
Valentina TURCO

PROGRAMMING AND
TRAJECTORY PLANNING

OF ROBOTS IN INDUSTRIAL

ENVIRONMENT

MASTER

RELATORE:

Massimo VIOLANTE

PROGRAMMING AND
TRAJECTORY PLANNING

OF ROBOTS IN INDUSTRIAL

ENVIRONMENT

MASTER’S DEGREE THESIS

 matricola 243901

1

OF ROBOTS IN INDUSTRIAL

THESIS

 CANDIDATO:

 Valentina TURCO

Valentina TURCO matricola 243901

2

Valentina TURCO matricola 243901

3

SUMMARY

ABSTRACT .. 7

1. INTRODUCTION ... 8

1.1. MOTION PLANNING ... 8
1.1.1. DIRECT POSITION KINEMATIC FUNCTIONS ... 8
1.1.2. INVERSE POSITION KINEMATIC FUNCTIONS ... 10
1.1.3. DIRECT VELOCITY KINEMATIC FUNCTIONS ... 11
1.1.4. INVERSE VELOCITY KINEMATIC FUNCTION ... 14
1.1.5. JOINT SPACE TRAJECTORY PLANNING .. 15
1.1.6. TASK SPACE TRAJECTORY PLANNING ... 18

1.2. ANALYSIS OF THE STATE OF ART OF PROGRAMMING LANGUAGES FOR COMAU, FANUC AND ABB
 20

1.2.1. COMAU TRAJECTORY PLANNING.. 22
1.2.2. FANUC PROGRAMMING LANGUAGE .. 22
2.1.1. ABB PROGRAMMING LANGUAGE... 23

2. DEFINITION OF THE SYSTEM ... 24

2.1 ROBOT R1 .. 26
2.1.1. I/O CONFIGURATION .. 28

2.2 ROBOT R2 .. 30
2.2.1. I/O CONFIGURATION .. 32

2.3 ROBOT R3 .. 34
2.3.1. I/O CONFIGURATION .. 36

3. PICK AND PLACE TASK .. 39

3.1. ROBOT R1 .. 40
3.1.1. PICK_GRIPPER1_ENTRY_LINE .. 40
3.1.2. PICK_GRIPPER2_ST5 .. 41
3.1.3. PLACE_GRIPPER1_ST5 ... 42
3.1.4. PLACE_GRIPPER1_NOK1_A_CONVEYOR ... 42
3.1.5. PLACE_GRIPPER2_ST6 ... 43
3.1.6. PLACE_GRIPPER2_ST7 ... 43
3.1.7. PLACE_GRIPPER2_NOK1_B_CONVEYOR ... 44

3.2. ROBOT R2 .. 45
3.2.1. PICK1 .. 45
3.2.2. PICK2 .. 46
3.2.3. PLACE1 ... 47
3.2.4. PLACE2 ... 48

3.3. ROBOT R3 .. 49
3.3.1. PICK_GRIPPER2_ST6 .. 49
3.3.2. PICK_GRIPPER2_ST7 .. 50
3.3.3. PICK_GRIPPER2_NOK_ST9 ... 51
3.3.5. PLACE_GRIPPER2_NOK_FC_CONVEYOR .. 52
3.3.6. PLACE_GRIPPER2_NOK_ML_CONVEYOR ... 53
3.3.7. PLACE_GRIPPER1_ST9 ... 53
3.3.8. PLACE_GRIPPER1_NOK_C_CONVEYOR.. 54

Valentina TURCO matricola 243901

4

4. MOVEMENTS CONFIGURATION .. 55

4.1. ROBOT R1 .. 57
4.1.1. SAFEMOVE ... 57
4.1.2. WZONES AND LIMITS ... 57

4.2. ROBOT R2 .. 60
4.2.1. WZONES AND LIMITS ... 60

4.3. ROBOT R3 .. 62
4.3.1. SAFEMOVE ... 62
4.3.2. WZONES AND LIMITS ... 62

5. CONCLUSIONS .. 66

Valentina TURCO matricola 243901

5

FIGURE SUMMARY

Figure 1: joints and arms definition ... 9
Figure 2: example of Denavit-Hartemberg convention ... 10
Figure 3: example of a spherical and a non spherical wrist .. 10
Figure 4: computation of the geometric Jacobian .. 12
Figure 5: trajectory planner ... 15
Figure 6: position, velocity and acceleration profiles .. 16
Figure 7: bang-bang trajectory profiles ... 17
Figure 8: axis-angle interpolation example ... 19
Figure 9: planar sliding interpolation .. 19
Figure 10: Euler angle interpolation .. 20
Figure 11: line layout ... 25
Figure 12: R1 task description ... 26
Figure 13: TCP coordinate system with respect to the base one .. 27
Figure 14: gripper 1 and 2 refrence frames with respect to the TCP .. 27
Figure 15: Inputs configuration ... 28
Figure 16: Outputs configuration .. 29
Figure 17: R2 task description ... 30
Figure 18: TCP reference frame with respect to the base one ... 31
Figure 19: gripper 1 and 2 reference frame with respect to the TCP ... 31
Figure 20: Inputs configuration ... 32
Figure 21: Outputs configuration .. 33
Figure 22: R3 task description ... 34
Figure 23: TCP reference frame with respect to the base one ... 35
Figure 24: gripper 1 and 2 reference frames with respect to the TCP .. 35
Figure 25: input configuration ... 37
Figure 26: output configuration .. 38
Figure 27: pick task from entry line performed by gripper 1 .. 41
Figure 28: pick task from ST5 performed by gripper 2 .. 41
Figure 29: place task to ST5 performed by gripper 1 .. 42
Figure 30: place task to NOK1_A conveyor performed by gripper 1 .. 42
Figure 31: place task to ST6 performed by gripper 2 .. 43
Figure 32: place task to ST7 performed by gripper 2 .. 43
Figure 33: place task to NOK1_B conveyor performed by gripper 2 ... 44
Figure 34: position of rivet 1 computation .. 45
Figure 35: pick1 procedure performed by robot R2 .. 46
Figure 36: position of rivet 2 computation .. 46
Figure 37: pick2 procedure performed by robot R2 .. 47
Figure 38: place 1 procedure perfromed by gripper 1 .. 48
Figure 39: place2 procedure performed by robot R2.. 48
Figure 40: pick task from ST6 performed by gripper 2 .. 49
Figure 41: pick task from ST7 performed by gripper 2 .. 50
Figure 42: pick task from ST8 performed by gripper 1 .. 50
Figure 43: pick task from ST9 performed by gripper 2 .. 51
Figure 44: place task to ST8 performed by gripper 2 .. 52
Figure 45: place task to NOK_FC conveyor performed by gripper 2 ... 52

Valentina TURCO matricola 243901

6

Figure 46: place task to NOK_ML conveyor performed by gripper 2 .. 53
Figure 47: place task to ST9 performed by gripper 1 .. 53
Figure 48: place task to NOK_C conveyor performed by gripper 1 ... 54
Figure 49: SafeMove configuration of robot R1 .. 57
Figure 50: signals configuration for robot R1 .. 57
Figure 51: home position declaration for robot R1 ... 57
Figure 52: home position for robot R1 .. 57
Figure 53: WZones definition for robot R1 .. 58
Figure 54: WZones for robot R1 ... 58
Figure 55: limits definition for robot R1 .. 59
Figure 56: limits for robot R1 ... 59
Figure 57: signals definition definition for robot R2 ... 60
Figure 58: home position definition for robot R2... 60
Figure 59: home position for robot R2 .. 60
Figure 60: WZones definition for robot R2 .. 60
Figure 61: WZones for robot R2 .. 61
Figure 62: limit definition for robot R2.. 61
Figure 63: limit for robot R2 .. 61
Figure 64: SafeMove configuration for robot R3... 62
Figure 65: signals configuration for robot R3 .. 62
Figure 66: home position definition for robot R3 ... 62
Figure 67: home position for robot R3 .. 62
Figure 68: WZones definition for robot R3 .. 63
Figure 69: WZones for robot R3 .. 64
Figure 70: limits definition for robot R3 .. 64
Figure 71: limits for robot R3 ... 65
Figure 72: configuration parameters of robtarget .. 66

Valentina TURCO matricola 243901

7

ABSTRACT

Starting from a brief review about robotics and motion planning, the aim of my work was to program three
ABB robots in a predefined industrial environment to perform pick and place tasks, trying to optimize them
in terms of cycle time and of trajectories.

In this specific case, we are discussing about the presence of three anthropomorphic robots, with 6 degrees
of freedom able to guarantee the maximum possible dexterity used to pick and place objects of different
types and weights. Articulated or anthropomorphic means that the shoulder has three revolute joints, the
first one vertical and the other two horizontal and parallel. The structure is very similar to human body,
with trunk, arm and forearm with a final wrist so it provides the best dexterity and this is why it is used in
most of the industrial applications. Task space is a sort of sphere sector, even if there is no a direct
correspondence between joint and Cartesian coordinates, but accuracy is not constant inside the task
space.

Particularly two of them are equal models of IRB4600, with a maximum capacity of 60 kg and are used to
pick and place clutch’s mechanisms of a maximum weight of 8 kg, with a gripper of about 32 kg. The third
one, instead, an IRB1200, is used to move rivets of few grams, so it is sufficient with a maximum capacity of
5 kg. They both provide a double gripper to optimize the cycle time in order to be able to match the
specification of 15s.

The system scenario is composed of 13 stations, positioned in space in a pre-determined way, through
which vehicular clutches are balanced, tested and finally marked.

Since the area in which robots move is not regular and there are many obstacles as machines, laser cabinet
and manipulators, it was necessary to declare some additional points to allow the movements. Due to this
fact, all of them have been performed as linear through the instruction MoveL so that the minimum
trajectory was followed. Moreover, since all the robots are equipped with a double gripper, it was
necessary to declare two different tools and perform the movements with respect to one of them.

Moreover, all the robots have been configured to meet safety requirements both in hardware and software
through the Safe Move and WZones functionalities. Particularly, the two IRB4600 provided both of them
due to the critical position inside the line, so their work area has been delimited by the Safe Move, while
their movements around the pick and place areas have been managed by the WZones. The third one
instead, since it is smaller and placed in a non critical position, provides only the software functionality
through which it has been limited while approaching the rived feeder and the manipulator. This way,
thanks to the Safe Move, the robot cannot be moved, even manually, outside the declared area,
guaranteeing the integrity of the machines and gates around it. From the software point of view, instead,
the encumbrance signals are set by the WZones themselves: in fact, every time the robot comes inside a
certain area, the encumbrance signal is set to 1, so the PLC knows that for example the movements of the
machines are limited while the robot is in that area. Then, to preserve machines integrity, I have defined
also upper limits that guarantee that the robot, even in manual mode, cannot reach that altitude, so the
mechanic is preserved.

Valentina TURCO matricola 243901

8

1. INTRODUCTION
The study of the motion of a robot inside an industrial production system starts from the definition of the
environment. For the specific case in which a robot is asked to perform a pick and place task, it is needed to
take care of all the constraints related to the space in which the robot has to work, as the presence of
humans being or of others robots and machines around it, and also to the physical characteristics of its
structure as the dexterity, the maximum values of elongation of its arm, the speed and many others.

Besides all the possible features that could have been taken into consideration in this type of problem, I
decided to concentrate my attention particularly on three of them which are the motion planning and the
related trajectory optimization and finally the programming stage.

1.1. MOTION PLANNING
Motion planning of a robot can be studied from two completely different points of view which are
the joint space and the task space.
For joint space is intended the mathematical structure, so the vector space, whose elements are
the joint variables qi(t). As they describe the motion of each joint, they are angles for revolute joints
and distances for prismatic ones. This type of planning is quite difficult to be seen in practice,
particularly because the relation between the two spaces is not linear, so to have even simple
trajectories, as a straight one, in the joint space it is required something very different. The main
characteristic of this type of planning is that it is very easy to find the correspondence between the
joint space and the task space through the computation of the direct position and velocity KFs.
However, in most of the cases it is better to plan the motion in the task space, which is the space of
the tool centre point (TCP), the ideal point of the end effectors that the robot moves through
space. This way the trajectory we want to see in space is exactly the same trajectory we need to
impose to the robot in order to have the desired motion and this is very useful in all that cases
where we need that the end effectors of the robot assumes some specific position or velocity at a
certain time due, for example, to the environment characteristic or to the interaction with others
robot. Since this information must be given to the joints because they are the only actuators of the
whole structure and so only through them it is possible to obtain in practice constraints in motion,
it is necessary to be able to describe the relation between the two representations. The
transformation from the task space to the joint space is inside the computation of the so called
inverse kinematic function, which requires the inverse of the functions related to both position and
velocity in order to obtain the exact quantities to be given to the joints to obtain the desired
motion. This procedure in general is not very easy, particularly because its computational cost is
relevant and often it contains some approximations due to the iterations that must be done in
order to obtain the final solution.

1.1.1. DIRECT POSITION KINEMATIC FUNCTIONS
Kinematics functions in general can be related to any point of the robot, but it is convenient if
we consider them as position and velocity of the TCP. The first step is to define a reference
frame for the base, called R0, and one for each arm of the robot. The transformation matrix
needed to pass from one RF to the other considers 6 elements, divided in 3 translations of the
origin and 3 angles for the rotation. However, to avoid to manage 6 parameters and particularly
to be able to find a common way to represent the relative position between two RFs,
roboticists introduced a large number of conventions, but the most used is the so called

Valentina TURCO matricola 243901

9

Denavit-Hartenberg convention. Thanks to it, which is valid both for prismatic and revolute
joints, the number of parameters is reduced to 4, two associated with translations, and the
others to rotations. Between all of them, three are always constant in time because they
depend only on the geometry, while the fourth is the joint variable and changes in time
because it depends on the relative motion between two successive links.
To define the number of links and joints of the structure, it is necessary to start from the base
of the robot, which is defined as link 0. The first joint we find starting from the base is the joint
1, then we find the link 1 and so on until we reach the TCP. In general, because of the
convention, link I is between the joint i and the joint i+1.

In order to place correctly all the RFs, the following rules must be followed:

 The origin of Ri is located on the motion axis gi+1, at the intersection between the
common normal to gi and gi+1. If the two axes intercept, the origin is located at the
interception point. If the two axes are parallel, the origin can be located in a point of
choice, usually on the arm.

 Unit vector ki is aligned with the motion axis gi+1, with the positive direction coherent
with the positive motion.

 Unit vector ii is orthogonal to both ki-1 and ki. If they are parallel, ii belongs to the plane
orthogonal to them; the direction chosen by the user. Usually is chosen to lie along the
largest symmetry axis of the arm bi.

 Unit vector ji completes the right-hand reference frame.

This point two RFs are still undefined, but it is sufficient that:

 For R0 the unit vector k0 is aligned with the motion axis g1.
 The origin of R6 is located according to the preferences of the user since no RF will

follow, but usually it is on the TCP. The only other condition is that i6 must be
orthogonal to both k5 and k6.

Resuming, the four parameters are:

 di: it defines the translation along the motion axis ki-1, between the origin of Ri-1 and
the intersection of the axis defined by ki-1 and the axis defined by ii.

 ϑi: it defines the rotation angle around axis ki-1 such that ii-1 overlaps ii. The sign follows
the RHR.

 ai: it defines the minimum signed distance between axis ki-1 and ki along the common
normal, measured along ii.

Figure 1: joints and arms definition

Valentina TURCO matricola 243901

10

 αi: it defines the rotation angle around motion axis ii such that ki-1 overlaps ki. The sign
follow the RHR.

DH parameters define the transformation from Ri-1 to Ri, but the joint variable changes
depending on the joint. For prismatic joints the parameters ϑi , ai and αi are fixed, while di(t) is
the joint variable. For revolute joints, instead, ϑi(t) is the joint variable while di, ai and αi are
constant.
Due to the fact that to move from RF to the next it is necessary to perform two translation and
two rotations, the total transformation is a roto-translation composed as follow:

 R t

T = T(R,t) =
 0T 1

which, according to the pre-post rules, is composed by:

Ti
i-1 = Trasl(k,d) Rot(k, ϑ) Trasl(i,a) Rot(i,α)

In order to obtain the final TTCP

0 all the intermediate transformation matrices must be
multiplied together. Finally, it is possible to extract the direct position KF tTCP

0(q(t)) and the
direct Cartesian orientation KF RTCP

0(q(t)), usually expressed using the Euler angles.

1.1.2. INVERSE POSITION KINEMATIC FUNCTIONS
For the computation of the inverse position KF, the problem is much more complex and there is
no clear recipe to solve it. A sufficient condition of existence is guarantee in case the wrist of
the robot is spherical, which means that the axis of the joints which compose it always meet in
a single point, but this doesn’t mean that it will be found.

Figure 2: example of Denavit-Hartemberg convention

Figure 3: example of a spherical and a non
spherical wrist

Valentina TURCO matricola 243901

11

Due to this fact, several possibilities can be taken into account, as:
 brute force or previous solutions found for similar chains;
 use the inverse velocity KF with a recursive approach which makes this computation

easy to be solved;
 use symbolic manipulation programs even if not suggested because very difficult;
 iteratively compute an approximated numerical expression for the non linear

equations, as the Newton method:
p(t) = f(q(t))

p(t)-f(q(t)) = 0
min{|p(t)-f(q(t))|}

1.1.3. DIRECT VELOCITY KINEMATIC FUNCTIONS
To compute the direct velocity kinematic function, means to find a relation between the
quantities q(̇t) and ṗ(t)

 q̇1(t) ṗ1(t)
 q2̇(t) ṗ2(t)

 q3̇(t) ṗ3(t) v(q(t), q(̇t))
 q̇(t) = q4̇(t) ṗ(t) = ṗ4(t) = …
 q5̇(t) ṗ5(t) ω(q(t), q(̇t))

 q6̇(t) ṗ6(t)

Velocity kinematics is characterized by Jacobians:
ṗ(t) = J(q(t))* q(̇t)

even if it is necessary to make a distinction between the derivative of the angles and the
angular velocity, so there are two types of Jacobians. If we consider the angular velocity as a
vector, we speak about geometric Jacobian Jg and the relation becomes:
 ẋ

vp(t) = = Jg q ̇
 ω

In general it is not possible to find a vector u(t) as the integral of ω(t), the only relation
between the two quantities depends both on the vector angle α(t), on its derivative and on the
skew-symmetric matrix of u(t) as follows:

ω(t) = α(̇t)u(t)+sin α(t)u(̇t)+(1-cos α(t))S(u(t)) u(̇t)

The only case in which the formula can be integrated, but this happens very rarely, is when
u(̇t)=0, because it means that the rotation axis does not change in time.

The derivatives of the angles, instead, are contained inside the analytical Jacobian Ja, but they
cannot be considered as a true vector since the vector addition does not hold to the correct
value. This time we have that:
 ẋ

ṗ = = Ja* q̇
 α ̇
which, because of its definition, it is possible to be integrated as:
 ẋ x(t)

∫ṗ(τ)dτ = ∫ dτ =
 α̇ α(t)

Valentina TURCO matricola 243901

12

In conclusion, the geometric Jacobian is used every time the physical interpretation of the
rotation velocity is needed, while the analytical is adopted when it is necessary to treat
differential quantities in the task space.

With this distinction, if two points q(tk+1) and q(tk) are sufficiently near so that it is possible to
make an approximation, the direct velocity KF can be used to compute the joint position using
a recursive formula:

q(tk+1) = q(tk)+q(̇tk)Δt
where the parameter q̇(tk) can be computed using the geometrical or the analytical Jacobian
obtaining:

q(tk+1) = q(tk)+Jg
-1(q(tk))vp(tk)Δt

or
q(tk+1) = q(tk)+Ja

-1(q(tk))vp(tk)Δt

The geometric Jacobian can be constructed through two steps:

 every link has a reference frame Ri defined according to the DH conventions;
 the position of the origin of Ri is given by:

xi = xi-1 + Ri-1
0 ri-1,i

i-1 = xi-1 + ri-1,i
0

doing the derivative with respect to time, we obtain:

ẋi = ẋi-1 + Ri-1
0 ṙi-1,i

i-1 + ωI-1 x Ri-1
0 ri-1,i

i-1 = ẋi-1 + vi-1,I + ωI-1 x ri-1,i
0

where the second term represents the linear velocity of Ri with respect to Ri-1, while
the third is the angular velocity of Ri-1.
Knowing that:

Ṙ = S(ω)R = ω x R
If we derive the composition of two rotations we obtain:

Ri
0 = Ri-1

0 Ri
i-1

Ṙi
0 = Ṙi-1

0 Ri
i-1 + Ri-1

0 Ṙi
i-1

= S(ωi-1) Ri-1
0 Ri

i-1 + Ri-1
0 S(ωi-1,i)Ri

i-1
= S(ωi-1) Ri-1

0 Ri
i-1 + S(Ri-1

0 ωi-1,i) Ri-1
0 Ri

i-1
= [S(ωi-1) + S(Ri-1

0 ωi-1,i)] Ri
0 ≡ S(ωi) Ri

0
Hence the angular velocity of RFi in RF0 is equal to the angular velocity of RFi-1 in RF0
plus the angular velocity of RFi with respect to RFi-1 in RFi-1:

ωi = ωi-1 + Ri-1
0 ωi-1,i

Figure 4: computation of the geometric Jacobian

Valentina TURCO matricola 243901

13

The geometric Jacobian can also be decomposed in two parts, one linear containing the
contributes to the linear velocity of TCP, the other angular containing instead the contributes
to the angular velocity of the TCP:

 q1̇
 ẋ JL,1 JL,2 … JL,n q2̇

v = = Jg(q)q̇ = …
 ω JA,1 JA,2 … JA,n qṅ

More in detail we have that:

ẋ = ∑i=1
n JL,I qi̇

ω = ∑i=1
n JA,I qi̇

Depending on the type of joint we are considering, it is possible to know in advance what will
be the values of the analytical and of the geometrical Jacobian, both represented with respect
to R0. Moreover we know also that ri-1,TCP is the vector that represents (xTCP – xi-1) in R0.

 JL,i JA,i

Prismatic ki-1 0
Revolute ki-1 x ri-1,TCP ki-1

For what concerns the analytical Jacobian, instead, we know that its first three lines (related to
the linear representation) are equal to the ones of the geometrical, while the last three
(related to the angular representation) are usually different. To pass from the analytical to the
geometrical values of these lines, it is necessary to choose the angle representation. In general
we have that:

ω = T(α)α ̇
 I 0

 Jg(q) = Ja(q)
 0 T(α)

 If we consider the Euler angles, we obtain:

α = {φ,ϑ,ψ}

 0 cosφ sinφsinϑ
TE(α) = 0 sinφ -cosφsinϑ

 1 0 cosϑ

For the RPY angles, instead, we obtain:

α = {ϑx, ϑy , ϑz }

 cos ϑycos ϑz -sin ϑz 0
TRPY(α) = cos ϑysin ϑz cos ϑz 0

 -sin ϑy 0 1

For both the representations, the values of α that zeros the T(α) determinant correspond to an
orientation singularity which means that there are geometric angular velocities that cannot be
expressed by joint velocities.

Valentina TURCO matricola 243901

14

For an anthropomorphic robot three singularity conditions exist:

 completely extended or folded arm: it means that the robot cannot work at the
maximum stage, but it works well inside the task space;

 wrist centred on the vertical (which doesn’t mean always along the k axis);
 wrist singularity

In case we are using Euler wrists, to compute the singular configuration it is sufficient to start
from the symbolic matrix:

cφcψ - sφcϑsψ -cφsψ - sφcϑcψ sφsϑ

sφcψ + cφcϑsψ -sφsψ + cφcϑcψ -cφsϑ

 sψsϑ cψsϑ cϑ

it is possible to observe that if cϑ = 1, then ϑ = 0:

cφcψ - sφsψ -cφsψ - sφcψ 0

sφcψ + cφsψ -sφsψ + cφcψ 0

 0 0 1

Due to the fact that singularity is only related to velocity and never to position, it means that
when joint coordinates approach singularity the joint velocities become very large for small
finite Cartesian velocities:

𝑞̇ = 𝐽ିଵ(𝑞)𝑝̇ =
ଵ

ௗ௘௧௃
𝐽𝑝̇̅ → ଵ

ఌ
𝐽𝑝̇̅ → ∞

Near singularity conditions it is not possible to follow a geometric path and at the same time a
given velocity profile. This means that is necessary or to reduce the Cartesian velocity and
follow the path, or to follow the velocity profile but with an approximated path because in
exact singularity conditions nothing can be done, so it is better to avoid them.

1.1.4. INVERSE VELOCITY KINEMATIC FUNCTION
To compute the inverse velocity kinematic function, if the Jacobian is square, full-rank and non
singular, it is sufficient to apply the following formula:

q(̇t) = J-1(q(t))ṗ(t)

When the Jacobian is a rectangular full-rank matrix instead, it means that the robot has a
redundant robotic arm, but not singular so there are infinite possible solutions. To compute
one of them it is possible to use the pseudo-inverse of the Jacobian, obtaining:

q(̇t) = J+(q(t))ṗ(t)

where, by definition:

J+ = JT(JJT)-1

Valentina TURCO matricola 243901

15

In case the initial position q(0) is known, it is also possible to compute the inverse velocity KF
as an integral in continuous time and as an approximation in discrete time, assuming Δt
intervals very small:

q(t) = q(0)+∫0
t q(̇τ)dτ

q(tk+1) ≈ q(tk) + q(̇tk)Δt

When the Jacobian, square or rectangular, is not full-rank, it is not possible to invert the matrix
using the pseudo-inverse, but it is necessary to use the Singular Decomposition of the
Jacobian.

1.1.5. JOINT SPACE TRAJECTORY PLANNING
Before starting speaking about trajectory optimization, it is necessary to point out the
distinction between the term path and the term trajectory. The path is the geometrical
description of the desired set of points in the task space; this means that the control shall keep
the TCP on the desired path. For trajectory, instead, it is intended the path and the time law
required to follow it, from the starting to the end point.
Usually in industrial environments for pick and place purposes there are constraints related to
time so it is asked to minimize the time during which the item is moved from an initial to a final
point. But it could be also the case that there are constraints related to trajectory, so it is
better to pass through certain points at a certain speed in order to avoid collisions with others
robotic arms and to minimize the time spent moving the item so that at the end the
performances and the productivity of the whole system are increased.
The trajectory planner of a robot can be seen as a “software node” that, given a desired path,
the desired kinematic constraints (maximum speed) and the robot dynamic constraints
(maximum acceleration and torque), is able to determine the joint reference samples qr for the
control block.

Having different types of constraint means to have different kinds of information:

 Desired path (task space constraints)
a) Initial and final positions
b) Initial and final orientations

 Trajectory (time-dependent task space constraints)
a) Initial and final velocities
b) Initial and final accelerations
c) Velocities on a given part of the path (for example constant velocity)
d) Accelerations (centrifugal acceleration affecting curvature radius)
e) Fly-by points

 Technological constraints (joint space constraints)

Figure 5: trajectory planner

Valentina TURCO matricola 243901

16

a) Motor maximum velocities
b) Motor maximum accelerations
c) Motor temperature

If it is not important to follow a specific path, the trajectory is planned in the joint space
implementing a point-to-point (PTP) linear path whose time law directly depends on the
maximum velocity and acceleration values of the motors. In this case we obtain a convex
combination between the initial and the final values using a unique scalar time-varying
quantity called profile abscissa s(t) as follows:

π’(q(t)) = (1-s(t))q0 + s(t)qf = q0 + s(t)(qf-q0) = q0 + s(t)Δq

0 = s(t0) ≤ s(t) ≤ s(tf) = 1

Thanks to this approach we obtain a coordinated motion, which means that the motion of all
joints starts and ends at the same time, and we are able to guarantee the smoothness of the
trajectory so that the mechanical structure has no vibrations added to a continuous curve that
does not overshoot the final target. To satisfy kinematic and dynamic constraints, instead, we
need to take care of some inequalities for velocity and acceleration, plus some other
constraints related to the fact that s(t) is like the percentage of the path completed at time t:

-ṡmax ≤ ṡ(t) ≤ ṡmax, ṡmax > 0

-s ̈-max ≤ s(̈t) ≤ sm̈ax, s ̈-max > 0, s ̈+max > 0

s(t0) = 0, s(tf) = 1

ṡ(t0) = ṡ(tf) = 0

s(̈t0-) = 0, s(̈t0+) = s ̈+max

s(̈tf-) = s ̈-max, s(̈tf+) = 0

Figure 6: position, velocity and acceleration profiles

Valentina TURCO matricola 243901

17

Since the position, velocity and acceleration assume three different behaviour during time,
they can be described by different time laws, each one corresponding to a certain interval. We
define:

L1 = {t : t0 ≤ t < t1} = [t0, t1)
L2 = {t : t1 ≤ t < t2} = [t1, t2)
L3 = {t : t2 ≤ t < tf} = [t2, tf)

So that we obtain:
 s̈+max t є L1

s(̈t) = 0 t є L2

 -s̈-max t є L3

 s̈+max(t-t0) + ṡ0 t є L1

ṡ(t) = ṡmax t є L2

 ṡmax - s̈-max(t-t2) t є L3

 ½ s̈+max(t-t0)2 + ṡ0(t-t0) + s0 t є L1

s(t) = ṡmax(t-t1) + s1 t є L2

 -½ s̈-max(t-t2)2 + ṡmax(t-t2) + s2 t є L3

Imposing the continuity constraints between intervals it is possible to compute the partial
percentages of space and some intervals in which the speed is constant or in which there is an
acceleration or deceleration. However, there are cases in which it is not possible to reach the
maximum velocity inside the trajectory, otherwise the joint will not be able to stop in the end
point. This is what is called as ‘bang-bang trajectory’ in acceleration.

Figure 7: bang-bang trajectory profiles

Valentina TURCO matricola 243901

18

In order to be managed by discrete controllers, continuous variables need to be sampled in
intervals with a period T directly related to control specifications. In practice, since it is very
difficult that the commutation times will coincide with the sampling ones, it is necessary to
consider also additional constraints, particularly in order to avoid violating profile constraints.
This means that computing recursively the new profile, acceleration must be limited so that
velocity does not exceed its maximum value. The same must be valid also for the deceleration
phase, since the zero final speed must be reached uniformly and without exceeding the
maximum acceleration. This point the computation of both velocity and position is made using
some interpolation algorithms, able to guarantee fast results obtaining just one of the two
quantities and then find the other by approximation. In case of incremental interpolation from
the velocity, obtained as said before, it is possible to apply the Euler formula for derivatives
using a backward or a forward relation, which must be chosen according to the available data,
obtaining respectively:

ṡk ≈ (sk – sk-1) ⅟T

ṡk ≈ (sk+1 – sk) ⅟T

while with the absolute interpolation from the position we compute velocity as:

ṡk ≈ (sk – sk-1) ⅟T

In order to define the geometric path inside the joint space, it is possible or to define a vector
of 6 dimensional joint values, from the first q0 to the last qf, or, much more rarely, through a
parametric curve. This way the definition of the joint values becomes a series of stop and go
motions between two consecutive qi, so that the next is reached with zero velocity

1.1.6. TASK SPACE TRAJECTORY PLANNING
For the most used task trajectory planning, it is necessary to consider separately the position
and the orientation variables, always taking care of their derivatives, particularly for what
concerns the orientation angles. Also this time the position variables can be expressed through
a vector or a parametric curve and then, in the first case all the adjacent points are linked
together while in the second the parametric curve represents itself the motion law. For what
concerns the orientation variables instead, there are three possibilities, both related to
rotation matrices which must be kept orthonormal and with unitary determinant during the
planning phase.

The first method is the axis-angle, and consists on the computation of the incremental rotation
RL, which links R0 and Rf.

Rf = R0RL

RL = R0
TRf

From it we obtain the total variation of the rotation angle and then the u axis around which
the rotation has took place.

Δϑ = ± arccos (½ (tr RL -1))

S = ½(RL - RL
T)/(sin Δϑ)

Valentina TURCO matricola 243901

19

At the end, if we keep constant the u axis, we are able to plan the angle necessary to pass from
the starting to the end orientation.

Rk = R(u,ϑk)

ϑk = sk Δϑ

This method is simple to implement and gives good geometrical for the performed movement,
as can be seen in the following example:

 For the planar sliding method, instead, the motion is seen as the composition of two rotations,
one around a fixed axis u obtained as the one orthogonal to the plane composed by k0 and kf,
and the second around the moving local axis k.

Rk = R(u, βk) R(k, αk)

Where

β = arcsin ‖k0 × kf ‖

u = (k0 × kf)/sinβ

α = arcsin ‖(R(u,β)Tj0) × jf ‖

αk = skα

βk = skβ

Figure 8: axis-angle interpolation example

Figure 9: planar sliding interpolation

Valentina TURCO matricola 243901

20

Finally the planning can be done easier using the three Euler angles, each of them planned
according to the convex combination.

Rk = R(k, φk) R(i, ϑk) R(k, ψk)

φk = φ0 + sk(φf – φ0)

ϑk = ϑ0 + sk(ϑf – ϑ0)

ψk = ψ0 + sk(ψk – ψ0)

Once the task space trajectory planning has been computed, it is necessary to apply the
inverse position KF in order to obtain the corresponding qk. In case the sampling period
results too small to compute it, it is possible to use the micro-macro interpolation. This way
the inverse KF is computed only on multiples of the sampling period and then the
consecutive vectors are interpolated linearly to obtain approximated values.

1.2. ANALYSIS OF THE STATE OF ART OF PROGRAMMING LANGUAGES FOR COMAU,
FANUC AND ABB
Many researchers studied, during the years, multiple types of interpolation methods, in order to
allow the industries to adapt the robots to their specific needs. Beyond all of them, in 2014
Menasri, Oulhadj, Daachi, Nakib and Siarry from University Paris-Est Creteil, concentrated their
attention also on the avoidance of abrupt movements, ensuring this way at the same time the
smoothness of the trajectory and the velocity and acceleration levels using position functions at
least two times differentiable. The starting point of this procedure is based on the definition of a
sets of points called knots by which it is mandatory for the trajectory to pass through. So the
problem of trajectory planning becomes a problem of interpolation.

For the interpolation purposes it is possible to use many types of techniques, divided in polynomial
functions as cubic splines or B-splines and trigonometric functions. The main difference between
the two is related to the fact that in case of variation of the available data polynomial functions are
easier to be modified but they need to be at least of fourth order to guarantee the smoothness of
the trajectory also at the acceleration level, while this is always verified by using the trigonometric
functions.

Figure 10: Euler angle interpolation

Valentina TURCO matricola 243901

21

Using polynomial functions, this problem can be solved using a “classical” approach or an heuristic
one, based on the genetic algorithm where each possible solution of the problem is coded as a
string called chromosome. Then, trough crossover and mutation, some changes can be randomly
introduced inside the chromosome adding also the recombination between some of them until
new improving solutions are reached. However, this type of implementation, can require much
more time than a polynomial one, due to the fact that there is no a clear recipe about the most
improving crossovers and mutation, so at the end it could be the case that a new improving
solution is not found at all.

If we consider instead of a purely theoretical research a much more practical approach, from the
literature we can say that there are basically three ways to program a robot:

 Teach pendant: it is the most popular method (more that 90% of the robots are
programmed through it, according to the British Automation and robot Association). To
program the robot, the operator moves it from point-to-point, using the buttons on the
pendant to move it around and save each position individually so that it can be used
within the robot program. The coordinate systems available on standard jointed arm
robots are:

o the joint coordinated: each joint is independent and can be moved in every
direction;

o the global coordinates: they are the coordinates X, Y and Z of the robot global
axis system and can be used to perform both rotations and translations to
move the tool centre point in a specific position;

o the tool coordinates: the coordinates of the tool centre point;
o the workpiece coordinates: they are useful when it is necessary to make small

adjustments to the program and they can be easily done along a major axis of
the coordinate system than along a general line. This can be done when on the
robot it is possible to set up a coordinate system wherever inside the working
area and produces a result which is very similar to the one obtained through
the position and orientation of the global coordinate system

When the whole program has been learned, the robot can play back the points at full
speed. This method is very simple to be implemented, and can be used in all that
situations in which simple movements are required. The main disadvantage is related to
the fact that every time a modification is necessary, it can take quite a long time during
which the robot is of course out of production and this is why it is convenient to use the
teach pendant only when the robot has to do the same movements for all its life.

 Lead trough: the robot controller records joint positions at a fixed time interval while it
is moved physically by the operator. The main disadvantage of this type of programming
is related both to the dimensions of the robot, due to the fact that if they are too big
they cannot be easily moved by the operator, and to the difficulties related to
reprogramming the robot in the case in which hesitations or inaccuracies are introduced
inside the program. This is why this solution now is almost disappeared, a part some
cases where it is still used for paint spraying applications.

 Off-line programming: the CAD models of the components and their models are used to
program the robot. The main difference between the others teach programming is
related to the fact that intelligent tools are here available so CAD data can be used to

Valentina TURCO matricola 243901

22

generate sequences of location and process information. Even if this method is not so
common it has many benefits, as reducing time for programming because it is easier and
assist cell design to allow process optimization.

1.2.1. COMAU TRAJECTORY PLANNING
Trajectory planning by Comau is possible through the remote control performed by Teach
Pendant. On December 2017, Comau researchers realized a new application called PickAPP in
order to make the programming of industrial robots more intuitive, faster and so easier. This
way it is possible to move a robot leading it to perform pick and place issues just defining the
points of its trajectory without the necessity to learn a new programming language. Moreover,
due to the fact that the application works directly on the robot’s joints, some particular
trajectories or gripper’s actions can be easily implemented.

Programming language used by Comau is called PDL2 and it appears very similar to Pascal,
since they both provide a structured programming strategy. Between all the available features,
the most important are related to the fact that there are predefined identifiers of variables,
constants and procedures which can be used for robotic applications, as well as a large number
of instructions in order to allow the gripper’s movements. Moreover, it is also possible to
control some events while the program is in execution. All the instructions which compose the
code are complied and translated in object code, and finally saved inside the memory. It is also
possible to program the robot with a direct approach trough EZ, which memorizes all the
movements and then translate them into PDL2. This approach is simpler because much more
direct, but allows only to realize simple programs.

The basic program is started by the key word PROGRAM and finished with END. In between it
is possible to initialize some specific position as VAR POSITION so that, when the execution
begins after the BEGIN CYCLE instruction, all the movements can be performed just selecting
the proper position and then telling the robot to use the gripper.

The most important variables are the VECTOR and the POSITION. The first is composed of
three elements, X, Y and Z of real type, while the second is composed by three position
coordinates (X, Y and Z), three Euler angles (E1, E2 and E3) of real type and a component of
type string. This structure allows to describe the position and orientation of a triad with
respect to another which is used as a reference. Joint variables are instead contained inside
the JOINTPOS structure, for non redundant arms.

To control the movements, instead, the main function is called MOVE TO, which allows the
motion from the starting point to a specified target. Moreover, it is possible to decide the type
of trajectory. For example MOVE JOINT TO is used for the joint space and represents the
default configuration in case nothing else is specified, MOVE LINEAR TO is for the task space
and MOVE CIRCULAR TO is used to describe a circumference arc.

1.2.2. FANUC PROGRAMMING LANGUAGE
The virtual environment offered by Fanuc is called RobotGuide. It allows to create a layout of
both robot and workpiece thanks to a library of objects and then check the robot posture by
graphic jog. Moreover CAD data can be imported to create parts by the modelling function.
This way users can create the actual program from the shapes designed inside the graphic
screen and from the instruction given to a virtual teach pendant because a code is

Valentina TURCO matricola 243901

23

automatically generated so that, once the simulation has given the desired results, it can be
directly downloaded inside the robot to see it moving.

It is also possible to add some specific software for example to simulate a robotic process or
study feasibility options for 3D applications, for painting or pallet issues, etc..

2.1.1. ABB PROGRAMMING LANGUAGE
ABB’s programming environment is called RobotStudio. In the task space the robot can be
moved in many different ways, depending on the situation. This to guarantee the greatest
adaptability to all the situations.

The most general sequence which is recommended is composed by these steps:

- First of all it is necessary to define the path we want the robot to follow and then its
target. This can be done creating a curve of the desired shape until the target is reached,
or just creating the targets. The curve can be straight, a circumpherence described both
through the center and the radius or by three points, an ellipse, a spline, etc.

- Once the targets are defined, it is necessary to control thier orientation to be sure that the
trajectory followed by the robot is the most efficient and passes through all the desired
targets.

- Generate the RAPID code from RobotStudio objects to obtain the program simulation. If it
is necessary to modify something, it is possible to do it by editing the program through
text.

- Finally, it is necessary to verify that the robot and its TCP move sufficiently far from the
utilities around them to avoid collisions by simulating the program.

Also in this case the code is automatically generated by the graphic environment, so it is not
necessary to learn a new programming language because everithing can be done in a virtual
situation before being downloaded inside the robot for the real application.

Valentina TURCO matricola 243901

24

2. DEFINITION OF THE SYSTEM
The aim of my work is, starting from a predefined industrial environment, to program three ABB robots to
perform pick and place tasks, trying to optimize them in terms of cycle time and of trajectories.

In this specific case, we are discussing about the presence of three anthropomorphic robots, with 6 degrees
of freedom able to guarantee the maximum possible dexterity used to pick and place objects of different
types and weights. Articulated or anthropomorphic means that the shoulder has three revolute joints, the
first one vertical and the other two horizontal and parallel. The structure is very similar to human body,
with trunk, arm and forearm with a final wrist so it provides the best dexterity and this is why it is used in
most of the industrial applications. Task space is a sort of sphere sector, even if there is no a direct
correspondence between joint and Cartesian coordinates, but accuracy is not constant inside the task
space.

Particularly two of them are equal with a maximum capacity of 60 kg and are used to pick and place clutch’s
mechanisms of a maximum weight of 8 kg, with a gripper of about 32 kg. The third one, instead, is used to
move rivets of few grams, so it is sufficient with a maximum capacity of 5 kg. They both provide a double
gripper to optimize the cycle time in order to be able to match the specification of 15s.

The system scenario is composed by 13 stations, positioned in space in a pre-determined way, through
which vehicular clutches are balanced, tested and finally marked.

The line behaves as follows:

 The clutch, from the external line, is moved to STA, where it is picked by robot R1 with gripper 1
and moved to ST5. If in ST5 there is already an item, it is picked up by gripper 2.

 Manipulator M2 does one step to move the item on ST1 for the measurement of the residual
imbalance. Then it moves again of 72°, so the clutch arrives in ST2.

 Robot R2 picks the requested rivets from the rails of the rivet feeder (from 1 to 4, the first always
with gripper1) and place them on the clutch present in ST2. Since the station is able to rotate, R2
performs the task always in the same position.

 Clutch is moved to both ST3 and ST4 to complete the riveting, then it is moved to ST5.
 Item is picked up from ST5 by R1 and moved alternatively to ST6 and ST7.
 Once M2 has completed the fingers correction on the clutch, it is picked up by robot R3

(alternatively from ST6 and ST7) and placed in ST8.
 Finally, when M3 has finished the functional control, the mehcanism is moved to ST9 and it will be

marked. Once the rotating table has done 3 steps, in ST12 line is discharged by the last
manipulator.

NOK conveyors are finally used to move away damaged parts.

The whole line is organized as follows:

Valentina TURCO matricola 243901

25

Figure 11: line layout

Valentina TURCO matricola 243901

26

2.1 ROBOT R1
The production flow starts from the left side of the line, where we have the first robot, R1 for the
representation. It is an IRB 4600 by ABB, with 60 kg of payload and a possible extension of the arm
up to 2.05 m. It is equipped with a double gripper with three fingers each, able to pick up the
clutches. Moreover it communicates with a PLC Siemens 1500, which works as a master of the
whole line, through the Profinet bus. Its task is, depending on the gripper, to pick and place the
clutches. Particularly the one called gripper 1 (on the up side from the robot point of view)
performs its task from the entry of the line STA to ST5, while for what concerns gripper 2, it takes
the items from ST5 and move them alternatively in ST6 and ST7. Moreover, if clutches are defined
NOK, so some faults are detected during the process, they are moved from STA to NOK1_A by
gripper 1 in case of problems caused by assembly task, while they are moved from ST5 to NOK1_B
with gripper 2 if balancing has not been done correctly.

Below the detailed picture related to R1 task:

Due to the fact that there are 2 grippers, for programming clarity it was necessary to define them
as two different tools, so that also the pick and place procedure could be written in a specific way
for each of them.

The whole gripper is symmetric with respect to its center, which coincides with the robot’s TCP.
This is why in practice the center of each gripper has in module the same position, while the
direction changes. In fact, the tool coordinate system is rotated of 90° around y axis with respect to
the base one. So, for gripper 1, x and y directions are negative (it is the upper one), while for
gripper 2 they are positive. Since z direction is coming outside the plane, it is always positive.

Figure 12: R1 task description

Valentina TURCO matricola 243901

27

Figure 13: TCP coordinate system with respect to the base one

Figure 14: gripper 1 and 2 refrence frames with respect to the TCP

Valentina TURCO matricola 243901

28

2.1.1. I/O CONFIGURATION
To properly build up the I/O system of R1 robot, I added the Profinet option inside the
configuration section of RobotStudio, reserving 16 bytes of Digital Inputs and 16 bytes of
Digital Outputs. All those signals are exchanged during the cycle with the PLC, particularly all
the inputs are commands from the PLC to the robot related to the system state or to the
movement it can do, while the outputs represent the confirmation that the commands have
been received or that the movements have been executed.

Figure 15: Inputs configuration

Valentina TURCO matricola 243901

29

For what concerns the system signal, there are different types of stop to be able to
differenciate situations. Particularly the stop_program is the flex pendant signal, from which
brakes are immediately activated, while quick_stop and soft_stop interrupt the program
execution braking the motors with different deceleration ramps. Moreover, the difference
between the two is related to the fact that when quick_stop is activated, all the motors are
deactivated for security reasons, viceversa this does not happen when soft_stop signal
becomes high. Stop_end_of_cycle, instead, can be activated just if both the grippers are
empty, while stop_end_of_instruction is just related to the end of a line of code or movement.

Since many types of clutches can be tested inside the line, it was necessary to take into
account the fact that each one has its own dimensions and height. This particularly will
interfere with the place position of the rivets, which can change both along the radial position
and the vertical one, but can be important in case also the position of the mechanical plugs
changes. To be able to manage directly all these mechanical information, the variable
reference was created as a number which can assume all the values between 0 and 127, each
corresponding to an alphanumeric code translated by the PLC. This way, once the reference is
defined and passed to the robot, it is able to perform the tasks without the need of other
information. The only negative aspect is related to the fact that the WorkObjects must be
defined in practice for each reference and this can take quite a long time, depending on the
number of possible references.

Moreover, the same reference bits that are received as inputs are also set as output during the
program execution, so the correctness of the signals exchanged can be easily checked.

Figure 16: Outputs configuration

Valentina TURCO matricola 243901

30

2.2 ROBOT R2
Proceeding through the flow we have the second robot, R2 for the representation. It is an IRB 1200
by ABB, with 5 kg of payload and a possible extension of the arm up to 0.9 m. It is equipped with a
double gripper, each one composed by a vacuum switch able to pick up rivets of different sizes and
weights. Moreover it communicates with a PLC Siemens 1500, which works as a master of the
whole line, through the Profinet bus. Its task is, given the rivet code, to pick and place it on the
clutch cover which is present on ST2.

The detailed picture related to R2 is the following one:

From that it is clear that the two WorkObjects that interact with R2 are the rivet feeder splitted in
14 positions for the pick task and the clutch cover for the place one.

From the coordinates of the tools, it is evident that this time they are not symmetric anymore, but
placed in a configuration which appears rotated toward right from the robot point of view.

Figure 17: R2 task description

Valentina TURCO matricola 243901

31

Figure 18: TCP reference frame with respect to the base one

Figure 19: gripper 1 and 2 reference frame with respect to the TCP

Valentina TURCO matricola 243901

32

2.2.1. I/O CONFIGURATION
To properly build up the I/O system of R2 robot, I added the Profinet option inside the
configuration section of RobotStudio, reserving 16 bytes of Digital Inputs and 16 bytes of
Digital Outputs, as I did also for R1. All those signals are exchanged during the cycle with the
PLC, particularly all the inputs are commands from the PLC to the robot related to the system
state or to the movement it can do, while the outputs represent the confirmation that the
commands have been received or that the movements have been executed.

Figure 20: Inputs configuration

Valentina TURCO matricola 243901

33

For what concerns the system signal, there are different types of stop to be able to
differenciate situations. Particularly the stop_program is the flex pendant signal, from which
brakes are immediately activated, while quick_stop and soft_stop interrupt the program
execution braking the motors with different deceleration ramps. Moreover, the difference
between the two is related to the fact that when quick_stop is activated, all the motors are
deactivated for security reasons, viceversa this does not happen when soft_stop signal
becomes high. Stop_end_of_cycle, instead, can be activated just if both the grippers are
empty, while stop_end_of_instruction is just related to the end of a line of code or movement.

Since many types of clutches can be tested inside the line, it was necessary to take into
account the fact that each one has its own dimensions and height. This particularly interferes
with the place position of the rivets, which can change both along the radial position and the
vertical one. All these information are contained inside the parameter reference, a number
which can assume all the values between 0 and 127, each corresponding to an alphanumeric
code translated by the PLC.

The same considerations can be done also for the rivets: depending on the PLC request, up to
14 different types of rivet, varying in weight, can be chosen to balance the clutch. For this
purpose, it was necessary to create an array of positions so that, each time a new rivet is
requested to be picked up, the pick position is updated.

Moreover, for both reference and rivet code, the same bits that are received as inputs are also
set as output during the program execution, so the correctness of the signals exchanged can
be easily checked.

Figure 21: Outputs configuration

Valentina TURCO matricola 243901

34

2.3 ROBOT R3
Finally we have the third robot, R3 for the representation. It is again an IRB 4600 by ABB, with 60 kg
of payload and a possible extension of the arm up to 2.05 m. It is equipped with a double gripper
with three fingers each, able to pick up the clutches. Moreover it communicates with a PLC Siemens
1500, which works as a master of the whole line, through the Profinet bus. Its task is, depending on
the gripper, to pick and place the clutches. This time the one called gripper 2 (on the right side from
the robot point of view) performs its task from ST6 or ST7 alternatively to ST8, while for what
concerns gripper 1, it takes the items from ST8 and move them in ST9. Moreover, if clutches are
defined NOK, so some faults are detected during the process, they are moved by gripper 2 to
NOK_FC in case of problems related to finger correction machine and NOK_ML in case of faulty
during marking or laser phases, while they are moved to NOK_C with gripper 1 if functional control
machine detect some errors.

Figure 22: R3 task description

Valentina TURCO matricola 243901

35

Also this time for programming clarity it was necessary to define the grippers as two different tools,
so that also the pick and place procedures could be written in a specific way for each of them.

Figure 24: gripper 1 and 2 reference frames with respect to the TCP

Figure 23: TCP reference frame with respect to the base one

Valentina TURCO matricola 243901

36

2.3.1. I/O CONFIGURATION
As I did before, also for the I/O system of R3 robot I added the Profinet option inside the
configuration section of RobotStudio, reserving 16 bytes of Digital Inputs and 16 bytes of
Digital Outputs, as I did also for R1. All those signals are exchanged during the cycle with the
PLC, particularly all the inputs are commands from the PLC to the robot related to the system
state or to the movement it can do, while the outputs represent the confirmation that the
commands have been received or that the movements have been executed.

For what concerns the system signal, there are different types of stop to be able to
differenciate situations. Particularly the stop_program is the flex pendant signal, from which
brakes are immediately activated, while quick_stop and soft_stop interrupt the program
execution braking the motors with different deceleration ramps. Moreover, the difference
between the two is related to the fact that when quick_stop is activated, all the motors are
deactivated for security reasons, viceversa this does not happen when soft_stop signal
becomes high. Stop_end_of_cycle, instead, can be activated just if both the grippers are
empty, while stop_end_of_instruction is just related to the end of a line of code or movement.

Since many types of clutches can be tested inside the line, it was necessary to take into
account the fact that each one has its own dimensions and height. This particularly will
interfere with the place position of the rivets, which can change both along the radial position
and the vertical one, but can be important in case also the position of the mechanical plugs
changes. To be able to manage directly all these mechanical information, the variable
reference was created as a number which can assume all the values between 0 and 127, each
corresponding to an alphanumeric code translated by the PLC. This way, once the reference is
defined and passed to the robot, it is able to perform the tasks without the need of other
information. The only negative aspect is related to the fact that the WorkObjects must be
defined in practice for each reference and this can take quite a long time, depending on the
number of possible references.

Moreover, the same reference bits that are received as inputs are also set as output during the
program execution, so the correctness of the signals exchanged can be easily checked.

Valentina TURCO matricola 243901

37

Figure 25: input configuration

Valentina TURCO matricola 243901

38

Figure 26: output configuration

Valentina TURCO matricola 243901

39

3. PICK AND PLACE TASK
Since the grippers have been considered as two different tools, for each situation it was possible to create
ad hoc pick and place functions.

Then, for all the robots a home and wait position have been defined. In home position the robot is moved
so that the first three links are in vertical position, while the last two are in horizontal one: this allows the
operator to correctly calibrate the tool attached to the TCP. However, due to the fact that the line is quite
crowded of machines which don’t allow the robot to move freely, the home position for the calibration has
been divided in two subfunction. The first guarantees the correct position of 0° for that joints that are able
to reach it without crashing. Then, a second function is used to move to the zero position the others,
keeping the calibrated one in whatever combination so that the robot is out of encumbrance while the last
joints are calibrated. The wait position, instead, has been created in case the task of the robot is quicker
with respect to the flow rate of the clutches along the line. Moving the robot in wait position, it is
positioned near the area where next task have to be performed, usually the pick task of a new item which
enters its work area, so without interfering with the machines, but reducing cycle time.

All instructions have been performed approaching the item from the vertical direction. This means that the
pick positions have been stored as the points that lies on the vertical with respect to the pick point of the
item, but their distance can change accordingly to the situation. So the complete movement is divided in 2
steps:

- First of all the robot is moved so that the center of the interested gripper is positioned at a certain
height from the item it has to pick up. Distance is related particularly to the double gripper
dimensions and encumbrance, together with the characteristics of the pick place (for example, to
perform the pick task inside the machines, it is necessary to take into account also the presence of
the drawer and of its mechanical guides).

This movement has been performed trough the MoveL command adding an offset of 100 mm
inside the third field of Offs instruction, which is the value related to z axis. Moreover, the
parameter z50 has been added. It represents the radius length of a theoric circle centered in the
target point. This means that at maximum the TCP at the end of the movement can lie on an area
which is far at maximum 50 mm from the target point.

- Then gripper is finally approached to the item:

This time, since no errors are allowed when picking the item, it is necessary to add the parameter
fine to be able to guarantee as much precision as possible.

- Finally, once the item is safely fixed inside the gripper and can be moved, it is necessary to perform
another MoveL instruction along the vertical direction as before:

Valentina TURCO matricola 243901

40

Also for place tasks the approaching movement is a vertical one, due to the fact that it is necessary to avoid
collisions with other objects and because often there is not so much space, so not every type of movement
is allowed. Moreover the gripper has to be parallel to the pick and place positions to be sure to pick at the
same time and with the same force the clutch mechanism using three mechanical plugs positioned at 120°.
For what concernes robot R2, again it has to approach the hole for rivet parallel to the mechanism due to
the cover of the mechanism itself which is higher with respect to the hole surface and not regular. So it is
better to tilt the arm, having just the wrist oriented so that the gripper is in vertical position. This way it is
possible to gain also cycle time, because the robot can be more distant and does not need to move near
the place area. This movement is composed by 3 instruction as follows:

- The first instruction is used to move the robot at a vertical distance equal to 100 mm from the
place area, as before. The only difference consist on the fact that the robot arm now is no more in
vertical position, but tilted:

To guarantee good precision, z50 option has been added.
- Then the arm is approached along the vertical direction decreasing the speed and the horizontal

adjustment to increase precision:

- To go away after the item has been placed, I added an offset to the removal position, then the
gripper can move away and it is ready to perform the next task.

Now it is possible to analyze in detail the procedures of each robot.

3.1. ROBOT R1
For robot R1 the pick and place tasks have been defined inside the module called pickPlace. This module
contains many procedures, one for each pick and one for each place task that has to be performed by
gripper 1 or by gripper 2.

Each of them has been defined in the same way: this means that the only differences are related to the pick
and place positions, while the structure is almost the same. Moreover, due to the fact that in practice there
are many obstacles, it was necessary to add some fly points as points where the robot has to pass in order
both to avoid collisions or singularities. Particularly, the second ones are the most critical issues: they
appear either when axis 4, 5 and 6 are alligned or when axis 5 is alligned with the base. If the robot moves
accidentally in one of these situations, then it is not able to move anymore, due to the fact that these
configurations, from the theoretical point of view, represent position where joint velocities become
infinite.

3.1.1. PICK_GRIPPER1_ENTRY_LINE
The procedure is called every time there is the need to pick a clutch from the entry line and
the operation is performed by gripper 1, as the name suggests. Once it is called, the outputs
Out_of_area_entry_line and Robot_in_home_pos are set to 0 when the robot enters a pre-
defined zone, to indicate that the robot could interfere with the entry line area, so it is not out
of its area, and that it is no more in home position since it will start to move soon. Particularly,
these signals are managed by the so called world zones, as I will explain in the next chapter.
Then a linear movement to pick_gripper1_TOX is performed until gripper 1 is 100 mm above
the position where the clutch will be picked up. To check the possibility to pick a new item, it is

Valentina TURCO matricola 243901

41

necessary to check both the gripper status and that a no clutches are inside it. If everything is
ok, a fine linear movement is performed to approach the clutch, then gripper 1 is closed. At
this point the program stops for a while, waiting for the input signal Clutch_in_gripper1 to
become active, indicating that the pick task has been performed successfully. If this does not
happen, then an error message is generated on the Flex Pendant, while the boolean variable
closingGripper1Error becomes true; otherwise the arm is moved along the vertical position and
next task can be executed.

3.1.2. PICK_GRIPPER2_ST5

Figure 28: pick task from ST5 performed by gripper 2

Figure 27: pick task from entry line performed by gripper 1

Valentina TURCO matricola 243901

42

3.1.3. PLACE_GRIPPER1_ST5
With procedure place_gripper1_ST5(), robot R1 moves towards ST5. Once the function is
called Robot_in_home_pos and Out_of_ST5 are set to 0 to signal the movement, then robot
starts to approach ST5 position. As described before, the motion is composed by 3 steps to
guarantee as much precision as possible. Once the robot has reached ST5 position, if the
command from PLC Open_gripper1 is set to 1, then the gripper is opened. To be sure that the
operation has been peformed correctly, the program waits for a while. Finally the opening task
is checked: if no errors are detected the signal Clutch_placed_in_S05 is set to 1 and the robot
starts moving away, out of area of ST5; otherwise an error is displayed on the Flex Pendant
once the OpeningGripper1Error signal is set to 1.

3.1.4. PLACE_GRIPPER1_NOK1_A_CONVEYOR

Figure 30: place task to NOK1_A conveyor performed by gripper 1

Figure 29: place task to ST5 performed by gripper 1

Valentina TURCO matricola 243901

43

3.1.5. PLACE_GRIPPER2_ST6

3.1.6. PLACE_GRIPPER2_ST7

Figure 31: place task to ST6 performed by gripper 2

Figure 32: place task to ST7 performed by gripper 2

Valentina TURCO matricola 243901

44

3.1.7. PLACE_GRIPPER2_NOK1_B_CONVEYOR

Figure 33: place task to NOK1_B conveyor performed by gripper 2

Valentina TURCO matricola 243901

45

3.2. ROBOT R2
For robot R2 the pick and place tasks have been defined inside the module called pickPlace. This
module contains in total 4 procedures, one for pick and one for place related to gripper 1 and other
two related to gripper 2.

3.2.1. PICK1
Pick1() procedure, as the name suggests, describes the pick task performed by gripper 1. Once
it is called, the outputs Out_of_rivet_feeder and Robot_in_home_pos are set to 0, to indicate
that the robot could interfere with the rivet feeder area, so it is not out of its area, and that it
is no more in home position since it will start to move soon. Then a linear movement to
feederPos_gripper1 is performed until the robot is 50 mm above the position where the rivet
will be picked up.

Moreover, since the rivet feeder is composed by 14 linear guides which move rivets of
different weight and dimensions, there are 14 possible positions where it can be asked to pick
up a rivet. To manage this information, the variable rivet1code has been introduced as the
decimal number which comes from the conversion of the binary variables from Bit0_rivet1 to
Bit3_rivet1as follows:

Once the variable is computed, its correctness is checked (since there are at maximum 14
positions it could not be greater than 14). If everything is ok, then pick1 procedure is called;
otherwise an error on the Flex Pendant is generated.

When the robot reach the desired position above the rivet feeder, if the gripper is empty, it
can approach the rivet with a fine movement. Then the program will activate the vacuum and
wait for a while. Finally vacuum activation is checked: if the generation has been correctly
performed, then the output Rivet1_picked is set to 1 to indicate that the rivet has been picked
up and the robot starts moving away from rivet feeder area. If something wrong happens,
instead, an error is generated and a message is displayed on the Flex Pendant.

Figure 34: position of rivet 1 computation

Valentina TURCO matricola 243901

46

Figure 35: pick1 procedure performed by robot R2

3.2.2. PICK2
The same considerations can be done also for what concernes gripper 2, as follows:

Figure 36: position of rivet 2 computation

Valentina TURCO matricola 243901

47

3.2.3. PLACE1
With procedure place1(), robot R2 moves toward the cover of the clutch present in ST2. Once
the function is called Robot_in_home_pos and Out_of_ST2 are set to 0 to signal the
movement, then robot starts to approach ST2 position. As described before, the motion is
composed by 3 steps, all referred to the same type of clutch through the variable reference. Its
computation is performed inside the system module reference_choice() in the procedure ref(),
which is called inside the MainModule() at restart. This way, since there is a position for each
type of clutch, all the dimensions changes are automatically taken into account without the
need of select them manually.

Once the robot has reached ST2 position, the deactivation of vacuum is set forcing to 0 the
signal Vacuum_activation_on_gripper2, then the program will wait for a while to be sure that
the rivet is no more attached to the gripper. Finally the deactivation is checked: if no errors are
detected the signal Rivet1_placed is set to 1 and the robot starts moving away, out of area of
ST2; otherwise an error is displayed on the Flex Pendant once the Error_signal is set to 1.

Figure 37: pick2 procedure performed by robot R2

Valentina TURCO matricola 243901

48

3.2.4. PLACE2
Place2() procedure performs exactly the same operations performed by place1(), the only
difference consists on the fact that now tool gripper 2 is used.

Figure 39: place2 procedure performed by robot R2

Figure 38: place 1 procedure perfromed by gripper 1

Valentina TURCO matricola 243901

49

3.3. ROBOT R3
Also for robot R3 the pick and place tasks have been defined inside the module called pickPlace. This
module contains many procedures, one for each pick and one for each place task that has to be performed
by gripper 1 or by gripper 2.

Each of them has been defined in the same way: this means that the only differences are related to the pick
and place positions, while the structure is almost the same. Moreover, due to the fact that in practice there
are many obstacles, it was necessary to add some fly points as points where the robot has to pass in order
both to avoid collisions or singularities. Particularly, the second ones are the most critical issues: they
appear either when axis 4, 5 and 6 are alligned or when axis 5 is alligned with the base. If the robot moves
accidentally in one of these situations, then it is not able to move anymore, due to the fact that these
configurations, from the theoretical point of view, represent position where joint velocities become
infinite.

3.3.1. PICK_GRIPPER2_ST6
The procedure is called every time there is the need to pick a clutch from ST6 and the
operation is performed by gripper 2, as the name suggests. Once it is called, the outputs
Out_of_area_ST6 and Robot_in_home_pos are set to 0, to indicate that the robot could
interfere with ST6 area, so it is not out of its area, and that it is no more in home position since
it will start to move soon. Then a linear movement to pick_gripper2_ST6 is performed until
gripper 1 is 100 mm above the position where the clutch will be picked up. To check the
possibility to pick a new item, it is necessary to control both the gripper status and that no
clutches are inside it. If everything is ok, a fine linear movement is performed to approach the
clutch, then gripper 2 is closed. At this point the program stops for a while, waiting for the
input signal Clutch_in_gripper1 to become active, indicating that the pick task has been
performed successfully. If this does not happen, then an error message is generated on the
Flex Pendant, while the boolean variable closingGripper1Error becomes true; otherwise the
arm is moved along the vertical position and next task can be executed.

Figure 40: pick task from ST6 performed by gripper 2

Valentina TURCO matricola 243901

50

3.3.2. PICK_GRIPPER2_ST7

3.3.3. PICK_GRIPPER1_ST8

Figure 41: pick task from ST7 performed by gripper 2

Figure 42: pick task from ST8 performed by gripper 1

Valentina TURCO matricola 243901

51

3.3.3. PICK_GRIPPER2_NOK_ST9

Figure 43: pick task from ST9 performed by gripper 2

Valentina TURCO matricola 243901

52

3.3.4. PLACE_GRIPPER2_ST8

With procedure place_gripper1_ST8(), robot R3 moves towards ST8. Once the function is
called Robot_in_home_pos and Out_of_ST8 are set to 0 to signal the movement, then robot
starts to approach ST8 position. As described before, the motion is composed by 3 steps to
guarantee as much precision as possible. Once the robot has reached ST8 position, if the
command from PLC Open_gripper2 is set to 1, then the gripper is opened. To be sure that the
operation has been peformed correctly, the program waits for a while. Finally the opening task
is checked: if no errors are detected the signal Clutch_placed_in_S08 is set to 1 and the robot
starts moving away, out of area of ST8; otherwise an error is displayed on the Flex Pendant
once the OpeningGripper2Error signal is set to 1. Also this time all the functions are composed
by the same structure.

3.3.5. PLACE_GRIPPER2_NOK_FC_CONVEYOR

Figure 44: place task to ST8 performed by gripper 2

Figure 45: place task to NOK_FC conveyor performed by gripper 2

Valentina TURCO matricola 243901

53

3.3.6. PLACE_GRIPPER2_NOK_ML_CONVEYOR

3.3.7. PLACE_GRIPPER1_ST9

Figure 46: place task to NOK_ML conveyor performed by gripper 2

Figure 47: place task to ST9 performed by gripper 1

Valentina TURCO matricola 243901

54

3.3.8. PLACE_GRIPPER1_NOK_C_CONVEYOR

Figure 48: place task to NOK_C conveyor performed by gripper 1

Valentina TURCO matricola 243901

55

4. MOVEMENTS CONFIGURATION
To guarantee safety inside plants where robots are not completely isolated, but interfere with machines
(used for example for pick and place tasks), ABB provides an hardware functionality called SafeMove
option. It is integrated thanks to a safety fieldbus connected to the IRC5 controller and guarantees that in
whatever situation, robot will never overcome the edges defined through RobotStudio visualizer.

It also eliminates the need for an external safety PLC by incorporating safe fieldbus communications
directly into the robot controller. SafeMove still includes dedicated hardware to ensure the performance of
the safety system, including a reliable safety I/O which guarantees that the application running on the
controller‘s main computer operates independently and particularly in a predictable way.

 So, given the shape correctly dimensioned of the area in which the robot can move without causing any
damages and eventually adding some allowed tolerances, the software is able to determine the joints
variables necessary to reduce the movements ranges.

In addition, supervisor options can be included to monitor the tool speed, position and orientation plus axis
position and speed. However, it is necessary to consider the fact that SafeMove limits represents the points
where the robot starts to decelerate, so it is necessary to set up them a little bit before in order to avoid
undesirable crashes against the gates or the perimetral structure of the line.

If robots are not equipped with SafeMove option, something similar can be achieved by configuring
WorldZone by software, inside the same Rapid section where program is written. Particularly, since all of
them provide this functionality, I used it to set the home_position flag and all the others related to the
encumbrance of a certain station. Moreover, I imposed a superior limit for R2 to be sure that it will never
interfere with the arms of manipulator M1 in high position and with the machines’ mechanical structures.

However, a distinction needs to be done to differenciate the management of the home position signal with
respect to the one related to the encumbrances. In fact, in practice the home position is represented by a
single point, which corresponds to a specific configuration of the six axis, so to a certain angular position for
each of them. Due to this fact, the robot is no more in home position if it moves far from it of a certain
tolerance that can be set for each axis. So, to guarantee a good precision and to improve the control that
the PLC can do on the robot, I decided to set a tolerance of 1° for each axis. This means that even for very
small movements, performed for example in manual mode, the robot signals to the PLC that it is no more in
home position. For this purpose, I declared it as a jointtarget variable, which differs from the normal
robtarget since it is expressed in degrees for each joint and not in coordinate form.

All the encumbrances, instead, are defined as areas characterized by the fact that if the robot is positioned
inside one of them, then there could be damages or problems in case some other elements of the
environment are moved. This means that they act as limitations for the normal working situation of the
whole line. To this purpose, they have been declared not as single points as happened for the home
position, but as volumes cubical, cylindrical or shaped like a parallelepiped, using obviously the tool which
interacts with that zone. Every time the tool enters that zone, the encumbrance signal is set to 0 to inform
the PLC to stop every movements of the machines. In addition, all the signals that will be used inside the
WZones must be set as ReadOnly signals, to be sure that they won’t be overwritten manually, but only by
the WZones themselves. Then, the default value of the encumbrance signals, has been changed into 1 to
indicate that the approach to the machines is not continous.

In general, the most critical situations involve the manipulator area (ST2 and ST5 stations), the two
machines (ST6, ST7 and ST8 stations) and finally the marking area (ST9 station). Particularly, for the
manipulator area, there are limitation concerning the rotation of the manipulator itself and of the rotating

Valentina TURCO matricola 243901

56

equipment which is positioned on the station to be able to fit the clutch mechanism which is placed there.
Every time a new clutch is placed inside ST5, the manipulator goes down, closes its gripper and pick the
item. Then it returns to the high position and rotates of one step (since there are 5 steps, it does a rotation
of 72° in counterclockwise direction). In this situation encumbrance is necessary to assure that the
manipulator goes down and then starts to rotate only when the robot is far from both ST2 and ST5
simultaneously, otherwise it will crash against the robot. For the machines, instead, it is necessary to
analyze the two situation separately. For what concernes finger correction machine, it is provided by a sort
of drawer which has been introduced to gain cycle time. Since it is feed and discharged alternatively in ST6
and ST7, every time a new part has to be placed in one of the two stations, the drawer has to be unlocked
by the obturators used to fix it, then it has to move up to get in touch with the guides and finally it can
translate to the other position. Once it has completed its movement, it must go down again to be fixed by
the obturators in the other position. Since this operation requires not only a translation, but also a vertical
movement, it is necessary that the robot is still far from it while it is moving, avoiding to crash. The
functional control machine, instead, provides a single station ST8, which is located exactly below the main
block that, during the test, moves down to get in touch with the mechanism and performs the simulation of
the behaviour of the flywheel inside the vehicle. So, since the robot approach the machine until its gripper
comes “inside” it, it is very important that the movement along the vertical direction of the machine is
done only when the robot is out of its area. Finally, in ST9 there is a rotating table composed of 5 stations,
where mechanisms has to be placed to be marked by two laser station and then with the application of a
label containing a DataMatrix. Then, if they are ok, they are moved to ST13 and moved away from the line
by the unloading manipulator, otherwise they are picked up again by robot R3 and placed inside the
NOK_ML conveyor. All the stations of the rotating table are divided by alluminium profiles which are fixed
radially with respect to the center of the table, so the encumbrance area of ST9 starts before the table and
ends almost in correspondance of its center.

To impose software limits on the vertical position that are valid also when manual movements are
performed, I added a volume with almost the same dimensions of the encumbrance areas, but with the
main difference related to the fact that its minimum height is the maximum one that can be reached by the
robot arm, while the upper one theoretically should be infinite, but I set it to 6 meters so that I am sure the
robot will never be able to overcome it. The limits have been declared for all the stations where the robots
has to pick or place something, even if they are important particularly near the manipulator (ST2 and ST5)
and inside the functional control machine (ST8).

Valentina TURCO matricola 243901

57

4.1. ROBOT R1

4.1.1. SAFEMOVE
Starting from the layout representation, I configured the SafeMove volume in which
theoretically robot R1 is allowed to move. Then I reduced it to be sure that the robot was able
to stop in time without crashing against the line protections. Finally I imposed an height from
the ground of 1500 mm.

4.1.2. WZONES AND LIMITS

Figure 49: SafeMove configuration of robot R1

Figure 50: signals configuration for robot R1

Figure 51: home position declaration for robot R1

Figure 52: home position for robot R1

Valentina TURCO matricola 243901

58

 Figure 54: WZones for robot R1

Figure 53: WZones definition for robot R1

Valentina TURCO matricola 243901

59

 Figure 56: limits for robot R1

Figure 55: limits definition for robot R1

Valentina TURCO matricola 243901

60

4.2. ROBOT R2

4.2.1. WZONES AND LIMITS

Figure 58: home position definition for robot R2

Figure 59: home position for robot R2

Figure 60: WZones definition for robot R2

Figure 57: signals definition definition for robot R2

Valentina TURCO matricola 243901

61

Figure 61: WZones for robot R2

Figure 62: limit definition for robot R2

Figure 63: limit for robot R2

Valentina TURCO matricola 243901

62

4.3. ROBOT R3

4.3.1. SAFEMOVE

4.3.2. WZONES AND LIMITS

Figure 64: SafeMove configuration for robot R3

Figure 65: signals configuration for robot R3

Figure 66: home position definition for robot R3

Figure 67: home position for robot R3

Valentina TURCO matricola 243901

63

Figure 68: WZones definition for robot R3

Valentina TURCO matricola 243901

64

Figure 69: WZones for robot R3

Figure 70: limits definition for robot R3

Valentina TURCO matricola 243901

65

Figure 71: limits for robot R3

Valentina TURCO matricola 243901

66

5. CONCLUSIONS
The main difficulties I found during this work are related particularly to the management of the
movements. The first problem is connected to the grippers: except for robot R2 which is smaller with
respect to the other two, I had to manage two grippers of more than 30 kg and of a maximum length of 710
mm and this was not easy for many reasons. First of all the weight was important and move, particularly in
manual mode, in a narrow environment as that one was, increased the risk of crashing against something
causing potentially big damages both to the grippers and to the machines.

Then there was the problem related to the physical connections of the grippers to the robot arm. Since the
gripper is composed by two tools which are treated separately, each of them is equipped with an hydraulic
cylinder which, thanks to the presence or absence of the air, moves inside its chamber transmitting its
movements to the mechanical plugs that are used to keep the clutch mechanism, so causing the opening or
the closing of the tool itself, togheter with the presence of electrovalves able to regulate the air flux to and
from the cylinder. In addition to the mechanical equipment, it is necessary to consider also the presence of
some photocells that are used to signal the gripper state (if opened or closed) and the presence of a
mechanism inside it. So, looking at the complete system, the movements in general and in particular the
rotations around the TCP have been performed so that cables returned every time to a certain position
without running the risk of pull them too much, creating problems to the electronic and mechanical
devices. This was possible also considering the information that are included inside the robtarget
parameters, immedialtely after the position coordinates and the joints’ orientation in quaternion form.
Particularly this vector is composed by 4 elements: the first indicates the forward or backward orientation
of the robot, the second the up or down orientation of axis 4, the third the positive or negative orientation
of axis 6 while the last is related to the type of robot, in our case indicates the position of axis 2. It works as
follows:

Togheter with the above considerations, the other problem was related to the orientation of the clutch
mechanism which was requested to be constant during all the steps inside the line. Starting from the fact
that each component can be divided in three sectors, each of 120°, for the pick and place tasks it was
necessary for the mechanical plugs of the gripper, to be as closer as possible to the centering pins obtaining
advantages also from the point of view of the acurracy with which movements have been defined. This
way, it was possible to keep constant the orientato of the DataMatrix too.

Figure 72: configuration parameters of robtarget

Valentina TURCO matricola 243901

67

From a more general point of view, instead, the two main difficulties are related to the environment
disposition of all the line components and by the limited cycle time. This was a situation in which the robot
has to rotate many times the tool to first discharge and then charge again a certain station, without the
need of performing other operations in between. However, since all the stations were located in narrow
places with not sufficient free space around to be able to do the rotation of the tool without moving
completely away from the work area, cycle time increases.

To try to compensate the delay caused by movements that have been introduced just to avoid collision
while the gripper was reoriented, I choosed always linear movements. This way the trajectories were
inherently optimized beacuse the robot moved along the shortest possible path. Morover, all the
intermidate points that were necessary to introduce to force the robot to move far from the machines,
have been defined as much as possible along the path the robot would have done in absence of any
obstacles, so imposing just translation along a certain direction.

Finally, a big advantage is constituted by the safety options that ABB provides, both in software and
hardware, that limit some types of movement, increasing the reliability of the whole system.

Valentina TURCO matricola 243901

68

ACKNOWLEDGMENTS

I would like to thank my thesis supervisor Prof. M. Violante for his availability, the company Aurotec
engineering s.a.s and all my colleagues for helping me.

I would like to thank my parents, my brother Marco and Nicola for supporting me every day.

I would like to thank all my family, my grandmother Francesca and my uncle Piero.

Finally thanks to my classmates and to all my friends.

Valentina TURCO matricola 243901

69

BIBLIOGRAPHY:

1. Riad Menasri, Hamouche Oulhadj, Boubaker Daachi, Amir Nakib and Patrick Siarry, A genetic
algorithm designed for robot trajectory planning, 2014 IEEE International Conference on Systems,
Man, and Cybernetics October 5-8, 2014, San Diego, CA, USA

2. Basilio Bona, Modellistica dei robot industriali, CELID, Torino 2002
3. B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics: modelling, planning and control, Springer-

Verlag, 2009
4. https://www.robots.com/articles/what-is-roboguide
5. RobotStudio guides

		Politecnico di Torino
	2018-10-17T09:11:53+0000
	Politecnico di Torino
	Massimo Violante
	S

