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Introduction

In the Western countries atrial fibrillation (AF) is one of the most common forms of ar-
rhythmia, especially involving patients who are ≥ 60 of age, and it is often associated with
co-occurring chronic conditions. AF is a supraventricular tachyarrhythmia concerning the
atrial chambers which stop contracting effectively, leading to a cascade of side effects on
the whole cardiovascular system. Its triggering and sustaining mechanisms are various and
complex, making this condition very difficult to manage for clinicians. AF can be investi-
gated through an electrocardiogram (ECG) and trhough additional techniques such as the
transesophageal echocardiography (TEE) which is specifically used to detect the presence
of thrombi due to this condition. Patients affected by AF are generally pharmacologically
treated and undergo clinical cardioversions and catheter ablation procedures. Beside being
related to high levels of morbidity and risk of mortality, it is classified in different forms
and it can be either asymptomatic or strongly symptomatic, involving symptoms such as
fatigue, palpitations and syncope. Stroke and heart failure particularly stand out among
the main consequences of AF [1].

Moreover, AF has also been linked to the development of dementia [2][3][4], mean-
ing that it has repercussions on the cognitive functions as well. In this context, a reliable
method to investigate the impact of the anomalous atrial contraction on the cerebral hemo-
dynamics is needed.

Previous works by Scarsoglio et al. [5][6][7] showed the impact of AF on hemodynamic
components, such as pressure and flow rate, at different levels of a cerebral cardiovascular
structure model. In this work, real data coming from real subjects have been used with the
same purpose. The real data chosen for this study consist in near infrared spectroscopy
(NIRS) signals detected on six healthy subjects and six patients affected by AF and un-
dergoing a cardioversion procedure. The main focus of this work consists in the extraction
of the heartbeat information contained in the NIRS signals reflecting the hemodynamic of
the cerebrovascular system at a cortical level. This was possible thanks to the particular
characteristics of this technique, which is absolutely non-invasive and it is nevertheless
able to reach the first layers of the cerebral cortex, detecting the presence of oxygenated
and deoxygenated hemoglobin. For this reason, NIRS has always been mainly used in
the cerebral oxymetry field. However, in this work NIRS signals have been sampled at
a higher rate than usual (20 Hz) making this study different from other studies, which
also focused on patients affected by arrhythmias or AF but mainly using NIRS at low
sampling frequencies, hence excluding the potential beat-to-beat information that could
be extracted from these signals [8][9][10]. The following step, which is not taken in this
work, may consist in a study of the extracted heartbeat in terms of complex networks as
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Introduction

it has been done in [5] with the modeled signals of hemodynamic pressure and flow rate.
In fact, complex networks proved to be a valuable tool able to expand the understanding
of a complex condition such as the effects of AF on the cerebral circulation, as already
demonstrated in [5].

The work presented here is structured as follows: after a first introduction of the NIRS
scenario, from the birth of the technique to its last main uses, showing both its relevant
potentials and physical drawbacks, the measurements and the methods adopted in the
carried out experiments will be described, a preliminary signal processing involving the
detected NIRS signals will be shown, followed by a statistical analysis on the collected sig-
nals dataset and lastly describing the main processing leading to the heartbeat information
extraction accompanied by all the relevant obtained results.

All the experiments carried out on patients suffering from AF could be possible thanks to
the collaboration with the cardiology day-hospital unit of Città della Salute e della Scienza
hospital of Turin and particularly thanks to the precious contribution of the physiological
and medical counterpart of this work including Prof. Matteo Anselmino, Dr. Daniela
Canova and Dr. Andrea Saglietto.
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Chapter 1

Near Infrared Spectroscopy
(NIRS)

Near infrared (NIR) energy extends in the wavelength interval between 780-2500 nm and
it was firstly discovered by Fredrick W. Herschel in the XIX century. Herschel used a
prism to project a rainbow on a bench and then he measured the relative heating effect
of different parts of it. Moving from the blue to the red, he found that the heating effect
increased and it kept increasing even when he came to the end of the spectrum, indicating
the presence of remarkable energy even outside the visible spectrum. In fact, he measured
the maximum heating effect in the black area beyond the red end of the visible spectrum,
demonstrating that the energy of the sun is not limited to what can be seen [11].

Beginning to be used in the 1950’s as a simple add-on unit in spectrometers which
also adopted other wavelengths, NIRS finally appeared as an industrially acknowledged
technique. Originally applied in chemical analysis and astronomy, it became an important
medical tool only after 1977, thanks to Frans F. Jobsis’ experiment of monitoring animals’
brain oxygenation by using light transmission through their tissues [12]. This technique
basically consists in placing two probes (an emitter of the NIR radiation and a detector) on
the investigated volume of tissue and in detecting the intensity of the traversing radiation,
which is then converted into an electric signal by the detector.

Since visible light (400-700 nm) can penetrate biological tissues only up to approxi-
mately 1 cm because of the strong scattering effect determined by the tissue constituents,
near infrared light represents a suitable alternative to illuminate deeper structures like the
cerebral cortex, since photons can penetrate further in this range of wavelength [13].

1.1 Physical Principle
The human brain represents a tight connection between a functional component (its cells
and their vascularization) and a logistic component (its cellular metabolism). In this neu-
rovascular connection there must be a balance between a sensorial component (responsible
for the detection of external inputs) and an executive component (responsible for the gener-
ation of the outputs in response to the inputs). While the neuronal component functioning
is generally measured using electroencephalographic (EEG) signals (i.e. it is approached
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1 – Near Infrared Spectroscopy (NIRS)

by electrophysiology), the vascular component is related to hemodynamics, as recapped by
figure 1.1.1.

Figure 1.1.1: Cerebral functioning components and related measurement techniques

Moreover, the measures related to the vascular component are not meant to be simply
flow measurements, but they are measurements of various changes occurring in a certain
cerebral area and required by the cellular metabolism of that area. In this scenario, al-
though other techniques to evaluate the hemodynamics of the cerebral vascular system
are available (such as fMRI and PET), NIRS might be favored because it allows to have
a higher time resolution, which is more coherent with the resolution provided by EEG
signals, and it is less invasive. This is accomplished by NIRS not by measuring directly
cerebral blood flow (CBF) quantities, but by measuring quantities which are related to the
blood flow.

The main physical features making NIRS a popular and working technique are:

1. non-invasiveness;

2. use of non-ionizing radiations;

3. transparency of human tissues in the near infrared wavelength interval;

4. the absorption of the radiation depends on the tissue and its instantaneous character-
istics.

According to these features, NIRS is used to detect the presence of hemoglobin in
the blood, which can absorb the radiation and consequently allows to determine how it
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1.1 – Physical Principle

is treated by the tissues. By quantifying the presence of oxyhemoglobin (O2Hb) and
deoxyhemoglobin (HHb), it is then possible to evaluate the level of brain perfusion in some
areas of the cerebrovascular system.

NIRS is therefore based on the simple physical principle consisting in the absorption of
near infrared light by some substances having different absorption spectra (figure 1.1.2).
This phenomenon is quantified by the Lambert-Beer law (LBL), proposed by August Beer
and Heinrich Lambert in the XIX century [12], which relates the absorption of light to
the properties of the traversed material. According to this law, the absorbance A of the
emitted radiation through a solution of a single chromophore is calculated as

A = log
(

I0

I

)
= α · c · d = µa · d (1.1.1)

where I0 is the intensity of the incident light, I is the intensity of the transmitted light,
α is the extinction coefficient for the solute at the given wavelength, c is the chromophore
concentration, d is the pathlength followed by the light through the solution and the term
µa = α · c represents the linear attenuation coefficient of the medium (figure 1.1.3)[14].

Figure 1.1.2: Absorption coefficients of O2Hb, HHb and other biological substances
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1 – Near Infrared Spectroscopy (NIRS)

Figure 1.1.3: Scheme of the physical principle described by the Lambert-Beer law

Therefore, it is possible to quantify the concentration c of multiple chromophores in a
solution by adapting the equation (1.1.1) to each of them and solving the resulting system.

With reference to NIRS in medical applications, the two solutes of interest are O2Hb
and HHb, hence it is possible to determine the type of hemoglobin concentration to measure
simply by using two different incident wavelengths according to their absorption spectra.

It is also noteworthy that, as 70-80% of the blood in the brain is in the venous com-
partment, NIRS mainly offers iformation about venous blood [15][13].

1.2 Physical Issues
As indicated by Wahr et al. [12], the application of the Lambert-Beer law to quantify the
concentration of multiple substances through NIRS has the following requirements.

1. Every substance concentration must be measured using a separate wavelength.

2. The light intensity change detected must be large enough.

3. The pathlength of light must be measured precisely.

Addressing the wavelengths requirement, even if there are other chromophores in the
tissues which are able to alter their absorption of light due to their oxygenation state, they
have basically no absorbance in the NIR range, where hemoglobin instead represents the
strongest absorber [12]. As a result, no relevant issue is faced in meeting this requirement.

The real problems concern the intensity of measurable light and the determination of
the pathlength. For reflected light, the pathlenght is linearly related to the space between
the source and the detector so that many NIRS instruments focus on the measurement of
reflected light instead of transmitted light. As a result, emitter and receiver are usually
placed some centimeters distant from each other on the patients’ head affecting the volume
of investigated tissue and the depth of light penetration. In addition, the pathlength
depends on the optical characteristics of the tissue, the measurement geometry and the
concentration of the chromophore. In fact, for more concentrated solutions, the likelihood
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1.2 – Physical Issues

of photons to be absorbed will be higher than in less concentrated solutions, leading to a
shorter pathlength for the detected photons. The issue of the pathlength measurement has
been addressed by multiplying the source-detector distance term d by a corrective term
called differential pathlength factor (DPF), which depends on the optical characteristics
of the tissue. However, some problems concern the DPF term since its value is affected
by a certain intersubject variability and since the light penetrating the head of a subject
goes through different kinds of tissue and substances (i.e. skin, bone, cerebrospinal liquid
etc.) with different optical characteristics contributing to the pathlength value (and to the
DPF) in various ways. This means that at least the contribution to pathlength given by
each traversed tissue should be known. For instance, using some mathematical models it
has been estimated that the contribution of cerebral tissue to the total pathlength followed
by light through an adult head is about 20-40% [12].

Additionally, one of the main drawbacks of NIRS is light scattering (figure 1.2.1), af-
fecting the intensity of measurable light. When the emitted photons reach the skull of the
subject, they are partially absorbed, partially transmitted and partially deflected randomly
because of the different refractive indexes of the cranial structures and tissues they meet on
their way. It has been estimated by computer modeling that in a typical volume of tissue
interrogated by NIRS about 30% is made of brain and the rest 70% is scalp and skull [13].
Therefore, the contribution to the scattering effect given by the extracerebral tissues is
relevant in NIRS measurements. Because of scattering, some photons are lost and some
others lose energy but are detected anyway, thus affecting the quality of the measure.

Figure 1.2.1: Scheme of scattering of photons traversing a chromophore solution

A loss of light intensity of approximately one order of magnitude per centimeter of
traversed tissue is considered to occur because of both scattering and absorption [12].
Consequently, neglecting the scattering effect could result in an overestimation of the chro-
mophore concentration.

Usually photons penetrating the brain travel along an approximate banana-shaped path
(figure 1.2.2)[14] with its middle portion reaching the deepest side and the depth of the
followed path depending on the distance between source and detector. In fact, increasing
the source-detector separation can enhance the reached depth but it affects the spatial
resolution because of a more spread distribution of photons [16].
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1 – Near Infrared Spectroscopy (NIRS)

Figure 1.2.2: Banana-shaped path followed by photons between emitter and detector

However, although NIR light can penetrate human tissues up to a depth of several cen-
timeters, the scattering factor is about ten times more probable than absorption. Besides,
apart from O2Hb and HHb, other substancies like water, fat and proteins contribute to
absorption [15].

Since only a fraction of the scattered radiation is detected, the total light loss is un-
known, meaning that the absolute value of the chromophores concentration is very difficult
to quantify.

It must be noticed that the original Lambert-Beer law (equation 1.1.1) assumes a com-
plete transmission of light through the medium without accounting the scattering effect
[14]. In addition, the equation (1.1.1) lacks the DPF coefficient which accounts the cor-
rect pathlength quantification issue. For this reason, a modified version of the original
Lambert-Beer law (MLBL) was introduced [17].

A = α · c · d · B + G (1.2.1)

where B and G are new corrective terms.
B represents the DPF, which is the above-mentioned non-dimensional coefficient adopted

to consider the increased absorption of light due to the longer path followed by the scattered
photons: it determines the average elongated path followed by a photon. In other words,
it describes the actual distance traveled by light and it is wavelength dependent [13]. The
product B · d is called differential pathlength. The term differential is related to the fact
that B allows a modification of the equation (1.1.1) to quantify the differences in absorber
concentration c derived from the differences in absorbance A [12]. B is estimated through
proper mathematical models of the geometry of various body districts and therefore it can
be found in literature.

G is a non-dimensional term with the aim of balancing the effect of the lost scattered
photons. It considers the kind of tissue, its geometry and other parameters. G depends
on the position of the probes on the head of the subject and on the specific conformation
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1.3 – NIRS Signal Detection

of the skull of the individual. As a consequence, G cannot be obtained and it remains
unknown.

However, assuming that the change in scattering is small compared to the change in
absorption, the hypothesis behind the detection of NIRS signals is that G is time-invariant
during the time of measurement [18]. Hence, since the level of scattering is considered
constant, the variation of absorbance A can be calculated, although the baseline value is
still unknown. As a result, the equation (1.2.1) becomes

∆A = α · ∆c · d · B (1.2.2)

which is used to calculate the relative concentrations of chromophores. Therefore,
NIRS instruments which simply adopt algorithms based on the modified Lambert-Beer
law (MLBL) (equation 1.2.2) can only monitor a trend in the concentration changes of
chromophores, while no actual information about the absolute values can be achieved.

Adopting the equation (1.2.2) it is then possible to solve the following system of equa-
tions used to calculate the relative concentrations of both O2Hb and HHb.

∆Aλ1 = αHHb
λ1

· ∆cHHb · d · B + αO2Hb
λ1

· ∆cO2Hb · d · B

∆Aλ2 = αHHb
λ2

· ∆cHHb · d · B + αO2Hb
λ2

· ∆cO2Hb · d · B
(1.2.3)

where λ1 and λ2 are the two different wavelengths used to detect O2Hb and HHb. For
each equation, both the contribution of absorption by O2Hb and HHb are considered since
they both absorb light every time a wavelength is emitted.

The MLBL is valid under the hypothesis of homogeneous change in hemoglobin concen-
trations and of homogeneous tissue, but this approximation leads to an underestimation
of the changes in the concentrations. As a consequence, while this may not be a relevant
issue in brain research, where it is sufficient to detect the presence of brain activation and
where it occurs [18], it can be an obstacle in medical applications [14].

1.3 NIRS Signal Detection

The source of radiation used in NIRS instruments is often LED light, while the detector
probe consists in a photodiode converting the incoming light into electric current (figure
1.3.1). Thus, the electric signal generated by light attenuation is then converted into
chromophore concentration changes by a computer. The measured variables (i. e. O2Hb
and HHb concentrations) are monitored in real-time. To reduce the noise signal related to
the external environmental light, the detection probe is generally isolated by a black plastic
covering and both probes are placed as tight as possible on the patients’ skin (typically on
their forehead).
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1 – Near Infrared Spectroscopy (NIRS)

Figure 1.3.1: NIRS detection scheme

An example of NIRS signal showing the changes in cerebral hemoglobin concentration
is reported in figure 1.3.2.

Figure 1.3.2: Example of NIRS signal showing changes in O2Hb and HHb concentrations
during voluntary apnea
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1.3 – NIRS Signal Detection

Three different detection modes are commonly used in NIRS (figure 1.3.3)[18][14]:
1. continuous wave (CW);

2. time domain (TD);

3. frequency domain (FD).

Figure 1.3.3: Functioning of the three NIRS detection modes

1.3.1 Continuous Wave (CW)
The CW-based NIRS instruments emit the input light at constant intensity through the
tissue and then measure the re-emerging diffusely reflected light [18].

These instruments are the least expensive available but this kind of measurement has
some important drawbacks. The main disadvantage of this method is that the absolute
values of O2Hb and HHb concentrations are not measurable. However, with the assump-
tions used in the MLBL (equation 1.2.2) it is possible to quantify changes in these variables
so that CW-based NIRS monitors at least can work as trend monitors [18].

1.3.2 Time Domain (TD)
The TD-based NIRS instruments emit a very short impulse of light through the tissue and
then measure the time of flight of the emerging photons [18].

The measured time of flight is related to the pathlength followed by the light through
the head. The main advantage of this method is therefore the availability of information
about the scattering and absorption properties of the medium, based on the measurement
of the photons time of flight through the head, so that it is then possible to provide the
absolute values of hemoglobin concentration. The main drawback of this technology is its
high cost compared to the more simple CW method [14].

1.3.3 Frequency Domain (FD)
The FD-based NIRS instruments modulate the emitted light intensity, then they measure
the intensity of the detected light and its phase shift [18].

The measured phase shift is proportional to the actual pathlength followed by the light
through the head and is wavelength specific [13]. Therefore, this technology allows to
calculate the pathlength followed by the photons by using the obtained phase data [14].
Thus, it is possible to quantify absorption and scattering by the tissues and finally the
absolute values of O2Hb and HHb concentrations [13].
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1 – Near Infrared Spectroscopy (NIRS)

1.4 NIR Spatially Resolved Spectroscopy (SRS)
As already discussed aboove, various types of methods have been adopted during the years
in NIRS instruments and they can be recapped as follows [19].

1. Methods based on CW technology:

(a) MLBL method;
(b) spatially resolved spectroscopy (SRS);

2. methods based on TD technology:

(a) time resolved spectroscopy (TRS);

3. methods based on FD technology:

(a) phase resolved spectroscopy (PRS).

Suzuki et al. [19] have developed a NIRS oxygenation monitor machine called NIRO
300 (Hamamatsu Photonics, Hamamatsu, Japan), which is able to determine a tissue
oxygenation index (TOI) and a tissue hemoglobin index (THI) by using SRS and to measure
hemoglobin concentration changes1 by using MLBL.

According to the theory of photon diffusion approximation in a highly scattering medium,
in their instrument Suzuki et al. [19] use the calculated intensity of reflected light R(ρ, t)
to determine the light attenuation A(ρ) as

A(ρ) = − log
∫ ∞

0
R(ρ, t) dt (1.4.1)

where ρ and t are the distance and the time from the input respectively.
Indicating with L the differential pathlength in the MLBL (equation 1.2.2), which is the

product of the DPF B and the pathlength d, the attenuation change ∆A can be defined
as follows.

∆A = α · ∆c · L (1.4.2)
The differential pathlength L analytically coincides with the product between the light

velocity v and its mean time of flight T through the medium:

L = v · T (1.4.3)
where T is defined as

T =

∫ ∞

0
tR(ρ, t) dt∫ ∞

0
R(ρ, t) dt

(1.4.4)

1In this section the simplified notation ∆cO2Hb = ∆O2Hb and ∆cHHb = ∆HHb will be used to
indicate concentration changes
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1.4 – NIR Spatially Resolved Spectroscopy (SRS)

Hence, by measuring R(ρ, t), T is calculated as the temporal mean of the measured
R(ρ, t) (see equation 1.4.4) and the differential pathlength L is finally known.

As previously described, through the MLBL it is possible to detect different chro-
mophores concentration changes by using different wavelengths and then solving a proper
system of equations (see equations 1.2.3). NIRO 300 uses four different wavelengths, which
are 775 nm, 810 nm, 850 nm and 905 nm, to measure three components concentration
changes: ∆O2Hb, ∆HHb and ∆CtOx. The latter is the concentration change of cy-
tochrome oxidase, which is another absorber often detected in NIRS oximetry along with
O2Hb and HHb. Thus, the concentration changes are calculated by solving the following
matrix equation.

⎡⎣∆O2Hb
∆HHb
∆CtOx

⎤⎦ = 1
L

· [αi,j ]−1 ·

⎡⎢⎢⎣
∆A(λ1)
∆A(λ2)
∆A(λ3)
∆A(λ4)

⎤⎥⎥⎦ (1.4.5)

where i = O2Hb, HHb, CtOx and j = λ1, λ2, λ3, λ4, which are the four wavelengths
employed.

The principle of the SRS method consists in calculating the derivative of A(ρ) with
respect to ρ, which is a function of the attenuation (µa) and reduced scattering (µ′

s) coef-
ficients, as indicated by the equation (1.4.6).

∂A

∂ρ
= 1

ln 10

(√
3µaµ′

s + 2
ρ

)
(1.4.6)

Hence, by measuring ∂A

∂ρ
at several wavelengths thanks to the multiple segments on the

photodetector (see figure 1.4.1), it is possible to determine µa and µ′
s. The latter depends

on the wavelength λ and it is expressed as

µ′
s(λ) = k · (1 − h · λ) (1.4.7)

where h is the normalized slope of µ′
s along λ and k is the constant scattering contribu-

tion. Finally the relative attenuation coefficient kµa can be calculated from the equation
(1.4.6) as

kµa(λ) = 1
3(1 − hλ)

(
ln 10 · ∂A

∂ρ
− 2

ρ

)2
(1.4.8)

As a result, the relative concentrations kO2Hb and kHHb can be calculated by using
three wavelengths and then solving the following matrix equation.

[
kO2Hb
kHHb

]
= [αi,j ]−1 ·

⎡⎣kµa(λ1)
kµa(λ2)
kµa(λ3)

⎤⎦ (1.4.9)

where i = O2Hb, HHb and j = λ1, λ2, λ3.
Lastly, the TOI and the THI can be determined as

TOI = kO2Hb

kO2Hb + kHHb
(1.4.10)
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THI = kO2Hb + kHHb (1.4.11)

According to the definitions in equations (1.4.10) and (1.4.11), TOI can be interpreted
as a measure of the relative changes in tissue oxygenation, while THI represents the tis-
sue blood volume. In fact, according to the definition (1.4.11), THI indicates the total
hemoglobin concentration detected and, as a consequence, it can be associated to the total
blood volume, as hemoglobin is a large blood component.

Anyway, a major issue concerning NIRS signals is the way they are affected by the
extracranial circulation, which is not of interest in cerebral oximetry, whose main focus
is on the cortical tissue oxygenation at different levels. Some authors in the past already
pointed out the disadvantageous effects of extracranial circulation on NIRS recordings,
which may lead to misinterpretations of these signals [20], [21], [22]. This is the reason
why the algorithm series described in section 1.3 and in this section describing the SRS
have been developed. As reported by Canova et al. [23], under some circumstances, the
quantities estimated through the MLBL (∆O2Hb and ∆HHb) are more affected by the
extracranial circulation than those estimated through the SRS algorithm (TOI and THI).
For this reason, to obtain the heartbeat (HBI) information, the TOI and THI data will
draw the main focus of this work.

NIRO 300 by Hamamatsu Photonics uses pulsed laser emitter diodes and a detector
probe with a sensitivity able to maintain an emitter-detector distance equal to 5 cm in
most cases, allowing a measuring volume of several cubic centimeters. The detector is
made of three sensors placed at different distances from the light source (figure 1.4.1).

Figure 1.4.1: NIRO 300 detection scheme

For large enough values of distance ρ from the emitter, the scatter distribution is so
homogeneous that the scatter loss in a′ and b′ is basically the same. Hence, any difference in
the intensity value of the detected light between a′ and b′ can be interpreted as a difference
in absorption at these locations and the local absorption change can be considered as a
function of ρ.
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1.5 – NIRO-200NX by Hamamatsu Photonics

1.5 NIRO-200NX by Hamamatsu Photonics
The version of the monitor used in this work is the NIRO-200NX by Hamamatsu Photonics
(figure 1.5.1) and its main features are:

• five signal outputs

– TOI (%);
– nTHI (arbitrary unit);
– O2Hb (µM);
– ∆HHb (µM);
– total hemoglobin change ∆cHb (µM);

• maximum sampling frequency equal to 20 Hz;

• LED light source using three wavelengths (735 nm, 810 nm and 850 nm);

• two segments photodiode detector.

Figure 1.5.1: NIRO-200NX (Hamamatsu Photonics)

According to the indications provided by the producer, if L is known, ∆O2Hb and
∆HHb are measured as absolute concentration changes ∆µM . When d > 3 cm, L and
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d are related through the DPF as L = DPF · d. Hence, if DPF is known, L can be
accordingly estimated. As discussed above, DPF values can be found in literature and
for the human adult head a common DPF value is 5.93. Hamamatsu Photonics provides
some DPF common values to use during the acquisition with NIRO-200NX. Alternatively,
when L is unspecified, the unit adopted for ∆O2Hb and ∆HHb can be set as ∆µM · cm.
Furthermore, the unit of TOI is %, while THI has no unit of measure. Lastly, nTHI is a
normalized version of THI being generally displayed by the monitor and it is defined as:

nTHI(t) = THI(t)
THI(0) (1.5.1)

which is basically the ratio between the THI at a generic instant t during the acquisition
and the THI calculated at the beginning of the acquisition (t = 0). In the diagrams reported
in this work the explicit units of O2Hb and TOI are omitted.

1.6 NIRS Applications
After its initial spread, NIRS started to be used to obtain the average oxygen saturation
in the arteriolar, capillary and venous districts of many tissues and it settled together with
other technologies which use pulsed signals to measure peripheral oxygen saturation (like
pulse oximetry) [14]. However, when compared to pulse oximetry, NIRS stands out for
its greater tissue penetration, the ability to provide global information about oxygenation
in all the vascular compartments and the possibility of characterizing more chromophores
than pulse oximetry by adopting more wavelengths [13].

Hence, NIRS became very popular in cerebral oximetry, which is a vital mean for
monitoring patients in intensive care units. In fact, this technique is suitable for long-term
applications since it provides continuous real-time information, it does not interfere with
other instruments, it is non-invasive and it can be done at the patients’ bedside [15]. In
addition to that, its ease of use and minimal interoperator variability in detection are other
notable features [14]. Besides, its introduction as an oximetry tool outdid jugular venous
bulb oxygen saturation technique, which is invasive and inclined to artefacts [13].

Nevertheless, NIRS is also employed in neonatology, in short-term applications, such
as monitoring patients undergoing surgery, and it has also been studied in the context of
traumatic brain injury [14].

This technique represents a valuable tool for monitoring brain oxygenation, especially
considering the relevance of the cerebral autoregulation mechanism. According to this phys-
iological phenomenon, when the cerebral perfusion pressure (CPP) increases or decreases
(within some limits), the CBF is maintained constant to prevent any cellular damage,
hence a hemodynamic change in the organ occurs. Besides, autoregulation works by sec-
tors on the cerebral cortex, depending on the specific metabolic need of every area. It is
noteworthy that NIRS has been also employed to obtain an index of autoregulatory va-
soreactivity to create a clinical tool able to determine the quality of the patients’ cerebral
autoregulation [24].

Along with the CPP, other pressures play an important role in the cerebral autoregula-
tion, such as the arterial blood pressure and the intracranial pressure, and all of them are
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controlled by the shrinking and contracting motion of the blood vessels, thus protecting
the tissues against diminished or excessive blood flow.

With reference to conditions like hypocapnia and hypercapnia, which are due to hy-
perventilation and hypoventilation respectively, clearly they affect the blood flow reaching
the cerebral cortex since the amount of O2 and CO2 exchanged by the cerebral cells must
always be regulated carefully and therefore the blood flow to those tissues must be properly
adjusted.

As a result, monitoring the perfusion level of the brain means achieving important
information related to the hemodynamic in the vessels of that region. In fact, NIRS-based
methods have been developed to achieve the absolute quantification of CBF and cerebral
blood volume (CBV) [13].
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Chapter 2

Signals Acquisition Procedure

The NIRS signals used in this work have been obtained by two different groups of subjects:

• six healthy subjects (HS);

• six patients (PT) suffering from atrial fibrillation (AF).

The patients participating to the experiment were previously asked to give their written
formal consent to undergo this experiment, which has been approved by the Local Ethical
Committee. These subjects were patients of the cardiology day-hospital unit of Città
della Salute e della Scienza di Torino hospital, in Turin, where they received a scheduled
cardioversion (CV) as part of their therapy.

All the signals obtained in these experiment sessions were processed through appropri-
ate codes implemented in MATLAB software and by using the two included apps Signal
Analyzer and Curve Fitting.

2.1 Signals Acquisition on the Healthy Subjects
The HS have been tested under five different conditions in the following order:

1. baseline recording;

2. voluntary apnea;

3. hyperventilation;

4. Valsalva maneuver;

5. head down.

Table 2.1.1 contains the details about the participants.
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Table 2.1.1: Participating healthy subjects characteristics

Subject Sex Age

1 F 25
2 F 51
3 M 24
4 M 24
5 F 24
6 F 37

2.1.1 Tests Description
Table 2.1.2 recaps the testing conditions with the corresponding duration and the number
of participating subjects to each of them.

Table 2.1.2: Conditions summary (in alphabetical order)

Conditions Performing Subjects Duration
Apnea (AP) 6 30 s

Baseline (BL) 6 4 min
Head Down (HD) 5 15 s

Hyperventilation (HV) 6 15 s
Valsalva Maneuver (VM) 6 15 s

All the subjects under each condition were tested in supine position with closed eyes
and were asked to stay as much still as possible to reduce motion artifacts.

For each subject all the listed tests were performed in the same order within the same
recording session and using time markers on the registering signals to distinguish the
beginning and the ending of each testing condition as shown by the scheme in figure 2.1.1.
After every testing condition, some minutes of break were taken to restore the baseline
condition before a new test started.

Figure 2.1.1: Recording scheme
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The Baseline (BL) condition in table 2.1.2 refers to the recording of 4 min of normal
breathing at normal heart sinus rhythm (NSR).

During the Apnea (AP) condition the subjects were asked to hold their breath for about
30 s.

In the Hyperventilation (HV) test the subjects were asked to increase their respiratory
frequency, trying to keep the reached rhythm steady over 15 s without dropping it.

In the Valsalva Maneuver (VM) test the subjects were asked to perform this maneuver
for 15 s. The Valsalva maneuver consists in contracting the abdominal muscles as much as
possible while holding the breath by pinching the nose shut and with the mouth closed.

The Head Down (HD) test consisted in making the subjects passively tilt their head and
keep it down over the upper extremity of the table for 15 s. To guarantee the passiveness
of the movement, an operator would hold their head to make it move, while the subjects
were asked to completely relax their neck muscles. As reported in table 2.1.2, this test
was performed only by five subjects over six, since subject 2 was not tested under this
condition.

2.1.2 Signals Acquisition Setup
The NIRS signals acquisition system adopted in this work is the NIRO-200NX monitor
(Hamamatsu Photonics), which acquired, sampled (20 Hz), digitally converted and trans-
ferred the signals to a PC station where they were visualized in real time, as shown in the
scheme in figure 2.1.2.

Figure 2.1.2: Acquisition scheme (for HS)

As described in chapter 1 section 1.5, the NIRO-200NX monitor is able to output up
to five types of signals:

• three directly measured quantities (O2Hb, ∆HHb and ∆cHb);

• two quantities obtained from the application of the Spatially Resolved Spectroscopy
(SRS) algorithm (TOI and nTHI).

Two acquisition channels have been used for each subject under each condition. The
first attempt was to use two channels with different source-detector (SD) distances for
all subjects, but this was not possible for subjects 3 and 4 because of technical issues.
Besides, subject 4 encountered technical issues concerning channel 2, making the signals
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coming from this source scarcely reliable. Table 2.1.3 reports the channel configurations
adopted for each subject with the corresponding SD distance. For each subject a DPF =
5.93 has been set.

Table 2.1.3: Channel configurations adopted

Channel Configurations for Each Subject (SD Separation Values)

Subject 1
Ch1 4 cm

Subject 3
Ch1 3 cm

Subject 5
Ch1 4 cm

Ch2 3 cm Ch2 3 cm Ch2 3 cm

Subject 2
Ch1 4 cm

Subject 4
Ch1 4 cm

Subject 6
Ch1 4 cm

Ch2 3 cm Ch2 4 cm Ch2 3 cm

As already discussed in chapter 1 section 1.2, different SD distances reflect different
investigation volumes on the subject’s head. Specifically, shorter SD separations lead to
smaller investigation volumes, while longer distances lead to bigger volumes.

The optodes where placed on the right and the left side of the subject’s forehead avoiding
contact with the hair and were properly fixed and covered in a black rubber covering to
reduce the environmental light noise.

2.1.3 Output Signals

Overall, every channel yielded four output signals:

• O2Hb;

• ∆HHb;

• TOI;

• nTHI;

All the signals were visualized by using the NIRO-200NX Display Software (Hamamatsu
Photonics) during the acquisition procedure and the recorded data have been imported into
MATLAB software environment for post-processing purpose.

Among the signals listed above, only O2Hb, TOI and nTHI were considered. Thus,
for each subject six signals were available in total. After the measurements, the available
time series from each subject have been segmented according to the time intervals when
the different testing conditions took place (see figure 2.1.1). This led to a total number
of available time series equal to (6 × 6 × 5) − 6 = 174 (since the HD condition lacks one
subject). The scheme in figure 2.1.3 shows how the available data have been organized to
be further processed.
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Figure 2.1.3: Data organization scheme

2.2 Signals Acquisition on the Patients

The PT tested suffer from AF and underwent a clinical cardioversion (CV) to restore the
normal sinus rhythm (NSR).

The aim of the NIRS recording on these subjects is the evaluation of the change in the
HBI information extracted from the recorded NIRS signals before and after the CV, hence
only subjects whose NSR was successfully restored after the CV have been accounted. As
a consequence, only two testing conditions are considered in this case:

1. pre-CV condition (Pre-CV);

2. post-CV condition (Post-CV);

Table 2.2.1 contains the relevant details of the patients participating to the experiment.
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Table 2.2.1: Participating patients characteristics

Subject Sex Age Drugs Prev. TEE ECG

1 F 62 Midazolam Yes No
2 M 82 Midazolam Yes No
3 F 75 Coumadin No Yes
4 M 19 Midazolam Yes Yes
5 M 79 Xarelto - Midazolam Yes Yes
6 M 55 Coumadin No Yes

Some patients underwent a trans-esophagus echography (TEE) before the CV took
place and were administered Midazolam as anesthetic during that procedure. For this
reason, some of the patients undergoing TEE were possibly still under the anesthetic effect
before the CV procedure started, hence this condition was taken into account.

Lastly, the ECG column in table 2.2.1 refers to the availability of ECG data for that
specific patient.

2.2.1 Signals Acquisition Setup
Overall, in the experimental session involving the PT, three different monitoring systems
were adopted and the signals coming from these systems were simultaneously obtained:

• NIRO-200NX (Hamamatsu Photonics) as NIRS monitor;

• Capnostream20p (Medtronic) as oxygen saturation (SpO2) monitor (figure 2.2.1);

• Dynascope Monitor DS-7100 (Fukuda Denshi Co.) as ECG monitor (figure 2.2.2).

Figure 2.2.1: Capnostream20p (Medtronic) Figure 2.2.2: Dynascope Monitor DS-7100
(Fukuda Denshi Co.). Here the DS-7200 ver-
sion is displayed as an example.
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During the acquisition, the analog signals coming from the SpO2 and the ECG monitors
were synchronized, sampled and transferred to a PC station by a multichannel acquisition
system (CED Micro1401-3)(figure 2.2.3), while the NIRS signals coming from the NIRS
monitor were independently sampled, digitally converted and transferred to the same PC
station by the NIRS monitor, as shown in the scheme in figure 2.2.4.

Figure 2.2.3: CED Micro1401-3

Figure 2.2.4: Acquisition scheme (for PT)

Table 2.2.2 recaps the sampling frequencies adopted for each kind of recorded signal.

Table 2.2.2: Instruments and sampling frequencies adopted

Instrument Signals of Interest Sampling Frequency

NIRO-200NX O2Hb, TOI and nTHI 20 Hz
Capnostream20p SpO2 400 Hz

Dynascope Monitor DS-7100 ECG 400 Hz

The synchronization between the NIRS signals and those acquired by the acquisition
system was obtained by setting event markers at the beginning and the ending of each
acquisition.

Furthermore, as the NIRO-200NX monitor lacks electrical isolation against CV, this
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monitor had to be disconnected immediately before the CV and reconnected only after-
wards to avoid electrical issues and damages. Hence, two other markers were set corre-
spondingly to the beginning and the ending of the CV, during which no NIRS signal could
be acquired. Meanwhile, the acquisition system kept collecting the SpO2 and the ECG
signals also during the CV.

For NIRS signals acquisition, similarly to the HS tests, two acquisition channels were
used on the PT as well, but in this case the SD separation adopted was the same for both
channels and equal to 4 cm (with a DPF set equal to 5.93).

Also in this case, the NIRS probes were placed on the right and on the left side of the
patient’s forehead, avoiding contact with the hair and were properly fixed and covered in
a black rubber covering to reduce the environmental light noise.

The SpO2 was monitored by using a pulse oximeter sensor placed on a finger of the
patient. Two different SpO2 signals were obtained:

• SpO2 waveform;

• SpO2 square wave.

The ECG was monitored using twelve leads but only the second lead (II) could be
exported as analog signal to the acquisition system.

The ECG and SpO2 signals were not available for all the tested patients as indicated
by table 2.2.1. In fact, for some patients, at the time of the acquisition the complete setup
including the multichannel acquisition system was not available yet.

2.2.2 Experimental Session Description

During the acquisition, the patients were laying in supine position on a hospital bed and
were asked to stay as much still as possible to reduce motion artifacts while keeping their
eyes closed. Hence, most of the acquisition time, the patients laid calm, with closed eyes
and sometimes fell asleep. The acquisitions generally lasted from 2 to up to 3 hours,
comprehensive of the CV procedure. Thus, sudden events like movements, speaking or
cough were inevitable and the operators tried to catch them by setting proper event markers
on the recording signals as much as possible to be further deleted in the signal processing.
The recorded signals were then visually inspected and only the pieces where the patients
seemed to be mostly calm and where movement artifacts were mostly absent for both the
Pre-CV and Post-CV conditions were considered.

With reference to the NIRS signals, generally 20-30 min of recording before the CV and
20-30 min of recording after the CV were considered for the signals analysis. Hence a total
number of NIRS time series equal to (6 × 6 × 2) = 72 is available.

The indicative global post-recording signals subdivision based on the markers placed
during the acquisition is reported in the scheme in figure 2.2.5.
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Figure 2.2.5: Recording scheme (signals inserted here only as visual example)

Lastly, the scheme in figure 2.2.6 recaps the organization of the available data belonging
to the experimental sessions on the PT.

Figure 2.2.6: Data organization scheme

31



2 – Signals Acquisition Procedure

2.3 Examples of Output Signals
Figures 2.3.1 and 2.3.2 show an example of the detected signals from PT3 including the
NIRS signals and the ECG and SpO2 signals acquired in sync.

Figure 2.3.1: Example: NIRS signals from channel 1 of PT3 during Pre-CV condition (only
10 s displayed)

Figure 2.3.2: Example: ECG and SpO2 signals from PT3 during Pre-CV condition (only
10 s displayed)
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As discussed in chapter 1 section 1.4, under some circumstances TOI and nTHI may
represent information about blood circulation at a deeper location within the investigation
volume, while O2Hb is more affected by the extra-cranial circulation. For the purpose of
this work, hence only the TOI and nTHI signals will be considered as the main source
of the heartbeat interval (HBI) information, which can be extracted by measuring the
peak-to-peak time distance.

However, this choice comes with a problem concerning the time morphology of these
signals. In fact, TOI and nTHI appear mostly random-like signals and, except some en-
countered cases during their recording, they are not likely to show a clear HBI information
over time, meaning that the HBI values extraction from these signals can be very difficult.
Besides, TOI and nTHI signals show more inter-subjects variability when compared to
O2Hb. This issue will be faced in chapter 5.

Another problem needing to be addressed and related to all the detected NIRS signals
is the slow trend at low frequency, which is visible in the examples in figure 2.3.1. The
slow trend is not of interest for the purpose of this work and thus it should be removed.
The signals detrending issue will be dealt in chapter 3.
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Chapter 3

Signals Detrending

The dataset of NIRS signals described in chapter 2 underwent a detrending process con-
sisting in different trials to determine the most suitable detrending approach. Detrending
these signals is essential to remove the low frequency components responsible for their slow
trend, which is not of interest for the purpose of this work. The original signals detected
from channel 1 of HS1 under BL condition are shown as an example in figure 3.0.1. The
low frequency slow trend is clearly visible in all the three signals.

Figure 3.0.1: Example: 60 s of original signals before detrending (channel 1, HS1 under
BL condition)
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The performed detrending trials may be grouped in two main approaches:

• filtering approach;

• curve fitting approach.

The two approaches mainly differ for their domain of application. In fact, the filtering
approach aims to detrend the signal in the frequency domain, while the curve fitting
approach is directly applied to the signal in the time domain.

In this chapter, as an example, only the results belonging to HS1 (healthy subject 1)
under BL condition will be presented.

A list of the trials performed is summarized by the scheme in figure 3.0.2.

Figure 3.0.2: Scheme recapping the detrending trials performed

3.1 Filtering Approach
In this section the filtering approach with the corresponding trials will be described. As
shown in figure 3.0.2, two main types of filters have been adopted:

• band-pass filters (BP);

• high-pass filters (HP).

Besides, for both BP and HP filters, five different filtering algorithms have been tested:

• Butterworth filter;

• Chebyshev 1 and 2 filters;

• elliptic filter;

• Yule-Walker filter.
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Among all these filters, Yule-Walker is the only one being directly designed by the user,
meaning that the magnitude and frequency masks to apply to the signal are shaped directly
and the order of the filter is chosen according to the filter performance. For the other
filter types an order estimation function has been used, while the stop-band attenuation
amplitude, the maximum ripple amplitude and the stop-band and pass-band frequency
ranges have been set. The cut-off frequencies to be respected by the applied filters have
been set as [0.4, 4] Hz and 0.4 Hz for the BP and the HP filters respectively. Moreover,
every filter has been applied forward and backward to avoid signal phase distortion. Tables
3.1.1 and 3.1.2 list the BP and HP filters parameters adopted in these trials.

Table 3.1.1: BP filters parameters

BP Filters Butterworth Chebyshev 1 Chebyshev 2 Elliptic Yule-Walker
Order n 8 7 7 5 10

Stop-band
Attenuation

Rs 25 dB 50 dB 50 dB 50 dB

Ripple
Amplitude

Rp 0.025 dB 0.025 dB 0.025 dB 0.025 dB

Cut-off
Frequencies

fc [0.3, 5] Hz [0.4, 4] Hz [0.2, 6] Hz [0.4, 4] Hz [0.8, 4] Hz

Table 3.1.2: HP filters parameters

HP Filters Butterworth Chebyshev 1 Chebyshev 2 Elliptic Yule-Walker
Order n 5 4 4 3 40

Stop-band
Attenuation

Rs 50 dB 50 dB 50 dB 50 dB

Ripple
Amplitude

Rp 0.5 dB 0.5 dB 0.5 dB 0.5 dB

Cut-off
Frequencies

fc 0.3 Hz 0.4 Hz 0.1 Hz 0.4 Hz 0.6 Hz

Figures 3.1.1 and 3.1.2 show the resulting transfer functions (TF) of the BP and HP
filters tested.
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Figure 3.1.1: BP filters TFs

Figure 3.1.2: HP filters TFs

Figures 3.1.3 - 3.1.14 display 10 s of the resulting O2Hb, TOI and nTHI signals from
channel 1 of HS1 under BL condition after the application of the BP (3.1.3 - 3.1.8) and
HP (3.1.9 - 3.1.14) filters.
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3.2 – Curve Fitting Approach

According to the TFs reported in figures 3.1.1 and 3.1.2, the Chebyshev 1 and the elliptic
filter appear to be the best performing filters in both cases. In fact, they guarantee the
steepest decay around the cut-off frequencies, resulting in a large stop-band attenuation.
Also the Butterworth BP and HP filters behave quite well, although they cannot guarantee
the same steepness. Furthermore, Butterworth BP filter required half of the Rs selected for
the other BP filters (see table 3.1.1), as a Rs = 50 dB caused great instability in the filter
stop-band. Besides, with reference to the filter order, the filters giving the best outcome
by employing the smaller order are the elliptic filters. The Yule-Walker filters in this case
behave the worst, as they require an exaggeratedly high order to get a proper decay. Lastly,
only the Chebyshev 1 and elliptic BP and HP filters respect the initial cut-off frequency
requirements expected from the desired filter: [0.4, 4] Hz and 0.4 Hz for the BP and HP
versions respectively.

The resulting signals reported in figures 3.1.3 - 3.1.14 show two main relevant features:
as expected, the application of a HP filter preserves more information about the original
high frequency oscillations and the detrending performances are comparable with those
belonging to BP filters, as the same low cut-off frequency and stop-band attenuation have
been required (see tables 3.1.1 and 3.1.2). However, for the purpose of this work, BP
filters may be favored as they are able to reduce the noisy high frequency oscillations of
signals such as TOI and nTHI, which will be used in the next processing to extract the
HBI information. Besides, as the HBI duration is the ultimate information needing to
be extracted from these signals, all the high frequency oscillations located at frequencies
f ≥ 4 Hz are not much interesting as they would correspond to hypothetical heart rates
HR ≥ 240 bpm. In fact, considering both the healthy subjects and the patients tested in
this work, this HR value is beyond the maximum value that might be registered on resting
subjects, even on those suffering from AF under pharmacological treatment [1], and hence
the chosen upper cut-off frequency (4 Hz) may be acceptable to properly filter the NIRS
signals.

3.2 Curve Fitting Approach
This approach consists in detecting the curve representing the slow trend of the signal and
in the subtraction of the detected trend from the signal in the time domain. Hence, this
method is solely based on the time morphology of the signal and the outcome may change
accordingly.

Firstly, different methods available in the Curve Fitting Tool provided by MATLAB
software have been just visually and qualitatively tested to shortlist only those giving the
best fitting result on some sample signals extracted from the dataset. Among all the tested
methods, four of them have been finally sorted:

• Fourier (8 terms);

• polynomial (9th degree);

• smoothing spline;

• sum of sine (8 terms).
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Generally MATLAB provides each method with the corresponding coefficient of deter-
mination (R2), estimating the goodness of the performed fitting process, which is useful in
statistical analysis to determine if the adopted model is able to properly detect the trend
of the scattered collected data. R2 value ranges from 0 to 1, where R2 = 1 represents an
optimal fitting. However, the main intention here is detecting the slow trend of the studied
signals, meaning that the goodness of the fitting should be related to the ability of the
method of capturing only the low frequency trends, excluding all the information belong-
ing to higher frequencies oscillations, which has to be preserved instead. Hence, R2 may
not be the most appropriate estimator to evaluate the performed fitting for this purpose,
however its values will be shown as complementary information and it will be used as an
indicative additional discriminant for the tested methods.

Before quantitatively testing the shortlisted methods, all the signals of the dataset have
been grouped by type and their mean has been removed. This means that all the O2Hb
signals belonging to all subjects (HS and PT) tested under every condition have been
grouped together and the same has been done for TOI and nTHI signals as well. Then,
the fittings have been applied to 10 s of signal of each group and the corresponding average
R2 value has been computed. Hence, one mean R2 value for each group of signals and for
each tested method has been obtained, leading to twelve R2 mean values in total. This
procedure is summarized in the scheme in figure 3.2.1.

Figure 3.2.1: Scheme showing how the signals have been grouped before testing the fitting
methods
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Figure 3.2.2 shows the average coefficients of determination for each group of signals
and for each tested method.

Figure 3.2.2: Comparison of the resulting average R2 values from the tested fitting methods

While for O2Hb signals the mean R2 value is larger for the sum of sine method, the
smoothing spline fitting seems the best performing for TOI and nTHI signals when com-
pared to the other approaches. Nevertheless, the low R2 values shown for TOI and nTHI
are due to the aforementioned purpose of the fitting, which is just the detection of the slow
trend, excluding the other oscillations. On the other hand, the larger values shown for
O2Hb are possibly due to the less noisy morphology of this kind of signal when compared
to TOI and nTHI, meaning that its trend is overall easier to fit.

Anyway, as an example, figures 3.2.3 - 3.2.5 show the smoothing spline results in terms
of slow trend detection and consequent signal detrending when applied to the O2Hb, TOI
and nTHI signals from channel 1 of HS1 under BL condition.
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Figure 3.2.3: Example: result of the smoothing spline fitting method applied to O2Hb and
corresponding detrended signal

Figure 3.2.4: Example: result of the smoothing spline fitting method applied to TOI and
corresponding detrended signal
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Figure 3.2.5: Example: result of the smoothing spline fitting method applied to nTHI and
corresponding detrended signal

Although these results may be considered satisfying in terms of detrending quality, they
are not exactly comparable to those obtained through the best performing filters reported
in section 3.2, as shown in figure 3.2.6. Moreover, the main drawback of the curve fitting
methods is related to their domain of application, that is the time domain. In the time
domain, the quality of the trend fitting performed by these methods needs to be assessed
especially visually and it is very signal-sensitive, meaning that the same method for one
signal may not be as effective as it is for other signals. This is particularly true for the
smoothing spline method, whose performance needs to be evaluated visually by setting an
appropriate smoothing parameter which allows to increase or decrease the smoothness of
the fitting curve according to the visualized signal. This procedure can be promptly done
by visualizing the signal in the time domain but for this reason it cannot be effectively
automated to deal with dozens of signals. In addition to that, the parameter selection is
scarcely objective, thus without giving the same outcome every time.

Conversely, the main advantage of working in the frequency domain, as the filtering
approach does, has the advantage of not dealing directly with the time morphology of
the signals, but focusing on their spectra to cut off the frequencies responsible for the slow
trend, hence operating in the same, objective way with every analyzed time series. Besides,
the curve fitting methods are not able to cut off the high frequencies responsible for the
noisy oscillations of the TOI and nTHI signals of interest, hence a BP filter should be
further applied anyway.
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Figure 3.2.6: Results comparison among the best performing tested methods (channel 1,
HS1 under BL condition)

3.3 Final Filter Selection

Ultimately, for the reasons discussed above and in spite of the clear closeness of the results
given by the Chebyshev 1 and the elliptic BP filters (see figure 3.2.6), the latter has been
selected as the proper filter required for this work. Besides, also other authors [25] report
a similar use of an elliptic BP filter to detrend O2Hb signals (although sampled at a higher
rate) which are next processed to extract the HBI.

Furthermore, to demonstrate the goodness of the selected BP elliptic filter in terms of
signal spectral content, figures 3.3.1 and 3.3.2 show the power spectrum of the original and
the detrended signals from HS1 under BL condition as an example. The power spectrum
has been computed by using the Signal Analyzer MATLAB app.
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Figure 3.3.1: Example: power spectrum of the original signals from HS1 under BL condition
(only low frequencies are shown)

Figure 3.3.2: Example: power spectrum of the detrended signals from HS1 under BL
condition
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Chapter 4

Statistic and Correlation
Analysis

In this chapter the statistic and correlation analysis performed on the dataset of the avail-
able detrended NIRS signals is described. The analysis consists in two main parts:

1. statistic analysis on the detrended signals;

2. correlation analysis between O2Hb and SRS signals (TOI and nTHI).

All the relevant results of this analysis are reported in the appendixes A - C.

4.1 Statistic Analysis

The statistic analysis performed on the detrended NIRS signals is divided into two parts:

1. statistic analysis on the average signals (AvgS);

2. statistic analysis on the upper and lower values with respect to the AvgS median
(OTM: over the median and UTM: under the median values).

The first part of the analysis consisted in considering each type of signal from a specific
channel of each subject and calculating the mean of the samples in the same location
belonging to all the subjects tested under the same condition to obtain an average signal
with reference to that specific condition. This procedure is recapped by the scheme in
figure 4.1.1.
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Figure 4.1.1: Scheme showing the steps of the calculation of the average signals from all
the subjects tested under the same condition and the computation of the corresponding
statistic information

As shown by the scheme in figure 4.1.1, considering for instance the s-th signal O2Hb1
and the AP condition, every signal sample in the same location belonging to every tested
subject under this condition has been averaged to obtain only one average signal of that
kind. Thus, the obtained average signal is comprehensive of the information contained in all
the signals of the same type (e.g. O2Hb1) from all the subjects tested under that condition
(e.g. AP). Next, the standard deviation (STD), skewness and kurtosis of the obtained
average signals have been computed along with the signals samples histograms. The AvgS
mean has not been computed as the average signals are obtained from detrended signals,
whose mean has been removed and brought to zero after the filtering in the detrending
process (see chapter 3). The results of this part of the statistic analysis can be found in
appendix A. The main reason for this procedure is the aim of summarizing the statistical
trends of all the subjects involved in the same condition through only one signal of each
type (O2Hb and SRS), which is a synthesis of every subject outcome.

The second part of the analysis consisted in dividing the obtained AvgS into two blocks
of samples with respect to their median, as shown in figure 4.1.2.
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Figure 4.1.2: Example: average O2Hb1 signal from HS under the AP condition with the
corresponding median, OTM and UTM values (only 10 s displayed)

Next, the mean, standard deviation, skewness and kurtosis of the obtained OTM and
UTM values have been calculated: the results are available in appendix B.

As an example, the results corresponding to the groups of patients (PT) under every
testing condition will be discussed here. Figures 4.1.3 - 4.1.8 show the histograms of the
AvgS of this group of subjects under every testing condition. Overall, all the obtained
probability distributions appear to be normal-looking at different levels. Specifically, with
reference to the kurtosis values reported in table 4.1.1, O2Hb and nTHI signals seem
to behave similarly by showing a more normal probability distribution during the Pre-
CV condition (kurtosis closer to 3), while the distribution sharpens during the Post-CV
condition (kurtosis larger than 3). Conversely, TOI signals do not seem to change their
normal-like probability distribution when comparing the two conditions.

Figure 4.1.3 Figure 4.1.4
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Figure 4.1.5 Figure 4.1.6

Figure 4.1.7 Figure 4.1.8

Table 4.1.1: STD, skewness and kurtosis of the AvgS obtained from all the PT under every
testing condition

Avg. Signals Statistics
Conditions

Pre-CV Post-CV
PT STD Skewness Kurtosis STD Skewness Kurtosis

O2Hb1 0.13 -0.12 2.52 0.10 -0.07 5.11
O2Hb2 0.08 -0.13 2.80 0.13 -0.11 4.69
TOI1 0.19 -0.10 2.89 0.22 0.00 3.03
TOI2 0.21 -0.05 3.06 0.28 -0.06 3.08

nTHI1 0.00 -0.15 2.76 0.01 0.14 5.19
nTHI2 0.00 -0.05 2.85 0.01 0.05 7.81
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A common characteristics of all the AvgS obtained (from HS and PT), which can be seen
in the complete set of results in the appendixes A and B, is the tendency to show a normal-
like probability distribution with different levels of STD, skewness and kurtosis. However,
overall it can be observed how most of the obtained distributions are not particularly
skewed, hence showing almost coincident median and mean values. A confirmation of
these results has been searched in the second part of the statistic analysis, involving the
division of each AvgS into OTM and UTM values. In fact, as median and mean are mostly
coincident and equal to zero, this is approximately equivalent to dividing the signal into
the same number of positive and negative values. As the probability distributions are
mostly symmetric, this leads to homogeneous signal amplitudes for positive and negative
values, as confirmed by the results concerning the OTM and UTM values. As an example,
tables 4.1.2 and 4.1.3 contain the results of the satistic measures on the OTM and UTM
values extracted from the AvgS of the PT. It must be noticed that the mean concerning
the OTM and the UTM values of the nTHI signals shown in tables 4.1.2 and 4.1.3 is either
null or almost equal to zero since generally the detrended nTHI signals do not reach large
amplitudes and all the values reported here have been rounded to two digits to the right
of the decimal point.

Table 4.1.2: Mean, STD, skewness and kurtosis of the OTM values from the AvgS of every
PT under every condition

OTM Statistics - PT OTM Statistics - PT
Conditions Conditions

Avg. Signals Pre-CV Post-CV Avg. Signals Pre-CV Post-CV

M
ea

n

O2Hb1 0.11 0.08

Sk
ew

ne
ss

O2Hb1 0.61 2.08
O2Hb2 0.07 0.10 O2Hb2 0.73 1.70
TOI1 0.15 0.17 TOI1 0.86 1.01
TOI2 0.17 0.22 TOI2 1.02 1.02

nTHI1 0.00 0.01 nTHI1 0.80 2.15
nTHI2 0.00 0.00 nTHI2 0.87 2.98

OTM Statistics - PT OTM Statistics - PT
Conditions Conditions

Avg. Signals Pre-CV Post-CV Avg. Signals Pre-CV Post-CV

ST
D

O2Hb1 0.07 0.06

K
ur

to
si

s

O2Hb1 2.73 20.41
O2Hb2 0.05 0.07 O2Hb2 2.87 14.10
TOI1 0.11 0.13 TOI1 3.43 3.90
TOI2 0.13 0.17 TOI2 3.97 3.99

nTHI1 0.00 0.01 nTHI1 3.26 11.08
nTHI2 0.00 0.00 nTHI2 3.45 24.89
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Table 4.1.3: Mean, STD, skewness and kurtosis of the UTM values from the AvgS of every
PT under every condition

UTM Statistics - PT UTM Statistics - PT
Conditions Conditions

Avg. Signals Pre-CV Post-CV Avg. Signals Pre-CV Post-CV

M
ea

n

O2Hb1 -0.11 -0.08

Sk
ew

ne
ss

O2Hb1 -0.75 -1.51
O2Hb2 -0.07 -0.10 O2Hb2 -0.97 -1.59
TOI1 -0.15 -0.17 TOI1 -0.96 -1.00
TOI2 -0.17 -0.22 TOI2 -1.06 -1.05

nTHI1 0.00 -0.01 nTHI1 -0.87 -1.86
nTHI2 0.00 0.00 nTHI2 -0.92 -2.22

UTM Statistics - PT UTM Statistics - PT
Conditions Conditions

Avg. Signals Pre-CV Post-CV Avg. Signals Pre-CV Post-CV

ST
D

O2Hb1 0.08 0.07
K

ur
to

si
s

O2Hb1 3.18 9.11
O2Hb2 0.05 0.08 O2Hb2 3.77 10.23
TOI1 0.12 0.13 TOI1 3.63 3.95
TOI2 0.13 0.17 TOI2 4.14 4.01

nTHI1 0.00 0.00 nTHI1 3.51 8.98
nTHI2 0.00 0.00 nTHI2 3.58 13.18
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4.2 Correlation Analysis
As already discussed in the previous chapters, the signals obtained from the tested subjects
through the NIRO-200NX NIRS monitor can be classified in two main categories:

• signals obtained by the application of the MLBL (O2Hb and HHb): LB signals;

• signals obtained by the application of the SRS algorithm (TOI and nTHI): SRS
signals.

As already mentioned in chapter 1, some authors [23] marked a closer relation of the
LB signals to the extracerebral circulation than to the intracranial circulation under some
cirsumstances, meaning that the HBI detection merely based on this kind of signal may
not exactly reflect the hemodynamic changes occurring at a cortical level. As the aim of
this work is detecting the HBI from the deeper blood circulation involving the cerebral
cortex, the LB signals should not be used. The SRS signals instead appear to better reflect
the intracranial circulation, hence they will be used to extract the heartbeat information.

However, as already mentioned, the main drawback of the SRS signals is that they often
look way noisier than the LB signals, making the HBI detection more difficult. This issue
will be addressed in chapter 5.

In this context, a correlation analysis has been performed between the Lambert-Beer
signals (O2Hb) and the SRS signals (TOI and nTHI) to investigate how the two kinds of
signals are related. As shown in chapter 5, this analysis may provide useful information
for a further signal processing involving both the LB and the SRS signals with the aim to
extract the HBI information from the supposedly deeper SRS signals by relying on their
hypothetical correlation with the shallower LB signals.

First, the linear dependence between the two kinds of signals has been investigated by
computing the Pearson correlation coefficient (ρAB) between the two signals, which is one
of the most common measures of correlation between two random variables, defined as:

ρAB = σAB

σAσB
(4.2.1)

where σAB is the covariance between the two random variables A and B, while σA and
σB are the standard deviations of A and B respectively. ρAB can range from -1 (A and B
totally negatively correlated) to 1 (A and B totally positively correlated). In this case the
two couples of examined signals will be O2Hb-TOI and O2Hb-nTHI from both acquisition
channels of every tested subject.

Furthermore, the correlation between the LB and the SRS signals has been evaluated by
time shifting the two kinds of signals and calculating the Pearson coefficient at every time
delay. To do that, the signals have been shifted at steps equal to their sampling interval
(0.05 s) and up to 4 s of maximum delay. Hence, for each lag between the two signals, the
Pearson coefficient has been computed.

All the results concerning the Pearson coefficient calculation and the correlation with
delay between the two signals can be found in appendix C.

About the results of the correlation between the delayed signals, there are many dif-
ferences in the behavior of each subject under the same condition (see appendix C). The
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correlations obtained are not necessarily positive: there are also some negative correla-
tions, indicating a likely phase opposition of the two signals. Anyway, there are subjects
(both HS and PT) showing particularly large correlations (up to 0.97 and -0.89) under
certain circumstances, showing a tight relation between the LB and SRS signals. On the
other hand, there are also subjects showing very low correlations (up to 0.01 and -0.02). It
must be noticed that there have been technical issues determining anomalous behaviors for
some subjects, as mentioned in chapter 2, and as this will be further discussed in chapter
5. However, those exhibiting the best correlation are also the subjects who already showed
the clearest SRS signals during their acquisition. In the next chapter these particular cases
will be further discussed as well.

As an example, figures 4.2.1 - 4.2.4 here report the Pearson coefficients obtained on the
PT signals under both the Pre-CV and Post-CV condition, along with an example of the
resulting coefficient trend on the time shifted signals (figures 4.2.5 and 4.2.6).

Figure 4.2.1 Figure 4.2.2
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Figure 4.2.3 Figure 4.2.4

Figure 4.2.5 Figure 4.2.6
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Chapter 5

Heartbeat Intervals Extraction

After the detrending procedure accomplished by adopting an elliptic BP filter with the
features specified in chapter 3 section 3.1, all the available NIRS signals have been processed
for further heartbeat intervals (HBI) extraction. Furthermore, as a validation mean, the
available ECG signals have been processed to extract the HR and HBI values to compare
with those obtained from the NIRS signals of the same patients (see section 5.5).

In chapter 4 the correlation between the LB and SRS signals has been explored. Here,
the aim of the following processing is to use the correlation between these two kinds of
signals to effectively extract the HBI information of interest. In fact, as already discussed
in chapter 1 section 1.4, the main concern about the use of the O2Hb signals for HBI
extraction is the influence by the extracranial circulation which may involve the LB signals
while, under some circumstances, the SRS signals do not seem to be concerned. However,
in most cases, SRS signals cannot be promptly used for HBI extraction either, as they
appear to be very noisy and to "hide" the beat-to-beat information. In fact, the HBI
extraction is based on the peak-to-peak distance computed on the signal of interest and,
if the signal is too noisy, no clear peak can be identified.

For this reason, a SRS signals denoising method, based on the relation with the LB
signals, is described in this chapter.

This method consists in three main steps:

1. O2Hb power spectral density (PSD) estimate computation;

2. narrow BP filter design around the main O2Hb PSD frequency detected;

3. application of the designed filter to the corresponding SRS signals.

The scheme in figure 5.0.1 recaps the procedure followed in the signal processing de-
scribed in this chapter.
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Figure 5.0.1: Scheme recapping the steps of the signal processing performed

All the PSD estimates introduced in this processing were computed by adopting the
Welch periodogram MATLAB function with default options in terms of choice of the signal
window (the Hamming window is used), windows overlap (50%) and number of points for
the PSD representation.

As an example, in this chapter only the results concerning PT3 will be reported. All
the relevant results of this processing regarding every tested subject (HS and PT) under
every testing condition are collected in the appendixes D and E.

5.1 O2Hb PSD Estimate

The PSDs of all the O2Hb signals have been estimated. For each O2Hb PSD, the frequency
corresponding to the PSD maximum has been located. In fact, as O2Hb signals appear
more quasi-periodic than the SRS signals, their PSD generally shows a maximum around
a certain frequency, which should be the main oscillation frequency of the signal and hence
the frequency related to the hypothetical HBI values.

As a consequence, that frequency is considered as the central frequency of the narrow
BP filter that should be designed and then applied to the corresponding SRS signals.

In fact, SRS signals PSD generally do not show a proper prominent maximum around
a specific frequency as these signals are generally noisier and hence they look less quasi-
periodic than the O2Hb signals.

Figures 5.1.1 - 5.1.6 show the resulting O2Hb estimate from both channels of PT3 and
the distribution of the PSD maxima locations from both channels of all subjects (HS and
PT) under every condition.
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Figure 5.1.1: PSD estimate of the O2Hb signals from PT3 before the CV

Figure 5.1.2: PSD estimate of the O2Hb signals from PT3 after the CV
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Figure 5.1.3

Figure 5.1.4

Figure 5.1.5

Figure 5.1.6

With reference to figures 5.1.1 and 5.1.2, as expected, the main frequency is shifted
from a higher value before the CV to a lower value after the CV. In fact, as the cardiover-
sion could restore the NSR of the patient, the frequency supposedly related to the HBI
information should decrease accordingly, as the HR of the patient is reduced by the CV.

Meanwhile, figures 5.1.3 - 5.1.6 offer a broader evaluation of the O2Hb main frequency
behavior. Looking at the PT results, the same behavior observed for PT3 is confirmed
by other patients: although at different levels, almost every subject reveals decreasing
O2Hb main frequency values when proceeding from the Pre-CV to the Post-CV condition.
However, PT5 seems to behave conversely. This might be due to the presence of casual
longer RR intervals on the ECG, which have been observed also on the SRS signals mainly
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as momentary dips showing a sudden lack of deep oxygenation (see figures 5.1.7 and 5.1.8)1.
These sporadic longer RR intervals have been observed both during the Pre-CV and the
Post-CV condition, affecting both the HR mean values and the HBI extraction from the
NIRS and the ECG signals of this patient (see the corresponding results in appendix D.2).

Figure 5.1.7: Example: longer RR interval detected on PT5

1The time axis represented in these two examples are arbitrary and do not match as the two kinds
of signals have not been acquired in sync by the same system, as described in chapter 2. However they
both refer to the same time interval which has been isolated by referring to the corresponding time of
the day of the acquisition.
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Figure 5.1.8: Example: dips in the SRS signals corresponding to the longer RR interval

Also channel 1 of PT2 under Post-CV condition shows an odd behavior (see figure
5.1.5). In fact, the maximum O2Hb frequency detected appears to be quite low compared
to the other subjects under the same condition. This is also clear in the O2Hb PSD
estimate shown in figure 5.1.9, where channel 1 shows and unlikely main frequency value
(0.4 Hz). It should be reported that the band covering the NIRS optodes on this patient’s
forehead has been loosened a bit before the CV took place. Basically, the band used on the
patients had two purposes: properly covering the optodes to further shield them from the
environmental light and contributing to their adhesion on the skin along with the adopted
biomedical adhesive stripes. As a consequence, an excessive loosening of the band may
cause a signal corruption to some extent for two reasons: one related to some disturbing
light reaching the detectors and one related to a scarce skin-optode adhesion. It is unclear
what caused this odd O2Hb PSD estimate as the detrended NIRS signals from channel
1 of PT2 under Post-CV do not show particular differences from the others except some
spikes on the O2Hb signal, which may be due to external light interference more than to
motion artifacts, as the patient was still under some anesthetic effect right after the CV.
Surely, this issue affected all the consequent processing and the final HBI and HR values
(see appendix D.2).

Considering the HS results, the issues mentioned in chapter 2 concerning channel 2
of subject 4 are responsible for the unexpected results shown in figure 5.1.4, where, for
instance, during the AP condition O2Hb shows an unlikely high main frequency. As already
discussed previously, this subject’s results cannot be considered reliable because of the
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encountered technical issues.
Overall, for both the HS and the PT, it seems that the results in terms of O2Hb main

frequency are mostly coherent between channel 1 and 2.

Figure 5.1.9: Peculiar result: PSD estimate of the O2Hb signals from PT2 after the CV

5.2 Narrow BP Filter Design

After locating the main frequencies from the computed O2Hb PSD estimates, the following
step consisted in designing a properly narrow BP filter around those frequencies to denoise
the corresponding SRS signals.

The critical parameter to set is the pass-band width of the desired filter. While an
excessively wide band would include more original signal information, it would not properly
denoise the signal, as all the disturbing high frequencies responsible for hiding the HBI
content would still be there. On the other hand, an excessively narrow band would cut off
too many frequencies causing a dramatic reduction of the signal information and a large
smoothing effect, which may cause in some cases a great amplitude reduction of some
pieces of the original signal and thus a more difficult HBI extraction as the peaks would
almost disappear.

After performing some trials, a final filter configuration in terms of pass-band width
has been selected and the filter parameters adopted are reported in table 5.2.1, where
a hypothetical filter centered around a main frequency equal to 1 Hz is considered as
an example. Because of the good results in terms of stop-band attenuation steepness
and global filter performance previously obtained for the detrending process described in
chapter 3, here a BP elliptic filter was used as well. Besides, also in this processing, the
signals have been forward and backward filtered.

65



5 – Heartbeat Intervals Extraction

Table 5.2.1: Narrow BP elliptic filter parameters

BP Elliptic Filter

Order n 5
Stopband Attenuation Rs 25 dB

Ripple Amplitude Rp 0.025 dB
Cut-off Frequencies fc [0.75, 1.25] Hz

Passband Mid-bandwidth δ 0.25 Hz

The corresponding transfer function (TF) is shown in figure 5.2.1.

Figure 5.2.1: TF of the narrow BP elliptic filter shown as an example
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5.3 Application of the Narrow BP Filter to the SRS
Signals

The filter designed as described in section 5.2 has been then applied to the SRS signals
corresponding to the O2Hb signals from which the main frequencies have been extracted.

Figures 5.3.1 - 5.3.4 show the resulting TOI and nTHI filtered signals from PT3 com-
pared to their original versions (only 30 s are displayed). To compare the signals on the
same diagram, both the original and the filtered version have been normalized by their
maximum and centered around -1 and 1 respectively.

Figure 5.3.1 Figure 5.3.2

Figure 5.3.3 Figure 5.3.4

The resulting SRS signals PSD estimates after the filtering are shown in figures 5.3.5 -
5.3.8.
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Figure 5.3.5 Figure 5.3.6

Figure 5.3.7 Figure 5.3.8

Stressing once more the fact that the choice of the pass-band width of the adopted filter
is crucial for the good performance and results of this method, the maximum frequencies
marked in figures 5.3.5 - 5.3.8 are not equal to those obtained on the corresponding O2Hb
PSDs because the aim here was to narrow down the disturbing frequencies outside a par-
ticular range, whose central frequency had to be the main O2Hb frequency. Hence, the
maxima reported on the TOI and nTHI PSDs are only indicative and do not have a real
importance here since the real matter is the change occurred in these signals spectral con-
tent in terms of excluded frequencies rather than their maxima locations. In fact, this is
the change causing the denoising of these signals. Moreover, as already discussed in the
previous section, a tighter filter around the O2Hb main frequency may lead to an excessive
loss of SRS signals information, thus reducing the ability to extract the HBI effectively.
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5.3.1 Noisy SRS Signals: Special Cases

A relevant observation should be reported at this point. Beside the example case of the
PT3 reported here, there have been cases (of both HS and PT), showing very clear TOI
and especially nTHI signals during the acquisitions. Specifically, some subjects, under all
their testing conditions, exhibit clear beat-to-beat information already in the original SRS
signals which then appear almost as quasi-periodic as the corresponding O2Hb signals. An
example of this particular phenomenon is shown in figure 5.3.9. The reason for this casual
behavior is not much clear yet. Among the PT, some subjects exhibited this feature during
the Pre-CV condition, after being administered an anesthetic in a previous exam. In fact,
according to table 2.2.1 in chapter 2 section 2.2, these patients underwent a TEE before
the CV and hence they already had been administered an anesthetic (Midazolam) during
that exam. It is not completely sure if some residual anesthetic effect on these patients
may have been responsible for this behavior. Anyway, the supposed relation between these
two aspects should be further investigated. However, similar SRS signals behaviors were
also observed in some patients who did not undergo a TEE and on one healthy subject
as well (HS6). Furthermore, there has also been one patient (PT4) who underwent a
TEE without showing any of these features and another one (PT5) undergoing a TEE but
without showing them as much clearly as the others. If a likely reason for this behavior
could be found, surely the SRS signals filtering performance could be greatly advantaged.
In fact, it is understandable how original clearer SRS signals are easier to filter and make
the filtering process less prone to undesired outcomes. As a confirmation, figures E.2.1 and
E.2.13 show the resulting filtering of the same SRS signals reported in figure 5.3.9.

Figure 5.3.9: Example: clear TOI and especially nTHI signals on PT1, channel 1, before
the CV (only 30 s displayed). Here, the correspondence between nTHI and O2Hb signals
is incredibly clear.
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5.4 Peak Detection and HBI Extraction

After filtering the SRS signals as shown in figures 5.3.1 - 5.3.4, the peaks indicating the
beat-to-beat information are smoother and clearly visible. Hence, the peaks have been
detected to compute the inter-peaks distance which is equal to the searched HBI values.

As an example, figures 5.4.1 and 5.4.2 show the resulting peak detection on the TOI
and nTHI filtered signals from PT3 under Pre-CV condition (only 30 s are displayed).

Figure 5.4.1 Figure 5.4.2

5.5 Comparison Between NIRS and ECG-related HBI
Extracted from the Patients

Lastly, the HBI values have been computed by simply calculating the time distance between
each detected peak on the filtered SRS signals.

In addition to that, for those subjects whose ECG signal was available, the HBI values
extracted from their SRS signals were compared with those extracted from their ECG.
This means that, to some extent, on these patients the HBI values from the ECG have
been used to validate those obtained from the NIRS signals.

The histograms in figures 5.5.1 - 5.5.6 show the probability distribution of the HBI
extracted from the PT3 NIRS and ECG signals, while tables 5.5.1 and 5.5.2 report the
mean (µ) and standard deviation (σ) of the HBI and the corresponding HR values. The
main details of the adopted HBI extraction procedure from the ECG signals are included
in section 5.5.1.
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Figure 5.5.1

Figure 5.5.2

Figure 5.5.3

Figure 5.5.4
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Figure 5.5.5 Figure 5.5.6

Table 5.5.1: Mean and standard deviation of the HBI extracted from the NIRS and ECG
signals (PT3)

HBI (s) - PT3
Conditions

Pre-CV Post-CV
µ1 µ2 σ1 σ2 µ1 µ2 σ1 σ2

TOI 0.72 0.72 0.12 0.11 0.92 0.92 0.15 0.14
nTHI 0.73 0.72 0.11 0.11 0.94 0.92 0.12 0.14

µ σ µ σ

ECG 0.73 0.12 0.97 0.07

Table 5.5.2: Mean and standard deviation of the HR computed from the HBI extracted
from the NIRS and ECG signals (PT3)

HR (bpm) - PT3
Conditions

Pre-CV Post-CV
µ1 µ2 σ1 σ2 µ1 µ2 σ1 σ2

TOI 85 86 16.0 14.9 67 67 12.4 11.8
nTHI 84 86 12.9 13.9 65 67 9.3 11.5

µ σ µ σ

ECG 85 15.2 62 8.4

To improve the visualization of the ECG-related HBI histograms in figures 5.5.5 and
5.5.6, the vertical axis range has been reduced so that the probability distributions could
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5.5 – Comparison Between NIRS and ECG-related HBI Extracted from the Patients

be distinguished more clearly and their maxima have been simply marked by placing their
corresponding value next to their bin.

With reference to tables 5.5.1 and 5.5.2, it seems that the HBI extracted from the NIRS
signals are in agreement with those obtained from the ECG signal and the corresponding
HR values behave accordingly. This is clear in terms of mean but some level of agreement
in terms of standard deviation can be seen as well. Lastly, the expected increase of HBI
duration along with the decrease of HR after the NSR restoration is seen on both the
NIRS-related and the ECG-related values.

5.5.1 HBI Extraction from the Available ECG Signals

The adopted HBI extraction procedure from the ECG signals is synthesized in the scheme
in figure 5.5.7. Basically, the scheme reports a QRS detection algorithm which references
[26], [27] and has been implemented on MATLAB Simulink model. The QRS detector
described here allows to detect the R-peaks on a ECG time series once the input signals
has been properly processed.

Figure 5.5.7: Scheme representing the steps of the adopted HBI extraction procedure from
the ECG signals

As the whole system works under the assumption that all the input signals are sampled
at 200 Hz, the first step of the processing is a sample rate conversion from any initial
sample frequency to 200 Hz.
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5 – Heartbeat Intervals Extraction

The ECG signal is then filtered to estimate the energy of the QRS frequency band
according to the following steps:

1. FIR BP filtering with cut-off frequencies: [5, 26] Hz;

2. computation of the derivative of the filtered signal;

3. calculation of the absolute value of the obtained derivative;

4. averaging of the absolute value obtained over a 80 ms window.

These steps allow to obtain a filtered signal characterized by clearer QRS complexes,
facilitating the R-peaks detection.

The final stage of the QRS detection is the application of the corresponding QRS detec-
tion function, which follows the QRS detection rules adopted in the algorithm implemented
in [27]. According to these rules it is possible to guide a moving threshold spanning all over
the signal and to accordingly determine if a detected peak is noise-related or is an actual
QRS peak. After detecting the peaks of interest, the corresponding HR is computed as:

HR(bpm) = 60 · fs(Hz)
QRS(samples) = 60

HBI(s) (5.5.1)

where fs is the sampling frequency (fs = 200 Hz after the sample rate conversion) and
QRS is the samples interval corresponding to the QRS complex detected.

Proceeding with the example of PT3 used in this chapter, figures 5.5.8 and 5.5.9 show
the raw and filtered ECG signals while figures 5.5.10 and 5.5.11 show the detected peaks
with the moving threshold and the corresponding HR of this patient. In all figures the
same 10 s interval of reference is displayed.

Figure 5.5.8 Figure 5.5.9
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5.5 – Comparison Between NIRS and ECG-related HBI Extracted from the Patients

Figure 5.5.10 Figure 5.5.11

Two main features can be noticed on the example signals reported in figures 5.5.8 -
5.5.11:

• the raw and filtered ECG look quite different when referring to the Pre-CV and the
Post-CV conditions. In fact, the NSR has been restored after the CV and hence a
consequent change of HR can be already qualitatively perceived;

• as another evidence of the restored NSR, the HR scale ranges within lower values
after the CV compared to the Pre-CV condition.

With reference to the latter observation, however the HR instantaneous change shown
in figures 5.5.10 and 5.5.11 should be evaluated carefully. In fact, even after the performed
filtering, some pieces of ECG signals are still quite noisy or corrupted by motion artifacts
or affected by rapid large HR changes because of the particular features of the patients’
AF. This leads to unexpected and sudden HR increase or decrease, partially affecting its
mean value.

The ultimate stage of this processing consisted in calculating the HBI corresponding to
the obtained HR values by using the equation (5.5.1).
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Conclusions

The main attempt of this work has been the extraction of the heartbeat intervals from
NIRS signals detected on two different categories of subjects tested under different kinds of
conditions: healthy subjects and patients affected by AF. To accomplish that, NIRS signals
have been sampled at a higher rate than usual (20 Hz) with the aim to see the "hidden"
information related to the heartbeat, which is not visible when sampling at frequencies
equal to or lower than 1 Hz, as it usually happens in NIRS cerebral oxymetry.

The main issue concerning the NIRS signals achieved by using the NIRO-200NX moni-
tor, as described in this work, was the supposed interference of the extracerebral circulation
on the LB signals, which led to the use of the SRS signals for the desired HBI extraction.
This implied the need of a significant noise reduction of these signals finally leading to the
heartbeat identification. Although most of the tested subjects showed very noisy SRS sig-
nals, some of them from both categories (HS and PT) showed, under some circumstances,
striking clear beat-to-beat information on their SRS signals already in the acquisition phase,
making the HBI extraction easier and smoother for these cases. However, overall the HBI
information could be successfully extracted also from the noisiest signals, according to the
adopted filtering method described in chapter 5.

The results of the adopted method of HBI extraction have been validated, when possible,
by comparing the HBI and the HR extracted through the NIRS signals with those coming
from the ECG corresponding signals. Overall, the obtained results and their comparison
with the ECG-related information offered important confirmations of the validity of this
method. However, some technical issues involved some subjects, determining anomalous
results of the extraction process.

The main limits of this work consisted in the small number of participating subjects
available up to now (only twelve subjects have been tested in total: six HS and six PT) and
the large inter-subject variability in the behavior of the recorded NIRS signals (especially
the SRS signals) which, under the same conditions, sometimes showed very clear HBI
information while some other times this information was buried by excessive noise. These
differences should be further investigated so that if the circumstances leading to clearer HBI
on the SRS signals can be known in advance, they can be exploited to detect higher quality
signals which may help enhance the performance of the extraction method. Besides, the
acquisition conditions might be further improved by trying to ensure a better prevention
of motion artifacts, which proved to extremely affect the quality of the recorded NIRS
signals.

Lastly, the extraction method itself contains a very critical parameter to set which is
the filtering pass-band width. This parameter is very important and very sensitive at the
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Conclusions

same time, heavily affecting the goodness of the obtained results. Further experiments,
involving many more subjects, may help validate this method and give a proper evaluation
of its robustness, indicating which is the best trade-off value suitable for any processed
NIRS signal.
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Appendix A

Statistic Analysis Results -
AvgS

In this appendix the histograms of the AvgS obtained from both HS and PT under all
the testing conditions are reported along with the tables containing the corresponding
statistical measures.

A.1 AvgS Histograms and Tables - HS

Figures A.1.1 - A.1.15 show the histograms of the average signals from all the HS under
every testing condition and table A.1.1 reports the corresponding statistical measures.

Figure A.1.1 Figure A.1.2
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A – Statistic Analysis Results - AvgS

Figure A.1.3 Figure A.1.4

Figure A.1.5 Figure A.1.6

Figure A.1.7 Figure A.1.8
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A.1 – AvgS Histograms and Tables - HS

Figure A.1.9 Figure A.1.10

Figure A.1.11 Figure A.1.12

Figure A.1.13 Figure A.1.14
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A – Statistic Analysis Results - AvgS

Figure A.1.15

Table A.1.1: STD, skewness and kurtosis of the AvgS obtained from all the HS under every
testing condition

Avg. Signals Statistics
Conditions

Apnea Baseline Head Down
HS (1/2) Std Skewness Kurtosis Std Skewness Kurtosis Std Skewness Kurtosis
O2Hb1 0.08 -0.42 3.05 0.08 -0.22 3.23 0.09 0.04 2.64
O2Hb2 0.20 0.61 5.11 0.16 0.12 4.42 0.26 0.85 7.38
TOI1 0.47 -0.10 3.25 0.42 0.02 3.02 0.68 -0.36 3.33
TOI2 0.84 -0.52 5.11 0.71 -0.84 7.18 1.01 -0.66 5.47

nTHI1 0.01 0.28 3.61 0.01 0.08 3.17 0.01 0.08 3.12
nTHI2 0.01 1.00 6.33 0.01 0.38 4.86 0.02 -0.39 5.89

Avg. Signals Statistics
Conditions

Hyperventilation Valsalva Maneuver
HS (2/2) STD Skewness Kurtosis STD Skewness Kurtosis
O2Hb1 0.06 -0.20 2.31 1.04 -0.50 4.84
O2Hb2 0.12 -0.15 2.96 1.62 -0.41 3.64
TOI1 0.36 -0.48 3.46 0.16 0.22 3.33
TOI2 0.60 -0.37 3.45 0.27 0.32 5.02

nTHI1 0.00 -0.14 2.86 0.01 0.08 3.42
nTHI2 0.01 0.11 3.92 0.02 -0.33 6.81
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A.2 – AvgS Histograms and Tables - PT

A.2 AvgS Histograms and Tables - PT

Figures A.2.1 - A.2.6 show the histograms of the average signals from all the PT under
every testing condition and table A.2.1 reports the corresponding statistical measures.

Figure A.2.1 Figure A.2.2

Figure A.2.3 Figure A.2.4
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A – Statistic Analysis Results - AvgS

Figure A.2.5 Figure A.2.6

Table A.2.1: STD, skewness and kurtosis of the AvgS obtained from all the PT under every
testing condition

Avg. Signals Statistics
Conditions

Pre-CV Post-CV
PT STD Skewness Kurtosis STD Skewness Kurtosis

O2Hb1 0.13 -0.12 2.52 0.10 -0.07 5.11
O2Hb2 0.08 -0.13 2.80 0.13 -0.11 4.69
TOI1 0.19 -0.10 2.89 0.22 0.00 3.03
TOI2 0.21 -0.05 3.06 0.28 -0.06 3.08

nTHI1 0.00 -0.15 2.76 0.01 0.14 5.19
nTHI2 0.00 -0.05 2.85 0.01 0.05 7.81
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Appendix B

Statistic Analysis Results -
OTM and UTM

This appendix contains all the results of the statistical analysis on the OTM and UTM
values belonging to the AvgS from every subject under every condition.

B.1 OTM and UTM Tables - HS

Tables B.1.1 and B.1.2 contain the mean, STD, skewness and kurtosis of the OTM and
UTM values from the AvgS of every HS under every testing condition.

Table B.1.1: Mean, STD, skewness and kurtosis of the OTM values from the AvgS of every
HS under every condition

OTM Statistics - HS OTM Statistics - HS
Conditions Conditions

Avg. Signals AP BL HD HV VM Avg. Signals AP BL HD HV VM

M
ea

n

O2Hb1 0.06 0.06 0.07 0.05 0.11

Sk
ew

ne
ss

O2Hb1 0.88 0.93 0.79 0.90 1.18
O2Hb2 0.15 0.12 0.19 0.10 0.19 O2Hb2 2.05 1.76 2.93 1.14 2.27
TOI1 0.36 0.34 0.55 0.30 0.78 TOI1 1.28 1.01 1.23 0.83 1.06
TOI2 0.64 0.52 0.75 0.48 1.31 TOI2 1.10 1.20 1.21 0.85 1.05

nTHI1 0.00 0.00 0.01 0.00 0.01 nTHI1 1.62 1.15 1.21 1.02 0.95
nTHI2 0.01 0.01 0.01 0.01 0.02 nTHI2 2.31 1.98 1.20 1.45 1.91

OTM Statistics - HS OTM Statistics - HS
Conditions Conditions

Avg. Signals AP BL HD HV VM Avg. Signals AP BL HD HV VM

ST
D

O2Hb1 0.04 0.04 0.05 0.03 0.11

K
ur

to
si

s

O2Hb1 3.41 3.71 2.79 3.56 3.51
O2Hb2 0.15 0.11 0.20 0.07 0.19 O2Hb2 9.36 8.40 15.54 4.29 9.78
TOI1 0.27 0.26 0.35 0.18 0.62 TOI1 5.08 3.89 5.29 3.26 4.11
TOI2 0.50 0.40 0.58 0.33 0.88 TOI2 3.75 4.57 4.26 3.31 3.90

nTHI1 0.00 0.00 0.01 0.00 0.01 nTHI1 6.10 4.67 4.20 4.23 3.63
nTHI2 0.01 0.01 0.01 0.00 0.02 nTHI2 9.95 9.02 4.24 5.17 7.45
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B – Statistic Analysis Results - OTM and UTM

Table B.1.2: Mean, STD, skewness and kurtosis of the UTM values from the AvgS of every
HS under every condition

UTM Statistics - HS UTM Statistics - HS
Conditions Conditions

Avg. Signals AP BL HD HV VM Avg. Signals AP BL HD HV VM

M
ea

n

O2Hb1 -0.07 -0.06 -0.07 -0.05 -0.13

Sk
ew

ne
ss

O2Hb1 -0.99 -1.23 -0.64 -0.32 -1.02
O2Hb2 -0.15 -0.13 -0.19 -0.10 -0.20 O2Hb2 -1.28 -1.48 -1.30 -0.79 -1.36
TOI1 -0.37 -0.34 -0.52 -0.27 -0.78 TOI1 -1.06 -0.99 -1.14 -1.30 -2.15
TOI2 -0.60 -0.52 -0.75 -0.45 -1.19 TOI2 -2.28 -2.89 -2.28 -1.30 -1.43

nTHI1 0.00 0.00 -0.01 0.00 -0.01 nTHI1 -0.86 -0.98 -0.88 -0.82 -1.48
nTHI2 -0.01 -0.01 -0.01 -0.01 -0.02 nTHI2 -1.11 -1.45 -2.77 -1.40 -2.57

UTM Statistics - HS UTM Statistics - HS
Conditions Conditions

Avg. Signals AP BL HD HV VM Avg. Signals AP BL HD HV VM

ST
D

O2Hb1 0.06 0.05 0.05 0.04 0.09

K
ur

to
si

s

O2Hb1 3.42 4.86 2.56 2.28 3.24
O2Hb2 0.11 0.10 0.15 0.08 0.17 O2Hb2 4.42 6.38 4.51 3.03 5.45
TOI1 0.30 0.25 0.47 0.25 0.76 TOI1 4.21 3.87 4.30 5.31 8.90
TOI2 0.61 0.54 0.77 0.42 1.15 TOI2 9.84 16.82 9.79 5.02 4.97

nTHI1 0.00 0.00 0.01 0.00 0.01 nTHI1 3.39 4.01 3.39 2.88 6.38
nTHI2 0.01 0.01 0.01 0.00 0.02 nTHI2 3.70 5.92 14.43 5.27 12.05

B.2 OTM and UTM Tables - PT

Tables B.2.1 and B.2.2 contain the mean, STD, skewness and kurtosis of the OTM and
UTM values from the AvgS of every PT under every testing condition.

Table B.2.1: Mean, STD, skewness and kurtosis of the OTM values from the AvgS of every
PT under every condition

OTM Statistics - PT OTM Statistics - PT
Conditions Conditions

Avg. Signals Pre-CV Post-CV Avg. Signals Pre-CV Post-CV

M
ea

n

O2Hb1 0.11 0.08

Sk
ew

ne
ss

O2Hb1 0.61 2.08
O2Hb2 0.07 0.10 O2Hb2 0.73 1.70
TOI1 0.15 0.17 TOI1 0.86 1.01
TOI2 0.17 0.22 TOI2 1.02 1.02

nTHI1 0.00 0.01 nTHI1 0.80 2.15
nTHI2 0.00 0.00 nTHI2 0.87 2.98

OTM Statistics - PT OTM Statistics - PT
Conditions Conditions

Avg. Signals Pre-CV Post-CV Avg. Signals Pre-CV Post-CV

ST
D

O2Hb1 0.07 0.06

K
ur

to
si

s

O2Hb1 2.73 20.41
O2Hb2 0.05 0.07 O2Hb2 2.87 14.10
TOI1 0.11 0.13 TOI1 3.43 3.90
TOI2 0.13 0.17 TOI2 3.97 3.99

nTHI1 0.00 0.01 nTHI1 3.26 11.08
nTHI2 0.00 0.00 nTHI2 3.45 24.89
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B.2 – OTM and UTM Tables - PT

Table B.2.2: Mean, STD, skewness and kurtosis of the UTM values from the AvgS of every
PT under every condition

UTM Statistics - PT UTM Statistics - PT
Conditions Conditions

Avg. Signals Pre-CV Post-CV Avg. Signals Pre-CV Post-CV

M
ea

n

O2Hb1 -0.11 -0.08

Sk
ew

ne
ss

O2Hb1 -0.75 -1.51
O2Hb2 -0.07 -0.10 O2Hb2 -0.97 -1.59
TOI1 -0.15 -0.17 TOI1 -0.96 -1.00
TOI2 -0.17 -0.22 TOI2 -1.06 -1.05

nTHI1 0.00 -0.01 nTHI1 -0.87 -1.86
nTHI2 0.00 0.00 nTHI2 -0.92 -2.22

UTM Statistics - PT UTM Statistics - PT
Conditions Conditions

Avg. Signals Pre-CV Post-CV Avg. Signals Pre-CV Post-CV

ST
D

O2Hb1 0.08 0.07
K

ur
to

si
s

O2Hb1 3.18 9.11
O2Hb2 0.05 0.08 O2Hb2 3.77 10.23
TOI1 0.12 0.13 TOI1 3.63 3.95
TOI2 0.13 0.17 TOI2 4.14 4.01

nTHI1 0.00 0.00 nTHI1 3.51 8.98
nTHI2 0.00 0.00 nTHI2 3.58 13.18
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Appendix C

Correlation Analysis Results

This appendix contains the results of the correlation analysis between the O2Hb and the
SRS signals in terms of computation of the Pearson coefficient and evaluation of the cor-
relation coefficient with delay between the signals.

C.1 Pearson Coefficient - HS
Figures C.1.1 - C.1.10 and table C.1.1 report the Pearson correlation results between the
O2Hb and the SRS signals obtained from all the HS under every testing condition.

Table C.1.1: Correlation coefficient values computed between the O2Hb and the SRS
signals - HS (maxima positive coefficients and maxima negative coefficients marked in red
and blue respectively)

ρ(O2Hb, TOI) Conditions
HS AP BL HD HV VM

Su
bj

ec
ts

1
Ch1 0.42 0.44 0.52 0.45 0.38
Ch2 0.71 0.73 0.69 0.69 0.57

2
Ch1 0.51 0.54 NA 0.64 0.58
Ch2 0.35 0.36 NA 0.22 0.26

3
Ch1 0.76 0.71 0.68 0.71 0.87
Ch2 -0.06 0.01 0.03 0.04 -0.06

4
Ch1 -0.05 -0.02 -0.23 0.01 -0.05
Ch2 0.76 0.75 0.62 0.90 0.24

5
Ch1 0.62 0.66 0.64 0.67 0.77
Ch2 0.63 0.64 0.55 0.59 0.45

6
Ch1 0.53 0.52 0.43 0.40 0.50
Ch2 0.81 0.82 0.72 0.73 0.49

ρ(O2Hb, nTHI) Conditions
HS AP BL HD HV VM

Su
bj

ec
ts

1
Ch1 0.34 0.59 0.53 0.76 0.71
Ch2 0.85 0.81 0.75 0.70 0.56

2
Ch1 0.64 0.61 NA 0.49 0.52
Ch2 0.43 0.43 NA 0.44 0.40

3
Ch1 0.76 0.67 0.77 0.75 0.81
Ch2 -0.02 0.07 0.26 -0.04 -0.06

4
Ch1 0.04 0.05 -0.05 0.02 -0.12
Ch2 0.90 0.87 0.46 0.80 0.48

5
Ch1 0.66 0.63 0.43 0.54 0.74
Ch2 0.87 0.79 0.76 0.70 0.65

6
Ch1 0.73 0.71 0.39 0.52 0.53
Ch2 0.95 0.94 0.94 0.91 0.40
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C – Correlation Analysis Results

Figure C.1.1 Figure C.1.2

Figure C.1.3 Figure C.1.4

Figure C.1.5 Figure C.1.6
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C.1 – Pearson Coefficient - HS

Figure C.1.7 Figure C.1.8

Figure C.1.9 Figure C.1.10
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C – Correlation Analysis Results

C.2 Pearson Coefficient With Delay - HS

Figures C.2.1 - C.2.29 show the trend of the evaluated Pearson correlation between the
O2Hb and the SRS signals with increasing delay between the two signals obtained from all
the HS under every testing condition.

Figure C.2.1 Figure C.2.2

Figure C.2.3 Figure C.2.4
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C.2 – Pearson Coefficient With Delay - HS

Figure C.2.5 Figure C.2.6

Figure C.2.7 Figure C.2.8

Figure C.2.9 Figure C.2.10
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C – Correlation Analysis Results

Figure C.2.11 Figure C.2.12

Figure C.2.13 Figure C.2.14

Figure C.2.15 Figure C.2.16
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C.2 – Pearson Coefficient With Delay - HS

Figure C.2.17 Figure C.2.18

Figure C.2.19 Figure C.2.20

Figure C.2.21 Figure C.2.22
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C – Correlation Analysis Results

Figure C.2.23 Figure C.2.24

Figure C.2.25 Figure C.2.26

Figure C.2.27 Figure C.2.28
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C.3 – Pearson Coefficient - PT

Figure C.2.29

C.3 Pearson Coefficient - PT

Figures C.3.1 - C.3.4 and table C.3.1 report the Pearson correlation results between the
O2Hb and the SRS signals obtained from all the PT under every testing condition.

Table C.3.1: Correlation coefficient values computed between the O2Hb and the SRS
signals - PT (maxima positive coefficients and maxima negative coefficients marked in red
and blue respectively)

ρ(O2Hb, TOI) Conditions ρ(O2Hb, nTHI) Conditions
PT Pre-CV Post-CV PT Pre-CV Post-CV

Su
bj

ec
ts

1
Ch1 0.92 0.23

Su
bj

ec
ts

1
Ch1 0.96 -0.16

Ch2 0.91 0.38 Ch2 0.97 0.36

2
Ch1 0.92 0.46

2
Ch1 0.96 0.24

Ch2 -0.73 -0.51 Ch2 -0.89 -0.46

3
Ch1 0.23 0.35

3
Ch1 -0.09 -0.02

Ch2 0.54 0.41 Ch2 0.52 0.59

4
Ch1 0.49 0.28

4
Ch1 0.39 0.10

Ch2 -0.07 -0.04 Ch2 0.12 0.11

5
Ch1 0.60 0.40

5
Ch1 0.85 0.52

Ch2 0.30 0.34 Ch2 0.16 0.14

6
Ch1 0.53 0.87

6
Ch1 0.85 0.84

Ch2 0.32 0.76 Ch2 0.76 0.81
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C – Correlation Analysis Results

Figure C.3.1 Figure C.3.2

Figure C.3.3 Figure C.3.4

C.4 Pearson Coefficient With Delay - PT

Figures C.4.1 - C.4.12 show the trend of the evaluated Pearson correlation between the
O2Hb and the SRS signals with increasing delay between the two signals obtained from all
the PT under every testing condition.
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C.4 – Pearson Coefficient With Delay - PT

Figure C.4.1 Figure C.4.2

Figure C.4.3 Figure C.4.4

Figure C.4.5 Figure C.4.6
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C – Correlation Analysis Results

Figure C.4.7 Figure C.4.8

Figure C.4.9 Figure C.4.10

Figure C.4.11 Figure C.4.12
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Appendix D

HBI and HR Extracted

This appendix contains the tables of the mean (µ) and standard deviation (σ) of both HBI
and HR values obtained from every subject under every testing condition.

D.1 HBI and HR Tables - HS
Tables D.1.1 - D.1.4 report the HBI and HR µ and σ obtained from the HS under all the
testing conditions. The values marked in red are apparently anomalous values, maybe due
to the particular morphology of the original SRS signals from that channel. This might
be a consequence of recording technical issues encountered with that subject (e.g. HS3
and HS4 as mentioned in chapter 2) or the failure of the SRS signals filtering algorithm
which has faced a particularly noisy signal, leading to an unreliable resulting filtered signal.
Furthermore, due to the nature of the performed trials, all the HS signals are very short
time series (the maximum duration is 4 min under the BL condition) and this may have
affected the HBI extraction outcomes which would probably take more advantage on longer
time series, characterized by more peaks.
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D – HBI and HR Extracted

Table D.1.1

HBI (s) - HS (1/2)
Conditions

Apnea Baseline Head Down
Su

bj
ec

ts

µ1 µ2 σ1 σ2 µ1 µ2 σ1 σ2 µ1 µ2 σ1 σ2

1
TOI 0.84 0.88 0.13 0.10 0.87 0.88 0.14 0.07 0.86 0.85 0.13 0.06

nTHI 0.87 0.88 0.16 0.07 0.89 0.87 0.16 0.05 0.76 0.85 0.09 0.05

2
TOI 0.95 0.90 0.16 0.14 0.92 0.93 0.15 0.17

NA
nTHI 0.98 1.00 0.14 0.19 0.93 0.95 0.13 0.18

3
TOI 0.77 0.78 0.09 0.11 0.91 0.89 0.18 0.16 1.01 0.94 0.12 0.11

nTHI 0.88 0.85 0.13 0.17 0.90 0.91 0.18 0.16 1.00 0.92 0.27 0.17

4
TOI 0.82 0.30 0.16 0.03 0.73 0.78 0.12 0.13 0.79 0.65 0.12 0.06

nTHI 0.84 0.30 0.15 0.03 0.74 0.80 0.12 0.13 0.84 0.65 0.10 0.07

5
TOI 0.84 0.77 0.12 0.08 0.72 0.73 0.11 0.09 0.74 0.74 0.09 0.08

nTHI 0.77 0.78 0.09 0.07 0.72 0.72 0.10 0.08 0.73 0.75 0.09 0.06

6
TOI 0.72 0.78 0.09 0.09 0.90 0.92 0.12 0.08 0.85 0.91 0.13 0.05

nTHI 0.76 0.78 0.10 0.08 0.92 0.91 0.08 0.08 0.95 0.90 0.16 0.05

Table D.1.2

HBI (s) - HS (2/2)
Conditions

Hyperventilation Valsalva Maneuver

Su
bj

ec
ts

µ1 µ2 σ1 σ2 µ1 µ2 σ1 σ2

1
TOI 0.67 0.69 0.05 0.06 0.68 0.75 0.08 0.07

nTHI 0.67 0.69 0.03 0.04 0.75 0.75 0.11 0.04

2
TOI 0.71 0.72 0.09 0.10 1.74 1.64 0.15 0.12

nTHI 0.71 0.77 0.08 0.12 1.78 1.98 0.80 0.28

3
TOI 0.68 0.64 0.10 0.09 0.60 1.69 0.08 0.26

nTHI 0.64 0.67 0.08 0.07 0.63 1.64 0.08 0.30

4
TOI 0.75 1.57 0.10 0.21 0.76 1.18 0.11 0.31

nTHI 0.77 1.89 0.08 0.59 0.75 1.10 0.09 0.16

5
TOI 0.53 0.55 0.07 0.08 0.67 0.60 0.12 0.08

nTHI 0.52 0.57 0.04 0.04 0.71 0.63 0.06 0.10

6
TOI 0.54 0.53 0.05 0.03 0.79 0.73 0.12 0.08

nTHI 0.55 0.53 0.05 0.03 0.78 0.74 0.09 0.09
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D.1 – HBI and HR Tables - HS

Table D.1.3

HR (bpm) - HS (1/2)
Conditions

Apnea Baseline Head Down

Su
bj

ec
ts

µ1 µ2 σ1 σ2 µ1 µ2 σ1 σ2 µ1 µ2 σ1 σ2

1
TOI 73 69 12.3 6.6 71 69 10.9 5.2 72 71 11.6 4.7

nTHI 71 68 13.2 5.3 70 69 12.0 4.2 81 71 10.5 4.4

2
TOI 65 69 10.8 13.6 67 67 11.1 13.7

NA
nTHI 62 62 8.1 11.1 66 66 10.2 16.3

3
TOI 79 78 9.8 11.5 68 69 14.8 13.6 60 64 6.7 7.3

nTHI 70 74 9.9 14.6 70 68 15.4 12.3 64 67 14.3 14.3

4
TOI 76 202 17.0 20.7 84 79 15.0 15.0 78 93 13.8 9.9

nTHI 74 201 14.0 26.3 84 77 15.5 13.2 72 93 8.8 11.1

5
TOI 73 79 10.7 8.0 85 84 14.1 15.2 81 82 8.0 8.5

nTHI 79 77 10.3 6.1 85 84 12.3 9.5 83 81 8.7 6.4

6
TOI 85 78 9.4 9.3 68 66 10.5 5.5 72 66 10.1 3.3

nTHI 80 78 10.1 8.3 66 66 5.9 6.5 65 67 8.7 3.7

Table D.1.4

HR (bpm) - HS (2/2)
Conditions

Hyperventilation Valsalva Maneuver

Su
bj

ec
ts

µ1 µ2 σ1 σ2 µ1 µ2 σ1 σ2

1
TOI 90 88 6.8 6.9 90 81 10.8 6.7

nTHI 90 87 4.2 5.3 82 80 11.6 3.6

2
TOI 86 85 10.5 12.3 35 37 3.5 2.6

nTHI 86 80 9.7 10.7 83 31 139.9 4.6

3
TOI 90 97 11.3 23.6 101 36 14.9 5.0

nTHI 95 91 10.6 9.4 98 38 15.0 6.6

4
TOI 81 39 11.2 5.8 80 53 10.2 11.6

nTHI 79 35 9.3 13.8 81 56 8.1 7.7

5
TOI 115 113 16.3 19.4 93 101 20.5 13.0

nTHI 116 106 9.0 8.0 85 98 6.8 18.1

6
TOI 113 113 11.5 7.8 78 83 13.3 9.9

nTHI 109 113 11.8 7.0 78 83 8.8 13.5
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D – HBI and HR Extracted

D.2 HBI and HR Tables - PT
Tables D.2.1 and D.2.2 report the HBI and HR µ and σ from the PT under every testing
condition. Again, the values marked in red are apparently anomalous values which are
maybe due to the particular morphology of the original SRS signals from that channel.

For the reasons discussed above, the peculiar features of PT2 and PT5 have led to odd
HBI and HR mean values.

Specifically, channel 1 of PT2 under Post-CV condition may have been affected by the
band loosening as discussed in section 5.1, possibly causing an uncommon reduction of the
O2Hb main frequency value which led to a malfunctioning SRS filtering algorithm (based
on a too low central frequency), eventually determining the detection of too distant peaks,
hence calculating too large HBI and too low HR values (9 bpm).

In the case of PT5, the long RR intervals related to this patient’s fibrillation condition
may be responsible for the odd increase of HR after the CV, although the NSR had been
restored and the patient’s HR should have been higher during the AF and then reduced
after the CV. Furthermore, the long RR intervals may be responsible for the similar results
obtained on the HBI and HR extracted from both the NIRS and ECG signals.
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D.2 – HBI and HR Tables - PT

Table D.2.1

HBI (s) - PT
Conditions

Pre-CV Post-CV

Su
bj

ec
ts

µ1 µ2 σ1 σ2 µ1 µ2 σ1 σ2

1
TOI 0.76 0.77 0.09 0.09 1.02 1.01 0.15 0.19

nTHI 0.77 0.77 0.09 0.09 1.05 1.03 0.07 0.14

µ1 µ2 σ1 σ2 µ1 µ2 σ1 σ2

2
TOI 0.89 0.88 0.10 0.11 6.41 1.12 0.05 0.22

nTHI 0.89 0.88 0.10 0.10 6.41 1.12 0.06 0.23

µ1 µ2 σ1 σ2 µ1 µ2 σ1 σ2

3

TOI 0.72 0.72 0.12 0.11 0.92 0.92 0.15 0.14
nTHI 0.73 0.72 0.11 0.11 0.94 0.92 0.12 0.14

µ σ µ σ

ECG 0.73 0.12 0.97 0.07

µ1 µ2 σ1 σ2 µ1 µ2 σ1 σ2

4

TOI 0.60 0.60 0.08 0.08 0.92 0.91 0.17 0.17
nTHI 0.60 0.60 0.08 0.08 0.94 0.94 0.15 0.16

µ σ µ σ

ECG 0.52 0.09 0.97 0.05

µ1 µ2 σ1 σ2 µ1 µ2 σ1 σ2

5

TOI 1.05 1.05 0.15 0.20 0.90 0.89 0.13 0.15
nTHI 1.05 1.06 0.13 0.21 0.92 0.90 0.08 0.14

µ σ µ σ

ECG 0.99 0.14 0.93 0.07

µ1 µ2 σ1 σ2 µ1 µ2 σ1 σ2

6

TOI 0.72 0.71 0.10 0.11 1.23 1.23 0.13 0.15
nTHI 0.73 0.73 0.08 0.08 1.23 1.23 0.15 0.15

µ σ µ σ

ECG 0.69 0.11 1.17 0.25
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D – HBI and HR Extracted

Table D.2.2

HR (bpm) - PT
Conditions

Pre-CV Post-CV
Su

bj
ec

ts
µ1 µ2 σ1 σ2 µ1 µ2 σ1 σ2

1
TOI 80 80 11.6 11.3 60 62 10.2 12.2

nTHI 80 79 10.7 9.7 58 59 4.2 13.0

µ1 µ2 σ1 σ2 µ1 µ2 σ1 σ2

2
TOI 68 69 8.5 9.1 9 56 0.1 11.6

nTHI 68 69 8.8 8.6 9 56 0.1 11.6

µ1 µ2 σ1 σ2 µ1 µ2 σ1 σ2

3

TOI 85 86 16.0 14.9 67 67 12.4 11.8
nTHI 84 86 12.9 13.9 65 67 9.3 11.5

µ σ µ σ

ECG 85 15.2 62 8.4

µ1 µ2 σ1 σ2 µ1 µ2 σ1 σ2

4

TOI 103 103 15.6 16.9 68 68 13.6 13.5
nTHI 102 103 16.2 16.0 66 65 11.8 11.9

µ σ µ σ

ECG 117 16.3 62 5.0

µ1 µ2 σ1 σ2 µ1 µ2 σ1 σ2

5

TOI 59 59 9.5 11.8 69 69 11.7 12.4
nTHI 58 59 7.1 13.1 66 69 6.6 11.3

µ σ µ σ

ECG 61 7.7 65 4.8

µ1 µ2 σ1 σ2 µ1 µ2 σ1 σ2

6

TOI 85 87 14.6 16.5 50 50 6.5 7.7
nTHI 84 84 9.7 10.8 50 49 8.4 7.0

µ σ µ σ

ECG 89 13.3 55 21.8
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Appendix E

Narrow Filtering Results

In this appendix the complete set of results from the SRS signals filtering from every tested
subject (HS and PT) under every testing condition is reported.

E.1 SRS Signals Filtering - HS

Figures E.1.1 - E.1.29 show the original and filtered version of the TOI signals of the HS
under every testing condition.

Figure E.1.1 Figure E.1.2
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E – Narrow Filtering Results

Figure E.1.3 Figure E.1.4

Figure E.1.5 Figure E.1.6

Figure E.1.7 Figure E.1.8
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E.1 – SRS Signals Filtering - HS

Figure E.1.9 Figure E.1.10

Figure E.1.11 Figure E.1.12

Figure E.1.13 Figure E.1.14
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E – Narrow Filtering Results

Figure E.1.15 Figure E.1.16

Figure E.1.17 Figure E.1.18

Figure E.1.19 Figure E.1.20
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E.1 – SRS Signals Filtering - HS

Figure E.1.21 Figure E.1.22

Figure E.1.23 Figure E.1.24

Figure E.1.25 Figure E.1.26
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E – Narrow Filtering Results

Figure E.1.27 Figure E.1.28

Figure E.1.29

Figures E.1.30 - E.1.58 show the original and filtered version of the nTHI signals of the
HS under every testing condition.
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E.1 – SRS Signals Filtering - HS

Figure E.1.30 Figure E.1.31

Figure E.1.32 Figure E.1.33

Figure E.1.34 Figure E.1.35
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E – Narrow Filtering Results

Figure E.1.36 Figure E.1.37

Figure E.1.38 Figure E.1.39

Figure E.1.40 Figure E.1.41
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E.1 – SRS Signals Filtering - HS

Figure E.1.42 Figure E.1.43

Figure E.1.44 Figure E.1.45

Figure E.1.46 Figure E.1.47
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E – Narrow Filtering Results

Figure E.1.48 Figure E.1.49

Figure E.1.50 Figure E.1.51

Figure E.1.52 Figure E.1.53
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E.1 – SRS Signals Filtering - HS

Figure E.1.54 Figure E.1.55

Figure E.1.56 Figure E.1.57

Figure E.1.58
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E – Narrow Filtering Results

E.2 SRS Signals Filtering - PT

Figures E.2.1 - E.2.12 show the original and filtered version of the TOI signals of the PT
under every testing condition.

Figure E.2.1 Figure E.2.2

Figure E.2.3 Figure E.2.4
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E.2 – SRS Signals Filtering - PT

Figure E.2.5 Figure E.2.6

Figure E.2.7 Figure E.2.8

Figure E.2.9 Figure E.2.10
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E – Narrow Filtering Results

Figure E.2.11 Figure E.2.12

Figures E.2.13 - E.2.24 show the original and filtered version of the nTHI signals of the
PT under every testing condition.

Figure E.2.13 Figure E.2.14
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E.2 – SRS Signals Filtering - PT

Figure E.2.15 Figure E.2.16

Figure E.2.17 Figure E.2.18

Figure E.2.19 Figure E.2.20
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E – Narrow Filtering Results

Figure E.2.21 Figure E.2.22

Figure E.2.23 Figure E.2.24
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