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Abstract

Recurrent Neural Networks - RNNs are state-of-the-art models able to deliver
very high accuracy in sequence modeling and machine translation tasks. In particu-
lar the Encoder-Decoder architecture excels in sequence-to-sequence tasks in which
input and output sequences may not have the same length. These networks work
in two stages, at first the input sequence is encoded in a fixed length representa-
tion, which is then decoded in order to produce a new target sequence. Due to
the abundance of the network parameters, performing inference using these models
requires a high computing power and results in large energy consumption, typically
unsustainable for an embedded device. While executing the inference on edge nodes
is beneficial in terms of latency and responsiveness of the system, generally such
nodes do not have the hardware resources needed to sustain the heavy computa-
tions involved.
To this end, this work proposes an algorithm to improve the energy efficiency of
Encoder-Decoder RNNs. In particular a novel dynamic Beam Search algorithm is
introduced, in which the Beam Width - BW is varied according to the evolution of a
translation. This method is able to dynamically adapt the Beam Width parameter,
i.e. one of the parameter that mostly dominates the inference complexity, according
to the currently processed input and the corresponding network’s confidence.
Results on two different machine translation models underline that the proposed
methodology is able to reduce the average BW by up to 33%, thus significantly
reducing the inference execution time and energy consumption, while maintaining
the same translation performance.

v



Chapter 1

Introduction

Machine learning technology is increasingly present and used in many aspects
of modern society and everyday life. Tasks like classification, speech recognition
and image recognition leverage machine learning to increase the quality of results
provided and reduce the effort required by developers [3]. In particular, Recurrent
Neural Networks - RNN are now able to deliver state-of-the-art accuracy in sequence
modelling and other language tasks such as Neural Machine Translation, Image Cap-
tioning and Question Answering [4]. Unlike traditional feed-forward Deep Neural
Networks, where there is no notion of correlation between consecutive inputs, RNN
are able to both store (remember) information from earlier inputs and handle vari-
able length inputs and outputs thus improving the quality of produced results.
One reason for the growing popularity of machine learning based applications is the
increasing availability of computing power. Multicore CPUs and clusters of GPUs
have been necessary to sustain the rising computational complexity of these models
and to train them in a relatively short period of time [5] [6]. To an increase of com-
puting power demand corresponds an increase of energy consumption and resources
needed, both factors that are limited in low-power embedded hardware devices.
Due to the growing demand of intelligent end-nodes, such as IoT sensors or mobile
devices, many efforts have been made to implement Neural Networks directly on
those devices. While it is better to perform inference locally, near acquisition sen-
sors, allowing a sizable reduction of latency and an increased responsiveness of the
system [7], the training phase can conveniently take place on cloud using high-end
cluster computers, where computing power and energy consumption are not an issue
[8] [7]. As a result, the power efficient design for Neural Network architecture and
the development of optimized inference methods are acquiring a key role for the
development of new applications [6] [9].
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In literature, many works have studied this problem proposing different solutions.
One of those is the implementation of dedicated hardware accelerators for the infer-
ence phase. Although these accelerators are able to achieve very good performances
(especially for Convolutional Neural Networks - CNNs), nowadays there are very few
designs optimized for RNN [9] [10]. Other popular solutions adopted in low-power
designs leverage on the approximate computing paradigm, thus treading reduced
quality of produced results with lower complexity. "Complexity" can then acquire
different meanings according to the context. In relation to network quantization, it
is possible to reduce the complexity of computations by reducing the bit-width of
the weights with only a small loss in accuracy [6], or in the context of model size, it
is possible to lower the complexity by limiting the number of nodes or layers.
In particular, many works propose static solutions, in which the configuration of
the network is kept constant throughout the whole execution, while only few offer
a dynamic tradeoff, in which complexity and energy are modulated at runtime [5]
[11]. Having a static configuration (e.g. fixed bit-width) can result in a suboptimal
solution, since the network can either overapproximate, producing poor results or
underapproximate, resulting in a waste of energy. On the contrary, being able to
dynamically adapt the network level of precision basing the choice on the input
characteristics provides a more effective approach. This is true whenever inputs are
not all equally difficult to process, thus they can be treated with different degree of
approximation, resulting in a more convenient quality-energy tradeoff [5] [11].
In this work, a similar approach has been taken, but applied for the first time to
RNN models, with a specific focus on encoder-decoder networks for Neural Machine
Translation - NMT1. A new method has been proposed to dynamically tune the
Beam Width - BW parameter depending on the currently processed input. Increas-
ing the BW is beneficial for the translation accuracy, but also has a dramatic impact
on the computational complexity of the inference task at runtime. Thanks to the
proposed method for evaluating the translation confidence and the dispersion of the
scores produced after each iteration, the input-dependent tuning approach described
in this thesis can be effectively used to dynamically change the Beam Width accord-
ing to the state of the translation process. This allows to reach comparable or even
better results with respect to an execution of the model with fixed beam width, but
with a lower beam width on average. Considering a single-threaded software imple-
mentation of the considered RNNs, which is the common scenario for an embedded

1Application of Natural Language Processing in which the model learn to read the input sentence in
one human language and emit the translated sentence in another human language.
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device, obtained results translate into a 25% reduction of the total execution time
required for inference, which translates into significant energy savings.



Chapter 2

Background

2.1 Overview

Thanks to their ability to address large-scale problems and the large availabil-
ity of big dataset, Deep Neural Networks (DNNs) have gained increased attention
from the machine learning and data analysis communities [5]. Since the extensive
development of DNN applied to many task such as image classification or speech
recognition, the number of DNN based applications have exploded.
In the past, pattern-recognition systems were limited in their ability to process raw
data to extract valuable information, since they required careful engineering and a
broad domain expertise to design an effective feature extractor [3]. Current machine
learning techniques and in particular Neural Network models, leverage representa-
tion learning. This set of techniques allow machines to automatically "learn" (or
discover) the representations needed for classification or detection. So called deep
models are composed of several of these data representation transformations (layers)
stacked together. each layer is able to transform representation coming from lower
level layers into a more abstract representation needed from the following higher
level layers, allowing the creation of a more complex classification function. [3]
The founding pillar of these models is the concept that the feature layers composing
the network are not designed by humans, but rather, they are learned from the input
dataset, after a training phase.

4



2.1 Overview 5

During the years, different Neural Networks models have been introduced to solve
specific problems. Each model has its own field of application, in the following the
most common architectures are presented as well as their fields of application:

• Feed-Forward Neural Network: is the most commonly used architecture. It is
composed of: one input layer, one output layer and one/more hidden layers
(if more than one hidden layer, it is called Deep neural network). Data flows
from the input to the output without feedback. During this path, the network
computes a series of transformations, such that each subsequent layer holds a
more abstract representation for the input. This architecture is mainly used
for classification problems.

• Convolutional Neural Network: is a specialization of Feed-Forward Neural Net-
work, mainly used for image processing. It inherits similar structure and work-
ing principle from Feed-Forward, but adds some specialized layers, such as
convolutional and pooling.

• Recurrent Neural Network: is the most commonly used architecture for ana-
lyzing sequential data. It has a feedback connection, allowing the network to
maintain a "memory state", i.e. a representation of the part of the sequence it
has already analyzed. It enables the network to take decision based both on
current input and previous history.

In the following sections, a more detailed explanation of each architecture is pro-
vided: section 2.2 will give more details on Fully Connected Neural Network, sec-
tion 2.3 will explain Convolutional Neural Network and finally, section 2.4 will
deepen on Recurrent Neural Network.
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2.2 Fully Connected Neural Network

Fully Connected Neural Network or Feed-Forward Neural Network is the simplest
neural network based classificator. Its goal is to learn a representation function f,
which will then be used for classification tasks. Given a classifier y = f(x, θ), the
network performs the mapping of an input x to an output category y, through the
network parameters θ [12].
This architecture is called Feed-Forward because data flow from input to output
and fully connected because each neuron is connected to all neurons outputs from
the previous layer. A neuron is a generic computational unit performing a weighted
sum over all its input and applying a non-linear squashing function (also called the
neuron activation function) to produce a single output [13]. Figure below shows the
structure of a neuron:

∑
. 
. 
. 

x2

x1

x3

xn

σ a

b

w1

w2
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wn

Figure 2.1: Neuron structure

Figure 2.1 shows how an input vector x is first scaled by the weight matrix w,
summed, added to a bias and then passed through a non-linear squashing function.
This function is needed to implement non-linear classification function and also to
keep the neuron output value within a defined range. Each neuron activation (i.e.
output) value indicates the presence or absence of a particular feature. Commonly
used activation functions are listed below:



2.2 Fully Connected Neural Network 7

• Sigmoid σ, in the early stages of Neural Network development, was the most
common and widely used activation function. σ(z) ∈ (0, 1)

cs 224d: deep learning for nlp 10

important!)

# compute the partial derivative

grad[ix] = (fxh - fx) / h # the slope

it.iternext() # step to next dimension

return grad

2.2 Regularization

Like most classifiers, neural networks are also prone to overfitting
which causes their validation and test performances to be subop-
timal. We can implement L2 regularization such that the loss with
regularization, JR, is calculated to be:

JR = J + l
L

Â
i=1

���W(i)
���

F

In the above formulation,
���W(i)

���
F

is the Frobenius norm of the

matrix W(i) and l is the relative weight assigned to regularization
in the weighted-sum objective. Adding this type of regularization
penalizes weights for being large in magnitude by contributing
to the cost quadratically with it. This reduces the flexibility of the
target function (i.e. classifier) thereby reducing the overfitting phe-
nomenon. Imposing such a constraint can be interpreted as the prior
Bayesian belief that the optimal weights are close to zero. How close
you wonder? Well, that is what l controls – large values of l lead to
a stronger belief that the weights should be chose to zero. It must be
noted that the bias terms are not regularized and do not contribute to
the cost term above – try thinking about why this is the case.

2.3 Neuron Units

So far we have discussed neural networks that contain sigmoidal
neurons to allow nonlinearities, however in many applications better
networks can be designed using other activation functions. Some
common choices are listed here with their function and gradient
definitions and these can be substituted with the sigmoidal functions
discussed above.

Sigmoid: This is the default choice we have discussed and the activa-
tion function s is:

Figure 9: The response of a sigmoid
nonlinearity

s(z) =
1

1 + exp(�z)
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Figure 2.2: Sigmoid activation function and graph respectively

• Tanh is an good alternative to Sigmoid since it has been found that it converges
faster [13]. Tanh(z) ∈ (−1, 1)

cs 224d: deep learning for nlp 11

where s(z) 2 (0, 1)

The gradient of s(z) is:

s0(z) =
� exp(�z)

1 + exp(�z)
= s(z)(1 � s(z))

Tanh: The tanh functionis an alternative to the sigmoid function that
is often found to converge faster in practice. The primary difference
between tanh and sigmoid is that tanh output ranges from �1 to 1
while the sigmoid ranges from 0 to 1.

Figure 10: The response of a tanh
nonlinearity

tanh(z) =
exp(z) � exp(�z)
exp(z) + exp(�z)

= 2s(2z) � 1

where tanh(z) 2 (�1, 1)

The gradient of tanh(z) is:

tanh0(z) = 1 �
✓

exp(z) � exp(�z)
exp(z) + exp(�z)

◆2

= 1 � tanh2(z)

Hard tanh: The hard tanh function is sometimes preferred over the
tanh function since it is computationally cheaper. It does however
saturate for magnitudes of z greater than 1. The activation of the
hard tanh is:

Figure 11: The response of a hard tanh
nonlinearity

hardtanh(z) =

8
><
>:

�1 : z < �1
z : �1  z  1
1 : z > 1

The derivative can also be expressed in a piecewise functional form:

hardtanh0(z) =

(
1 : �1  z  1
0 : otherwise

Soft sign: The soft sign function is another nonlinearity which can
be considered an alternative to tanh since it too does not saturate as
easily as hard clipped functions:

Figure 12: The response of a soft sign
nonlinearity

softsign(z) =
z

1 + |z|
The derivative is the expressed as:

softsign0(z) =
sgn(z)
(1 + z)2

where sgn is the signum function which returns ± 1 depending on the sign of z
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• ReLU - Rectified Linear Unit is an activation function which does not saturate,
even for large value of the input. It is mostly used in Convolutional NN.

cs 224d: deep learning for nlp 12

ReLU: The ReLU (Rectified Linear Unit) function is a popular choice
of activation since it does not saturate even for larger values of z and
has found much success in computer vision applications:

Figure 13: The response of a ReLU
nonlinearity

rect(z) = max(z, 0)

The derivative is then the piecewise function:

rect0(z) =

(
1 : z > 0
0 : otherwise

Leaky ReLU: Traditional ReLU units by design do not propagate
any error for non-positive z – the leaky ReLU modifies this such
that a small error is allowed to propagate backwards even when z is
negative:

Figure 14: The response of a leaky
ReLU nonlinearity

leaky(z) = max(z, k · z)

where 0 < k < 1

This way, the derivative is representable as:

leaky0(z) =

(
1 : z > 0
k : otherwise

2.4 Xavier Parameter Initialization

In Understanding the difficulty of training deep feedfor-
ward neural networks (2010), Xavier et al study the effect
of different weight and bias initialization schemes on training dy-
namics. The empirical findings suggest that for sigmoid and tanh
activation units, lower error rates are achieved and faster convergence
occurs when the weights of a matrix W 2 Rn(l+1)⇥n(l)

are initialized
randomly with a uniform distribution with the following range:

W ⇠ U

�

p
6

n(l) + n(l+1)
,

p
6

n(l) + n(l+1)

�

Where n(l) is the number of input units to W

and n(l+1) is the number of output units from W

In this parameter initialization scheme, bias units are initialized to 0.
This approach attempts to maintain activation variances as well as
backpropagated gradient variances across layers. Without such ini-
tialization, the gradient variances (which are a proxy for information)
generally decrease with backpropagation across layers.
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of different weight and bias initialization schemes on training dy-
namics. The empirical findings suggest that for sigmoid and tanh
activation units, lower error rates are achieved and faster convergence
occurs when the weights of a matrix W 2 Rn(l+1)⇥n(l)

are initialized
randomly with a uniform distribution with the following range:

W ⇠ U

�

p
6

n(l) + n(l+1)
,

p
6

n(l) + n(l+1)

�

Where n(l) is the number of input units to W

and n(l+1) is the number of output units from W

In this parameter initialization scheme, bias units are initialized to 0.
This approach attempts to maintain activation variances as well as
backpropagated gradient variances across layers. Without such ini-
tialization, the gradient variances (which are a proxy for information)
generally decrease with backpropagation across layers.

Figure 2.4: ReLU activation function and graph respectively

The activation function for the output layer, instead, may changes according to
the task. As an example, for a multiclass classification problem, with K possible
alternative classes, the most common activation function is the softmax [14]. This
function takes the output of all neurons in the last hidden units and return K real
values, where each entry is in range (0,1] and all entries sum up to 1. This output
represent the output probability distribution of the input x to belong to one of the
K output classes.
Many neurons grouped together create a layer and each layer implements a different
representation function [12]. Many of these layers are then stacked up, having the
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data flowing out form one layer being the inputs for the next one. Upon receiving
a new input, the network performs a feed forward computation, data change repre-
sentation while moving from one layer to another, increasing the number of features
detected, until the last layer is reached, which performs the final classification. The
model can be associated to a direct acyclic graph - DAG, showing how data flow
and how functions are connected together into a chain [12]. The length of the chain,
and so the number of functions, gives the depth of the model. First and last layers
are called input and output layer, while layers in the middle are called hidden
layers. The dimension of each layer, and so the number of neurons it is made of,
gives the width of the model.

The most common form of training is supervised learning [3]. At first a large dataset
of what the network has to be trained on is collected. In general, the more data are
provided to the network, the more accurate will be the classification. The dataset
must also be provided with the label corresponding to each datum. During the
training phase, the network is shown an input and it produces a vector of scores (K
scores, one for each category). The highest score defines the class the input belongs
to, according to the network guess. The desirable output is the class corresponding
to the input label, but it is unlikely to happen in the early stages of training. In
order to be effectively trained, the network needs an optimization objective, a cost
function L, that measure the error done while guessing. Most neural networks
are trained using maximum likelihood (described also as the cross-entropy between
the model output distribution and the training data) as cost function [12]. This
means that this cost function penalizes the differences between the model output
ŷ and target y. Learning is then accomplished by iteratively updating the weights
and biases to minimize this loss function [14]. Due to the non linearity of the
classification function, the loss function becomes non-convex. This means that to
effectively train the network gradient-based optimizers are needed [12]. In order
to calculate the gradient with respect to each parameter involved in the forward
pass, backpropagation is used. This technique allows to apply the chain rule to
calculate the loss function gradient, starting from the output layer till the input layer,
backpropagating the error. Then, weights and biases are adjusted using gradient
descent1. This method explores the cost function in order to find a local minimum,

1In calculus, the gradient of a function is a multi-variable generalization of the derivative. It is a
vector that can be used to identify the fastest way to increase the function, following the shortest path.
Computing the negative gradient with respect to all weights, the network can find the best set of values
for its parameter (w and b) in order to minimize the cost function.



2.2 Fully Connected Neural Network 9

but does not guarantee to find the optimum solution.
As an example, the steps to calculate the gradient for very simple FeedForward NN
using backpropagating are explained. The network considered is composed of only
four layers, each one having a single neuron, as shown in Figure 2.5. At first, an
input is fed in and propagated through the network in order to produce an activation
aL−i for each neuron in the hidden layers, and a prediction ŷ at output layer (forward
pass).

 

......

Figure 2.5: Simple network for backpropagation example

The output of this network depends on the value of three weights and three biases,
and so the cost function is also a function of these values, L(w1, b1, w2, b2, w3, b3).
Given the label for the activation of the output layer a(L) (which also correspond to
the network final guess ŷ), activations belonging to previous layers will be labeled
with a(L−i). It is important to recall that each neuron activation corresponds to the
application of a non-linear squashing function (e.g. sigmoid) to the weighted sum
of all previous layer neuron outputs, in this case only one:

z
(L)
j =

∑
i

(wjixi) + bi

z(L) = wLaL−1 + b(L)

aL = σ(z(L))
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Given the expected output value y (the label corresponding to the input example),
the cost function will be L(y, ŷ).

 

......

Figure 2.6: Backpropagation contribution

Focusing on just the connection between the last two neurons, the "sensitivity" of
the cost function with respect to a small change in the weights w(L) can be expressed
as follows:

∂L
∂w(L) = ∂L

∂a(L) ·
∂a(L)

∂z(L) ·
∂z(L)

∂w(L)

This is the derivative of the cost function with respect to w(L) only and for a specific
training example, since the full cost function involves averaging together all those
costs across all training examples. The same procedure is then applied to calculate
the sensitivity of L with respect b(L) and a(L−1), and then iterated back to previous
layers. This is the chain rule applied, where the gradient with respect to a layer
output is used to compute the gradient with respect to the network parameters for
previous layers.
In practice, neural networks are usually trained with Stochastic Gradient Descent -
SGD using minibatches [12]. Instead of analyzing the cost function over the entire
training set (as in the standard Gradient Descent), only a small subset of it is used
for each iteration. For each minibatch (set of few inputs), the network computes the
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output error, then compute the average gradient related to those inputs, then adjust
the weights accordingly [3]. This process will not give the actual gradient of the cost
function (which depends on all training data), but rather a good approximation of
it and also results in a significant computation speedup. With unit batch size, the
update equation for stochastic gradient descent results:

w ← w + η5w Li

where η is the learning rate2 and 5wLi is the gradient of the cost function with
respect to parameter w.

2It defines how fast the network changes its weights, and it can be visualized as the "length of the leap"
while descending the cost function. Big learning rates correspond to big adjustments in the parameters,
which may resolve in overshooting and missing the minimum. Conversely, small learning rates correspond
to small adjustments in the parameters and a very slow training.
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2.3 Convolutional Neural Network

Convolutional Neural Networs are a specialization of Feed-Forward Neural Net-
works, which have reached state-of-the-art performances in image processing tasks
[5]. They inherit similar structure and working principle from Feed-Forward, but
add some specialized layers. Even though the literature offers many possible layers,
the convolutional, pooling and normalization are the most commonly used layers [7]:

• The convolutional layer performs a set of matrix multiplications between the
input (input feature map), and a set of kernels, also called filters, designed to
identify specific features. Given an input image of size m×m, a filter is defined
as a n× n set of weights (where m > n). Each filter is lined up to a patch of
the input image and then, one by one, the pixels are processed. The filtering
operation is a multiply and accumulation operation between the patch pixels
and the filter weights, the final result is then divided by the number of pixels
in the filter. Then, the convolution operation is performed by repeating this
process for all possible positions, sliding each time the filter to a new patch
in the image. The result is an output feature map containing an higher level
abstraction of the input and a summary of where features are in the image.

• In the pooling layer, a window size of l× l (where m > l) and a stride of p pixels
are defined. Max poling (the most used technique of pooling) is performed by
striding the window across the filtered image and taking the maximum value
inside the window. This operation is meant to shrink down the feature map
and to make it less sensible to spatial position, such that the network is still
able to detect the same features, but also in different parts of the image [12].

• The normalization layer is composed of ReLU activation functions. This func-
tion is used to limit the computation complexity by removing useless values
(all negative values) from the feature map.

Figure 2.7 shows typical network, made of an alternation of the convolutional layer,
followed by the normalization and a pooling layers, stacked and repeated. The last
stage of the network, instead, consists of one/many fully connected layers to perform
the actual classification, given the features extracted before.
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Figure 2.7: Architecture of CNN, source: https://.it.mathworks.com/videos/introduction-
to-deep-learning-what-are-convolutional-neural-networks

It is visible how, starting from the input image (on the left), filters are applied
followed by the normalization (not sown in the figure) and pooling layers. In the
process, the images size is reduced after each layer, finally being flattened to be used
in the last fully connected layer(s).
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2.4 Recurrent Neural Network

2.4.1 Sequence Definition

In the context of Neural Networks, and in particular during the training phase,
datasets play a fundamental role. The quantity, but also the quality, of the input
data used for training these models will define, at inference time, their accuracy.
After all the samples have been collected, it is common practice to divide them
in three different dataset, i.e. training, validation and test sets, each of those has
different characteristics and usages. Each set represents a collection of data points,
generally an (input, target) vector pair. During the execution of the network, it is
not important which one of these pair is fed first into the network, since elements in
the set are independent from each others. However, this is not the case for RNNs,
where inputs and outputs are elements of a sequence, and thus intrinsically corre-
lated to each other. So, while working with a specific sequence, it is important to
respect the order in which data appear, either when samples are fed in or when
results are read out.
An input sequence is generally denoted with (x1, ..., xT ), where each data point x(t)

is a value, generally a vector, i.e. word embedding, within the sequence at a par-
ticular instant in time. Similarly, the target sequence can be denoted (y1, ..., yT ).
Even though RNNs are not bounded to work only with time-based sequences, their
most common applications involve sequences with implicit or explicit temporal de-
pendence.

Different sequence-related task could be:

• Seq. Prediction: involves predicting the next item in the sequence, given the
previous data points. Examples of seq. prediction problems are: weather
forecast, stock marcket prediction and product recommendation.

• Seq. Classification: involves predicting the target class label once the full
sequence has been observed. Examples of seq. classification problems are:
DNA sequencing and anomaly detection.

• Seq. Generation: involves producing a new sequence that mimics the charac-
teristics of the training sequences. Examples of seq. generation problems are:
text generation and music generation.

• Seq. to Seq. Prediction: involves predicting an entire output sequnce upon



2.4 Recurrent Neural Network 15

having observed the entire input sequence. Examples of seq2seq problems are:
neural machine translation and text summarization.

2.4.2 Vanilla RNN

The founding pillar of sequence modelling tasks is language modelling. This
problem can be summarized as to compute the probability of occurrence of a number
of words in a particular sentence [1]. Given a sentence (w1, w2, ..., wT ), of length T,
its probability is denoted as P (w1, w2, ..., wT ) and can be expressed as:

P (w1, w2, ..., wT ) =
i=T∏
i=1

P (wi|w1, ..., wi−1) (2.1)

Equation 2.1 is especially useful in translation systems, where having a way to
estimate the relative likelihood of different phrases is essential to generate a good
quality translation. Language models are generative, meaning that, once they have
been trained, they can be used to generate a sequence of data by feeding the previous
model output back as new input. Equation 2.2 below shows this concept:

xt = f(xt−1) (2.2)

where the sequence element xt, at current time step t, is predicted by the mapping
function f on the base of the element xt−1, at previous time step t-1. In the context
of RNNs, f represents the neural network which predicts the next element in the
sequence based on the current element of the sequence.

In this section the Vanilla RNN will be introduced as it is the simplest RNN ar-
chitecture. It produces an output (next value in the predicted sequence) at each
time step and have a single recurrent connections between hidden units. In this
architecture input and output sequence have the same length. More advanced and
powerful architectures will be presented later in the discussion, in subsection 2.4.6
subsection 2.4.7.

Graph Unfolding

To describe in a more formal and precise manner the set of operations the net-
work is performing and its evolution through time, it is necessary to introduce
the computational graph notation. Each network can be visualized with its
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corresponding computational graph, in which nodes represent network parameters,
operations are performed on these parameters and finally arrows represent the inter-
connections between them. Graphs for standard architecture such as FeedForward
Neural Networks or CNNs, generally are directed acyclic computational graph, in
which data flows from input to output passing through different types of operations.
That is not the case for RNN. As anticipated before, RNN are used to represent
sequence of events correlated by time and so, they need to keep (memorize) infor-
mation coming from previous states.
To express the intrinsic dynamism of this kind of system, each network state s(t)

can be expressed as a function of time, in particular:

h(t) = f(h(t−1), θ) (2.3)

where θ represents state parameters. Equation 2.3 is recurrent because the defini-
tion of the state h at time t depends to the same definition, but at time (t-1) [14].
Now, it is possible to unfold the recurrent computation by explicitly writing the
Equation 2.3 applying repeatedly the definition, yielding an expression without re-
currence. This, in turn, can be represented with a traditional acyclic computational
graph with a repetitive structure, corresponding to a chain of events and shared
parameters across states.
This behavior is illustrated in the Figure 2.8 below. On the left, a classical represen-
tation of the folded network, in which time dependence is introduced in the system
by the inclusion of the edge looping on the network hidden state. On the right,
instead, the same network is represented as unfolded computational graph, where
each node is now associated with one particular time instance.

h(t-1)

x(t-1)

h(t) h(t+1)

x(t) x(t+1)

y(t-1) y(t) y(t+1)

h(t)

x(t)

y(t)

Figure 2.8: Recurrent Computational Graph
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It is important to notice that the arrows connecting the states represent the function
f in Equation 2.3 which maps the state t to the state at t + 1, and same parameters
θ are used for all time steps.
Finally, the unfolded graph also helps to better visualize the set of computations
performed by the network and the paths on which information flow forward (during
output prediction and the update of the hidden stage) and backward (during back-
propagation) [12].

Hidden Units

Figure 2.8 in the previous section introduces the structure of a basic RNN, where
each rectangular box refers to a, so called, hidden state of the network at a specific
time step. Each of these states refer to a set of neurons, each of which performs
linear matrix multiplications on input data, followed by the application of a non-
linear function σ. At each time step t, neurons will receive as input data the current
data point x(t) and previous hidden state h(t−1) and produce an output prediction ŷ
for the next value in the sequence as well as a new hidden state h(t) (Equation 2.5,
Equation 2.7) [14].

a(t) = W hxx(t) +W hhh(t−1) + bh (2.4)

h(t) = σ(a(t)) (2.5)

o(t) = W yhh(t) + by (2.6)

ŷ(t) = softmax(o(t)) (2.7)

A detailed description of all parameters is presented below:

• x1, ..., xt, ..., xT : is the word vector corresponding to a sequence of T words

• h(t): is the hidden state output feature for the time step t

• W hx: is the weight matrix used to condition the input word xt

• W hh: is the weight matrix used to condition the the previous hidden state

• W yh: is the weight matrix used to compute the output prediction
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• b∗: is the biasing term

• σ: is the non-linear function (e.g.tanh())

• softmax : is needed to compute the output probability distribution over the
vocabulary
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2.4.3 Training

Training a RNN generally means learning how to use the hidden state ht, as a
lossy summary of important aspects of the input sequence seen till this time, for
predicting the next element in the sequence based on the input sequence past his-
tory. This summary is intrinsically "lossy" since it has to map an arbitrary-length
sequence (x1, ..., xt, ..., xT ) to a fixed length vector ht.
Given the Graph Unfolding property, explained in section 2.4.2, the network can
now be treated as a standard FeedForward network with one layer per time step
and with shared weights matrices (propagated from one time step to the next). So,
it can be trained by simply applying recursively the back-propagation algorithm,
already explained in section 2.2. Backpropagation applied to the unrolled version of
the network is called back-propagation through time - BPTT.

During the forward pass, the sequence of steps involved are presented below:

• input xt is fed into the network

• compute the hidden state Equation 2.5

• compute the output prediction o(t) Equation 2.6

• compute the softmax on o(t) to obtain a normalized probability distribution

• compute loss function L(t)

Given input sequence x with corresponding expected outputs y, the total loss func-
tion can be computed as the accumulative sum of all losses for each time step. If
L(t) is the negative log-likelihood3 of y(t) given x1, ..., xτ , then:

L({x1, ..., xτ}, {y1, ..., yτ})
=
∑
t

L(t)

= −
∑
t

log pmodel(y(t)|{x1, ..., xτ})
(2.8)

where pmodel(y(t)|{x1, ..., xτ}) is given by comparing model predicted outputs ŷ(t) and
expected outputs y(t).

3The cross-entropy between the output model distribution and the training data [12]. Log-likelihood
is more convenient with respect the classical likelihood, since working in the log space helps reducing
precision problems. These problems arise when multiplying words probability, which can be very small
numbers, the results can rapidly vanish to zero [15]
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When using predictive log-likelihood as training function, as in Equation 2.8, the
network has to maximize the conditional distribution of the next sequence element
y(t) given the previous inputs and also the outputs of previous time steps4

log
(
y(t)|x1, ..., xt, y1, ..., yt−1

)
(2.9)

Equation 2.3 shows that, in principles, RNN are very efficient in parametrizing long-
term relations due to the recurrent application of the advancing function f over the
same parameters θ. In fact, information about the context already seen are prop-
agated through time by continuously updating the hidden state h(t), which acts as
a back-up memory of previous states. The downside of this architecture is that
computing the gradient for the loss function (in Equation 2.8) to update model
parameters is a very expensive operation. This computation involves performing
back-propagation through the whole unfolded graph [12]. Moreover, due to the se-
quentiality of the system, this computation cannot be parallelized, and it must be
computed step by step.

It is important to notice, that even if the mathematical formulation of the hidden
state could be theoretically applied recursively as many times as are needed for
an arbitrary length sequence, empirical proves have shown that RNN are more
likely to correctly predict short sequences. This problem is known as vanishing
and/or exploding gradient [1]. This phenomenon depends on the magnitude of
the weights matrix in the recurrent edge W hh and on the used activation function
[14]. If |W hh| > 1, the gradient values will grow extremely fast causing overflow,
this is the so called Gradient Explosion and it can be easily recognized at train time.
On the other side, if |W hh| < 1, the gradient will tend to zero, this is the so called
Gradient Vanishing. This behavior makes training more difficult, and drastically
reduces the quality of the parameter learned..
The techniques commonly used to deal with these problems are listed below:

• gradient clipping: this is a simple heuristic solution, introduced at first
by Thomas Mikolov, and it is commonly used to prevent gradient explosion.
Whenever the gradient is going to reach a certain threshold, it is set back to a
smaller value.

• TBPTT: in truncated BPTT there is a fixed amount of possible steps through
which the error can be propagated. This solution aims to mitigate the explod-

4either expected outputs (if Teacher forcing technique is used), or predicted outputs
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ing gradient problem, but it also reduces at prior the ability of the network to
learn long-range temporal dependences.

• Matrix initialization: this solution may not solve the vanishing problem,
but it tryes to prevent it. Instead of randomly initialize the hidden weights
matrix, it is set as the identity matrix.

• ReLU: instead of using the sigmoid activation function, it is preferred to
use the ReLU, whose derivative is either 0 or 1. This allows the gradient to
propagate back through many time steps without being attenuated.

• LSTM/GRU: the LSTM or GRU architectures described in the sections be-
low, are designed and optimized to learn long-range temporal dependences
without the vanishing gradient problem.
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2.4.4 LSTM

In the following, it is presented the Long Short TermMemory - LSTM struc-
ture, which is an extension of the basic hidden unit. This architecture provides a
more efficient way to learn long-term dependencies, and in addition, it also presents
a good way to overcome (or mitigate) the vanishing gradient problem presented in
subsection 2.4.3.
In addition to the ordinary hidden state h(t), LSTMs also include a memory cell
c. This internal memory plays a fundamental role in extending the capability of the
network in learning long-term dependencies. Thanks to its self-connected recurrent
edge with a weights matrix fixed at one, it allows the gradient to pass uncondition-
ally across many time steps without suffering neither of vanishing nor exploding. In
addition, c, being continuously updated during the evolution of the network, allows
to preserve valuable information that may not be strictly needed in the current time
step, but that can be useful for future predictions. This method is more efficient
with respect to previous RNNs architectures, i.e. Vanilla RNNs, in which long-term
dependencies were leaned in the form of plain weights matrices.
LSTM architecture is comped of special "modules" designed to allows information to
be gated-in when need to enrich learned context, gated-out to contribute at the gen-
eration of a new output prediction, or remain untouched in the intermediate period
when the gate is closed. So, according to the values of these gates, the informa-
tion can pass through, be completely blocked or be attenuated. Each gate performs
an affine transformation (linear matrix multiplication), followed by a logistic func-
tion (e.g. sigmoid) to squash the output values in the [0,1] interval, and finally an
element-wise multiplication. The output values of the sigmoid layer defines how
much of each component can pass through: 0 means "closed gate", while conversely
1 means "full gate open", and values in the middle define the level of attenuation for
that parameter. The sigmoid followed by the element-wise multiplication results in
the "gating effect" [15].

X

!

Figure 2.9: Gate
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Figure 2.10 below shows the basic blocks composing an LSTM cell

Figure 2.10: LSTM architecture, picture taken from [1]

A detailed description of all nodes is presented:

• Input gate: i(t) = σ(W (i)x(t) + U (i)h(t−1))

• Forget gate: f (t) = σ(W (f)x(t) + U (f)h(t−1))

• Out gate: o(t) = σ(W (o)x(t) + U (o)h(t−1))

• New memory: c̃(t) = tanh(W (c)x(t) + U (c)h(t−1))

• Final memory: c(t) = f (t) ◦ c̃(t−1) + i(t) ◦ c̃(t)

• Hidden state: h(t) = o(t) ◦ tanh(c(t))

Input gate: It takes input data x(t), previous hidden layer state h(t−1) and de-
termines if the input word is important or not for the current time step. This
information is then used for gating the new memory c̃(t).
Forget gate: It looks at the current input word x(t) and previous hidden state
h(t−1) and asses if the past memory is useful to update the new memory. This gate
allows the cell to forgot information which are not useful anymore.
Out gate: It separates the internal memory c(t) from the hidden state. Since the
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memory unit contains information that could not be necessary for updating the hid-
den state at the current time step, this gate decides which parts of c(t) have to be
exposed/passed to h(t).
New memory: It takes input data x(t), previous hidden layer state h(t−1) and gen-
erates a new vector summarizing the new input word and the context observed till
the current time step.
Final memory: According to what input gate and forget gate decide is important,
it collects information coming from both input and past memory.
Hidden state: It is the value which will be used in the downstream calculations
(e.g. word probabilities calculation). It is derived by the value of the newly updated
final memory c(t), scaled in the [-1,1] interval by the tanh function, and modulated
by the output gate.

2.4.5 GRU

A simpler variant of LSTM, but still very effective in remembering long-term
dependencies, is the Gated Recurrent Unit - GRU architecture. Figure 2.11
below shows a standard implementation:

Figure 2.11: GRU architecture, picture taken from [1]

A detailed description of all nodes is presented below:

• Update gate: z(t) = σ(W (z)x(t) + U (z)h(t−1))

• Reset gate: r(t) = σ(W (r)x(t) + U (r)h(t−1)
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• New memory: h̃(t) = tanh(r(t) ◦ U (t)h(t−1) +W (t)x(t))

• Hidden state: h(t) = (1− z(t)) ◦ h̃(t) + z(t) ◦ h(t−1))

Update gate: It is responsible for assessing what should be written in the new
hidden state h(t). With z(t) ≈ 1 the previous hidden state will be copied almost
entirely out to h(t), while with z(t) ≈ 0 mostly the new memory h̃(t) will be forwarded
to the next hidden state.
Reset gate: It asses how the previous hidden state h(t−1) is important with respect
to x(t) for the computation of the new memory h̃(t)

New memory: It is the combination of the new input x(t) with the previous hidden
state (gated by the reset gate). It represents the summary of the previously learned
context.
Hidden state: The hidden state will be finally updated with the previous hidden
state and the new generated memory, both gated by the update gate.
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2.4.6 Bidirectional RNNs

So far, the proposed RNNs architectures always took information from current
and previous inputs x1, ..., xt−1, xt and, if present, from the past y values to predict
the next element in the sequence.
However, in many applications, to achieve a better accuracy while producing the
output prediction ŷ(t), it is preferable to have information about the whole input se-
quence. These tasks involve speech recognition, handwriting recognition and many
other sequence-to-sequence learning tasks in which the correct interpretation of the
current input depends also on the next few elements in the sequence [12].
Bidirectional RNNs were invented to address this need. The architecture includes
two independent layers of a traditional RNN, one for the left-to-right propagation
(forward in time, starting from the beginning of the sentence) and one for the right-
to-left propagation (backward to time, starting from the end of the sentence). At
each time step, the predicted output ŷ(t) is generated by combining both layers’s
scores, such that the network can leverage on a summary of both past and future.
It is worth noticing that, to maintain and execute such a structure, the network
would require twice as much memory, weights parameters and therefore consumes
more power with respect to a regular RNN [1]. The Figure 2.12 below shows a stan-
dard bidirectional RNN architecture, while Equation 2.10 describes its mathematical
formulation

Figure 2.12: Bi-directional RNN architecture
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−→
h(t) = f(−→Wx(t) +−→V −→h (t−1) +−→b ) (2.10)
←−
h(t) = f(←−Wx(t) +←−V ←−h (t+1) +←−b ) (2.11)

ŷ(t) = g(Uh(t) + c) = g(U [
−→
h(t);
←−
h(t)] + c) (2.12)

The only difference in the equations describing the hidden layers is the direction of
the propagation through time.
More complex and so more powerful BRNN can be achieved by stacking many
bidirectional layers. The output of a lower tier layer will be the input of the next
higher tier layer.
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2.4.7 Encoder Decoder Architecture

Architectures discussed until now are able to either map a fixed-length input to
an output sequence of the same length or, given an input variable-length sequence,
can learn how to map it into a fixed-length vector representation. Encoder-Decoder
architecture is the state-of-the-art model for solving general sequence-to-sequence
problems in which input and output sequences may not have the same length[16].
This approach is very useful in many applications such as speech recognition, ques-
tion answering and machine translation [12].
The general idea behind the Encoder-Decoder architecture is to use two distinct
RNNs that act as an encoder and a decoder pair [17]. The Encoder reads step
by step the input sequence X = x1, ..., xt, ..., xT summarizing it into a fixed-length
representation, generally called context - C. Then the Decoder, conditioned with
the context vector, is used to produce the output sequence step by step.
Internally, these two networks are generally composed by one or more layers of neu-
rons, each of which can be either implemented as Vanilla RNN, GRU or LSTM.
The latter two models, as already explained in subsection 2.4.4, has the capability
of efficiently learning long-term dependencies, thus making these models a natu-
ral choice for this application [16]. Furthermore, to enhance the capabilities of the
Encoder-Decoder architecure, more complex implementations involve stacked Bidi-
rectional RNN and the adoption af an attention layer, which will be discussed in
the following subsection 2.4.8.
Figure 2.13 below shows a standard implementation of the Encoder-Decoder archi-
tecture:

Encoder Decoder

Embedding
xi ŷi-1

Embedding

ŷi

hi si

Output Sel.
pihi-1 si-1 

Figure 2.13: Encoder-Decoder RNN architecture
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The goal of this model is to learn the conditional distribution p(y1, ..., yT ′|x1, ..., xT ),
where (x1, ..., xT ) is the input sequence of length T, and (y1, ..., yT ′) is the output
sequence of length T’ (should be noted that T and T’ may differ) [16]. The Em-
beddings layers, represented by yellow boxes, are commonly used in Neural Machine
Translation in input to both the Encoder and Decoder. These layers allow to create
a more compact representation of the input vocabulary (with respect to previously
used Bag of Words approach or one-hot encoding) while allowing to extract sematic
meanings and contextual similarities (i.e. words that are semantically similar, or
that occur commonly nearby in text will also be nearby in the vector space).
To perform the translation of a sentence (commonly referred also as seq2seq map-
ping), many iterations of both the Encoder and the Decoder are needed. At first
the Encoder reads all input words, one symbol at a time, till the end-of-sequence is
reached (marked by the special <EOS> character). As the process iterates forward
in reading the input sequence, the hidden state is updated accordingly, as a standard
RNN:

h(t) = f(h(t−1), x(t)) (2.13)

The last hidden state of the Encoder is the context summary C, representing a
constant-length representation of the whole input sentence.

The Decoder is trained to generate (predict), step by step, an output sequence sym-
bol ŷ(t). It is conditioned by its previous hidden state h(t−1), the context summary
generated from the Encoder C and the previously generated output ŷ(t−1) (or target
output y(t−1) at training time) [17]. Hence, the update function for the Decoder
hidden state is:

h(t) = f(h(t−1), y(t−1),C) (2.14)

Figure 2.14 shows an example of how this type of RNN really works. On the hor-
izontal axes there is the evolution of the same network, unfolded in time, high-
lighting four consecutive time steps. As the Encoder reads the inputs its hidden
state evolves, being updated from h0 to h4 where the <EOS> symbol marks the
end of the sentence. h4 becomes the context vector which, is now used to initialize
the Decoder, with the first last prediction y(t−1) set as NULL in the first iteration.
The Decoder starts producing the output sequence, till another <EOS> is emitted
signaling the end of the translated sentence. The Output Sel., represented in dark
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orange, is needed to selecting the best output word(s) for the current step, based on
the likelihood produced by the Decoder (more details in subsection 2.4.9)

Encoder Encoder Encoder Encoder

Decoder Decoder Decoder Decoder

Embedding Embedding Embedding Embedding

x1 (I) x2 (love) x4 (<EOS>)x3 (you)

NULL

Embedding Embedding Embedding Embedding

ŷ1 (ich) ŷ2 (liebe) ŷ3 (dich) ŷ4 (<EOS>)

h0 h1 h2 h3 

h4 = C

s1 s2 s3 

Out. Sel. Out. Sel. Out. Sel. Out. Sel.

Figure 2.14: Encoder-Decoder RNN architecture

The two components of the RNN Encoder-Decoder architecture represent two dif-
ferent and independent language models, one for the input language and one for
the output language. They are thus trained together in order to maximize a cost
function, such the one presented in Equation 2.8 [17].
Once the network has been sufficiently trained, it can be used to generate an out-
put sequence, given an new input sequence (never seen during training). At each
iteration of the Decoder, it would output a vocabulary-sized vector containing the
probability of each symbol to be selected as output prediction ŷ(t). The actual
method used to sample the new symbol(s) out of this output distribution will be
explained in more detail in section subsection 2.4.9
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2.4.8 Attention Mechanism

In the context of Neural Machine Translation - NMT, i.e. the main target of
this work, the Bidirection Encoder-Decoder LSTM-based RNN architecture is one
of the most used model. A NMT system models the conditional probability p(y|x)
of translating an input sequence to a new target sequence, using two different lan-
guage models [2]. One big limitation of the Encoder-Decoder architecture is when
the input sequence is too long to be properly summarized by the fixed-length vector
C, for which this context summary becomes the information bottleneck. A possible
solution can be to use a "big enough" model, trained for "long enough" [12]. Even
though that method has been proven to work, it will result is a needlessly large
memory usage and long computation time when the network has to process short
sentences. In addition, such a network will have many parameters making the train-
ing process even longer and less effective. A more efficient approach to deal with
very long sequences is to use the attention mechanism.

The most popular attention models were proposed by Bahdanau et al., 2015 [18] and
Luong et al., 2015 [2]. While they share the same common idea about attention,
they differ in how the calculations are performed. In the following, the Luong’s
methodology is described. Details on Bahdanau method can be found in [18]
The concept of attention allows the models to be trained to learn the alignment
between the two different language models held in the Encoder and Decoder [2].
The idea is to read the whole sentence, but instead of discarding all the hidden
states of the encoder and preserving only the last one (context summary C ), the
network now creates a dynamic5 memory of the source information, by saving the
Encoder hidden states produced while scanning each word in the input sentence.
Then at decoding time, instead of relying only on the hidden state of the decoder,
the network produces one word at a time, each time "attending" to a different part
of the input sentence. This allows to retrieve semantic information about the actual
part of the context under translation [12] [2].
Further classification on attention models can be done based on the approach they
use: Global, when all the source memory is attended, or Local, when only a subpart
of it is considered at each time step.

5It is said to be dynamic because its size depends on the input sentence. A bigger memory will be
created for long sentence with respect to short sentence. This allows to avoid problems of inefficient
representation.
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Global Attention

The idea in the global attention model is to consider all source memory at each
time step [2].

with D being our parallel training corpus.

3 Attention-based Models

Our various attention-based models are classifed
into two broad categories, global and local. These
classes differ in terms of whether the “attention”
is placed on all source positions or on only a few
source positions. We illustrate these two model
types in Figure 2 and 3 respectively.

Common to these two types of models is the fact
that at each time step t in the decoding phase, both
approaches first take as input the hidden state ht

at the top layer of a stacking LSTM. The goal is
then to derive a context vector ct that captures rel-
evant source-side information to help predict the
current target word yt. While these models differ
in how the context vector ct is derived, they share
the same subsequent steps.

Specifically, given the target hidden state ht and
the source-side context vector ct, we employ a
simple concatenation layer to combine the infor-
mation from both vectors to produce an attentional
hidden state as follows:

h̃t = tanh(Wc[ct;ht]) (5)

The attentional vector h̃t is then fed through the
softmax layer to produce the predictive distribu-
tion formulated as:

p(yt|y<t, x) = softmax(Wsh̃t) (6)

We now detail how each model type computes
the source-side context vector ct.

3.1 Global Attention
The idea of a global attentional model is to con-
sider all the hidden states of the encoder when de-
riving the context vector ct. In this model type,
a variable-length alignment vector at, whose size
equals the number of time steps on the source side,
is derived by comparing the current target hidden
state ht with each source hidden state h̄s:

at(s) = align(ht, h̄s) (7)

=
exp

(
score(ht, h̄s)

)
∑

s′ exp
(
score(ht, h̄s′)

)

Here, score is referred as a content-based function
for which we consider three different alternatives:

score(ht, h̄s)=

⎧
⎪⎨
⎪⎩

h⊤
t h̄s dot

h⊤
t Wah̄s general

v⊤
a tanh

(
Wa[ht; h̄s]

)
concat

yt

h̃t

ct

at

ht

h̄s

Global align weights

Attention Layer

Context vector

Figure 2: Global attentional model – at each time
step t, the model infers a variable-length align-
ment weight vector at based on the current target
state ht and all source states h̄s. A global context
vector ct is then computed as the weighted aver-
age, according to at, over all the source states.

Besides, in our early attempts to build attention-
based models, we use a location-based function
in which the alignment scores are computed from
solely the target hidden state ht as follows:

at = softmax(Waht) location (8)

Given the alignment vector as weights, the context
vector ct is computed as the weighted average over
all the source hidden states.6

Comparison to (Bahdanau et al., 2015) – While
our global attention approach is similar in spirit
to the model proposed by Bahdanau et al. (2015),
there are several key differences which reflect how
we have both simplified and generalized from the
original model. First, we simply use hidden states
at the top LSTM layers in both the encoder and
decoder as illustrated in Figure 2. Bahdanau et
al. (2015), on the other hand, use the concatena-
tion of the forward and backward source hidden
states in the bi-directional encoder and target hid-
den states in their non-stacking uni-directional de-
coder. Second, our computation path is simpler;
we go from ht → at → ct → h̃t then make
a prediction as detailed in Eq. (5), Eq. (6), and
Figure 2. On the other hand, at any time t, Bah-
danau et al. (2015) build from the previous hidden
state ht−1 → at → ct → ht, which, in turn,

6Eq. (8) implies that all alignment vectors at are of the
same length. For short sentences, we only use the top part of
at and for long sentences, we ignore words near the end.

Figure 2.15: Global attention, picture taken from [2]

The attention computation happens for each Decoder step, performing the following
sequence of operations:

1. The current target hidden state h(t) (of the Decoder) is compared to the source
memory6 (which comprises the list of the Encoder source hidden states h(s))
to derive the variable-length alignment vector at, or similarly called attention
weights. Its size matches the source memory size. This alignment vector tells
how much the network should focus on a particular source word for the current
time step in order to predict the next word in the output sequence [15]

2. Given the attention weights, the network calculates a context vector ct as a
weighted sum over the whole source memory

3. The attention vector h̃t is generated by combining the context vector with
the target hidden state

6For each word in the input sequence, a new Eecoder hidden state is calculated and then appended in
the source memory
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4. The output probability distribution is finally produced by feeding the attention
vector through the softmax layer

Equation 2.15 shows how the attention weights vector is generated, as mentioned in
Step 1. As this formulations is similar to the softmax, this vector is composed of K
values (where K is the source memory size), where each entry is in range (0,1] and
all entries sum up to 1

at(S) = align(h(t), h(s))

= exp(score(h(t), h(s)))∑
s′ exp(score(h(t), h(s)))

(2.15)

Equation 2.16 shows the different scoring functions used to evaluate which part
of the source memory the Decoder has to attended in order to generate the next
output word. The last formulation was introduced by Bahdanau et al., 2015 and
it was proven that even thought it is more computationally complex, it is slightly
more accurate with respect to the multiplicative one proposed by Luong et al., 2015
[19].

score(h(t), h(s)) =


hT(t)h(s), dot

hT(t)Wah(s), Luong′satt(multiplicative)
vTa tanh(W1h(t) +W2h(s)), Bahdanau′satt(additive)

(2.16)

Equation 2.17 shows the weighted sum used to create the context vector, as men-
tioned in Step 2. Here the previously generated alignment vector is used to scale
the source memory.

ct =
∑
s

at(S)h(s) (2.17)

Equation 2.18 shows how the current Decoder hidden state h(t) is fist concatenated
with the context vector, then scaled by the weights matrix and finally squashed by
the tanh function, in order to produce the attention vector. As detailed in Step 3,
this is used to combine information coming from the Encoder source memory and
the currently processed Decoder input.

h̃t = tanh(Wc[ct;ht]) (2.18)
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yt

h̃t

ct

at

ht

pt

h̄s

Attention Layer

Context vector

Local weights

Aligned position

Figure 3: Local attention model – the model first
predicts a single aligned position pt for the current
target word. A window centered around the source
position pt is then used to compute a context vec-
tor ct, a weighted average of the source hidden
states in the window. The weights at are inferred
from the current target state ht and those source
states h̄s in the window.

goes through a deep-output and a maxout layer
before making predictions.7 Lastly, Bahdanau et
al. (2015) only experimented with one alignment
function, the concat product; whereas we show
later that the other alternatives are better.

3.2 Local Attention

The global attention has a drawback that it has to
attend to all words on the source side for each tar-
get word, which is expensive and can potentially
render it impractical to translate longer sequences,
e.g., paragraphs or documents. To address this
deficiency, we propose a local attentional mech-
anism that chooses to focus only on a small subset
of the source positions per target word.

This model takes inspiration from the tradeoff
between the soft and hard attentional models pro-
posed by Xu et al. (2015) to tackle the image cap-
tion generation task. In their work, soft attention
refers to the global attention approach in which
weights are placed “softly” over all patches in the
source image. The hard attention, on the other
hand, selects one patch of the image to attend to at
a time. While less expensive at inference time, the
hard attention model is non-differentiable and re-
quires more complicated techniques such as vari-
ance reduction or reinforcement learning to train.

7We will refer to this difference again in Section 3.3.

Our local attention mechanism selectively fo-
cuses on a small window of context and is differ-
entiable. This approach has an advantage of avoid-
ing the expensive computation incurred in the soft
attention and at the same time, is easier to train
than the hard attention approach. In concrete de-
tails, the model first generates an aligned position
pt for each target word at time t. The context vec-
tor ct is then derived as a weighted average over
the set of source hidden states within the window
[pt−D, pt+D]; D is empirically selected.8 Unlike
the global approach, the local alignment vector at

is now fixed-dimensional, i.e., ∈ R2D+1. We con-
sider two variants of the model as below.

Monotonic alignment (local-m) – we simply set
pt = t assuming that source and target sequences
are roughly monotonically aligned. The alignment
vector at is defined according to Eq. (7).9

Predictive alignment (local-p) – instead of as-
suming monotonic alignments, our model predicts
an aligned position as follows:

pt = S · sigmoid(v⊤
p tanh(Wpht)), (9)

Wp and vp are the model parameters which will
be learned to predict positions. S is the source sen-
tence length. As a result of sigmoid, pt ∈ [0, S].
To favor alignment points near pt, we place a
Gaussian distribution centered around pt . Specif-
ically, our alignment weights are now defined as:

at(s) = align(ht, h̄s) exp

(
−(s − pt)

2

2σ2

)
(10)

We use the same align function as in Eq. (7) and
the standard deviation is empirically set as σ= D

2 .
Note that pt is a real nummber; whereas s is an
integer within the window centered at pt.10

Comparison to (Gregor et al., 2015) – have pro-
posed a selective attention mechanism, very simi-
lar to our local attention, for the image generation
task. Their approach allows the model to select an
image patch of varying location and zoom. We,
instead, use the same “zoom” for all target posi-
tions, which greatly simplifies the formulation and
still achieves good performance.

8If the window crosses the sentence boundaries, we sim-
ply ignore the outside part and consider words in the window.

9local-m is the same as the global model except that the
vector at is fixed-length and shorter.

10local-p is similar to the local-m model except that we dy-
namically compute pt and use a truncated Gaussian distribu-
tion to modify the original alignment weights align(ht, h̄s)
as shown in Eq. (10). By utilizing pt to derive at, we can
compute backprop gradients for Wp and vp. This model is
differentiable almost everywhere.

Figure 2.16: Local attention, picture taken from [2]

Equation 2.19 shows the predicted distribution computed by softmaxing the atten-
tion vector scaled by its weights matrix.

p(yt|y<t, x) = softmax(Wsh̃t) (2.19)

Local Attention

The deficiency of global approach is that the network has to pay attention to all
input words, which is an expensive computation, and it can potentially decrease the
strength of the attention when the input sequence is very long [2]. To address this
flaw, the local attention mechanism proposes to only focus on a small window of the
source memory at each time step.
The attention computation involves the following steps:

• For each target word, at each time step, the model generates an alignment
position pt

• The context vector ct is now generate as a weighted sum over the selected
window of the source memory [ct - D, ct + D], where D is now a parameter of
the network and has to be selected
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h̃t

Attention Layer

B C D <eos> X Y Z

X Y Z <eos>

A

Figure 4: Input-feeding approach – Attentional
vectors h̃t are fed as inputs to the next time steps to
inform the model about past alignment decisions.

3.3 Input-feeding Approach

In our proposed global and local approaches,
the attentional decisions are made independently,
which is suboptimal. Whereas, in standard MT,
a coverage set is often maintained during the
translation process to keep track of which source
words have been translated. Likewise, in atten-
tional NMTs, alignment decisions should be made
jointly taking into account past alignment infor-
mation. To address that, we propose an input-
feeding approach in which attentional vectors h̃t

are concatenated with inputs at the next time steps
as illustrated in Figure 4.11 The effects of hav-
ing such connections are two-fold: (a) we hope
to make the model fully aware of previous align-
ment choices and (b) we create a very deep net-
work spanning both horizontally and vertically.

Comparison to other work – Bahdanau et al.
(2015) use context vectors, similar to our ct, in
building subsequent hidden states, which can also
achieve the “coverage” effect. However, there has
not been any analysis of whether such connections
are useful as done in this work. Also, our approach
is more general; as illustrated in Figure 4, it can be
applied to general stacking recurrent architectures,
including non-attentional models.

Xu et al. (2015) propose a doubly attentional
approach with an additional constraint added to
the training objective to make sure the model pays
equal attention to all parts of the image during the
caption generation process. Such a constraint can

11If n is the number of LSTM cells, the input size of the
first LSTM layer is 2n; those of subsequent layers are n.

also be useful to capture the coverage set effect
in NMT that we mentioned earlier. However, we
chose to use the input-feeding approach since it
provides flexibility for the model to decide on any
attentional constraints it deems suitable.

4 Experiments

We evaluate the effectiveness of our models on the
WMT translation tasks between English and Ger-
man in both directions. newstest2013 (3000 sen-
tences) is used as a development set to select our
hyperparameters. Translation performances are
reported in case-sensitive BLEU (Papineni et al.,
2002) on newstest2014 (2737 sentences) and new-
stest2015 (2169 sentences). Following (Luong et
al., 2015), we report translation quality using two
types of BLEU: (a) tokenized12 BLEU to be com-
parable with existing NMT work and (b) NIST13

BLEU to be comparable with WMT results.

4.1 Training Details

All our models are trained on the WMT’14 train-
ing data consisting of 4.5M sentences pairs (116M
English words, 110M German words). Similar to
(Jean et al., 2015), we limit our vocabularies to
be the top 50K most frequent words for both lan-
guages. Words not in these shortlisted vocabular-
ies are converted into a universal token <unk>.

When training our NMT systems, following
(Bahdanau et al., 2015; Jean et al., 2015), we fil-
ter out sentence pairs whose lengths exceed 50
words and shuffle mini-batches as we proceed.
Our stacking LSTM models have 4 layers, each
with 1000 cells, and 1000-dimensional embed-
dings. We follow (Sutskever et al., 2014; Luong
et al., 2015) in training NMT with similar set-
tings: (a) our parameters are uniformly initialized
in [−0.1, 0.1], (b) we train for 10 epochs using
plain SGD, (c) a simple learning rate schedule is
employed – we start with a learning rate of 1; after
5 epochs, we begin to halve the learning rate ev-
ery epoch, (d) our mini-batch size is 128, and (e)
the normalized gradient is rescaled whenever its
norm exceeds 5. Additionally, we also use dropout
with probability 0.2 for our LSTMs as suggested
by (Zaremba et al., 2015). For dropout models, we
train for 12 epochs and start halving the learning
rate after 8 epochs. For local attention models, we

12All texts are tokenized with tokenizer.perl and
BLEU scores are computed with multi-bleu.perl.

13With the mteval-v13a script as per WMT guideline.

Figure 2.17: Input Feeding approach, picture taken from [2]

• Other steps remain unchanged with respect to the global attention

The alignment function can be expressed in different forms as:
Monotonic: the model sets pt = t, assuming that the source and the target are
monotonically aligned. This may not be true in many case, and depends on the
language models used in the network [2].
Predictive: the model use an alignment function to predict the position pt for the
current time step. This function, and its parameters, have to be learned during
training [2].

Input Feed

The attention models proposed till now take decision on the next word indepen-
dently from the previously translated words and previous model alignments. This
solution is suboptimal, since the model loses track of the evolution of the sentence
[2]. To address this drawback, Luong et al., 2015 in their paper proposed the input
feeding approach in which the attention vector h̃t of previous time step and the
current input are concatenated and used to calculate the next alignment decision
[2].
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2.4.9 Word Sampling

In the previous sections, it has been explained how the model is able to generate
an output probability distribution p(y|x) of each world (over the output vocabu-
lary) being the next word in the sequence, but it has not been elaborated on how it
actually generates the final sentence. The decoding algorithm, and in particular the
Output Sel. part in Figure 2.13, is in charge of sampling the probability distribution
in order to generate the most likely sequence of words.
Finding the most likely translation out of all possible sentences is a NP-complete7

problem, which involves searching through all possible words combinations to iden-
tify the sequence which maximizes its overall likelihood. In order to reduce the
complexity, heuristic search algorithms are used. These methods do not return the
best solution, but rather a "good enough" (approximated) sentence with a reason-
able usage of resources and execution time.
The most used sampling algorithms are Greedy Search and Beam Search.

Greedy Search
It is the problem of generating only the 1-best result. At each time step the model,
based on the output probability distribution, will pick in a "greedy way" the word
with the highest probability and use it as next element of the sentence [15]. The ap-
pealing characteristic of this approach is that it is very fast and it doesn’t introduce
any overhead in the computation. The drawback, however, is that the produced
sentence is suboptimal [15]. In fact, it can be proven mathematically that picking
the most probable word at each time step does not result automatically in the sen-
tence with the overall highest likelihood.

Beam Search
While greedy search will pick the most likely word and move on, beam search instead
can consider multiple alternatives at the same time. This algorithm is characterized
by a parameter called Beam Width - BW, which corresponds to the number of
considered sentences during each decoding step.
The algorithm first starts by expanding from the root node, generally the start-of-
sentence token (received after the encoder emitted the EOS). The model generates
an output probability distribution for each word in the vocabulary and then it only
keeps the best-BW, while pruning the other with lower probability. At the next it-

7The search problem is exponential to the length of the output sequence and so, it is impossible to
explore the whole space
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eration, the decoder will start expanding from each of the previously selected words
(corresponding to the continuation of the first step hypotheses), temporary creat-
ing BW × vocab_words probabilities for all possible partial sentences. Only the
best-BW will be taken, while the others are pruned, such that the number of live
hypotheses is kept constant throughout the whole translation. The process then
repeats until all beams have reached the <EOS> symbol (or maximum allowed
length), when the translation is stopped [15]. The final output sentence is selected
as the one with the overall highest likelihood.

Dec

Dec
Dec

Dec

ŷ 1 
(e

r)

Em
b

Em
b

Em
b

Dec
Dec

Dec

Em
b

Em
b

Em
b

Dec
Dec

Dec

Em
b

Em
b

Em
b

ŷ1 (ich)

ŷ
1 (sie)

ŷ2 (mag)

ŷ2 (liebe)

Etc.

ŷ3 (dich)

Step 1 Step 2 Step 3

ŷ2 (liebe)

Out. Sel.

Out. Sel. Out. Sel.

ŷ3 (ihn)

ŷ3 (sie)

Figure 2.18: Beam Search wiyh a beam size of 5

Figure 2.18 above shows the execution of the beam search algorithm with a BW of
3. Each layer in the figure correspond to an iteration of the decoding, where only
the 3 "partial sentences" with the highest probability are kept. In the first iteration,
identified with Step 1, the Decoder (only conditioned with the context vector re-
ceived from the Encoder) will generate the probability distribution for all the words
to be the first in the sentence. In the example "ich" and "sie" were selected, and from
those, the second expansion is performed. In Step 2, 3 × vocab_words alternative
sentences are generated, but, only the 3 best partial sentences are kept alive. In the
example "ich mag", "ich liebe" and "sie liebe" were the hypotheses with the greatest
cumulative likelihood. The process then continues until all beams have reached the
<EOS> character. It is worth to notice that the Decoder and Embeddings layers are
the same already introduced in subsection 2.4.7, executed BW times per iteration.
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It has been proven that a well tuned beam search results in a better quality transla-
tion with respect to greedy search. Furthermore, it is important to notice that when
Beam Search is used, is necessary to keep in memory as many copies of the network
as the Beam Width in order to evaluate different partial sentences concurrently,
resulting in a computationally heavy task for the hardware hosting the network.
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2.5 Metrics of evaluation

Evaluating the quality of the text generated by a RNN during the translation pro-
cess, from one natural language to another, is a partially unsolved research problem.
In the following, an explanation of the most commonly used metrics is provided.

2.5.1 BLEU

The Bilingual Evaluation Understudy - BLEU is a commonly used measure
to evaluate machine-translated text. This algorithm offers an cheap and inexpensive
metric to perform this task [20].
The principle behind this metric is to quantify the similarity between the output
produced by the network and the golden reference generated by a professional human
translator (it could be either a single sentence or a set of reference translations).
BLEU uses a modified version of the precision8 measure. This method works by
counting the number of translated words (unigrams) or aggregations of words (n-
grams) from the network output which appear in the reference translation sentence.
This comparison is performed regardless of the order in which words occur, and
then it is normalized by the number of total words in the generated sentence [20].
Moreover, the precision counting methodology is modified to reward candidate trans-
lations which also match the right number of words occurrences in the reference text,
penalizing sentences with an abundance of matching n-grams. Since precision can
be highly influenced by too short translation candidates, the BLEU score includes
a multiplicative brevity penalty factor B. For the B factor calculation, let c be the
length of the candidate translation and r the length of the reference sentence:

B =

1 if c > r

e1−r/c if c ≤ r

Then the BLEU can be computed as:

BLEU = B· exp( 1
N

N∑
n=1

log pn)

where pn is the modified n-gram precision.
BLEU output is in the interval [0,1], 0 meaning perfect mismatch, while 1 refers

8In the context of pattern recognition and binary classification, the precision corresponds to the number
of the true positive (or relevant) elements among all selected elements.
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to the perfect match (unreachable). It is intended to score at sentence level, but a
modified version can also be used to score blocks of multiple sentences.

2.5.2 PPT

The Perplexity can be considered as the measure of how many equally probable
words can follow a given word, and so it can be thought a sort of "confusion" of the
model while predicting the next word in the sentence. This estimation allows to
measure how the language model, learned during the training phase, is capable to
predict a given dataset and how the vocabulary has been compressed. Mathemat-
ically, for a training set W = (w1, w2, ..., wN) (where N is the vocabulary size), it
can be expressed as:

PP (W ) = P (w1, w2, ..., wN) 1
N = 2L

where L is the negative log probability of the cross entropy error function (defined in
section 2.2 and subsection 2.4.3 as the cost function). An inefficient language model
would have a Perplexity equal to the vocabulary size N, meaning that each word
in the vocabulary is equally probable to be the next word in the sentence. This is
not the case in real language, where words have not the same probability to appear
close to each other due to grammar rules and sentence meanings. So, a well trained
language model should have a low Perplexity.
However, Perplexity is not a definite way to estimate the quality of a language
model, since it closely depends on its training set, but it can be equally useful as a
metric for comparing language models.

2.5.3 ROUGE

The Recall-Oriented Understudy for Gisting Evaluation - ROUGE is
another metric for evaluating machine translated texts and automatic summariza-
tions of texts. It works, similarly to the BLEU score, by comparing the machine-
generated text (either translation or summary) and the human-generated golden
reference. The most commonly used ROUGE evaluation metrics are:

• ROUGE-N: which measures the overlap of N-grams between the system and
reference text

• ROUGE-L: which is based on the longest common suqsequences, it is used to
evaluate the sentence similarity
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• ROUGE-S: which measures the overlap of words pairs that can have a maxi-
mum number of "gaps" between them

Instead of simply evaluating "how much of the reference text has been captured
during the process" (which can result in a poor and wrong estimation of the perfor-
mances of the model), the ROUGE is able to evaluate "how much of the system text
is relevant/needed with respect to the reference text". This is useful to cope with
the characteristic of bad machine-generated texts to be very long, capturing useless
words from the reference.



Chapter 3

Related Works

Deep Neural Networks are currently broadly used to support many Artificial
Intelligence applications such as computer vision, speech recognition and robotics.
While they are able to provide state-of-the-art accuracy in those applications, it
comes at the cost of very high computational complexity and energy required by
the system. This problem becomes even more present when these applications are
executed to embedded hardware devices, i.e. edge nodes for IoT or mobile devices,
where the hardware resources and the power budget are limited. As a natural con-
sequence, the development of energy efficient DNN architectures able to guarantee
state-of-the-art results without effecting the quality is critical to the future develop-
ment of new DNN based applications [7].
One step toward energy efficient Neural Networks has been accomplished by the
introduction of dedicated hardware accelerators [21] [22] [7] on both FPGA [23] and
ASICS [5]. Different approaches have been proposed, targeting different aspects,
both at circuital level and architectural level in order to optimize the most energy
consuming operations. Although these designs are able to deliver very good perfor-
mances in term of accuracy and energy efficiency, the vast majority of those focus
on DNN or CNN architectures, while very few have been proposed to improve the
efficiency of RNNs [9] [10].
At the algorithm level, previous works showed the successful application of approxi-
mate computing techniques to further reduce the complexity of the models, trading
off lower quality of results for lower energy consumption [7]. Indeed, approximate
computing could be seen as another source of computing efficiency playing alongside
conventional techniques, on a different abstraction level. This paradigm can be ef-
fectively applied to all applications in which the "correctness" of the produced result
does not mean providing a precise numerical answer, but rather presenting "good
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enough" results for the purpose of the application itself. Examples of approaches
leveraging approximate computing for neural network optimization are:

• reduce the precision of both operands and operations. Examples of this involve
switching from floating-point operation to fixed-point operations and bit-width
scaling

• reduce the number of total operations and the model size. Examples of this
are pruning and model compression techniques

General purpose machines executing DNNmodels generally uses 32-bit floating point
number representations, whereas embedded devices commonly do not have the hard-
ware support to execute these operations. Fortunately, the high precision of floating
point is not always necessary, since the higher energy spent while executing float-
ing point operations does not result in more accurate results [6]. Thus, scaling and
quantizing weights, biases and possibly inputs, could provide a good solution to both
issues. The aspect which is now critical and has to be considered, is to decide how
much the bit-width can be scaled down by switching from 32-bit floating point to
16-bit, 8-bit or even lower fixed point representation without affecting too much the
classification accuracy. This process is usually performed having a knowledge of the
inputs and weights dynamic ranges such that it is possible to define the minimum
bit-with needed to encode all possible values. The granularity of the quantization
can then be set to be uniform (single quantization setting for all the network) or per-
layer (each layer has an ad-hoc quantization setting). Examples of previous works
showing the effective execution of these techniques are the [6] and [24]. Moons at
al. [6] have demonstrated how the intrinsic error resilience of machine learning al-
gorithms could be exploited to decrease the bit-width during computation through
quantization. Hubara at al. [24], pushed this idea further, showing how Binarized
Neural Networks, i.e. models whose weights are constraint to take only values 0 or
1, and consequently can be stored with 1 bit of memory, could be effectively trained
and how most of the arithmetic operations could be replaced with bit-wise opera-
tions, potentially leading to a substantial increase in power-efficiency. In addition
to reducing the size of both operands and operations, many works have also studied
how to reduce the number of total computations and model size. One solution pro-
posed is to exploit the sparsity of ReLU output activations (many negative values
are set to zero) for skipping the read operation of the weights and the following MAC
for zero-valued activations [7]. Many works have also demonstrated how redundant
weights in the network can be pruned in order to reduce the model size and also
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speed up computations for both the forward and backward pass [25] [7].
Most of the studies presented above implement static energy-vs-quality tradeoff, in
which the level of approximation is decided at design time and then kept constant
throughout the entire execution. Only recently, dynamic approaches have been
proposed, leveragin the observation that, for some applications, not all inputs are
equally difficult to process. In such scenario, networks with a fixed level of approx-
imation would either overapproximate where inputs are more difficult, producing
poor results or underapproximate when inputs are easier, resulting in a waste of
energy. Park et al. [11] in their work suggest a "Big/Little" implementation, where
the network is duplicated, but with different size and complexity. When the network
receives a new input, at first the "Little" (least complex) network is evaluated. Ac-
cording to the confidence of the classification produced, the result is committed as
it is, or the "Big" network is triggered to provide a more accurate classification. The
advantage in terms of reduced energy consumption comes when the Little network
is executed most of the times. However, the major limitation of this approach is
that the model embeds two complete networks, meaning that both size and train-
ing time are substantially increased. To cope with these problems, Tann et al. [5]
propose a similar method in which there is only one Big network, which is fully
or partially activated according to the different input constraints (i.e. delay and
allowed power consumption). Finally, JahierPagliari at al. [8] in their work propose
another methodology for adaptively reconfigure the network precision at runtime.
In contrast to Park et al. they do not duplicate the network, but rather they use
different quantization configurations for the same model, selecting the most appro-
priate one for the currently processed input, thus without introducing any hardware
overhead. Works [11], [5] and [8] are based on the idea that inputs are not equally
difficult to process, and so, based on the level of confidence during the classification
and on the input constraints, the network could be reconfigured at runtime to match
the input characteristics.

In literature there many studies exploring different architectures to improve the
performances and accuracy of popular RNNs models. Many of those do not take
into account the increment of complexity and computational power required to ob-
tain such results. Only a small fraction focusses on energy efficient optimizations
for RNNs architectures. Joachim Ott at al. [26] in their work propose to limit
the numerical precision of the network weights and biases (another application of
approximate computing introduced before) in order to reduce the computational
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needs, achieving good results in specific dataset. Moreover, in [27] and [28] they
both brought up the possibility to modify the beam search algorithm by making it
dynamically adjustable in size.
Even though their approach is similar to the methodology proposed in this work,
they differ in the discriminating criterion used during the adaptation of the beam
width. Moreover, the presented methodology, as also the ones presented in [27] and
[28], belongs to the dynamic approaches previously introduced, operating at the al-
gorithmic level, such that no hardware overhead is introduced.
This thesis proposes a methodology which has been successfully tested on a single
core CPU (to better evaluate the behavior of the modified architecture on embedded
devices), but it can also be applied in the presence of dedicated hardware accelera-
tors, as the ones presented in [9] [10]. In fact, the presented approach reduces the
number of total Decoder calls, thus providing improvements either if the Decoder is
implemented on CPU or on specific hardwares, e.g. FPGA.



Chapter 4

Dynamic Beam Search

4.1 Motivation

Many machine learning powered applications are supported by cloud based dat-
acenters equipped with high-end clusters of GPUs. The application sends a query,
servers elaborate it and send back the result, resulting in a very low effort for the
host. However, this solution is inefficient, as a significant amount of energy and
time are spent in the transmission of data to/from the end-node from/to the cloud.
The general goal of this work is thus to propose a methodology for reducing the
complexity of the inference process, such that RNNs could be implemented directly
on low-power embedded devices, with limited hardware resources and energy budget.

At the beginning, a network characterization process was necessary. This operation
was meant to identify the bottlenecks and the most demanding computations, such
that it could be possible to focus on them directly.
The characterization phase was carried out using the profiling tools made available
by the used frameworks (see subsection 5.1.2 for more details about frameworks),
on pre-trained models (subsection 5.1.1 explain the choice to use pre-trained models
instead of training new ones). In the list below are reported all models tested during
this phase:

• Tensorflow - NMT Tutorial [34]

• Tensorflow - seq2seq [35]

• PyTorch - OpenNMT (DE-EN and DE-EN models) [36]

As explained in the guide [37], in order to profile Tensorflow based networks, the
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timeline module can be used. By adding a specific run option, during the tf.Session(),
it was possible to perform the profiling of the network full execution, and to save
all information about operations and relative execution times in a timeline.json
file. This file can then be opened with a Chrome browser, by going to the page
"chrome://tracing" and loading it. On this webpage it is now possible navigate
trough the execution history, analyzing the order in which different operations are
performed, with relative execution times, and how information are passed between
different modules.
In order to profile PyTorch based networks, the profilehooks package can be used. It
provides a collection of decorators for profiling/timing/tracing individual functions.
It is only needed to add @profile before the function of interest, and the results
(name of function, number of calls and execution time) will be printed when the
program exits.
Figure 4.1 and Figure 4.2 below show the results for the Tensorflow based models
after the timeline files have been properly parsed, highlighting the most important
parts in both the Encoder and Decoder process.

Figure 4.1: Nmt executions times

It is clear that the Encoding takes only a small fraction of the whole execution time,
which is mostly due to the Decoding and in particular to the Beam Search.
To understand the growth trend of complexity of the beam search algorithm, many
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Figure 4.2: Seq2seq executions times

different tests on the models have been performed, each time modifying the beam
width and evaluating both execution time and the gain or loss in the quality of
results. Figure 4.3, Figure 4.4, Figure 4.5 and Figure 4.6 shows the collected results
concerning the execution times.
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Figure 4.3: Nmt Beam Search complexity trend
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Figure 4.4: OpenNMT Beam Search complexity trend

Figure 4.5: OpenNMT Beam Search complexity trend DE-EN model

All results proposed refer to the execution of the models on single-thread CPU.
This aims to emulate how a low-power embedded hardware, generally equipped
with single-thread CPU, would handle the computations and how complexity scales
changing different network parameters, Beam Width in particular. It is clear that,
for all tested beam widths, the Encoding process takes only a small fraction of the
whole execution time, which is mostly due to the Decoding. Furthermore, increasing
the beam width has a dramatic impact on the total number of operations, result-
ing in higher execution time and energy consumption. As it could be expected,
the Encoder execution time is independent from the beam width, remaining almost
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Figure 4.6: OpenNMT Beam Search complexity trend EN-DE model

constant during all tests, while the Decoder execution time grows approximately
linearly with the beam width. In Figure 4.3, Figure 4.4 Figure 4.5 and Figure 4.5
this trend is evident, and in Figure 4.4 it can also be observed the impact of dif-
ferent corpus lengths. In fact, passing from 25K lines to 1M lines, the Enc phase
increases slightly, while the Dec phase varies considerably for the BW = 1 and also
its sensibility to the BW is reduced.

Since each step of the network execution involves multiple calls of the same op-
erations, the CPU power consumption can be expected to remain almost constant
during the translation process. Therefore, one way to reduce the energy consumption
required by the model is to reduce its execution time. In light of proposed results, it
has been chosen to focus on the beam search process, since the BW parameter has
a strong impact on the decoding phase and on the overall execution time. In fact,
having a BW of x is equivalent of performing the decoding process x times. While
in a GPU based application this process can be carried out concurrently, on a single
thread CPU it has to be performed sequentially, so increasing the execution time.
Typical values of BW are in range 3 to > 5, depending on the level of accuracy
required and the processing power available.
Exploring the whole searching space is a NP-complete problem. Exact algorithm,
such as the Depth-First Search and Breadth-First Search are extremely inefficient
since they traverse the entire search tree in order to find the best solution. A consid-
erable improvements for these algorithm is to insert some heuristic in the traversing
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process [27]. The Beam Search algorithm is an optimization of the Breadth-First
Search leveraging on this concept.
As anticipated before in subsection 2.4.9, the Beam Search algorithm is able to ex-
plore the search space by considering multiple alternatives at the same time, finally
selecting the sentence with overall highest likelihood. The Beam holds BW hypoth-
esis (where BW is the beam width) while pruning the others with lower probability.
In standard implementations of the Enc-Dec RNNs, the Beam Width parameter is
chosen statically, before executing the network, in order to guarantee a good level
of translation even for the most complex sentences. This imposes at prior the com-
plexity of the model without taking in account the characteristics of the inputs.
Hence, there can be cases where sentences with poor likelihood are not pruned sim-
ply because there are other sentences with even lower scores. Or viceversa, where
sentences with high likelihood are discarded because competing with other sentences
with relatively higher scores [27].
For this reason, this works proposes novel dynamic Beam Search algorithm, where
the beam width BW is not kept constant throughout the search process, but rather
varied accordingly to the evolution of the translation. This allows the network, at
each step, to self tune the effort required to produce a good translation. The confi-
dence of the network will be assessed after each iteration of the Decoder and then
used as an indicator to adjust the width.

4.2 Objective

All policies proposed leverage on the idea of "translation confidence". This work
tries to estimate the confidence of the network, after each Decoder step, by analyzing
the scores it outputs. As anticipated before in subsection 2.4.7, the decoder outputs
represent the probability of partial sentences, and thus their distribution can provide
good indications about the difficulty of a translation step. This method is based
on the intuitive concept that not all inputs, sentences or part of them, are equally
difficult to translate. For easier inputs, a small BW could be sufficient, while for
more difficult ones a larger BW is needed to obtain a good result. The network is
said to be confident whenever scores are "enough spread", and, conversely, it is said
to be non-confident whenever scores are "close" to each others. Scores really close
indicates similar words (e.g. verbs with different tense, or synonyms), among which
the network strive to pick the best candidates. The estimation of the amount of
dispersion, and so the confidence of the network, is a metric that this work aims to
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evaluate.
The final objective is to propose a discriminating policy able to take produced scores
as input and identify the best beam width to continue the beam search process,
without sacrificing the translation performances. This aims to reduce the amount of
computations required by the Decoder while producing better or comparable results
with respect to a standard Decoder implementing beam search with a fixed width.
Figure 4.7 below shows an example of the proposed Dynamic Beam Search algorithm,
in which the beam width is modified dynamically. In this example in particular, the
second iteration of the Decoder may have produced an output with much higher
score than the others, so the BW is reduced to 1 (high confidence). Conversely, in
the next iteration, the produced scores are more similar and close to each others,
so the BW is increased to 3 in order to cope with a more difficult translation (low
confidence).
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Figure 4.7: Dynamic Beam Search example

4.3 Inference In The Adopted Framework

Before presenting the actual introduced variations of the original architecture, it
is worth summarizing how inference is implemented in the selected neural network
software framework, i.e. the OpenNMT project in its PyTorch implementation (sec-
tion 5.2 for details).
Inference is the process to produce a prediction based on pre-learned parameters,
given a certain input. It is composed of a single forward pass of the network, without
any backpropagation or updating of the weights matrices. The network receives an
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input, elaborates it and outputs a prediction (e.g. a translation). This process is
composed of many steps, and they change according to the network implementation
and task. In the following, the inference process for an Encoder-Decoder RNN will
be summarized, with respect to the target network implementation explained in sec-
tion 5.2. Moreover, the explanation will only consider one sentence at a time, but
the network is capable of analyzing batch_size sentences concurrently, executing
the same steps in parallel for all the inputs. This because, in single-thread CPU
based embedded devices, performing this process with multiple sentences concur-
rently (batch_size > 1) is not convenient, since it requires a parallelism which is
not provided by the CPU (while GPU does) and it also requires much more memory.
At the beginning, after a initialization phase for the internal variables, the Encoder
is executed. It will read step-by-step the input sentence, till the <EOS> token is
reached. As the Encoder progresses forward reading the sequence, the hidden state
will be updated and then used to create the memory of the source information. Its
last hidden state is the context summary C of the whole input sequence and it will be
used as initialization vector for the Decoder. The Decoder of the architecture under
test, implements global attention, input feeding and fixed width beam search. Upon
receiving the <EOS> token from the Encoder, it starts emitting one target word at
a time. For each iteration, at first, the previously predicted output ŷ(t−1) and the
current input are concatenated to make the model aware of the previous alignment
(input feeding). Then, the new attention vector is calculated (as weighted sum over
the whole source memory, as explained in global attention subsection 2.4.8) and
used to produce the output probability distribution (whose size matches the output
vocabulary size) used to select the next words. The beams are then advanced and
the BW most probable alternatives are kept for the next iteration. The Dec process
continues till all the BW beams has reached either the <EOS> token or the maxi-
mum sentence length. At this point, the sentence with the overall highest likelihood
will be committed as output.

The Encoder process is straightforward and it is defined in the "run ENC" box.
When it has completed, it produces as output its final hidden state, named here
as enc_state and the memory of all Enc states, named here memory_bank. The
enc_state is then used to initialize the Dec. Now, the decoding process starts. It is
implement as a loop, checking that neither the maximum sentence length is reached,
nor the beam has finished, before continuing in the computation. Thus, the Dec is
advanced by one step (defined in the "run one DEC step" box), generating as output
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its hidden state, the output distribution after the attention layer and the attention
weights (named here dec_states, dec_out and beam_att respectively). Scores for
each word in the vocabulary are now available and are reshaped to be used in the
following steps. Finally the beam search algorithm is executed. Since the network
is virtually able to work with batch_size sentences at a time, each one having its
own beam, each beam is then treated separately in a sequential manner. The beam
process is composed of two phases, the advance and the update. In the advance
phase, the best-BW scores are selected and the partial sentences with the highest
likelihood are kept for the next iteration, while the others are pruned. Instead of
saving the actual words, the network identifies in the vocabulary the indexes cor-
responding to the previously selected words and append them to a list identifying
the sentence. The beam width BW is a inference parameter, set when the network
is run and kept constant throughout the whole process (e.g. BW = 5 means that
each sentence in the batch would have a beam advancing 5 alternative sentences at
a time). Then, the update phase starts and the Dec hidden states related to the
new BW hypothesis which have been selected are copied into the old dec_states.
This allows the network to start the next iteration from a valid state, corresponding
to the sentence the beam has chosen to carry on.
Once the Decoder process has terminated, the alternative with highest score will be
selected and the beam would be unrolled backward to retrieve the actual sentence,
reconstructing it from the word indexes saved at each iteration.

The implementation proposed by this work follows closely the flow mentioned before,
enhancing it with the introduction of the discriminating policy and the dynamic
adjustment of the beam width.



4.3 Inference In The Adopted Framework 55

Inference

run ENC enc_states
memory_bank

init dec_states
use last 
enc_states
to init decoder

variables init

create (beam) create batch_size beams

run decoder to
generate

sentences

for: i < (max_length)

y

all beam done?

extract
sentences from

beam

n

Prepare input create empty input sequence
batch x beam size next words

n

y

run one DEC step 
dec_out = out of dec after attention
dec_states = final hidden state of dec
attn = distribution over src at each tgt

Compute scores
Compute a vector of batch x beam word scores 
out = score distribution on tgt
beam_att = attention for the beam

for: b in (beam)

Advance beam Given prob over words for every last beam word out 
and attention beam_att: Compute and update the beam search. 

y

Update beam ensure that dec_states are updated with the 
right beams the beam-advance picked from

n

Advance each beam

Figure 4.8: Flow chart of Inference phase



4.4 Proposed Policies 56

4.4 Proposed Policies

In order to explore the optimization space, many different policies have been
tested in this work. It is important to notice that the policy is called at each iter-
ation of the Decoder, before the execution of the beam search algorithm. Also, a
batch size of one is considered, meaning that the beam width is changed dynamically
considering only one sentence at a time. With a bigger batch size, the network will
have different beams, each one related to a different sentence in the batch, whose
beam width will be changed independently, resulting in a very complex task to be
handled. Moreover, as explained, a batch_size of 1 is the most common scenario in
an embedded device.
In the following, a brief explanation of the idea behind each policy will be provided,
as well as its effectiveness compared with a baseline result (see section 5.3 for results).

Generally speaking, all hard-coded parameters (e.g. thresholds) in the proposed
policies can now be treated as hyperparameters of the network. Proposed hyperpa-
rameters were chosen after experimentation on the validation set of the used dataset.
If these policies will be applied in different context and on different networks, it could
be necessary to tune these parameters to achieve similar results.

4.4.1 Random

This policy uses a completely random approach. This does not guaranteed to be
optimal or logical, but rather easy to implement. Most importantly, this policy can
be used as a baseline for comparison for smarter approaches, in order to prove that
their rationale is indeed providing better results than a trivial random approach.
This policy continuously switch the next beam width between 1, greedy decoding,
and 3, point at which BLEU becomes less sensitive with the beam width (as it can
be seen in te baseline results in section 5.3).

4.4.2 Standard Deviation

This policy tries to adapt the beam width according to the statistics of the top-k
scores produced in the current iteration.
It has been chosen to take into account only the best-5 scores (out of all scores,
as many as the vocabulary size) since network instructions suggest 5 as best beam
width, and also it has been proven that BLEU does not increase substantially with
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higher beam width (see section 5.3). Moreover, statistics computed upon the full
scores will be less indicative with respect to statistics computed only on the best next
word candidates. After the best-5 scores have been selected, the policy calculates
the standard deviation and the mean for the current iteration and then it changes
the beam width accordingly. Different implementations of this policy have been
proposed, also considering the distribution either as Normal or Uniform1. It has
been chosen to use the standard deviation since is a statistical measure to evaluate
the dispersion of a dataset. In the following, the variants are reported:

• Threshold-based: At each iteration, the beam width is modified starting
from the previous one. If the std. deviation is greater of a certain threshold,
the beam width is reduced by one, otherwise it is increased by one. The
std. deviation is calculated as for a Normal distribution, and the threshold
is decided empirically. To identify good threshold candidates, a histogram
showing possible std. dev. values with relative occurrence rates has been
plotted. A script then has been used to identify the highest std. dev. value to
cover a certain amount of occurrences (e.g. for the iwslt14 dataset, with a std
of 1.23 the 40% of values are covered).

• Mean ± Std. Dev.: At each iteration the beam width is set to be 5 (min-
imum confidence and higher effort for the next iteration). Then, it will be
decreased by one for each score which lays out of the boundaries defined by
mean±std.dev., and increased by one for each score laying inside these bound-
aries. This policy tries to evaluate how scores are spread around the expected
value (the scores mean). The boundaries have been changed by using different
fractions of the std. dev., i.e. 1/2, 1/3. The std. dev. is calculated as for a
Normal distribution and Uniform.

4.4.3 Mutual Distance

This policy modifies the beam width based on the mutual distances between best-
5 scores. For each iteration, the distances between consecutive scores are calculated
as well as the mean distance. Starting from an initial beam width of 5, it will be
decreased by one for each length greater then a threshold. It has been chosen to use
the distance as a measure of the dispersion of the best-5 scores because the more
the points are distant to each other, the more the dataset is spread out, meaning
that the network is confident. Different thresholds have been tested:

1Normal and Uniform distributions differ in the computation of the standard deviation.
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• Mean: The threshold is the mean of the distances (also fractions of the mean
has been tested). The downside of this comparison is that it does not take into
account the actual value of the distances, but rather the relation between the
mean and the subject distance, resulting in a "mask" of the actual magnitude.
Thus, set of very close scores, similarly separated, could result in the same
behavior of a set having scores very spread out, but similarly separated too.

• Real Number: The threshold is a real number describing "far enough" scores.
To identify good threshold candidates, a histogram showing possible distance
values with relative occurrence rates has been plotted. A script then has been
used to identify the highest length to cover a certain amount of occurrences
(e.g. for the iwslt14 dataset, with a length of 0.127 the 40% of length values
are covered).

• Distances Distribution: This policy is a variant of the Mean ± Std. Dev.,
introduced in section before. Instead of comparing the scores with their std.
deviation, here the policy uses mutual distances and their relative std. dev.

4.4.4 Score Margin Like

This policy is inspired by the Score Margin based approach used in the article [8]
and [5]. They assess the classification confidence of a CNNs by using the so called
Score Margin2 - SM, and reconfigure the hardware accordingly. Here, instead, the
score margin is computed as the absolute difference between the best-BW scores. At
the beginning of each iteration, a minimum beam width is set and the scores of the
best-5 are selected. The policy (labeled as SM V3) is implemented as a while loop
which will increase the minimum beam width whenever the current beam width is
lower than five (upper limit in the worst case scenario) and the SM between the
scores under inspection is lower then a threshold. As the while continue executing,
it increases by one the beam width and compute again the SM with the next couple
of scores (such that the next iteration will compare the second ond third scores,
ecc), otherwise the current beam width is returned. This approach starts with a
minimum tolerable beam width, under which the network would perform poorly,
and increases it only when it is necessary, meaning that the network is not confident
and needs a bigger beam width to continue the translation process.
Other variants of this policy have been tested, modifying the comparison window
(e.g. comparing the first highest score with lower scores each time the minimum

2Defined as the absolute difference between the the first and second highest output values.
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beam width is increased, labeled as SM V2), or introducing and hard threshold in
the first comparison to identify when the network is very confident about the first
two scores (labeled as SM V1).

4.4.5 Std Mapping Function

This policy is a variant of the policy proposed in subsection 4.4.2 because it also
uses the standard deviation as indication of the network confidence for the currently
processed input. This policy has proven to be the most effective, compared to the
previously proposed policies, so it has been decided to explore it in more details.
A line equation is used to formalize the relationship between the std. deviation and
the future beam width. The std. deviation is used as the independent variable for
this line equation, which identifies min and max beam width and all integer points
in the middle. The equation will return a point corresponding to the next beam
width (rounded at closest integer) according to the current std. deviation, calcu-
lated for the best-5 scores. Large values of std. dev. mean that the scores are very
spread out, so the network is considered confident and it will return a small value
for next beam width. Conversely, small values of std. dev. mean the network is
non-confident, so it will return an higher value for the next beam width. The std.
dev. is calculated as for a Normal distribution, and the line equation is defined
also empirically. Moreover, as anticipated in subsection 4.4.2, during the inference
process of the original network with fixed BW, the values of the std. dev. as well
as their relative occurrences have been collected and analyzed since they provide a
good starting point for exploring the parameters space.

The tunable parameters of this policy are :

• The two points that define the mapping function: each of these points corre-
sponds to a pair of values in the std. deviation-BW plane. The first point
(0,maxBW) gives the worst case beam width when the network is extremely
non-confident with the produced scores. Zero or near-zero std. deviation value
means that the scores are excessively close, requiring high value for the BW
in order to produce good results. The second point (maxSTD, minBW) gives
the minimum beam width when the network is really confident. The maxSTD
value defines the threshold for which the network is allowed to use the minimum
beam width, while still performing properly. Trying different configurations of
these points allowed us to experiment different behaviors of the policy, resulting
in different degrees of approximation and BLEU - Avg_beam_width results.
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Reasonable values of the BW could be 1-2 for the minBW and 2-3-4 for the
maxBW according to the quality of results needed and the expected model
complexity.

• Rounding technique: the beam width returned by the mapping function is
generally a float value, but the network requires an integer value as next beam
width. Both rounding and truncation have been tested as rounding techniques,
resulting in less aggressive and more aggressive (respectively) policy.

maxBW

minBW

Beam	Width

minSTD maxSTD Std.	Deviation

Background Std.	Deviation	distribution
Std.	mapping	function

Figure 4.9: Beam Width selection policy

The Figure 4.9 above shows the working principle of this policy. The vertical axes of
the graph reports the Beam Width (which may vary between maxBW and 0), while
the horizontal axes reports the standard deviation values and, on the background,
it is presented the rates of occurrences of the std. dev. values. In the minSTD and
maxSTD interval, the BW is reduced linearly as the std. dev. increases, while it is
saturated for values lower than minSTD and greater than maxSTD.

4.4.6 Practical modifications to the adopted software framework

Among all features and files offered by the OpenNMT toolkit (see section 5.2),
the contribution of this work focuses on a subset of those. In the following, a brief
explanation of the most important files, with their functionalities will be provided,
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as well as the changes introduced.

translator.py: It is the core of the translation process. According to the input
commands provided while executing the network, it loads the desired model pa-
rameters, build the selected network, prepare input data and finally instantiate one
object of the Translator class. This object will then handle all the elements involved
and carry out the translation.
The contributions on this part are:

• The memory of the Enc states has been made dynamic in size, matching the
beam width currently used in the iteration.

• Implementation of the dynamic beam width selection policy before the execu-
tion of the beam search algorithm. According to the produced scores, it defines
the best new beam width to be used in the coming beam search iteration.

• The beam.advance function has been modified to accept as input the new beam
width and to return a tuple containing the newly generated decoder hidden
states.

• The Dec has been made adaptive to the new beam width. This allows to
advance only the number of beams decided by the policy. Also, the Dec hidden
states, scores and backpointers will now adjust their size accordingly.

• For each beam advanced, the new Dec hidden states produced (related to the
beams that have been selected to be carried on) are saved in the new_batch_state
variable. When all beams have been advanced successfully, their states are up-
dated by the function dec_states.from_list. The old dec_states and Dec hid-
den states are replaced by the previously saved states, such that the network
is able to start the next iteration from a valid state.

1 # (c) Advance each beam.

2 new_batch_state = []

3 for j, b in enumerate(beam):

4 # advance each Beam for each sentence in the input_batch

5 b.advance(out[:, j],

6 beam_attn.data[:, j, :memory_lengths[j]], ...

new_beam_size)

7 # save the new_decoder_states computed with the new beam size

8 new_batch_state.append(dec_states.beam_update(j, ...

b.get_current_origin(), beam_size))
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9 # update the decoder_states

10 dec_states.from_list(new_batch_state, beam_size, new_beam_size)

11

12 # assign new beam size after all beams in batch have been advanced

13 beam_size = new_beam_size

14 # save the currently used beam_size for statistics

15 beam_size_counter += beam_size

Listing 4.1: Beam Advance part - in translator.py

• The network will output the mean beam width used during the translation of
each sentence. This will be used to estimate the mean beam size used during
the whole process.

• The network is now able to receive as input parameter the policy to be tested,
such that the experimentation process is easier and faster.

decoder.py: It defines the class and functions related to the attention-based de-
coder. This is the decoder used in the model to perform the DE-EN translation.
The contributions on this part are:

• Modified the beam_update function. Now it returns a tuple containing the
newly generated Dec hidden states. These states will be used in translator.py,
as mentioned above.

• Implementation of from_list function, specific for RNNDecoderState Dec states.

1 # internal dec_states are: self.hidden[0], self.hidden[1] and ...

self.input_feed

2 def from_list(self, new_batch_state, beam_size, new_beam_size):

3

4 size =self.hidden[0].size()

5 batch_size = size[1] // beam_size

6 # create a the new dec_state, just a matrix filled with zeros ...

and already with right dimensions

7 self.hidden = (torch.zeros(size[0], batch_size * new_beam_size ...

, size[2], dtype=self.hidden[0].dtype, ...

device=self.hidden[0].device),

8 torch.zeros(size[0], batch_size * new_beam_size , size[2], ...

dtype=self.hidden[0].dtype, device=self.hidden[0].device))

9 # create a state view as done in the function beam_update, ...

this can be seen as a "pointer" to the new dec_state ...

("aliasing" ion python)



4.4 Proposed Policies 63

10 h0view = self.hidden[0].view(size[0], new_beam_size, ...

batch_size, size[2])

11 h1view = self.hidden[1].view(size[0], new_beam_size, ...

batch_size, size[2])

12

13 size = self.input_feed.size()

14 batch_size = size[1] // beam_size

15 self.input_feed = torch.zeros(size[0], batch_size * ...

new_beam_size , size[2], dtype=self.input_feed.dtype, ...

device=self.input_feed.device)

16 infview = self.input_feed.view(size[0], new_beam_size, ...

batch_size, size[2])

17

18

19 for i, new_state in enumerate(new_batch_state):

20 h0, h1, inf = new_state

21 # copy data related for the sentence we are currently ...

analyzing [:,:,i]

22 # doing the copy_ on the state view will also update the ...

pointed dec_state

23 h0view[:,:,i].data.copy_(h0)

24 h1view[:,:,i].data.copy_(h1)

25 infview[:,:,i].data.copy_(inf)

Listing 4.2: from_list function impmementation - in decoder.py

transformer.py: It defines the class and functions related to the implementation
of the "Attention is all you need" decoder. This is the decoder used in the model to
perform the EN-DE translation. The contribution on this part is the implementation
of from_list function, specific for TransformerDecoderState Dec states.

1 # internal dec_states are: self.previous_input, ...

self.previous_layer_inputs and self.src

2 def from_list(self, new_batch_state, beam_size, new_beam_size):

3

4 size = self.previous_input.size()

5 batch_size = size[1] // beam_size

6 # create a the new dec_state, just a matrix filled with zeros and ...

already with right dimensions

7 self.previous_input = torch.zeros(size[0], batch_size * ...

new_beam_size , size[2], dtype=self.previous_input.dtype, ...

device=self.previous_input.device)

8 # create a state view as done in the function beam_update, this can ...

be seen as a "pointer" to the new dec_state ("aliasing" ion python)
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9 piview = self.previous_input.view(size[0], new_beam_size, ...

batch_size, size[2])

10

11 size = self.previous_layer_inputs.size()

12 batch_size = size[1] // beam_size

13 self.previous_layer_inputs = torch.zeros(size[0], batch_size * ...

new_beam_size , size[2], size[3], ...

dtype=self.previous_layer_inputs.dtype, ...

device=self.previous_layer_inputs.device)

14 plview = self.previous_layer_inputs.view(size[0], new_beam_size, ...

batch_size, size[2], size[3])

15

16 size = self.src.size()

17 batch_size = size[1] // beam_size

18 self.src = torch.zeros(size[0], batch_size * new_beam_size , ...

size[2], dtype=self.src.dtype, device=self.src.device)

19 srview = self.src.view(size[0], new_beam_size, batch_size, size[2])

20

21

22 for i, new_state in enumerate(new_batch_state):

23 prev_in, prev_lay_in, src = new_state

24 # copy data related for the sentence we are currently analyzing ...

[:,:,i]

25 # doing the copy_ on the state view will also update the ...

pointed dec_state

26 piview[:,:,i].data.copy_(prev_in)

27 plview[:,:,i].data.copy_(prev_lay_in)

Listing 4.3: from_list function impmementation - in transformer.py

beam.py: It defines the beam object and all functions related to the beam search
process. It handles all beams related to each beam object, back pointers and scores.
It also defines the scoring system used to re-rank all scores after each iteration using
a penalty function. It has been modified to be able to dynamically change the beam
width according to the network needs.

One of the greatest challenge found during this phase was to understand how to
make Encoder and Decoder internal states adaptive in size with the new beam
width (defined at each iteration) and understand how to properly carry on correct
and updated dec_states during the beam advance process.
The parts of the network that have been modified and adapted were selected through
a reverse engineering process, since the network lacks of both documentations and
comments in the code. For the second problem instead, once understood the method
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behind the dec_states.beam_update function (used to update the beam after the
advance phase), the same methodology has been applied to dec_states.from_list
proposed function. It exploits Python Aliasing addressing mode to access and up-
date the dec_states in a more convenient way.



Chapter 5

Experimental Results

5.1 Framework Selection

The Machine Learning paradigm, with everything it involves, is evolving rapidly.
This means that architectures, models, learning algorithms, ecc, are changing con-
stantly based on new trends in the scientific community. Given that, building and
successfully training these networks is becoming an increasingly difficult task.
Nowadays, ML Frameworks have become the standard way to develop ML archi-
tectures, rather than writing the models from scratch. These frameworks provide
a higher abstraction layer, with libraries and tools designed to allow the program-
mer to build his network faster, easier and without worrying about the underling
algorithms. The key features provided are:

• Easy way of building complex computational graph1

• Automatic way to compute gradient on computational graph

• Efficient run on both CPUs and GPUs

In the following sections it will be presented what drove the framework selection
(subsection 5.1.1) and a side-by-side comparison of pre-selected frameworks which
led to the final choice subsection 5.1.2.

5.1.1 Objectives

The main objectives that drove the frameworks selections were:
1As already explained in section 2.4.2, each network can be represented by a computational graph
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• Easy availability of material as: official documentation, tutorials, active sup-
porting community

• Availability of pre-trained models. That because it would be desirable to prove
that the proposed methodology could be applied to ready-to-use models with-
out the need of retraining them. This is a key characteristic because it allows
to tune the effort required by the network according to the energy budget avail-
able (e.g. local vs cloud or current battery level) without each time retraining
the network. Moreover, training a RNNs models would have required weeks or
even a month, so it has been decided to focus on optimizing already trained
models, rather than creating a new one.

• Possibility to profile the network. That because in a context of optimization,
it is important to understand which are the most computationally demanding
parts and how the introduced modifications impact on performances

• Possibility to easily modify the network

5.1.2 Framework Comparison

For the sake of this work, two frameworks have been evaluated: TensorFlow and
PyTorch. This is because they are the most popular, widely used, well supported
and documented currently available. In the following, their main differences are
listed and compared.

TensorFlow is based on Theano and has been developed by Google, whereas Py-
Torch is based on Torch and has been developed by Facebook. Even though they
both use Python, their internal cores are based on C++ and CUDA (for GPU exe-
cution). Both are designed and optimized to execute efficiently on CPUs and GPUs.

Both frameworks use a computational graph to define the network, but they differ
in the way they build it. TensorFlow uses static graph, while PyTorch uses dynamic
graph. In TensorFlow the computation is usually divided in two stages. At first
the computational graph is statically defined, then computations are ran as many
time as it is needed by repeatedly feeding data into the graph. The graph is made
accessible by tf.Placeholders, which provide input or output nodes where data can
be either fed-in or read-out at runtime. The computational graph is then defined
by specifying the sequence of operations to be performed on placeholders, which are
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now treated as symbolic variables. Still no computation is performed. Finally, once
the graph is ready, a tf.Session is opened, data are fed-in as well as the outputs of
interest. TensorFlow now autonomously performs only the needed computations to
produce the output it has been asked for.
In PyTorch instead, the graph can be defined and then modified at runtime, new
nodes can be added and executed when needed, without the demand of placehold-
ers or a Session. This is particularly helpful while using variable length inputs, or
dynamic network architectures that can benefit from this dynamic approach (e.g.
in RNNs).

Since PyTorch is deeply integrated with Python, all Python debuggers as pdb, ipdb
can be used to inspect the execution of the network step by step. This is not the
case for TensorFlow, for which only tfdbg is available. It is important to notice
that debugging in TensorFlow is a difficult operation due to the separation of graph
definition and graph execution, as already explained above.
When it comes to model and data visualization, TensorFlow has a native built-in tool
called TensorBoard, while PyTorch has nothing comparable. TensorBoard allows to
plot the model graph (node’s computation, their connections and information flow-
ing through the network), and to visualize variables with relative distributions and
histograms. This is very useful to better understand what changes in the network
after a modification of some hyperparameters.

TensorFlow is more mature for production models and scalability2. It was built to
be production ready, whereas, PyTorch is easier to learn and lighter to work with,
and hence, it is more indicated for research and building rapid prototypes.

Differences TensorFlow PyTorch
Programming Language Python/C++ Python/C++
Optimized for GPU/CPU GPU/CPU
Graph Definition Static Dynamic
Data Visualization TensorBoard —
Documentation & Community Very Broad Growing
Intention Production Research

Table 5.1: Framework comparison
2Built-in instruction to automatically parallelize a model on a distributed hardware.
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At the beginning, it has been decided to start working with TensorFlow due to
the abundance of pre-trained models, better tutorial/documentation and a more
active community. But, as the work of customizing the network was proceeding,
it has been noticed that TensorFlow was not the right choice. This is due to its
way to statically define the computational graph, which did not allow the runtime
customizations of the model that are necessary in order to modify the width of the
beam at runtime. Therefore, it has been finally decided to implement the proposed
strategy in PyTorch.

5.2 Experimental Setup

5.2.1 Models

OpenNMT [29] is an open source project (MIT) for Neural Machine Translation
and Sequence Modelling launched in December 2016. It currently has three main
implementations in the most popular frameworks: Lua, PyTorch and TensorFlow.
Currently all are maintained and in active development. They implements features
of recent research topics, offered in a compact toolkit with a simple general purpose
interface. The OpenNMT project aims to offer complete library for training and
deploying neural machine translation models with the goal of supporting NMT re-
search, prioritizing efficiency and modularity [29].
Among the pre-trained models made available by OpenNMT, the two considered for
this work are: English-to-German, and the German-to-English, hereafter referred as
EN-DE and DE-EN respectively.
The English-to-German model was trained using the WMT15 dataset, and it is
composed of 6 layes of 512 LSTM each, implementing the Transformer3 as basic
units and using BPE4. The German-to-English model, instead, was trained using
the IWSLT14 dataset, and it implements 2 layes of 500 LSTM each, word embedding
of size 500, bidirectional encoder, attention and input-feed decoder. Both model use
Beam Search in the last stage to sample words.

5.2.2 Computing Platform

In order to quickly evaluate the effectiveness of the policies, all experiments
needed to identify the best sets of parameters have been performed on a desktop

3Architecture proposed in "Attention is all you Need", by Google Brain
4Byte Pair Encoding, a simple data compression algorithm in which common pair of consecutive bytes

are replaced with a new byte which does not occur in the data.
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workstation equipped with a NVIDIA Titan XP GPU , whereas the measurements
of execution time have been performed on a laptop equipped with an Intel Core i7
CPU and 32GB of RAM. Even though the reported execution times would not be
representative of an actual implementation on a real embedded device, the presented
trend could be a valuable approximation. This because, as mentioned before, the
network has been forced to work with only one sentence at a time (batch_size = 1)
and it has been executed on a single-thread CPU, which is the common scenario for
an embedded device.
All tests have been performed on the validation set of the dataset used during the
training phase and the BLEU, PPL and ROUGE scores have been used as the
metrics to evaluate the time (or complexity) versus quality tradeoff. This is because
the policy can now be considered as an additional network hyperparameter.

5.3 Results

Before assessing the effectiveness of the proposed policies, it is necessary to iden-
tify a baseline measure of the performances of the OpenNMT network without any
modifications. The methodology applied consists of running many translations of
the same dataset with different beam widths and register each time the BLEU, PPT
and ROUGE scores obtained. It has been decided to test beam width form 1 to 5.
Figure 5.1, Figure 5.2 and Figure 5.3 below show the baseline results for the scores
considered. For the first pair of graphs, on the horizontal axes the Average Beam
Width is presented. Since the model is executed with fixed BW, it corresponds to
the actual selected BW for the execution. The other two pairs, instead, present on
the horizontal axes the Normalized execution time, i.e. the execution time of the
network divided by the one of the original network with BW = 1.
As expected, as the beam width is increased, the BLEU score also increases (larger
is better), the PPL decreases (smaller is better) and the ROUGE increases as well
(larger is better). This shows how the beam search can effectively improve the
translation quality with respect to using only greedy search (BW = 1). Being able
to evaluate concurrently different candidate sentences allows to correct inaccuracies
committed during the process, resulting in a better output. It is important to notice
that, even if the minimum and maximum values (going from BW = 1 to BW = 5)
related to all scores change of a small amount, this correspond to sizable differences
in the translation quality. Furthermore, to an increase of the beam width, corre-
sponds an increase of the execution time required to perform the computations. In
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Figure 5.1: Baseline BLEU
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both models, the greatest improvement of BLEU is between beam width 1 and 2,
which causes an increment of 36% and 37% of execution time respectively. After
this initial boost, the BLEU becomes less sensitive to the beam width, increasing
with a slower trend and eventually flattening. This means that to gain marginal
improvements on the quality of the translation, a great effort is required to the net-
work which is reflected in higher complexity of the model.

Figure 5.4 below shows the different policies applied to DE-EN model with the
IWSLT14 dataset, in which each point in the graph represents the best parameters
setting for the tested policies. For the BLEU score, the target is to produce results
that come closer to the top left part of the graph, area in which for a mid value of
the BW, the BLEU score is very high. Conversely, for the PPL score, the target
is to produce results that come closer to the bottom left part of the graph. It
can be seen that the random approach proposed in subsection 4.4.1 does not work
at all, resulting in the network performing very poorly. This means that to reach
better results, at least comparable with the baseline, more sophisticated policies are
required. The most promising results are obtained with the Score Margin V3 (blue
circle), Mutual distance based (green circle), Normal Mean± Std (diamond black)
and finally the Std. Mapping Function (black circle).
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Figure 5.4: DE-EN policy comparison
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Figure 5.5 below shows the different policies applied to the EN-DE model with the
WMT15 dataset. It can be seen that, also here, random approach does not work
at all. The most promising results are obtained with the Score Margin V2 (cyan
circle), Mutual distance based (green circle), and the Std. Mapping Function (in
black circle).
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Figure 5.5: DE-EN policy comparison

By varying the parameters of the different policies, it has been discovered that
the Std. Mapping Function was the one that provided positive results (i.e. better
than the baseline) more consistently. This is shown in Figure 5.6, Figure 5.7 and
Figure 5.8. The orange triangles represent some of the Pareto points obtained during
the experiments. This time, the Average Beam Width on the horizontal axes refers
to the result of the application of the mapping policy.
The policy has allowed to reach comparable or better accuracy with, on average,
smaller beam width. In the DE-EN model, with BW of 2.347 and 2.869, it has been
possible to reach comparable results with the execution having a fixed BW of 4 and
5. In the EN-DE model, with BW of 3.33, it allowed to reach the highest BLEU
score ever recorded during the tests, while still performing consistently better with
respect to the model executing with fixed beam width. The differences in the results
of the two models is due to the fact that the EN-DE model implements a different
architecture (Transformer) with respect the DE-EN model, which clearly benefits
more of this policy.
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Figure 5.6: BLEU with proposed policy
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Figure 5.7: PPL with proposed policy
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Figure 5.8: ROUGE with proposed policy
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Comparable results are also obtained for PPL and ROUGE metrics, were the pro-
posed Std mapping policy is able to consistently outperform the models with fixed
beam width.

In Table 5.3 and Table 5.2 the considered metrics vs execution time results are re-
ported, formalizing the conclusions already discussed with graphs in sections above.
In particular, Table 5.3, explicits the parameters used while testing the Std mapping
function, with relative points presented in the graph above (orange triangles)

BS EN-DE Enc Exec Dec Exec DE-EN Enc Exec Dec Exec
Fixed BLEU Time [Avg] Time [Avg] Fixed Time [Avg] Time [Avg]
1 32.14 1 1 30.85 1 1
2 32.77 1 1.35 31.55 1 1.31
3 33.02 1 1.54 31.73 1 1.34
4 32.93 1.1 1.75 31.80 1.09 1.55
5 33.05 1.14 1.91 31.81 1.11 1.72

Table 5.2: Normalize BLEU and execution time results with fixed BS

RNN
minBW/
maxBW

minSTD/
maxSTD

Avg.
BW

Ex.
Time BLEU PPL ROUGE

EN-DE

1/2 0.1/2.2 1.36 1.13 32.45 1.568 0.5463
1/2 0.1/3.1 1.55 1.17 32.70 1.563 0.5479
1/3 0.1/1.7 1.48 1.13 32.58 1.564 0.5468
1/3 0.1/3.1 2.02 1.37 32.80 1.554 0.5496
2/4 0.1/1.7 2.27 1.40 32.94 1.552 0.5511
2/5 0.1/1.3 2.77 1.51 33.02 1.545 0.5503
2/5 0.1/1.7 3.33 1.59 33.13 1.543 0.8457

DE-EN

1/2 0.1/2.2 1.51 1.17 31.16 1.623 0.5459
1/2 0.1/3.1 1.69 1.22 31.38 1.612 0.5469
1/3 0.1/2.2 1.88 1.27 31.48 1.605 0.5483
1/3 0.1/3.1 2.19 1.34 31.61 1.596 0.5494
2/4 0.1/0.6 2.35 1.34 31.69 1.600 0.5487
2/4 0.1/1.7 2.86 1.51 31.79 1.590 0.5498
2/5 0.1/1.7 3.59 1.54 31.80 1.586 0.7707

Table 5.3: Normalize numerical results

Thanks to the introduced method for evaluating the translation confidence and how
the scores produced after each iteration are spread, the input-dependent tuning ap-
proach described before can be effectively used to dynamically change the beam
width according to the state of the translation process. This allows to reach com-
parable or even better results with respect to an execution of the model with fixed
beam width, but with a lower beam width on average. Considering a single-threaded
software implementation of the considered RNNs, which is the common scenario for
an embedded device, obtained results translate into a 25% reduction of the total
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execution time required for inference, while maintaining translation quality. This
translates into significant energy savings.
Moreover, beside the execution points defined with fixed beam widths, this approach
provides more power-performance working points in which the network can be exe-
cuted. These points can be varied at runtime by acting on the policy parameters,
in response to external conditions (e.g. battery status in a mobile system).



Chapter 6

Conclusions and Future Works

The increase of computing power required by DNNs, and especially RNNs, makes
these models almost impossible to be executed on embedded devices, where energy
budget and hardware resources are limited. In this work it has been proposed a
methodology for reducing the complexity of the inference process by dynamically
tuning the beam width depending on the currently processed input. It has been
shown that applying the proposed input-dependent dynamic beam width tuning
technique it was possible to speedup the translation process achieving comparable
or even better accuracy, while reducing the average beam width and model com-
plexity. This work describes different policies, then focuses on the most promising
one, which leaves the space to future works for exploring other variants and opti-
mizations. More experimentation should also be performed trying to integrate this
approach to approximate computing techniques (e.g. quantization) to further re-
duce the complexity of RNNs. In addition, the proposed policies could be extended
also on GPU based application, allowing a batch_size > 1. This would allow to
process many sentences at the same time (taking full advantage of the parallelism
offered by the GPUs), while modifying the BW for each one of them, achieving same
benefits explained before. Finally, the implementation of the proposed technique on
an actual embedded device is also part of the envisioned future work.
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