by which it is mandatory for the trajectory to pass through. So the 
problem of trajectory planning becomes a problem of interpolation.  

For the interpolation purposes it is possible to use many types of techniques, divided in polynomial 
functions as cubic splines or B-splines and trigonometric functions. The main difference between 
the two is related to the fact that in case of variation of the available data polynomial functions are 
easier to be modified but they need to be at least of fourth order to guarantee the smoothness of 
the trajectory also at the acceleration level, while this is always verified by using the trigonometric 
functions.  

Figure 10: Euler angle interpolation 
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Using polynomial functions, this problem can be solved using a “classical” approach or an heuristic 
one, based on the genetic algorithm where each possible solution of the problem is coded as a 
string called chromosome. Then, trough crossover and mutation, some changes can be randomly 
introduced inside the chromosome adding also the recombination between some of them until 
new improving solutions are reached. However, this type of implementation, can require much 
more time than a polynomial one, due to the fact that there is no a clear recipe about the most 
improving crossovers and mutation, so at the end it could be the case that a new improving 
solution is not found at all. 

If we consider instead of a purely theoretical research a much more practical approach, from the 
literature we can say that there are basically three ways to program a robot: 

 Teach pendant: it is the most popular method (more that 90% of the robots are 
programmed through it, according to the British Automation and robot Association). To 
program the robot, the operator moves it from point-to-point, using the buttons on the 
pendant to move it around and save each position individually so that it can be used 
within the robot program. The coordinate systems available on standard jointed arm 
robots are: 

o the joint coordinated: each joint is independent and can be moved in every 
direction; 

o the global coordinates: they are the coordinates X, Y and Z of the robot global 
axis system and can be used to perform both rotations and translations to 
move the tool centre point in a specific position; 

o the tool coordinates: the coordinates of the tool centre point; 
o the workpiece coordinates: they are useful when it is necessary to make small 

adjustments to the program and they can be easily done along a major axis of 
the coordinate system than along a general line. This can be done when on the 
robot it is possible to set up a coordinate system wherever inside the working 
area and produces a result which is very similar to the one obtained through 
the position and orientation of the global coordinate system 

When the whole program has been learned, the robot can play back the points at full 
speed. This method is very simple to be implemented, and can be used in all that 
situations in which simple movements are required. The main disadvantage is related to 
the fact that every time a modification is necessary, it can take quite a long time during 
which the robot is of course out of production and this is why it is convenient to use the 
teach pendant only when the robot has to do the same movements for all its life. 

 Lead trough: the robot controller records joint positions at a fixed time interval while it 
is moved physically by the operator. The main disadvantage of this type of programming 
is related both to the dimensions of the robot, due to the fact that if they are too big 
they cannot be easily moved by the operator, and to the difficulties related to 
reprogramming the robot in the case in which hesitations or inaccuracies are introduced 
inside the program. This is why this solution now is almost disappeared, a part some 
cases where it is still used for paint spraying applications. 
 

 Off-line programming: the CAD models of the components and their models are used to 
program the robot. The main difference between the others teach programming is 
related to the fact that intelligent tools are here available so CAD data can be used to 
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generate sequences of location and process information. Even if this method is not so 
common it has many benefits, as reducing time for programming because it is easier and 
assist cell design to allow process optimization. 

 

1.2.1. COMAU TRAJECTORY PLANNING 
Trajectory planning by Comau is possible through the remote control performed by Teach 
Pendant. On December 2017, Comau researchers realized a new application called PickAPP in 
order to make the programming of industrial robots more intuitive, faster and so easier. This 
way it is possible to move a robot leading it to perform pick and place issues just defining the 
points of its trajectory without the necessity to learn a new programming language. Moreover, 
due to the fact that the application works directly on the robot’s joints, some particular 
trajectories or gripper’s actions can be easily implemented. 

Programming language used by Comau is called PDL2 and it appears very similar to Pascal, 
since they both provide a structured programming strategy. Between all the available features, 
the most important are related to the fact that there are predefined identifiers of variables, 
constants and procedures which can be used for robotic applications, as well as a large number 
of instructions in order to allow the gripper’s movements. Moreover, it is also possible to 
control some events while the program is in execution. All the instructions which compose the 
code are complied and translated in object code, and finally saved inside the memory. It is also 
possible to program the robot with a direct approach trough EZ, which memorizes all the 
movements and then translate them into PDL2. This approach is simpler because much more 
direct, but allows only to realize simple programs. 

The basic program is started by the key word PROGRAM and finished with END. In between it 
is possible to initialize some specific position as VAR POSITION so that, when the execution 
begins after the BEGIN CYCLE instruction, all the movements can be performed just selecting 
the proper position and then telling the robot to use the gripper.   

The most important variables are the VECTOR and the POSITION. The first is composed of 
three elements, X, Y and Z of real type, while the second is composed by three position 
coordinates (X, Y and Z), three Euler angles (E1, E2 and E3) of real type and a component of 
type string. This structure allows to describe the position and orientation of a triad with 
respect to another which is used as a reference. Joint variables are instead contained inside 
the JOINTPOS structure, for non redundant arms. 

To control the movements, instead, the main function is called MOVE TO, which allows the 
motion from the starting point to a specified target. Moreover, it is possible to decide the type 
of trajectory. For example MOVE JOINT TO is used for the joint space and represents the 
default configuration in case nothing else is specified, MOVE LINEAR TO is for the task space 
and MOVE CIRCULAR TO is used to describe a circumference arc. 

1.2.2. FANUC PROGRAMMING LANGUAGE 
The virtual environment offered by Fanuc is called RobotGuide. It allows to create a layout of 
both robot and workpiece thanks to a library of objects and then check the robot posture by 
graphic jog. Moreover CAD data can be imported to create parts by the modelling function. 
This way users can create the actual program from the shapes designed inside the graphic 
screen and from the instruction given to a virtual teach pendant because a code is 
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automatically generated so that, once the simulation has given the desired results, it can be 
directly downloaded inside the robot to see it moving.  

It is also possible to add some specific software for example to simulate a robotic process or 
study feasibility options for 3D applications, for painting or pallet issues, etc.. 

2.1.1. ABB PROGRAMMING LANGUAGE 
ABB’s programming environment is called RobotStudio. In the task space the robot can be 
moved in many different ways, depending on the situation. This to guarantee the greatest 
adaptability to all the situations. 

The most general sequence which is recommended is composed by these steps: 

- First of all it is necessary to define the path we want the robot to follow and then its 
target. This can be done creating a curve of the desired shape until the target is reached, 
or just creating the targets. The curve can be straight, a circumpherence described both 
through the center and the radius or by three points, an ellipse, a spline, etc.   

- Once the targets are defined, it is necessary to control thier orientation to be sure that the 
trajectory followed by the robot is the most efficient and passes through all the desired 
targets. 

- Generate the RAPID code from RobotStudio objects to obtain the program simulation. If it 
is necessary to modify something, it is possible to do it by editing the program through 
text. 

- Finally, it is necessary to verify that the robot and its TCP move sufficiently far from the 
utilities around them to avoid collisions by simulating the program. 

Also in this case the code is automatically generated by the graphic environment, so it is not 
necessary to learn a new programming language because everithing can be done in a virtual 
situation before being downloaded inside the robot for the real application. 
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2. DEFINITION OF THE SYSTEM 
The aim of my work is, starting from a predefined industrial environment, to program three ABB robots to 
perform pick and place tasks, trying to optimize them in terms of cycle time and of trajectories.  

In this specific case, we are discussing about the presence of three anthropomorphic robots, with 6 degrees 
of freedom able to guarantee the maximum possible dexterity used to pick and place objects of different 
types and weights. Articulated or anthropomorphic means that the shoulder has three revolute joints, the 
first one vertical and the other two horizontal and parallel. The structure is very similar to human body, 
with trunk, arm and forearm with a final wrist so it provides the best dexterity and this is why it is used in 
most of the industrial applications. Task space is a sort of sphere sector, even if there is no a direct 
correspondence between joint and Cartesian coordinates, but accuracy is not constant inside the task 
space.   

Particularly two of them are equal with a maximum capacity of 60 kg and are used to pick and place clutch’s 
mechanisms of a maximum weight of 8 kg, with a gripper of about 32 kg. The third one, instead, is used to 
move rivets of few grams, so it is sufficient with a maximum capacity of 5 kg. They both provide a double 
gripper to optimize the cycle time in order to be able to match the specification of 15s. 

The system scenario is composed by 13 stations, positioned in space in a pre-determined way, through 
which vehicular clutches are balanced, tested and finally marked.  

The line behaves as follows: 

 The clutch, from the external line, is moved to STA, where it is picked by robot R1 with gripper 1 
and moved to ST5. If in ST5 there is already an item, it is picked up by gripper 2. 

 Manipulator M2 does one step to move the item on ST1 for the measurement of the residual 
imbalance. Then it moves again of 72°, so the clutch arrives in ST2. 

 Robot R2 picks the requested rivets from the rails of the rivet feeder (from 1 to 4, the first always 
with gripper1) and place them on the clutch present in ST2. Since the station is able to rotate, R2 
performs the task always in the same position. 

 Clutch is moved to both ST3 and ST4 to complete the riveting, then it is moved to ST5. 
 Item is picked up from ST5 by R1 and moved alternatively to ST6 and ST7. 
 Once M2 has completed the fingers correction on the clutch, it is picked up by robot R3 

(alternatively from ST6 and ST7) and placed in ST8. 
 Finally, when M3 has finished the functional control, the mehcanism is moved to ST9 and it will be 

marked. Once the rotating table has done 3 steps, in ST12 line is discharged by the last 
manipulator. 

NOK conveyors are finally used to move away damaged parts. 

The whole line is organized as follows: 
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Figure 11: line layout
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2.1 ROBOT R1 
The production flow starts from the left side of the line, where we have the first robot, R1 for the 
representation. It is an IRB 4600 by ABB, with 60 kg of payload and a possible extension of the arm 
up to 2.05 m. It is equipped with a double gripper with three fingers each, able to pick up the 
clutches. Moreover it communicates with a PLC Siemens 1500, which works as a master of the 
whole line, through the Profinet bus. Its task is, depending on the gripper, to pick and place the 
clutches. Particularly the one called gripper 1 (on the up side from the robot point of view) 
performs its task from the entry of the line STA to ST5, while for what concerns gripper 2, it takes 
the items from ST5 and move them alternatively in ST6 and ST7. Moreover, if clutches are defined 
NOK, so some faults are detected during the process, they are moved from STA to NOK1_A by 
gripper 1 in case of problems caused by assembly task, while they are moved from ST5 to NOK1_B 
with gripper 2 if balancing has not been done correctly. 

Below the detailed picture related to R1 task: 

 

Due to the fact that there are 2 grippers, for programming clarity it was necessary to define them 
as two different tools, so that also the pick and place procedure could be written in a specific way 
for each of them. 

 

The whole gripper is symmetric with respect to its center, which coincides with the robot’s TCP. 
This is why in practice the center of each gripper has in module the same position, while the 
direction changes. In fact, the tool coordinate system is rotated of 90° around y axis with respect to 
the base one. So, for gripper 1, x and y directions are negative (it is the upper one), while for 
gripper 2 they are positive. Since z direction is coming outside the plane, it is always positive. 

 

 

Figure 12: R1 task description
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Figure 13: TCP coordinate system with respect to the base one

Figure 14: gripper 1 and 2 refrence frames with respect to the TCP
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2.1.1. I/O CONFIGURATION 
To properly build up the I/O system of R1 robot, I added the Profinet option inside the 
configuration section of RobotStudio, reserving 16 bytes of Digital Inputs and 16 bytes of 
Digital Outputs. All those signals are exchanged during the cycle with the PLC, particularly all 
the inputs are commands from the PLC to the robot related to the system state or to the 
movement it can do, while the outputs represent the confirmation that the commands have 
been received or that the movements have been executed.  

 

 

 

 

 

Figure 15: Inputs configuration 
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For what concerns the system signal, there are different types of stop to be able to 
differenciate situations. Particularly the stop_program is the flex pendant signal, from which 
brakes are immediately activated, while quick_stop and soft_stop interrupt the program 
execution braking the motors with different deceleration ramps. Moreover, the difference 
between the two is related to the fact that when quick_stop is activated, all the motors are 
deactivated for security reasons, viceversa this does not happen when soft_stop signal 
becomes high. Stop_end_of_cycle, instead, can be activated just if both the grippers are 
empty, while stop_end_of_instruction is just related to the end of a line of code or movement. 

Since many types of clutches can be tested inside the line, it was necessary to take into 
account the fact that each one has its own dimensions and height. This particularly will 
interfere with the place position of the rivets, which can change both along the radial position 
and the vertical one, but can be important in case also the position of the mechanical plugs 
changes. To be able to manage directly all these mechanical information, the variable 
reference was created as a number which can assume all the values between 0 and 127, each 
corresponding to an alphanumeric code translated by the PLC. This way, once the reference is 
defined and passed to the robot, it is able to perform the tasks without the need of other 
information. The only negative aspect is related to the fact that the WorkObjects must be 
defined in practice for each reference and this can take quite a long time, depending on the 
number of possible references.   

Moreover, the same reference bits that are received as inputs are also set as output during the 
program execution, so the correctness of the signals exchanged can be easily checked.      

 

Figure 16: Outputs configuration 
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2.2 ROBOT R2 
Proceeding through the flow we have the second robot, R2 for the representation. It is an IRB 1200 
by ABB, with 5 kg of payload and a possible extension of the arm up to 0.9 m. It is equipped with a 
double gripper, each one composed by a vacuum switch able to pick up rivets of different sizes and 
weights. Moreover it communicates with a PLC Siemens 1500, which works as a master of the 
whole line, through the Profinet bus. Its task is, given the rivet code, to pick and place it on the 
clutch cover which is present on ST2. 

The detailed picture related to R2 is the following one:   

 

From that it is clear that the two WorkObjects that interact with R2 are the rivet feeder splitted in 
14 positions for the pick task and the clutch cover for the place one.   

 
From the coordinates of the tools, it is evident that this time they are not symmetric anymore, but 
placed in a configuration which appears rotated toward right from the robot point of view. 

 

 

 

 

Figure 17: R2 task description 
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Figure 18: TCP reference frame with respect to the base one

Figure 19: gripper 1 and 2  reference frame with respect to the TCP
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2.2.1. I/O CONFIGURATION 
To properly build up the I/O system of R2 robot, I added the Profinet option inside the 
configuration section of RobotStudio, reserving 16 bytes of Digital Inputs and 16 bytes of 
Digital Outputs, as I did also for R1. All those signals are exchanged during the cycle with the 
PLC, particularly all the inputs are commands from the PLC to the robot related to the system 
state or to the movement it can do, while the outputs represent the confirmation that the 
commands have been received or that the movements have been executed.  

 

 

 

 

 

 

 

 

Figure 20: Inputs configuration 
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For what concerns the system signal, there are different types of stop to be able to 
differenciate situations. Particularly the stop_program is the flex pendant signal, from which 
brakes are immediately activated, while quick_stop and soft_stop interrupt the program 
execution braking the motors with different deceleration ramps. Moreover, the difference 
between the two is related to the fact that when quick_stop is activated, all the motors are 
deactivated for security reasons, viceversa this does not happen when soft_stop signal 
becomes high. Stop_end_of_cycle, instead, can be activated just if both the grippers are 
empty, while stop_end_of_instruction is just related to the end of a line of code or movement. 

Since many types of clutches can be tested inside the line, it was necessary to take into 
account the fact that each one has its own dimensions and height. This particularly interferes 
with the place position of the rivets, which can change both along the radial position and the 
vertical one. All these information are contained inside the parameter reference, a number 
which can assume all the values between 0 and 127, each corresponding to an alphanumeric 
code translated by the PLC. 

The same considerations can be done also for the rivets: depending on the PLC request, up to 
14 different types of rivet, varying in weight, can be chosen to balance the clutch. For this 
purpose, it was necessary to create an array of positions so that, each time a new rivet is 
requested to be picked up, the pick position is updated. 

Moreover, for both reference and rivet code, the same bits that are received as inputs are also 
set as output during the program execution, so the correctness of the signals exchanged can 
be easily checked.      

Figure 21: Outputs configuration 
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2.3 ROBOT R3 
Finally we have the third robot, R3 for the representation. It is again an IRB 4600 by ABB, with 60 kg 
of payload and a possible extension of the arm up to 2.05 m. It is equipped with a double gripper 
with three fingers each, able to pick up the clutches. Moreover it communicates with a PLC Siemens 
1500, which works as a master of the whole line, through the Profinet bus. Its task is, depending on 
the gripper, to pick and place the clutches. This time the one called gripper 2 (on the right side from 
the robot point of view) performs its task from ST6 or ST7 alternatively to ST8, while for what 
concerns gripper 1, it takes the items from ST8 and move them in ST9. Moreover, if clutches are 
defined NOK, so some faults are detected during the process, they are moved by gripper 2 to 
NOK_FC in case of problems related to finger correction machine and NOK_ML in case of faulty 
during marking or laser phases, while they are moved to NOK_C with gripper 1 if functional control 
machine detect some errors. 

 

 

Figure 22: R3 task description
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Also this time for programming clarity it was necessary to define the grippers as two different tools, 
so that also the pick and place procedures could be written in a specific way for each of them. 

 

 

 

 

Figure 24: gripper 1 and 2 reference frames with respect to the TCP

Figure 23: TCP reference frame with respect to the base one
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2.3.1. I/O CONFIGURATION 
As I did before, also for the I/O system of R3 robot I added the Profinet option inside the 
configuration section of RobotStudio, reserving 16 bytes of Digital Inputs and 16 bytes of 
Digital Outputs, as I did also for R1. All those signals are exchanged during the cycle with the 
PLC, particularly all the inputs are commands from the PLC to the robot related to the system 
state or to the movement it can do, while the outputs represent the confirmation that the 
commands have been received or that the movements have been executed.  
 
For what concerns the system signal, there are different types of stop to be able to 
differenciate situations. Particularly the stop_program is the flex pendant signal, from which 
brakes are immediately activated, while quick_stop and soft_stop interrupt the program 
execution braking the motors with different deceleration ramps. Moreover, the difference 
between the two is related to the fact that when quick_stop is activated, all the motors are 
deactivated for security reasons, viceversa this does not happen when soft_stop signal 
becomes high. Stop_end_of_cycle, instead, can be activated just if both the grippers are 
empty, while stop_end_of_instruction is just related to the end of a line of code or movement. 
 
Since many types of clutches can be tested inside the line, it was necessary to take into 
account the fact that each one has its own dimensions and height. This particularly will 
interfere with the place position of the rivets, which can change both along the radial position 
and the vertical one, but can be important in case also the position of the mechanical plugs 
changes. To be able to manage directly all these mechanical information, the variable 
reference was created as a number which can assume all the values between 0 and 127, each 
corresponding to an alphanumeric code translated by the PLC. This way, once the reference is 
defined and passed to the robot, it is able to perform the tasks without the need of other 
information. The only negative aspect is related to the fact that the WorkObjects must be 
defined in practice for each reference and this can take quite a long time, depending on the 
number of possible references.   
 
Moreover, the same reference bits that are received as inputs are also set as output during the 
program execution, so the correctness of the signals exchanged can be easily checked.      
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Figure 25: input configuration
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Figure 26: output configuration
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3. PICK AND PLACE TASK 
Since the grippers have been considered as two different tools, for each situation it was possible to create 
ad hoc pick and place functions.  

Then, for all the robots a home and wait position have been defined. In home position the robot is moved 
so that the first three links are in vertical position, while the last two are in horizontal one: this allows the 
operator to correctly calibrate the tool attached to the TCP. However, due to the fact that the line is quite 
crowded of machines which don’t allow the robot to move freely, the home position for the calibration has 
been divided in two subfunction. The first guarantees the correct position of 0° for that joints that are able 
to reach it without crashing. Then, a second function is used to move to the zero position the others, 
keeping the calibrated one in whatever combination so that the robot is out of encumbrance while the last 
joints are calibrated. The wait position, instead, has been created in case the task of the robot is quicker 
with respect to the flow rate of the clutches along the line. Moving the robot in wait position, it is 
positioned near the area where next task have to be performed, usually the pick task of a new item which 
enters its work area, so without interfering with the machines, but reducing cycle time.   

All instructions have been performed approaching the item from the vertical direction. This means that the 
pick positions have been stored as the points that lies on the vertical with respect to the pick point of the 
item, but their distance can change accordingly to the situation. So the complete movement is divided in 2 
steps: 

- First of all the robot is moved so that the center of the interested gripper is positioned at a certain 
height from the item it has to pick up. Distance is related particularly to the double gripper 
dimensions and encumbrance, together with the characteristics of the pick place (for example, to 
perform the pick task inside the machines, it is necessary to take into account also the presence of 
the drawer and of its mechanical guides). 

 
This movement has been performed trough the MoveL command adding an offset of 100 mm 
inside the third field of Offs instruction, which is the value related to z axis. Moreover, the 
parameter z50 has been added. It represents the radius length of a theoric circle centered in the 
target point. This means that at maximum the TCP at the end of the movement can lie on an area 
which is far at maximum 50 mm from the target point. 
 

- Then gripper is finally approached to the item: 

This time, since no errors are allowed when picking the item, it is necessary to add the parameter 
fine to be able to guarantee as much precision as possible. 
 

- Finally, once the item is safely fixed inside the gripper and can be moved, it is necessary to perform 
another MoveL instruction along the vertical direction as before: 
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Also for place tasks the approaching movement is a vertical one, due to the fact that it is necessary to avoid 
collisions with other objects and because often there is not so much space, so not every type of movement 
is allowed. Moreover the gripper has to be parallel to the pick and place positions to be sure to pick at the 
same time and with the same force the clutch mechanism using three mechanical plugs positioned at 120°. 
For what concernes robot R2, again it has to approach the hole for rivet parallel to the mechanism due to 
the cover of the mechanism itself which is higher with respect to the hole surface and not regular. So it is 
better to tilt the arm, having just the wrist oriented so that the gripper is in vertical position. This way it is 
possible to gain also cycle time, because the robot can be more distant and does not need to move near 
the place area. This movement is composed by 3 instruction as follows:  

- The first instruction is used to move the robot at a vertical distance equal to 100 mm from the 
place area, as before. The only difference consist on the fact that the robot arm now is no more in 
vertical position, but tilted: 

To guarantee good precision, z50 option has been added. 
- Then the arm is approached along the vertical direction decreasing the speed and the horizontal 

adjustment to increase precision: 

- To go away after the item has been placed, I added an offset to the removal position, then the 
gripper can move away and it is ready to perform the next task. 

Now it is possible to analyze in detail the procedures of each robot. 

3.1. ROBOT R1 
For robot R1 the pick and place tasks have been defined inside the module called pickPlace. This module 
contains many procedures, one for each pick and one for each place task that has to be performed by 
gripper 1 or by gripper 2. 

Each of them has been defined in the same way: this means that the only differences are related to the pick 
and place positions, while the structure is almost the same. Moreover, due to the fact that in practice there 
are many obstacles, it was necessary to add some fly points as points where the robot has to pass in order 
both to avoid collisions or singularities. Particularly, the second ones are the most critical issues: they 
appear either when axis 4, 5 and 6 are alligned or when axis 5 is alligned with the base. If the robot moves 
accidentally in one of these situations, then it is not able to move anymore, due to the fact that these 
configurations, from the theoretical point of view, represent position where joint velocities become 
infinite. 

3.1.1.  PICK_GRIPPER1_ENTRY_LINE 
The procedure is called every time there is the need to pick a clutch from the entry line and 
the operation is performed by gripper 1, as the name suggests. Once it is called, the outputs 
Out_of_area_entry_line and Robot_in_home_pos are set to 0 when the robot enters a pre-
defined zone, to indicate that the robot could interfere with the entry line area, so it is not out 
of its area, and that it is no more in home position since it will start to move soon. Particularly, 
these signals are managed by the so called world zones, as I will explain in the next chapter. 
Then a linear movement to pick_gripper1_TOX is performed until gripper 1 is 100 mm above 
the position where the clutch will be picked up. To check the possibility to pick a new item, it is 
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necessary to check both the gripper status and that a no clutches are inside it. If everything is 
ok, a fine linear movement is performed to approach the clutch, then gripper 1 is closed. At 
this point the program stops for a while, waiting for the input signal Clutch_in_gripper1 to 
become active, indicating that the pick task has been performed successfully. If this does not 
happen, then an error message is generated on the Flex Pendant, while the boolean variable 
closingGripper1Error becomes true; otherwise the arm is moved along the vertical position and 
next task can be executed. 

3.1.2.  PICK_GRIPPER2_ST5 

 
Figure 28: pick task from ST5 performed by gripper 2

Figure 27: pick task from entry line performed by gripper 1
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3.1.3.  PLACE_GRIPPER1_ST5 
With procedure place_gripper1_ST5(), robot R1 moves towards ST5. Once the function is 
called Robot_in_home_pos and Out_of_ST5 are set to 0 to signal the movement, then robot 
starts to approach ST5 position. As described before, the motion is composed by 3 steps to 
guarantee as much precision as possible. Once the robot has reached ST5 position, if the 
command from PLC  Open_gripper1 is set to 1, then the gripper is opened. To be sure that the 
operation has been peformed correctly, the program waits for a while. Finally the opening task 
is checked: if no errors are detected the signal Clutch_placed_in_S05  is set to 1 and the robot 
starts moving away, out of area of ST5; otherwise an error is displayed on the Flex Pendant 
once the OpeningGripper1Error signal is set to 1. 

 

 

 

 

 

 

 

 

 

 

 

3.1.4.  PLACE_GRIPPER1_NOK1_A_CONVEYOR 
 

 

 

 

 

 

 

 

 

Figure 30: place task to NOK1_A conveyor performed by gripper 1

Figure 29: place task to ST5 performed by gripper 1
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3.1.5.  PLACE_GRIPPER2_ST6 

3.1.6.  PLACE_GRIPPER2_ST7 

 

Figure 31: place task to ST6 performed by gripper 2

Figure 32: place task to ST7 performed by gripper 2
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3.1.7.  PLACE_GRIPPER2_NOK1_B_CONVEYOR 

  

Figure 33: place task to NOK1_B conveyor performed by gripper 2
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3.2. ROBOT R2 
For robot R2 the pick and place tasks have been defined inside the module called pickPlace. This 
module contains in total 4 procedures, one for pick and one for place related to gripper 1 and other 
two related to gripper 2. 

3.2.1.  PICK1  
Pick1() procedure, as the name suggests, describes the pick task performed by gripper 1. Once 
it is called, the outputs Out_of_rivet_feeder and Robot_in_home_pos are set to 0, to indicate 
that the robot could interfere with the rivet feeder area, so it is not out of its area, and that it 
is no more in home position since it will start to move soon. Then a linear movement to 
feederPos_gripper1 is performed until the robot is 50 mm above the position where the rivet 
will be picked up. 

Moreover, since the rivet feeder is composed by 14 linear guides which move rivets of 
different weight and dimensions, there are 14 possible positions where it can be asked to pick 
up a rivet. To manage this information, the variable rivet1code has been introduced as the 
decimal number which comes from the conversion of the binary variables from Bit0_rivet1 to 
Bit3_rivet1as follows: 

Once the variable is computed, its correctness is checked (since there are at maximum 14 
positions it could not be greater than 14). If everything is ok, then pick1 procedure is called; 
otherwise an error on the Flex Pendant is generated. 

When the robot reach the desired position above the rivet feeder, if the gripper is empty, it 
can approach the rivet with a fine movement. Then the program will activate the vacuum and 
wait for a while. Finally vacuum activation is checked: if the generation has been correctly 
performed, then the output Rivet1_picked is set to 1 to indicate that the rivet has been picked 
up and the robot starts moving away from rivet feeder area. If something wrong happens, 
instead, an error is generated and a message is displayed on the Flex Pendant. 

  

 

 

 

 

 

Figure 34: position of rivet 1 computation
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Figure 35: pick1 procedure performed by robot R2 

3.2.2.  PICK2 
The same considerations can be done also for what concernes gripper 2, as follows: 

 

 

Figure 36: position of rivet 2 computation
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3.2.3.  PLACE1 
With procedure place1(), robot R2 moves toward the cover of the clutch present in ST2. Once 
the function is called Robot_in_home_pos and Out_of_ST2 are set to 0 to signal the 
movement, then robot starts to approach ST2 position. As described before, the motion is 
composed by 3 steps, all referred to the same type of clutch through the variable reference. Its 
computation is performed inside the system module reference_choice() in the procedure ref(), 
which is called inside the MainModule() at restart. This way, since there is a position for each 
type of clutch, all the dimensions changes are automatically taken into account without the 
need of select them manually. 

Once the robot has reached ST2 position, the deactivation of vacuum is set forcing to 0 the 
signal  Vacuum_activation_on_gripper2, then the program will wait for a while to be sure that 
the rivet is no more attached to the gripper. Finally the deactivation is checked: if no errors are 
detected the signal Rivet1_placed is set to 1 and the robot starts moving away, out of area of 
ST2; otherwise an error is displayed on the Flex Pendant once the Error_signal is set to 1. 

 

 
 

 

 

 

 

 

Figure 37: pick2 procedure performed by robot R2
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3.2.4.  PLACE2 
Place2() procedure performs exactly the same operations performed by place1(), the only 
difference consists on the fact that now tool gripper 2 is used. 

 

 

 

 

 

 

Figure 39: place2 procedure performed by robot R2 

Figure 38: place 1 procedure perfromed by gripper 1
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3.3. ROBOT R3 
Also for robot R3 the pick and place tasks have been defined inside the module called pickPlace. This 
module contains many procedures, one for each pick and one for each place task that has to be performed 
by gripper 1 or by gripper 2. 

Each of them has been defined in the same way: this means that the only differences are related to the pick 
and place positions, while the structure is almost the same. Moreover, due to the fact that in practice there 
are many obstacles, it was necessary to add some fly points as points where the robot has to pass in order 
both to avoid collisions or singularities. Particularly, the second ones are the most critical issues: they 
appear either when axis 4, 5 and 6 are alligned or when axis 5 is alligned with the base. If the robot moves 
accidentally in one of these situations, then it is not able to move anymore, due to the fact that these 
configurations, from the theoretical point of view, represent position where joint velocities become 
infinite. 

3.3.1.  PICK_GRIPPER2_ST6 
The procedure is called every time there is the need to pick a clutch from ST6 and the 
operation is performed by gripper 2, as the name suggests. Once it is called, the outputs 
Out_of_area_ST6 and Robot_in_home_pos are set to 0, to indicate that the robot could 
interfere with ST6 area, so it is not out of its area, and that it is no more in home position since 
it will start to move soon. Then a linear movement to pick_gripper2_ST6 is performed until 
gripper 1 is 100 mm above the position where the clutch will be picked up. To check the 
possibility to pick a new item, it is necessary to control both the gripper status and that no 
clutches are inside it. If everything is ok, a fine linear movement is performed to approach the 
clutch, then gripper 2 is closed. At this point the program stops for a while, waiting for the 
input signal Clutch_in_gripper1 to become active, indicating that the pick task has been 
performed successfully. If this does not happen, then an error message is generated on the 
Flex Pendant, while the boolean variable closingGripper1Error becomes true; otherwise the 
arm is moved along the vertical position and next task can be executed. 

Figure 40: pick task from ST6 performed by gripper 2
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3.3.2.  PICK_GRIPPER2_ST7 
 

 

 

 

 

 

 

 

 

 

 

3.3.3.  PICK_GRIPPER1_ST8 

 

 

 

 

 

Figure 41: pick task from ST7 performed by gripper 2

Figure 42: pick task from ST8 performed by gripper 1
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3.3.3.  PICK_GRIPPER2_NOK_ST9 

 

Figure 43: pick task from ST9 performed by gripper 2
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3.3.4.  PLACE_GRIPPER2_ST8 

With procedure place_gripper1_ST8(), robot R3 moves towards ST8. Once the function is 
called Robot_in_home_pos and Out_of_ST8 are set to 0 to signal the movement, then robot 
starts to approach ST8 position. As described before, the motion is composed by 3 steps to 
guarantee as much precision as possible. Once the robot has reached ST8 position, if the 
command from PLC  Open_gripper2 is set to 1, then the gripper is opened. To be sure that the 
operation has been peformed correctly, the program waits for a while. Finally the opening task 
is checked: if no errors are detected the signal Clutch_placed_in_S08  is set to 1 and the robot 
starts moving away, out of area of ST8; otherwise an error is displayed on the Flex Pendant 
once the OpeningGripper2Error signal is set to 1. Also this time all the functions are composed 
by the same structure. 

 

3.3.5.  PLACE_GRIPPER2_NOK_FC_CONVEYOR 
 

 

 

 

 

 

 

 

 

Figure 44: place task to ST8 performed by gripper 2

Figure 45: place task to NOK_FC conveyor performed by gripper 2
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3.3.6.  PLACE_GRIPPER2_NOK_ML_CONVEYOR 

  

 

3.3.7. PLACE_GRIPPER1_ST9 

 

 
 

Figure 46: place task to NOK_ML conveyor performed by gripper 2

Figure 47: place task to ST9 performed by gripper 1
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3.3.8. PLACE_GRIPPER1_NOK_C_CONVEYOR 
 

Figure 48: place task to NOK_C conveyor performed by gripper 1 
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4. MOVEMENTS CONFIGURATION 
To guarantee safety inside plants where robots are not completely isolated, but interfere with machines 
(used for example for pick and place tasks), ABB provides an hardware functionality called SafeMove 
option. It is integrated thanks to a safety fieldbus connected to the IRC5 controller and guarantees that in 
whatever situation, robot will never overcome the edges defined through RobotStudio visualizer.  

It also eliminates the need for an external safety PLC by incorporating safe fieldbus communications 
directly into the robot controller. SafeMove still includes dedicated hardware to ensure the performance of 
the safety system, including a reliable safety I/O which guarantees that the application running on the 
controller‘s main computer operates independently and particularly in a predictable way. 

 So, given the shape correctly dimensioned of the area in which the robot can move without causing any 
damages and eventually adding some allowed tolerances, the software is able to determine the joints 
variables necessary to reduce the movements ranges.  

In addition, supervisor options can be included to monitor the tool speed, position and orientation plus axis 
position and speed. However, it is necessary to consider the fact that SafeMove limits represents the points 
where the robot starts to decelerate, so it is necessary to set up them a little bit before in order to avoid 
undesirable crashes against the gates or the perimetral structure of the line. 

If robots are not equipped with SafeMove option, something similar can be achieved by configuring 
WorldZone by software, inside the same Rapid section where program is written. Particularly, since all of 
them provide this functionality, I used it to set the home_position flag and all the others related to the 
encumbrance of a certain station. Moreover, I imposed a superior limit for R2 to be sure that it will never 
interfere with the arms of manipulator M1 in high position and with the machines’ mechanical structures.  

However, a distinction needs to be done to differenciate the management of the home position signal with 
respect to the one related to the encumbrances. In fact, in practice the home position is represented by a 
single point, which corresponds to a specific configuration of the six axis, so to a certain angular position for 
each of them. Due to this fact, the robot is no more in home position if it moves far from it of a certain 
tolerance that can be set for each axis. So, to guarantee a good precision and to improve the control that 
the PLC can do on the robot, I decided to set a tolerance of 1° for each axis. This means that even for very 
small movements, performed for example in manual mode, the robot signals to the PLC that it is no more in 
home position. For this purpose, I declared it as a jointtarget variable, which differs from the normal 
robtarget since it is expressed in degrees for each joint and not in coordinate form. 

All the encumbrances, instead, are defined as areas characterized by the fact that if the robot is positioned 
inside one of them, then there could be damages or problems in case some other elements of the 
environment are moved. This means that they act as limitations for the normal working situation of the 
whole line. To this purpose, they have been declared not as single points as happened for the home 
position, but as volumes cubical, cylindrical or shaped like a parallelepiped, using obviously the tool which 
interacts with that zone. Every time the tool enters that zone, the encumbrance signal is set to 0 to inform 
the PLC to stop every movements of the machines. In addition, all the signals that will be used inside the 
WZones must be set as ReadOnly signals, to be sure that they won’t be overwritten manually, but only by 
the WZones themselves. Then, the default value of the encumbrance signals, has been changed into 1 to 
indicate that the approach to the machines is not continous. 

In general, the most critical situations involve the manipulator area (ST2 and ST5 stations), the two 
machines (ST6, ST7 and ST8 stations) and finally the marking area (ST9 station). Particularly, for the 
manipulator area, there are limitation concerning the rotation of the manipulator itself and of the rotating 
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equipment which is positioned on the station to be able to fit the clutch mechanism which is placed there. 
Every time a new clutch is placed inside ST5, the manipulator goes down, closes its gripper and pick the 
item. Then it returns to the high position and rotates of one step (since there are 5 steps, it does a rotation 
of 72° in counterclockwise direction). In this situation encumbrance is necessary to assure that the 
manipulator goes down and then starts to rotate only when the robot is far from both ST2 and ST5 
simultaneously, otherwise it will crash against the robot. For the machines, instead, it is necessary to 
analyze the two situation separately. For what concernes finger correction machine, it is provided by a sort 
of drawer which has been introduced to gain cycle time. Since it is feed and discharged alternatively in ST6 
and ST7, every time a new part has to be placed in one of the two stations, the drawer has to be unlocked 
by the obturators used to fix it, then it has to move up to get in touch with the guides and finally it can 
translate to the other position. Once it has completed its movement, it must go down again to be fixed by 
the obturators in the other position. Since this operation requires not only a translation, but also a vertical 
movement, it is necessary that the robot is still far from it while it is moving, avoiding to crash. The 
functional control machine, instead, provides a single station ST8, which is located exactly below the main 
block that, during the test, moves down to get in touch with the mechanism and performs the simulation of 
the behaviour of the flywheel inside the vehicle. So, since the robot approach the machine until its gripper 
comes “inside” it, it is very important that the movement along the vertical direction of the machine is 
done only when the robot is out of its area. Finally, in ST9 there is a rotating table composed of 5 stations, 
where mechanisms has to be placed to be marked by two laser station and then with the application of a 
label containing a DataMatrix. Then, if they are ok, they are moved to ST13 and moved away from the line 
by the unloading manipulator, otherwise they are picked up again by robot R3 and placed inside the 
NOK_ML conveyor. All the stations of the rotating table are divided by alluminium profiles which are fixed 
radially with respect to the center of the table, so the encumbrance area of ST9 starts before the table and 
ends almost in correspondance of its center. 

To impose software limits on the vertical position that are valid also when manual movements are 
performed, I added a volume with almost the same dimensions of the encumbrance areas, but with the 
main difference related to the fact that its minimum height is the maximum one that can be reached by the 
robot arm, while the upper one theoretically should be infinite, but I set it to 6 meters so that I am sure the 
robot will never be able to overcome it. The limits have been declared for all the stations where the robots 
has to pick or place something, even if they are important particularly near the manipulator (ST2 and ST5) 
and inside the functional control machine (ST8). 
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4.1. ROBOT R1 

4.1.1. SAFEMOVE 
Starting from the layout representation, I configured the SafeMove volume in which 
theoretically robot R1 is allowed to move. Then I reduced it to be sure that the robot was able 
to stop in time without crashing against the line protections. Finally I imposed an height from 
the ground of 1500 mm. 

 

4.1.2. WZONES AND LIMITS 

 

 

Figure 49: SafeMove configuration of robot R1

Figure 50: signals configuration for robot R1

Figure 51: home position declaration for robot R1

Figure 52: home position for robot R1
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 Figure 54: WZones  for robot R1

Figure 53: WZones definition for robot R1
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 Figure 56: limits for robot R1

Figure 55: limits definition for robot R1
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4.2. ROBOT R2 

4.2.1. WZONES AND LIMITS 

 

 

 

 

  

Figure 58: home position definition  for robot R2

Figure 59: home position for robot R2

Figure 60: WZones definition for robot R2

Figure 57: signals definition definition for robot R2
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Figure 61: WZones for robot R2

Figure 62: limit definition for robot R2

Figure 63: limit for robot R2



Valentina TURCO  matricola 243901  

62 
 

 

4.3. ROBOT R3 

4.3.1. SAFEMOVE 

4.3.2. WZONES AND LIMITS 

 

 

Figure 64: SafeMove configuration for robot R3

Figure 65: signals configuration for robot R3

Figure 66: home position definition for robot R3

Figure 67: home position for robot R3
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Figure 68: WZones definition for robot R3
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Figure 69: WZones for robot R3 

Figure 70: limits definition for robot R3
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Figure 71: limits for robot R3
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5. CONCLUSIONS 
The main difficulties I found during this work are related particularly to the management of the 
movements. The first problem is connected to the grippers: except for robot R2 which is smaller with 
respect to the other two, I had to manage two grippers of more than 30 kg and of a maximum length of 710 
mm and this was not easy for many reasons. First of all the weight was important and move, particularly in 
manual mode, in a narrow environment as that one was, increased the risk of crashing against something 
causing potentially big damages both to the grippers and to the machines.  

Then there was the problem related to the physical connections of the grippers to the robot arm. Since the 
gripper is composed by two tools which are treated separately, each of them is equipped with an hydraulic 
cylinder which, thanks to the presence or absence of the air, moves inside its chamber transmitting its 
movements to the mechanical plugs that are used to keep the clutch mechanism, so causing the opening or 
the closing of the tool itself, togheter with the presence of electrovalves able to regulate the air flux to and 
from the cylinder. In addition to the mechanical equipment, it is necessary to consider also the presence of 
some photocells that are used to signal the gripper state (if opened or closed) and the presence of a 
mechanism inside it. So, looking at the complete system, the movements in general and in particular the 
rotations around the TCP have been performed so that cables returned every time to a certain position 
without running the risk of pull them too much, creating problems to the electronic and mechanical 
devices. This was possible also considering the information that are included inside the robtarget 
parameters, immedialtely after the position coordinates and the joints’ orientation in quaternion form. 
Particularly this vector is composed by 4 elements: the first indicates the forward or backward orientation 
of the robot, the second the up or down orientation of axis 4, the third the positive or negative orientation 
of axis 6 while the last is related to the type of robot, in our case indicates the position of axis 2. It works as 
follows: 

  

Togheter with the above considerations, the other problem was related to the orientation of the clutch 
mechanism which was requested to be constant during all the steps inside the line. Starting from the fact 
that each component can be divided in three sectors, each of 120°, for the pick and place tasks it was 
necessary for the mechanical plugs of the gripper, to be as closer as possible to the centering pins obtaining 
advantages also from the point of view of the acurracy with which movements have been defined. This 
way, it was possible to keep constant the orientato of the DataMatrix too. 

Figure 72: configuration parameters of robtarget
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From a more general point of view, instead, the two main difficulties are related to the environment 
disposition of all the line components and by the limited cycle time. This was a situation in which the robot 
has to rotate many times the tool to first discharge and then charge again a certain station, without the 
need of performing other operations in between. However, since all the stations were located in narrow 
places with not sufficient free space around to be able to do the rotation of the tool without moving 
completely away from the work area, cycle time increases.  

To try to compensate the delay caused by movements that have been introduced just to avoid collision 
while the gripper was reoriented, I choosed always linear movements. This way the trajectories were 
inherently optimized beacuse the robot moved along the shortest possible path. Morover, all the 
intermidate points that were necessary to introduce to force the robot to move far from the machines, 
have been defined as much as possible along the path the robot would have done in absence of any 
obstacles, so imposing just translation along a certain direction. 

Finally, a big advantage is constituted by the safety options that ABB provides, both in software and 
hardware, that limit some types of movement, increasing the reliability of the whole system. 
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