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1.1 Overview
Super resolutionmicroscopyhasbecome,with recent developments, a fundamental
source of data in the field of biology. On top of this, imaging techniques like palm
have been combined with single-particle tracking,17 allowing to reconstruct thou-
sands of simultaneous particle trajectories at increasingly high spatiotemporal res-
olution. With the availability of this large quantity of information, new data ana-
lysis techniques are needed to extract relevant biophysical features that can give
new insights on the biological processes. Existing knowledge from physics and
mathematics can provide a solid base to build a toolset of statistical and analytical
methods to accomplish this goal. Langevin’s equation and stochastic processes, for
example, have been extensively—and successfully—used to model the dynamics of
biological systems24. Likewise, regression and unsupervised learning algorithms
represent a powerful tool to classify the large amount of data produced by single-
particle tracking. Valuable insights can be obtained by carefully joining data driven
methods and theoretical modelling. Either approaches are valid butmay not be suf-
ficient, per se, to reveal the inner significance of certain processes; their combina-
tion can instead provide hints about the deeper mechanisms of life. Redundancy,
for example, seems to be a fundamental principle in many biological processes, as
the joint application of narrow escape model and numerical simulations has sug-
gested21,25,2. Yet to be understood problems in biology can benefit hugely from this
twofold approach. Gathering of high resolution datasets paves the way to new and
promisingdiscoveries. On the other hand, data is uselesswithout a solid framework
to analyse and explain it. Overwhelming availability of data can even be counter-
productive, as it makes the extraction of meaningful patterns more complicated.
Dealing with these challenges is going to be, in the very near future, one of the ma-
jor efforts in all fields of scientific research.

In this thesis I will present some results regarding data analysis, modelling and
numerical simulations based on single-particle tracking data. The fil rouge connect-
ing the whole work is the search for explanation of the dynamics of amyloid beta
(Aβ) aggregates in neurons, which are known to be involved in Alzheimer’s dis-
ease4. In this introductive chapter I will briefly review the current knowledge about
Alzheimer’s and the main techniques in super resolution microscopy. In chapter 2
I will present the analysis of spt data. While the dataset used specifically regards
Aβ aggregates, the final aim is to build a general methodological framework to al-
low the extraction of biophysical features from spt recordings in different contexts.
Following the results of the data analysis, in chapter 3 I will reformulate the initial
hypothesis and focus on a model of motion9 involving the endoplasmic reticulum
(er), describing the results of numerical simulations that I developed to better un-
derstand the biological implications of the model.

1.2 Alzheimer’s disease
Alzheimer’s disease is the most common form of dementia in elder adults. As pop-
ulation ages, the death rate due to the disease is steadily increasing. Statistics pub-
lished by the Centers for Disease Control and Prevention show that Alzheimer’s-
related deaths in usa increased 55% between 1999 and 2014,27 making it the sixth
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leading cause of death. The disease causes a progressive loss of brain functions
(neuron deaths) to a point where it impaires basic cognitive skills. Most common
symptoms are memory loss and language impairment.

As of today, the causes of Alzheimer’s are not fully understood by the scientific
community. Despite several clinical trials, no treatment has been proved to be—
even partially—effective in treating the disease. Most scientists agree that probably
there is no single cause for Alzheimer’s, but a combination of several genetic and
environmental factors.

The amyloid hypothesis

A long standing attempt to explain Alzheimer’s disease is the amyloid hypothesis.
One of the most distinctive characteristics of people affected by the disease is the
formation of amyloid-β (Aβ) aggregates in the brain extracellular space (fig. 1.1).
These clumps, known as plaques, are thought to start a cascade process leading to
brain inflammation, cells deaths and synapses dysfunction. Despite solid evidence
proving the association between Alzheimer’s disease and Aβ plaques, the amyloid
hypothesis didn’t lead to any beneficial result in terms of medical therapy.14,16 Vari-
ous treatments targeting Aβ aggregates have been trialled but, even if successful in
dissolving plaques, no effect on patients’ cognitive functions has been observed.10
The general explanation of these disappointing results is that treatments are admin-
istered too late in the disease progression, when plaques have already activated an
uncontrollable cascade of damaging processes. Supporting this idea, it has been
shown that formation of Aβ plaques can begin decades before the manifestation of
symptoms. Despite being often criticised for its failures, the amyloid theory remains
one of the main rational approach in Alzheimer’s disease research.6

Figure 1.1 Illustration repres-
enting Aβ plaques inside the
brain (shown as brown spher-
ical aggregates between neur-
ons). Image courtesy of the Na-
tional Institute on Aging/NIH.

10



1.3 Super resolution microscopy and spt

Figure 1.2 A frame taken from
a fast sim recording. Bright
spots are amyloid beta ag-
gregates moving inside a cell.
The trajectory of one of them
(circled in red) obtained by spt
is shown in green.
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microscopy (STORM) (2006)
23 Saxton. Single-particle
tracking: connecting the dots
(2008)

1.3 Super resolution microscopy and spt
We will look at Alzheimer’s disease from a very small scale, studying the motion
of amyloid-β inside neural cells. Observing these kind of biological samples at mo-
lecular scale requires a very high resolution. In particular, one has to capture de-
tails beyond the light diffraction limit. The ensemble of techniques that allow to
overcome this limit is known as super resolution microscopy. In the context of wide-
field fluorescence imaging, two main strategies exist to achieve super resolution.
The first and more traditional one is using patterned light illumination techniques
such as structured imaging microscopy (sim).5 sim relies on Moiré patterns created
by illuminating the sample through different gratings. The patterns can then be
analysed in reciprocal space to reconstruct the high resolution image. The second
strategy is more recent and consists in localisation based methods such as photo-
activated localisationmicroscopy (palm)3,17 and stochastic optical reconstructionmi-
croscopy (storm).22 Both palm and stormwork by selectively activating subsets of
fluorophores to avoid diffraction effects between closely spaced samples. This is ob-
tained through photobleaching (the spontaneous fading of the fluorophore) in palm
and by photoswitching (the controlled switching between on/off states) in storm.

All these techniques have undergone a remarkable development in recent years,
making it possible to capture super resolution images at small time intervals (in
the order of tens of milliseconds). These recordings allow to observe the motion of
single molecules in cells at nanometer scale. In practice, one can reconstruct the
molecules trajectories by linking their position observed in consecutive frames. Sev-
eral tools and techniques have been designed to perform this operation,23 that goes
under the name of single-particle tracking (spt). The advantage of spt data with re-
spect to other methods is that it measures individual molecule dynamics (and not
just ensemble averages). Although the method is limited by the imaging time resol-
ution, it allows to perform amuch fine-grained analysis than other ensemble-based
techniques.
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2.1 A statistical framework for tracking data
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2.1 A statistical framework for tracking data
The modern imaging methods described in chapter 1 have made possible to track
simultaneouslymultipleparticles at high spatiotemporal resolution. Single-particle
tracking can then be used to reconstruct thousands of particle trajectories. To ex-
tract meaningful insights from this huge amount of data, we need a modelling and
statistical framework.

In this chapter we will present data analysis techniques to reconstruct the dy-
namics of amyloid-β aggregates. As explained in section 1.2, the uncontrolled form-
ation of Aβ plaques in the brain tissue is thought to be a cause of Alzheimer’s dis-
ease. What we would like to understand is how cells react to an excessive concen-
tration of Aβ. How do they try to dispose of this dangerous products? We hypothes-
ise that the cell transports and actively treats Aβ molecules for disposal in a well
defined system. We tried to reconstruct the motion of Aβ molecules inside the cell
to realisewhich route they followandhow they are treated. That said, the statistical
methods described in the following aim to provide a general framework to extract
dynamical parameters of particles at cell scale.

The data presented here was provided by the Molecular Neuroscience Group
at the University of Cambridge, uk. It consists into trajectory fragments of Aβ-42
aggregates artificially injected in hek 293t cells and captured via fast sim (in 2d) at
a frequency of 8Hz. The trajectories were reconstructed from imaging data using
the TrackMate software.29

2.2 Model and methods
At themicroscopic level, themotionof themolecules canbedescribedbyLangevin’s
equation. In the case of biological processes we are interested in, the Langevin dy-
namics can be considered in its large friction limit (Smoluchowski’s equation)13,11

ẋ =
F(x)
γ

+
√
2Dẇ (2.1)

where F(x) is the drift force exerted on the particle at position x, γ is the friction coef-
ficient, D is the diffusion coefficient and w(t) is a two-dimensional Wiener process.
At this scale, it makes sense to consider the diffusion to be mainly due to thermal
agitation so that it can be considered isotropic.

However, it is not possible to directly recover the microscopic model from the
spt data, since we miss information about the local behaviour both in space (such
as the presence of microscopic obstacles undetected by the imaging device) and
time (such as thermal fluctuations much faster than the acquisition timescale).12,7
We can still build a coarse-grainedmodel,13,11 transforming eq. 2.1 into the effective
stochastic equation

ẋ = a(x) +
√
2Bẇ (2.2)

where a(x) is the effective velocity field andD ≡ BTB is the effective diffusion tensor.
It must be noted that, in principle, the effective diffusion coefficient may not be
isotropic since it takes into account the local microscopic features (e.g. obstacles).
On the other hand, actual analysis of the data show that anisotropic components
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Figure 2.1 Velocity field obtained from the spt data using bins of size 250 nm. a original velocity field, b velocity field
after smoothening. c regions of coherent motion obtained by clustering the smoothened velocity field. The angular dis-
tance threshold was set to 0.08 and clusters smaller than 10 bins were discarded. The area color indicates themean angle
of the velocity among the cluster.

are negligible: in the following, the diffusion tensor is reduced for simplicity to a
scalar coefficient by averaging on the diagonal entries. Moreover, the velocity field
is assumed time invariant in the relatively short time window spanned by the spt
data (30–60 s).

Diffusion and velocity field estimation

To estimate the dynamical parameters of eq. 2.2 a statistical analysis is needed.
We follow the approach demonstrated in [13, 11, 12, 7] by partitioning the data in a
square grid with fixed bin size. The velocity field and diffusion coefficients are con-
sidered constant in eachbin. If the acquisition time interval is sufficiently small, the
process described by eq. 2.2 can be discretised following a forward Euler scheme:

xt+1 − xt = aΔt(xt)Δt+
√
2ΔtDΔt(xt)ηt (2.3)

where Δt is the acquisition time interval.
Then, the trajectory step Δxt ≡ xt+1−xt starting in binB is a normally distributed

random variable with mean a(xB) and variance 2D(xB)Δt where xB is the center of
the bin. The velocity field and diffusion tensor can thus be recovered by computing
the empirical estimate of the moments:

aΔt(xB) =
1
Δt

EB [Δx] (2.4)

DΔt(xB) =
1
2Δt

(
EB

[
Δx2

]
− EB[Δx]2

)
(2.5)

where the expected value is taken on the bin. Notice that the aΔt and DΔt are not
the same of those of eq. 2.2, as they depend on the acquisition interval Δt. In fact,
we may recover the coefficients of the continuous process only in the limit Δt → 0.
To avoid a too cluttered notation, we will drop the Δt index in the following and
assume it implicitly.
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Field smoothening

To perform analysis and simulations we often need a smooth representation of the
velocity or diffusion field, providing estimates also for bins with few—or missing—
data. To solve this problem, a convolution with variable kernel is applied on the
field. Denoting by nB the number of datapoints inside bin B, the smoothened field
ã is obtained as

ã(xB) = (k ∗ a)(xB) ≡

∑
S∈Γ(B)

nSa(xS)∑
S′∈Γ(B)

nS′
(2.6)

where Γ(B) is the Moore neighbourhood of B.
Explicitly, representing bins with their grid site indices, the kernel matrix K(i, j)

centered in the bin i, j is:

K(i, j) =
1

i+1∑
k=i−1

j+1∑
l=j−1

nk,l


ni−1,j−1 ni−1,j ni−1,j+1

ni,j−1 ni,j ni,j+1

ni+1,j−1 ni+1,j ni+1,j+1

 (2.7)

Finally, bins such that the total number of samples in their Moore neighbourhood
is lower than a threshold are excluded from the analysis. A comparison between
the velocity field before and after the smoothening is visible in figs. 2.1a and 2.1b.

This approach can be interpreted in terms of Bayesian inference, where the prior
(Gaussian) distribution of the parameter of interest is based on the distributions in
the neighbouring bins. The mean estimator on the posterior is then obtained by
averaging themeans of the neighbours with a weight proportional to the number of
samples.

2.3 Attractors

The first biophysical features that we want to identify are attracting regions. We
would like to infer from the tracking data if there exist regions in the intracellular
space where Aβ molecules are collected and, if so, we would like to characterise
their dimension and attraction force. Note that in microscopy images we are only
able to see the fluorescent tags on the Aβ molecules and not the cell structure. At-
tracting regions may represent organelles where Aβ is collected for disposal. Being
able to identify these regionsmayallowus to relate them to specific organelles (such
as lysosomes) by looking at their distribution and time evolution.

To identify local attractors we use themethodology and formalism developed in
[13, 20]. Considering the velocity field to be locally conservative, it can be described
by the gradient of a scalar potential:

a(x) = −∇U(x) (2.8)
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Figure 2.2 Example of a po-
tential well in the velocity field
obtained from the spt data.
30 Zidovska, Weitz and
Mitchison. Micron-scale
coherence in interphase
chromatin dynamics (2013)

Local attractors can then be seen as wells in the potential. At first non-zero order
around a local minumum x0 the potential is a paraboloid:

U(x, y) = U0 + A

[
(x− x0)2

r2x
+

(y− y0)2

r2y

]
+ O(x, y)2 (2.9)

in a coordinate system (x, y)where the axes are rotated by an angleϕ tomatch those
of the paraboloid. A potential well is thus by the set of parameters A (well depth),
x0 (centre), r1, r2 (axes of the ellipse obtained by cutting the potential well at height
A), and ϕ (the angle of the ellipse major axis).

If the diffusion coefficient is assumed to be locally constant, the particle density
is described by the Boltzmann distribution

ρ(x, y) ∝ exp

(
−U(x, y)

D

)
(2.10)

Substituting eq. 2.9, the density around a local minimum is approximately Gaus-
sian. Thus, after selecting a small high density region, principal component ana-
lysis (pca) can be used to approximate the location of the attractor (x0) and the
ellipse parameters (ϕ, r1, r2) corresponding to the 95% confidence ellipse.

Tofind the remainingparameterAan iterativeprocedure is used. Agrid centered
in x0 is built, and for each iteration k an ellipse Ek with increasingly longer axis is
obtained by rescaling the original confidence ellipse. At each iteration, we calcu-
late the Ak that minimize the mean squared error (mse) with respect to the velocity
field of all the bins inside E:

MSEk =
∑
xi∈Ek

∥ − ∇U(xi)− a(xi)∥2 (2.11)

The best fit for A is then the Ak corresponding to the iteration with minimal mse. A
parabolic error score S indicating howmuch the potential well resembles a parabol-
oid is defined as

S ≡ MSEk∑
xi∈Ek ∥a(xi)∥

2 (2.12)

where S ∈ [0, 1] and S = 0 indicates a perfect fit. The initial high density regions
are localised by using the dbscan clustering algorithm.

2.4 Regions of coherent motion
We now study regions in the cell space where amyloid beta particles follow a coher-
ently directed motion. The study of this kind of regions is not new in the literature
and can find relevant applications in many biological contexts. As an example, co-
herent motion regions have been observed in interphase chromatin30, yielding new
hypothesis about chromatin biological functions. In our case, we would like to find
out if Aβ is transported along well defined pathways.

We identified regions of coherent motion by clustering adjacent bins based on
the angular distance of their velocity vectors. The angular distance between two
vectors u and v is defined as:

distance(u, v) ≡ 1
π
arccos

(
u · v

∥u∥∥v∥

)
(2.13)
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2.5 The full picture

Figure 2.3 Reconstruction of
the dynamical structure. a
coherent motion regions with
main axis highlighted and
attractors (in red), b motion
graph reconstructed by linking
the regions of coherent motion
and attractors.

B10 μmA

We adopted a very simple algorithm to perform the clustering:

1. Create an empty cluster (i.e. a set of adjacent bins) for each bin in the grid and
assign the bin to it.

2. For every bin B, consider each neighbouring bin S ∈ Γ(B). If the angular
distance between ã(xB) and ã(xS) is lower than a given threshold, merge the
clusters of B and S.

This extremely simplemethod is quite effective in localising coherently directedmo-
tion. An example of the result is shown in fig. 2.1c.

2.5 The full picture
In the previous sections we localised regions of attraction and pathways. One can
hypothesise that thedynamics ofAβ is composite. Moleculesmayescape (byBrownian
motion) from an attractor, then travel along a pathway and eventually drop into an-
other attracting region. We considered this approach by connecting the regions of
coherent motion and the potential wells to form a directed graph representing a
rough dynamical map of the intracellular space.

First, the axis corresponding to the average direction of each region is com-
puted; then the endpoints of the regions are connected to other endpoints or po-
tential wells that are found in a small neighbourhood. The reconstructed structure
is shown in fig. 2.3.

Sadly, the results of this approach are a bit disappointing: the dynamical map
that we were able to reconstruct by linking attractors and pathways is very com-
plex and apparently meaningless. Although the methods to localise attractors and
pathways described in sections 2.3 and 2.4 were successful in their scope, the hope
of identifying a global dynamics in the data seems vain. The analysis shows that
there is no well defined pathway alongwhich the Aβ aggregates are driven nor clear
accumulation points. Instead, the molecules follow complex itineraries, bouncing
between different regions. The reconstruction of the dynamical structure shown in

19



2 Data analysis

fig. 2.3 gives an idea of themess in the underlyingmotion. This leads us to formulate
a new hypothesis. In fact, the behaviour may suggest that the processing of Aβ is
highly delocalised, andmolecules are bounced between several loosely distributed
processing units. In the next chapter we will introduce a possible explanation for
this behaviour, presenting a new model of motion and computing its characterist-
ics.
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3.1 The endoplasmic reticulum
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3.1 The endoplasmic reticulum
Themessy behaviour ofAβmoleculeswe saw in chapter 2 by the analysis of sptdata
suggests a new hypothesis. The complex and delocalised dynamics that we found
may involve active transport on the endoplasmic reticulum, a network like organ-
elle supporting various functions encompassing protein folding and redistribution.
While it is known that the er acts as an active transportation network, it is not pos-
sible tofindadirectionality and thedynamics of such transportmechanism remains
not clear.18 In a recent work, Holcman et al.9 have shown that particles moving on
the er follow a two-state process, characterised by alternation of a high-velocity
directed motion state associated to flow in the network tubules and a low-velocity
diffusing state associated to the nodes. This kind of behaviour, with particles jump-
ing between areas of slow motion, resembles the results of the analysis performed
in section 2.5, motivating the hypothesis that transport of Aβ is linked to the er.

As the inner workings of the er are not known, it would be difficult to directly
compare the the results of chapter 2 to the er dynamics. How are molecules re-
distributed in the er? Which timescale characterise this transport process? First,
we have to understand how this network works. Thus, in this chapter we make a
step back and we focus on a model of motion on the er, building on the results
of Holcman et al., and presenting numerical simulations to understand the model
characteristics.

3.2 Active network model
The er is an organelle that spans from the nuclear envelope to the cell periphery.
It has a fundamental role in the production, maturation and trafficking of proteins
and lipids. A recent study based on super resolution imaging19 has revealed hat its
structure ismade almost exclusively of tubules at varying densities. The tubules are
usually connected by three-way junctions at roughly 120 degrees28 (see also fig. 3.1).
Since we only have 2 dimensional images we will refer to a planar representation of
the er network. This approximation is justified by the fact that inmany kind of cells
the er is very thin with respect to its width. Given its regular three-way junctions,
the simpler planar graph representing the er is an hexagonal lattice.

Some characteristics of motion on the er have been recently described through
the analysis of spt trajectories9. First, luminal proteins follow distinct transport
mechanisms depending on topology: they move at fast velocity along the network
tubules, and they instead move with dominant diffusive component while inside
the junctions. Moreover, the luminal flow along tubules was observed to invert
its direction at random time, possibly due to tubule constrictions. We introduce
a model of motion that takes into account these effects.

We consider a transported molecule as a random walker on a directed graph,
where edges invert their direction at a Poissonian rate (λ). Each edge will keep a
directionality for an exponential time (timescale τswitch = 1

λ ), then reverse it, and so
on and so forth. Moreover, the random walker spends an exponential time in each
node (with timescale τnode). This takes into account the time required to escape from
a node, given the diffusive motion inside the junction.26 After having waited in the
node, the walker jumps randomly through one of the available outward directed

23



3 Modelling the ER

Figure 3.1 The endoplasmic re-
ticulum of a hek 293t cell im-
aged by fast SIM.

edges and continues its travel. If all the edges happen to be directed inwards, the
particle cannot escape and has to wait another exponential time in the node. An
example of the network model is shown in figure 3.2

3.3 Timescale of transport
We evaluate now the timescale of the transport on an active network. We consider
two timescales that have important biological implications: the mean first passage
time (mfpt) through a given node for a single particle and the average time required
for the first particle of a group to reach a given node. This second case models an
activation process where many particles are released from a source but one is suffi-
cient to activate a receptor located in a far away node.

Mean first passage time

Considering a particle moving on graph starting from node S, the first passage time
(or hitting time) for node T is the time at which the particle first hits the target T.
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3.3 Timescale of transport

Figure 3.2 Active network
model. Particles diffuse inside
the junctions and quickly jump
along the edges. The direction
of the edges alternates with
rate λ and the particles take
an exponential time to escape
from a junction by Brownian
motion (timescale τnode). A
trapped state (no outward flux
from a junction) is marked by
the dashed red rectangle.

Trapped state λ λ

Edge direction switching

Escape from a junction

<τnode>

τnode 100ms

τswitch 30ms

Table 3.1 Values of model
parameters.

More formally,
τS→T(x) = inf {t : x(t) = T | x(0) = S} (3.1)

where x(t) denotes the location of the particle at time t. It follows that, if x(t) de-
scribes a stochastic motion, we can define the mean first passage time as

τ̄S→T = Ex [τS→T(x) | x(0) = S] (3.2)

where the expectation is taken over many realisations of the process.

Extreme statistics for passage time

We now consider the case of N particles moving simultaneously on the network, all
starting at the same time from the same sourcenode S. In this case,weare interested
in knowing the average time required for the first among the N particles to hit the
target T. Again, this is a common situation in biological systems, where a single
particle may be sufficient to activate a receptor (for example, in a synapse). We
define this as the minimum hitting time among N independent processes:

τexS→T(N) = min {τS→T(x1), τS→T(x2), . . . , τS→T(xN)} (3.3)

We can then take the average over many realisations of this multiple-particle pro-
cess to define

τ̄exS→T(N) = E{x1,x2,...,xN} [τ
ex
S→T(N)] (3.4)

We name this last quantity extreme first passage time (efpt).

Numerical simulations and results

Numerical simulations of the model were performed to measure mean and extreme
first passage time on both a synthetic hexagonal lattice and a reconstruction of a
real network from sim imaging data. The model parameters used are based on the
timescales observed in the spt data analysed byHolcman et al. and are summarised
in table 3.1.

The results for the mfpt (figs. 3.3a and 3.3b) show a saturating behaviour for
nodes at in the bulk of the network. Peripheral regions of the network that are
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weakly connected to the bulk are instead characterised by an exponentially increas-
ing mfpt (figs. 3.3a and 3.3b). Introducing periodic boundary conditions removes
this effect, as shown in fig. 3.3c. The saturation behaviour is reasonable: to visit a
node that is far from the source, a particle has probably explored most of the net-
work. The difference in mfpt between two nodes both located far from the source
becomes negligible and the mfpt saturates to the cover time (the time required to
visit all the nodes in the graph), independently of the node distance.

One interesting effect of the active network is shown in fig. 3.3d. One may think
that the formation of traps in junctions (see fig. 3.2) would cause an increase of the
mfpt. A trapped particle has to wait a time τescape until one of the edges switches,
allowing to leave the node. Since the edges switch with rate λ,

P {any of the 3 edges switches in (t, t+ dt)} = 3λdt (3.5)

⟨τescape⟩ ∼
∫ ∞

0
dt t 3λe−3λt =

1
3λ

=
τswitch
3

(3.6)

where we neglected the time for diffusion τnode. We thus expect an increase in mfpt
that is linear in τswitch. The result of numerical simulations shows that this is in-
deed the case, but only for relatively large values τswitch. In a range of relatively
small τswitch the slowdown due to traps is compensated by faster exploration of the
network, making the timescales of the active graph equivalent to those of an undir-
ected model. In fact, the directionality of edges force the particles to move forward,
without immediately going back to the node they came from. The parameters range
in which this phenomenon appears is compatible with the one found by Holcman
et al. and it is thus plausible that the er operates in this regime.

The value for the mfpt found in the simulations is surprising. On a graph with
radius 40, a particle takes around 1000 s (on average) to arrive in a node that is just
10 steps away. This means a timescale of transport in the order of tens of minutes,
or hours to reach the peripheral regions. While it is hard to say whether biological
processes on the er actuallywork at this slow timescale, we can speculate that since
most of the cell functionings are faster, the mfpt is not a sufficient parameter to
characterise them. When we instead consider the time to arrive for the first particle
among a group of N (efpt), the timescale drops to the order of seconds even for a
group of 100 particles. With N = 1000, the time for the first to reach a target located
10 steps away is just slightly more than 1 s. This seems a much more reasonable
timescale for an efficient biological process. We speculate that this kind of extreme
statistics must have an important role in biology, as already noted in [21, 1, 2].

Anasymptotic formula for the efpthasbeendescribed, for the continuous space,
in Asymptotics of Elliptic and Parabolic PDEs, p. 330.8 The asymptotics in 2 dimen-
sions reads:

τexS→T(N) ∼
δ2

Deff logN
, N ≫ 1 (3.7)

where δ is the distance between S and T,Deff is an effective diffusion coefficient, and
N is the total number of particles. Using the graph distance δ = d(S,T), we can fit
this behaviour to the results of the simulations on the active graph. As shown in
fig. 3.4a, the simulations match very well the asymptotic behaviour in the bulk of
the graph, confirming the validity of the analytical results.
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Figure 3.3 Timescales in the active network. a mfpt (heatmap and distance plot) on the network reconstructed from
sim imaging, b mfpt on an equivalent hexagonal lattice. Boundary effects are visible at the extremal regions that are
weakly connected to the bulk of the network. cmfpt distance plot for the hexagonal lattice introducing periodic boundary
conditions, showing the saturation behaviour. d effect on themfpt of the switching timescale τswitch ford(S,T) = 25 for the
hexagonal lattice. The red region indicates the range of biologically plausible values of τswitch taken from [9]. The dashed
line representsmotion on the samenetworkwith undirected edges. In the parameter range of interest, the slowdowneffect
due to the particles being trapped in junctions is compensated by the faster exploration rate due to edge directionality
(particles cannot immediately go back to the node they come from), obtaining a mfpt equivalent to the undirected model.
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Finally, the simulations show that fastest trajectories follow the optimal path
on the graph. This may seem naive, but one has to consider that in principle the
first particle to arrive may be the one that goes faster through a longer trajectory
(for example, avoiding trapping nodes). In our case, that would mean a deviation
from the exponential distribution of waiting times in nodes. Simulations results
prove that, while this deviation exists when considering the fastest particles for
large value of N (∼ 104), it is in general negligible with respect to the optimisation
of the trajectory path. Indeed, fastest trajectories tend to follow (spatially) optimal
paths (see fig. 3.4b). This confirms previous results obtained for Brownian motion
in 2 dimensions.2

3.4 Packet motion
In a standard random walk on a graph, the probability of finding the walker in a
given node at equilibrium tends to an uniform distribution15. This means that if
we release a group of particles from a source, given a sufficiently long time, they
will distribute evenly on the network with a timescale proportional to the largest ei-
genvalue of the stochastic matrix representing the transition probabilities between
nodes. What happens instead on the active network model? When considering
a fast edge switching rate (τswitch = 30–300ms), the equilibrium behaviour is pre-
served, leading to a roughly constant number of particles per node (figs. 3.4c1–2).
For a slow switching timescale instead (τswitch = 3 s), a novel mechanism of trans-
port emerges. Particles group in lumps, synchronising their motion and arriving in
nodes in packets (see fig. 3.4c3). These packets are not stable: they are continuously
formed (and unpacked) by splitting and merging of different particles or smaller
packets. This behaviour undermine the realisation of a even distribution, as the
edge switching keeps the system out of equilibrium. This mechanism allows for
a delivery in redundant groups, which seems a way to guarantee robustness to a
biological transport process.
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Figure 3.4 Extremes statistics and packet motion. a efpt (time for the first to arrive( on the hexagonal network for dif-
ferent values of N (total number of particles). The dashed line shows the fit for c1 δ2

c2+log N with c1 = 0.07 and c2 = −2.39.
b characteristics of the trajectories by order of arrival (1000 out of 10⁴ trajectories are considered). The plot shows how
the trajectory length has a greater impact on the time to arrive than a deviation from the mean time per step. c number
of particles in a target node T as a function of time. The area plot is coloured based on the edge particles are coming from.
For small values of τswitch, an uniform equilibrium distribution is reached after large enough time (figs. C1–2). Instead, for
slow switching, a new kind of motion emerges. Particles arrive in the node in lumps (packets), at random times (fig. C3).
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4.1 Perspective and open problems
By means of statistical methods and modelling we have tackled Alzheimer’s dis-
ease from the molecular point of view, building a structured representation of the
amyloid-β dynamics starting from single-particle tracking data. Unfortunately, the
structure that this analysis has revealed is not of immediate nor simple interpret-
ation. Regions of coherent motion and attractors form a complex framework, sug-
gesting that amyloid-β aggregates are processed by a delocalised system. New res-
ults for the dynamics of the endoplasmic reticulum,9 also based on spt analysis,
provided hints that this delocalised system may be represented by the er. These
findings were exploited to build a model of motion on the er and, thanks to that,
we have been able to provide an estimate for the timescale of the er transport mech-
anism through numerical simulations. However, values for the mean first passage
time between nodes of the network found in the simulations are unexpectedly high
(tens ofminutes), hinting at the fact thatmfptmaynot be the right parameter to con-
sider when evaluating the redistribution timescale. Efficient transport in the con-
text of biological processes should probably use other means. Speculating, we pro-
pose that one should look at extreme statistics to highlight the characteristics of this
transport mechanism. Considering an activation process where multiple particles
are released from a source but few (or even just one) are sufficient to enable recept-
ors, we focused on the time required for the first particle to arrive in a target node
and found a much shorter timescale (in the order of seconds), that seems compat-
iblewith the class of biological processeswewant to describe. Hence, we compared
our results with previous works concerning an equivalent Brownian process,1,2,8
finding that the asymptotics for the first arrival time in continuous space also hold
in the case ofmotion on anetwork, andprovidingnewevidence supporting the idea
that fastest trajectories follow the spatially optimal path. Our simulations of the
active network model also revealed a novel transport mechanism which causes the
particles to be delivered in redundant packets, supporting the idea that redundancy
naturally emerges as a way to guarantee efficiency and robustness of biological pro-
cesses, as it has already been pointed out in previous works.21,25 Overall, we have
explored a vast and hitherto little known domain, combining data analysis, mod-
elling and numerical simulations, but most of our results remain open hypotheses:
more experimental data is needed to verify the validity of the ermodelwe proposed
and to highlight possible correlation between amyloid-β and er dynamics; yet we
offered a new direction and a new point of view to tackle these questions. Lastly,
we hope that a better understanding of the er transport mechanism will shed new
light on amyloid plaques and their clinical implications.

4.2 Final remarks
The currentwork terminates in this hanging stage. We started fromAlzheimer’s and
ended in modelling the endoplasmic reticulum, discovering on the way some of its
peculiar characteristics and consolidating the existing statistical framework for the
analysis of spt data. Of course, the circle is not closed: we should use these few
bits of novel knowledge to look back at the dynamics of amyloid-β. But this will be
another long story.
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