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Abstract 
 

The thesis presents a review on the classical methods for predicting fatigue life, especially for what 
concern the theory necessary to develop the model and the computations of the second part of the 
work, with a particular focus on the Strain Energy Density method, developed by Berto, Lazzarin 
et al. and all its advantages. 

The aim of the work is that of using SED approach to predict the fatigue behavior of the aluminum 
alloy 6082-T6. The following steps are made in order to develop the model necessary to reach this 
goal: 

1. Fatigue tests of 15 aluminum  V-notched specimens; 
2. Implementation of the elastic model and plot of the Wöhler curves using SED; 
3. Analysis of the differences between elastic and plastic models, developed using the FEM 

software Ansys;  
4. Computation of the Notch Stress Intensity Factor using SED and stress and comparison of 

the numerical values; 
5. Computation of the number of cycles necessary to nucleate and propagate the crack and 

definition of two equivalent parameters, C’ and n’, useful to apply the Paris law to SED; 
6. Plot of the Haigh diagrams using SED; 
7. Use of the equivalent stress and SED, computed using Gerber and Goodman`s relation. 
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1. A Review on Fatigue Life Prediction Methods 
 

1.1. Stress-Life approach (S-N) 

When fatigue test experiment are made, no distinction between crack nucleation and growth is 
made, but it can be done with special care and observation or measurement on particular 
specimens.  

Stress concentration influence can be studied by machining the specimens in notches, holes, or 
grooves, careful alignment is needed for axial loaded specimens to minimize bending. (1) 

In the following figures S is the applied nominal stress, usually taken as the alternating stress 𝑆𝑎 
and N is the number of cycles or life to failure, where failure is defined as fracture. 

Less variability in life at the shorter lives and greater variability in life at the longer lives can be 
appreciated. The following figure shows a continuously sloping curve until 106 cycles, while it 
shows a  “knee” after that. This has been found in only a few materials between 106 𝑎𝑛𝑑 107  
cycles, but most materials do not contain a knee even under carefully controlled environmental 
conditions. (1) 

 

FIGURE 1 TYPICAL S-N DIAGRAM (1) 

When sufficient data are taken at several stress levels, S-N curves are usually drawn through 
median lives and thus represent 50 percent expected failure. The fatigue life, N, is the number of 
cycles of stress or strain of a specified character that a given specimen sustains before failure of a 
specified nature occurs.  
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The number of cycles required to form the initial crack in smooth, unnotched or notched fatigue 
specimens and components can range from a small percentage to almost the entire life and a larger 
fraction of life for crack growth, occurs at higher stress levels, while a larger fraction of life for 
crack nucleation occurs at lower stress level (1). 

 

FIGURE 2 S-N SCHEMATIC OF FATIGUE CRACK NUCLEATION AND FRACTURE (1) 

 

1.2 Mean Stress Effects 

In order to model the effect of the mean stresses, a multitude of formulations have been proposed, 
most of which use the engineering tensile stress 𝜎𝑢𝑡𝑠 or the monotonic yield stress 𝜎𝑦 as one of the 
parameters. 

In general, these formulas come from empirical approaches to correlate groups of tests on 
particular materials, In fact in the literature it is widely documented that there is no general 
empirical law to relate the effect of mean stress on the fatigue limit (2). 

Historically, the first tests of fatigue with mean stresses were performed by Wöhler and using his 
data, Gerber proposed in 1884 the following parabolic equation, known as the Gerber line or 
Relation (3), which was originally expressed through the following equation: 

 

 
𝜎𝑎 = 𝜎−1 [1 − (

𝜎𝑚

𝜎𝑢𝑡𝑠
)

2

] (1.1)  

 

It is a parabola, concave downward which passes through the point 𝜎𝑢𝑡𝑠 on the x-axis and point 
𝜎−1  on y-axis with horizontal tangent. The sign of the mean stress has no influence on the 
alternating stress as it appears in squared form.  
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This equation was fitted with precision to the experimental data available at the time, when the 
tests with mean compression stresses were not possible (3). 

As it was known that the mean compression loads are less damaging than the tensile ones, by 
proposing a symmetric method with respect to the mean stresses as the parabola, the results in 
compression would be on the safe side. 

The work by O’Connor and Morrison in 1956 was the first investigation with machinery able to 
correctly apply compressive loads, showing a detrimental effect of the compressive mean stresses 
for some materials (3) and later investigations confirmed this fact. 

For partly-brittle materials, the straight line is assumed as the best approximation. In 1922, the 
Goodman’s theory (4) was modified by Haigh (5). The modified Goodman criterion can be 
expressed through this equation: 

 𝜎𝑎 = 𝜎−1 (1 −
𝜎𝑚

𝜎𝑢𝑡𝑠
) 

 
(1.2)  

 

Another commonly used empirical correlation corresponds to Dietmann, which is a parabola with 
axes parallel to x-axis, which equations is: 

 
𝜎𝑎 = 𝜎−1√1 −

𝜎𝑚

𝜎𝑢𝑡𝑠
 

 

(1.3)  

 

This relationship shows a high statistical correlation with experimental data for tensile mean 
stresses due to the fact that is located between the lines of Goodman and Gerber for most of the 
range of the load ratio in axial mean stresses, where most of the experimental points are located 
according to some collections of data from the literature (3). 

For compressive mean loads, the fatigue strength increases with the value of the compressive mean 
stress, showing a beneficial effect. 

In contrast to the Gerber, Goodman and Dietmann empirical lines, some theories were developed 
on the basis of physical principles to explain the fatigue damage, but none of the energetic methods 
is able to successfully represent the fatigue behavior with superimposed static stresses. 
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Experimental results show that increasing the value of the tension mean stresses gradually reduces 
the axial stress amplitude the material can withstand without failure. This is shown in the following 
figure where alternating stress is plotted 

 

FIGURE 3 EFFECT OF MEAN STRESS ON THE FATIGUE LIFE (6) 

 

It is seen that, in general, tensile mean stresses are damaging and compressive mean stresses are 
beneficial.  Typical dimensionless plots are shown in the following figure for aluminum alloys, 
where 𝑆𝑎/𝑆𝑓 versus 𝑆𝑚/𝑆𝑢, is plotted. 𝑆𝑓, is the fully reversed, fatigue limit of smooth specimens, 
and 𝑆𝑢, is the ultimate tensile strength. Similar behavior exists for other alloys.  

An evident scatter exists, but the general trend indicating that tensile mean stresses are detrimental 
is quite evident. Small tensile mean stresses, however, often have only a small effect. It appears 
that much of the data fall between the straight and curved lines. The straight line is the modified 
Goodman line, and the curve is the Gerber parabola 
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FIGURE 4 DATA FITTING BETWEEN GERBER AND GOODMAN`S LINES (1) 

 

It is seen that these compressive mean stresses cause increases of up to 50 percent in the alternating 
fatigue strength and compressive residual stresses can cause similar beneficial behavior, resulting 
in a non-symmetrical Haigh diagram. The Gerber equation is incorrect, because it predicts a 
detrimental effect of compressive mean stresses and does not properly represent notched 
component tensile mean stress fatigue behavior. 

 

FIGURE 5 COMPRESSIVE AND TENSILE EFFECTS (1)  
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1.3 S-N Curve Representation and Approximations 

Actual fatigue data from specimens or parts should be used in design if possible. This information 
may be available through data handbooks, company data files or previous tests, but it is often not 
available and must be generated or approximations of S-N behavior must be made (1). 

Basquin in 1910 suggested a log-log straight line S-N relationship such that 

 

 𝑆𝑎 = 𝐴(𝑁𝑓)
𝐵

 
 

(1.4)  

 

Where A is a coefficient and represents the value of 𝑆𝑎 at one cycle, and B is the exponent or slope 
of the log-log S-N curve. One approximate representation of the S-N curve is a tri-slope model 
with one of them between 1 cycle and 103 cycles, one slope between 103 and 106 or 108cycles, 
and another slope after 106or 108 cycles, the third, or long-life, slope could also be horizontal. 
The tri-slope model indicates that a fatigue limit does not exist. 

The surface effects are dominant at long fatigue lives and less significant at short lives, with 
convergence of the S-N curves at the monotonic ultimate tensile strength at 𝑁𝑓 = 1.  Different 
values of the slope, B, can be found for each surface condition. The convergence at 𝑁𝑓 = 1 is 
reasonable because surface finish does not have an appreciable effect on monotonic properties for 
most smooth metal specimens (1).  
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1.4 Notch Stress Intensity Factor 

The stress intensity factor concept for describing the stress field at pointed crack or slit tips is well 
known from fracture mechanics. 

The expressions of the stress distribution around the crack tip and those of the SIFs in the ligament 
(𝜃 = 0) are given in the Appendix A. 

Following the same logical passages done in Radaj (7) , the SIFs  are substantially extended here 
in two directions. One extension refers to pointed V-notches with stress intensities depending on 
the notch opening angle and this is the case of the aluminum specimen studied in detail later in 
this work. Another extension refers to rounded notches with crack shape or V-notch shape and it 
is explain in detail in Appendix B. The loading mode related notch stress intensity factors 
𝐾1, 𝐾2 𝑎𝑛𝑑 𝐾3 are introduced. 

The asymptotic stress at the crack tip is described by the inverse square root of the radial distance 
r from the crack tip. A smaller, notch angle dependent exponent occurs in the case of corner 
notches, which means that the degree of the singularity is reduced. 

The stress field close to corner can be described by stress intensity factors, these are named ‘notch 

stress intensity factors’ (NSIFs) as distinguished from the conventional stress intensity factors 

(SIFs) of crack tips. 

The singular in-plane and out-of-plane stress fields at pointed corner notches can be specified by 
three notch loading modes (in analogy to the crack opening modes) related to the bisector plane of 
the notch: symmetric in-plane stresses (mode 1), antimetric in-plane stresses (mode 2) and out-of-
plane shear stresses (mode 3). The corresponding notch loading modes are in-plane tensile loading, 
in-plane shear loading and out-of-plane shear loading. 
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The three basic loading modes with singular stresses at the notch tip produce the following 
asymptotic stress distribution around the notch tip, restricted to the first order terms. (7) 

 

 

(1.5) 

 

 

 

FIGURE 6 CARTESIAN (A) AND POLAR (B) COORDINATE SYSTEMS WITH STRESSES AT THE POINTED V-NOTCH TIP (7) 

 

The NSIFs 𝐾1, 𝐾2 𝑎𝑛𝑑 𝐾3 depend on the magnitude of the load, the notch depth a, the notch 
opening angle 2𝛼 and further geometric parameters of the considered configuration. The angular 
functions 𝑓1,𝑖𝑗, 𝑓2,𝑖𝑗 𝑎𝑛𝑑 𝑓3,𝑘𝑧 describe the angular distribution of the stress close to the notch tip. 

The exponent values for the stress distribution are the eigenvalues defined by the expression 

 sin(𝜆1𝑞𝜋) + 𝜆1 sin(𝑞𝜋) = 0 (1.6)  
 sin(𝜆2𝑞𝜋) + 𝜆2 sin(𝑞𝜋) = 0 (1.7)  
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Where ‘q’ is related to the opening angle by means of the expression 2𝛼 = 𝜋(2 − 𝑞). Since 2𝛼 is 
a fixed parameter for a specific wedge or notch, the equation above provides the values of 𝜆, called 
‘eigenvalues’. 

The stress field analysis for the V-notch subjected to out-of-plane shear loading (mode 3) is easier 
to perform and the next equation can be obtained 

 sin 𝜆3(2𝜋 − 2𝛼) = 0  (1.8)  

 

The first non-zero eigenvalue is simply: 

 
 

(1.9)  

The in-plane stresses at the pointed V-notch are derived in the following form after introduction 
of the NSIFs 𝐾1 𝑎𝑛𝑑 𝐾2 (7) 

 

(1.10) 

 

 
 
 
 
 
 
(1.11) 
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The anti-symmetrical singular and symmetrical non-singular out-of-plane shear stresses have the 
following form 

 

 

(1.12) 

 

 

The characteristic stress components in the bisector plane (𝜃 = 0) have the following simple form: 

The NSIFs 𝐾1, 𝐾2 𝑎𝑛𝑑 𝐾3 may be evaluated on the basis of the characteristic stress components 
above considering the limit values for r →0. 

 
 

(1.16) 

 

 

(1.17)  

 

 

(1.18)  

 

  

 
 

(1.13)  

 

 

(1.14)  

 

 

(1.15)  
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It can be found, in a certain radius close to the notch tip, that the N-SIFs so calculated express a 
plateau at a certain value, which is a good estimate of the N-SIFs. The value obtained diverge from 
the plateau for small radius, not being the FEM results able to express the stress singularity, and 
far from the notch tip, where the remote stress field prevails on the stress intensification induced 
by the presence of the notch. 

 

Only under very particular circumstances (components characterized by V-notches with a constant 
opening angle) can N-SIFs be directly used for predicting the static and fatigue behavior of 
components; otherwise, the variability of their dimensions does not allow it.  

An energetic approach makes it possible to overcome the problem. In fact, physical dimensions of 

the strain energy density are  
𝑁𝑚𝑚

𝑚𝑚3  , independently of the opening angle. 

This approach is explained in detail in the next paragraph. 
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1.5 Strain Energy Density   

The local strain energy density (SED) approach is elaborated for strength assessments in respect 
of brittle fracture and high-cycle fatigue.  

Whilst the NSIF evaluation needs very fine meshes in the vicinity of the points of singularity, 
which is a great drawback of the approach in the presence of complex geometries, the mean value 
of the elastic SED on the control volume can be accurately determined by using very coarse 
meshes. 

The NSIF approach requires knowledge of the elastic stress field in the region very close to the 
notch tip. In order to achieve this using normal isoparametric elements, under a typical linear 
elastic hypothesis, FE meshes must be very refined in these regions (8).  

The average SED in a defined control volume around the pointed or rounded notch (or crack) tip 
is considered to be the characteristic material parameter which describes the initiation of brittle 
fracture or high-cycle fatigue failure. 

The approach is elaborated for pointed and rounded V-notches subjected to tensile loading. 

 

 

FIGURE 7 CYLINDRICAL CONTROL VOLUME AROUND POINTED V-NOTCH TIP (9) 
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The strain energy density W of in-plane stress fields can be expressed as follows: 

 

 

 
(1.19) 

In the presence of a sharp V-shaped notch, the stress distributions of symmetric type with respect 
to the angle bisector (mode I) are those calculated previously for the N-SIF. 

After some mathematical steps explained in detailed in the Appendix C the elastic deformation 
energy, averaged on the area A, turns out to be (9): 

 
�̅� =

𝐸(𝑅)

𝐴(𝑅)
=

1

𝐸
𝑒1𝐾1

2𝑅2(𝜆1−1) +
1

𝐸
𝑒2𝐾2

2𝑅2(𝜆2−1) 

 

 
(1.20) 

 

Where: 

 
𝑒1(2𝛼) =

𝐼1(𝛾)

4𝜆1𝛾
 (1.21)  

 
𝑒2(2𝛼) =

𝐼2(𝛾)

4𝜆2𝛾
 (1.22)  

 
𝐴(𝑅) = ∫ ∫ 𝑟𝑑𝑟𝑑𝜃

+𝛾

−𝛾

𝑅

0

= 𝑅2𝛾 (1.23)  

 

Let us suppose that material failure occurs when the mean value of the deformation energy reaches 
a limit value characteristic of the material: 

 �̅� ≤ 𝑊𝐶 (1.24)  
 

If the material exhibits a brittle behavior, we have 𝑊𝑐 = 𝜎𝑅
2/2𝐸. 

The critical value of the radius, which is considered as a material property, can be determined on 
the basis of the toughness of the cracked component, containing a V-shaped notch with an opening 
angle equal to zero. When 𝑊2 is null (due to symmetry of geometry and loads) or it has a negligible 
value (as it happens, for example, in the presence of a great value of the opening angle that results 
in non singular stress distribution even in the presence of a V-shaped corner), the N-SIF can be 
directly correlated to the mean value of the energy W.  
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It is possible to obtain 

 

 
𝐾1

𝑛 = √
4𝐸𝜆1𝛾

𝐼1(𝛾)
�̅�  𝑅(1−𝜆1) (1.25)  

 

At the critical conditions, substitution of �̅� with 𝑊𝑐 

 

 
𝐾1𝑐

𝑛 = √
2𝜆1𝛾

𝐼1(𝛾)
  𝜎𝑅𝑅(1−𝜆1) = 𝑓1(2𝛼)𝜎𝑅𝑅(1−𝜆1) (1.26) 

 

When the V-shaped notch becomes a crack, the value 𝐾1𝑐
𝑛  coincides with the toughness of a 

cracked body, so that 

 

 𝐾1𝐶(0°) = 𝐾𝐼𝐶 = 𝑓1(0°)𝜎𝑅𝑅0.5 (1.27) 
 

As a consequence, the radius turns out to be: 

 

 
𝑅 = (

𝐾𝐼𝐶

𝑓1(0°)𝜎𝑅
)

2

 (1.28)  

 

Finally, by substituting the expression of the radius in that of the toughness of the crack body, one 
obtains: 

 
𝐾1𝐶(2𝛼) = 𝑓1(2𝛼)𝜎𝑅 (

𝐾𝐼𝐶

𝑓1(0°)𝜎𝑅
)

2

 (1.29) 

 

Such expression makes it possible to evaluate the critical value of the parameter, characteristic of 
brittle material, against the opening angle 2α.  
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1.6 Advantages of using SED method  

The displacement interpolation matrix [N] depends on the element type of the model and through 
this matrix it is possible to express the displacement vector {u} and the strain vector {e} for a 
generic point belonging to the finite element. Then: 

 {𝑢} = [𝑁]{𝑑} (1.30)  
 

 
{𝜀} =

𝜕{𝑢}

𝜕𝑥𝑖
= [𝐵]{𝑑} (1.31)  

 

In which: 

{𝑑}  is the vector of the nodal displacements 

[𝐵] is the strain-displacement matrix 

The rows of matrix [𝐵] are obtained by appropriately differentiating the rows of the displacement 
interpolation matrix [N]. 

Under linear elastic hypothesis, stresses are linked to strains by means of the well-known 
expression: 

 
 (1.32)  

 

Then, the strain energy density in a point P belonging to the finite element is: 

 
𝑊 =

1

2
{𝜀}𝑡{𝜎} =

1

2
{𝑑}𝑡[𝐵]𝑡[𝐸][𝐵]{𝑑} (1.33) 

 

Finally, the total strain energy stored in the finite element is 

 

 
𝐸𝑡 = ∫ 𝑊𝑑𝑉

𝑉

=
1

2
{𝑑}𝑡 (∫ [𝐵]𝑡[𝐸][𝐵]𝑑𝑉

𝑉

) {𝑑} =
1

2
{𝑑}𝑡[𝐾]{𝑑} (1.34) 
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This equation shows that the elastic strain energy 𝐸𝑡  is directly determined from the nodal 
displacements, without any calculation involving stress and strains. Different from the strain 
energy evaluations, the stress evaluations need, as is well known, the derivatives of the 
displacements. 

For this reason the mean value of the elastic SED on the control volume can be accurately 
determined by using relatively coarse meshes. This fact is of major importance for the applicability 
of the method to components of complex geometry, since the numerical models of this kind of 
structures quickly become large and time consuming when the local geometry is modelled for 
fatigue assessment. The structural stress method releases the requirements of small mesh sizes and 
normally needs a small fraction of the degrees of freedom as compared to those used for local 
methods (10). 

The displacements and their derivatives must be continuous across the element boundaries. 
Obviously, this continuity does not necessarily implicate that the element stresses are continuous 
too. Stresses obtained at a node belonging to faced finite elements are very different when a coarse 
mesh is used. As a natural consequence, the degree of mesh refinement required for the accurate 
determination of the strain energy is much lower than that required for the stress fields, simply 
because in the former case no derivation or integration process is really involved (11). 

It is possible to show a practical example that demonstrate the theory just explained by creating a 
FEM model and computing the different values of SED between a coarse mesh and a refine one. 

This work has been done by Lazzarin, Berto and Zappalorto (11) for welded structures and the 
results summarized in the figure below have been obtained: 
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FIGURE 8 MEAN VALUE OF SED FOR A WELD TOE REGION (11) 

 

As it is shown the mean value of SED does not vary much with the refinement of the mesh, in fact 
the difference between a model with 45 and 19555 elements is just 3.6%. 

Another advantage of using this method is the possibility to reduce the scatter band of the Wöhler 
plot. 

Due to large variations in the geometrical parameters, the scatter of the experimental data can be 
obviously very pronounced in terms of nominal stress range. The following figure shows that the 
scatter greatly decreases as soon as the mode I NSIF is used as a meaningful parameter for 
summarizing fatigue total life data. 
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FIGURE 9 REDUCTION OF THE SCATTER BAND USING MODE I NSIF (12) 

 

The original data are taken from the welded joints analyzed by Maddox (1987) and Gurney 
(1991), while the plot was made by Livieri and Lazzarin (2005). 

From a theoretical point of view the NSIF-based band shown in this figure cannot be applied when 
the angle changes. That is simply because units for mode I NSIF are  𝑀𝑃𝑎 ∙ 𝑚𝛽 , where the 
exponent β depends on the V-notch angle. 

This problem has been overcome by using the mean value of the strain energy density range present 
in a control volume of radius 𝑅𝑐  surrounding the area near the stress concentration. 

The strain energy density range was given in closed form as a function of the relevant NSIFs, 
whereas 𝑅𝑐 is thought of as dependent on welded material properties (9). 
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1.7 Paris` Law 
 

Classic fatigue design is usually based on Wöhler and Smith diagrams, but it is not always enough 
to keep the stress under the limit value, because of the defects of the components. For this reason 
a crack can initiate and propagate, till the component breaks. The useful fatigue life is calculated 
as the number of cycles to propagate a dominant defect of a measured initial size (or the largest 
undetected crack size estimated from the resolution of the inspection method) to a critical 
dimension. In most metallic materials, catastrophic failure is preceded by a substantial amount of 
stable crack propagation under cyclic loading conditions. 

The most of the studies are focused on circumstances for which linear elastic fracture mechanics 
concepts are expected to be valid. Fatigue crack advance where considerably plastic nonlinear 
deformation occurs ahead of a crack tip or notch tip. 

Data on the propagations of cracks are usually available for a null load ratio, in fact for any load 
ratio of the specimen, the compression tends to close the crack, so SIF does not exist. It has also 
been demonstrated from experiments that a stress of compression does not affect the crack. 

The life of a component is obviously strongly dependent on the load, the geometry and the 
dimension of the crack at the beginning of its life, so for each combination of this variables and 
many others of less importance, such as the load ration and the temperature, the specimen has a 
different behavior.  

The rate of growth of a fatigue crack subjected to constant amplitude stress reversals is expressed 
in terms of the crack length increment per cycle, da/dN. Values of da/dN for different loading 
conditions are defined from experimentally determined changes in crack length over a number of 
elapsed fatigue cycles (6). 

One of the goals in fatigue design is to develop reliable methods for characterizing the crack 
growth rate in terms of an appropriate loading parameter which enables a quantification of the 
intrinsic resistance of the material to fatigue crack growth for different combinations of applied 
stresses, specimen geometry and crack geometry (6). When cyclic stresses applied to a component 
are so small that the zone of plastic deformation ahead of the advancing fatigue crack is a minor 
perturbation in an otherwise elastic field, linear elastic fracture mechanics solutions provide 
appropriate continuum descriptions for fatigue fracture. Paris & Erdogan (1963) suggested that for 
a cyclic variation of the imposed stress field, the linear elastic fracture mechanics characterization 
of the rate of fatigue crack growth should be based on the stress intensity factor range: 

 Δ𝐾 = 𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛 (1.35)  
Knowing that 
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 𝐾 = 𝑌𝜎 √𝑎 
 (1.36)  

 Δ𝐾 = 𝑌Δ𝜎 √𝑎 
 (1.37)  

 Δ𝜎 = 𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛 
 (1.38)  

 

Where Y is a geometrical factor which depends on the ratio between the crack length a and the 
width of the specimen W. 𝜎𝑚𝑎𝑥 and 𝜎𝑚𝑖𝑛 are the maximum and minimum values, respectively, of 
the fatigue stress cycle.  

 

 

FIGURE 10 TYPICAL CRACK GROWTH BEHAVIOR IN CONSTANT AMPLITUDE FATIGUE LOADING (6) 

 

For the first time in 1963 it was discovered by Paris and Erdogan that by plotting the fatigue crack 
growth increment da/dN versus the stress intensity factor on a log-log plot, they can be quite well 
fitted by a straight line. 
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They are therefore related by the well-known power law relationship (13) 

 

 𝑑𝑎

𝑑𝑁
= 𝐶 Δ𝐾𝑛 (1.39)  

 

Where C and n depend especially on the material and the load ratio. 

 

FIGURE 11 PARIS` DIAGRAM (14) 

 

Although the fracture mechanics approach to fatigue crack growth was a subject of some 
controversy in the early 1960s, experimental data gathered for a wide range of metallic materials 
confirmed the power law relationship. Specifically, crack growth experiments on aluminum alloys 
with different combinations of stress range and crack length and with different specimen 
geometries unambiguously established the validity of such a characterization (6). 

Although this equation is empirical, it has remained one of the most useful expressions in the 
analysis of fatigue crack growth for a vast spectrum of materials and fatigue test conditions. 
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It is important to note here that stable fatigue crack growth occurs at stress intensity factor levels 
that are well below the quasi-static fracture toughness,𝐾𝐼𝑐  in very ductile metallic materials. 

 

The unique characterization of fatigue crack growth using the Paris law holds only for fixed values 
of the load ratio, R, and fixed environmental conditions. If environmental conditions, including 
temperature, have a strong effect on fatigue fracture, loading parameters such as cyclic frequency 
and waveform would also be expected to have a pronounced effect on crack growth rates. 

Changes in these test conditions can lead to changes in the empirical constants C and m and in the 
fatigue crack growth rates. For fixed environmental conditions, one would then expect the crack 
growth to be strongly influenced not only byΔ𝐾, but also by the load ratio, R. This possibility then 
naturally gives rise to the notion that the general mechanical conditions governing fatigue crack 
growth are most accurately characterized by two parameters, Δ𝐾 and R. 

The simplicity of the Paris power law relationship provides a means of estimating the useful life 
of a fatigued component for design or failure analysis. 

The fatigue life or the number of fatigue cycles to failure is calculated by integrating the Paris law 
from an assumed initial defect size 𝑎0 to a critical crack size 𝑎𝑓. 

For a fixed value of the load ratio, if fatigue loading involves a constant amplitude of far-field 
stresses and a crack length change (𝑎𝑓 - 𝑎0) over which Y is roughly constant, the resulting fatigue 
life is 

 
𝑁 = ∫

𝑑𝑎

𝐶(𝑌Δ𝜎 √𝑎)
𝑛

𝑎𝑓

𝑎0

 (1.40)  

 

And if n=2 

 
𝑁 =

1

𝐶𝑌2Δ𝜎2
log

𝑎𝑓

𝑎0
 (1.41)  

 

While if n≠2 

 
𝑁 =

𝑎𝑓
1−𝑛/2

− 𝑎0
1−𝑛/2

(1 − 𝑛/2)𝐶𝑌𝑛Δ𝜎𝑛
 (1.42)  
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2. Computation of Strain Energy Density for V-

Notched Aluminum Samples 

 

A static linear analysis has been performed, using the Ansys® APDL code, to compute the value 
of SED around the V-shaped notch’s tip. It has been used a plane183 element in condition of plain 

strain. In the table below are reported the relevant value of the 6082-T6 aluminum alloy of the 
sample.   

E [MPa] 𝝂 𝛔𝐑 [MPa] 

64000 0,34 275 

 

The critical radius is assumed equal to that of the welded aluminum, which can be found in 
literature and it is equal to 0.12 mm (12). The geometry of the sample is reported in the following 
figure 

 

 

FIGURE 12 GEOMETRY OF THE SPECIMEN 
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In the Ansys’ model the specimen has been loaded to ensure a tension Δ𝜎1  of 1 MPa at the 
restricted area. 

The averaged SED value on the control volume can be computed simply by dividing two outputs 
of the model 

 
𝑊 =

𝑆𝐸𝑁𝐸

𝑉𝑂𝐿𝑈
 (2.1)  

   
In which SENE is the strain energy of the control volume and VOLU is the volume inside the 
critical radius. 

As it is shown in the table and in the figure below, coarse mesh in enough to compute a precise 
value of SED.  Singular elements around the notch’s tip have been used, thanks to the command 

KSCON, which allows to move the nodes on the radial sides of the element at a quarter of the side 
length from the concentration point. 

elements volu [mm3] sene [N∙mm] 𝚫𝑾𝟏 [N∙mm/mm3] 

142 1,696E-02 1,733E-06 1,021E-04 

508 1,696E-02 1,725E-06 1,017E-04 

1098 1,696E-02 1,725E-06 1,017E-04 

 

 

FIGURE 13 CRITICAL AREA (SX) AND MESH OF THE MODEL (DX)  
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Using the following expression, it is possible to evaluate the value of SED for each test and to plot 
its value in function of the number of cycles 

 
𝑊 =

𝑆𝐸𝑁𝐸

𝑉𝑂𝐿𝑈
 (2.2)  

 

The Wöhler curve and the data for the two series of specimens with load ratio equal to 0 and 0.5 
are 

 

  

𝝈𝒎𝒂𝒙 

[MPa] 

N 

[cycle] 

𝚫𝑾 
[N∙mm/mm3] 

40 

RUN 

OUT 0,163 

50 511426 0,254 

50 532025 0,254 

60 270174 0,366 

60 298772 0,366 

80 59360 0,651 

80 86392 0,651 

100 34745 1,017 

100 35148 1,017 

120 16360 1,465 

120 16856 1,465 

 

 

FIGURE 14 WÖHLER CURVE OF THE SPECIMENS LOADED WITH 

R=0 
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𝝈𝒎𝒂𝒙 

[MPa] 

N 

[cycle] 

𝚫𝑾 
[N∙mm/mm3] 

60 2000000 0,092 

80 653514 0,163 

120 116732 0.366 

140 54631 0.498 

 

 

 

 

 

 

 

  

  

FIGURE 15 WÖHLER CURVE OF THE SPECIMENS LOADED WITH 

R=0.5 
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FIGURE 16 SPECIMEN 12, MAX LOAD 50 MPA, FATIGUE LIFE 511426 CYCLES, R=0 

 

FIGURE 17 SPECIMEN 16,MAX  LOAD 50 MPA, FATIGUE LIFE 532025 CYCLES, R=0 
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FIGURE 18 SPECIMEN 11, MAX LOAD 120 MPA, FATIGUE LIFE 16856 CYCLES, R=0 

 

FIGURE 19 SPECIMEN 2, MAX LOAD 120 MPA, FATIGUE LIFE 16360 CYCLES, R=0 
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FIGURE 20 SPECIMEN 14, MAX LOAD 80 MPA, FATIGUE LIFE 653514 CYCLES, R=0.5 

 

FIGURE 21 SPECIMEN 13, MAX LOAD 120 MPA, FATIGUE LIFE 116732 CYCLES, R=0.5  
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3. Difference between Elastic and Plastic Model 

 

The aim of this paragraph is to estimate the error committed in considering an elastic model instead 
of a plastic one while studying a V-sharp notch and computing SED. 

The figure below shows the true stress strain curves of 6082-T6 aluminum alloy. The flow stress 
increased rapidly as the strain increased. When the stress reached a certain point, the material 
began to yield. After entering the plastic stage, under the effects of work-hardening and dynamic 
recovery, flow stress increased much slower than the beginning part. When the stress reached a 
certain value, the material began necking and local stress increased sharply (15). 

 

FIGURE 22 TRUE STRESS-STRAIN CURVE OF ALUMINUM ALLOY 6082-T6 (15) 
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This is the curve implemented in Ansys to compute the plastic model, from different value of the 
strain rate the material shows different value of the UTS and the yield stress. 

Since the material showed no significant yield point, therefore the strain of 0.2% was used as the 
yield point. As the strain rate increased from 0.001s−1 to 100 s−1, the yield stress increased from 
306.1 MPa to 322.63 MPa, increased by 5.4%, and the tensile strength increased from 364 MPa to 
384 MPa, increased by 5.49% (15). So an average value have been used, a yield stress of 315 MPa. 
The plastic part of the plot has been modelled using Johnson Cook law: 

 

 𝜎 = 𝐴 + 𝐵𝜖𝑝
𝑛 

 (3.1)  

 

By fitting the experimental data the value of the constants are achieved (15): 

𝐴 = 305.72 

𝐵 = 304.9 

𝑛 = 0.6796 

The curve is plotted until a strain of 1, this is obviously absurd, but it is necessary to avoid errors 
near the notch tip, where the strain might be high for high value of the stress. 

The mesh used is refine, even with SED, because the following is a plastic model, which needs to 
be studied with more precision than the elastic one. It is shown that a more precise model allows 
to obtain a better solution, but it is more complicated to compute. 

Through Ansys it is possible to plot the equivalent stress and strain. In the following figures this 
plot is shown for a load of 120 MPa and 40 MPa and looking at the superior limit of the scale it is 
possible to notice that a plastic model shows higher strains than the elastic one, but the stress is 
obviously less because the materials yields. 

All the plots are shown with the same mesh. 
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FIGURE 23 EQUIVALENT STRESS IN THE ELASTIC AND PLASTIC MODEL (120 MPA) 
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FIGURE 24 EQUIVALENT STRAIN IN THE ELASTIC AND PLASTIC MODEL (120 MPA) 
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FIGURE 25 EQUIVALENT STRESS IN THE ELASTIC AND PLASTIC MODEL (40 MPA) 
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FIGURE 26 EQUIVALENT STRAIN IN THE ELASTIC AND PLASTIC MODEL (40 MPA) 
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If the load is high the difference of SED between the elastic and the plastic model is higher because 
the plastic region is bigger, in fact, for the highest load at which the specimens are loaded the 
difference is the 28%, which is anyway an acceptable error for the model used, while when the 
specimen is less loaded the difference is even less. 

Stress 
[MPa] 

Sene        
[Nmm] 

Volu   
[mm3] 

𝑾𝒑𝒍 
[Nmm/mm3] 

𝑾𝒆𝒍                    
[Nmm/mm3] 

error 

120 0,035 0,017 2,038 1,465 28 % 

40 0,003 0,017 0,186 0,163 12 % 

 

The following plot is an output of Ansys and shows how the stress increases in time in the plastic 
model in a node close to the notch tip when the load is 120 MPa. It can be plotted using Time Hist 
Postpro, between the first and the second circumference closest to the notch tip with the finest 
mesh possible using the command kscon. It is clear that with a plastic model, the material yield 
and the stress reaches a plateau at 315 MPa. 

 

FIGURE 27 STRESS VS TIME IN A NODE CLOSE TO THE NOTCH TIP 
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Time is equal to one when all the sub steps are completed. A convergence study is made to choose 
the correct number of sub steps. For a load of 40 MPa 10 of them are enough as shown in the plot 
below 

 

FIGURE 28 CONVERGENCE STUDY 

10 subset are thus chosen for all the computations.  
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4. Computation of the Notch Stress Intensity Factor 

 

As explained in the initial review the N-SIF cannot be used to draw the Wöhler curve when the 
geometry changes because its unit depends on an exponent which varies with the V-notch angle. 

This problem has been overcome by using the mean value of the strain energy density range present 
in a control volume of radius 𝑅𝑐  surrounding the area near the stress concentration. 

Once SED is known, the N-SIF can though be calculated, through the following expression (9): 

 

 
(4.1)  

 

𝑅∗ has here been assumed to be equal to 𝑅0, the critical radius of the material. 

The values of 𝜆1 and 𝑒1 for an opening angle of 90𝑜can be found in literature 

The notch stress intensity factor has been computed both using SED and stresses and the results 
are compared, showing that SED method is very precise even though less elements are required in 
the FEM model. 

 

FIGURE 29 SHAPE FUNCTIONS 𝝐𝟏 AND 𝝐𝟐 VERSUS THE NOTCH OPENING ANGLE (9)  
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It is possible to compute 𝐾𝐼 with the following expression, using stresses (9) 

 

 
(4.2)  

 

 

In which r is the distance from the notched tip and 𝜎 is the stress applied. 

As it was expected the stress rise to a singularity at the pointed crack tip, while, in a radius close 
to the notch tip, the N-SIFs calculated express a plateau, which is a good estimate of the N-SIFs.  

 

FIGURE 30 PLOT OF STRESS IN FUNCTION OF THE DISTANCE FROM THE TIP 



49 
 

 

FIGURE 31 PLOT OF NSIF IN FUNCTION OF THE DISTANCE FROM THE TIP 

 

Stresses obtained at a node belonging to faced finite elements are very different when a coarse 
mesh is used. As a natural consequence, the degree of mesh refinement required for the accurate 
determination of the strain energy is much lower than that required for the stress fields, simply 
because in the former case no derivation or integration process is really involved (11). 

In fact, the mesh used to compute 𝐾1 through stresses is more refined that the one used with SED, 
as shown in the following figure 
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FIGURE 32 COMPARISON BETWEEN REFINE AND COARSE MESH 

 

The values of K1 computed are very similar as it is shown in the table below 

 

𝑲𝟏 [𝐌𝐏𝐚 𝐦𝐦𝟏−𝛌𝟏] 

stress SED difference 

0,113 0,109 3,6% 
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A comparison between plane strain and plane stress has been made to verify that the value of 𝐾1 
is lower in conditions of plane stress. 

𝑲𝟏 [𝐌𝐏𝐚 𝐦𝐦𝟏−𝛌𝟏] 

Plane 
Stress 

Plane 
Strain 

difference 

0,101 0,111 9,5% 

 

A comparison has been made by plotting the scatter curve for the welded aluminum and the values 
of SED calculated for the samples tested.   

 

FIGURE 33 DATA FITTING IN WELDED ALUMINUM SCATTER BAND 

 

As expected, the values computed for the samples fit in the welded aluminum scatter curve and 
they seem to be more resistant than the welded specimens. 
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5. Dimensionless Parameter Y 

 

The stress intensity factor can be defined as 

 Δ𝐾 = 𝜎𝑌√𝑎 
 (5.1)  

 

In which 𝜎 is the stress applied, a is the length of the crack and Y is a dimensionless parameter. 

Using a parametric Ansys model and the expression above it is possible to compute the value of 
Y, while the crack is progressing. 

The aim is to find an expression for Y, suitable for V-shape notches, with an opening angle of 90𝑜, 
in function of the ratio between the crack’s length and the width of the sample. 

When the SED is known it is possible to calculate 𝐾1 by the well-known expression 

 
𝐾1 = 𝑅0

1−𝜆1  √
𝐸𝑊

𝑒1
 (5.2)  

 

In which 𝜆1 and 𝑒1 must be computed for an angle of 0𝑜 

A fourth-grade polynomial can fit the values obtained 

 
𝑌 (

𝑎

𝑊
) = 5852 (

𝑎

𝑊
)

4

− 7647 (
𝑎

𝑊
)

3

+ 3712 (
𝑎

𝑊
)

2

− 788.5 (
𝑎

𝑊
) + 63.67 (5.3) 
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FIGURE 34 COMPARISON BETWEEN V-NOTCH AND CRACK AND DATA FITTING FOR V-NOTCH 

 

This expression seems to be quite close to that used for double crack for low value of a, while the 
two curves tend to spread for high value of the crack’s length. 
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6. Initiation and Propagation of the Crack 

 

It is known from the paper written by Paris and Erdogan in 1963 (13) that by plotting on a log-log 
diagram the value of the derivative of the crack length with respect to of the number of cycles in 
function of the SIF, the data can be quite well fitted by a straight line, so the following expression 
can be written 

 𝑑𝑎

𝑑𝑁
= 𝐶Δ𝐾𝑛 (6.1)  

 

Where C and n are two parameters which depend on the material and the load ratio. 

The aim of this paper is to find a value of the coefficient C and n of the Paris’ law, adapted for the 

Strain Energy Density. 

 𝑑𝑎

𝑑𝑁
= 𝐶′Δ𝑊𝑛′ (6.2)  

 

In the case of non-singular mode II and considering a null opening angle of the notch it is possible 
to determine the mode I N-SIF a posteriori from SED, through the following expression 

 
𝐾𝐼 = √

𝑅0𝐸𝑊

𝑒1
 

 

(6.3)  

After some easy computation the parameters of interest and the number of cycles can be expressed 
in the following way 

 
𝐶′ = 𝐶 (

𝑅0𝐸

𝑒1
)

𝑛/2

 (6.4)  

 

 𝑛′ = 𝑛/2 (6.5)  
 

 
𝑁𝑝 = ∫

𝑑𝑎

𝐶′𝑊𝑛′

𝑎𝑓

𝑎0

 (6.6)  
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W is a function of the length of the crack and can be found by fitting the different value of W while 
the crack is propagating. It is possible to compute an Ansys parametric model in which the stress 
at the restricted area 𝜎1 is equal to 1 MPa and find the function 𝑊1(𝑎), expressed by an exponential 
function 

 𝑊1(𝑎) = 𝐴 exp(𝐵 𝑎) + 𝐶 exp(𝐷 𝑎) (6.7) 
 

In which 𝐴 = 3.223𝐸 − 5; 𝐵 = 0.2868; 𝐶 = 1.858𝐸 − 14; 𝐷 = 2.608 

 

FIGURE 35 SED IN FUNCTION OF THE LENGTH OF THE CRACK 

 

To find the function 𝑊(𝑎) for each specimen the following expression can be used 

 𝑊(𝑎) = 𝑊1(𝑎) ∙ 𝜎2 (6.8)  
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In which 𝜎 is the value of stress at the restricted area. 

Finally, the number of cycles between the initiation of the crack and the failure of the specimen is 

 
𝑁𝑝 =

1

𝐶′𝜎2𝑛′ ∫
𝑑𝑎

𝑊1(𝑎)𝑛′

𝑎𝑓

𝑎0

 (6.9)  

 

Where 𝑎𝑓 has been measured from the crack surface. 

The integral can be numerically solved using the ‘integral’ function in matlab and considering that 
the value of the Paris’ parameters for the aluminum alloy 6082-T6 are present in literature (16). 
Also the number of cycles necessary to initiate the crack can be computed 

 𝐶′ = 6.1154𝑒 − 05 (6.10)  
 

 𝑛′ = 1.3235 (6.11)  
 

 𝑁𝑖 = 𝑁𝑓 − 𝑁𝑝 

 (6.12)  

 

FIGURE 36 SED IN FUNCTION OF THE NUMBER OF CYCLES IN SEMI-LOG PLOT  
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FIGURE 37 SED IN FUNCTION OF THE NUMBER OF CYCLES IN LOG-LOG PLOT 

 

From the figures it is clear that at low cycles the propagation is prevalent, while at high cycle the 
initiation is so. For very low cycle the Np exceeded the whole life of the specimen and this is 
clearly a mistake due to the approximations made. This model gives good result in a range between 
3∙E04 and 1∙E06 cycles and outside this range the Np, computed using the Paris’ law is different 

from its actual value. Another relevant observation is that the shift from a life of the specimen 
dominated by the propagation of the crack to that dominated by the initiation occurs between 1∙E05 
and 2∙E05 cycles, this is due to the fact that the specimen has a sharp notch, so the crack initiates 
earlier than in an un-notched one. 

No experiments were made to compute the parameters C and n and they are taken from literature, 
for this reason the focus of this chapter is the analytical part, useful to find equivalent parameters 
and to apply Paris law to SED, even though the results seems to be consistent.  
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FIGURE 38 INFLUENCE OF SED ON THE PROPAGATION OF THE CRACK 

 

 

FIGURE 39 INFLUENCE OF SED ON THE INITIATION OF THE CRACK  
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7. Haigh Diagram 

 

Both the data from the specimens loaded with R=0 and R=0.5 are used to plot the Haigh diagram 
using SED formulation. The coordinates of each point belonging to the plot are mean SED, 
alternative SED and number of cycles to failure. This plot has been projected on the  𝑊𝑚, 𝑊𝑎 plane. 

The SED components cannot be computed in a similar way to that used for the stress ones: 

 𝑊𝑚𝑎𝑥 = 𝑊1 ∙ 𝜎𝑚𝑎𝑥
2  (7.1)  

 

  
𝑊𝑚𝑖𝑛 = 𝑊1 ∙ 𝜎𝑚𝑖𝑛

2  (7.2)  

 

 
𝑊𝑎 =

𝑊𝑚𝑎𝑥 − 𝑊𝑚𝑖𝑛

2
 (7.3)  

 

 
𝑊𝑚 =

𝑊𝑚𝑎𝑥 + 𝑊𝑚𝑖𝑛

2
 (7.4)  

 
 
As explained in the Chapter dedicated to the Paris method, integrated with SED, 𝑊1is the value of 
SED, when the specimen is loaded with a stress of  1 𝑀𝑃𝑎 at the restricted area. 

Using these definitions both the Wöhler and Haigh plot are nonsense, because it seems that when 
the load ratio increases the material can resist to a higher 𝑊𝑎 as it is shown in the following plot 
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FIGURE 40 ERRONEOUS WÖHLER DIAGRAM 

To avoid such problems, it is necessary to define new variables which are not the actual values of 
the mean and alternative components of SED, bot allows to plot a meaningful Haigh plot: 

 𝑊𝑚
′ = 𝑊1𝜎𝑚

2  

 (7.5)  

 𝑊𝑎
′ = 𝑊1𝜎𝑎

2 
 (7.6)  

Knowing that: 

 𝜎𝑎 =
𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛

2
 

 
(7.7)  

 
𝜎𝑚 =

𝜎𝑚𝑎𝑥 + 𝜎𝑚𝑖𝑛

2
 

 
(7.8)  

 

Consequently for R=0.5 

 𝑊𝑚
′ = 9 ∙ 𝑊𝑎

′ (7.9)  
 

It is now necessary to find a point correspondent to the 𝜎𝑢𝑡𝑠 in the Haigh diagram plotted with 
SED, through which it is possible to draw the iso number of cycles lines, using the Gerber relation. 

If 𝐾𝐼𝑐 is known, this point can be easily found from the well−known formula that relates SED with 

the mode I of N−SIF:  
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𝑊𝑢 = (

𝐾𝐼𝑐 𝑒1

𝐸 𝑅0
1−𝜆1

)

2

  (7.10)  

 

In which the value of 𝜆1 and 𝑒1 are those related to an opening angle of 0𝑜  

Since 𝐾𝐼𝑐 is not known,  𝑊𝑢 is computed doing the mean of the value of SED at the fracturing point 
of all the specimen loaded with a null load ratio. 

Knowing that the value of SED for a load of 1 MPa in function of the length of the crack is 
expressed by (6.7)  

It is necessary to measure the length of the crack on the fractured surface to compute the value of 
SED. This procedure is made for all the samples loaded with R=0 and the mean value of SED right 
before the rupture of the specimen is 

 𝑊𝑢 = 3.41 𝑁 ∙ 𝑚𝑚/𝑚𝑚3 (7.11)  
 

specimen af[mm] W1(af) [Nmm/mm3] Wf [Nmm/mm3] 

2 8,08 3,53E-04 5,09 

11 7,92 3,30E-04 4,75 

6 8 3,70E-04 3,70 

8 8,18 3,71E-04 3,71 

3 8,78 5,63E-04 3,61 

9 9 6,14E-04 3,93 

5 8,68 5,15E-04 1,85 

10 9,385 1,27E-03 4,56 

16 8,63 4,94E-04 1,23 

12 8,94 6,67E-04 1,67 

   
3,41 
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It can be noticed that the size of the final crack at fracture depends on the stress level. The higher stress 

levels have shorter critical crack sizes and the lower stress levels have larger critical crack sizes. 

 

FIGURE 41 VARIABILITY OF THE FINAL LENGTH OF THE CRACK IN FUNCTION OF THE STRESS APPLIED FOR R=0 
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FIGURE 42 EXPERIMENTAL VALUES IN THE HAIGH DIAGRAM 

 

In order to model the effect of the mean stresses, a multitude of formulations have been proposed, 
most of which use the engineering tensile stress 𝜎𝑢𝑡𝑠 or the monotonic yield stress 𝜎𝑦 as one of the 
parameters. 

In general, these formulas come from empirical approaches to correlate groups of tests on 
particular materials. In the literature it is widely documented that there is no general empirical law 
to relate the effect of mean stress on the fatigue limit (2). 

The Gerber relation is used in the following diagrams, a parabola, concave downward that passes 
through the point 𝑊𝑢 on the x-axis, interpolates the iso number of cycles point and crosses the y-
axis with horizontal tangent.  
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FIGURE 43 GERBER`S RELATION WITH SED 

 

FIGURE 44 GERBER`S RELATION WITH STRESS  
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The number of cycles at the intersections between the Gerber parabola and the lines at R=0 and R=0.5 are 

graphically found and the ratio between the predicted life and the experimental one is computed: 

 

Number of cycles computed with SED  
R0 R0.5 

Gerber 1,0E+04 5,0E+04 5,0E+05 1,0E+04 5,0E+04 5,0E+05 

 Experimental Life 9,0E+03 6,5E+04 7,0E+05 1,2E+04 3,7E+04 3,3E+05 

Ratio 1,1 0,8 0,7 0,8 1,4 1,5 

 

 

 

 

 

The same procedure is adopted with the Goodman relation, represented in the diagrams by a line which passes 

through point 𝑊𝑢 on the x-axis and interpolates the points underlined. 

Number of cycles computed with SED 

  R0 R0.5 

Goodman 1,0E+04 5,0E+04 5,0E+05 1,0E+04 5,0E+04 5,0E+05 

Experimental Life 8,6E+03 5,2E+04 6,0E+05 1,6E+04 4,7E+04 3,6E+05 

Ratio 1,2 1,0 0,8 0,6 1,1 1,4 

 

  

 

 

 

 

  

Number of cycles computed with stress  
R0 R0.5 

Gerber 1,0E+04 5,0E+04 5,0E+05 1,0E+04 5,0E+04 5,0E+05 

Experimental Life 1,1E+04 6,5E+04 7,0E+05 9,0E+03 3,7E+04 3,5E+05 

Ratio 0,9 0,8 0,7 1,1 1,4 1,4 

Number of cycles computed with stress  
R0 R0.5 

Goodman 1,0E+04 5,0E+04 5,0E+05 1,0E+04 5,0E+04 5,0E+05 

Experimental Life 9,0E+03 5,0E+04 5,6E+05 1,2E+04 5,0E+04 4,3E+05 

Ratio 1,1 1,0 0,9 0,8 1,0 1,2 
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FIGURE 45 GOODMAN`S RELATION WITH SED 

 

 

FIGURE 46 GOODMAN`S RELATION WITH STRESS 
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It is clear that using Gerber relation the precision is very similar using stress or SED, in both cases the critical 

point is that on the R=0.5 line, because according to Gerber`s relation the specimen should resist 50%  and 40%  

more than it actually does, respectively in SED and stress`s diagram. This level of precision is consistent with 

that present in the literature (17). 

Goodman relation works better with the stress, even though the precision achieved with SED is also 

acceptable.  

It is though possible to use SED method to plot the Haigh diagram, exploiting all the advantages linked to this 

method, especially for what concern the computation time and the possibility of using coarse meshes, as 

explained in the dedicated chapter. 
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8. Equivalent method to characterize the fatigue 

behavior of the aluminum specimen 

 

The three parameters that characterize a mechanical fatigue behavior are the mean stress, 𝜎𝑚 
alternating stress, 𝜎𝑎 and the resulting life, N, the application of the data that characterize the mean 
and alternating stress in one equivalent stress model allows to evaluate theirs effect on the fatigue 
behavior. 

The equivalent value of the stress use in this paragraph is calculated as the fatigue strength, 𝜎−1, 
when the load ratio R is equal to -1. For example in the Haigh diagram, the iso-N curves, drawn 
using Goodman`s relation, can be described by the following equation: 

 𝜎𝑎 = (−
𝜎−1

𝜎𝑈𝑇𝑆
) 𝜎𝑚 + 𝜎−1 (8.1)  

Starting from the experimental data, alternative and mean stress are computed, after that the 
equivalent stress is calculated, both by using Goodman and Gerber models. 

 𝜎−1 = 𝜎𝐺𝑜 =
𝜎𝑎

1 − (
𝜎𝑚

𝜎𝑈𝑇𝑆
)
 

(8.2)  

 𝜎−1 = 𝜎𝐺𝑒 =
𝜎𝑎

1 − (
𝜎𝑚

𝜎𝑈𝑇𝑆
)

2 
(8.3)  

The objective of this paragraph is to verify the possibility to apply this method, devised by the 
researchers of the Department of mechanical Engineering of the University of Brasília (18) to be 
used with stress, to SED. 

All the data are fitted in the Wöhler plot and the R-squared value is computed using Matlab. 

The method works well for the aluminum specimen, because both using Goodman and Gerber`s 
relation, the value of R-sqaured increases. 

The R-squared is a statistic value that gives some information about the goodness of fit of a model 
as explained in Appendix D and an R2 of 1 indicates that the regression predictions perfectly fit the 
data.  
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FIGURE 47 GEREBER`S RELATION ON STRESS 
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FIGURE 48  GOODMAN`S RELATION ON STRESS 
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The same variables ( (7.5) (7.6) and (7.11) ) defined to draw the Haigh plot are used in the 
following expressions and the Wöhler plot are again analyzed with SED:  

 

 
𝑊`𝑎,𝐺𝑜 =

𝑊`𝑎

1 − (
𝑊`𝑚

𝑊𝑢
)
 

(8.4)  

 

 
𝑊`𝑎,𝐺𝑒 =

𝑊`𝑎

1 − (
𝑊`𝑚

𝑊𝑢
)

2 
(8.5)  

 

For both stress and SED there is a big advantage in using this method because in all cases the R-
squared values sensibly increases, even though with SED this variance is bigger using Gerber 
method, while with stress is bigger using Goodman. 
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FIGURE 49  GEREBER`S RELATION ON SED  
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FIGURE 50  GOODMAN`S RELATION ON SED  
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9. Conclusion 
 

SED method works well with the aluminum specimen and the value of the N-SIF is really close to 
that computed with stress, but a model with many less elements is sufficient. This is a great 
advantage, especially when complicated model are implemented and the computation time is much 
bigger than that needed for the sample, since its geometry is very simple. 

For what concern the hypothesis and the simplifications adopted in this theory a particular focus 
on the difference between a plastic and elastic model is made. 

The difference in the numerical values of SED can be quite high, and it depends a lot on the load 
applied to the specimen, because as it increases the region in which the material yields becomes 
bigger. In the plastic model the stress is limited but the strain increases and as a result the value of 
SED computed with this model is higher than that of the elastic one. 

Anyway the method works well, as documented in the literature (8), (9), (11), and it is though 
possible to neglect the yield which occurs close to the notch tip, in a very restricted area. This 
hypothesis is very useful because it permits to use very simple models and less time consuming. 

The theory works good in the Haigh diagram, in fact the precision is similar to that of the traditional 
Haigh diagram if the Gerber`s relation is used. For this reason SED method can be applied and 
once the strain energy density is computed through FEM models the new Haigh diagram can be 
directly used. 

A particular attention is necessary in considering the variables 𝑊𝑚
′  and 𝑊𝑎

′ used in the diagram not 
as the actual values of the mean and alternative component of the energy, but as two equivalent 
parameters defined to plot a meaningful Haigh plot, in which an increase of the load ratio leads to 
a reduction of the component's life. Another important parameter, 𝑊𝑢 , is defined and the point 
(0; 𝑊𝑢) is the equivalent of the (0; 𝜎𝑢𝑡𝑠 ) in the traditional Haigh diagram. 

This method has also been extended to Paris theory, with the aim to predict the number of cycles 
necessary for the nucleation and propagation of the crack and to compute two equivalent 
parameters 𝐶′ and 𝑛′, that can be used with SED. The analytical procedure is explained in detail 
in the dedicated chapter, but the parameters C and n of the Paris law are taken from the literature 
and not directly find through the experimental procedure, so the numerical results cannot be used 
for practical applications. 

Finally it is demonstrated that also the equivalent method devised by Badibanga, Miranda et al. 
works well with SED if the same parameters, 𝑊𝑢 , 𝑊𝑚

′  and 𝑊𝑎
′ , defined for the Haigh diagram 

are used. Using the equivalent SED the dispersion of the experimental points from the 
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interpolating line decreases, as it happens for the stress. In the case of the samples tested the 
Goodman relation works better with the stress, while with SED the Gerber relation is slightly 
better. 
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Appendix A 
 

The three basic loading modes with singular stresses at the crack tip produce the following 
asymptotic stress distribution around the crack tip (7) 

 

 

(A.1) 

 

The mode-related stress intensity factors (SIFs) 𝐾𝐼 , 𝐾𝐼𝐼𝑎𝑛𝑑 𝐾𝐼𝐼𝐼 depend on the magnitude of the 
load, the crack length and further geometrical parameters of the considered configuration.  

The mode-related angle-dependent functions 𝑓𝐼,𝑖𝑗, 𝑓𝐼𝐼,𝑖𝑗  𝑎𝑛𝑑 𝑓𝐼𝐼𝐼,𝑘𝑧  describe the angular 
distribution of the stresses at the crack tip. 

The equation above is strictly valid for r →0 and approximately valid for values of r which are 

small in relation to the crack length and other geometrical parameters of the configuration. 

These are the asymptotic stresses in the three singular loading modes, given in polar coordinates 

 

FIGURE 51 CARTESIAN (A) AND POLAR (B) COORDINATE SYSTEMS WITH STRESSES AT THE CRACK TIP (7)  
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Mode I 

 

(A.2) 

Mode II 

 

(A.3) 

Mode III 

 
(A.4) 

 

The SIFs 𝐾𝐼 , 𝐾𝐼𝐼𝑎𝑛𝑑 𝐾𝐼𝐼𝐼  may be determined from the following limit value formulae, which 
consider the predominant stresses in the ligament (𝜃 = 0): 

 

 

 
(A.5)  

 

 

 
(A.6)  

 

 

 
(A.7)  
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Appendix B 
 

The solution for the blunt V-notches is not exact but represents the first term in a series perturbating 
the pointed notch solution. (7) 

 

FIGURE 52  IN-PLANE NOTCH STRESS COMPONENTS AT THE ROUNDED V-NOTCH (7) 

 

(B.1) 
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(B.2) 

 

The NSIFs 𝐾1 𝑎𝑛𝑑 𝐾2are determined for r →0. So for mode I and II the next expressions can be 
stated 

 

(B.3) 

 

 

(B.4) 

 

The out-of-plane shear stresses are derived in the following form, separated into antimetrical 
(subscript a) and symmetrical (subscript s) parts in the 𝑟 − 𝜃 coordinate system 

 
(B.5) 
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Where the antimetric and symmetric eigenvalues are dependent on the notch opening angle 2𝛼 
expressed by the parameter q 

 

 

 
(B.6) 

 

The generalized NSIFs 𝐾3𝜌
𝑎 𝑎𝑛𝑑 𝐾3𝜌

𝑠   are determined from the stresses in the bisector plane (𝜃 = 0) 
of the blunt V-notch 

 

 

 
(B.7) 

 

 

 

 
(B.8) 
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Appendix C 
 

In the presence of a sharp V-shaped notch, the stress distributions of symmetric type with respect 
to the angle bisector (mode I) are those calculated for the N-SIF. 

By using the superposition effect principle, the stress distributions in the neighborhood of the notch 
tip can be given as follows (9): 

𝜎𝑖𝑗(𝑟, 𝜃) = 𝑟𝜆1−1𝐾1 |

�̃�𝜃𝜃
(1)

�̃�𝑟𝜃
(1)

0

�̃�𝜃𝑟
(1)

0

�̃�𝑟𝑟
(1)

0

0

�̃�𝑧𝑧
(1)

| + 𝑟𝜆2−1𝐾2 |

�̃�𝜃𝜃
(2)

�̃�𝑟𝜃
(2)

0

�̃�𝜃𝑟
(2)

0

�̃�𝑟𝑟
(2)

0

0

�̃�𝑧𝑧
(2)

| (C.1) 

 

And by substituting in the expression of the SED the explicit expressions for stresses, one obtains: 

𝑊(𝑟, 𝜃) = 𝑊1(𝑟, 𝜃) + 𝑊2(𝑟, 𝜃) + 𝑊12(𝑟, 𝜃) (C.2) 
 

In which 

𝑊1(𝑟, 𝜃) =
1

2𝐸
𝑟2(𝜆1−1)𝐾1

2 [�̃�𝜃𝜃
(1)2

+ �̃�𝑟𝑟
(1)2

+ �̃�𝑧𝑧
(1)2

− 2𝜐(�̃�𝜃𝜃
(1)

�̃�𝑟𝑟
(1)

+ �̃�𝜃𝜃
(1)

�̃�𝑧𝑧
(1)

+ �̃�𝑟𝑟
(1)

�̃�𝑧𝑧
(1)

) + 2(1 + 𝜐)�̃�𝑟𝜃
(1)2

] 
(C.3) 

 

𝑊2(𝑟, 𝜃) =
1

2𝐸
𝑟2(𝜆2−1)𝐾2

2 [�̃�𝜃𝜃
(2)2

+ �̃�𝑟𝑟
(2)2

+ �̃�𝑧𝑧
(2)2

− 2𝜐(�̃�𝜃𝜃
(2)

�̃�𝑟𝑟
(2)

+ �̃�𝜃𝜃
(2)

�̃�𝑧𝑧
(2)

+ �̃�𝑟𝑟
(2)

�̃�𝑧𝑧
(2)

) + 2(1 + 𝜐)�̃�𝑟𝜃
(2)2

] 
(C.4) 

 

𝑊12(𝑟, 𝜃) =
1

𝐸
𝑟𝜆1+𝜆2−2𝐾1𝐾2 [�̃�𝜃𝜃

(1)
�̃�𝜃𝜃

(2)
+ �̃�𝑟𝑟

(1)
�̃�𝑟𝑟

(2)
+ �̃�𝑧𝑧

(1)
�̃�𝑧𝑧

(2)

− 𝜐(�̃�𝜃𝜃
(1)

�̃�𝑟𝑟
(2)

+ �̃�𝜃𝜃
(1)

�̃�𝑧𝑧
(2)

+ �̃�𝑟𝑟
(1)

�̃�𝜃𝜃
(2)

+ �̃�𝑟𝑟
(1)

�̃�𝑧𝑧
(2)

+ �̃�𝑧𝑧
(1)

�̃�𝜃𝜃
(2)

+ �̃�𝑧𝑧
(1)

�̃�𝑟𝑟
(2)

) + 2(1 + 𝜐)�̃�𝑟𝜃
(1)

�̃�𝑟𝜃
(2)

] 

(C.5) 
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The elastic deformation energy in a region of radius R around the notch tip is 

𝐸(𝑅) = ∫ 𝑊𝑑𝐴
𝐴

= ∫ ∫ [𝑊1(𝑟, 𝜃) + 𝑊2(𝑟, 𝜃) + 𝑊12(𝑟, 𝜃)]
+𝛾

−𝛾

𝑟𝑑𝑟𝑑𝜃
𝑅

0

 (C.6) 

 

 

Since the integration field is symmetric with respect to the notch bisector, the contribution of 𝑊12 
vanishes. As a consequence: 

𝐸(𝑅) = 𝐸1(𝑅) + 𝐸2(𝑅) =
1

𝐸

𝐼1(𝛾)

4𝜆1
𝐾1

2𝑅2𝜆1 +
1

𝐸

𝐼2(𝛾)

4𝜆2
𝐾2

2𝑅2𝜆2 (C.7) 

 

where integrals 𝐼1𝑎𝑛𝑑 𝐼2 are: 

𝐼1(𝛾) = ∫ (�̃�𝜃𝜃
(1)2

+ �̃�𝑟𝑟
(1)2

+ �̃�𝑧𝑧
(1)2

− 2𝜐(�̃�𝜃𝜃
(1)

�̃�𝑟𝑟
(1)

+ �̃�𝜃𝜃
(1)

�̃�𝑧𝑧
(1)

+ �̃�𝑟𝑟
(1)

�̃�𝑧𝑧
(1)

)
+𝛾

−𝛾

+ 2(1 + 𝜐)�̃�𝑟𝜃
(1)2

) 𝑑𝜃 
(C.8) 

 

𝐼2(𝛾) = ∫ (�̃�𝜃𝜃
(2)2

+ �̃�𝑟𝑟
(2)2

+ �̃�𝑧𝑧
(2)2

− 2𝜐(�̃�𝜃𝜃
(2)

�̃�𝑟𝑟
(2)

+ �̃�𝜃𝜃
(2)

�̃�𝑧𝑧
(2)

+ �̃�𝑟𝑟
(2)

�̃�𝑧𝑧
(2)

)
+𝛾

−𝛾

+ 2(1 + 𝜐)�̃�𝑟𝜃
(2)2

) 𝑑𝜃 
(C.9) 

 

The area on which the integration is carried out is expressed by (1.31) 

 

The elastic deformation energy, averaged on the area A, turns out to be: 

�̅� =
𝐸(𝑅)

𝐴(𝑅)
=

1

𝐸
𝑒1𝐾1

2𝑅2(𝜆1−1) +
1

𝐸
𝑒2𝐾2

2𝑅2(𝜆2−1) (C.10) 

 

Where 𝑒1 and 𝑒2 are expressed by (1.29) and (1.30) respectively.  



83 
 

Appendix D 
 

Considering a set with n values 𝑦1, 𝑦2, … , 𝑦𝑛  associated to n predicted values 𝑓1, 𝑓2, … , 𝑓𝑛  the 
residuals are defined as 𝑒1 = 𝑦𝑖 − 𝑓𝑖 and the mean is: 

 

 
(D.1)  

 

The total sum of squares is: 

 
 

(D.2)  

 

The regression sum of squares is: 

 

 
(D.3)  

 

The sum of squares of residuals is: 

 

 
(D.4) 

 

Finally R-squared is define as: 

 

 
(D.5)  

 

R2 is a value that represents the goodness of fit and it expresses how well the regression 
approximate the real data points. An R2 of 1 indicates that the regression predictions perfectly fit 
the data. Values of R2 outside the range 0 to 1 can occur when the model fits the data worse than 
a horizontal hyperplane. This would occur when the wrong model was chosen, or nonsense 
constraints were applied. 
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