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Abstract

In many cases, when we want to study the dynamic behavior of complex mechan-

ical systems that are subjected to large displacements and rotations, the resulting

equation of motion is nonlinear. Therefore, the mathematical model is too com-

plex to provide an analytical solution. Nowadays the dynamics of complex sys-

tems it is usually studied with multi-body codes through numerical integration

of the equations. High-performance mechanical system requires a compromise

between efficiency and effectiveness. The mathematical model, as well as the pa-

rameters of the model, are contaminated with uncertainties, therefore to improve

the predictability of the model uncertainties must be taken into account. The aim

of this project is to show through an industrial application, how to take into ac-

count all the possible source of uncertainties that may arise in a multi-body (MB)

and in a flexible MB system, in order to increase the robustness of the model

and understand through a sensitivity analysis which are the most influential pa-

rameters. This project will particularly focus on uncertainties related to (1) the

inertial properties of the bodies, (2) the placement of sensor and actuators dur-

ing experiments, (3) Controllers parameters (4) joint friction and (5) uncertainties

related to the stiffness matrices of flexible parts of a flexible multibody system.

Through the Maximum Entropy Principle the prior probability distribution of

the random variable is constructed, then the stochastic dynamical equations are

solved through the Monte Carlo simulation method, which will allow us through

mathematical statistics, to obtain a confidence region of the response of the sys-

tem and through a Variance-based sensitivity analysis understands the influence

of certain group of parameters respect to frequency of the system. This will be

useful to understand (1) how these uncertainties affect the response of the system

and (2) which group of parameters influences the most the system.
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Chapter 1

Introduction

1.1 Background

Nowadays the dynamics of complex systems it is usually studied with multi-

body codes through numerical integration of the equations. A multi-body (MB)

system consist of several rigid which interact with each other by joints or by inter-

nal forces (springs, dampers, actuators ...) [1]. Sometimes in order to optimize the

system or have a more representative model, some of the main parts can no longer

be modeled as a rigid bodies, because it is also important to evaluate the effect

that the flexibility has on the dynamic behavior of the system, parameters such as

stiffness have the main impact on the behavior of a mechanical system, therefore

we need to switch to a Flexible multibody system (FMBS) [2]. The mathematical

model, as well as the parameters of the model, are contaminated with uncertain-

ties, therefore to improve the predictability of the model uncertainties must be

taken into account. Data uncertainty are due to lack of knowledge of the exact

value of parameters such as Young Modulus (E) density (ρ) and so on. Model un-

certainties they may be due to simplifications and approximations of the physical

behavior of the system, for example, since the property of the flexible component

is usually obtained through a Finite Element approach, we already know that

there is some uncertainty on the evaluation of the stiffness matrix which is intrin-

sic of the method and they can be reduced but not removed. However, over the

years multibody analysis has proven to be a useful tool in the engineering field

thank to the possibility of this tool to link different discipline, this is why a lot
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of efforts have been made to try to integrate uncertainty quantification methods

with multibody analysis.

In [3] the authors propose a method to include epistemic uncertainties in MBS

analysis, this approach is based on fuzzy arithmetic where the uncertain values

are represented by fuzzy numbers.

In [4, 5] the authors propose a generalized polynomial chaos approach to model

the uncertainty in a nonlinear multi-body dynamic system.

In this paper [6], the authors propose a nonparametric probabilistic approach

based on the random matrix theory with uncertain rigid bodies, which is the

same approach used in this report.

Two different numerical application are shown in this report for modeling the

uncertainties in the MB system such as (mass, inertia, sensor position and orien-

tation etc..), for the flexible multibody system we will focus only on the uncer-

tainties related to the stiffness matrix of the flexible parts. The first application

concern a MB model realized in Simulink of the PKM Exechon Fig.1.1, the Exe-

chon Parallel Kinematic Machine (PKM) is a machine specially designed for ac-

curate positioning and machining. A deterministic MB model of this machine has

been constructed to predict and understand its kinematics and vibratory dynam-

ics to support the future engineering of complex setups using the machine. To

validate this model a specimen has been instrumented by MTC (manufacturing

technology center) company and experimental data at certain locations have been

collected. The results of this specimen show that the MB model is not in complete

agreement with experimental results and uncertainties in both the MB model and

the experimental procedure need to be analyzed. In the last application will be

shown a method for modeling the uncertainties related to the stiffness matrices

of flexible parts of a flexible multibody system, through a simplified model of the

Exechon PKM realized in MATLAB in an in-house software based on the Floating

frame of reference approach [1], provided by the University of Liverpool.
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Figure 1.1: Parallel Kinematic Machine Exechon

1.2 Aim and objectives

The aim of this project consists in analyzing potential sources of uncertainty in

the MB and FMB model of the Exechon PKM, in order to:

• improve the robustness of the model analyzed

• understand which parameters influence the most the dynamic response of

the system

• understand how uncertainties affect the dynamic response of the system

This will be done by taking into account all the possible sources of uncertainties

that may arise in a MB and FMB system, we will particularly focus on uncertain-

ties related to (1) the inertial properties of the bodies, (2) the placement of sensor

and actuators during experiments, (3) Controllers parameters and (4) joints fric-

tion and (5) uncertainties related to the stiffness matrices of flexible parts of a

FMBS.
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1.3 Scheduling

For the first objective, a stochastic model is constructed by replacing the uncer-

tain parameters with random parameters, the prior probability distribution of the

random variables are constructed by using the Maximum Entropy Principle [7],

that maximizes the uncertainties in the model under the constraint defined by

the available information. This method takes into account the physical/mathe-

matical properties of the parameters during the construction and yields distribu-

tion with a maximum conservatism and controlled by a few numbers of param-

eters. The stochastic dynamical equations are solved through the Monte Carlo

simulation method [8], that calculates a series of possible realizations of the phe-

nomenon, hence through mathematical statistics, we obtain a confidence region

and the Relative standard deviation of the output of the system obtaining a qual-

itative sensitivity analysis then for the multibody model only once obtained the

more important parameters we used a variance-based sensitivity analysis [9], in

order to understands the influence of certain group of parameters respect to Fre-

quency of the system. Chapter 2 is devoted to the introduction of the two model

used for the sensitivity analysis. In Chapter 3 we propose a probabilistic model

for the uncertain parameters using the Maximum entropy principle. The last

Chapter is devoted to the application of the method presented.
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Chapter 2

Models description

The Exechon Parallel Kinematic Machine (PKM) is a 5-axis machine, mounted on

a 2-axis Güdel gantry, specially designed for accurate positioning and machining.

This machine presents a tripod structure, and it has a total of 14 joints, 5 of them

actuated by Siemens motors and controllers, and 9 non-actuated rotational joints.

This machine is composed of two RRPR and one SPR legs connected in parallel

with the platform [10], where R indicate a Revolution joint , P a Prismatic joint

and S a spherical joint. In Fig.2.1 a simplified representation of the DOF of the

system is shown. The actuated joints are three prismatic joint P and the two

rotational joint Rbase_tool and Rtool.
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Figure 2.1: PKM kinematic description
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2.1 MTC Multi Body model description

A kinematic model uses the constraint equations of a mechanical system to de-

termine the configuration of the system based on geometric characteristics and

restrictions. A kinematic model of a system can be direct or inverse, being the

main difference between them the definition of the inputs and outputs: a direct

kinematic model establishes the configuration of a system based on the given

position of its joints, while an inverse kinematic model establishes the joints’ po-

sitions to achieve a given system configuration. A dynamic model also accounts

for time-dependent changes in the state of the system (being some of these posi-

tions, speeds, external and internal forces...) produced by mass and inertia effects

and by the internal mechanic’s behaviour. In the system under study here, both

the direct and inverse kinematic models were obtained and validated. The in-

verse kinematic model (IKM) is used in this project to guide the dynamic model,

i.e., the desired configuration/trajectory is passed to the IKM as an input, that re-

turns the joint positions/motions necessary to achieve it, which are in turn passed

as input to the dynamic model, as shown in figure 2.2. The PKM dynamics have

Figure 2.2: PKM inverse kinematic and dynamic models’ information workflow

been modelled using a MB technique where the main parts of the physical system

are modelled as rigid bodies related to each other by the joints. The model has

been developed using Simscape MB, figure 2.3. Mass and inertia properties of

6



Figure 2.3: PKM dynamic model developed on SimScape/SimMechanics

the body elements have been obtained from a simplified CAD model with know

material characteristics.

2.1.1 Experimental data processing

In the figure 2.5 we can see how the experiment was carried on, the experiment

involved placing accelerometers onto the system at 20 different locations (figure

2.4) and measuring the accelerations when a vertical excitation force is applied

to the tooltip through a shaker firmly clamped to the ground. The stinger rod

was attached to the shaker by one end and to the force sensor by the other end.

The latest was attached to a dummy tool specifically designed for this purpose,

which is held in place by the PKM tool holder. Raw data, from all the sensors,

of acceleration and force respect to the time (figure 2.7 and 2.6) were provided

by the MTC, hence through a Discrete Fourier Transform (DFT) we were able to

obtain the frequency spectrum of the acceleration figure 2.8 and force figure 2.9,

then we obtained the inertance and phase of the response of the system, which

correlates the acceleration outputs with the force inputs in the frequency domain,

figures from 2.10 to 2.13. 1

1 For sake of simplicity, in this report, we will compare only the data of two sensors ( 1 and 3

).we will refer to the figure 2.4 for sensor’s labelling.
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Figure 2.4: PKM label sensor placements

Figure 2.5: PKM and shaker position during the experiment
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Figure 2.7: acceleration in time sensor 1
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Figure 2.8: frequency spectrum of the acceleration sensor 1
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Figure 2.10: Experimental frequency response sensor 1
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Figure 2.11: Experimental phase sensor 1
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Figure 2.12: Experimental frequency response sensor 3
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Figure 2.13: Experimental phase sensor 3
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2.2 Flexible Multi Body model description

This numerical example focuses on modelling the uncertainty related to the stiff-

ness matrix of flexible multibody systems (FMBS). The FMB software used is

based on the floating frame of reference formulation(FFRF)[1] and it is combined with

the Craig-Bampton sub-structuring method [11, 12] considering the interfaces of

the substructure rigidly connected, in order to reduce the computational cost of

the simulations.

2.2.1 Floating frame of reference formulation

The floating frame of reference formulations it is one of the most used methods

to describe the kinematics of flexible multibody systems. In the floating frame

of reference formulation each flexible bodies is described through two sets of co-

ordinate: reference and elastic coordinates, figure 2.14. The reference coordinate

Figure 2.14: Floating frame of reference formulation, [13]

.

describes the location Rj and orientation θθθ j of the body in the inertial frame, in-

stead, the elastic coordinates u f
j describe the deformation with respect to the body

coordinate system, [1]. Therefore the large rigid body displacement is described

by reference coordinates, instead, the deformation of the body with respect to its

coordinate system is described using the elastic coordinates through a set of local
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shape function. Using these two sets of coordinates and the methods of analytical

mechanics, the equations of motion of the flexible body can be written as:
mRR

j mRθ
j mR f

j

mθθ
j mθ f

j

Sym m f f
j




R̈j

θ̈θθ j

ü f
j

+


0 0 0

0 0 0

0 0 k f f
j




Rj

θθθ j

u f
j

+

+


CT

Rj

CT
θj

CT
u f

j

λλλ =


(Qe

j)R

(Qe
j)θ

(Qe
j) f

+


(Qv

j )R

(Qv
j )θ

(Qv
j ) f


(2.1)

Where Rj is the set of the Cartesian coordinates that define location of origin

of the j-th bodies, θθθ j is the set of rotational coordinates that describe the orien-

tation of the bodies, u f
j is the set of the generalized elastic coordinates, Qv

j is a

quadratic velocity vector resulting from the differentiation of the kinetic energy

with respect to time and with respect to the body coordinates, Qe
j is the vector

of generalized forces associated with the generalized coordinates, Cj is the con-

straint Jacobian matrix and λλλ is the vector of Lagrange multipliers of body, mRR
j

is the matrix associated with the translation of the body reference is a constant2

diagonal matrix, mRθ
j represents the inertia coupling between the translation and

rotation of the body reference this matrix is null if we take as origin of the body

the center of mass, mθθ
j is the matrix associated with the rotational coordinates of

the body reference, m f f
j is the matrix associated with elastic coordinates this ma-

trix is constant, mθ f
j and mθ f

j represent the coupling between the reference motion

and elastic deformation and k f f
j is the symmetric positive semidefinite stiffness

matrix associated with the elastic coordinates, this matrix as well as m f f
j are the

same matrices that appear in linear structural dynamics because the elastic coor-

dinate are defined in the body-fixed reference frame, they are obtained through

the finite element model of the flexible component.

2.2.2 Craig-Bampton method

When we are dealing with complex mechanical systems, we usually have dozens

of bodies, since in most of them the flexibility cannot be neglected their stiff-

2the non constant matrices are function of time
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ness must be considered. The stiffness matrices are usually obtained with a finite

element approach, that through the discretization of the geometry into finite ele-

ment, where each element is basically a model of a small deformable solid. The

deformation of this solid element is described through the shape function, each

element has two or more nodes that will become the degree of freedom (DOF) of

the model, hence we pass from an infinite number of degree of freedom to a finite

number of degree of freedom, this first approximation brings an overestimation

of the stiffness matrix, but this is not the only approximation of this method. The

number of DOF is chosen evaluating a benefit between computational cost, i.e. if

we have a mesh that is too large, which means having a low number of degrees

of freedom, this leads to a poorly precision of the results and vice-versa having

a mesh too thick that means having a high number of degrees of freedom leads

to a high computational cost. Usually, we are dealing with tens of thousands or

even much more degree of freedom and since we need to lunch lots of simulation

to perform the sensitivity analysis, we want to optimize computational time as

much as possible. This is why we use the Craig Bampton method, that is a well-

known model order reduction technique, will help us to decrease the degrees of

freedom of the structure and therefore to decrease the computational cost. The

generic equation of motion of the free behaviour of the substructure Sj
3, in the

elastic coordinate:

Mj üj + Kj uj = 0 (2.2)

where in order to simplify the notation Mj and Kj, are respectively, m f f
j K f f

j (nj×

nj) matrix of the j-th substructure. Now we can write the equation of motion

of the free body respect to his reference and reorganize the equation of motion

accordingly with the Craig Bampton sub-structuring method:MI I
j MIΓ

j

MΓI
j MΓΓ

j

üI
j

üΓ
j

+

KI I
j KIΓ

j

KΓI
j KΓΓ

j

uI
j

uΓ
j

 =

0

0

 (2.3)

Where we indicated with (I) the inner DOF and with (Γ) the interface DOF. Hence

we write the displacement vector uI as the sum of the elastic modes of shape

and constraint modes. Constraint modes are the deformation pattern due to the

3where j = 1 . . . ns
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displacement uΓ when no force acts on the substructure [14].

uI′
j = −KI I

j KIΓ[−1]
j uΓ

j (2.4)

The elastic modes of shape, that are the natural modes of free vibraton4 of the

substructure with fixed interface DOF uΓ
j = 0 can be evaluated as follow:(

−ω2MI I
j + KI I

j

)
ΦΦΦI

j = 0 (2.5)

where we consider only the first m̃j eigenvalues, usually m̃j is much less then

the all the inner DOF and so we get the reduced-order model by projecting the

internal DOF on the set of the m̃ elastic modes, accordingly once obtained the

eigenvectors we can carry out the modal transformation

uI′′
j = ΦΦΦI

j q̃j (2.6)

where q̃j are the generalize coordinate related to normal modes of the substruc-

tures and [ΦΦΦI
j ]nI

j×m̃j
is the modal matrix. Hence we can finally write the Craig

Bambpton transform matrix as follow:

ΨjΨjΨj =

ΦI
jΦI
jΦI
j −KI I

j KIΓ
j

0 Ij


[nI

j+nΓ
j ]×[m̃j+nΓ

j ]

(2.7)

Where Ij is the identity matrix (nΓ
j × nΓ

j ). So we obtain the transformation matrix:

uI
j

uΓ
j

 =

ΦΦΦI
j −KI I

j KIΓ
j

0 Ij

 q̃j

uΓ
j

 = ΨΨΨu∗ (2.8)

Therefore substituting the Eq.2.8 in the Eq.2.2 and multiplying from the left both

members for [Ψ]T we obtain the following expression:

M∗j ü∗j + K∗j u∗j = 0 (2.9)

Where K∗j ,M∗j are the reduced matrix [(nΓ + m̃)× (nΓ + m̃)], instead the size of 0

is [(nΓ + m̃)× 1], the reduced form are defined as follow:

M∗j = ΨΨΨT
j MjΨΨΨj (2.10a)

K∗j = ΨΨΨT
j KjΨΨΨj (2.10b)

4Assuming an harmonic motion u(t) = U(ω)eiωt
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Let A∗j be the generic reduce matrix M∗j or K∗j of the Sj substructure, we can divide

the matrix as follow:

A∗j = ΨΨΨT
j AjΨΨΨj =

A∗I I
j A∗IΓ

j

A∗ΓI
j A∗ΓΓ

j

 (2.11)

Where the sizes are [A∗I I
j ](mj×mj)

, [A∗IΓ
j ](mj×nΓ

j )
and [A∗ΓΓ

j ](nΓ
j ×nΓ

j )
. The coupling

blocks for the stiffness matrix are null, this is due of the definition of the constraint

modes. Hence we can finally write the equation of motion of the j-th bodies in

the floating frame of reference approach , as in[1]:
mRR

j mRθ
j mR f

j

mθθ
j mθ f

j

Sym m f f
j




R̈j

θ̈θθ j

ü f
j

+


0 0 0

0 0 0

0 0 k f f
j




Rj

θθθ j

u f
j

+

+


CT

Rj

CT
θj

CT
u f

j

λλλ =


(Qe

j)R

(Qe
j)θ

(Qe
j) f

+


(Qv

j )R

(Qv
j )θ

(Qv
j ) f


(2.12)

where :

m f f
j = ΨΨΨT

j m f f
j ΨΨΨj (2.13a)

k f f
j = ΨΨΨT

j k f f
j ΨΨΨj (2.13b)

u f
j = ΨΨΨju∗j (2.13c)

(Qe
j) f = ΨΨΨT

j (Q
e
j) f (2.13d)

(Qv
j ) f = ΨΨΨT

j (Q
e
j) f (2.13e)

CT
u f

j
= ΨΨΨT

j CT
u f

j
(2.13f)mR f

j

mθ f
j

 =

mR f
j

mθ f
j

ΨΨΨj (2.13g)
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Chapter 3

Stochastic models

The probabilistic model is built by replacing all the uncertainty parameters with

random parameters, the prior probability distribution PD of the random variable

are constructed by using the Maximum Entropy Principle (MaxEnt). For the con-

struction of these probability density functions (PDF) we use the same approach

used in [6, 7].

3.1 Maximum entropy principle

The Maximum entropy principle was introduced by Jaynes in 1957 [15] and it

states that the distribution with maximal information entropy is the best choice,

this is it useful to build a consistent PD, because we know that we can not choose

arbitrarily the PD, for instance, see [7]. Therefore we want build the PDF x −→

px(x, s)1 of a Rn-valued random variable X, it could also be a matrix, on the proba-

bility space (Ω, Ξ, Υ) where: Ω is the sample space which is the set of all possible

outcomes, Ξ is the set of events and Υ is the assignment of probabilities to the

events. The MaxEnt maximize the uncertainties in the model under the constrain

defined by the available information. The available information for a random

variable with support in R+.

• Since the support of the random variable is R+, this implies that the support

of the PDF is also R+.

1 where s is a hyper-parameter that must be clearly defined.
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• We can impose that the nominal model would be the model which would

be used if no uncertainties were taken into account, therefore the nominal

model is the mean model of the stochastic model, mathematically E{X}=x.

• Available information directly related to the property of random solution,

concerning the existence of the second order inverse moment second order

moment of the norm of the inverse of the random quantities. Therefore

the linearized stochastic dynamical system admits a second order solution,

we will assume, as in [6], that this constraint is sufficient to guarantee the

existence of a second order solution of the non-linear stochastic dynamical

problem. therefore E{X−2}=C.

Where 0<C<+∞, C has no physical meaning so if the variance of the random

variable is finite and it will be since we are building the PDF using the MaxEnt,

we can replace C with δ that is the coefficient of variation δX
2 that is defined as

δMi = σMi /mi. The measure of uncertainties of a random variable X is defined by

the Shannon entropy :

S(pX) = −
∫

R
pX(x) log(pX(x)) dX = −E{log(pX(x))} (3.1)

Now it’s an optimization problem,i.e. found the PDF contained on the set of

the admissible value that maximized the entropy, this was done with the use of

Lagrange multipliers, to impose the constraint provided by the available infor-

mation.

Uniform distribution. We consider a real-valued random variable X with noth-

ing else as a constraint than the constraint in the support. Therefore the random

variable has value in [a, b]. The Shannon entropy is

S(pX) = log|b− a| (3.2)

Therefore:

• if (b-a)=1 , S(pX)=0

• if (b-a)=+ ∞ , S(pX)= + ∞

20 ≤ δ ≤ 1/
√

2
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• if (b-a)=0 , S(pX)= - ∞

Hence, the MaxEnt is obtained when the Shannon entropy is maximum more the

entropy is large more the uncertainty is high and viceversa, the case when the

entropy tends to −∞ correspond to the determinist case.

• The support SX=[a , b]

• the MaxEnt yields px = 1[a,b](x) 1
b−a

Where is the indicator function with 1[a,b](x)=1 if x is within the support other-

wise 1[a,b](x)=0, therefore we obtain

pX(x) =


1

b−a for a ≤ x ≤ b

0 for x < a or x > b

That correspond to the uniform distribution, therefore a random value X with

only a constraint in the support will have a PDF pX(x) that correspond to the

uniform distribution.

Gamma distribution. We now consider a positive real valued random vari-

able X with values in ] 0, +∞ [ and mean value x and it is also assumed that

E{log(X)} < ∞. Therefore the constraint are :

• The support Sx= ]0, +∞[

• E{ X }= x

• E{log(X)} = C , |C| < ∞

The maximum entropy principle yields :

pX(x; δx) = 1]0,+∞[(x)
1
x

(
1
δ2

X

)δ−2
X 1

Γ(δ−2
X )

(
x
x

)δ−2
X −1

exp

(
− x

δ2
Xx

)
(3.3)

Where C has been replaced with δX through a reparametrization, Γ(·) is the gamma

function. Therefore the PDF correspond to a Gamma PDF with values in [ 0, ∞ [.

21



3.2 Construction of the Probability density functions

3.2.1 PKM Multi Body model PDF

After a preliminary analysis in the MB model seven group of parameters were

selected to perform a sensitivity analysis :

1. Mass of the bodies

2. Center of mass of the bodies (COM)

3. Inertia tensor

4. Accelerometers: positions and orientation

5. Signals delay

6. Joint friction

7. Mechanical transformation

Probability density function of the random mass

Starting from physical considerations we know that the mass is a positive con-

stant, therefore the random mass must be a positive value (Mi > 0), accordingly

the support of the PDF pMi(µ) must be R+. The nominal model would be the

model which would be used if no uncertainties were taken into account, hence

the nominal model is the mean model of the stochastic model [7]. The random

mass must verify the inequality E{M−2
i } < +∞3 in order that a second-order solu-

tion exists for the stochastic multi-body dynamical system, as in [7]. Then sum-

marizing :

Mi > 0 (3.4a)

E{Mi} = mi (3.4b)

E{log(Mi)} = CMi , |CM| < ∞ (3.4c)

3can be proven that this inequality can be replaced with | E{log(Mi)}| < +∞
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Where mi is the nominal mass. The probability distribution function is written as

follow:

pMi(µ; δMi) = 1]0,+∞[(µ)
1

mi

(
1

δ2
Mi

)δ−2
Mi 1

Γ(δ−2
Mi

)

(
µ

mi

)δ−2
Mi
−1

exp

(
− µ

δ2
Mi

mi

)
(3.5)

Where Γ
(

δ−2
Mi

)
is the gamma function and 1]0,+∞[(µ) is the indicator function .

Probability density function of the random Signal delay

These parameters simulate propagation delay, that is the amount of time it takes

for the head of the signal to travel from the sender to the receiver. For the random

signal time delay we apply the same consideration of the random mass, time is

also a positive constant such as the mass so the random signal time delay Ti > 0,

summarizing all the constraints:

Ti > 0 (3.6a)

E{Ti} = ti (3.6b)

E{log(Ti)} = CTi , |CT| < ∞ (3.6c)

As before we combine the Shannon entropy definition with the constraints (equa-

tion 3.6) to build the PDF τ −→ pTi(τ), therefore we obtain the following expres-

sion of the PDF:

pTi(τ; δTi) = 1]0,+∞[(τ)
1
ti

(
1

δ2
Ti

)δ−2
Ti 1

Γ(δ−2
Ti

)

(
τ

ti

)δ−2
Ti
−1

exp

(
− τ

δ2
Ti

ti

)
(3.7)

Probability density function of the random joint friction parameter

The aim of these parameters is to simulate the friction in the joints, the exact same

considerations are applied to these parameters as well as time delay and mass.

Hence the random friction is a positive constant with expected value setted to be

equal to the corresponding value of the nominal model with finite fluctuations.

Summarizing all the constraints:

Di > 0 (3.8a)

E{Di} = di (3.8b)

E{log(Di)} = CDi , |CD| < ∞ (3.8c)
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Using again the maximum entropy principle we obtain the PDF κ −→ pDi(κ) we

obtain the expression of the PDF:

pDi(κ; δDi) = 1]0,+∞[(κ)
1
di

(
1

δ2
Di

)δ−2
Di 1

Γ(δ−2
Di

)

(
κ

di

)δ−2
Di
−1

exp

(
− κ

δ2
Di

di

)
(3.9)

Probability density function of the random mechanical transformation

The purpose of these parameters is to simulate the mechanical transformation

between torque input to ideal motor, and torque applied to modelled joint. The

considerations are the same as in the previous cases:

Fi > 0 (3.10a)

E{Fi} = f
i

(3.10b)

E{log(Fi)} = CFi , |CF| < ∞ (3.10c)

Using again the maximum principle entropy we obtain the PDF η −→ pFi(η) we

obtain the expression of the PDF:

pFi(η; δFi) = 1]0,+∞[(η)
1
f

i

(
1

δ2
Fi

)δ−2
Fi 1

Γ(δ−2
Fi

)

(
η

f
i

)δ−2
Fi
−1

exp

(
− η

δ2
Fi

f
i

)
(3.11)

Probability density function of the random centers of mass

These parameters represents the position of the center of mass of the rigid bodies.

A continuous uniform distribution was adopted for these parameters, this is due

to a constrain imposed in the distribution’s support, in this way all the value of

the support are equally probable. The support is defined by two parameters a

and b which are the minimum and maximum value that that parameter can take.

The PDF is expressed as follow:

pcom(ν) =


1

b−a for a ≤ ν ≤ b

0 for ν < a or ν > b

This distribution is the maximum entropy probability distribution for a random

variable with under no constraint other than being contained in the distribution’s

support.
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Probability density function of the random sensors position and orientation

These parameters represent the position and orientation in space of the sensor

used in the acquisition of the experimental data. For both cases they have been

provided confidence intervals, therefore a maximum and a minimum value that

the parameters can assume. This constraint lead us to choose a continuous uni-

form distribution, the PDF is expressed as follow in both case:

p(θj)
4 =


1

bj−aj
for aj ≤ θj ≤ bj

0 for θj < aj or θj > bj

Probability density function of the random inertia tensor

For the development of the PDF of the inertia tensor we will refer to [6]. Since

the mass distribution around the random center of mass is uncertain, as a conse-

quence, the inertia tensor is also uncertain. The inertia matrix Ji depends on the

mass through the density ρ(x), therefore the random variable Mi and Ji are not

independent. Accordingly we introduce Ii = Ji/mi so that Ji depends on the nor-

malized distribution of mass ρ(x)/mi and so Ii is independent of the total mass

and we can construct the probability model of Ĩi with respect to Ii. We can now

introduce the positive definite matrix Zi defined as follow:

Zi =
1

mi

{
tr (Ji)

2
[ I ]− Ji

}
(3.12)

where with [ I ] we indicate the identity matrix, rewriting the equation 3.12 we

obtain:

Ji =
tr (Ji)

2
[ I ]−miZi (3.13)

Taking the trace of 3.13 and substituting into the equation 3.12 we obtain an ex-

plicit form of Ji

Ji = mi {tr (Zi) [ I ]− Zi} (3.14)

We now introduce the random matrix Z̃i and using the equation 3.14 we obtain

the following expressions

Z̃i =
1

Mi

{
tr
(
J̃i
)

2
[ I ]− J̃

}
(3.15)

4the j index indicate the two different PDF
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J̃ = Mi
{

tr
(
Z̃i
)
[ I ]− Z̃i

}
(3.16)

In order to use the maximum entropy principle we must collect all the available

information about Z̃i. Since the matrix Zi is positive defined, consequently its

stochastic model Z̃i must be a random matrix with values inM+
3 (R)5. Indicating

with Zi the nominal value of the deterministic matrix Zi such that:

Zi =
1

mi

{
tr(Ji)

2
[ I ]− Ji

}
(3.17)

Due to the construction the mean value of the random matrix Z̃i is equal to Zi.

In order to obtain a second-order stochastic solution of the dynamical system

we introduce the last constraint that is | E{log(Z̃i)}| < + ∞. Summarizing all the

constraints:

Z̃ ∈M+
3 (R) (3.18a)

E{Z̃i} = Zi (3.18b)

E{log
(
det|Z̃i|

)
} = Cl

i , |Cl
i | < +∞ (3.18c)

We can rewrite Zi with his Cholesky decomposition

Zi = LT
Zi

LZi
(3.19)

Where LZi
is a upper triangular matrix, Therefore the random matrix can be

rewritten as

Z̃i = LT
Zi

G̃iLZi
(3.20)

the matrix G̃i is the random matrix with the following constraints:

G̃i ∈M+
3 (R) (3.21a)

E{G̃i} = [ I ] (3.21b)

E{log
(
det|G̃i|

)
} = Cl′

i , |Cl′
i | < +∞ (3.21c)

where Cl′ = Cl
i − log (det [ Zi ]). Hence the maximum entropy principle is applied to

G̃i, hence Z̃i is build from the equation 3.20. Using the constrains in the equation

5
M

+
3 (R) is the set of all (3 x 3) real symmetric positive-definite matrices
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3.21 the PDF pGi (Gi) of the random matrix G̃i with respect to the volume element

d̃G = 2
2
3 ∏1<j<k<3 dGjk is written as

pG̃i
= 1

M
+
3 (R) (G)× CGi × (det|G|)−λ × e−tr[µ][G] (3.22)

in which the positive valued parameter CGi is a normalization constant, the real

parameter λ < 1 is a Lagrange multiplier relative to the constraint defined by

the equation 3.21c and the positive definite matrix [µ] is a Lagrange multiplier

relative to the constraint 3.21b. The statistical fluctuations of G̃i is controlled by

the dispersion parameter δGi which must be chosen such that 0 < δGi<
√

1/2. This

probability density function is a particular case the Kummer-Beta matrix variate

distribution, for more detail see [6]. The available information defined in the

equation 3.18 and the equation 3.16 allow us to deduce the following properties

for the random matrix [Ji].
6

1
2

tr(J̃i) [ I ]− J̃i ∈M+
3 (R) (3.23a)

E{J̃i} = Ji (3.23b)

λ < −2⇒ E{‖ [Ji]
−1 ‖2} (3.23c)

The equation 3.23a implies that the random matrix J̃i is positive definite. The

equation 3.23c is necessary for guaranty the existence of a second-order solution

of the non-linear stochastic dynamical system.

3.2.2 PKM Flexible Multi Body model

The non-parametric probabilistic model is constructed by replacing the uncer-

tain parameters with random parameters, the prior probability distribution of

the random variable are constructed by using the Maximum Entropy Principle,

that maximize the uncertainties in the model under the constrain defined by the

available information, for a detailed description of the construction of the PDF

fo to see [17, 7, 16]. Therefore we replace the deterministic reduced-order of the

stiffness K∗j matrices with random matrices K̃∗j ,for the moment we only take into

account symmetric positive-defined matrices7. The generic random matrix Ã∗j
6more detail about it in [6]
7hence no rigid body modes are considered
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can be written as follow:

Ã∗j = LjGjLT
j (3.24)

Where Lj is the lower triangular matrix obtained with the Cholesky factorization

of the matrix A∗j while Gj is a normalized random matrix where a generator of

independent realizations is shown in [6], in which the level of the statistical fluc-

tuations depends on the dispersion parameter δA.

δA =

(
E{‖Gj − I‖2

F}
‖I‖2

) 1
2

(3.25)

Where E{·} is the mathematical expectation and ‖ · ‖F is the Frobenius norm8.

Therefore we obtain the following expression of the equation of motion of the j-th

substructure.

M∗j ü∗j + D̃∗j u̇∗j + K̃∗j u∗j = F∗j (3.26)

In presence of substructure that have the possibility of rigid body motion there-

fore not attached to a fixed frame, the stiffness matrix is positive semidefinite

therefore the Cholesky factorization can not longer be used, instead we will use

the eigen-decomposition. Therefore the generic matrix A∗j will can be written as

A∗j = VjΛΛΛjV−1
j (3.27)

where Vj is the square (n×n) matrix whose i-th column is the eigenvector vvvi of

A∗j and ΛΛΛj is the diagonal matrix whose diagonal elements are the corresponding

eigenvalues. For every real symmetric matrix, the eigenvalues are real and the

eigenvectors can be chosen such that they are orthogonal to each other. Thus a

real symmetric matrix A∗j can be decomposed as

A∗j = VjΛΛΛjVT
j (3.28)

Since there are rigid modes, the corresponding eigenvalues will be null, hence we

ca write the eigenvalue square matrix as

ΛΛΛj =

0 0

0 Hj

 (3.29)

8‖[B]‖F =
√

tr([B] ∗ [B]T)
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Hj is a diagonal square matrix that contains all the non null eigenvalues, hence

we can then decompose it as

Hj = LT
j Lj (3.30)

so that we can write the random matrix Hj

H̃j = LT
j GjLj (3.31)

replacing the deterministic matrix Hj with the random matrix H̃j we obtain the

probabilistic model of the random reduced-order matrix.

Ã∗j = VjΛ̃jVT
j (3.32)

Therefore we can finally obtain the same stochastic model as in the Eq.3.26, by

replacing the random matrices in the equation of motion of the system9.

9even if Dj is a positive defined matrix, when we construct the probabilistic model of a flexible

body with rigid body modes, we must use the eigen-decomposition approach to remain congru-

ent with what is done with the stiffness matrix
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Chapter 4

Sensitivity analysis

Satelli, in [18], define the sensitivity analysis as

"The study of how uncertainty in the output of a model (numerical or

otherwise) can be apportioned to different sources of uncertainty in

the model input."

The global sensitivity analysis it is used to identify the group of parameters which

once fixed led to the smallest variance of the output, it is usually performed be-

fore the model calibrations. The sensitivity analysis is a useful tool because allow

us to understand how the uncertainty in the output of a mathematical model can

be apportioned to the various source of uncertainty. This process is functional for

a various range of purpose, in this case, it was used to increase the understand-

ing of the relationship between input and output, also to found with a Sampling

based methods the most sensitive parameters of the model then, only for the

MB model, apply a Variance-based sensitivity analysis on the group of param-

eters previously found in order to quantify the influence on the system output.

The sensitivity analysis was performed through the Monte Carlo method which

consists to randomly sampling the PDF ( see figure 4.1 and figure 4.2) of the pa-

rameters of interest to get a series of uncorrelated numbers used as a inputs of the

mathematical model of interest, see table below. Therefore, all the system outputs

are collected and mean value and relative standard deviation are evaluated, this

will help us to qualitative understand which parameters influence the most the

output of the system. The Relative standard deviation (RSD) is defined as the
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ratio of the standard deviation and the mean value.

RSDi =
σi

|µi|
∗ 100 (4.1)

It shows the extent of variability in relation to the mean, The RSD tells you

whether the regular standard deviation is small or large when compared to the

mean for the data set. For an appropriate execution of the Monte Carlo method,

Algorithm 1 Monte Carlo method
initialization . loading the data

Xi = 1, ....., np; . Generate all np random variable nt times

parfor j = 1, ....., nt . where nt is the number of realization

run the mathematical model; . using as input the j-th random sampling

end

the mean value of the realization must converge to the true value, this usually re-

quires lots of realization it follows a not negligible computational cost. The com-

putational cost is not only due to the number of realization but it depends also to

the complexity of the mathematical model, in fact, the FMB model requires much

more time for single realization than the MB model. Another aspect that con-

tributes to increasing the computational cost is a large number of parameter that

in a MB model can be considered uncertain not only due to the multiple individ-

ual structures but also due to the fact that the MBS is often multidisciplinary, so

different dynamics are combined. Not counting the mechanical part of rigid and

flexible bodies, there are also actuators and controllers or other mathematical law

may be present in the model. There are some procedure to try to reduce the com-

putational cost such as more efficient way of sampling techniques or reducing the

number of uncertain parameters that of course cannot be known a priori because

as already mentioned the equation of motion is non linear, so with a change of

configuration of the system or with the simple evolving of the system in time the

influence of the parameters can variate over time. A time savings approach is

to parallelize the realizations this is the approach that we used to perform the

sensitivity analysis in both models.
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4.1 PKM MTC model

The first MB model of the Exechon PKM provided by the MTC has shown that the

frequency response of the MB model was not in agreement with the experimental

data, as shown in the figure 4.3 and figure 4.4.
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Figure 4.3: frequency response of the first MB model sensor 1
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Figure 4.4: frequency response of the first MB model sensor 3
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After the first sensitivity analysis which produced poorly result, as we can see

in figure 4.5 and figure 4.6. In front of these results updates have been made to

the MB model, in particular they were focused on the control system architec-

ture and on the joint stiffness. The previous control architecture was based on

referential information about the actual control system, which includes two PI

feedback loops, one for position and other for speed , figure 4.7. The parameters

Figure 4.7: Previous control architecture

of these controllers were estimated from the time domain experiment, therefore

if the configuration of the machine changed, the parameters of the controllers has

to be reevaluated. This representation also neglect the effect of the filters from

the true control architecture as well as considering the motor dynamic ideal, it is

clear why these representation of the controller architecture was inadequate. The

new architecture was obtained from the machine control system provider this

architecture was implemented into the PKM dynamics model, with some sim-

plifications. The other change to the model was to remove the joint compliance

that was implemented in the previous model that is not appropriate to define the

physical phenomena around the joint, instead the Joint damping model is still

being considered as a representation of the joints friction, i.e. resisting relative

motion of solid surfaces. It is proportional to the relative speed between the bod-

ies the joint relates. These changes lead to a new FRF of the MB model shown

in figure 4.9 and figure 4.10. It is clear, however, that even with this update the

MB model is not yet in completely agreement with the experimental data, all the

images of the first sensitivity analysis can be found in the appendix A.

36



Figure 4.8: New control architecture
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Figure 4.9: New model Frequency response sensor 1
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Figure 4.10: New model phase diagram sensor 1
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Figure 4.11: New model Frequency response sensor 3
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Figure 4.12: New model phase diagram sensor 3

4.1.1 sensitivity analysis results

The sensitivity analysis has been organized with seven different Monte Carlo

Simulation, one for each group of parameters. This choice to treat group of pa-

rameters instead the single parameters is due to the high number of parameters

to analyze, table 4.1. The statistics for the response of the system have been es-

Group of parameters number of parame-

ters for group

Mechanical transformation (from CtrlParams) 5

Signal time delay 5

Inertial data ( mass , center of mass, inertia tensor) 39

Joint friction parameters 14

Sensor positions and orientation 2

TOTAL 65

Table 4.1: Group of parameters under study

timated using the Monte Carlo simulation method with 200 independent real-

izations for each different case. Once all the responses of the system has been
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computed, the output data were ordered with respect to the amplitude at each

time step, then starting from the mean of the sorted1 data we selected the confi-

dent region with a probability Pc
2, meanwhile the RSD figure can be found in the

appendix C.

Case 1 In this case all the 13 centers of mass (COM) are random instead the

other group of parameters are deterministic. With reference to what has been

said in the sub-section 3.2.1,

ai = COMi − 10

bi = COMi + 10

Where COMi it is the mean value of the COM position of the i-th body, the value

of ± 10 expressed in [mm] is provided by the MTC. We can see in the Figure

4.13 how these parameters affects widely the response of the system, but these

parameters do not explain the difference on the resonance peak.

Case 2 In this case the 13 tensor of inertia are the random instead the other

parameter are all deterministic. We have chosen a preliminary value for the dis-

persion parameter δJ = 0.2. We can see in the Figure 4.14 how these parameters

affects the response of the system.

Case 3 In this case the masses of the rigid bodies are the random parameters

and the other are all deterministic. For these parameters we have chosen a value

for the dispersion parameter δM = 0.2. We can see in the Figure 4.15 how these

parameters affects the response of the system.

1this is usually different from the response of the nominal model
2for all cases it was used Pc = 80%
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Case 4 In this case the sensors position and orientation are random the other

parameters are deterministic, as done previously we define the

apos
j = Spos j

− 10

bpos
j = Spos j

+ 10

aor
j = Sor j − 10◦

bor
j = Sor j + 10◦

Where Spos j
it is the mean value of the j-th sensor position and Sor j is the mean

value of the j-th sensor orientation, the value ± 10 is expressed in [mm] instead

the valeu ±10◦ is expressed in [Deg] . We can see in the Figure 4.16 how these

parameters affects the response of the system.

Case 5 In this case the mechanical transformation parameters are setted to be

random and the other are all deterministic. For these parameters we have chosen

a value for the dispersion parameter δF = 0.2. We can see in the Figure 4.17 how

these parameters affects the response of the system, It can be seen that the fluc-

tuations of the response decrease with frequency since the spatial wave lengths

decrease with frequency.

Case 6 In this case the time delay signal parameters are setted to be random

and the other are all deterministic. For these parameters we have chosen a value

for the dispersion parameter δT = 0.2. We can see in the Figure 4.18 how these

parameters affects the response of the system.

Case 7 In this case the joint friction parameters are setted to be random and

the other are all deterministic. For these parameters we have chosen a value for

the dispersion parameter δD = 0.2. We can see in the Figure 4.19 how these

parameters affects the response of the system.

Case 8 In this last case all the parameters are setted to be random, with the

same values used for the individual cases. We can see in the Figure 4.20 all these

parameters affects the response of the system.
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Figure 4.13: CASE 1 - the black lines indicate the confidence region of the MB

model- the blue indicate the experimental response sesor 1
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Figure 4.14: CASE 2 - the black lines indicate the confidence region of the MB

model- the blue indicate the experimental response sesor 1
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Figure 4.15: CASE 3 - the black lines indicate the confidence region of the MB

model- the blue indicate the experimental response sesor 1
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Figure 4.16: CASE 4 - the black lines indicate the confidence region of the MB

model- the blue indicate the experimental response sesor 1
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Figure 4.17: CASE 5 - the black lines indicate the confidence region of the MB

model- the blue indicate the experimental response sesor 1
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Figure 4.18: CASE 6 - the black lines indicate the confidence region of the MB

model- the blue indicate the experimental response sesor 1
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Figure 4.19: CASE 7 - the black lines indicate the confidence region of the MB

model- the blue indicate the experimental response sesor 1
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Figure 4.20: CASE 8 - the black lines indicate the confidence region of the MB

model- the blue indicate the experimental response sesor 1
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Figure 4.21: convergence of the mean value with respect to the number of Monte

Carlo simulations
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4.1.2 Summary of the preliminary sensitivity analysis

As shown in the figures in the previous section the most sensitive parameters are:

1. center of mass position

2. Tensor of inertia

3. Mass of the bodies

4. mechanical transformation parameters

The remaining parameters can be neglected in this configuration of the machine.

In the figure 4.21 we can see the convergence of the mean value with respect to

the number of Monte Carlo simulations, for sick of simplicity we only put here

the sensitivity analysis of the sensor 1 the result of the sensor 3 can be found in

Appendix B. Each simulation lasted roughly 1 minutes so the but even with such

a low simulation time, the times to carry out a sensitivity analysis with only one

core are relatively high, in fact since there was 200 realization for 8 different cases

the computational cost with only one core was about 26.5 hours the process was

parallelized with 32 cores and lasted only one hour, a summary of the simulation

times can be seen in the table 4.2.

number of simulations Time (1 core) Time (32 core)

1 1 min 1 min

200 200 min 7 min

1600 1600 min 50 min

Table 4.2: Computational cost comparison MB model

Usually, after a preliminary analysis that helps us to identify the most sensitive

parameters, we should perform a calibration of the probability distribution pa-

rameters, such as the δ dispersion parameter, using the experimental data through

an inverse problem, or construct a predictive probabilistic model and analysis of

the variability of its outputs but until the MB model is not enough in agreement

with the dynamic behavior of the machine, this procedure can not be performed.
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4.1.3 Variance based sensitivity analysis

Once the most influential parameters have been identified through a qualitative

sensitivity analysis we can now quantify the influence of these four parameters

as the frequency changes. It was used a variance-based sensitivity analysis [19],

often referred as Sobol method or Sobol indices, that is a form of a global sensi-

tivity analysis. This method basically decompose the variance of the output of

the model in fraction that can be attributed to the groups of parameters, hence

the sensitivity of the output to an input variable is evaluated by the variance in

the output caused by that input. This method it is useful because it can dealt

with non linearity. We can evaluate the total effect index through the following

formula, [19].

STik =
EX∼i

(
VarXi(Y | X∼i)

)
Var(Y)

(4.2)

where Y is the output, X is the vector of the uncertain parameters, k indicate the

frequency to which the index is referred and i the group of parameters. In this

case since we are measuring the output variance considering also the variance

caused by the interaction with the other parameters

d

∑
i=1

STik ≥ 1 (4.3)

The indices can be evaluated analytically, most of the time as in this case, they are

estimated with the Monte Carlo method through the following formula:

EX∼i

(
VarXi (Y | X∼i)

)
≈ 1

2N

N

∑
j=1

(
f (A)j − f

(
Ai

B

)
j

)2

(4.4)

The procedure is articulate as follow:

1. We generate two (A and B) independent set of random parameters sampled

with the PDF that we built with the maximum entropy principle

2. with the first group A of parameters we generate the first N simulations

3. then we will switch a group of B of random parameters into A and we will

generate other N simulation, and we will repeat this procedure to change a

group of parameters at a time until they have all been changed.
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4. then using the formula 4.4 in the formula 4.2 we are able to evaluate for

each group of parameters at each frequency the Sobol indices.

This sensitivity analysis requires lots of simulation in order to have an appropri-

ate convergence, therefore the preliminary sensitivity analysis result were used

to understand on which parameters we had to focus, in order to avoid long sim-

ulation on useless parameters. We found that the most influential parameters

are:

• Mass

• Control parameter

• Center of mass

• Tensor of inertia

In this case for each group we lunched one-thousand of simulation, therefore

since the group are four we had to lunch five-thousand of simulation. We used

the same dispersion parameters of the previous analysis. Summarized in the table

4.3 we can see the number of simulations and the computational time necessary

to evaluate the indices.

number of simulations Time (1 core) Time (72 core)

1 1 min 1 min

1000 1000 min 14 min

5000 5000 min 70 min

Table 4.3: Computational cost to evaluate the Sobol indices

The results of this analysis are shown in the figure 4.22 and figure 4.23, the graphs

show the trend of the index referred to the frequency. The influence of the groups

of parameters for both sensor is similar, as we can see the most important group

of parameters are the position of the center of mass of the bodies. The very similar

trend of all the index may be due to the fact that we are measuring the contribu-

tion to the output variance including all the variance caused by the interaction

between the other parameters. In figure 4.24 we can see a convergence of one of

the index.
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Figure 4.22: Sobol index for the sensor 1
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Figure 4.23: Sobol index for the sensor 3
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4.1.4 MB model comment

As we can see from the frequency response of the new model figure 4.9 and fig-

ure 4.11, the update model is not still in complete agreement with experimental

results and we have done some investigation about it. Looking at the frequency

response, figure 4.25, of the MB model we can see a peak of the MB model at 225

Hz show the same slope as the first peak of experimental data at 463.1 Hz. Instead

of a random excitation to better understand which components is due this peak,

we excited the system with an harmonic excitation with frequency ω=225 Hz. Vi-

sually and also through the use of sensors in SimMechanics, we have noticed that

the base tool, figure 4.26 started oscillating along his revolution axis. As already

mentioned the PKM has 5 active controllers, in our sensibility analysis we didn’t

take into account all the machine parameters such as the proportional, derivative

and integrative gain of the controllers. From the theory we know that the active

controllers influence the dynamic response of a system, ans also affect the free

behaviour as well as the forced behaviour [14]. Since the system has no stiffness

in the joint all the stiffness is provided by the controllers. In the MB scheme of

the PKM the sensor and actuator are co-located, from the theory we know that

for these simplified controllers:
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Figure 4.25: comparison of resonance peaks

Figure 4.26: Base tool

• the proportional part of the controllers act like a restoring force similar to a

stiffness.

• the derivative part is similar of the action of damping

• the integrative part introduce a behaviour different from that obtainable for

non controlled system.

we have at least two ways to tune the peak of the MB model in the experimen-

tal response that is or increase the proportional gain of the machine or decrease

the mass. As we can see from the figure 4.27 - 4.30 both solutions seem to
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Figure 4.27: New frequency response by changing the proportional gain sensor 1
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Figure 4.28: New frequency response by changing the inertial property sensor 1

represent the peak in the frequency response obtained with the acceleration data

from the sensor 1, the solution obtained increasing the proportional gain seem to

follow better the trend of the experimental frequency response because it covers

the curve also following the same slope. In the frequency response of the system,

obtained from the acceleration data from the sensor 3, we see that with respect to

the first frequency response the appearance of another peak that roughly together
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Figure 4.29: New frequency response by changing the proportional gain sensor 3
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Figure 4.30: New frequency response by changing the inertial property sensor 3

with the already present peak follow the trend of the experimental frequency re-

sponse the test performed to obtain the frequency response of the figure 4.28 was

obtained decreasing the mass (thus also changing inertia) of the base tool. How-

ever, it must be kept in mind that without an experimental confirmation of these

parameters we can not know if this representation is physically possible or is cor-

rect, in fact this difference in the peaks could also be due to a combination of the
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two effects or some stiffness that was not considered when the MB model was

built or it could also easily be a purely accidental phenomenon, hence the peak

represents a phenomenon present only in the MB model and therefore not present

in the real machine.

4.2 PKM FMB model

Before start to apply this new strategy of model uncertainty on a complex system

such as the Exechon PKM, it was necessary to apply this method to a simpler

system, such as a crank slider system, in this way is easier understand the results

and also understand if this approach leads to meaningful results, in appendix

D can be found this example briefly reported. Since the system is made up of

several bodies and joints for sick of simplicity and also to avoid long computa-

tional times, only five bodies were considered flexible which are the three arms

and the two support beams figure 4.31. To avoid an excessive computational cost

some geometry simplifications were made avoiding to model the details of the

structure, but focusing on the dimensional and kinematic aspect of the structure.

These simplifications led to a considerable reduction of the degrees of freedom of

the flexible bodies and therefore in the dimensions of the stiffness matrices which

was further reduced thanks to the Craig Bampton substructuring method.

The discretization of the bodies was performed with SALOME, that is an open

source software, then the meshed bodies were saved in a UNV format that con-

vert the mesh in node, element and group. The latest property of this format has

been exploited selecting group of the boundary element i.e. the element in con-

tact with other body that are used as master node in the Craig Bampton method.

Then the mesh was imported in Matlab and through the shape function of the 4

node element (tetrahedrons) the stiffness matrix was created. In order to kinemat-

ically simulate the system it was imposed an harmonic motion of the prismatic

joints, thus obtaining an almost harmonic motion along the Z-axis, figure 4.32.

Six different cases were generated since we considered five flexible bodies, in five

of those cases the uncertainty was imposed on one body at a time and in one

case the uncertainty was imposed in all the body, this is necessary to understand
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Figure 4.31: Flexible part representation
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Figure 4.32: Displacement along z-axis of the COM against time of the nominal

model

which body give us the greatest dispersion respect to the nominal trajectory.

The statistics for the system response were estimated using the Monte Carlo sim-

ulation method with ns=150 independent realizations, the confidence region were

built removing the nominal response in all realization and then data were ordered
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with respect to the amplitude of the displacement at each time step of all the re-

alization. In this case the probability that the data of the system’s response are

inside the confidence region is of the Pc = 90% with the dispersion parameter

δ = 0.2 that control the dispersion of the random stiffness matrices for each dif-

ferent case alternately.

4.2.1 Summary of the results FMBS

A problem not to be underestimated in the FMB models is the computational cost

in this case each simulation lasted around the 40 minutes, so since we used 150 in-

dependent realization for 6 different case the analysis should have lasted roughly

600 hours, fortunately the process was parallelized with 72 cores and the analysis

lasted about 8.5 hours, a summary of the simulation times can be seen in the table

4.4. In the figure 4.35 we can see the convergence of the mean value with respect

to the number of Monte Carlo simulation. As we can see from the Fig.4.33 and

Fig.4.34 the body that most influence the system’s response is the upper support

beam, because it has the biggest confidence region, instead the other bodies in-

troduce almost the same level of fluctuation in the system’s response, therefore in

order to reduce the level of uncertainty in the motion of the machine we must act

on the upper support beam and also on the lower support beam. These results

give us an idea of how the stiffness of some bodies affects the trajectory of the

system, but to have a true estimate of the size of the deviation from the imposed

trajectory we should have a control system architecture closer to the real one and

also recreate a more detailed geometry, in this example the aim was to demon-

strate how to take into account the global uncertainties of the stiffness matrix and

to find the body that introduced the greatest one. Respect to the previous sensi-

tivity analysis this one is really intrusive respect to the commercial code because

he needs to have access to the stiffness and damping3 matrices of the bodies.

3if the damping is of the Rayleigh type D=α M+ β K
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Figure 4.33: Confidence Region - Case 1thin solid lines δ = 0.2 for all bodies -

Case 2 dashed line dispersion only in the left arm - Case 3 dotted line dispersion

only in the right arm - Case 4 dashed-dotted marked line dispersion only in the

middle arm

number of simulations Time (1 core) Time (72 core)

1 40 min 40 min

150 6000 min 120 min

900 36000 min 520 min

Table 4.4: Computational cost comparison FMB model
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Figure 4.34: Confidence Region - Case 1thin solid lines δ = 0.2 for all bodies

- Case 5 dashed line random stiffness only in the lower support beam - Case 6

dotted line random stiffness only in upper support beam
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Figure 4.35: convergence of the mean value with respect to the number of Monte

Carlo simulations
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Chapter 5

Conclusion

Over the years the study of complex system with MB or FMB system has gained

interest thanks to the possibility to solve interdisciplinary problems. However,

the parameters may be really uncertain therefore to improve the predictability

of the model uncertainties must be take into account. In this report through a

sensitivity analysis we were able to:

• propose a new strategy based on a non parametric probabilistic approach

to model the uncertainties in the stiffness matrices of a FMB system based

on the floating frame of reference approach.

• identify the parameters that most influence the dynamic and kinematic re-

sponse of the machine in a given configuration

• understand how these uncertainties affect the system response

It must be noticed that these results can change by changing the configuration of

the system. There are few drawback in the use of this approach such as:

• the computational cost, especially in the FMB models that usually require

much more time than the MB models to perform a simulation. Of course,

as already mentioned, since these method lends itself very well to parallel

computing, the computational time can be drastically reduced.

• the invasiveness of the new approach for the FMB system respect to the

commercial code, because to implement it we need to have access to the

stiffness matrices of the flexible bodies, which are usually not available.
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5.1 Further development

5.1.1 PKM MB model

Once a more representative MB model is developed, the next step is to perform a

calibration of the probability distribution parameters solving an inverse stochas-

tic problem through experimental data, with the final goal to validate also the

dynamic models for its posterior use in related dynamic predictions and for con-

trol purposes.

5.1.2 PKM FMB model

Some interesting future developments of this approach could regard:

• perform a sensitivity analysis of the frequency response of the system and

comparing it with the experimental data, to see how flexible component

affect the frequency response of the system.

• extend this new approach, which now includes only the uncertainty due to

the stiffness matrices, also the uncertainty due to the mass matrix.
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Appendix A

First MB model sensitivity analysis

results
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Figure A.1: Case 1: Random joint mechanical properties, δ=0.4 coefficient of variation

with a 80% confidence region (black) and experiments (blue))
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Figure A.2: Case 2: Random masses, δ=0.4 coefficient of variation with a 80% confidence

region (black) and experiments (blue))
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Figure A.3: Case 3: Random inertia matrices, δ=0.4 coefficient of variation with a 80%

confidence region (black) and experiments (blue))
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Figure A.4: Case 4: Random inertia matrices, δ=0.4 coefficient of variation with a 80%

confidence region (black) and experiments (blue))
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Figure A.5: Case 5:Random sensors positions, uniform random variables ± 20 mm and

± 20 deg with a 80% confidence region (black) and experiments (blue))
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Figure A.6: Case 6:All random , 80% confidence region (black) and experiments (blue))
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Appendix B

Second model Sensitivity analysis

figures
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Figure B.1: CASE 1 - the black lines indicate the confidence region of the MB

model- the blue indicate the experimental response sensor 3
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Figure B.2: CASE 2 - the black lines indicate the confidence region of the MB

model- the blue indicate the experimental response sensor 3
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Figure B.3: CASE 3 - the black lines indicate the confidence region of the MB

model- the blue indicate the experimental response sensor 3
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Figure B.4: CASE 4 - the black lines indicate the confidence region of the MB

model- the blue indicate the experimental response sensor 3
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Figure B.5: CASE 5 - the black lines indicate the confidence region of the MB

model- the blue indicate the experimental response sensor 3
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Figure B.6: CASE 6 - the black lines indicate the confidence region of the MB

model- the blue indicate the experimental response sensor 3
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Figure B.7: CASE 7 - the black lines indicate the confidence region of the MB

model- the blue indicate the experimental response sensor 3
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Figure B.8: CASE 8 - the black lines indicate the confidence region of the MB

model- the blue indicate the experimental response sensor 3
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Appendix C

Relative standard deviation
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Figure C.1: CASE 1 Relative standard deviation sensor 1
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Figure C.2: CASE 2 Relative standard deviation sensor 1
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Figure C.3: CASE 3 Relative standard deviation sensor 1
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Figure C.4: CASE 4 Relative standard deviation sensor 1
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Figure C.5: CASE 5 Relative standard deviation sensor 1
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Figure C.6: CASE 6 Relative standard deviation sensor 1
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Figure C.7: CASE 7 Relative standard deviation sensor 1
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Appendix D

Crank-Slider

We will perform two different numerical simulations of the crank slider mecha-

nism, for the first application we will confront the results obtained from the MB

and FMB model of the system, on the second application we will perform a sen-

sitivity analysis on the stiffness matrices of the flexible part to show which one of

the bodies is the most sensible at the uncertainty.

First application

In this first application we trace the trajectory of two significant points, this points

are shown in the Fig.D.1.1. To simulate the system a rotation is imposed respect to

Figure D.1: representation of the system

the revolution joint of the connecting rod, and also a force that always is against

the motion of the prismatic joint, to do that a PD controller was built. When we

consider all the bodies rigid what we aspect to see is that the point P1 that is the
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point of the connecting rod describe in the three dimension a circular trajectory,

but what we see is that the point is not exactly describing a circular trajectory

Fig.D.2.2. What we aspect from a rigid body solution, according to the reference

Figure D.2: trajectory P1 in a flexible Multi-body system

frame shown in figure D.1, is that the trajectory is a should be a circle in fact if

we look the trajectory in figure D.3 that is the trajectory of the MB system. This

Figure D.3: trajectory P1 in a Multi-body system

difference is due to the stiffness of the connecting rod and rod, in fact what we

can notice is that if we increase the Young Modulus of the two flexible part is that
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the trajectory when E −→ ∞ the trajectory of the flexible system tends to a circle,

as in figure D.4.

Figure D.4: trajectory P1 increasing the Young Modulus

We also want to control the effect of flexibility on the stroke of the Crank-slider.

The trajectory no matter we are considering the body rigid of flexible is a straight

line. What we aspect that change is the length of this line, so we want now un-

derstand how the stroke is affected by the flexibility of the bodies to do that we

trace the point P2 that correspond to the center of mass of the brick body attached

at the end of the rod. As we can see in figure D.5. The trend of P2 respect to time

is almost harmonic to understand which body is the most important to the length

of the stroke we will change the Young modulus making three cases:

• "Nominal" Erod=40 GPa, Econdord=40 GPa

• "case 1" Erod=35 GPa, Econdord=40 GPa

• "case 2" Erod=40 GPa, Econdord=35 GPa

We chose a lower value of Young Modulus only to highlight the influence of flex-

ible bodies in the stroke. In the following application we will see that the bodies

that most influence the length of the stroke is the rod.
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Figure D.5: trajectory P2 E=40 GPa

second application

For the second application we will use a Crank-Slider mechanism, shown in

Fig.D.6. The Flexible Multi-Body system is made up of five bodies of which only

two are assumed to be flexible, the flexible body are denominated as Fb in the

figure. The inertial frame of reference is it fixed to the center of mass of the rigid

body (Rb) called world. In this system are used one prismatic joint along x-axis,

and three revolution joints along y-axis where the revolution joint 1 (Rj1) pass to

the center of mass (COM) of the world, Rj2 pass to the COM of the Rb2 and the

Rj3 pass to the COM of the Rb1. A rotation is imposed in the Rj1 and it is also ap-

plied a force Fx = 3, 3kN which is always opposite to the motion of the Rb1, and

it is applied to the COM of the latter. The material characteristic of the flexible

bodies are Young Modulus E= 40 GPa, density ρ = 1700 kg/m3 and Poisson’s ratio

ν = 0.29. In the initial configuration the positions of center of mass expressed in

[mm], are World= [0 0 0], Rb2 = [-240 94.5 0], Rb1= [-720 114 0], Fb1= [-93.868 79.5

0], Fb2=[-480 114 0]; The respective weight of the rigid bodies Rb1= 12.6 kg and

Rb2= 0.42 kg. The respective moments of inertia of the two rigid bodies taken at

the center of mass are JRb1 =[23898712.61 0 0 ; 0 43876679.43 0 ;0 0 43876679.43]

[g mm2], JRb2 =[197504.57 0 0; 0 57841.19 0 ;0 0 197504.57] [g mm2]. The system is
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Figure D.6: Crank-Slider mechanism

δFb1 δFb2

Case 1 0.2 0.2

Case 2 0.001 0.2

Case 3 0.2 0.001

Table D.1: dispersion parameters in the different cases

simulated for a time of t=1.1s with a circular frequency f= 1 Hz. In order to indi-

viduate the flexible body that most influence the system behavior were developed

three cases, summarized in the table D.1, the dispersion parameter is it referred to

the Damping matrix and also to the Stiffness matrix. The statistics for the system

response were estimated using the Monte Carlo simulation method with 300 in-

dependent realizations. Once all the responses of the system has been computed,

from each realization was removed the nominal response Fig.D.7 and then the

output data were ordered with respect to the amplitude at each time step, then

starting from the mean of the sorted data we selected the confident region with a

probability Pc = 90%, As we can see from the Fig.D.8 the largest confident region
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Figure D.7: Displacement along x-axis of the COM Rb1 against time of the nomi-

nal model
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Figure D.8: Difference between the nominal displacement and the displacement

of the n realization -confidence regions - Case 1 upper and lower thin solid lines

- Case 2 upper and lower thin dotted lines -Case 3 upper and lower thin dashed

lines

is the one of the case 1 as expected, the smallest confidence region is the one in

which the stiffness and damping matrix of the Fb1 are considered as uncertain.
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From this results is it obvious that the Fb2 is the one where the uncertainty most

influence the response of the system since at equal conditions has a confidence

region bigger then the one of the Fb1. So in order to reduce drastically the uncer-

tainty on the stroke of the system we must reduce the uncertainty related to the

Fb2. In the Fig.D.9 , we show the convergence of the L2 norm, of displacement of

the COM of the Rb1 respect of the number of Monte Carlo simulations.
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Figure D.9: Convergence of the mean value respect to the number of Monte Carlo

simulations Case 1
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List of Symbols

E Young modulus

ρ density

R Reference coordinate for the lo-

cation of the body

θθθ Reference coordinate for the ori-

entation of the body

u f Elastic coordinate

Qv Quadratic velocity vector

Qe Generalized forces

C Constraint Jacobian matrix

λλλ Lagrange multipliers vector

m Mass matrix

k Stiffness matrix
I Inner DOF
Γ Interface DOF

q̃ Generalize coordinate to normal

modes
f f matrix associated with elastic

coordinate
R f coupling between elastic and lo-

cation coordinate

θθθ f coupling between elastic and

orientation coordinate

ΦΦΦ Modal matrix

ΨΨΨ Craig Bampton transfer matrix

M∗ Reduced mass matrix

K∗ Reduced stiffness matrix

Ω Sample space

Ξ Set of events

Υ Probability of the events

δ Dispersion parameter

σ variance

J Inertia matrix

I Normalized inertia matrix

L Cholesky decomposition matrix

G Random matrix

V Eigen-decomposition matrix

ΛΛΛ Eigen-decomposition diagonal

matrix

E{·} Expected value

E{ −2} Second order inverse moment

Γ{·} Gamma function

px Probability density function
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