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Summary

Legionnaires’ (or Legionella) Disease (LD) is a type of pneumonia that people catch by
inhaling small droplets of water suspended in the air containing the Legionella bacterium.
There is no evidence of person-to-person transmission. Outbreaks occur from purpose-
built water systems where temperatures are warm enough to encourage growth of the
bacteria, e.g. in cooling towers and evaporative condensers. Thirty different outbreaks
were officially registered in the world between 1976 and 2017 [1]. In total 3178 people
were affected by the LD, 236 of whom died. The fatality rate ranged between 0.8% and
75% depending on the outbreak. A LD outbreak happened in Palmanova, a touristic
neighborhood part of the municipality of Calvià, Spain [2], between September and October
2017. The people affected were 27: one local worker and 26 tourists. One tourist died.
After a long investigation, the main source was identified to be a whirlpool spa (also known
as Jacuzzi) on the rooftop of a hotel: the droplets fell down on the surrounding streets and
people inhaled them while walking [3].

When an LD outbreak occurs, the health institutions followed the standard epidemio-
logical protocol that consists in asking the infected people about their displacement and
then checking one by one the potential sources of the disease. The protocol requires time
and money. In addition, it usually forces a temporary closure of the buildings where the
water systems are. In the Palmanova case most of them were hotels, obliging the hosts
to find another accommodation for their guests and to not accept any new tourist. The
consequence is a big economic trouble.

The IFISC1 institute in Palma de Mallorca was contacted by the Spanish Health In-
stitutions to collaborate and try to find a new approach to the problem. For this reason
we build a computational (agent based) model capable of placing the source of the disease
into a city, simulating people moving through the network of roads and getting infected
when staying close to the source, and computing the epidemic outbreak informations. We
repeat the simulation for many realizations and for different positions of the source. This
comparison of the obtained data with the real ones allows us to infer the best parameters of
the model and finally the source position. This will be obtained by creating a probability
heat-map of the region, telling the more probable locations of the source with the help of
different coefficients. The model does not intend to be an alternative to the epidemiological
protocol, but an extra instrument in the toolbox of the institutions to fasten the process
of finding the source and obtain both health and economic benefits for everyone.

1Institute for Cross-Disciplinary Physics and Complex Systems, the institute where thhis thesis has
been developed.
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Chapter 1

General overview

1.1 The problem
In 1976, an outbreak of severe pneumonia among the participants of the American Legion
Convention in Philadelphia led to the description of Legionnaires’ disease [4]. The disease
was found to be caused by the bacterium Legionella pneumophila (Legionella after the
legionnaires who were infected at the convention; pneumophila meaning “lung-loving”),
belonging to the family Legionellaceae. The generic term “legionellosis” is now used to
describe these bacterial infections, which can range from a febrile illness (Pontiac fever)
to a rapid and potentially fatal pneumonia (Legionnaires’ disease). Legionellosis emerged
because of human alteration of the environment, since Legionella species are found in
aquatic environments, and proliferate in warm water and warm, damp places, such as
cooling towers.

When an LD outbreak occurs, the health institutions usually follow an epidemiological
protocol [5] that consists in: asking the infected people questions about their mobility (in
which hotel, restaurants, museum, beaches, etc. did they spend their time, which roads
did they use to move, etc.); from this informations, identifying the water systems that
could possibly contain the source of the disease; analyzing sample of these waters in a
laboratory. If lucky, the source is in one of the identified water systems and the last step
consist in disinfecting it. If not lucky, the last step would probably be extended to all the
identified water systems. The protocol can be divided into epidemiological, environmental,
laboratory and geospatial investigations and all the process requires time and money.

1.2 State of the art
Papers have been published to understand the different aspects of the LD from an epidemio-
logical point of view: how much the Legionella bacteria are diffused in a geographical region
[6] or how their propagation is stimulated in the possible water sources [7]. Hopefully some
effort have been done to make predictions, on the possible insurgence of outbreaks and also
on their diffusion: the involvement of an entire community (and so of a wide geographical
area) has pushed towards the study of the effect of the wind on the propagation of the
bacteria and thus the aerosol dispersion was modeled [8]; in [9] a probabilistic system for
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Samuel Salini: Inverse Problem in Legionella Outbreaks 1 – General overview

predicting the risk of Legionella bacteria presence in evaporative installations, exploiting
remote information relating to the quality of the water, is discussed; even the exposure to
LD while having a shower has been modeled [10].

Another part of the community interested in the LD spreading has focused on the ap-
plication of geographic information systems (GIS) 1 and spatial data to model and predict
ongoing outbreaks. The aim is to better understand the spatial relationships between in-
fection cases and the environment where they happen. In [11] four types of spatial data
have been identified as being potentially useful to an outbreak response: case data (i.e.
locations visited in incubation period including their home); potential sources in the lo-
cality (i.e. a registry of cooling tower locations and field investigation of other sources);
information about the broader demography of the population (i.e. how many people live
in the administrative regions identified or a control group to compare to cases) and finally
meteorological data (i.e. wind speed and direction if dispersion modeling is being per-
formed). For what concerns the techniques to use, two broad families of statistical analysis
were identified: one uses case data to infer zones for further/higher priority field analysis;
the other focuses on known potential sources and checks whether the pattern of infection
of cases is consistent with a release emanating from there. The model I here describe falls
in between the two categories and in the next section I explain why.

1.3 The aim of the project
The model simulates people (agents) walking on a city road network which could pass near
the source of the disease and so they may be infected. To do so it exploits different kind
of GIS data: the road network gives the spatial description of the possible paths, while
mobile phone tracks allow a realistic description of human displacement. None of them is
directly related to infected people and that is why the model does not fall completely in
the first category described above. The results of the simulations are infection curves (i.e.
number of infected agents over time) to be then compared with some real infection curve,
checking spatial,outbreak-size and time correlations through the computation of selected
coefficients. It is an inverse problem: with the help of maximum likelihood techniques we
want to infer the most probable location of the disease’s source and show the result with
colored heat-maps superimposed to the city map. And that is why the model falls also in
the second category of statistical techniques described above. All the evaluations will be
done onto the town of San Secondo di Pinerolo, a small town of 3000 inhabitants in the
countryside nearby Torino, where I am from.

1As established in [11]: "a GIS can be described as the integration of software and hardware for the
digital capture, management, analysis and visualization of geographically referenced data. The majority
of health data are inherently spatial and have a location, be it an address or a broader administrative unit.
GIS enable interpretation of this information spatially, looking for patterns, trends and relationships that
might exist between disease (or other occurrences), demography, environment, space and time".
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Chapter 2

Real data for realistic modeling

An important aspect of the model is that it is data-driven. For this reason we need real
data to understand the typical number of displacements a person undergoes in its daily
life, the typical distances of these displacements (and so the typical travel times) and also
the most common trajectories a person goes along when moving. All these informations
does not have to be strictly related to people who got really infected. The idea is to model
the entire population of a city (or a sample of it) commuting on a road network. The
infection aspect is then introduced with some parameters. The kind of data that can be
used is then really broad.

2.1 The online survey

Figure 2.1: Screenshot of the survey.

The survey is an idea I had to collect real data
about the "daily life" quantities described above.
Without these data, either the informations will
be invented (but then the results will lack a real
and physical meaning), or they will be extracted
from some probability distribution, as introduced
in section 3.2.2. The survey can surely be improved
and has to be intended as a different and poten-
tially interesting starting point for further studies.
It can still be visualized and compiled following
the link in [12].

The idea did not come completely by chance:
I was inspired by the way epidemiologists collect
data of infected people, that is... using surveys.
It is important to underline the big difference be-
tween the two methods, though: epidemiologists
work a posteriori, asking to people already infected
and ill where they used to spend their previous
days and so on (an example can be found in [13]);

in this thesis, the survey is done a priori, in the sense that no one is infected and there is
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no infection and anyone can answer the questions. The aim is to collect as many answers
as possible to build a probability distribution function of the number of stays of an agent
and another probability distribution function of the stay-times (i.e. ∆t). In both cases the
final step is to infer the source position of the Legionnaire’s disease.

2.1.1 The questions
The questions were thought to be in the meantime as useful for the research and as privacy-
respectful as possible for the people compiling it. For example, the city of residency is not
a necessary information, so the question was avoided. On the contrary, Legionella disease
varies its strength with the age of the person, so the age was asked. For more details on
all the questions, see table 2.1.

2.1.2 The collected data
Here I simply report the histograms of the answers received by people that compiled the
survey. The original plan was to analyze those histograms and obtain some probability
distributions to be used in creating the agendas. In the end not much of the collected data
is really useful: only the answer related to the number of placed visited in a day was used
(see 2.2, question 5): almost all the answerers of the survey focus in a number of activities
per day that ranges between one and five.

2.1.3 Numbers and limitations
169 people filled in the survey. A major problem comes from the high percentage of
answerers being young people: under 40s cover more than 70% of the answers while the
most probable target of the legionella disease are elder people.

2.2 Other data
In order to obtain precise results it would be better to know the typical human trajectories
in a given city, e.g. which roads are more often used. This would allow to know the typical
distances walked by a person between two stay-points and thus it would be possible to
build more precise agendas. The data we are talking about consist of mobile phones geo-
localized tracks (from calls and app usage), which are really high-resolution, as well as
census data, which instead is low-resolution but easy to obtain and without privacy issues.
The usage of these data represent one of the next steps of this thesis: as usual we need
to start with a basic model which can be later improved with more details about the real
world.
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(a) Question 1 (b) Question 2

(c) Question 3 (d) Question 4

(e) Question 5 (f) Question 6

Figure 2.2: Histograms of received answers for questions from 1 to 6 of the survey. They
are expressed in percentage.
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(a) Question 7 (b) Question 8

(c) Question 9 (d) Question 10

Figure 2.3: Histograms of received answers for questions from 7 to 10 of the survey. They
are expressed in percentage. In (b), (c) and (d) the column No answer is equal to the
column 0.
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Chapter 3

Building the model

3.1 A computational overview
As already said, the model is data-driven and based on real GIS data of road networks.
The latter are downloaded from the free and open source Open Street Maps (OSM, [14])
database. The data collected are really complete and include, as examples, the name of the
roads, their length, if they are highways or pedestrian streets.... Since the aim of this work
is to simulate agents walking, only pedestrian roads are used. This is possible through the
use of a new python library, called OSMNX [15]. The name is the combination of OSM +
NX, since the library was built exactly to deal with GIS data and treat them as network
objects, with the support of the well known NetworkX library (NX, [16]).

The model works as follows: first it prepares the network of roads on which the agents
will move, creating and simplifying a spatial graph. Then it places the source of the
illness somewhere on the town and associate to it the characteristic lengths r0 and raction,
making possible to label as dangerous all the nodes and roads inside the circle of radius
raction (both the lengths will be discussed later). Afterwards the steps related to one agent
are executed: the model creates an agenda consisting of consecutive stay-points together
with an amount of time each (the stay-time), where the agent spends its day. Now the
stay-points are added to the graph, linked to the existing roads and labeled as dangerous,
using th same procedure as for the road nodes and edges. Lastly the simulation part
begins: the agent start to "live" and walk from the home stay-point to the successive ones
according to its agenda and following the shortest paths connecting them. Of course one
constraint is to make the agent go back home at the end of the day. If it crosses the
dangerous area, the model starts computing the probability of infection and, if necessary,
labels the agent as infected. In this case the simulation for that agent ends. The infection
simulation is repeated for many runs, in order to obtain good statistics. The outcome
of these computations allows to plot infection curves (i.e. histograms of the number of
infected agent with respect to time) used to tune the parameters of the model, and then
nice heatmap graphs (used to solve the inverse problem). What is interesting then is to
move the source of the disease in different places for the simulations, and see if the number
of infected of the simulation reflects the dimension of the real outbreak. In this work
the real outbreak data is not taken from the real world, but it is made with one direct
simulation: no iterations are used, just one run and. So we will move the source position

16



Samuel Salini: Inverse Problem in Legionella Outbreaks 3 – Building the model

in the simulation and then compare the results with the direct simulation’s data.
All the process can be divided into three blocks that differs one from the others for the

number of times they are called in one simulation:

• una-tantum: it consists of all the computations to be done only once in order to
prepare the system to host the agents’ displacements.

• una-simulatio: it is the block to be run once for every simulation (i.e. every time
the source of the disease is moved) and characterizes the nodes and edges of the net-
work which are affected by the disease.

• simulatio: it is the only iterated block and makes the simulation happen: agents
move onto the network according to their agendas and record time and place of
infection.

Routine What it does
AGENDA it creates the list of stays-points and

time of stays for an agent in a day.
MODIFICATIONS given the agenda, it modifies the network of streets so

as to include the stays and reduce the number of nodes.
DANGER given the position of a source and its radius of action,

it identifies the edges and nodes affected by the disease.
DIJKSTRA computes shortest-paths with the bidirectional implementation.
INFECTION it computes probabilities of infection if

an agent goes along dangerous paths.

Table 3.1: Short description of the routines used by the model. Each of them has a role in
one of the three code blocks.

When the simulation are completed, the results are analyzed and treated to solve the
inverse problem.

3.2 The structure
3.2.1 Early steps
In order to introduce how the routines reported in table 3.1 work, an explanation of the very
first steps executed to prepare the system is needed. The result of downloading OSM data
of a city road’s network via the OSMNX functions is a graph, which includes edges/roads
and many nodes, that can be either intersections or interstitial nodes 1. A curve is made

1An interstitial node is defined as a node having degree equal to 2 (when a simple road) or 4 (when
the road has two directions and to each direction is associated a different edge of the network, so two

17
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of a lot of interstitial nodes that are useless since we are interested in computing shortest
paths in the end. Another OSMNX function helps us reducing the complexity of the graph
by "eliminating" the interstitial nodes (the nodes are removed, but their coordinates are
kept so as to still have a correct spatial description of the roads, i.e. their curvature and
length). The complexity of the graph will be again enhanced when adding the agenda’s
stay-points as nodes of the graph. All this paragraph is depicted by the three images in
figure 3.1.

(a) (b) (c)

Figure 3.1: Variation of the complexity of the graph applied to the small village of San
Secondo di Pinerolo (ITALY): (a) shows how the downloaded network appears, with a lot
of interstitial nodes along the roads; (b) instead shows how easily the same graph can
be described when using only the intersection nodes, while keeping the geometry of the
roads; finally (c) is an example of how the complexity of the graph rises up when the home
stay-points (first stay-point of one agent’s agenda) are added all at the same time. Here
700 agents’ homes are shown. So the number of added nodes is 700 plus eventually some
interstitial nodes, if they correspond to the nearest node of some home point P.

3.2.2 Building the agenda
The purpose here is to create a list of stay-points 2 and stay-times ∆t for each agent. How
can one decide the stay-points for an agent? Much freedom is left here: one could extract
them according to some distribution of the distances between stay-points built on real
human mobility data (see [17]), or from some distribution that arise from online surveys
(see section 2.1), or directly interpolating real human trajectories, or yet one could simply
extract them uniformly from the region of the town, for an easy starting point. Another
aspect concerning this routine is the freedom left on the ∆t′s, on the number of stay-points

going in and other two going out of the node). Roughly speaking, you can imagine it as a node staying
in the middle of just one road, useful only to define the shape of the road and that is not an intersection
of different roads

2We define a stay-point as a point on the map where the agent spends a certain amount of time
∆t. When modifying the network it will become a node identified by a negative label, while road nodes
have a positive label called osmid inherited by the official OSM metadata.
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per agent and also on the number of days an agenda should cover. Of course the three
"parameters" are related to each other and can be extracted from probability distributions
(again built from real data in different ways described above) or arbitrarily chosen.

The model here uses a combination of these possibilities: the agenda is about a one day
routine for each agent; the number of stay-points is extracted from a Poissonian distribution
of mean 3.5 (as suggested in [18]); since we lack the informations about the average traveled
distance by one person walking, the position of the stay-points are chosen randomly inside
a circle of radius d = 1000 m centered in the first stay-point, i.e. one agent’s home (its
position is really random though). Random because we do not have much choice, while the
distance limit d is used to avoid having really long distances to walk from one stay-point
to another; also the maximum number of stay-points possible is limited, this time to be
between one (staying only at home) and 5. This information comes from the histograms
of section 2.1; the stay-times are eight hours for the home-stay and random for the other
stay-points.

3.2.3 Modifying the graph and preparing the system
In order to add the stay-point P into the network of roads to be used in the simulations,
the model finds the nearest node to P in the simplified network and creates a link between
them. If the nearest node corresponds to an interstitial node of the original network, it
splits the edge geometry (i.e. the spatial curve of the road) of the simplified network into
2, putting the nearest node in between. A possible outcome is shown in figure 3.1c.

3.2.4 Let the agents walk: infection probabilities
The Legionnaire’s disease spreads through bacteria that live in warm waters or in areas
with high levels of humidity and temperature. Micro-droplets of water bring the bacteria
and people could inhale them, having a chance of getting infected. In principle the infection
probability depends on a lot of parameters such as the temperature of the environment, the
temperature of the water, the concentration of bacteria, the wind, the size of the droplets,
etc. In practice, we cannot take all of them into account to model the phenomenon. So we
do an approximation: we consider the water droplets as random-walkers with a life time τ
due to the fact that the droplets slowly evaporate until they disappear 3. We need to know
the spatial probability distribution Pt(r) of finding one droplet that was generated a time t
ago at a distance r from the source. Then, in order to obtain a spatial density distribution
of droplets to be used to define the infection rate β, we need to integrate over all times t
between 0 and τ . The starting point of the analysis is the assumption that water droplets
undergo an isotropic Brownian diffusion process limited in time, so the first distribution is
the Rayleigh function

Pt(r) = r

σ2(t) e
−r2 / 2σ2(t), (3.1)

3One can consider the droplet as a 2D random walker with an absorbing wall that appears after a
certain time τ in the exact position of the random walker at that time, regardless of its distance from
the center.
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(a) (b)

Figure 3.2: Depicting the two possible situations an agent can encounter while crossing
the infectious region (here the blue circle). It is clear that the distance r from the source
location to the agent’s position on the gray path varies along the path itself, i.e. the red
segment varies its length in time (the red segment is the distance r between the source
position, centered in the blue circle, and the position of the agent crossing the dangerous
area while moving on the thin, gray path. The red shape must be seen as a simultaneous
representation of all the possible values r can take from the moment the agent enters
the dangerous area to the moment it exits it). (a): the agent crosses the region without
stopping. The path can be divided in many very small segments δx, all of the same length,
along which r can be considered as constant and so a unique value of β is used. The
resulting probability is given by the equation 3.6; (b) the agent goes along the first edge,
stops for a time ∆t in the stay-point inside the circle and then goes away along the edge
in the other direction. In this case the probability of infection is given by the equation 3.9.

where the variance is
σ2(t) .= 4D t. (3.2)

Here D is the diffusion coefficient. What we want now is the probability of finding a droplet
at distance r in any moment of its life. This is given by the time integral of the Rayleigh
function:

ρ(r) =
∫ τ

0
dt

r

4D t
e−r

2 / 8D t

= 2 r
r02 Γ

(
0 , r

2

r02

)
,

(3.3)

where
r0

2 .= 4D τ, Γ(α , z) .=
∫ ∞
z

yα−1 e−y dy. (3.4)

Here r0 is introduced since we do not want to deal directly with D, while the second
equation is the definition of incomplete Gamma function.
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Figure 3.3: Graphical view of ρ(r), derived in equation 3.3, with three different values
of r0. It is 0 at r = 0, has a maximum at r ' r0

3 and then decreases to 0 quite fast:
ρ(r = 3 r0) ∼ 10−3, making the infection rate become really small.

After all these computations it is clear why it makes sense to put the LD source on the
map and associate to it a circular region of action. While "living" on the road network
an agent could pass through this circle and while being inside it could be infected. There
are two possible situations for which this happens and we need to mathematically treat
them separately. Figure 3.2 shows them graphically. In one case the agent goes through
the circle of action while going from one stay-point to the next one, so without stopping
inside. Given an infection rate

β(r) ≈ β0 ρ(r), (3.5)

where β0 is an effective parameter including the influence of parameters (temperature, etc.)
on the infectivity, the probability of infection in a unit of time dt is β dt. The model wants
to be as realistic as possible, so we cannot deal with infinitesimal quantities. What we can
do is to take the intersection between the area of action of the LD and the edge of the
agent’s path, split it into arbitrary small segments all of length δx, so the time needed to
cross them is always δt small enough, and the distance to the source along the segment can
be considered constant along all the segment, then compute the probability of infection as
one minus the probability of not being infected during the walk. In other words:

P1
.= P (agent infected in intersection)
= 1− P (agent not infected in all intersection)

= 1−
n∏
i=1

P (agent not infected in segment i)

.= 1−
n∏
i=1

qi.

(3.6)

21



Samuel Salini: Inverse Problem in Legionella Outbreaks 3 – Building the model

But we know qi. It is

qi = 1− βi δt
≈ e−βi·δt,

(3.7)

where the exponential approximation is possible since we know we can make δt really
small and βi is constant along the segment i. Thus going back to equation 3.6, the product
becomes a sum in the exponent and so

P1 = 1− exp
(
−δt

n∑
i=1

βi

)
, βi = β0 ρ(ri). (3.8)

In the other case one stay point is inside the region of action of the LD, so for sure to
reach it one part of the incoming edge is also inside the circle and the same is true for the
outgoing edge, which will be crossed when moving towards the next stay-point. There are
always one incoming and one outgoing edges since we force the agents to go back home,
meaning that the complete path of a day is a closed loop. For this situation the probability
of infection changes, but the reasoning is similar:

P2
.= P (agent infected in intersections or node)
= 1− P (agent not infected in intersections nor node)

= 1−
[
P (not inf. in incoming edge) x

xP (not inf. in outgoing edge) x

xP (not inf. in node)
]

= 1− exp
(
−δt

n∑
i=1

βi

)
exp

(
−δt

m∑
i=1

βi

)
exp (−∆t βnode)

= 1− exp
(
−∆t βnode − δt

n+m∑
i=1

βi

)
.

(3.9)

The index i goes up to n for the incoming edge and up to m for the outgoing edge. Since
the δt is the same along all the path and since the two exponentials are multiplied, we
can directly sum the corresponding exponents together; the last exponential comes from
the node stay. Since the agent is not moving here, βnode is a constant and we can see the
stay-time ∆t as a sum of many δt-contributions. Now it is clear that the process can be
iterated to all possible configurations of stay-points inside the circle and edges going inside
and outside. What is important is to sum the resulting exponents of consecutive objects,
so as to obtain one single probability value.

We can make another approximation due to a technical detail: since the infection rate
defined in equation 3.5 decreases quite fast in r (see figure 3.3), we can say that people
moving through edges and nodes far from the source can not be affected by the disease,
because the probability of infection is almost zero. Indeed it is not necessary to associate
a probability to all the edges and nodes of the graph. For this reason, when putting the
source of the disease somewhere onto the map we associate to it the radius of action raction,
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a "technical" length bigger than r0 introduced to facilitate the simulation part of the work:
if an edge/node falls into the circle of radius equal to raction, it will be labeled as dangerous
and the probability of infection will be computed. A graphical explanation is given by
figure 3.4.

Figure 3.4: The effect of the
danger routine and a (red)
shortest path between two
nodes. The dark blue circle is
centered in the source of the
disease and has a radius equal
to r0; the light blue circle has
a radius equal to raction and
all the edges and nodes falling
into it are magenta, meaning
they are labeled as dangerous.
Obviously the radius of action
is larger than r0.

3.2.5 Let the agents walk: shortest path
The Dijkstra algorithm is used to compute shortest paths between couples of nodes (called
origin and target) in the weighted graph (weighted with the edges’ lengths). An example
is shown in figure 3.4. It is known to be the most efficient algorithm for this purpose
and to make it even more efficient, we use the bidirectional implementation: in practice
bidirectional Dijkstra is much more than twice as fast as ordinary Dijkstra. The latter
expands nodes in a sphere-like manner from the origin. The radius of this sphere will
eventually be the length of the shortest path. Bidirectional Dijkstra instead will expand
nodes from both the origin and the target, making two spheres of half this radius. Volume
of the first sphere is πr2 while the others are 2π( r2)2, making up half the volume. This may
not be true for a general graph, but for sure it is correct when dealing with road networks,
as shown in [19].

3.3 The inverse problem
The results of the simulations are condensed in lists, one for each run (given a source
position, and a set of parameters). Each of these lists contains the information regarding
the agent’s health and their "life time": if an agent got infected, he will be labeled as
+1 and the time associated will be the time he spent moving around before getting the
Legionella disease; on the contrary, the label will be −1 if it managed to "live" the entire
simulation time without getting infected. The same is done for the direct simulation (i.e.
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what corresponds to the real outbreak). The data are used first to tune the parameter
values, so to find their best values among many trials. Then we try to solve the inverse
problem by comparing the simulation data with the direct data. We do this using five
different approaches here below described. The results’ section shows how good they are
in finding the real source position.

All the approaches compare some quantity related to 1000 runs of the simulation for
a given source position, and return a value from that comparison. This is done for many
different source positions. In fact, we divide the map with a squared grid and place one
source in the centre of each square that overlaps with a part of the graph (see figure 3.5).
The external area is not taken into account for the simulations. We chose the number
of squares based on two informations. First of all the computational time: the smaller
the size, the higher the number of squares necessary to cover the graph, the higher the
time needed to compute everything; second, the resolution: it does not make sense to use
too small squares, since they would contain few homes and the comparison would result
in nothing really clear. Furthermore, we mentioned the possibility to use geo-localized
data to improve the model, data from mobile phones’ GPS. These data are provided by
private corporations and for privacy reasons they give them in an aggregate form, i.e. they
provide average values on a grid like ours, to avoid the possibility of recognizing the single
person from his mobile phone’s data. Their grid’s squares are normally of length around
500 meters. So summing up we used a grid with squares of length 398 meters. Given the
map of San Secondo, this results in 156 squares to cover the image, only 105 of which
overlap the graph. From now on we talk about squares and source positions treating them
as the same thing. In order to obtain realistic results, we can not forget that even if we
divide the map into discrete and contiguous squares, the real space is continuous. We
keep this information using a radius of action raction equal to the diagonal of the small
squares, long enough to partially overlap the surrounding squares. In this way agents
living near the square edges will be taken into account also by the neighboring squares
computations. We have to remember why this problem is interesting: it is related to an
epidemiological problem in the real world. Our aim is to stay as close to the real situation
as possible, so the information we want to use for our analysis must be limited, although
from a numerical point of view we know many different aspects of the outbreaks: from
the simulation outcomes we are able to retrieve the exact moment and the exact place our
agents get infected. This does not happen in the real world: the only certain information
is were people live, i.e. the home-stays. For this reason we try to solve the inverse problem
using the same piece of information. So all the plots now on will represent only the home-
stays of the agents, without really caring about their movements and other stay-points,
and the same applies to the computations.

Three of the following methods are called Chi-squared χ2 simply to indicate that they
compute differences between two sets of values and the goal is to find the where is the
minimum. The other instead of the differences they try to compute how similar the two
sets are, in two different ways. Here what is interesting is the maximum over the outcomes.
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Figure 3.5: Graphical view of the grid used on the graph of San Secondo to compute the
different values used in the inverse problem. The colored squares overlap with the map, so
they are taken into account for the simulations. The blue nodes represent the home-stays of
the 3000 agents living in the town. Some of the are red, indicating that in that simulation
the agents living there got infected by the LD that is centered in the green circle.

3.3.1 χ2
size

This is a first, easy attempt to compare the simulation with the real epidemic situation. It
is based on the size s of the outbreak, defined as the number of infected in one simulation.
For a given source/square at position ~x, we compute

χ2
size(~x) = 1

N

N∑
i=1

(sref − si(~x))2 , (3.10)

where N is the number of repeated runs, sref is the size of the outbreak happened in
the real/direct case (ref stands for reference), while si(~x) is the outbreak’s size in the
ith iteration, given the position ~x. Each square has a correspondent χ2(~x) value, thus a
heatmap can be drawn. We do not expect it to be really precise, since usually only the
size of an outbreak is not enough information for finding the spatial location of the real
source.

3.3.2 χ2
space

One natural evolution of the above χ2-coefficient consists of doing the same thing, but
with a higher resolution. We compute a similar coefficient but at the the single squares
level: given a position of the source ~x we sum the differences in outbreak-size of the single
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squares as

χ2
space(~x) = 1

N Nsq

N∑
i=1

χ2
i (~x)

= 1
N Nsq

N∑
i=1

Nsq∑
j=1

(sref,j − si,j(~x))2 ,

(3.11)

where again N is the number of runs, Nsq is the total number of squares covering the map4

and so the index j on the two s indicates we are looking at the size of the outbreak in one
particular square. We expect this one to be a good coefficient, since it takes into account
the spatial information of the outbreak size. It is reasonable that the dimension of the
outbreak is related to the spatial position of the houses.

3.3.3 χ2
time

Also time-evolution similarity could be an important indicator to find the real source posi-
tion. We want to compare the time evolution of the outbreaks in reality and simulations,
so we compute the cumulative outbreak-size curves and compute a χ2 on their points.
Given a time interval ∆t, we build the outbreak’s histogram, with bins’ values n1, n2, ..., nk
(number of infected in consecutive time intervals of ∆t) and sum them one with another
to build the cumulative curve:

y1 = n1,

y2 = y1 + n2,

.

.

yk = yk−1 + nk.

Now we compute the coefficient for a given square in ~x as

χ2
time(~x) = 1

N |~y|

N∑
i=1

χ2
t,i(~x)

= 1
N |~y|

N∑
i=1

|~y|∑
j=1

(yref,j(~x)− yi,j(~x))2 ,

(3.12)

where |~y| is the length of the vector |~y|, that is the number of points of the cumulative
curve. This is the most unknown coefficient a priori, since we do not know what will be
the results. With χ2

t (~x) we finish the χ2-like coefficients. Remember that for these what
we will be interested in is the minimum value, i.e. the square with the minimum value.

4One could argue that covering a bigger region and thus using more squares would increase the
denominator without having any affect on the outbreak, since the effect of the source is kept confined
by r0. We could use the number of squares containing at least one infected agent’s home to be more
correct. This number would change only varying the square’s dimension, but in this case also the
simulation outcomes would be different. In this thesis there is no difference since the region covered
and the square’s size are fixed.
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3.3.4 Psize
Another simple indicator is the probability of having an outbreak size, given its source
position, computed as the fraction of runs with an outbreak size s equal to sref with a
tolerance 0 ≤ α ≥ 1. So the counted runs are those with

si(~x) ∈ sref [1− α,1 + α] .

So we call P the number of counted runs over the total number of runs:

Psize(~x) =
∑N
i=1 δ

∗ (sref , si(~x))
N

, (3.13)

where the ∗ symbol indicates that the Kronecker’s delta δ∗ is equal to one every time the
above condition is true and not only when si(~x) is strictly equal to sref . As for χ2

size(~x),
we do not expect this coefficient to be really good, since one outbreak size can be obtained
by having the source in different places too easily.

3.3.5 Jaccard index
The last method uses the Jaccard index [20] J(~x) to measure how similar the simulation
and the real outcomes are. The coefficient, named after his developer the botanist Paul
Jaccard, is also known as Intersection over Union coefficient and measures how close two
finite sample sets are. It is defined as the size of the intersection divided by the size of the
union of the sample sets:

J (A , B) = |A ∩ B|
|A ∪ B|

.

In the LD model, for a given source position ~x, one sample set is defined as the ensemble of
squares where at least one infected agent live. So again it is a way of taking into account the
spatial correlations between cases and source position. What we compare is then the list of
squares with at least one infected agent’s home resulting from one run with the same list
resulting from the real outbreak. Call A = {Sref,j} j ∈{1,...,Nsq} and B = {Sj(~x)} j ∈{1,...,Nsq}
and obtain

J(~x) = |{Sref,j} ∩ {Sj(~x)}|
|{Sref,j} ∪ {Sj(~x)}| . (3.14)

The last two coefficients defined will be interesting when looking at their maxima, among
the values computed for each source position.
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Results
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Chapter 4

Results

4.1 The parameters’ choice
Before running the simulations it is necessary to set all the parameters of the model. For
some of them it is easy to decide their values, for others it is not. In particular, the easy
ones are:

• the walking speed v = 5 km/h;

• the maximum number of days to be simulated, fixed at 14 days;

• the length of the segment in which we split the roads when computing the probabilities
of infection δx = 1m.

These values will never change throughout the different simulations. Now to r0 and β0:
these are the "biological" parameters of the system, they are the ones strictly linked to how
to disease spread and work. They must be tuned in a heuristic way, through trials and
errors. In a first attempt we combined the values (r0 expressed in m and β0 in infected/s,
from now on not explicitly indicated anymore)

r0 = [ 10, 100, 1000 ], β0 = [ 10−1, 10−2, 10−3, 10−4, 10−8 ].

From this we selected r0 = 100 and β0 = 10−3 and then did a second attempt to refine
these values. By simulating with the values

r0 = [ 150, 200 ], β0 = [ 5 · 10−3, 10−3, 10−4 ],

we ended up choosing r0 = 150 with β0 = [ 10−3, 10−4 ]. Now the reasoning behind this
decision. For every combination of these two parameters we did 100 independent runs,
counted the number of infected in each of them, averaged the results over the 100 runs
and made histograms of the average number of infected per day. The plots and the total
average numbers of infected are shown in 4.2 and they explain almost everything about our
decision, so I report the explanation here instead of using the image caption, as I usually
do. The legends report also the value N, that is the average total number of infected (i.e.
the sum of the columns of one histogram). Since the average is not an integer but at the
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same time it does not make sense to report a fractional number of infected, we rounded
the results. That is why there is a < symbol. Figures (a), (b), (c), (d) and (e) shows the
results with r0 fixed and β0 varying. As expected r0 = 10 is not enough to see something
interesting: N is always between 0 and 1, indicating that neither one of the agents is getting
infected. Scaling r0 by one order of magnitude already shows some decreasing behaviour:
a big part of the agents living (or spending much time) close to the source get infected
almost at the first time they inhale the bacteria. Then, of course, the number can only
decrease in time, since the number of potential agents has been reduced. This behaviour is
present for any other value of r0 used, so what becomes interesting now is N: knowing that
in real outbreaks this value stay more or less between 10 and 100, the parameters values
in (c) seem to be the ones to be selected.
Figure (f) instead has β0 = 10−4 fixed and the radius r0 as the variable parameter. It is
interesting since the low value of β0 shows how the number of infected is almost constant
along the two weeks simulated, regardless of r0. The explanation is that not all the agents
living (or working) close to the source get infected at the first contact they have with the
bacteria. It is hard to get infected and only sometimes it happens. This well represents
the situation where the disease is present on the territory but is not so strong to affect all
the people close to it, thus it can not be found immediately.
In figure 4.1 we report the outcome of the single simulation, representing the real case,
for r0 = 150 fixed and for beta0 taking the two selected values. Interestingly when beta0
decreases, it becomes really hard to understand where the source is located looking only
at the houses of the infected agents (red nodes): they are not well localized inside the
dangerous region depicted in green.

4.2 Comparing the methods
We now fix r0 = 150 , β0 = 10−4, the real source to be the one of figure 4.1 and compare the
heat-maps resulting from the application of the five different methods previously described.
Everything can be seen in figure 4.3. A unique set of colors is associated to each of the
methods: red for χ2

size, gray for Psize, purple for χ2
time, green for χ2

space and blue for J(~x).
The coefficients χ2

size and Psize (figures 4.3 (a) and (b)) are clearly useless: the heatmaps
are flat and no information can be extracted. We can say that knowing only the outbreak
size is not sufficient to know a probable location of the real source. Same conclusion for
χ2
time (figure ??): even though some color gradient appears, almost all the map represents

a minimum in the χ2-value. The reported plot is the result of the computation using a
∆t = 1h, but changing this value to 6h or even 1 day does not change the outcome. Finally
some good results come out as we take into account the outbreak sizes at the single-square
level: both χ2

space and the Jaccard index methods were able to identify the real source
location. Of course we are not talking about the precise position, but the squares containing
it (in the depicted case the real source acts in a region between two contiguous squares).
The χ2

space method looks promising and the output is a quite broadened distribution over
the map: the minimum is evident, but then many shades of green cover the rest of the
map, showing a smooth transition between the squares. On the contrary the Jaccard index
shows a quite definite peak in the region of the real source position: J is flat on almost
all the map and jumps to a high value close to the inferred position. We repeated the
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computation for many different real source positions and the results were always the same
(the plots are not reported because they are really identical, especially for χ2

size and Psize):
χ2
space and J being really precise while χ2

size, Psize and χ2
time being almost useless. For this

reason we stop analyzing the bad coefficients. We go on with two good ones.

4.3 Analyzing χ2
space and the Jaccard index J

Figure 4.4 resumes the heatmaps for χ2
space using two different real source positions and

two β0 values. Figure 4.5 shows the equivalent results for the Jaccard index J . The two
coefficients show the same behaviour, so the following analysis is valid for both. Varying
β0, we observe that increasing the value of β0 the color distribution smoothens around the
extremum (whether it is the maximum for J or the minimum for χ2

space). In other words,
the colors are more uniform around the extremum, or the peak is less high relative to its
surroundings. This is due to the fact that as β0 increases, the probability of getting infected
increases as well and so does the number of infected (and thus the outbreak size), as seen
in figures 4.2. All the agents living near the source have associated a higher probability of
infection, and for a given outbreak size s, the number of combinations of agents infected,
giving rise to that s, is greater. This is true for both the source positions.

Comparing the two heatmaps for a given source, it is evident that the relative color-
difference between contiguous squares looks unaltered even when changing β0. The fluctu-
ations are really small. It is the result of averaging 1000 runs outcomes.
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(a) r0 = 150 , β0 = 10−3

(b) r0 = 150 , β0 = 10−4

Figure 4.1: The single simulations representing the real outbreaks event for our analysis.
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(a) r0 = 10 (b) r0 = 100

(c) r0 = 150 (d) r0 = 200

(e) r0 = 1000 (f) β0 = 10−4

Figure 4.2: Histograms showing the average number of infected per day obtained in simu-
lations using different values of r0 and β0. For the details see section 4.1.
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Figure 4.3: Comparing the five different inverse problem approaches, for r0 = 150 , β0 =
10−4. The red circle indicates the real position of the source that the methods should be
able to infer. (a), (c) and (d) represent χ2 values, so the inferred source position is located
in the minimum, i.e. the clearest square; for (b) and (e) the situation is reversed and the
inferred position is in the maxim, or darkest square.
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Figure 4.4: Comparing χ2
space outputs for two different real source positions (one per row)

and two different values of β0 used in the simulations (one per column).
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(a) source 0, β0 = 10−4
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(b) source 0, β0 = 10−3
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(c) source 1, β0 = 10−4
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max

(d) source 1, β0 = 10−3

Figure 4.5: Comparing Jaccard index J outputs for two different real source positions (one
per row) and two different values of β0 used in the simulations (one per column).
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Part V

Conclusions & Comments
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Chapter 5

Conclusions

5.1 Developed work
We developed a model able to emulate people walking on a real road map, following some
agenda (defined as consecutive stay-points on the map creating a loop, so that the first
and last points coincide and represent the agent’s home). It positions the source of the
Legionella disease on the map and tunes it with its infection parameters, such as r0 and
β0, deeply described in this thesis. The closer to the source an agent walks, the higher
the probability of getting infected. After one simulation we are able to compute the
outbreak size (defined as the number of infected people) and its time evolution. Having
one simulation run as the reference(or real) data, we iteratively used the model placing
the source in many different places: each place is the centre of a square that is part of the
grid covering all the map. We finally tested different coefficients whose aim is to compute
how similar the simulations are to the real case. Some of them failed, others succeeded,
confirming that the model works: comparing the outbreak size at a single square (local)
level using the χ2

space and Jaccard J coefficients, the model is able to infer the constrained
region in which the real source is placed.

5.2 Possible future work
We started the project with almost no references, so much time was spent to find to good
direction to follow. Now that the foundations are solid and confirmed, a lot of possibilities
are available for further developments. A first thing to do is to try and push the system to
its limits. As for any physical model, it is interesting and useful to understand what are
the precise ranges of parameters under which the model is working. This also helps to find
out when the model is reasonable and when it is not. Varying the size of the squares is
also a valuable development. Another important study to do is a quantitative measure of
how good the coefficients used are, together with a quantitative comparison between them.
Developing other metrics to infer the source position is another branch of research and can
lead to even better performances of the model. Then of course, as anticipated in the first
chapters of the thesis, using different real data, such as GPS tracks of people’s movements
and census data will make the model more data-driven and can improve it really fast. This
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unfortunately requires some agreements between universities and private corporations and
in our case it was not possible.

39



Bibliography

[1] W. Foundation, List of Legionnaire’s disease outbreaks, Jun. 18. [Online]. Available:
https : / / en . wikipedia . org / wiki / List _ of _ Legionnaires % 27 _ disease _
outbreaks.

[2] ultimahora.es, Investigan un brote de legionela en Palmanova con 19 afectados y
1 fallecido, Oct. 2017. [Online]. Available: https://ultimahora.es/noticias/
part-forana/2017/10/18/300579/investigan-brote-legionella-palmanova-
afectados-fallecido.html.

[3] diariodemallorca.es, Un jacuzzi de exteriores, foco del brote de legionela de Pal-
manova, Dec. 2017. [Online]. Available: https : / / www . diariodemallorca . es /
mallorca/2017/12/19/jacuzzi-exteriores-foco-brote-legionela/1273059.
html.

[4] W. H. Organization, Legionella and the prevention of legionellosis.
[5] P. S. W. et al., «Epidemiological investigation of a Legionnaires’ disease outbreak in

Christchurch, New Zealand: the value of spatial methods for practical public health.»,
Epidemiology and Infection, vol. 141, no. 4, pp. 789–99, Apr. 2013.

[6] R. P. e. a. A. Magnet, «Vectorial role of Acanthamoeba in Legionella propagation in
water for human use», Science of The Total Environment, vol. 505, pp. 889–95, Feb.
2015.

[7] M. e. a. Yamamoto Hiroyuki; Sugiura, «Factors stimulating propagation of legionellae
in cooling tower water», APPLIED AND ENVIRONMENTAL MICROBIOLOGY,
vol. 58, pp. 1394–97, Apr. 1992.

[8] T. M. Nhu Nguyen, D. Ilef, S. Jarraud, L. Rouil, C. Campese, D. Che, S. Haeghe-
baert, F. Ganiayre, F. Marcel, J. Etienne, and J.-C. Desenclos, «A Community-Wide
Outbreak of Legionnaires Disease Linked to Industrial Cooling Towers—How Far
Can Contaminated Aerosols Spread?», The Journal of Infectious Diseases, vol. 193,
no. 1, pp. 102–111, 2006. eprint: /oup/backfile/content_public/journal/jid/
193/1/10.1086/498575/2/193-1-102.pdf.

[9] A. A. e. a. Carmen Armero, «A probabilistic expert system for predicting the risk
of Legionella in evaporative installations», Expert Systems with Applications, vol. 38,
pp. 6637–43, Jun. 2011.

[10] M. E. Schoen and N. J. Ashbolt, «An in-premise model for Legionella exposure during
showering events», Water Research, vol. 45, no. 18, pp. 5826–5836, 2011, issn: 0043-
1354.

40

https://en.wikipedia.org/wiki/List_of_Legionnaires%27_disease_outbreaks
https://en.wikipedia.org/wiki/List_of_Legionnaires%27_disease_outbreaks
https://ultimahora.es/noticias/part-forana/2017/10/18/300579/investigan-brote-legionella-palmanova-afectados-fallecido.html
https://ultimahora.es/noticias/part-forana/2017/10/18/300579/investigan-brote-legionella-palmanova-afectados-fallecido.html
https://ultimahora.es/noticias/part-forana/2017/10/18/300579/investigan-brote-legionella-palmanova-afectados-fallecido.html
https://www.diariodemallorca.es/mallorca/2017/12/19/jacuzzi-exteriores-foco-brote-legionela/1273059.html
https://www.diariodemallorca.es/mallorca/2017/12/19/jacuzzi-exteriores-foco-brote-legionela/1273059.html
https://www.diariodemallorca.es/mallorca/2017/12/19/jacuzzi-exteriores-foco-brote-legionela/1273059.html
/oup/backfile/content_public/journal/jid/193/1/10.1086/498575/2/193-1-102.pdf
/oup/backfile/content_public/journal/jid/193/1/10.1086/498575/2/193-1-102.pdf


Samuel Salini: Inverse Problem in Legionella Outbreaks BIBLIOGRAPHY

[11] H. I. M. e. a. Bull M., «The application of geographic information systems and spatial
data during Legionnaires’ disease outbreak responses», Euro Surveill, 2012.

[12] S. Salini, An ordinary weekly agenda, Apr. 2018. [Online]. Available: http://www.
surveygalaxy.com/surPublishes.asp?k=9ANCQ9X2B9AV.

[13] P. White, F. Graham, D. Harte, M. Baker, C. Ambrose, and A. Humphrey, «Epi-
demiological investigation of a Legionnaires’ disease outbreak in Christchurch, New
Zealand: The value of spatial methods for practical public health», vol. 141, pp. 1–11,
Jun. 2012.

[14] O. W. contributors, Open Street Map, Jul. 2014. [Online]. Available: http://wiki.
openstreetmap.org/w/index.php?title=Main_Page&oldid=1060762.

[15] G. Boeing, «OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Vi-
sualizing Complex Street Networks.», Computers, Environment and Urban Systems,
no. 65, pp. 126–139, 2017.

[16] A. A. Hagberg, D. A. Schult, and P. J. Swart, «Exploring Network Structure, Dy-
namics, and Function using NetworkX», in Proceedings of the 7th Python in Science
Conference, G. Varoquaux, T. Vaught, and J. Millman, Eds., Pasadena, CA USA,
2008, pp. 11–15.

[17] C. Song, T. Koren, P. Wang, and A.-L. Barabasi, «Modelling the scaling properties
of human mobility», vol. 6, Oct. 2010.

[18] A. del Transport Metropolità, «Enquesta de Mobilitat en Dia Feiner», p. 2, 2016.
[19] S. Sawlani, «Explaining the Performance of Bidirectional Dijkstra and A* on Road

Networks», Master’s thesis, University of Denver, 2017.
[20] P.Jaccard, «Étude de la distribution florale dans une portion des Alpes et du Jura»,

Bulletin de la Societe Vaudoise des Sciences Naturelles, vol. 37, no. 142, pp. 547–579,
Jan. 1901.

41

http://www.surveygalaxy.com/surPublishes.asp?k=9ANCQ9X2B9AV
http://www.surveygalaxy.com/surPublishes.asp?k=9ANCQ9X2B9AV
http://wiki.openstreetmap.org/w/index.php?title=Main_Page&oldid=1060762
http://wiki.openstreetmap.org/w/index.php?title=Main_Page&oldid=1060762

	I Introduction
	General overview
	The problem
	State of the art
	The aim of the project


	II Real and collected data
	Real data for realistic modeling
	The online survey
	The questions
	The collected data
	Numbers and limitations

	Other data


	III The model
	Building the model
	A computational overview
	The structure
	Early steps
	Building the agenda
	Modifying the graph and preparing the system
	Let the agents walk: infection probabilities
	Let the agents walk: shortest path

	The inverse problem
	2size
	2space
	2time
	Psize
	Jaccard index



	IV Results
	Results
	The parameters' choice
	Comparing the methods
	Analyzing 2space and the Jaccard index J


	V Conclusions & Comments
	Conclusions
	Developed work
	Possible future work



		Politecnico di Torino
	2018-10-18T08:45:59+0000
	Politecnico di Torino
	Alessandro Pelizzola
	S




