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ABSTRACT

In this thesis, I present a summary of the work performed in five months at the JPL
(Jet Propulsion Laboratory) on the dynamics of autonomous parafoils and other autonomous
flight solutions.

The growing interest in our solar system icy moons is pushing towards innovative
solutions for planetary exploration that can enable missions towards difficult targets on this
alien satellites. From this point of view, the analysis of high-efficiency gliding systems (i.e.,
high lift over drag systems) can identify new and more efficient solutions for terminal descent.
The present work follows this trend by studying the advantages of a parafoil for autonomous
precision delivery of a probe in the Titan environment.

The previous successful mission to Titan, the Huygens probe, used a series of drag-
only parachutes to drop the payload (low lift to drag parachute). However, this solution
provides a limited maneuverability to negotiate the not well-known environmental conditions
(air density and winds) and the possibility of targeting different landing sites of scientific
interest, shaping the trajectory accordingly. With a ram-air system (a parafoil) one can fly over
different interesting sites, map them ahead of time, and even allow the re-planning of the
trajectory to land near the most desirable sites.

To analyze all these possibilities, dynamics models of the PADs (Precision Aerial
Delivery System), with different degrees of freedom, had to be developed and tested. Three
degree-of-freedom models focused on the trajectory development. Six degree-of-freedom
models were needed to evaluate the parafoil-payload system overall behavior. Seven to nine
degree-of-freedom models were needed to determine the payload-canopy interaction. These
models were tested in the relevant environmental conditions on Titan, from the aerodynamics
to the wind effect to a noisy sensor reading. As a consequence, the performance of the system
trying to follow a trajectory in the uncertain atmosphere was evaluated.

To realize these tasks, we relied on the methodologies derived from dynamics system
modelling for the related equations of motion, from the aerodynamics to investigate the effect
of the forces that enable the descent on Titan, from the GN&C (Guidance, Navigation and
Control) to determine the requirements posed by autonomy. Consequently, the aim of this work
was to provide a system modeling and simulation framework to ultimately allow the
development of a complete GN&C system that will lead to a feasible system design, and which
advantages these high lift solutions can bring to future missions to Titan.
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1 INTRODUCTION

In the last decade the interest in oceans world as Titan, Enceladus and Europa has grown
due to the possibilities of outstanding scientific discoveries in different disciplines: from geology
to meteorology and, maybe, even biology. This enthusiasm brought up different projects and
proposals on disparate CONOPs (Concept of Operations). Riding this wave, the five months that
I spent at JPL where focused on the development, verification and modelling of the dynamics of
Titan high-lift delivery systems. Following this trend, we developed models of parafoil, hang-
glider and a wingsuit to understand their capabilities in other atmospheres different from the
known Earth one.

The beginning point of every project is the compliance with some high-level requirements
that will shape the project path to follow. In our case we can design our framework based on the
Titan parafoil proposal (on-going work).

e Starting conditions:

«» Starting altitude of 40 km over land. The target altitude and longitude are still to
be decided. The polar regions can give access to some interesting hydrocarbon
lakes. Moreover, the equatorial lands are characterized by hydrocarbon sand-like
dunes. Both sites can be of interest, however the systems presented in this thesis
exploit a wind model built for the polar regions exploration [1].

¢ Starting speed on 22 m/s (speed of the probe before parafoil deployment.)

e Payload:

< 200 kg, with a front surface drag of 0.1 m?2 .
e Preferred environment:

«+ Titan, Saturn’s moon.

Titan's North Polar Lakes and Seas
s rewvealiod by The Cassini Titan RADAR Mapper

1 modes resolutians
©10.3-1.5 km, 3-10 km, and 40-200 km.
mmghummelmjnnq

) "~ liguid hy
ard doss nol repesent the visual apparancs af Titan's surface

Figure 1: Titan's northern polar regions as reconstructed from Cassini radar. [2]



1.1 TITAN

The alien environment of our interest is Titan, the largest Saturn’s moon. It has the silver
medal as largest satellite in our solar system: Ganymede (Jupiter) keeps the record, even if it is
just 2% larger than Titan.

Titan is interesting for scientists because it is the only known moon in our solar system
with an earth-like cycle of liquids (methane, ethane and other hydrocarbons), but with surface
temperatures around -179 °C. Moreover, it is thought that on Titan a subsurface ocean of water
could be present. We are almost certain that rivers and lakes of methane and ethane exist on the
moon surface.

Another peculiarity of Titan is the thick atmosphere (five times greater than Earth): the
descent of Huygens from 40 km to the surface took up to 2.5 hours, there is plenty of time for
control as well as for disturbance to act.

The atmosphere is mostly nitrogen (95%) with some methane and other carbon-rich
compounds (5%).

Table 1: Titan Characteristics.

Distance from Saturn 1.226 « 10% km
Density from 40 km to surface 0.7-5.43 kg/m3
Mean Density 1.881 g/cm?3
Mean gravity acceleration 1.352 m/s?
Equatorial Radius 2575 km
Mass 1.346x 103
Surface Pressure 147 kPa
Mean Surface Temperature -179 °C
Atmospheric Constituents N, ,CH,
Sound Speed at 0 km 195 m/s

Figure 2: Titan image from Cassini-Huygens mission. The blurred effect is due to the thick
moon atmosphere [2]

On Titan we would face various challenges during descent: the atmosphere, the gravity
field, the winds will all affect the high efficiency delivery system.
e The aerodynamic performance will be different between Earth and Titan.
e Large dispersions in the entry point and parafoil deployment point may occur for the high
intensity winds at high altitudes.



e The winds can vary unpredictably, we still lack a complete knowledge of the moon
atmosphere.

e Terrain relative navigation, a camera-based navigation, needs an unfluctuating platform.
The camera will be attached to the payload that should be as stable as possible.

1.2 PRECISION AERIAL DELIVERY SYSTEM

On Earth the problem to deliver a payload safely to a well-known target autonomously
has been addressed in different ways, one of which is of our interest: autonomous parafoil for
precision delivery system. The PADs (Precision Aerial Delivery System) is guided to an ideal
trajectory to land on the spot or, in the worst-case scenario, near it: the guidance will accommodate
wind estimator, density estimator, GPS and all the possible tools that can enable a successful
mission.

The atmosphere of our planet is well known and the slight uncertainties that hit the mission
(like wind gust) can be overcome with maneuvers of no more than 20s-30s. If we fly in a foreign
environment, with little knowledge on winds and density, without GPS or other earthling
autonomous guidance systems, how can we plan the right trajectory to land where we need?

A feasible strategy can be to set more than one target, enter the atmosphere, identify the
interesting zones and, then, among them set a landing site. In this scenario the guidance, navigation
and control (GNC) system will plan a first reference trajectory and be ready to re-plan the path to
accommodate any kind of uncertainties. Hence, the motion planning will be performed online, as
we descend in the atmosphere.

In this thesis the focus will be on parafoils, to fulfil some studies on a possible mission on
Titan with an autonomous parafoil. However, models of 6 DOF of hang-glider and wingsuit will
be presented as well to enable a comparison study: we would like to have a wide vision on the
possibilities the different high lift system can give us.

New possible scientific targets like Titans can be the right candidates to understand the
potentiality of those systems.

This project workflow can be summarized as:

e Understand what has been published in literature on the PADs (Precision Aerial Delivery

System) dynamics modelling.

% Geometrical parameters estimation.

% Aerodynamic coefficients estimation.

¢ Mathematical dynamics modelling.

e Built the literature models, improve them (some assumption that are usually made on the
well-known Earth atmosphere should be relaxed on Titan) and verify the results with the
established models. In this thesis only the most significant plots will be reported to not
make the reading too cumbersome.

Wind environment simulations.

Gust model simulations.

Steady state simulations to study the equilibrium parameters.

Symmetrical control simulations.

Asymmetrical control simulations.

Models Validation.

e Test the system maneuverability in following a reference trajectory building a simplified
GNC system.

Motion planning with a 3 DOF model.

Wind and density estimation.

¢ Proportional control to follow the trajectory.

e Compare the different high lift systems for planetary applications.

+¢ Built a 6 DOF model for the hang-gliders.

% Compare the models in the nominal Titan atmosphere conditions.
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% Built a wingsuit model inspired by the northern flying squirrel and test its
capabilities, like the vertical landing.

direction
of travel
mg

Figure 5: Northern flying squirrel force model. [7]



Table 2: Project Outline

TOPIC

WHERE?

REMARKS

Environment

Section 2.1 °

Environmental models

Aerodynamics

Sections 2.2 0 o

Lifting line theory
Panel method
Titan aerodynamics estimation

Parafoil Dynamics Models

Chapters 3 4 5 o
6

6 Degree of freedom with
simulations and validation.
7 Degree of freedom with
simulations and validation.
8 Degree of freedom with
simulations and validation.
9 Degree of freedom with
simulations and validation.

Hang Glider Dynamics Models

Chapter 7 o

6 Degree of freedom with
simulations

Wingsuit Dynamics Models

Chapter 8 o

6 Degree of freedom with
simulations

Guidance, Navigation and
Control
(Parafoil)

Chapter 9 o

Wind and density estimation from
inaccurate sensor readings.
Motion planning with a 3 DOF of
freedom model.

Control in time domain




2 ENVIRONMENT AND HIGH LIFT
SYSTEMS AERODYNAMICS

To understand the study performed, we need to introduce some background information
on the environment and aerodynamics challenges that we will probably face. This will be an
introductive chapter where we will briefly contextualize the research framework.

2.1 ENVIRONMENT

To simulate the Titan environment some models has been developed throughout the years,
however after Cassini-Huygens mission we had the luck to gain a better understanding of the
conditions we will probably face.

“Lorenz et al” formulate an exponential wind model in [1] that can describe the
atmosphere of the poles in late summer. The climate can change abruptly with latitude and season:
this model could lose in validity at different seasons or latitudes. However, we will use that wind
formulation in all the simulations reported in this thesis as a reference wind disturbance model to
develop and test our models. The wind is divided by zonal wind and meridian wind: the first is a
high intensity wind that can heavily affect the trajectory, the latter is a disturbance wind around 1-
2 m/s.

e Zonal wind:
+¢ The zonal wind model (west-east direction) is realized for a latitude of 80°.
W= W300

=——7p= m/s 71
1+eOT 2.1

7
0'0

W30 : speed of wind at 300 km.

z,: reference altitude.

z: altitude at which we are evaluating the wind.
L: length scale.

7
0.0

7
0.0

7
0.0

Table 3: Parameters for zonal wind estimation [1]

Wind Profile Usgo [Mm/s] Zo [km] L [km]
Nominal 22 35 8
Maximum 50 38 11
Minimum -3 0 1

From [1] we can derive the wind environment as well as density and gravity from the
surface up to 170 km. The density and gravity of Lorenz et all is derived from [3], usually referred
as the “Yelle model”.

—0.512xh
p = 5.43 x ¢~ 1000 kg/m3 2.2)



Model wind profile and relevant descent parameters ab representative heights.
Atmospheric density is from the nominal Yelle model. Mote that the nominal
meridional speed Vnom is zero throughout—the minimum and maximum are
given by + |V max

Altitude  Density (kg/ Gravity Umin U nominal [ — V| ma

(krm) m') [(mfs*) (mfs)  (mfs) (mfs)  (mjs)
170 0.0030 1.19 ~30 220 50,0 3.3
150 0.0051 1.21 ~30 220 50.0 3.1
130 0.0088 1.22 ~30 220 50.0 3.0
110 002 1.24 ~30 220 48,9 2.8
an 0.03 1.26 ~30 220 496 2.6
80 0.05 1.27 —30 218 489 2.5
70 0.08 1.28 ~30 217 47.4 2.4
&0 018 1.29 —30 211 440 2.3
50 036 1.30 —30 191 37.4 2.2
44 052 131 ~30 166 317 21
38 076 131 ~30 130 25.0 21
32 1.1 1.32 3.0 9.0 18.3 2.0
26 155 1.32 3.0 5.4 12.6 1.9
20 2.16 1.33 3.0 2.9 8.1 1.8
18 24 1.33 3.0 2.3 7.0 1.7
16 165 1.33 3.0 1.9 60 1.7
14 293 1.34 3.0 15 5.1 16
12 324 1.34 3.0 1.2 43 1.6
10 156 1.34 3.0 0.9 16 15
8 391 1.34 3.0 07 31 15
[ 427 1.34 3.0 0.6 16 14
5 446 1.34 3.0 05 24 1.4
4 467 1.35 _29 0.4 22 13
3 456 135 —29 04 20 13
2 505 1.35 _26 03 1.8 1.2
1 524 1.35 22 03 1.7 1.2

Figure 6:Lorenz et all atmospheric model specification. [2]
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Figure 7: Titan atmosphere [4]
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Figure 8: Titan zonal wind model from minimum to maximum wind expected.
The red line represents the nominal wind profile.

2.2 HIGH EFFICIENCY SYSTEMS AERODYNAMICS

Titan has a different density, different gravity and different “air” composition: the
aerodynamic performances will be different than on Earth. We should find a way to evaluate them,
so the simulations can gain more reliability. It can help us to understand towards which direction
we should enhance our system (changing the wing shape, surface, etc.) The overall efficiency of
the system shouldn’t be affected on Titan, but we can experience an anticipated stall or a decreased
latero-directional stability.

To find the aerodynamics of the parafoil on Titan environment it is advisable to compute
the required database from a CFD analysis. However, in this preliminary phase of the project, we
should find an easiest and more straightforward way to obtain the aerodynamic coefficients. We
can compute the coefficients on Earth environment and then scale them for Titan atmosphere.

From [8] we can derive the values of force coefficients of the parafoil from the lifting line
theory: unfortunately, that method overestimated the lift and underestimated the drag (the
estimation is based only on the wing profile). The mathematical expressions from [8] become very
useful if we aim to estimate the control derivatives for the ram-air {Cy, , Cp ., Cmr Cnyyr Ciyy -

To estimate the aerodynamic coefficients of a certain wing-shape we can use a panel
method: we will obtain a consistent set dependent on the angle of attack and on the airspeed. The
tool “Tornado” [9] enables to analyze different wings with different profiles: for the parafoil an
usual profile is the CLARK-Y.

However, the drag data obtained from the method must be uploaded with some value
typical of the parafoil system. The parafoil profile is cut to form an inlet that permits to inflate the
canopy: inside the ram-air is trapped an air mass called added mass. The associated drag is called
inlet drag.

45



Figure 10: Parafoil profile with inlet cut [10]

Table 4: Additional Drag terms for a small parafoil

Chimer = 0-5x h/c Inlet drag (c=profile chord, h=inlet height)
Cpyimes = 0.019 Drag relative to the rise lines for a small
parafoil.
C Droughness = 0.004 Drag relative to the parafoil surface
roughness

After the evaluation on Earth environment we can rescale the values for Titan: the scaling
is quite a rough approximation but can provide a reasonable behavior of the system in the alien
atmosphere. We assume to flight in a subsonic flux so that the aerodynamic coefficients can be
assumed to be independent from the Mach number. The coefficients are then rescaled based on
the Reynold number. For Titan we have the Reynolds associated to the Huygens parachute: from
that values, keeping into account the different reference length, we can roughly find the Reynold
for the Titan Parafoil. In Earth environment we can estimate the Reynolds or use tabulated value
of flight test of similar parafoil from high altitude.

ux*L

Re = 2.3)

v

. Reriran 2.4
Regaprh

CfTITAN - CfEARTH




Lift ever Drag Lift Coefficient

Lift ower Drag
(™)

— 1 fling line heoty
= CL Beratire dala

Lift erver Drag Ming ine Bsary
Lift cver Drag Mortwe data

* Lt aver Drag paned maliod CL panal method
3 o ; i -
1] 5 10 15 20 25 o 5 10 15 20 5
Angle of Attack [deg) Angle of Attack [deg]

Figure 11: Comparison between the results of the different methods to obtain
an aerodynamic dataset.

3D panels, collocation points and normals.
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Figure 12: Graphical result from Tornado applied to a possible parafoil wing shape.
The lengths are expressed in meters.

If we compare the data set given in [8] and the one derived from the panel method (even
without a dense discretization and the lack of knowledge of the used aerodynamic profile), we can
find a good match with the data.
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Figure 13: Comparison between the data set from [8] and the panel method.
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Figure 14: Pressure coefficient distribution on the wing.

2.3 APPARENT MASSES AND INERTIAS

The model considers the apparent mass and inertia tensors. When a body is moving in a
fluid, it sets the fluid into motion. Thus, the motion generates a pressure field around the body that
we call apparent mass pressure. For every moving body in fluid, we can define a mass ratio

11



between the mass of the system and the air mass shifted by the vehicle. For an airplane the apparent
mass is negligible, for a parafoil the apparent mass heavily characterizes the dynamic of the ram-
air. To evaluate the entity of the apparent mass, we usually use a formulation similar to the one in

equation (2.5).

m (2.5)
2
3

M, =
p*S

The ratio is usually in the order of 0.8 on Earth environment and around 7 for a PADs
flying in Titan atmosphere (data from Airborne). If the parafoil is thought as inflated, the apparent
mass tensor My and the apparent inertia tensor I are defined as [11]:

A 0 O
M;=|0 B 0] (2.6)
0 0 C
I, 0 0
0 0 I, (2.7)
Where:
A =0.666*p * 1+§>«<a*2 xt2xb
= P 3 (2.8)
a*?
— _ _ %2 2
B—O.267*p*<1+2*t*2*AR*(1 t ))*t * C (2.9)
C =0.785 = *\/1+2*a*2*(1—t*2)* AR xc2xh
R 1+ AR (2.10)
_ AR 2,13
Ia—0.055*p*1+AR*c *b 2.11)
T
Ib=0.0308*p*1+AR*[1+g*(1+AR)*AR*a*2*t*z]*c4*b 2.12)
I, = 0.0555%p * (1 + 8 *a*?) «t? x b3 (2.13)
AR—b t*—t . a
" T Y Th (2.14)
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Figure 15: Apparent masses representation for an inflated canopy [11].

Figure 16: Apparent inertias representation for an inflated canopy [11].

For the hang glider and the wing suit model the apparent masses and inertias are evaluated
for a flat wing [8]. In general, those terms in the apparent matrices can be written as:

A=ka*p*z*t2*b; B=kb*p*E*t2*C; C=kc*p*E*C2*b
4 4 4 (2.15)
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]azk(’l*p*gg*cz*b3;]b:kl’)*p*

4
48*TT

xct x b; ]C:ké*p*gg*tz*b?’

With the parameters kg, kyp, k¢, kg, kp, k' that fluctuate for the different wing configurations. For

all those high % unpropelled systems the apparent masses could not be neglected.

Table 5: Flat wing apparent masses and inertias coefficients [8]

(2.16)

k, = 0.899 ky, = 0.34 k. = 0.766
k', = 0.63 k', = 0.874 k.=1
i Parafoil Mass and Apparent Mass
=
g

Mass [kg]

Figure 17: Apparent masses entity during Titan descent for a small parafoil.

2.4 KINEMATICS

Before introducing the equations of motion, we will present a quick review of the
reference frames used for all the thesis. The frames are or right-handed cartesian coordinate
systems or polar systems in terms of latitude and longitude.

Principal reference systems:

e The body frame {b} located in the system (parafoil plus payload scheme) center of mass.

14



» The X-axis lays on the plane of symmetry of the PADs, positive along the parafoil
wing chord pointing to the leading edge.
» The Z-axis is positive pointing down and perpendicular to the X-axis.
» The Y-axis completes the right-handed cartesian reference system.
The canopy fixed frame {p} with origin in the apparent mass center (the three axes are
defined as in {b}).
The parafoil body frame {b,} with origin in the parafoil center of mass and the right-
handed triad defined as {p}.
The payload fixed frame {s} with origin in the payload mass center (the three axes are
defined as in {b}).
The NED (North-East-Down) refence frame {1} with origin in the perpendicular projection
of the vehicle on the planet surface at the beginning of the simulation.
» The X-axis lays in a plane parallel to the one tangent the planet surface at zero
altitude and aims at the true North.
» The Z-axis points to down with the same direction of the system (parafoil and
payload) gravity acceleration vector.
» The Y-axis completes the right-handed cartesian reference system pointing
eastward.
The navigation frame {n} parallel to {I} with origin in the PADs center of gravity or in
the conjunction point in the 9 DOF model.
The wind frame {w} with origin in the center of mass of the PADs (in the 6 DOF model)
and in the center of mass of the canopy in the higher fidelity models.
» The X-axis is aligned to the direction of the airspeed and positive pointing towards
parafoil’s leading edge.
» The Z-axis is perpendicular to the X-axis, it lays on the plane on symmetry of the
PADs, pointing down.
» The Y-axis completes he right-handed cartesian reference system.

To switch from one system to the other, we use rotation matrices:

The transformation matrix from {b} to {p} is a one-axis rotation due to the rigging angle
TR

cos(u) 0 —sin(u) (2.17)
Ryp=| O 1 0
sin(u) 0 cos(u)
The rotation matrix from {n} to {b} is defined by the trio of Euler angles: roll angle ¢,

pitch angle 6 and yaw angle y. In this case the rotation matrix could be expressed as:

Ry, =
cos(y) * cos(0) sin(y) * cos(6) —sin(0)

cos(y) * sin(0) * sin(¢p) — sin(yp) * cos(¢p) sin(y) * sin(H) * sin(¢p) + cos(yp) * cos(¢p) cos(H) * sin(¢)
cos(y) * sin(0) * cos(¢p) + sin(y) * sin(¢p) sin(y) * sin(0) * cos(8) — cos(y) = sin(@)  cos(H) * cos(¢)

The rotation matrix from {n} to {w} is given in terms of bank angle ¢, flight path angle
¥, and heading angle y,, in a fashion similar to 2R. However, this transformation is used
only during guidance and control.

15
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Figure 18: Views of parafoil. [8]
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3 PADsLOW FIDELITY MODEL: 6 DOF

The 6 degrees of freedom model is usually used to develop and test Guidance, Navigation
and Control algorithms: the parafoil-payload system is a rigid 3D body with linear velocities,
attitude and angular rates resulting from the motion of the two main components. In our case this
approximation of the true dynamics can be useful to study the system characteristics with few
inputs on the parafoil size, shape and dimension.

Different models have different kinds of simplified assumptions made on Earth
environment: in our case the more inclusive the model the better. We are not sure on what we will
face on Titan. However, all those established and published examples can help us verify and
validate our design on Earth and on the moon of Saturn environment.

Table 6: Small ram-air wing design parameters [8].

AR =25 Aspect Ratio
b =+S * AR Parafoil Wingspan
c = m Parafoil Chord
h=014+%*c Parafoil height
R/b=0.6+0.8 Line-length-to-span ratio
€e=b/2/R Anhedral angle

3.1 EQUATIONS OF MOTION

The 6 DOF model developed for the JPL relies on those assumptions:

o The parafoil is considered to be a fixed shape once it has been completely inflated.

e The angular rates and the relative Euler angles are written in body frame {b} in respect to
the external {I} reference frame.

e The linear velocities are written in the {I} reference frame.

e The apparent masses and inertia acts in the parafoil system frame {p}. They generate
forces and moments concentrated in the apparent mass center M: the distance, rgp,
between the center of the body fixed frame {b} and M is a crucial parameter for the
following equations.

Figure 19: 6 DOF parafoil model, side view.
17



The equations of motion can be written as:

[t
(m +me) = Ingg + My M} S(rp) 1
S(rem) * My' I+1;—S(rgy) * My = S(rpy) l

d
|
} G.1)

ﬁ@"@%t::

u
F:FZ+F3+F9+F§—(m+me)*S(w)*H—S(w)*M}
w

u p 3.2)
([ somer= ) 501y B
w r
p p
M =M, + M} + S(rgy) * Fb, + S(rps) * F5, — S(w) = I * [q] —S(w) * Iy * [q]
u p r r (3.3)
—S(TBM)*S((D)*M}*QV — S(rpm) * [CI] _Rbn*w>
w T
[ _ sin(0) sin(@)]
¢ |1 sin(¢) * cos(6) cos(¢) * cos(9)| p
ol = IO cos(¢) —sin(¢) I * [q] (3.4
¥ I0 sin(¢) * ! cos(¢) * L
l cos(0) os(9)J
X u
Y| = R'pn * H (3.5)
VA w
Where:
e “m”is the overall system mass:
m = mpayload + mparafoil + msuspension lines (3-6)

e  “m,” is the added mass: the mass trapped inside the inflated parafoil. There are different
expressions to evaluate it and they heavily depend on the parafoil shape. In our model, the
added mass, is defined as in [12] using the profile area “0.09 * ¢? «.

m, =0.09xc?2*xbxp 3.7

e “M" is the parafoil apparent mass tensor rotated by the rigging angle:
M} = R,pb *Mf*pr (38)
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“I" is the parafoil apparent inertia tensor rotated by the rigging angle:

I} = R,pb * If * pr (39)

“W” is the wind vector expressed in the navigation frame {n}.

Vground = Vairspeed -w (310)

“S(rpm)” is the skew-symmetric matrix that replace the vector product gy X

0 ~Zpm  YBM
S(rgm) = | Zpm 0 —XBM (3.11)
—YBM  XBM 0

Where 1), is the vector that points from the origin of the body reference frame to the
apparent mass center of gravity of the parafoil. In our model it is evaluated as:

Tpm = R’pb *[ 00 zpy] (3.12)

“S(rps)” is the skew-symmetric matrix that replace the vector product rgg X:

0 —ZBs YBs
S(TBS) =1 Zps 0 —XBs (313)
—YBs XBs 0

Where rpgg is the vector that points from the origin of the body reference frame to the
payload mass center. In our model it is evaluated as:

rgs = [0 0 zps] (3.14)

“S(w)” is the skew-symmetric matrix of the system rates:

0 -r ¢
S(w) = [ r 0 —p] (3.15)
-9 p O

“F Z ” is the parafoil aerodynamic force vector expressed as:
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szl*p*Vz*S *R . R
a~> ap = <p ~ Tpb " Tpw

Where

—(CLo + CLgppng * @ + CLgg * &) (3.16)

* CYbeta * ﬁ _
—(CDg + CDgy * a? + CDyg  85)

“R’ ” is the rotation matrix between parafoil reference frame {p} and body

reference frame {b}. The forces and the moments on the parafoil are all written
in {p} and expressed in {b}.

> “Rpy,” is the rotation matrix between the wind frame {w} and parafoil body frame
{p}. The matrix is expressed in terms of angle of attach, a, and sideslip angle, f3.
cos(a) 0 — sm(a) cos(B) sin(B) O
Ry, =Ry *Rg = 0 ‘ * [— sin(B) cos(B) O (3.17)
sin(a) 0 cos(a) 0 1
_ a1 (Y2
g= tan_l/ v \ (3.19)
\ us +wp /
u
Vy, = R’pb * < v|+ S(w) *rgy — Rpn * W) = R’pb * (V+S(w) *rgy) (3.20)
w

a

Vap = /uf, +v) +wp

(3.21)
e “MP” is the parafoil aerodynamic moment vector expressed as:
1
MP =E*p*V2 *S *R'
b(Qﬁ*ﬁ"‘ V*Clr*7’+2*Va*Czp*P+Czaa*$)
_ b
* C*(Cm0+cma*a+2*va*cmq*Q) (3.22)
b —
_b(CnB *ﬁ+m* Cnp*p+m*Cnr*r+Cn5a *5(1_

e “F3” is the payload aerodynamic force vector expressed as:
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—CD
0
0

(3.23)

1
Fi = #p*Va = So* Roy »

/7

¢ “Rg,” is the rotation matrix between the wind frame {w} and payload body frame
{s}. The matrix has the same expression as the one for the parafoil, but with the angle
of attack and the sideslip angle expressed with the parafoil linear velocities.

u
Vs = (H +S(w) *rgc — Rpp * W) (3.24)
w

Vas = ’ug + 1752 + WSZ (325)

The aerodynamic moment of the payload is usually neglected: however, if the payload has
some lifting characteristics, we should include it.
“F g” is the system weight force expressed in body frame as:

—sin(0)
Fg = (mparafoil + me + mpayload) *g* COS(Q) * Sin(¢) (3‘26)
cos(6) * cos(¢)

“F Z” is the buoyancy force, upward force given by the parafoil added mass. It is small,
but it can contribute to the overall balance of moments due to the large distance between
the canopy mass center and the overall body center of gravity.

—sin(8)
F) = —(Mgageq) * | cos(8) = sin(¢) (3.27)
cos(8) * cos(¢)
M, = S(rpm) « F (3.28)

The apparent masses and inertias generate a set of forces and moments that can be

expressed as:
u p
i T

Fapp = —Rpp *{
w
+ [pr * S(w) * R,pb * Mf * pr

(Ef-som -2
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p P
Mgy, = —Rpp * (Mf * Rpp * |q| + Rpp * S(@) * R'ppp * My x Ry * [qD
7 rl)  (3.30)

+ s(rBM) * Fapp

3.1.1 CoNTROL

The control is modelled as deflections of brake lines that modify the shape of the parafoil,
hence its aerodynamics. This deformation of the arm-air wing is associated to the aerodynamic

coefficients Cp 55 C 55 Crsar Ci Samultiplied by a “normalized” brake deflection:

e Normalized asymmetric brake deflection for latero-directional control:

a = 6a/Omax
e Normalized symmetric brake deflection for longitudinal control:
8s = 6s/6max

In some models more aerodynamic coefficients are taken into account. It is evaluated the
effect of the symmetric and asymmetric deflection on the pitching moment coefficients C,,, on the
lateral force coefficients Cy. The number of those aerodynamic coefficients associated with control
depends on the aerodynamic data set used during the simulations. We are using system
identification derived parameters: they have been expressed for the Earth environment. However,
with some assumptions we can extended them to Titan atmosphere for this first steps in the mission
design. The aerodynamics is discussed and analyzed in section 2.2

3.1.2 AERODYNAMICS

The aerodynamic used in the simulations of all parafoil models, it is based on a set of
aerodynamic coefficients arranged as in equations (3.16) and (3.22):

Table 7: Aerodynamic coefficients used in the parafoil simulations [8].

Cpo = 0.25 Cpq = 0.12

Cyp = —0.23

C,o = 0.091 CLe = 0.90

Cmo = 0.35 Cmg = —0.72 Cmg = —1.49

Cip = —0.036 Cyp = —0.84 C, = —0.082 Ci5, = —0.0035
Cnp = —0.0015 Cpp = —0.082 Chr = —0.27 Cys, = 0.0215
CDpayload =04

Those coefficients are given for a wing with an aspect ratio of g = 2 and a glide ratio % =
2 of a SNOWFLAKE parafoil. The wing we would like to use on Titan environment has the same
glide ratio but a bit different aspect ratio (? = 3): the following simulations catch the dynamics

of the system, probably the true aerodynamic of the PADs will enhance the system performances.
We kept this aerodynamics definition because it was able to match the results from Airborne,
JPL’s contractors for the analysis of the parafoil characteristics on Titan environment.
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3.2 PARAFOIL AND PAYLOAD GEOMETRY, MASS AND
INERTIA

In the 6 DOF model all the equations of motion are referred to a body mass center, that
takes into account parafoil and payload masses and their relative position at the beginning of the
simulations. The geometrical characteristics of the parafoil-payload are well explained in [12] and
in [8], where, thanks to system identification, a plausible parafoil geometry can be derived
knowing the surface and the aspect ratio of the wing.

3.2.1 PAYLOAD

The load is modelled as a cube of height z, = 0.5, x; = 0.5, y,, = 0.5 and of mass of
200 kg. The payload centre of mass coincides with the geometric centre of the box. The moment
of inertia of the payload can be written as:

Table 8: Payload geometrical inputs.

z, =0.5m Payload height
x; =05m Payload length
ys =05m Payload width
ms = 200 kg Payload mass
m
Lys == (Zsz +ysz) (3.31)
12
m 3.32
lys = 12 * (Zsz + 3’52) ( )
m
Is = — (2% +y5) (3.33)

12

3.2.2 PARAFOIL

The parafoil is assumed to be a parallelepiped of dimensions b, ¢ hyeqn. The Apeqn 1S an
“apparent thickness” that keeps into account parafoil mean thickness “t” and the parafoil chamber.
To evaluate the h,,; 04y, the canopy volume, v,,,;, must be evaluated using the profile area (defined
as 0.09 = c2 [12]).

Table 9: Parafoil geometrical inputs.

b=307m Parafoil wingspan
c=102m Parafoil aerodynamic chord
t =0.075 Parafoil thickness
a=0.164m Parafoil height
R=184m Parafoil line length (from parafoil to confluence point)
u=-12deg Rigging angle
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€ =47.74 deg Anhedral angle
lha,=1m Harness length
m, =1.4m Parafoil mass
o =0.45 Sigma aerial density
Omax = 0.16m Maximum trailing edge deflection
b
€E =
2 %R (3.34)
binfiatea = 2 * R * sin(€) (3.35)
VUyor = 0.09 = c2xbh (3.36)
h — VUyol
mean Cchord * binflated (3-37)
Vyor ¥p+m
pr = (%) * (biznflated + hrznean) (3.38)
Vyor ¥p +m
IJ’P = ( = 12 P) * (Cz + h%nean) (3'39)
Vyor ¥p +m
Iy = ( = 12 p) * (biznflated + Cz) (3.40)

The parafoil is inclined by the rigging angle u: the inertia moment should be transformed from the
parafoil reference frame {p} to the body frame {b}.

Lp, = Lyp * cos®(u) + Iy * sin®(u) (3.41)

Iypb = Iyp (3.42)

Ly, = Lp * Sin®(u) + I,y * cos®(u) (3.43)
1 .

Lizpy = 5 * (Lep = Izp) * sin(2 * ) (3.44)
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3.2.3 PARAFOIL AND PAYLOAD SYSTEM

After the single man subsystems analysis, we can now define the position of the system
center of mass, the mass of the system the total inertia of the system and the positions of parafoil
and payload relative to the body center of mass. The system total mass can be expressed as:

my = mg +m,, (3.45)

The distance between the parafoil center of mass, M, and the payload body center, S, can be
expressed using the distance between parafoil and the confluence point C, .-

Zp 4
ly = >+ lha + legp (3.46)

_ 2 (I+ tmean)3 - l? sin(e)

l i

cgp 3 i (s + tmean)® — lSZ " € (347)
.
mean =g (3.48)

The vectors from the body center of mass and parafoil center of mass, 15y, and the vector from
the body center of mass and the payload center of mass, rg¢ can be defined as:

my + Vyor * P
Y] vol
rps = [00 zggl; zps = l; ¥ ————

my + mg (3.49)
rpy = [00 zpy]; zpy = zps — I, (3.50)
The system inertia tensor can be expressed as:

L = Lp,, + Les + (My + p % Vyor) * 2By + M * 255 (3.51)
Iy =1lyp, +1xs + (mp TP Uvol) * Zjy + Mg * Zhg (3.52)
I, = Lp, + Iz (3.53)
Iz = Iyz, (3.54)

L 0 I
I=|0 I, 0 (3.55)

L, 0 I,



3.3 SIMULATION PLOTS RESULTS

To analyze the PADs dynamics, we performed a series of simulations: we will report only

the important results. The following simulations are performed on Titan environment.
e Steady-State Simulation: those first results show the stable equilibrium conditions of the
descending parafoil without introducing gust disturbance. Than we will analyze what
happens introducing the gust: the system is intrinsically stable and tends to return to
unperturbed equilibrium configuration.
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Figure 20:Angle of Attack during a steady state simulation without gust.
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Figure 21: Angular velocity during a steady state simulation without gust
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Figure 22: Flightpath angle during a steady state simulation without gust.
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Figure 23: Pitch angle during a steady state simulation without gust.
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Figure 24: Aerodynamic Efficiency during a steady state simulation without gust.
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Figure 25: Example of a gust wind model.
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Figure 26: Angular velocity during a steady state descent affected by a 40s gust wind.
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Figure 27: Angle of attack during a steady state descent affected by a 40s gust wind.
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Figure 28: Pitch angle during a steady state descent affected by a 40s gust wind.
Symmetrical deflection of the trailing edge (TE): the flare maneuver consists in the

symmetric deflection of the parafoil brake. The control enables to boost the downrange
increasing the angle of attack.
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Figure 29: Angle of attack with symmetric trailing edge deflection (85 = 0.5 * delta,,qy).
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Figure 30: Flight-path angle with symmetric trailing edge deflection (65 = 0.5 * delta,, ).
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Figure 31: Pitch angle with symmetric trailing edge deflection (65 = 0.5 * delta,,4x).
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Figure 32: Trailing edge symmetric deflection.
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Figure 33: Vertical velocity with symmetric trailing edge deflection (65 = 0.5 * delta, ).

Asymmetric trailing edge deflection: in those simulations a long asymmetric control is
given to the parafoil. The result is a stable descending spiral. During a true control the
command is small in time (few seconds) to adjust the trajectory. However, sometimes one
or two spiral envelopes are needed during the energy management phase. Therefore, it is
important to study the characteristics of a long TE §, command.
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Figure 34: Small and long-time-duration asymmetric deflection (6, = 0.1 * delta,,4y)
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Figure 35: Angle of sideslip during an asymmetric TE deflection.
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Figure 36: Pitch angle during an asymmetric TE deflection.
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Figure 37: Roll angle during an asymmetric TE deflection.
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Figure 39: vertical velocity during an asymmetric TE deflection.
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Figure 41: Descending parafoil trajectory during an asymmetric TE deflection.
An S-maneuver is a typical control given to the parafoil, hence those more realistic results

will be presented. In this last case the simulation will start at 1000 m to analyze the
maneuver in a high-density atmosphere (0ritan surface = 543 kg /m?)
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Figure 42: S-maneuver asymmetric TE deflection (6, = 0.7 * delta,,qx)
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Figure 43: Angle of sideslip during the S-maneuver.
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Figure 45: Angular velocity during an S-maneuver.
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Figure 46: Roll angle during an S-maneuver.
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Figure 47: Pitch angle during an S-maneuver.
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Figure 48: Yaw angle during an S-maneuver.
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Figure 49: On-plane trajectory during an S-maneuver.
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Figure 50: Descending trajectory during an S-maneuver.

3.4 PADS STABILITY

The parafoils is an inherently stable system, both longitudinal and latero-directional
modes are stable, negative real part of the state matrix eigenvalues. Usually they don’t need any
stability augmentation system, their dynamics is slow and winds disturbance is kept in account
during the motion planning. To study the stability of a system we need to linearize the equation of
motion and express them in steady-state form:

{x} = [Al{x} + [B]{u} {y} = [C]{x} (3.56)

Where {x} = {u,v,w,p,q,r} is the state vector, [A]g.e is the state matrix, {u} =
{85, 84} is the control input vector, [ B] g2 is the control matrix, {y} is the output vector and [C]3¢
is the output matrix. The linearization has been performed evaluating the state and control matrices
during trimmed steady state condition (trim point).
For the equilibrium

{x} = f(x,w) = f(xo,up) = 0 (3.57)

Introducing the small perturbation theory and the Jacobian matrix, we can write:

{8k} = f.x (x0,up) * {6x} + fru (X0, o) * {6u} = [A]{x} + [B]{u} (3.58)
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Oh .. 9K

0xq dx,

. . . 3.59
frx: : . : ( )

d0xq dx,

The output matrix is usually built at doc for the performance we want to analyze. For the
stability analysis only the state equation is needed. The linearization is performed with MATLAB
symbolic toolbox.

The analysis is performed at a trim condition at 30 km from ground with a density of
1.2 kg/m3: to compare the results from the PADs that fly on Earth environment we need a
comparable density. At ground level, where p = 5.43 kg/m? the phugoid mode disappears.

{xo} = {uo vo wo Py qo 10} = {13.507.50 0 0}
{ug} = {6;,6,} = {0, 0} (steady state performance) (3.60)
{¢p0 60 Yo } = {0 — 3 deg 0}

Usually we split the longitudinal plane from the latero-directional plane to study the
performance. The eigenvalues of [A] define the system dynamics properties:

Table 10: Parafoil dynamics proprieties on Titan.

Motion Mode Eigenvalues Period T [s] Damping Ratio &
Short Period -2.61+4.71 1.3 0.49
Phugoid -0.0855+0.0041 11 ~1
Dutch Roll -0.0715+0.145i 14 0.44
Roll Subsidence -4.7 0.3 -

Spiral Mode -3.8 0.2 -

The phugoid mode is highly damped: it depends on the exchange of potential and kinetic
energy. The high damping can be related to the high altitude (30 km) and the relatively small
airspeed velocity V, = 15m/s at that altitude. Lowering the altitude, the velocity keeps
decreasing until the disappearance of the phugoid mode: we have two real values instead of two
complex conjugates. This can be related to both the tiny pitch angle and modest velocity [13].

1
m*g*h+§*m*v2:Etot (3.61)

The linearize model can be used in the control analysis: we can define a transfer function
and shape the signal to obtain the desired control. The only problem in our case is that the
trajectory is very long (from 40 km to land) and the PADs will encounter different scenarios with
a density changing from 0.7 kg/m3 to 5.43 kg/m3. We should create a routine that will
continuously linearize the model based on the external conditions: however, the MATLAB
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toolbox can take up to 5/7 minutes to linearize around one point. An idea could be linearizing
analytically the equations, but that takes time and can be tricky due to all the apparent mass terms
to keep into account. In this preliminary study a simple proportional control is implemented in
time domain without linearization.

i .
| os6. | x| 0.4z ol o2  o1a | 07
a|— o) - : ; 1 A |
u.?al“ : TR L -
3 3
= 2|
. o2,
-
" 1
S a
[*]
g
MO P
1 :
E i3
g1 1
E 0.92
-2 — : 51
e N
0.74 ] iy : _ :
| o086 | “» | oa2 T 0,32 | 0.22, 0.14 | 0.07
% 5 : s :

-4 -3.5 =3 -2.5 -2 -1.5 -1 -0.5 5 ]
Real axis [secnrlds'i"_l

: Root Locus L linal
0.955. 0. | 0.84 - 0.74 0.56 0.3

0.02 |— N ; &y ", o)
0.98 ;

0.015 — ' _ : %, —

0.01 [—
-0.295

(=]
(=]
&
|
|

i

8 0.0e 0.04 0.02:

Imagiléaryaxis (seconds™Y)
2 i
=]
w

‘0.995

&
o
2
|

-0.015 |— AR G : i o]

.-0.98 ; e
-0.02 — L : ' e

0.955 © 0.9 u.aa":‘ 0.74 0.56 0.3
; o I ] |

-0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0
Real axis (seconds ')

Figure 51: Longitudinal root locus with phugoid mode highlight

43



Root Locus ern-Directional

0.945 0.89 0.81 0.7 0.5 JJ;S
0.976

) I _—
_0.5 0994 =
E :
‘m
=
g .
=] T
@ &
% osmﬁ .................. g T 5 T g
5 - L]
o
£
=1}
[i-] 5
E0.5 5904 &

- ]

0.976
0.945 : 0.80 0.81 7 0.5 3

o | op|  p :

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

Real axis (seconds™)

Figure 52: Lateral-directional root locus

3.5 MODEL VALIDATION

The model had been validated with Airborne data on Titan atmosphere and with the
university “La Sapienza” (Rome) simulations on Earth environment. The Airborne data match

quite perfectly with the 6 DOF results for a PADs with an efficiency (%) of 2.1 with a steady state
flight (Airborne is a JPL’s contractor for Titan mission, specialized in parafoils development).

We can match the trend of the data from [14], however we lack the knowledge of their
initial conditions, so we can’t replicate the data exactly. Moreover, their control relies on the
deflection angle of an ideal flap that simulate the parafoil bending at the trailing edge.

The simplified 6 DOF developed by [14] is not of our interest: to build it they have
assumed apparent masses and inertias and aerodynamic force moments negligible. It will be
reported just to draw analogous plots.

e Airborne Data
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Figure 53: Airborne data comparison on Titan for a steady state descent with an efficiency of 2.1.
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Figure 56: Results from "la Sapienza" (up) and from the JPL model (bottom).
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4 PADS HIGH-FIDELITY MODEL: 7 DOF

The six degrees of freedom model could be used to simulate the overall dynamics of the
PADs intended as parafoil and payload together. However, for many applications, like attitude
control, it is important to understand the relative dynamics between parafoil and payload.

The number of degrees of freedom of this high-fidelity models varies with the type of
rising connection between payload and parafoil. The 7 DOF model has the two PADs components
linked in a fashion that permit only one relative degree of freedom for the payload, a relative yaw.
This relative yaw creates disturbs on the other two angular relative motions, pitch and roll, that
can be seen in the plots in the simulation section.

We have created all the range of possible high-fidelity models to ensure us a good
understanding of each possible higher fidelity model that Airborne can develop. Studies are still
performed to adapt the high-fidelity models to a “multibody dynamics” as defined in Kane’s
“Dynamics: Theory and Application”. The study performed for the 7, 8, 9 DOF is derived from
[8]: the equations of motion follow the “rigid-body” formulation. In the “connection point” the
parafoil and payload exchange forces and moments that are modelled in the equations of motions.
This formulation permits to detach the payload motion in respect of the parafoil one and analyze
its typical oscillator behavior. The mathematical definition will be fully reported because there are
some differences and improvements from [8].

Jt

ki

Figure 57: 7 DOF parafoil-payload connection.
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4.1 PAYLOAD CONSTRAINED ROTATIONAL KINEMATICS

The relative angular motion of the payload in respect of the parafoil w? /p» expressed in
the parafoil reference system {s}, can be written as:

0 cos(¥ps) sin(ys) 01 [O
Wssp = W5 = Rgp * wp = Ry +| O ] = [— sin(ys)  cos(ys) 0] * [ 0 ] (4.1)
s 0 0 11 Ly
Ps Pp
ws = |9s|; wp = dp 4.2)
Ts Ty
Rgp =
COS(IIJS) * COS(GS) Sin(ws) * COS(HS) —Sil’l(@s) (43)

cos(s) * sin(0y) = sin(¢ps) — sin(¥hs) * cos(¢ps)  sin(¥hs) * sin(6y) * sin(¢s) + cos(¥hs) * cos(¢ps)  cos(Hy) * sin(¢
cos(y) * sin(6;) * cos(¢ps) + sin(ys) * sin(¢p)  sin(yhs) * sin(6;) * cos(;) — cos(Ps) * sin(B;)  cos(6;) * cos(c

With Rgy, is the rotation matrix from parafoil body {b,} system of reference to payload {s} frame
defined by three Euler angles ¢, 8, 1)5. The payload has one “free” relative yaw motion.

0 Pp -1 0 O Ds
[0 — Ry * [p| = [ 0 -1 0‘ * [qS] 4.4
Ts p 0 0 1 Ts
Ps 0 cos(yg) sin(yPs) 01 [Pp
[qs] =0 [+ |-sin(¥s) cos(s) 0] * [%] (4.5)
Ts Ps 0 0 1l 1"
Ijs pp
[q’s] =G+K *7%+ Ky *|dp (4.6)
T"S r'p
- Sin(l/)s) COS(!/)S) 0 14
G =(r;—7) * [ cos(s) —sin(ps) o] * H (4.7)
0 0 0 r
0
K, = 0] (4.8)
1
. _ [ cosws)  sin(py) 0
2= [— sin(ys) cos(yy) O] 4.9)
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4.2 EQUATIONS OF MOTION

With equations (4.5) and (4.6), the 7 DOF model equations of motion can be written in a
fashion similar to the 6 DOF ones (Chapter 3.1 ).

In the 7 DOF and 8 DOF models the moment acting on the parafoil-payload connection
lines can be expressed as:

0 My 0 1 0]
Mc=| 0 |+Rgp*|Mey|=| 0 |+Rspx|0 1 *[MCX] (4.10)
Mcz 0 Mcy 0 0 Y
0
:[O +Rsb*E*[%CX]
MCZ cY
M¢z = _Klp(lps) * s + K- (Ps) * lps (4.11)

The twisting moment M, is modelled as a spring and damper mechanism, in which the
coefficients Ky, and K, can widely vary from PADs to PADs. Sometimes a simplified line induced
moment linked to the rising lines is introduced in the 9 DOF model as well, with a similar fashion
of the one in equation (4.11) [15]. My and M.y are usually unknown and are introduced in the
equation of motions: they are expressed in the parafoil body reference frame {b,}. As well the
forces exchanged between payload and parafoil (F. = [F¢x, Fcy, Fez]') are expressed in the
parafoil body reference frame.

The overall linear velocities are expressed in NED ([x y Z]'), they are derived in the
parafoil-payload connection point C: V. = [u, v, w,]'".

The parafoil angular velocities are expressed in the parafoil body reference frame {b,,},
the payload relative angular velocities are expressed in the payload reference frame {s}.

The first two equations are related to the parafoil motion, the last two to the payload
relative motion.

The parafoil canopy is considered already inflated at the beginning of the simulation and
it is considered as a rigid body with a certain inclination (rigging angle u) and fixed distances
(reg, TBm Tcs, TBa Tem)-

The equations of motion for the 7 DOF can be written as:

[Fr]
A xb = | My |
4x12 12x1 [Fs J (4.12)
M
Agx12=
(mp +mg) * Iygz + Mg' =M % S(rey) — (my, +m,) * S(rcp) 0351 —I3x3 0352
S(rgm) * My Iy + 1 — S(rgy) * My + S(rey) 03,1 S(ree) E (4 13)
ms * Rgp —mg * S(res) * K —mg * S(res) * Ky Ry 03,2 )
033 I+ K, I+ Ky —S(res) * Ry —Rgp *E
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bi2x1 = [Uc Ve We P}o Cfp T:p s Fex Fey Fez Mcx Mey |

—S(wp) * [(m +my)I3,3 + M}] *

— P p P
F,=F,+F)+F

Uc
Ve
We

+ S(wp) * My x S(rey) *

Pp
ap
™

* My * Rpp * W — (my +m,) * S(wp) * S(wp) *Tcp

= [S(@p) * (Ip +17) = S@m) * S(wp) * My  S(rem)] +

- S(rBM) * S((Dp) * M’f *

My

= M,+M}) + S(rgy) * Fh —

0
0 ]
Mc,

Uc
Ve

We

+S(wp)

Pp
ap
Tp

+S(rgm) * S(wp) * My * Ry x W

Uc
Fs = Fg+ Fg+mg xS(r¢s) x G — mg * Ry *S(wp) * [Uc] —mg * S(wg)
WC

*S(ws) *Tcs

Mg =—-I,G+ Ry, M,

[ sin(@
! sin(qbp) ) COSEHZ%
0 cos(¢p)

1
_0 sin(¢,) * 2056,

[ sin( @
= 1 sin((;bp) i COSEQZ%
0 cos(¢p)
lps =T

Ds
—S(wg) = I * |95
TS

. sm(Bp)
COS(¢p) cos(Hp)
- sin(qbp)
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dp
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(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)



u
= R'pp * H 4.21)

Almost all the formulas are explained in section 3.1 however we should describe some new

entries:
“rem’” 1s the vector from the parafoil apparent mass center to the connection point C.

“rcs” is the vector from the payload mass centre to the connection point C.

“rcg” is the vector from the parafoil centre of gravity to the connection point C.
“rpa” is the vector from parafoil center of gravity to the parafoil aerodynamic center.
“F Z” and “Fj” are the parafoil and payload weight forces:

—sin() ] (4.22)
Eg = (mparafoil + me) * g * | cos(8) * sin(¢)
| cos(8) * cos(¢p) |

—sin(0)
F:q = (mpayload) * g * Rgp * | cos() * sin(¢) (4.23)
| cos(8) * cos(¢p) |

The data used for simulations are the same as in section 3.1 and 3.2 The damping coefficient and
the system stiffness can vary from system to system, we have used:

(4.24)

K 02N m K ON m
= 0. *—— = *
k4 rad =" rad

In this model the inertias of parafoil and payload are included in I, and I , respectively as:

Upor ¥ P+ M

pr = (%) * (bz + tz)
_ VUpor * P + mp) 2 2

by = ( 12 (41 (4.25)

Vyot ¥p+m
e S T MG
Lp, = Lyp * c0s®() + Iy * sin®(u)

Lyp, = Lyp (4.26)

Ly, = Ix,{ * sin®(u) + I,y * cos? ()
Lizp, = 2 * (pr - Izp) * sin(2 * p)
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XPp XZPp
Ip = 0 Iypb 0
Ixzpb 0 IZpb (4.27)
m,
Lys = 7];n_2 * (Zsz + YSZ)
lys =35 % @ +93) (4.28)
m,
Is = E * (Zsz + YSZ)
Ls O 0
I, = 0 Iys 0 (4.29)
0 0 I

4.3 SIMULATIONS

The 7 DOF is the preferred candidate for the mission: we want to have a stable payload
for terrain relative navigation (TRN). Less degree of freedom can be linked to less cargo
oscillations. Moreover, with a 7 DOF we can still perfectly match the data from Airborne. The
system validation will be performed using both Airborne data and [8] plots.

However, the probe will probably still be spinning when the parafoil will be deployed: the
9 DOF solution may become a good alternative to solve this problem. Before taking a definitive
decision, we must understand the entity of the spinning and how it can afflict the parafoil
deployment.

4.3.1 TITAN SIMULATIONS

The simulations will focus on a S-maneuver to highlight the constrained oscillations of
the payload. The simulations are made for a parafoil with L/D of 2.1 and deployment altitude of
4000 m.

The model keeps into account a more complex geometrical parameters definition from [8]
a more complex iteration between payload and parafoil: the aerodynamic definition must be
different from the 6 DOF model (derived from a set from [8]) to respect the requirement on the
efficiency. When the true aerodynamic of the vehicle will be computed with CFD analysis, the
guideline parameters should come from the definitive parafoil configuration (7,8 or 9 DOF).

The load swing highlight in the payload yaw plot it’s a relative motion between the
payload and the parafoil, the systems moves accordingly to the ram-air wing. On the pitch and roll
plots the payload detached dynamics is highly damped through the link structure and the lines
damping and stiffness: we can catch an oscillatory behavior linked to the load yaw motion. Even
with a strong link the probe will have some relative motion: the 7 DOF model is not usually used
on Earth because at the equilibrium conditions the parafoil and the load tend to have a differential
pitch angle, positive for the first and negative for the latter.
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Figure 58: On-plane 7 DOF S-maneuver.
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Figure 60: Roll angle S-maneuver 7 DOF.
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Figure 61: Pitch angle S-maneuver 7 DOF.
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Figure 62: Yaw angle S-maneuver 7 DOF
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Figure 63: Payload yaw motion S-maneuver 7 DOF
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Figure 64: Payload angular velocities S-maneuver 7 DOF (highlight on the control response behavior).
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4.3.2 AIRBORNE VALIDATION

The model is again validated with Airborne data on Titan with a low glide system

(% = 2.1) and a high glide system (% = 4). This last simulation can catch the overall trend but

not match perfectly with Airborne data: we don’t have their full aerodynamic but just an indication
on the efficiency they have used for those simulations. We assumed the aerodynamic of a system
of similar characteristics, however the difference can be easily spotted in the simulation with wind.
The cause can be the different pitching moment: if they use an aerodynamic profile different from

ours then the behavior against the wind will be different.
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Figure 69: Low-glide steady state Titan descent.
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Figure 70:High glide steady state Titan descent.
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4.3.3 EARTH ENVIRONMENT VALIDATION

The simulation is performed on Earth environment (see [16]) at 400 m with payload and
parafoil pitch angles of 1.8 deg and 1 deg respectively. The control performs an S-maneuver with
V; ={8.6,04.2} m/s.
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Figure 71: Control maneuver history [16].
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Figure 72: Yaw angle oscillations [16]
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S PADs HIGH FIDELITY MODEL: 8 DOF

The 8 DOF model is very similar to the 7 DOF in its formulation: however, the payload
gains one degree of freedom more, a relative pitch. The major part of the autonomous PADs is
connected as an 8 DOF: unfortunately, the model is highly sensible to the inputs as aerodynamics,
the rotation damping and stiffness of the risers. The geometry of the parafoil should be already
well defined: a wrong geometry definition will make the computation highly instable. Moreover,
the entity of the apparent masses (and of the related moments) on Titan enhance the instabilities
in the computation.

The rising lines fashion does not seem appropriate for Titan: the pitch oscillation can be
quite intense, it is not the best solution for a TRN system on the load. However, the model is
reported to complete the rose of the available high-fidelity examples.

The 7 DOF,8 DOF and complete 9 DOF should be used after a clear definition of the
PADs parameters to exploit their functionalities. The alien environment and the possible position
of the AGU (Airborne Guidance Unit) on the payload complicates the modelling.

For the simulations the same data of sections 3.1 and 3.2 will be used. The parafoil
canopy is already fully inflated at the beginning of the simulations and it is considered as a 3D
rigid body.

All the quantities used in this chapter have already been explained in chapters 04

Figure 73: 8 DOF model parafoil-payload connection.

5.1 EQUATIONS OF MOTION

As in the 7 DOF model the payload has a relative motion in respect of the parafoil that can be
expressed as:

0 0

w5 = @3 — Rgp * wp = Ry, * |6 + Ry, * Ry_ * 0] 5.1
: :
0 Ps
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rcos(fs) 0 —sin(6y)
Re,=| 0 1 0 ] (5.2)
[sin(6;) 0  cos(6s)
[ cos(is)  sin(y) O
Ry, = |—sin(ys) cos(s) 0] (5.3)
L 0 0 1
ps 2 - tag(gs) .
Q,S = 1 * T.SS] +
s cos(6s)
[ cos(py) sinGpy) 1
| cos(6y) cos(6y) 0 . Zp (5.4)
sin i) —cos(@s) Ol |p
l cos(is) * tan(fs) —sin(ys) * tan(6;) 1J
Ds Pp 0 0 —sin(6,)] [0
[qs=Rsb*qp+0 1 0 * [ 65
Ts Tp 0 0 cos(8s) 1 |y
st Idp_
[q's] =G+K, * [qS] + K, * |dp (5.5)
Ts |
- Sin(lps) * (Ts - rp) * pp + COS(lps) * (1"5 - rp) * Qp
G=|- COS(l,[)S) * (Ts - rp) * pp - Siﬂ(lPS) * (rs - rp) * Qp (5.6)
0
0 tan(6y)
K =11 0 ] (5.7)
0 1
cos(ys) sin(ys)
_ | cos(6;) cos(8y)
K 0 0 0 (5.8)
0 0 0
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The connection point moment M, in 8 DOF model is expressed as:

0 Mcy 0 1
Mc=|(0 [+Rgp*|[ 0 |=[ O [+Rgp*|0f*[Mcx]
Mcz 0 Mcz 0 (5.9)
0
=[0 + Rgp * E * [Mcx]
MCZ
M¢z = _Kw(l/)s) * s + K (Ps) * lp‘s (5.10)

The equations of motion for the 8 DOF can be written as:

)
Agx12 * b12x1 = | F:l (5.11)
|m,

|

Agx12=
[(my +m,) * Iz + M’ —Mj « S(rey) — (mp +me) * S(reg) 032 —I3y3 031 ]
S(rgy) * My I + Iy — S(rgy) * Mg + S(rep) 032 S(res) E (5 12)
ms * Rgp —mg * S(rcs) * K —mg * S(rcs) * Ky Rgp 031 ’
033 I« K, I+ K, —S(res) *Rsp —Rgp *E
T e e '
b12x1 - [uc Ve We pp qp Tp qs Ts FCX FCY FCZ MCX] (5-13)

— P p P
F,=F,+F)+F

Uc pP
—S(wp) * [+ M35 + M|+ | Ve | + S(wp) * My * S(rey) * || + S(w,)  (5:14)
We Tp

* My * Ry x W — (my, + m,) * S(wp) * S(wp) * rep

My, =M, + M} +S(rp,)  F},

Pp
—[S(wp) * (I, + 1I;) = S(rgu) * S(wy,) * M§ + S(rep)] * qp] -
Tp
Uc 0 (5.15)
S(rpm) * S(wp) * My * [ vc +S(rBM)*S(wp)*M;*Rb,,W—[ 0 ]
We Mcz
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uC
Fg=Fg+ Fg+mg+S(rcs) * G —mg x Ry *S(wp) * [Uc] —mg * S(wg)
WC

(5.16)
*S(ws) *Tes
Ps
Ms=_IsG+Rsb*Mc_s(ws)*Is*[qsl (5.17)
Ts
[ ) . sin(Hp) . sin(Hp)'
¢fp 1 51n(¢p) Cos(ep) coS(¢p) cos(9p) Py 518
O, =10 cos(pp) —sin(¢,) * [qp] '
l'bp 0 sin(d) )* ! cos(<;l> )* ! K
I P/ cos(6,) P/ cos(6,)]
A . sin(6,) . sin(Bp)] . Ps
[¢S] - _1 sm(qbp) cos(Hp) COS(¢p) cos(Hp) ZSS
. (5.19)
b5 = qs + sin(ys) * p — cos(Ps) * q
Ys = cos(8y) * Ty — cos(ihs) * tan(Bs) * p — sin(,) * tan(fs) xq — 1
X u
[5/ = R'pn * H (5.20)
VA4 w

Almost all the formulas are explained in section 3.1 and 4.2 The position vectors are similar to
those in the 7 DOF.

“rcm” 1s the vector from the parafoil apparent mass centre to the connection point C.
T¢s” is the vector from the payload mass centre to the connection point C.

“rcg” 1s the vector from the parafoil centre of gravity to the connection point C.

“rga’ is the vector from parafoil centre of gravity to the parafoil aerodynamic center.
The data used for simulations are the same as in section 3.1 and 3.2 The damping coefficient and
the system stiffness vary from the 7 DOF: there is a different kind of connection between payload
and parafoil.

<,

mx*sS

;K = 0.005 N »— (-21)

K, = 0.09 N * —
= 0. * —
v rad
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5.2 SIMULATIONS

The simulations are similar to those of the 7 DOF. For the validation we lack knowledge
of the stiffness and damping of the risers used in the models in [16]: in the paper the data for the
7 DOF are reported. Nevertheless, we can match the overall trends: that is our main focus. The
Airborne comparison is neglected on the 8 DOF, was computationally demanding and, for now,
this shouldn’t be the definitive parafoil configuration.

5.2.1 TITAN SIMULATION

As for the 7 DOF of freedom the simulation follows an S-maneuver that starts at 4000 m

(uc =862 v = 0= w, =42 m) with an overall efficiency of 2.
S N S
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Figure 74: Downrange 8 DOF.
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Figure 75: Descending Trajectory 8 DOF.
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Figure 79: Payload yaw motion 8 DOF (the oscillation is damped).
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Figure 81: Yaw angle comparison 8 DOF. The parameters and aerodynamics used in [16]
are not well reported, so we couldn’t match the data. This model is highly sensible to the
line stiffness and damping, without the true values used in the simulations is difficult even
to reply the trend.
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6 PADs HIGH FIDELITY MODEL: 9 DOF

The 9 DOF models represents a parafoil and payload linked in one point: the motion of
the two system is joined through the vector of forces F, put in the connection point C.

The simplified model captures the peculiarity of this PADs configuration with a small
computational cost. The major part of the 9 DOF in literature ( [14], [17], [18]) use “simplified
models”: they are robust to computation and few geometrical information are needed.

However, those models detached the sideslip angle 3, the rigging angle u of the parafoil
and they don’t give clarifying explanation of how the wind is accommodate, if accommodate in
the equations. For the rigging angle an annotation must be made: the simplified 9 DOF model
consider the equation of motion written in the {b,} reference system frame. The rigging angle
enters in the computation when the distance between the connection point C and the parafoil center
of mass is evaluated. All the quantities for the parafoil, comprising the apparent mass and inertia
affect, are written in {b,, }: that simplified the formulations. Moreover, this formulation resembles
more how we would test the PADs for system identification. We evaluate the parafoil
characteristics as a solo system, then we analyze the load peculiarity and, at the end, the system
characteristics will be computed.

The model develop for the JPL, takes into account those aspects keeping the computation
and the equation of motion simple in their input requirements but affective in their modelling.

We still have few information on the Titan parafoil real geometry and aerodynamic: less
guesses are given, less uncertainties are introduced.

6.1 SIMPLIFIED MODEL

The model is more similar to 6 DOF described in section 3.1 for its intrinsically
simplicity, but payload and parafoil are two distinct systems. The main difference from the others
high-fidelity models described before lays in the payload angular motions. They are described
respect the external system of reference in the {s} frame and not as a parafoil relative rotations.

Figure 82: Simplified 9 DOF model representation [14].
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6.1.1 EQUATIONS OF MOTION

The simplified model equations of motion can be written as:

Fg
F (6.1)
Asx12 * b1z = Mp
s
|m,]
Ayx12=
—mg * ISx3 * S(TCS) 03x3 mg * 1313 * Tsn Rsn ]
| 03x3 _(mp * I3x3 + Mf) * s(rEP) (mp * I3x3 + Mf) * Tbn _Tbn | (62)
| I 03,3 03,3 —S(rep) * T |
l 03,3 I+ 1y 03,3 S(rcp) * Ty J
b12x1 = [ps qs f”s pp q.p r.p uc ﬁc Wc FCX FCY FCZ ], (6-3)
_ P p P
Fp=F,+F,+ Fg
—S(wy) * (M * Isxg + My) % S(w,) *Tcp — S(@) * Mg+ (Rpp * Vo + S(w) (64
*Tcp)
M,
=Mg+ M) —Rpp* R gy s M — S(@) * (I, + I5) * @, —Ex My %V, (6.5)
Fs=Fa+F;_ms*S(ws)*S(ws)*rCS (6.6)
Ds
Mg = Mg+ M, — S(ws) * I * [9s (6.7)
rS
[ sin( 6 sin(6,, )]
: 1 sin(q,’)p) * ( p) cos(qbp) * ( p)
bp cos(Hp) cos(Hp) Pp 6.8)
O =10 cos(¢yp) —sin(¢,) * [%] )
Uy 0 sin(¢,) * ! cos(¢py,) * ! K
i P/ cos(6,) P/ cos(6,) ]
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sin(6y) sin(@s)]

a1 @y ) @) s
6,1=10 cos(¢s) — sin(¢s) * [%]
s lO sin(gy) * ! cos(¢s) * ;J s
$77 cos(8s) $77 cos(8s)
X u
5[
Z w
0 0
M= [ 0 |= 0 L
MCZ Kpsi * (lpp - lps) + Kr * (lpp - 1115)
Ky = 0.07 N = %;Kr =0.005 N * ’r’;;
7 = tan"! <sin(¢p) * sin(Bp) * COS(ll)p) — cos(qbp) * sin(lpp)>
P cos(8,) * cos(yp,)

7 = tan~! sin(¢s) * sin(6s) * cos(ys) — cos(¢ps) * sin(ys)
S cos(fs) * cos(¥s)

Yy = = cos(Pp) * tg, * Py +sin(Pp) * tg, * ap + 75
s = —cos(Ps) * tg; * ps + sin(Ps) * tg; * g5 + 75

- cos(q,’)p) * sin(Bp) * cos(lpp) + sin(¢p) * sin(z/)p)

4, c03(8,) * cosy) * cos(YPyp)
~_cos(¢s) * sin(Bs) * cos(ihs) + sin(¢s) * sin(yhs) —
0s — cos(8;) * cos(ys) * cos(is)
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(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)



Where:

o “Mc;” is the twisting moments between parafoil and payload, its definition is slightly
different from the one given for the 7 DOF and 8 DOF model. This definition is explained
in [18].

e  “rcp” is the vector from the parafoil centre of mass to the connection point C:

rcp = [Ry *sin(u) 0 Ry * cos(u)]’ (6.18)
o “rcg” is the vector from the payload centre of mass to the connection point C:

ros = [0 0 Zz_s] (6.19)

e “E”is the skew matrix formed by parafoil velocity:

0 -V
sWwy)=(vw o -1 (6.20)
_]/3] V, 0

6.2 SIMULATIONS

We have performed a series of simulations for the simplified 9 DOF: only the most
significant ones will be reported. As for the 6 DOF steady state, spiral maneuver, S-maneuver and
validation simulations will be reported. From the steady state, we can catch the system equilibrium
values. The other simulations will highlight how the computation handle long control and a more
realistic control. The apparent masses and inertias relative terms can create problems on the
stability of the simulations: on Titan environment this problem enhance.

e Steady state simulations: from 40 km of altitude with initial speed vector {u., v., w.} =

{8.6 0 4.2}.

40 T T

30T

Angle of attack
T

o [deg]

25 I

20 |-

| 1 1 I I I 1 1 I
o 5 10 15 20 25 30 35 40 45 50
Time [s]

Figure 83: Angle of attack simplified 9 DOF.
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Figure 84: Flight-path angle simplified 9 DOF.
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Figure 85: Pitch angle simplified 9 DOF.
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Figure 86: Roll angle simplified 9 DOF
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Figure 87: Yaw angle simplified 9 DOF.
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Figure 88: Spiral maneuver deflection. simplified 9 DOF.
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Figure 89: Descending trajectory spiral maneuver simplified 9 DOF.
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Figure 90: Pitch angle spiral maneuver simplified 9 DOF.
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Figure 91: Roll angle spiral maneuver simplified 9 DOF.
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Figure 92: Yaw angle spiral maneuver simplified 9 DOF.
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Figure 93: Payload angular velocity spiral maneuver simplified 9 DOF.
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Figure 94: Parafoil Angular velocity spiral maneuver simplified 9 DOF.
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Figure 95: Control deflection S-maneuver.
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Figure 96: Descending trajectory S-maneuver.
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Figure 97: Downrange trajectory S-maneuver.
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Figure 98: Sideslip angle S-maneuver.
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Figure 99: Pitch angle S-maneuver.
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Figure 102: Payload angular velocities S-maneuver.
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Figure 103: Parafoil angular velocities S-maneuver.

University of Rome, “La Sapienza” validation: the control in [14] is defined as angle
deflection, in our model is defined as a normalized length that refers to how much of brake
is pulled.
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Altitude vs Distance - Symmetric Deflection
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Figure 104: XZ-plane symmetric deflection comparison.
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Figure 106: Angle of attack symmetric deflection comparison.
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6.3 COMPLETE MODEL

The 9 DOF “complete model” differs from the simplified one because it takes into account
some apparent masses effects and payload-parafoil relative motion that are not specified in the
other models. However, to be able to use this model we need a more accurate geometry parameters
identification (the number of position vectors is equal to those for the 7 and 8 DOF) and a
consistent aerodynamic.

This model can be useful if we want to isolate the motion of the payload in respect of the
parafoil: but the computation time and the number of needed information for the model increase.
More about this model can be find in [§].

Jr

Kr

Figure 107: 9 DOF schematic representation.

6.3.1 EQUATIONS OF MOTION

The 9 DOF complete model equations of motion are very similar to those in sections 4.2
and 5.1 However, in the original model the lines twisting moment is not considered: a successive
version of the model tries to insert the line contribution to the overall dynamics [15].

6.21)

S S

%)
[ —

|[
Agx12 * b12x1 = [
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Ayx12=

(6.22)

[(mp + me) *I3p3 + M, —M; *S(rey) — (mp + me) *S(rcp) 03,3 I3

l S(rem) * My Iy, + I — S(rpy) « My x S(rem) 03,3 S(rep) l

| mg * Rsb 03x3 —mg * S(TCS) Rsb |

[ 033 03,3 I =S(res) * RsbJ
b12x1 = [uc ﬁc Wc pp q'p T'p ps QS T"s FCX FCY FCZ ], (6-23)

— P 14 P
Fp =F,+ Fb + Fg
U, Pp (6.24)
—S(wp) * [+ m I35 + My] * | Ve | + S(wp) * My * S(rey) * |90 | + S(wp)
W¢ L£)
* My * Ry x W — (my, + m,) * S(w,) * S(wp) * rep
Mp
0
:Ma‘l'MII:‘l'S(TBA)*FZ— 0“
Mcz

Pp

- [S(wp) * (Ip + I}) — S(rgm) * S(wp) * M} * S(rCM)] * | qp
Tp (6.25)

U
— S(rpm) * S(wp) * My + | Ve [ + S(rpy) * S(wp) * My * Ry, x W
We
U
Fs= Ffz +F; + mg *S(TCS) * G —mg * Rps *S(wp) * [UC] —ms *S(ws) (6.26)
We
*S(ws) *Tes
Ds
Mg = Mg + Rgp * M — S(ws) * Is * |4s (6.27)
Ts
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_ sin(6,) sin(6,)]
. 1 * *
AT e RO n) 629
Op| =10 cos(¢pp) —sin(¢,) *[qp '
Wy , 1 1 '
0 Slrl(d)z")*cos(@p) COS((I)p)*cos(ep)_
_ sin(fy) sin(fy)
;. [1 sing) « ooy cos() sl
0, =|0 cos(¢s) —sin(¢;) *[CIs] (6.29)
Vsl 10 sin@)—— cos(@) s ——|
|7 s ¢s cos(8s) ¢s cos(BS)J
X u
[3’/ =R’bn*[v] (6.30)
2 w
0
Mczl 0 |;Ky =007 N0 K, =0.005 N 2, (6.31)
Mcz

6.4 COMPLETE 9 DOF SIMULATIONS

In this section the results of a S-maneuver are presented. Fewer simulation has been made
for this model: there is still a limited application in the projects view. The simplified 9 DOF can
for now satisfy our requirements for this preliminary phase. If the 9 DOF will be the chosen
configuration more analysis can be performed with this last implemented model.
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Figure 108: Control deflection complete 9 DOF.
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Figure 109: Descending trajectory complete 9 DOF.
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Figure 113: Pitch angle complete 9 DOF.
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e Validation: we tried to match the trend of the plots in [18], unfortunately we lack their
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7 HANG GLIDER LOW FIDELITY MODEL: 6
DOF

We project to use a steerable system to deliver safely the payload to a landing site: the
hang glider can give even more maneuverability and a wider range, it can be able to reach
interesting landing sites with a better control authority. Small shifts of the loads can origin
complex patterns, fulfil many different trajectories and, maybe, reach difficult landing sites. The
issue that we would have to face is how to deploy a hang glider from a spinning probe: the
complexity lays in both the unfolding maneuver and the rotation of the payload. We would need
to de-spin the load and then find a way to open the glider or we can deploy the system after the
parafoil on a lower altitude. We could than enhance the motion planning capabilities of all the
probe or of one particular scientific payload.

To understand the capability of the system, we developed a 6 DOF model of the hang
glider. In literature, some models can be find: most of them are already linearized ( [19], [20], [6])
or have higher degrees of freedom, usually 9 ([21], [22]). The main aim of this model is to capture
the dynamics of the glider. However, we want to keep the equations simple with few inputs that
can be well-known even in this preliminary phase of the project.

The model recalls the one of the parafoil in chapter 3 the main differences are:

e No rigging angles
e Flat wing for the glider (the apparent masses and inertias are evaluated in respect to a flat

wing, see section 0).

e The control of the glider is given displacing the load to generate maneuvering moments
to shape the trajectory.

The hang glider wing reference frame will be called {p} as for the parafoil, the direction
of the axis and characteristics are the same just with a quite different wing shape. In the formulas

[T L]

the quantities related to the hang glider will be label with a “g” as apex.

Figure 118: Hang glider side view.
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7.1 EQUATIONS OF MOTION

The equations of motion can be written as:

m*13x3+Mf _Mf*S(TBM)
S(rgm) * My I+ 1f—S(rpy) * Mg S(rgy)

d
|
} (7.1)

ﬁ@"@%dz

|
|

u u p
F=F§+F3+F§+F;—m*5(w)*[v]—S(w)*Mf*<[v]—S(rBM)* qD
w r

w (7.2)
+ S(w) * My * Ry * W
M = M3 + S(rgy) * Fo + S(rgy) * Fy + S(rgs) * F5 + S(rgs) * F§ — S(w) * I
p p
* [CI — S(w) *Ip* [61] — S(rpm) * S(w) * My
Ly 77; (7.3)
* < v|—S(rpm) * [Q] — Ry, * W>
w r
sin(0) sin(0)
. 1
é [ sin(¢) * 5(9) cos(¢) ¥ ———= c0s(0)
Q =10 cos(d)) - sin(qb) [ * q (7.4)
¥ l :
0
sin(¢) * cos(6) cos(¢) = 05(0)
x u
y| =R'pn * [v (7.5)
VA w
Where:
e “m”is the overall system mass:
m= mpayload + mparafoil + msuspension lines (7-6)
e “M;” is the hang glider apparent mass tensor.
e “I¢” is the hang glider apparent inertia tensor.
e  “W”is the wind vector expressed in the navigation frame{n}.
Vground = Vairspeed -w (7.7)

o  “S(rpm)” is the skew-symmetric matrix that replace the vector product "rgy X "
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0 —ZpmM YBM
S(rgm) = | Zsm 0 —XpM (7.8)
—YBM  XBM 0

Where 1), is the vector that points from the origin of the body reference frame to the
glider center of gravity. In our model it is evaluated as:

Tem = [ Xgm Yem ZpM] (7.9)

Zps Zps
s YBm = Oy * (7.10)
BM ZpM

XM = xBMsteady state + 0y *

The 8, and 6,, are the payload displacements that change the position of the system center

of mass. Therefore, they are needed to find the position vector from body reference frame
{b} to {p}. If you change the load position, the system C.G. will shift [4].
“S(rps)” is the skew-symmetric matrix that replace the vector product rgg X:

0 —Zps YBs
S(TBS) = Zgs 0 —XBs (710)
—YBs Xps 0

Where rpgg is the vector that points from the origin of the body reference frame to the
payload mass center. In our model it is evaluated as:

Tgs = [0x + Xps 63/ Zgs] (7.11)
“8,” is the payload longitudinal displacement used for control.

“4,,” is the payload lateral displacement used for control.
“S(w)” is the skew-symmetric matrix of the system rates:

0 -r ¢
S(w) = [ r 0 —p] (7.12)
-9 p 0

“F9» is the hang glider aerodynamic force vector expressed as:

1 _(CLO + CLalpha *a+ CLds * gs)
Fg=—*p*V2 *S, %Ry, * CY, * 3 (7.13)
a 2 ag g agw beta _
—(CDy + CD,y * a? + CDyg * &)

Where
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»  “Rpy” is the rotation matrix between the wind frame {w} and hang glider frame
{p}. The matrix is expressed in terms of angle of attach, a, and sideslip angle, £5.

cos(a) 0 — sm(a) cos(B) sin(B) O
Ry, =Ry*Rg=| 0 ] * [— sin(B) cos(ﬁ) 0 (7.14)
sin(a) 0 cos(a) 1
w,
— tan~! _9> 7.15
a = tan (ug (7.15)
f =tan™! % (7.16)
/uﬁ +wg
u
Vag = < v +S(w)*rBM_Rbn*W> (7 17)
W .

= (V+S(w) *rpy — Rpn * W)

Vag = /ug +vi+wi (7.18)

o “M g ” is the hang glider aerodynamic moment vector expressed as:

1
M‘Z :E*p*]/a?g*Sg

- b b 7
b(Clﬁ*.B+2*V*Clr*r+ V*Czp*P+C15a*5a)
a a
_ b
* C*(Cm0+cma*a+2*—vzl*cmq*‘n (7.19)
b(CnB *V*Cnp*p+2*V*Cnr*r+Cn5a*$
i a a |

e “F3” is the payload aerodynamic force vector expressed as:

—CD
0
0

1
Fo =% p* Va5 % Ss % Ry * (7.20)

Where
> “Rg,” is the rotation matrix between the wind frame {w} and payload body frame
{s}. The matrix has the same expression as the one for the parafoil.
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u
Vs = (H +S(w) *Trgc — Rpp * W) (7.21)
w

7.22
Vas = /u§+vsz+ws2 (722)

The aerodynamic moment of the payload is usually neglected: however, if the payload has
some lifting characteristics, we should include it in the computation.
o “F :Z” is the glider weight force expressed in body frame as:

—sin(6@)
Fg = (Mgiiger) * | cos(6) * sin(¢) (7.23)
cos(0) * cos(¢)

o “F Z” is the payload weight force expressed in body frame as:

—sin(0)
F::] = (mpayload) * | cos(0) * sin(¢)
cos(@) = cos(¢)
(7.24)

e The apparent masses and inertias generate a set of forces and moments that can be
expressed as:

)

u
+ [S(w) * My ([v] —S(rgm) *
w

P
q] ~ Rpn * W)]} (7.25)

r

p P
Mapp = — <Mf *|q|+ S(w) * Mg x Rpp * [CID + S(rem) * Fapp (7.26)
T r

7.2 GEOMETRICAL CHARACTERISTICS OF THE HANG
GLIDER

The geometry of the problem is different from the parafoil. However, the same concerns
on the reliability of the aerodynamics and the geometrical guesses rise even in this case.

The initial parameters used are recall in Table 11 (the payload parameters are the same
use in section 3.2 for the parafoil). The latero-directional aerodynamics is modelled with

95



aerodynamic coefficients from [20], the longitudinal aerodynamics is derived from plots from [23]
for a [20] similar hang glider.

Table 11: Hang Glider geometrical inputs.

b=15m Hang Glider wing span
AR =7 Hang Glider wing aspect ratio
b Hang Glider wing mean
Cmean = 75 = 1.43m ae%odynamic c%lord
t=0.14m Hang Glider wing mean thickness
S =b * Cpegn = 14.3 m? Hang Glider wing surface
R=012xb=12m Hang Glider hang straps length
c=15 Hang Glider wing aerial density
lgp = 0.143m Hang Glider distance between the wing mass center and

the payload hang point in the XY -plane.

my = Hang Glider Mass

Table 12: Latero-directional acrodynamic coefficients

Cy, = 0.037 Cy, = 0.23 Cy, = 0.015
Cy, = —0.137 C,, = —0.84 C,, = 0.072
Cpy = 0.034 Cn, = —0.370 Cp, = —0.027
CDpayload =04

Lift Coefficient

0 5 10 15 20 25 30 35
o [deg]
Figure 119: Hang Glider lift coefficient.
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Figure 120: Hang Glider drag coefficient.

96
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Figure 121: Hang Glider moment coefficient.

The inertia of the payload can be written as in section 3.2.1 for the hang glider the
formulas are similar:

_Mg 2 .2 (7.27)
Ixhg —E*(b +t )
my 7.28
yhg = 7o * (€7 +19) (7.28)
Mg 2, 2 (7.29)
Izhg —E*(b +c )
The system inertia used in the equation of motion can be written as:
Ly = Ly, + Ius + My *15g +mg * 15 (7.30)
Iy = Iy, + Iys + Mg * 1 + Mg 15 +mg * g +mg * 15 (7.31)
I, = Izhg + Izs + Mg * Tzzhg +mg* 14 + mg * r)?hg +mg * 1 (7.32)
Where the distance along z of the glider and the payload is:
Z t
l,=—+R+> 7.33
=2 +R+3 (7.33)



The distance along z between the glider center of mass and the system C.G and between
the payload center of mass and the system C.G are formulated as:

My
Tzs = lZ * W (734)

Tzhg = Tzg — L, (7.35)

The distance along x between the glider center of mass and the system C.G and between
the payload center of mass and the system C.G are formulated as:

Tes = —lgs * Mg
XS gs mg +ms (736)

Txhg = lgs * | Ts| (7.37)

7.3 STEADY STATE SIMULATIONS

The hang glider is a high efficiency system (% =4+ 5) that seems to benefit the high-

density Titan atmosphere: however, at high altitude (= 40 km) some oscillations of small amplitude
are experienced. The steady state simulations are performed for a deployment of the hang glide at
40 km with an airspeed velocity of V, = 11 m/s to decrease the overall oscillation period: the
higher is the deployment velocity the longer will be the time needed to stabilize the system at that
altitude.

The overall angle of attack is smaller than the parafoil case study. Nevertheless, the
efficiency and the gliding performances are increased. The main issue of the hang-glider could be
the complexity of the system deployment after the aeroshell entry. The parafoil can be easily
folded: folding a hang-glider imply an accurate study on the shape and deployment of the system.
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Figure 123: Flightpath angle hang glider.
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Figure 124: Efficiency of the hang glider.

7.4 ASYMMETRIC DEFLECTION SIMULATION

Both a spiral maneuver and an S-maneuver have been simulated to study the capability of
the system: that results show that a small shift of the lift (around the tens of centimeters) can
accommodate a stable maneuver. The S-maneuver is performed at 40 km witha 1V, = 11 m/s and
will be presented in this section.
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Figure 125: Sideslip angle S-maneuver.
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Figure 126: Roll angle S-maneuver.
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Figure 127: Yaw angle S-maneuver.
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Figure 128: Pitch angle S-maneuver.
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Figure 129: XY-plane S-maneuver.
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Figure 130: XZ-plane S-maneuver.
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8 PAYLOAD WINGSUIT LOW FIDELITY MODEL: 6
DOF

The wingsuit was first thought as a possible alternative to merge the hang glider
characteristic with the parafoil simple deployments for a large payload. The simulations show that
the solution is not the most feasible choice: however, for small payload we can not only exploit
the wingsuit simple deployment but even land “vertically” in a fashion similar to that of a flying
squirrel (used as the main model to study this dynamic system [24]). In this section will be
analyzed this solution for small payloads. The model needs still development: for other missions
with different requirements, targeting the surface of Titan with small gliding sessions the solution
start to be very interesting.
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Figure 131: Flying squirrel configuration. The mammal usually increase its performance
during flight modifying its paw configuration.

8.1 EQUATIONS OF MOTION

The wingsuit model is composed of a 3 DOF model to size the wingsuit dimensions: fixed
the C; and Cp, for a rectangular wing of AR of 2, we can find the required wingsuit area to obtain
a stable flight based on the payload weight. Than the parameters are inserted in a 6 DOF model.
The simulation is performed taking into account a small tail to attach at the payload: the “tail” is
needed to stabilize the vehicle. The wingsuit is unstable in low angle/low velocities regimes: to
have a stable flight we must trim the system with a tail. The horizontal stabilizer dimensions should
be computed case by case thinking about the performances we would like to have and the glider
capabilities.

The mathematical expressions for the wingsuit are easier than in the previous cases: they
detach the apparent masses effect, the force expressions are simple and straightforward. The only
difficult point is to find how to size the tail.

104



(m+mg) *I3,3 03x3

[4]
| | [ (8.1)
0343 l j

ﬁQESGQ

F=F¥+F,
1 _(CLO + CLalpha *a+ CLds * gs)
ng=§*p*Va2p*Sp* CYpeta * B _ (8.2)
—(CDy + CDyy * a® + CDyg * 65) ‘
—sin(0)
Fg = (mparafoil + me + mpayload) * g * Cos(e) * Sln(d))
cos(8) * cos(¢)
p p
M= Ma - S(w) 1+ [q] B S(w) * I,f i [q] * Fatal'l * (cpws - cptail)
r Tr
[ b(C + b C + b C _
* * * * *
( 18 * B 2+ 1, Ir*T A Ip p) 83)
~ b
MZ=§*p*Va2p*Sp* C*(Cm0+Cma*0£+2*Va*Cmq*Q)
b
_b(CnB 7 np * D "7 ¥ Cpp *71
sin(0) sin(6)
. 1
i |1 TP s P @)
6l=10 cos(qﬁ) —sin(¢) * [Q] 8.4)
P10 i) s —— cos(9) '
* *
l sin(¢ cos(0) cos(® cos(9)J
X u
[3', =R'p, * [v (8.5)
5 w

The maneuvering is performed shifting the “tail” to side or up and down: the contribute
of the tail will mainly affect the overall moment. “(cp,, . — €p,,,,)” 18 the distance between the
center of pressure of the wing and the center of pressure of the wingsuit tail.
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8.2 STEADY STATE SIMULATIONS

Some initial steady state simulations have been performed for the wingsuit to understand
its capabilities to land vertically.

15
Northing [m]

Figure 132: Vertical landing small robot wingsuit model.
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Figure 133: Gliding ratio small robot wingsuit model.
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Figure 134: Pitch angle small robot wingsuit model.
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9 PADS GUIDANCE, NAVIGATION AND CONTROL

Part of this research was to develop models for a high precision delivery system on Titan
environment, the other part is focused on how to use those models in a possible flight scenario in
which Titan winds will make the parafoil drift away from target and some maneuvering will be
required to land on spot. In this section a guidance navigation and control system will be analyzed
for prove the capability of the models in plausible operational conditions and to lay the foundation
of this kind on analysis.

¥ Wind Estimation
¥ Density Estimation

ENVIRONMENT
Ydesirea Ay 8,
MOTION esired a
CONTROL — DYNAMIC MODEL
v | -

» PADs mation
planning in wind
frame.

#  Payload sttitude, rates, velocities in
payload body frame.

3 Parafoil attitude, rates, velocities in
parafoil body frame.

#  Overall system pasition and velocities in
inertial frame.

“—L’esrimamd

Figure 135: GNC model for the parafoil.

In PADs GNC some important assumptions are made to simplify the equation and the
approach of the trajectory definition:
e The sideslip angle £ is small so that we can confound heading angle and yaw angle

AXwind ref frame = leED~

e The wind is usually considered consistent only along the x-axis.

e The PADs should land against the wind (downwind). This will prevent payload roll-over,
will decrease the landing speed and will permit a flare maneuver.

9.1 WIND ESTIMATOR

The environmental conditions should affect the planned trajectory and the parafoil
performance during descent. The true guidance system should re-plane the trajectory every
interval of time to take into account the strong wing uncertainties during descent.

During flight the wind can be estimated from the airspeed lecture of the Pitot and the IMU
(Inertial Measurement Unit) will give the system linear velocities as output.

W =Vyep — Vairspeed

These lectures are affected by a noisy environments and errors: the values must be filtered

to find a reliable quantity to use to plane the needed corrective maneuver.
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Table 13: Noisy uncertainties used for the wind estimation [25].

Ogirspeed = 0.2 m/s Uncertainty on airspeed lecture
oygp = 0.1m/s Uncertainty on ground speed lecture
Oflightpath = 1 deg Uncertainty on flightpath angle (from TRN)
Oheading = 1 deg Uncertainty on heading angle (from TRN)

Xm = xdynamic model T 0% * Dy
Vm = Ydynamic model T Oy * Dy
Zm = Zdynamic model T 0z * Dz
Vam = Vairspeed + Oairspeed * paispeed
Yam = Ya T Oflightpath * Pflightpath
Xam = Xa t+ Oheading * Pheading

The {ps, Py, Pz» Paispeedr Pflightpathr Pheading } are random number normally
distributed: with this expedient we can simulate the noisy measurements while descending in Titan
atmosphere with our software.

From those measurements affected by error we can estimate the wind that need to be
filtered.

Wy = Xm = Vam * cos(Xam) * c0S(Yam)
Wym = Ym — Vam * sin(Xam) * c0S(Yam)
W, = Zm — Vam * sin(Yam)

To filter the wind evaluations, we can use a “recursive mean value estimation”, a filter
(e.g. Nonlinear Estimation Filter) or a predictive method that propagate the wind profile up to
ground level (but it can be quite expensive in terms of computational power).

We chose to use the “recursive mean value estimation”: simple formulation, reliable
results and works throughout all the GNC simulation.

e Mean Error along all the trajectory between exponential wind profile and estimated wind

profile (derived from [1]): 0.002%.

e Max Error along all the trajectory between exponential wind profile and estimated wind

profile: 20%

e  Wind evaluated every 0.1 s (every GNC step).

The standard “recursive mean value estimation” method is thought for PADs in Earth
environment and for far lower altitudes than in Titan case study. The classic formulas are reported
in [26].

Wy = (kxwy, +wy)/(k+1) o1
Wy, = (kxw, +w)/(k+1) ©.1)

The expression (9.1) is useful if the wind environment doesn’t change abruptly during the
simulated scenario: in our case the longitudinal wind changes in its intensity during the descent
from 40 km. An update formulation that takes into account only the previous 100 steps to evaluate
the mean wind and detach errors from propagating (9.1).

If i<k,
Wy = (kxmean(wy,) +w,)/(k + 1)

} . v_vyk+1 = (k= mean(Wyk) +w,)/(k+1) ©2)

Ifi> .
' Wypsq = (kxmean(wy, (i — ky:0)) +wy)/(k +1)

= (k * mean(wyk(i — k1)) +wy)/(k+1)
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Figure 136:Zonal wind estimation.
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Figure 137: Meridian wind estimation.
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Figure 138: Wind detail for the first 10 minutes of simulations.

9.2 DENSITY ESTIMATOR

During the flight the density will be estimated from the sensors, so we should add some
noisy measurements even in that case. The density derives from an exponential formulation that
depends on the height [3]:

h
p = 5.43 x e *0°2*1000 9.3)

To introduce some randomness, we can again think to perturb the airspeed as in the
Kalman filter or the height lecture used in (9.3).

The first method is explained in [25] the second is based on the perturbation of the lecture
from the radar altimeter. The system uncertainty can be approximated as 2-5% of the indicated
height from measurement, we can obtain our value of uncertain density indication.

In the GNC simulations we will use a “fading memory filter”: it is a recursive method
similar to the linear-polynomial Kalman filter, but with an easiest formulation (less computational
burdensome) due to the constant gain value. For a first order filter the gain £ is equal to 0.8.

hi = hg—1 + (1 = B) * (hmeasurea — hi-1)
hmeasured = hdynamic model + O'hermr

B 1.05 if h > 5000 94
= hdynamicmodel * {1.02 if h <5000

Pk = Pr-1+ 1- ﬁ) * (pexponential model — Pk-1)
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Figure 139: Titan air density estimation.

9.3 MOTION PLANNING

The parafoil trajectory must be planned towards the nearest point of interest (near the
entry point): we would need a quick generation of a feasible trajectory. Usually for PADs the
trajectory is planned with a 3 DOF model on plane: the variables of interest are {x,y,1}. From
the wanted trajectory a series of waypoints is then computed on plane. In our deployment situation
(40 km at 22 m/s) we need to take into account a more complex 3 DOF model that consider the
sphericity of the planet. The model will generate a trajectory with {V,, y,. x4} (airspeed, flightpath
angle and heading angle) and ¢, (bank angle) as a control. From this path we will compute our

waypoints identified by a (x,y,z) tern. The final point of the trajectory is {xf,yf,zf}NED =

{0,0,0}ygp: with this expedient it will be easier to find a simple expression for optimize the
trajectory for minimum control or as a Dubin path. During path planning usually only the wind
vector is assumed to be W = {I/,, 0,0} where the wind component along x is the strongest one. In
the true simulated trajectory, the lateral wind and the wind gust will be taken into account.
However, the controlled 6 DOF system should be able to contrast those inputs even with a discrete
control.

9.3.1 3 DOF MODEL WITH SPHERICAL PLANET

The mathematical expressions used to define the waypoints are presented shortly in this
section. The complete formulation can be found in [27]. In this case the body is modelized as a
point mass with lift, drag, lateral force and buoyancy force (L, D, Y, B). The variable are the
airspeed and the airspeed related flightpath angle and heading angle, that usually differ from the
flightpath angle and heading angle associated to the NED quantities. However, in this formulation
the body axis and the wind axis coincide [25]. Throughout all the formulation the wind is
accommodated in the control equations (9.14-9.16) as in [26].

v, = (% ~ g) * sin(ra) - % 9.5)
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. 7 B cos(¥y) L *cos(¢y) + Y *sin(¢,) 9.6)
Va—Rp_I_h*COS(Va)‘l'(m g)* A —
Ve L * sin —Y *sin
Yo =~ 050) = cos(ta) * tan(h) + (ba) - - (ba) ©9.7)
7 =V, xsin(y,) = h (9.8)
V% cos(,) * cos(xa) 9.9)
B r * cos(A)
i= V, * COS()/a) * sin(xq) (9.10)
B r
x =V, *sin(y,) +wy (9.11)
y =V, * cos(ya) * cos(xq) + wy (9.12)
z =V, * cos(yg) * sin(yg) + w, (9.13)
tan(g) = 22211 Ve 9.14)
@ rxg—Va?
. 2%V x COS()/a) * Sin()(desired - Xa) (9.15)
Xp = L
2 2
L = k * \/(Ytarget - )’) + (xtarget - x) (916)

L is used to scale the intensity of the heading angle taking into account the distance
between target and parafoil. This quantity can be modified with the k parameter: with different k
we will obtain different trajectory that keeps into account the wind and that are all potentially
feasible. Varying that quantity and the wind environment and the bank angle control, we can shape
our path and find different solution to landing site. To automate the process an optimal control
with a minimization process is needed. From simulations seems that k should be equal to one in
the energy management or terminal guidance phases where the distance between parafoil and
target is small but can assume different values to shape the homing phase accordingly to a mission
requirement or a scientific task. In the following simulations k is assumed equal to the unity, if not
explicitly reported in the plots description.

If we plane to arrive to a point at 30 km of distance from the release point a possible path
can be seen in the following figures. The parafoil it’s upwind in the homing phase, when the wind
intensity decreases below 3 m/s at 10 km the system can perform more intense maneuvers and
start to aim more effectively at the landing site and land downwind. Throughout all the trajectory
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the bank angle is limited in its intensity: we want a feasible trajectory for the system. For small
PADs a continuous bank angle over 1 m/s can make the vehicle unstable and the 6 DOF model
can experience some problems in following the planned path. To minimize the bank angle and
land on point in every different scenario we would need to optimize our trajectory for minimum
control.

Descending trajectory
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Figure 140: Trajectory from motion planning ( ¢, .= 0.7 rad/s)
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Figure 141: Trajectory from motion planning: tracks on x-y and x-z planes.
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Figure 142: Motion planning reference trajectory latitude and longitude.

The trajectory presented in the previous figures is one possible trajectory with a strong
bank angle limitation [28]. The turn maneuver can cause quicker altitude loss and a steep spiral
for descent. It can be hard to follow with a discrete control, at least with a simple proportional
control in time domain. With a more raffinate control theory we should be able to perform any
kind trajectory. If we simulate a series of trajectory with maximum bank angle of ¢, = 1.2 rad/s,
we can obtain different trajectories that lands on our target with different k values (all the other
quantities are kept equal for the four paths).
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Figure 143: Trajectories obtained varying maximum bank angle and k.

If we change the entry point keeping ( ¢gq, = 0.7rad/s), we can plot different
trajectories that will try to land at the target {x¢, yf, z¢} = {0,0,0} km. The entries point will lie on
a circle of radius 5 km around the nominal entry point, {X, yo,Zo} = {—30,30,40} km. However,
without an optimizing tool and with the bank angle limitation the landing spots will can be
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delimited in an ellipse of major axis of 4 km along x (northing) and a minor axis of 2 km along y
(easting). The error in position at the entry point at 40 km will perturb the touchdown point,
keeping all the other parameters equal. Future work will expand this analysis into a more detailed
Montecarlo analysis.
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Figure 144: Scattering in the landing site with ¢, = 0.7—
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Figure 145: Scattering in the landing site with ¢, = 0.7 % (more complete Montecarlo Analysis)
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Figure 146: Scattering in the landing site with ¢, = 0.7% end points..

9.4 PROPORTIONAL CONTROL

The control used in the routine is a simple fixed gain proportional control in time domain.
In this preliminary phase we are not focused on the efficiency of the control but how the PADs
will behave under some environmental effects, not precise sensor lectures and time-limited
actuation.

611 = Kp1 (t) * Xdot = sz (t) * AX = sz (t) * (Xwaypoint - Xparafoil) (9-17)

The control will try to follow the on-plane trajectory (North-East). However, some
waypoints cannot be reached because the 6 DOF PADs, with a more complex dynamics and
various outside environmental effects, seems to lose altitude quicker than when it is modelled as
a point mass object. If we follow the on-plane trajectory exactly we can land before our target. To
obviate this problem the control algorithm aims always at the nearest waypoint with a lower height
than the parafoil actual altitude.
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Figure 148: 6 DOF PADs trajectory under control inputs.

9.5 PARAFOIL AND HANG GLIDER: COMPARISON

The hang glider is a system with a higher efficiency than the parafoil, however its
deployment from a probe can be tricky. Assuming a greater un-folding complexity, it is natural to
ask: which is the advantage in terms of trajectory? If we plan to follow a trajectory similar to that
of the parafoil presented in 9.3 the hang glider will have an energy management and will circulate
the landing point. That can help us to analyze more accurately our landing spot and, if it is the
case, change it a little. Or we can aim to further targets with the efficiency benefits: we can have
more than 60 km of possible exploration radius even accommodating wind uncertainties. The hang
glider is a potential good solution for planetary exploration due to its maneuverability and agility.
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Figure 149: Titan steady state descent for parafoil and hang-glider.
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Figure 150: Titan descent for parafoil and hang-glider with maneuvering (2).
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Figure 151: Titan descent for parafoil and hang-glider with maneuvering (1).
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Figure 152:Titan descent for parafoil and hang-glider with maneuvering (3).
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Figure 153: Titan hang-glider descent with 60 km range.
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10 CONCLUSIONS AND FUTURE DEVELOPMENTS

In this thesis, I presented a summary of the work performed in five months at the JPL (Jet
Propulsion Laboratory) on the dynamics of autonomous parafoils and other autonomous flight
solutions.

The analysis of high-efficiency gliding systems (i.e., high lift over drag systems) can
identify new and more efficient solutions for terminal descent. The present work follows this trend
by studying the advantages of a parafoil for autonomous precision delivery of a probe in the Titan
environment. The previous successful mission to Titan, the Huygens probe, used a series of drag-
only parachutes to drop the payload (low lift to drag parachute). However, this solution provides
a limited maneuverability to negotiate the not well-known environmental conditions (air density
and winds) and the possibility of targeting different landing sites of scientific interest, shaping the
trajectory accordingly. With a ram-air system (a parafoil) one can fly over different interesting
sites, map them ahead of time, and even allow the re-planning of the trajectory to land near the
most desirable sites.

To analyze all these possibilities, dynamics models of the PADs (Precision Aerial
Delivery System), with different degrees of freedom, had to be developed and tested. Three
degree-of-freedom models focused on the trajectory development. Six degree-of-freedom models
were needed to evaluate the parafoil-payload system overall system behavior. Seven to nine
degree-of-freedom models were needed to determine the payload-canopy interaction. These
models were tested those in the relevant environmental conditions on Titan, from the
aerodynamics to the wind effect to a noisy sensor reading. As a consequence, the performance of
the system trying to follow a trajectory in the uncertain atmosphere was evaluated.

To realize these tasks, we relied on the methodologies derived from dynamics system
modelling for the related equations of motion, from the aerodynamics to investigate the effect of
the forces that enable the descent on Titan, from the GN&C (Guidance, Navigation and Control)
to determine the requirements posed by autonomy. Consequently, the aim of this work was to
provide a system modeling and simulation framework to ultimately allow the development of a
complete GN&C system that will lead to a feasible system design, and which advantages these
high lift solutions can bring to future missions to Titan.

Specifically, the work was carried out along the following topics:

e Modeling and simulation of the dynamics and control of the parafoil and probe system

during terminal descent: We have developed several parafoil dynamics models. The 6

DOF (degrees-of-freedom) model is a comprehensive model of all the possible parafoil-

payload link fashions. The model encloses all the principal characteristic of the system

and it is usually used to build and test the GN&C system. The 7 DOF model, which allows
amechanical constraint between parafoil and payload, facilitates the payload stabilization.

In this project the control unit was arranged to lay on the load. Also, strong oscillations

can make the TRN (Terrain Relative Navigation) system imprecise, thereby requiring a

careful stability analysis. The 8 DOF model gives the payload the freedom to oscillate

both in pitch and yaw, and it is the most used model for Earth delivery systems. The only
drawback was the uncontrolled pitch oscillation. The 9 DOF model enabled all the
rotations of the parafoil relative to the payload. Nevertheless, this system can be a good
solution for a spinning load: the mechanical constraint separates the parafoil and payloads
dynamics. For this very initial phase of the project with still little information on the
possible aspect of the parafoil, considering a 6 DOF model was determined to be the best
solution to analyze the problem. For all models we tested S-turn and spiral maneuvers and
validated our results with previously published results. Unfortunately, it is difficult to find
the exact initial conditions on published results, so in some cases we limited ourselves to
match the overall trend.

e Modeling and simulation of the dynamics of hang-glider: The hang glider can be an
effective solution to deploy a payload with a range around 80km from the entry point and
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with wide maneuverability. The folding and deployment of a hang-glider and the rotating
load can be an issue. However, we explored its capabilities and compared it to the parafoil.
Modeling and simulation of the dynamics of wing-suit: We felt that a wingsuit was a
trade-off solution between the high hang glider efficiency and an easy deployment. The
obstacle lays in the intrinsic instability of the system and its difficult control and in the
payload-wing aerodynamics interaction. The wingsuit is usually stable for high angle of
attack at high speeds and this stability windows is small and identifiable only using CFD
(Computational Fluid Dynamics) analysis. Moreover, the payload with a possible
biconical shape and a huge mass makes the modelling difficult. However, the wingsuit is
more appropriate for small payloads (like CubeSat) or with systems that should “land
vertically” on a wall or similar.

Aerodynamics modeling: Another complication in this preliminary project phase, with
few information from past mission is how should we model the aerodynamics of our
systems? If we cannot use a CFD code in which upload the information of Titan
atmosphere obtained from Cassini-Huygens mission, can we find an initial aerodynamics
estimation tool to acquire data for the simulations? To answer these questions, we
compared the results from the lifting-line theory and the panel method on Earth
environment and then attempted to extrapolate the aerodynamics on Titan based on the
Reynolds number. It is still a rough estimation, but it can help us to evaluate the initial
aerodynamics performance on Titan.

Guidance, Navigation, and Control (GN&C): We began to develop a guidance, navigation
and control tool in order to enable trajectory generation with a quick optimization tool. In
this thesis we presented a preliminary trajectory design, an estimation method for wind
and density, and a proportional control scheme. The work needs still maturation but can
be a good starting point. Furthermore, from this preliminary GN&C we are able to
evaluate the capabilities of the parafoil on Titan environment in various stressing
conditions.

As a next step, future work should focus on:

An accurate analysis of the aerodynamics on Titan atmosphere, better if using CFD codes.
The Reynolds number on Titan is generally higher than on Earth (from Huygens data),
that means less drag but probable anticipated stall and flux break on the airfoil that leads
to less lift.

Building a guidance scheme that can adjust itself during the descent to take into account
a consistent and unsettling variation in the wind environment or in other parameters that
will need a re-planning of the trajectory.

Optimizing the trajectory to insert the motion planning in the integration loop of the
GN&C: in the computer program developed for this thesis the path is planned before the
navigation and control loop. If we can optimize the trajectory control to land exactly on
target by changing the inputs at each step, we can solve the more complex problem of the
trajectory re-planning.

Defining a more elegant and efficient control, possibly in frequency domain, to shape the
six DOF trajectory. The control should take into account the different flight regimes, the
actuator dynamics to shape the on-off actuation timing, the flare maneuvers and the
asymmetric deflections.

Develop a full Montecarlo analysis that will consider the entire entry trajectory from the
atmospheric entry interface at 170 km to the touchdown performed with a parafoil.
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