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ABSTRACT 
 
 
In this thesis, I present a summary of the work performed in five months at the JPL 

(Jet Propulsion Laboratory) on the dynamics of autonomous parafoils and other autonomous 
flight solutions.  

The growing interest in our solar system icy moons is pushing towards innovative 
solutions for planetary exploration that can enable missions towards difficult targets on this 
alien satellites.  From this point of view, the analysis of high-efficiency gliding systems (i.e., 
high lift over drag systems) can identify new and more efficient solutions for terminal descent. 
The present work follows this trend by studying the advantages of a parafoil for autonomous 
precision delivery of a probe in the Titan environment.  

The previous successful mission to Titan, the Huygens probe, used a series of drag-
only parachutes to drop the payload (low lift to drag parachute). However, this solution 
provides a limited maneuverability to negotiate the not well-known environmental conditions 
(air density and winds) and the possibility of targeting different landing sites of scientific 
interest, shaping the trajectory accordingly. With a ram-air system (a parafoil) one can fly over 
different interesting sites, map them ahead of time, and even allow the re-planning of the 
trajectory to land near the most desirable sites.  

To analyze all these possibilities, dynamics models of the PADs (Precision Aerial 
Delivery System), with different degrees of freedom, had to be developed and tested. Three 
degree-of-freedom models focused on the trajectory development. Six degree-of-freedom 
models were needed to evaluate the parafoil-payload system overall behavior. Seven to nine 
degree-of-freedom models were needed to determine the payload-canopy interaction. These 
models were tested in the relevant environmental conditions on Titan, from the aerodynamics 
to the wind effect to a noisy sensor reading. As a consequence, the performance of the system 
trying to follow a trajectory in the uncertain atmosphere was evaluated.  

To realize these tasks, we relied on the methodologies derived from dynamics system 
modelling for the related equations of motion, from the aerodynamics to investigate the effect 
of the forces that enable the descent on Titan, from the GN&C (Guidance, Navigation and 
Control) to determine the requirements posed by autonomy. Consequently, the aim of this work 
was to provide a system modeling and simulation framework to ultimately allow the 
development of a complete GN&C system that will lead to a feasible system design, and which 
advantages these high lift solutions can bring to future missions to Titan. 
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1   INTRODUCTION 
In the last decade the interest in oceans world as Titan, Enceladus and Europa has grown 

due to the possibilities of outstanding scientific discoveries in different disciplines: from geology 
to meteorology and, maybe, even biology. This enthusiasm brought up different projects and 
proposals on disparate CONOPs (Concept of Operations). Riding this wave, the five months that 
I spent at JPL where focused on the development, verification and modelling of the dynamics of 
Titan high-lift delivery systems. Following this trend, we developed models of parafoil, hang-
glider and a wingsuit to understand their capabilities in other atmospheres different from the 
known Earth one.  

The beginning point of every project is the compliance with some high-level requirements 
that will shape the project path to follow. In our case we can design our framework based on the 
Titan parafoil proposal (on-going work). 

• Starting conditions: 
❖ Starting altitude of 40 km over land. The target altitude and longitude are still to 

be decided. The polar regions can give access to some interesting hydrocarbon 
lakes. Moreover, the equatorial lands are characterized by hydrocarbon sand-like 
dunes. Both sites can be of interest, however the systems presented in this thesis 
exploit a wind model built for the polar regions exploration [1]. 

❖ Starting speed on 22 m/s (speed of the probe before parafoil deployment.) 
• Payload: 

❖ 200 kg, with a front surface drag of 0.1 𝑚2 . 
• Preferred environment: 

❖ Titan, Saturn’s moon. 

 
 

Figure 1: Titan's northern polar regions as reconstructed from Cassini radar. [2] 
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1.1   TITAN 
The alien environment of our interest is Titan, the largest Saturn’s moon. It has the silver 

medal as largest satellite in our solar system: Ganymede (Jupiter) keeps the record, even if it is 
just 2% larger than Titan. 

Titan is interesting for scientists because it is the only known moon in our solar system 
with an earth-like cycle of liquids (methane, ethane and other hydrocarbons), but with surface 
temperatures around -179 °C. Moreover, it is thought that on Titan a subsurface ocean of water 
could be present. We are almost certain that rivers and lakes of methane and ethane exist on the 
moon surface. 

Another peculiarity of Titan is the thick atmosphere (five times greater than Earth): the 
descent of Huygens from 40 km to the surface took up to 2.5 hours, there is plenty of time for 
control as well as for disturbance to act.  

The atmosphere is mostly nitrogen (95%) with some methane and other carbon-rich 
compounds (5%). 

Table 1: Titan Characteristics. 

Distance from Saturn 1.226 ∗ 106 𝑘𝑚 
Density from 40 km to surface 0.7-5.43 kg/m3 

Mean Density 1.881 g/cm3 
Mean gravity acceleration 1.352 m/s2 

Equatorial Radius 2575 km 
Mass 1.346 x 103 

Surface Pressure 147 kPa 
Mean Surface Temperature -179 °C 
Atmospheric Constituents N2 , CH4 

Sound Speed at 0 km 195 m/s 
 

 
Figure 2: Titan image from Cassini-Huygens mission. The blurred effect is due to the thick 

moon atmosphere [2] 

On Titan we would face various challenges during descent: the atmosphere, the gravity 
field, the winds will all affect the high efficiency delivery system.  

• The aerodynamic performance will be different between Earth and Titan. 
• Large dispersions in the entry point and parafoil deployment point may occur for the high 

intensity winds at high altitudes. 
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• The winds can vary unpredictably, we still lack a complete knowledge of the moon 
atmosphere. 

• Terrain relative navigation, a camera-based navigation, needs an unfluctuating platform. 
The camera will be attached to the payload that should be as stable as possible. 

1.2   PRECISION AERIAL DELIVERY SYSTEM 
On Earth the problem to deliver a payload safely to a well-known target autonomously 

has been addressed in different ways, one of which is of our interest: autonomous parafoil for 
precision delivery system. The PADs (Precision Aerial Delivery System) is guided to an ideal 
trajectory to land on the spot or, in the worst-case scenario, near it: the guidance will accommodate 
wind estimator, density estimator, GPS and all the possible tools that can enable a successful 
mission.  

The atmosphere of our planet is well known and the slight uncertainties that hit the mission 
(like wind gust) can be overcome with maneuvers of no more than 20s-30s. If we fly in a foreign 
environment, with little knowledge on winds and density, without GPS or other earthling 
autonomous guidance systems, how can we plan the right trajectory to land where we need? 

A feasible strategy can be to set more than one target, enter the atmosphere, identify the 
interesting zones and, then, among them set a landing site. In this scenario the guidance, navigation 
and control (GNC) system will plan a first reference trajectory and be ready to re-plan the path to 
accommodate any kind of uncertainties. Hence, the motion planning will be performed online, as 
we descend in the atmosphere. 

In this thesis the focus will be on parafoils, to fulfil some studies on a possible mission on 
Titan with an autonomous parafoil. However, models of 6 DOF of hang-glider and wingsuit will 
be presented as well to enable a comparison study: we would like to have a wide vision on the 
possibilities the different high lift system can give us. 

New possible scientific targets like Titans can be the right candidates to understand the 
potentiality of those systems.  

This project workflow can be summarized as: 
• Understand what has been published in literature on the PADs (Precision Aerial Delivery 

System) dynamics modelling. 
❖ Geometrical parameters estimation. 
❖ Aerodynamic coefficients estimation. 
❖ Mathematical dynamics modelling. 

• Built the literature models, improve them (some assumption that are usually made on the 
well-known Earth atmosphere should be relaxed on Titan) and verify the results with the 
established models. In this thesis only the most significant plots will be reported to not 
make the reading too cumbersome. 

❖ Wind environment simulations. 
❖ Gust model simulations. 
❖ Steady state simulations to study the equilibrium parameters. 
❖ Symmetrical control simulations. 
❖ Asymmetrical control simulations. 
❖ Models Validation. 

• Test the system maneuverability in following a reference trajectory building a simplified 
GNC system. 

❖ Motion planning with a 3 DOF model. 
❖ Wind and density estimation. 
❖ Proportional control to follow the trajectory. 

• Compare the different high lift systems for planetary applications. 
❖ Built a 6 DOF model for the hang-gliders. 
❖ Compare the models in the nominal Titan atmosphere conditions. 
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❖ Built a wingsuit model inspired by the northern flying squirrel and test its 
capabilities, like the vertical landing. 

 
 

 

 
Figure 3: Parafoil main components. [5] 

 
Figure 4: Schematic representation of a hang glider. [6] 

 
Figure 5: Northern flying squirrel force model. [7] 
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Table 2: Project Outline 

TOPIC WHERE? REMARKS 
Environment Section 2.1   • Environmental models 

Aerodynamics Sections 2.2  0 • Lifting line theory 
• Panel method 
• Titan aerodynamics estimation 

Parafoil Dynamics Models Chapters 3  4  5  
6   

• 6 Degree of freedom with 
simulations and validation. 

• 7 Degree of freedom with 
simulations and validation. 

• 8 Degree of freedom with 
simulations and validation. 

• 9 Degree of freedom with 
simulations and validation. 

Hang Glider Dynamics Models Chapter 7   • 6 Degree of freedom with 
simulations 

Wingsuit Dynamics Models Chapter 8   • 6 Degree of freedom with 
simulations 

Guidance, Navigation and 
Control 

(Parafoil) 

Chapter 9   • Wind and density estimation from 
inaccurate sensor readings. 

• Motion planning with a 3 DOF of 
freedom model. 

• Control in time domain 
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2   ENVIRONMENT AND HIGH LIFT 
SYSTEMS AERODYNAMICS 

To understand the study performed, we need to introduce some background information 
on the environment and aerodynamics challenges that we will probably face. This will be an 
introductive chapter where we will briefly contextualize the research framework.  

2.1   ENVIRONMENT 
To simulate the Titan environment some models has been developed throughout the years, 

however after Cassini-Huygens mission we had the luck to gain a better understanding of the 
conditions we will probably face. 

“Lorenz et al” formulate an exponential wind model in [1] that can describe the 
atmosphere of the poles in late summer. The climate can change abruptly with latitude and season: 
this model could lose in validity at different seasons or latitudes. However, we will use that wind 
formulation in all the simulations reported in this thesis as a reference wind disturbance model to 
develop and test our models. The wind is divided by zonal wind and meridian wind: the first is a 
high intensity wind that can heavily affect the trajectory, the latter is a disturbance wind around 1-
2 m/s.  

• Zonal wind: 
❖ The zonal wind model (west-east direction) is realized for a latitude of 80°. 

𝑊 =
𝑊300

1 + 𝑒
𝑧0−𝑧

𝐿

    m/s  
(2.1) 

❖ 𝑊300 : speed of wind at 300 km. 
❖ 𝑧0: reference altitude. 
❖ z: altitude at which we are evaluating the wind. 
❖ L: length scale. 

Table 3: Parameters for zonal wind estimation [1] 

Wind Profile 𝑈300 [𝑚/𝑠] 𝑧0 [𝑘𝑚] 𝐿 [𝑘𝑚] 
Nominal 22 35 8 

Maximum 50 38 11 
Minimum -3 0 1 

 
From [1] we can derive the wind environment as well as density and gravity from the 

surface up to 170 km. The density and gravity of Lorenz et all is derived from [3], usually referred 
as the “Yelle model”. 

𝜌 = 5.43 ∗ 𝑒
−0.512∗ℎ

1000
      𝑘𝑔/𝑚3 (2.2) 
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Figure 6:Lorenz et all atmospheric model specification. [2] 

 

Figure 7: Titan atmosphere [4] 
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Figure 8: Titan zonal wind model from minimum to maximum wind expected.  
The red line represents the nominal wind profile. 

2.2   HIGH EFFICIENCY SYSTEMS AERODYNAMICS 
Titan has a different density, different gravity and different “air” composition: the 

aerodynamic performances will be different than on Earth. We should find a way to evaluate them, 
so the simulations can gain more reliability. It can help us to understand towards which direction 
we should enhance our system (changing the wing shape, surface, etc.) The overall efficiency of 
the system shouldn’t be affected on Titan, but we can experience an anticipated stall or a decreased 
latero-directional stability. 

To find the aerodynamics of the parafoil on Titan environment it is advisable to compute 
the required database from a CFD analysis. However, in this preliminary phase of the project, we 
should find an easiest and more straightforward way to obtain the aerodynamic coefficients. We 
can compute the coefficients on Earth environment and then scale them for Titan atmosphere. 

From [8] we can derive the values of force coefficients of the parafoil from the lifting line 
theory: unfortunately, that method overestimated the lift and underestimated the drag (the 
estimation is based only on the wing profile). The mathematical expressions from [8] become very 
useful if we aim to estimate the control derivatives for the ram-air {𝐶𝐿𝑑𝑠

, 𝐶𝐷𝑑𝑠
, 𝐶𝑚𝑑𝑠

, 𝐶𝑛𝑑𝑎
, 𝐶𝑙𝑑𝑎

}. 
To estimate the aerodynamic coefficients of a certain wing-shape we can use a panel 

method: we will obtain a consistent set dependent on the angle of attack and on the airspeed. The 
tool “Tornado” [9] enables to analyze different wings with different profiles: for the parafoil an 
usual profile is the CLARK-Y.  

However, the drag data obtained from the method must be uploaded with some value 
typical of the parafoil system. The parafoil profile is cut to form an inlet that permits to inflate the 
canopy: inside the ram-air is trapped an air mass called added mass. The associated drag is called 
inlet drag. 
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Figure 9: Clark-Y from Airfoil Tool. 

 

Figure 10: Parafoil profile with inlet cut [10] 

 

Table 4: Additional Drag terms for a small parafoil 

𝐶𝐷𝑖𝑛𝑙𝑒𝑡
= 0.5 ∗ ℎ/𝑐 Inlet drag (c=profile chord, h=inlet height) 

𝐶𝐷𝑙𝑖𝑛𝑒𝑠
= 0.019 Drag relative to the rise lines for a small 

parafoil. 
𝐶𝐷𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠

= 0.004 Drag relative to the parafoil surface 
roughness 

After the evaluation on Earth environment we can rescale the values for Titan: the scaling 
is quite a rough approximation but can provide a reasonable behavior of the system in the alien 
atmosphere. We assume to flight in a subsonic flux so that the aerodynamic coefficients can be 
assumed to be independent from the Mach number. The coefficients are then rescaled based on 
the Reynold number. For Titan we have the Reynolds associated to the Huygens parachute: from 
that values, keeping into account the different reference length, we can roughly find the Reynold 
for the Titan Parafoil. In Earth environment we can estimate the Reynolds or use tabulated value 
of flight test of similar parafoil from high altitude. 

 

𝑅𝑒 =
𝑢 ∗ 𝐿

𝜈
 

 
(2.3) 

𝐶𝑓𝑇𝐼𝑇𝐴𝑁
= 𝐶𝑓𝐸𝐴𝑅𝑇𝐻

∗
𝑅𝑒𝑇𝐼𝑇𝐴𝑁

𝑅𝑒𝐸𝐴𝑅𝑇𝐻
 

 
(2.4) 
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Figure 11: Comparison between the results of the different methods to obtain 
an aerodynamic dataset. 

 

 

 

Figure 12: Graphical result from Tornado applied to a possible parafoil wing shape. 
The lengths are expressed in meters. 

If we compare the data set given in [8] and the one derived from the panel method (even 
without a dense discretization and the lack of knowledge of the used aerodynamic profile), we can 
find a good match with the data. 
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Figure 13: Comparison between the data set from [8] and the panel method. 

 

 

Figure 14: Pressure coefficient distribution on the wing. 

 

2.3   APPARENT MASSES AND INERTIAS 
The model considers the apparent mass and inertia tensors. When a body is moving in a 

fluid, it sets the fluid into motion. Thus, the motion generates a pressure field around the body that 
we call apparent mass pressure. For every moving body in fluid, we can define a mass ratio 
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between the mass of the system and the air mass shifted by the vehicle. For an airplane the apparent 
mass is negligible, for a parafoil the apparent mass heavily characterizes the dynamic of the ram-
air. To evaluate the entity of the apparent mass, we usually use a formulation similar to the one in 
equation (2.5). 

𝑀𝑟 =
𝑚

𝜌 ∗ 𝑆
2
3

     (2.5) 

The ratio is usually in the order of 0.8 on Earth environment and around 7 for a PADs 
flying in Titan atmosphere (data from Airborne). If the parafoil is thought as inflated, the apparent 
mass tensor 𝑴𝒇 and the apparent inertia tensor 𝑰𝒇  are defined as [11]: 

 

𝑴𝒇 = [
𝐴 0 0
0 𝐵 0
0 0 𝐶

] 
 
(2.6) 

𝑰𝒇 = [

𝐼𝑎 0 0
0 𝐼𝑏 0
0 0 𝐼𝑐

] 
 
 
(2.7) 

Where: 

𝐴 = 0.666 ∗ 𝜌 ∗ (1 +
8

3
∗ 𝑎∗2) ∗ 𝑡2 ∗ 𝑏 (2.8) 

𝐵 = 0.267 ∗ 𝜌 ∗ (1 + 2 ∗
𝑎∗2

𝑡∗2
∗ 𝐴𝑅 ∗ (1 − 𝑡∗2)) ∗ 𝑡2 ∗ 𝑐 (2.9) 

𝐶 = 0.785 ∗ 𝜌 ∗ √1 + 2 ∗ 𝑎∗2 ∗ (1 − 𝑡∗2) ∗
𝐴𝑅

1 + 𝐴𝑅
∗ 𝑐2 ∗ 𝑏 (2.10) 

𝐼𝑎 = 0.055 ∗ 𝜌 ∗
𝐴𝑅

1 + 𝐴𝑅
∗ 𝑐2 ∗ 𝑏3 (2.11) 

𝐼𝑏 = 0.0308 ∗ 𝜌 ∗
𝐴𝑅

1 + 𝐴𝑅
∗ [1 +

𝜋

6
∗ (1 + 𝐴𝑅) ∗ 𝐴𝑅 ∗ 𝑎∗2 ∗ 𝑡∗2] ∗ 𝑐4 ∗ 𝑏 (2.12) 

𝐼𝑐 = 0.0555 ∗ 𝜌 ∗ (1 + 8 ∗ 𝑎∗2) ∗ 𝑡2 ∗ 𝑏3 (2.13) 

𝐴𝑅 =
𝑏

𝑐
      𝑡∗ =

𝑡

𝑐
     𝑎∗ =

𝑎

𝑏
 (2.14) 

 
 



13 
 

 

Figure 15: Apparent masses representation for an inflated canopy [11]. 

 

 

Figure 16: Apparent inertias representation for an inflated canopy [11]. 

 

For the hang glider and the wing suit model the apparent masses and inertias are evaluated 
for a flat wing [8]. In general, those terms in the apparent matrices can be written as: 

 
𝐴 = 𝑘𝑎 ∗ 𝜌 ∗

𝜋

4
∗ 𝑡2 ∗ 𝑏;   B = kb ∗ 𝜌 ∗

𝜋

4
∗ 𝑡2 ∗ 𝑐;   𝐶 = 𝑘𝑐 ∗ 𝜌 ∗

𝜋

4
∗ 𝑐2 ∗ 𝑏 

(2.15) 
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𝐼𝑎 = 𝑘𝑎
′ ∗ 𝜌 ∗

𝜋

48
∗ 𝑐2 ∗ 𝑏3; 𝐼𝑏 = 𝑘𝑏

′ ∗ 𝜌 ∗
4

48∗𝜋
∗ 𝑐4 ∗ 𝑏; 𝐼𝑐 = 𝑘𝑐

′ ∗ 𝜌 ∗
𝜋

48
∗ 𝑡2 ∗ 𝑏3 (2.16) 

 
With the parameters 𝑘𝑎 , 𝑘𝑏 , 𝑘𝑐 , 𝑘𝑎

′ , 𝑘𝑏
′ , 𝑘𝑐′ that fluctuate for the different wing configurations. For 

all those high 𝐿
𝐷

 unpropelled systems the apparent masses could not be neglected. 
 
 

Table 5: Flat wing apparent masses and inertias coefficients [8] 

𝑘𝑎 = 0.899 𝑘𝑏 = 0.34 𝑘𝑐 = 0.766 

𝑘′𝑎 = 0.63 𝑘′𝑏 = 0.874 𝑘′𝑐 = 1 
 

 

 

Figure 17: Apparent masses entity during Titan descent for a small parafoil. 

 

2.4   KINEMATICS 
Before introducing the equations of motion, we will present a quick review of the 

reference frames used for all the thesis. The frames are or right-handed cartesian coordinate 
systems or polar systems in terms of latitude and longitude. 

Principal reference systems: 
• The body frame {b} located in the system (parafoil plus payload scheme) center of mass. 
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➢ The X-axis lays on the plane of symmetry of the PADs, positive along the parafoil 
wing chord pointing to the leading edge. 

➢ The Z-axis is positive pointing down and perpendicular to the X-axis. 
➢ The Y-axis completes the right-handed cartesian reference system. 

• The canopy fixed frame {p} with origin in the apparent mass center (the three axes are 
defined as in {b}). 

• The parafoil body frame {𝑏𝑝} with origin in the parafoil center of mass and the right-
handed triad defined as {p}. 

• The payload fixed frame {s} with origin in the payload mass center (the three axes are 
defined as in {b}). 

• The NED (North-East-Down) refence frame{I} with origin in the perpendicular projection 
of the vehicle on the planet surface at the beginning of the simulation. 

➢ The X-axis lays in a plane parallel to the one tangent the planet surface at zero 
altitude and aims at the true North. 

➢ The Z-axis points to down with the same direction of the system (parafoil and 
payload) gravity acceleration vector. 

➢ The Y-axis completes the right-handed cartesian reference system pointing 
eastward. 

• The navigation frame {n} parallel to {I} with origin in the PADs center of gravity or in 
the conjunction point in the 9 DOF model. 

• The wind frame {w} with origin in the center of mass of the PADs (in the 6 DOF model) 
and in the center of mass of the canopy in the higher fidelity models. 

➢ The X-axis is aligned to the direction of the airspeed and positive pointing towards 
parafoil’s leading edge. 

➢ The Z-axis is perpendicular to the X-axis, it lays on the plane on symmetry of the 
PADs, pointing down. 

➢ The Y-axis completes he right-handed cartesian reference system. 
 
To switch from one system to the other, we use rotation matrices: 
  

• The transformation matrix from {b} to {p} is a one-axis rotation due to the rigging angle 
µ: 

𝑹𝒑𝒃 = [
cos (𝜇) 0 −sin (𝜇)

0 1 0
sin (𝜇) 0 cos (𝜇)

] 

 
(2.17) 

• The rotation matrix from {n} to {b} is defined by the trio of Euler angles: roll angle φ, 
pitch angle θ and yaw angle ψ. In this case the rotation matrix could be expressed as: 

𝑹𝒃𝒏 =       

[

cos(𝜓) ∗ cos (𝜃) sin(𝜓) ∗ cos (𝜃) −sin (𝜃)

cos(𝜓) ∗ sin(𝜃) ∗ sin(𝜙) − sin(𝜓) ∗ cos (𝜙) sin(𝜓) ∗ sin(𝜃) ∗ sin(𝜙) + cos(𝜓) ∗ cos (𝜙) cos(𝜃) ∗ sin (𝜙)

cos(𝜓) ∗ sin(𝜃) ∗ cos(𝜙) + sin(𝜓) ∗ sin (𝜙) sin(𝜓) ∗ sin(𝜃) ∗ cos(𝜃) − cos(𝜓) ∗ sin(𝜃) cos(𝜃) ∗ cos (𝜙)

] 

 

 
 
 
(2.18) 

• The rotation matrix from {n} to {w} is given in terms of bank angle 𝜙𝑎, flight path angle 
𝛾𝑎 and heading angle 𝜒𝑎 in a fashion similar to 𝑅𝑛

𝑏 . However, this transformation is used 
only during guidance and control. 
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Figure 18: Views of parafoil. [8] 
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3   PADS LOW FIDELITY MODEL: 6 DOF 
The 6 degrees of freedom model is usually used to develop and test Guidance, Navigation 

and Control algorithms: the parafoil-payload system is a rigid 3D body with linear velocities, 
attitude and angular rates resulting from the motion of the two main components. In our case this 
approximation of the true dynamics can be useful to study the system characteristics with few 
inputs on the parafoil size, shape and dimension. 

Different models have different kinds of simplified assumptions made on Earth 
environment: in our case the more inclusive the model the better. We are not sure on what we will 
face on Titan. However, all those established and published examples can help us verify and 
validate our design on Earth and on the moon of Saturn environment. 

Table 6: Small ram-air wing design parameters [8]. 
𝐴𝑅 = 2.5 Aspect Ratio 

𝑏 = √𝑆 ∗ 𝐴𝑅 Parafoil Wingspan 

𝑐 = √𝑆/𝐴𝑅 Parafoil Chord 
ℎ = 0.14 ∗ 𝑐 Parafoil height 

𝑅/𝑏 = 0.6 ÷ 0.8 Line-length-to-span ratio 
𝜖 = 𝑏/2/𝑅 Anhedral angle 

 

3.1   EQUATIONS OF MOTION 
The 6 DOF model developed for the JPL relies on those assumptions: 

• The parafoil is considered to be a fixed shape once it has been completely inflated. 
• The angular rates and the relative Euler angles are written in body frame {b} in respect to 

the external {I} reference frame. 
• The linear velocities are written in the {I} reference frame. 
• The apparent masses and inertia acts in the parafoil system frame {p}. They generate 

forces and moments concentrated in the apparent mass center M: the distance, 𝒓𝑩𝑴,  
between the center of the body fixed frame {b} and M is a crucial parameter for the 
following equations. 

 

 

Figure 19: 6 DOF parafoil model, side view. 
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The equations of motion can be written as: 

[
(𝑚 + 𝑚𝑒) ∗ 𝑰𝟑𝒙𝟑 + 𝑴𝒇′ −𝑴𝒇

′ ∗ 𝑺(𝒓𝑩𝑴)

𝑺(𝒓𝑩𝑴) ∗ 𝑴𝒇′ 𝑰 + 𝑰𝒇
′ − 𝑺(𝒓𝑩𝑴) ∗ 𝑴𝒇

′ ∗ 𝑺(𝒓𝑩𝑴)
] ∗

[
 
 
 
 
 
�̇�
�̇�
�̇�
�̇�
�̇�
�̇� ]
 
 
 
 
 

= [
𝑭
𝑴

] 

 

 
 
 
(3.1) 

𝑭 = 𝑭𝒂
𝒑

+ 𝑭𝒂
𝒔 + 𝑭𝒈 + 𝑭𝒃

𝒑
− (𝑚 + 𝑚𝑒) ∗ 𝑺(𝝎) ∗ [

𝑢
𝑣
𝑤

] − 𝑺(𝝎) ∗ 𝑴𝒇
′

∗ ([
𝑢
𝑣
𝑤

] − 𝑺(𝒓𝑩𝑴) ∗ [
𝑝
𝑞
𝑟
]) + 𝑺(𝝎) ∗ 𝑴𝒇

′ ∗ 𝑹𝒃𝒏 ∗ 𝑾 

 

 
 
 
(3.2) 

𝑴 = 𝑴𝒂 + 𝑴𝒃
𝒑

+ 𝑺(𝒓𝑩𝑴) ∗ 𝑭𝒂
𝒑

+ 𝑺(𝒓𝑩𝑺) ∗ 𝑭𝒂
𝒔 − 𝑺(𝝎) ∗ 𝑰 ∗ [

𝑝
𝑞
𝑟
] − 𝑺(𝝎) ∗ 𝑰𝒇

′ ∗ [
𝑝
𝑞
𝑟
]

− 𝑺(𝒓𝑩𝑴) ∗ 𝑺(𝝎) ∗ 𝑴𝒇
′ ∗ ([

𝑢
𝑣
𝑤

] − 𝑺(𝒓𝑩𝑴) ∗ [
𝑝
𝑞
𝑟
] − 𝑹𝒃𝒏 ∗ 𝑾) 

 

 
 
 
(3.3) 

[

�̇�

�̇�
�̇�

] =

[
 
 
 
 
 1 sin(𝜙) ∗

sin(𝜃)

cos(𝜃)
cos(𝜙) ∗

sin(𝜃)

cos(𝜃)

0 cos (𝜙) − sin(𝜙)

0 sin(𝜙) ∗
1

cos (𝜃)
cos(𝜙) ∗

1

cos (𝜃)]
 
 
 
 
 

∗ [
𝑝
𝑞
𝑟
] 

 

 
 
 
(3.4) 

[
�̇�
�̇�
�̇�
] = 𝑹′𝒃𝒏 ∗ [

𝑢
𝑣
𝑤

] 

 
 
(3.5) 
 
 

Where: 
• “m” is the overall system mass:  

 
𝑚 = 𝑚𝑝𝑎𝑦𝑙𝑜𝑎𝑑 + 𝑚𝑝𝑎𝑟𝑎𝑓𝑜𝑖𝑙 + 𝑚𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 𝑙𝑖𝑛𝑒𝑠 

 

 
(3.6) 

• “𝑚𝑒” is the added mass: the mass trapped inside the inflated parafoil. There are different 
expressions to evaluate it and they heavily depend on the parafoil shape. In our model, the 
added mass, is defined as in [12] using the profile area “0.09 ∗ 𝑐2 “. 
 

𝑚𝑒 = 0.09 ∗ 𝑐2 ∗ 𝑏 ∗ 𝜌 
 

 
(3.7) 

• “𝑴𝒇′” is the parafoil apparent mass tensor rotated by the rigging angle: 
 

𝑴𝒇
′ = 𝑹′𝒑𝒃 ∗ 𝑴𝒇 ∗ 𝑹𝒑𝒃 

 

 
(3.8) 
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• “𝑰𝒇′” is the parafoil apparent inertia tensor rotated by the rigging angle: 
 

𝑰𝒇
′ = 𝑹′𝒑𝒃 ∗ 𝑰𝒇 ∗ 𝑹𝒑𝒃 

 

 
(3.9) 

• “W” is the wind vector expressed in the navigation frame {n}. 
 

𝑽𝒈𝒓𝒐𝒖𝒏𝒅 = 𝑽𝒂𝒊𝒓𝒔𝒑𝒆𝒆𝒅 − 𝑾 
 

 
(3.10) 

• “𝑺(𝒓𝑩𝑴)” is the skew-symmetric matrix that replace the vector product 𝒓𝑩𝑴 × 
 

𝑺(𝒓𝑩𝑴) = [

0 −𝑧𝐵𝑀 𝑦𝐵𝑀

𝑧𝐵𝑀 0 −𝑥𝐵𝑀

−𝑦𝐵𝑀 𝑥𝐵𝑀 0
] 

 

 
 
(3.11) 

 
Where 𝒓𝑩𝑴 is the vector that points from the origin of the body reference frame to the 
apparent mass center of gravity of the parafoil. In our model it is evaluated as: 

 
𝒓𝑩𝑴 = 𝑹′𝒑𝒃 ∗ [ 0 0 𝑧𝐵𝑀] 

 

 
(3.12) 

• “𝑺(𝒓𝑩𝑺)” is the skew-symmetric matrix that replace the vector product 𝒓𝑩𝑺 ×: 
 

𝑺(𝒓𝑩𝑺) = [

0 −𝑧𝐵𝑆 𝑦𝐵𝑆

𝑧𝐵𝑆 0 −𝑥𝐵𝑆

−𝑦𝐵𝑆 𝑥𝐵𝑆 0
] 

 

 
 
(3.13) 

Where 𝒓𝑩𝑺 is the vector that points from the origin of the body reference frame to the 
payload mass center. In our model it is evaluated as: 

 
𝒓𝑩𝑺 = [0 0 𝑧𝐵𝑆] 

 

 
(3.14) 

 
• “𝑆(𝝎)” is the skew-symmetric matrix of the system rates: 

 

𝑺(𝝎) = [

0 −𝑟 𝑞
𝑟 0 −𝑝

−𝑞 𝑝 0
] 

 

 
 
(3.15) 

• “𝑭𝒂 
𝒑

”  is the parafoil aerodynamic force vector expressed as: 
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𝑭𝒂 
𝒑

=
1

2
∗ 𝜌 ∗ 𝑉𝑎𝑝

2 ∗ 𝑆𝑝 ∗ 𝑹𝒑𝒃
′ ∗ 𝑹𝒑𝒘

∗ [

−(𝐶𝐿0 + 𝐶𝐿𝑎𝑙𝑝ℎ𝑎 ∗ 𝛼 + 𝐶𝐿𝑑𝑠 ∗ 𝛿�̅�)

𝐶𝑌𝑏𝑒𝑡𝑎 ∗ 𝛽

−(𝐶𝐷0 + 𝐶𝐷𝑎2 ∗ 𝛼2 + 𝐶𝐷𝑑𝑠 ∗ 𝛿�̅�)

] 

 

 
 
(3.16) 

Where 
➢ “𝑹𝒑𝒃

′ ” is the rotation matrix between parafoil reference frame {p} and body 

reference frame {b}. The forces and the moments on the parafoil are all written 
in {p} and expressed in {b}.  

➢ “𝑹𝒑𝒘” is the rotation matrix between the wind frame {w} and parafoil body frame 

{p}. The matrix is expressed in terms of angle of attach, 𝛼, and sideslip angle,  𝛽. 
 

𝑹𝒑𝒘 = 𝑹𝜶 ∗ 𝑹𝜷 = [
cos(𝛼) 0 − sin(𝛼)

0 1 0
sin(𝛼) 0 cos(𝛼)

] ∗ [
cos(𝛽) sin(𝛽) 0

−sin(𝛽) cos(𝛽) 0
0 0 1

 ] 

 

 
 
(3.17) 

𝛼 = tan−1 (
𝑤𝑝

𝑢𝑝
) 

 

 
 
(3.18) 

𝛽 = tan−1

(

 
𝑣𝑝

√𝑢𝑝
2 + 𝑤𝑝

2

)

  

 

 
 
(3.19) 

𝑽𝒑 = 𝑹′𝒑𝒃 ∗ ([
𝑢
𝑣
𝑤

] + 𝑺(𝝎) ∗ 𝒓𝑩𝑴 − 𝑹𝒃𝒏 ∗ 𝑾) = 𝑹′𝒑𝒃 ∗ (𝑽 + 𝑺(𝝎) ∗ 𝒓𝑩𝑴) 

 

 
 
(3.20) 

𝑉𝑎𝑝 = √𝑢𝑝
2 + 𝑣𝑝

2 + 𝑤𝑝
2 

 

 
 
 
(3.21) 

• “𝑴𝒂 
𝒑

”  is the parafoil aerodynamic moment vector expressed as: 
 

𝑴𝒂 
𝒑

=
1

2
∗ 𝜌 ∗ 𝑉𝑎𝑝

2 ∗ 𝑆𝑝 ∗ 𝑹𝒑𝒃
′

∗

[
 
 
 
 
 
 𝑏(𝐶𝑙𝛽 ∗ 𝛽 +

𝑏

2 ∗ 𝑉𝑎
∗ 𝐶𝑙𝑟 ∗ 𝑟 +

𝑏

2 ∗ 𝑉𝑎
∗ 𝐶𝑙𝑝 ∗ 𝑝 + 𝐶𝑙𝛿𝑎

∗ 𝛿𝑎
̅̅ ̅)

𝑐̅ ∗ (𝐶𝑚0 + 𝐶𝑚𝛼 ∗ 𝛼 +
𝑏

2 ∗ 𝑉𝑎
∗ 𝐶𝑚𝑞 ∗ 𝑞)

𝑏(𝐶𝑛𝛽 ∗ 𝛽 +
𝑏

2 ∗ 𝑉𝑎
∗ 𝐶𝑛𝑝 ∗ 𝑝 +

𝑏

2 ∗ 𝑉𝑎
∗ 𝐶𝑛𝑟 ∗ 𝑟 + 𝐶𝑛𝛿𝑎

∗ 𝛿𝑎
̅̅ ̅

]
 
 
 
 
 
 

 

 

 
 
 
 
 
 
(3.22) 

• “𝑭𝒂 
𝒔 ” is the payload aerodynamic force vector expressed as: 
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𝑭𝒂
𝒔 =

1

2
∗ 𝜌 ∗ 𝑉𝑎𝑠

2 ∗ 𝑆𝑠 ∗ 𝑹𝒔𝒘 ∗ [
−𝐶𝐷𝑠

 0
0

] 

 

 
 
(3.23) 

❖ “𝑹𝒔𝒘” is the rotation matrix between the wind frame {w} and payload body frame 

{s}. The matrix has the same expression as the one for the parafoil, but with the angle 
of attack and the sideslip angle expressed with the parafoil linear velocities. 

 

𝑽𝒔 = ([
𝑢
𝑣
𝑤

] + 𝑺(𝝎) ∗ 𝒓𝑩𝑪 − 𝑹𝒃𝒏 ∗ 𝑾) 

 

 
 
(3.24) 

 

𝑉𝑎𝑠 = √𝑢𝑠
2 + 𝑣𝑠

2 + 𝑤𝑠
2 

 

 
 
 
(3.25) 

The aerodynamic moment of the payload is usually neglected: however, if the payload has 
some lifting characteristics, we should include it. 

•  “𝑭𝒈” is the system weight force expressed in body frame as: 
 

𝑭𝒈 = (𝑚𝑝𝑎𝑟𝑎𝑓𝑜𝑖𝑙 + 𝑚𝑒 + 𝑚𝑝𝑎𝑦𝑙𝑜𝑎𝑑) ∗ 𝑔 ∗ [

− sin(𝜃)

cos(𝜃) ∗ sin(𝜙)

cos(𝜃) ∗ cos(𝜙)
] 

 

 
 
(3.26) 

• “𝑭𝒃
𝒑
” is the buoyancy force, upward force given by the parafoil added mass. It is small, 

but it can contribute to the overall balance of moments due to the large distance between 
the canopy mass center and the overall body center of gravity. 

 

𝑭𝒃
𝒑

= −(𝑚𝑎𝑑𝑑𝑒𝑑) ∗ [

− sin(𝜃)

cos(𝜃) ∗ sin(𝜙)

cos(𝜃) ∗ cos(𝜙)
] 

 

 
 
(3.27) 

𝑴𝒃
𝒑

= 𝑺(𝒓𝑩𝑴) ∗ 𝑭𝒃
𝒑 

 

 
(3.28) 

• The apparent masses and inertias generate a set of forces and moments that can be 
expressed as: 

𝑭𝒂𝒑𝒑 = −𝑹𝒑𝒃
′ ∗ {[𝑴𝒇 ∗ 𝑹𝒑𝒃 ∗ ([

�̇�
�̇�
�̇�

] − 𝑺(𝒓𝑩𝑴) ∗ [
�̇�
�̇�
�̇�
])]

+ [𝑹𝒑𝒃 ∗ 𝑺(𝝎) ∗ 𝑹′
𝒑𝒃 ∗ 𝑴𝒇 ∗ 𝑹𝒑𝒃

∗ ([
𝑢
𝑣
𝑤

] − 𝑺(𝒓𝑩𝑴) ∗ [
𝑝
𝑞
𝑟
] − 𝑹𝒃𝒏 ∗ 𝑾)]} 

 
 
 
 
(3.29) 
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𝑴𝒂𝒑𝒑 = −𝑹𝒑𝒃
′ ∗ (𝑴𝒇 ∗ 𝑹𝒑𝒃 ∗ [

�̇�
�̇�
�̇�

] + 𝑹𝒑𝒃 ∗ 𝑺(𝝎) ∗ 𝑹′
𝒑𝒃 ∗ 𝑴𝒇 ∗ 𝑹𝒑𝒃 ∗ [

𝑝
𝑞
𝑟
])

+ 𝑺(𝒓𝑩𝑴) ∗ 𝑭𝒂𝒑𝒑 

 
 
 
(3.30) 

 

3.1.1   CONTROL  
The control is modelled as deflections of brake lines that modify the shape of the parafoil, 

hence its aerodynamics. This deformation of the arm-air wing is associated to the aerodynamic 
coefficients 𝐶𝐷𝛿𝑠

, 𝐶𝐿𝛿𝑠
, 𝐶𝑛𝛿𝑎

, 𝐶𝑙𝛿𝑎
multiplied by a “normalized” brake deflection: 

• Normalized asymmetric brake deflection for latero-directional control:  
𝛿𝑎
̅̅ ̅ = 𝛿𝑎/𝛿𝑚𝑎𝑥 

• Normalized symmetric brake deflection for longitudinal control: 
𝛿�̅� = 𝛿𝑠/𝛿𝑚𝑎𝑥 

In some models more aerodynamic coefficients are taken into account. It is evaluated the 
effect of the symmetric and asymmetric deflection on the pitching moment coefficients 𝐶𝑚, on the 
lateral force coefficients 𝐶𝑌. The number of those aerodynamic coefficients associated with control 
depends on the aerodynamic data set used during the simulations. We are using system 
identification derived parameters: they have been expressed for the Earth environment. However, 
with some assumptions we can extended them to Titan atmosphere for this first steps in the mission 
design. The aerodynamics is discussed and analyzed in section 2.2   

3.1.2   AERODYNAMICS 
The aerodynamic used in the simulations of all parafoil models, it is based on a set of 

aerodynamic coefficients arranged as in equations (3.16) and (3.22): 

Table 7: Aerodynamic coefficients used in the parafoil simulations [8]. 
𝐶𝐷0 = 0.25 𝐶𝐷𝛼 = 0.12   
𝐶𝑌𝛽 = −0.23    
𝐶𝐿0 = 0.091 𝐶𝐿𝛼 = 0.90   
𝐶𝑚0 = 0.35 𝐶𝑚𝛼 = −0.72 𝐶𝑚𝑞 = −1.49  
𝐶𝑙𝛽 = −0.036 𝐶𝑙𝑝 = −0.84 𝐶𝑙𝑟 = −0.082 𝐶𝑙𝛿𝑎

= −0.0035 
𝐶𝑛𝛽 = −0.0015 𝐶𝑛𝑝 = −0.082 𝐶𝑛𝑟 = −0.27 𝐶𝑛𝛿𝑎

= 0.0215 
𝐶𝐷𝑝𝑎𝑦𝑙𝑜𝑎𝑑 = 0.4    

Those coefficients are given for a wing with an aspect ratio of  𝑏
𝑐
= 2 and a glide ratio 𝐿

𝐷
=

2 of a SNOWFLAKE parafoil. The wing we would like to use on Titan environment has the same 
glide ratio but a bit different aspect ratio (𝑏

𝑐
= 3): the following simulations catch the dynamics 

of the system, probably the true aerodynamic of the PADs will enhance the system performances. 
We kept this aerodynamics definition because it was able to match the results from Airborne, 
JPL’s contractors for the analysis of the parafoil characteristics on Titan environment. 
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3.2   PARAFOIL AND PAYLOAD GEOMETRY, MASS AND 
INERTIA 

In the 6 DOF model all the equations of motion are referred to a body mass center, that 
takes into account parafoil and payload masses and their relative position at the beginning of the 
simulations. The geometrical characteristics of the parafoil-payload are well explained in [12] and 
in [8], where, thanks to system identification, a plausible parafoil geometry can be derived 
knowing the surface and the aspect ratio of the wing. 

3.2.1   PAYLOAD 
The load is modelled as a cube of height 𝑧𝑏 = 0.5,  𝑥𝑏 = 0.5, 𝑦𝑏 = 0.5 and of mass of 

200 kg. The payload centre of mass coincides with the geometric centre of the box. The moment 
of inertia of the payload can be written as:  

 
Table 8: Payload geometrical inputs. 

𝑧𝑠 = 0.5 𝑚 Payload height 
𝑥𝑠 = 0.5 𝑚 Payload length 
𝑦𝑠 = 0.5 𝑚 Payload width 

𝑚𝑠 = 200 𝑘𝑔 Payload mass 
 
 

𝐼𝑥𝑠 =
𝑚𝑙

12
∗ (𝑧𝑠

2 + 𝑦𝑠
2) 

 

 
(3.31) 

 
𝐼𝑦𝑠 =

𝑚𝑙

12
∗ (𝑧𝑠

2 + 𝑦𝑠
2) 

 

 
(3.32) 

 
𝐼𝑧𝑠 =

𝑚𝑙

12
∗ (𝑧𝑠

2 + 𝑦𝑠
2) 

 

 
(3.33) 

 

3.2.2   PARAFOIL 
The parafoil is assumed to be a parallelepiped of dimensions 𝑏, 𝑐 ℎ𝑚𝑒𝑎𝑛. The ℎ𝑚𝑒𝑎𝑛 is an 

“apparent thickness” that keeps into account parafoil mean thickness “t” and the parafoil chamber. 
To evaluate the ℎ𝑚𝑒𝑎𝑛, the canopy volume, 𝑣𝑣𝑜𝑙,  must be evaluated using the profile area (defined 
as 0.09 ∗ 𝑐2 [12]). 

Table 9: Parafoil geometrical inputs. 
𝑏 = 3.07 𝑚 Parafoil wingspan 
𝑐 = 1.02 𝑚 Parafoil aerodynamic chord 
𝑡 = 0.075 Parafoil thickness 

𝑎 = 0.164 𝑚 Parafoil height 
𝑅 = 1.84 𝑚 Parafoil line length (from parafoil to confluence point) 

𝜇 = −12 𝑑𝑒𝑔 Rigging angle 



24 
 

 𝜖 = 47.74 𝑑𝑒𝑔 Anhedral angle 
𝑙ℎ𝑎 = 1 𝑚 Harness length 

𝑚𝑝 = 1.4 𝑚 Parafoil mass 
𝜎 = 0.45 Sigma aerial density 

𝛿𝑚𝑎𝑥 = 0.16 𝑚 Maximum trailing edge deflection 
 

 𝜖 =
𝑏

2 ∗ 𝑅
 

 

 
(3.34) 

 
𝑏𝑖𝑛𝑓𝑙𝑎𝑡𝑒𝑑 = 2 ∗ 𝑅 ∗ sin (𝜖) 

 
(3.35) 

 
𝑣𝑣𝑜𝑙 = 0.09 ∗ 𝑐2 ∗ 𝑏 (3.36) 

 
ℎ𝑚𝑒𝑎𝑛 =

𝑣𝑣𝑜𝑙

𝑐𝑐ℎ𝑜𝑟𝑑 ∗ 𝑏𝑖𝑛𝑓𝑙𝑎𝑡𝑒𝑑
 

 

 
 

(3.37) 

 

𝐼𝑥𝑝 = (
𝑣𝑣𝑜𝑙 ∗ 𝜌 + 𝑚𝑝

12
) ∗ (𝑏𝑖𝑛𝑓𝑙𝑎𝑡𝑒𝑑

2 + ℎ𝑚𝑒𝑎𝑛
2 ) 

 

 
 

(3.38) 

 

𝐼𝑦𝑝 = (
𝑣𝑣𝑜𝑙 ∗ 𝜌 + 𝑚𝑝

12
) ∗ (𝑐2 + ℎ𝑚𝑒𝑎𝑛

2 ) 
 

 
 

(3.39) 

 

𝐼𝑧𝑝 = (
𝑣𝑣𝑜𝑙 ∗ 𝜌 + 𝑚𝑝

12
) ∗ (𝑏𝑖𝑛𝑓𝑙𝑎𝑡𝑒𝑑

2 + 𝑐2) 
 

 
 

(3.40) 

The parafoil is inclined by the rigging angle 𝜇: the inertia moment should be transformed from the 
parafoil reference frame {p} to the body frame {b}. 

 
𝐼𝑥𝑝𝑏

= 𝐼𝑥𝑝 ∗ cos2(𝜇) + 𝐼𝑧𝑝 ∗ sin2(𝜇) 
 

 
(3.41) 

 
𝐼𝑦𝑝𝑏

= 𝐼𝑦𝑝 
 

 
(3.42) 

 
𝐼𝑧𝑝𝑏

= 𝐼𝑥𝑝 ∗ 𝑠𝑖𝑛2(𝜇) + 𝐼𝑧𝑝 ∗ 𝑐𝑜𝑠2(𝜇) 
 

 
(3.43) 

 

𝐼𝑥𝑧𝑝𝑏
=

1

2
∗ (𝐼𝑥𝑝 − 𝐼𝑧𝑝) ∗ sin (2 ∗ 𝜇) 

 

(3.44) 
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3.2.3   PARAFOIL AND PAYLOAD SYSTEM 
After the single man subsystems analysis, we can now define the position of the system 

center of mass, the mass of the system the total inertia of the system and the positions of parafoil 
and payload relative to the body center of mass. The system total mass can be expressed as: 

 
𝑚𝑡 = 𝑚𝑠 + 𝑚𝑝 

 

 
(3.45) 

The distance between the parafoil center of mass, M, and the payload body center, S, can be 
expressed using the distance between parafoil and the confluence point C, 𝑙𝑐𝑔𝑝: 
 

𝑙𝑧 =
𝑧𝑏

2
+ 𝑙ℎ𝑎 + 𝑙𝑐𝑔𝑝 

 

 
(3.46) 

 

𝑙𝑐𝑔𝑝 =
2

3
∗

(𝑙𝑠 + 𝑡𝑚𝑒𝑎𝑛)3 − 𝑙𝑠
3

(𝑙𝑠 + 𝑡𝑚𝑒𝑎𝑛)2 − 𝑙𝑠
2 ∗

sin(𝜖)

𝜖
 

 

 
 
(3.47) 

 
𝑡𝑚𝑒𝑎𝑛 =

𝑣𝑣𝑜𝑙

𝑆𝑝
 

 

 
 
(3.48) 

The vectors from the body center of mass and parafoil center of mass, 𝑟𝐵𝑀, and the vector from 
the body center of mass and the payload center of mass, 𝑟𝐵𝑆 can be defined as: 
 
 

𝒓𝑩𝑺 = [0 0 𝑧𝐵𝑆];  𝑧𝐵𝑆 = 𝑙𝑧 ∗
𝑚𝑝 + 𝑣𝑣𝑜𝑙 ∗ 𝜌

𝑚𝑝 + 𝑚𝑠
 

 

 
 
(3.49) 

 
𝒓𝑩𝑴 = [0 0 𝑧𝐵𝑀];  𝑧𝐵𝑀 = 𝑧𝐵𝑆 − 𝑙𝑧 

 

 
(3.50) 

 
The system inertia tensor can be expressed as: 
 

𝐼𝑥 = 𝐼𝑥𝑝𝑏
+ 𝐼𝑥𝑠 + (𝑚𝑝 + 𝜌 ∗ 𝑣𝑣𝑜𝑙) ∗ 𝑧𝐵𝑀

2 + 𝑚𝑠 ∗ 𝑧𝐵𝑆
2  

 

 
(3.51) 

 
𝐼𝑦 = 𝐼𝑦𝑝𝑏

+ 𝐼𝑥𝑠 + (𝑚𝑝 + 𝜌 ∗ 𝑣𝑣𝑜𝑙) ∗ 𝑧𝐵𝑀
2 + 𝑚𝑠 ∗ 𝑧𝐵𝑆

2  
 

 
(3.52) 

 
𝐼𝑧 = 𝐼𝑧𝑝𝑏

+ 𝐼𝑧𝑠 
 

 
(3.53) 

 
𝐼𝑥𝑧 = 𝐼𝑥𝑧𝑏

 
 

 
(3.54) 

 

𝑰 = [

𝐼𝑥 0 𝐼𝑥𝑧

0 𝐼𝑦 0

𝐼𝑥𝑧 0 𝐼𝑧

] 

 
 
(3.55) 
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3.3   SIMULATION PLOTS RESULTS 
To analyze the PADs dynamics, we performed a series of simulations: we will report only 

the important results. The following simulations are performed on Titan environment. 
• Steady-State Simulation: those first results show the stable equilibrium conditions of the 

descending parafoil without introducing gust disturbance. Than we will analyze what 
happens introducing the gust: the system is intrinsically stable and tends to return to 
unperturbed equilibrium configuration. 

 

Figure 20:Angle of Attack during a steady state simulation without gust. 

 

 

 



27 
 

Figure 21: Angular velocity during a steady state simulation without gust 
 

 
Figure 22: Flightpath angle during a steady state simulation without gust. 

 

 
 
 
 

 
Figure 23: Pitch angle during a steady state simulation without gust. 
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Figure 24: Aerodynamic Efficiency during a steady state simulation without gust. 

 

 
 

 

 
Figure 25: Example of a gust wind model. 
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Figure 26: Angular velocity during a steady state descent affected by a 40s gust wind. 

 

 
 

 

 
Figure 27: Angle of attack during a steady state descent affected by a 40s gust wind. 
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Figure 28: Pitch angle during a steady state descent affected by a 40s gust wind. 

 

• Symmetrical deflection of the trailing edge (TE): the flare maneuver consists in the 
symmetric deflection of the parafoil brake. The control enables to boost the downrange 
increasing the angle of attack. 

 

 
Figure 29: Angle of attack with symmetric trailing edge deflection (𝛿𝑠 = 0.5 ∗ 𝑑𝑒𝑙𝑡𝑎𝑚𝑎𝑥). 
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Figure 30: Flight-path angle with symmetric trailing edge deflection (𝛿𝑠 = 0.5 ∗ 𝑑𝑒𝑙𝑡𝑎𝑚𝑎𝑥). 

 

 
 
 

 

 
Figure 31: Pitch angle with symmetric trailing edge deflection (𝛿𝑠 = 0.5 ∗ 𝑑𝑒𝑙𝑡𝑎𝑚𝑎𝑥). 
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• Asymmetric trailing edge deflection: in those simulations a long asymmetric control is 

given to the parafoil. The result is a stable descending spiral. During a true control the 
command is small in time (few seconds) to adjust the trajectory. However, sometimes one 
or two spiral envelopes are needed during the energy management phase. Therefore, it is 
important to study the characteristics of a long TE 𝛿𝑎 command.  
 

 

 

                                                     Figure 32: Trailing edge symmetric deflection. 
 

 

  Figure 33: Vertical velocity with symmetric trailing edge deflection (𝛿𝑠 = 0.5 ∗ 𝑑𝑒𝑙𝑡𝑎𝑚𝑎𝑥). 
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        Figure 34: Small and long-time-duration asymmetric deflection (𝛿𝑎 = 0.1 ∗ 𝑑𝑒𝑙𝑡𝑎𝑚𝑎𝑥) 
 
 

 

 

 
                                Figure 35: Angle of sideslip during an asymmetric TE deflection. 
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                                       Figure 36: Pitch angle during an asymmetric TE deflection. 
 
 
 
 
 
 

 
                                      Figure 37: Roll angle during an asymmetric TE deflection. 
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                      Figure 38: Horizontal velocity during an asymmetric TE deflection. 

 
 
 
 

 

                         Figure 39: vertical velocity during an asymmetric TE deflection. 
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                                      Figure 40: Lateral velocity during an asymmetric TE deflection. 
 
 
 

 
                    Figure 41: Descending parafoil trajectory during an asymmetric TE deflection. 

• An S-maneuver is a typical control given to the parafoil, hence those more realistic results 
will be presented. In this last case the simulation will start at 1000 m to analyze the 
maneuver in a high-density atmosphere (𝜌𝑇𝑖𝑡𝑎𝑛 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ≅ 5.43 𝑘𝑔/𝑚3) 
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                          Figure 42: S-maneuver asymmetric TE deflection (𝛿𝑎 = ±0.7 ∗ 𝑑𝑒𝑙𝑡𝑎𝑚𝑎𝑥) 

 
 
 

 

                                         Figure 43: Angle of sideslip during the S-maneuver. 
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                                               Figure 44: Angle of attack during the S-maneuver. 

 
 
 

 

                                                Figure 45: Angular velocity during an S-maneuver. 
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                                                 Figure 46: Roll angle during an S-maneuver. 

 
 

 

                                          Figure 47: Pitch angle during an S-maneuver. 
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                                                    Figure 48: Yaw angle during an S-maneuver. 

 
 
 

 

                                           Figure 49: On-plane trajectory during an S-maneuver. 
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                                           Figure 50: Descending trajectory during an S-maneuver. 

 

3.4   PADS STABILITY 
The parafoils is an inherently stable system, both longitudinal and latero-directional 

modes are stable, negative real part of the state matrix eigenvalues. Usually they don’t need any 

stability augmentation system, their dynamics is slow and winds disturbance is kept in account 
during the motion planning. To study the stability of a system we need to linearize the equation of 
motion and express them in steady-state form: 

{�̇�} = [𝑨]{𝒙} + [𝑩]{𝒖}                      {𝒚} = [𝑪]{𝒙} 
 
(3.56) 

Where {𝒙} = {𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟}′ is the state vector, [𝑨]𝟔𝒙𝟔 is the state matrix, {𝒖} =
{𝛿𝑠, 𝛿𝑎}′ is the control input vector, [𝑩]𝟔𝒙𝟐 is the control matrix, {𝒚} is the output vector and [𝑪]𝟑𝒙𝟔 
is the output matrix. The linearization has been performed evaluating the state and control matrices 
during trimmed steady state condition (trim point).  
For the equilibrium 

{�̇�} = 𝒇(𝒙, 𝒖) = 𝒇(𝒙𝟎, 𝒖𝟎) = 𝟎 
 
(3.57) 

Introducing the small perturbation theory and the Jacobian matrix, we can write: 
 
{𝜹�̇�} = 𝒇,𝒙 (𝒙𝟎, 𝒖𝟎) ∗ {𝜹𝒙} + 𝒇,𝒖 (𝒙𝟎, 𝒖𝟎) ∗ {𝜹𝒖} = [𝑨]{𝒙} + [𝑩]{𝒖} 

 
(3.58) 
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𝒇,𝒙 =

[
 
 
 
 
𝜕𝑓1
𝜕𝑥1

⋯
𝜕𝑓1
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑥1

⋯
𝜕𝑓𝑛
𝜕𝑥𝑛]

 
 
 
 

 

 
(3.59) 
 
 

The output matrix is usually built at doc for the performance we want to analyze. For the 
stability analysis only the state equation is needed. The linearization is performed with MATLAB 
symbolic toolbox.  

The analysis is performed at a trim condition at 30 km from ground with a density of 
1.2 kg/m3: to compare the results from the PADs that fly on Earth environment we need a 
comparable density. At ground level, where 𝜌 = 5.43 kg/m3 the phugoid mode disappears. 

 
{𝒙𝟎} = {𝑢0 𝑣0 𝑤0 𝑝0 𝑞0 𝑟0} = {13.5 0 7.5 0 0 0} 

{𝒖𝟎} = {𝛿𝑠, 𝛿𝑎} = {0, 0} (𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒) 
{𝜙0 𝜃0 𝜓0 } = {0 − 3deg 0} 

 

 

(3.60) 

Usually we split the longitudinal plane from the latero-directional plane to study the 
performance. The eigenvalues of [A] define the system dynamics properties: 

Table 10: Parafoil dynamics proprieties on Titan. 

 Motion Mode Eigenvalues Period T [s] Damping Ratio 𝜉  

 Short Period              -2.61±4.7i              1.3 0.49  

 Phugoid -0.0855±0.004i 11 ~1  

 Dutch Roll -0.0715±0.145i 14 0.44  

 Roll Subsidence -4.7 0.3 -  

 Spiral Mode -3.8 0.2 -  

The phugoid mode is highly damped: it depends on the exchange of potential and kinetic 
energy. The high damping can be related to the high altitude (30 km) and the relatively small 
airspeed velocity 𝑉𝑎 = 15 𝑚/𝑠 at that altitude. Lowering the altitude, the velocity keeps 
decreasing until the disappearance of the phugoid mode: we have two real values instead of two 
complex conjugates. This can be related to both the tiny pitch angle and modest velocity [13]. 

 

𝑚 ∗ 𝑔 ∗ ℎ +
1

2
∗ 𝑚 ∗ 𝑣2 = 𝐸𝑡𝑜𝑡 (3.61) 

The linearize model can be used in the control analysis: we can define a transfer function 
and shape the signal to obtain the desired control. The only problem in our case is that the 
trajectory is very long (from 40 km to land) and the PADs will encounter different scenarios with 
a density changing from 0.7 𝑘𝑔/𝑚3 to 5.43 𝑘𝑔/𝑚3. We should create a routine that will 
continuously linearize the model based on the external conditions: however, the MATLAB 
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toolbox can take up to 5/7 minutes to linearize around one point. An idea could be linearizing 
analytically the equations, but that takes time and can be tricky due to all the apparent mass terms 
to keep into account. In this preliminary study a simple proportional control is implemented in 
time domain without linearization. 

 

 
 

          Figure 51: Longitudinal root locus with phugoid mode highlight 
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Figure 52: Lateral-directional root locus 

 

 

3.5   MODEL VALIDATION  
The model had been validated with Airborne data on Titan atmosphere and with the 

university “La Sapienza” (Rome) simulations on Earth environment. The Airborne data match 
quite perfectly with the 6 DOF results for a PADs with an efficiency (𝐿

𝐷
) of 2.1 with a steady state 

flight (Airborne is a JPL’s contractor for Titan mission, specialized in parafoils development).  
We can match the trend of the data from [14], however we lack the knowledge of their 

initial conditions, so we can’t replicate the data exactly. Moreover, their control relies on the 
deflection angle of an ideal flap that simulate the parafoil bending at the trailing edge. 

The simplified 6 DOF developed by [14] is not of our interest: to build it they have 
assumed apparent masses and inertias and aerodynamic force moments negligible. It will be 
reported just to draw analogous plots. 

• Airborne Data 
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      Figure 53: Airborne data comparison on Titan for a steady state descent with an efficiency of 2.1. 

 

 
 
 

 
                          Figure 54: Payload drag surface vs efficiency vs canopy surface. 
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Figure 55: Results from "la Sapienza" (up) and from the JPL model (bottom). 
 

 

Figure 56: Results from "la Sapienza" (up) and from the JPL model (bottom). 
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4   PADS HIGH-FIDELITY MODEL: 7 DOF 
The six degrees of freedom model could be used to simulate the overall dynamics of the 

PADs intended as parafoil and payload together. However, for many applications, like attitude 
control, it is important to understand the relative dynamics between parafoil and payload. 

The number of degrees of freedom of this high-fidelity models varies with the type of 
rising connection between payload and parafoil. The 7 DOF model has the two PADs components 
linked in a fashion that permit only one relative degree of freedom for the payload, a relative yaw. 
This relative yaw creates disturbs on the other two angular relative motions, pitch and roll, that 
can be seen in the plots in the simulation section. 

We have created all the range of possible high-fidelity models to ensure us a good 
understanding of each possible higher fidelity model that Airborne can develop. Studies are still 
performed to adapt the high-fidelity models to a “multibody dynamics” as defined in Kane’s 

“Dynamics: Theory and Application”.  The study performed for the 7, 8, 9 DOF is derived from 
[8]: the equations of motion follow the “rigid-body” formulation. In the “connection point” the 

parafoil and payload exchange forces and moments that are modelled in the equations of motions. 
This formulation permits to detach the payload motion in respect of the parafoil one and analyze 
its typical oscillator behavior. The mathematical definition will be fully reported because there are 
some differences and improvements from [8]. 

 
 

 

Figure 57: 7 DOF parafoil-payload connection. 
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4.1   PAYLOAD CONSTRAINED ROTATIONAL KINEMATICS 
The relative angular motion of the payload in respect of the parafoil 𝜔𝑠/𝑏

𝑠 , expressed in 
the parafoil reference system {s}, can be written as: 

 

𝝎𝒔/𝒃
𝒔 = 𝝎𝒔

𝒔 − 𝑹𝒔𝒃 ∗ 𝝎𝒑 = 𝑹𝝍𝒔
∗ [

0
0
𝜓�̇�

] = [
cos(𝜓𝑠) sin(𝜓𝑠) 0

− sin(𝜓𝑠) cos(𝜓𝑠) 0
0 0 1

] ∗ [
0
0
𝜓�̇�

] 

 

 
 
(4.1) 

 

𝝎𝒔 = [

𝑝𝑠

𝑞𝑠

𝑟𝑠
] ;𝝎𝒑 = [

𝑝𝑝

𝑞𝑝

𝑟𝑝
] 

 

 
 
(4.2) 

 
𝑹𝒔𝒃 = 

[

cos(𝜓𝑠) ∗ cos (𝜃𝑠) sin(𝜓𝑠) ∗ cos (𝜃𝑠) −sin (𝜃𝑠)

cos(𝜓𝑠) ∗ sin(𝜃𝑠) ∗ sin(𝜙𝑠) − sin(𝜓𝑠) ∗ cos (𝜙𝑠) sin(𝜓𝑠) ∗ sin(𝜃𝑠) ∗ sin(𝜙𝑠) + cos(𝜓𝑠) ∗ cos (𝜙𝑠) cos(𝜃𝑠) ∗ sin (𝜙𝑠)

cos(𝜓𝑠) ∗ sin(𝜃𝑠) ∗ cos(𝜙𝑠) + sin(𝜓𝑠) ∗ sin (𝜙𝑠) sin(𝜓𝑠) ∗ sin(𝜃𝑠) ∗ cos(𝜃𝑠) − cos(𝜓𝑠) ∗ sin(𝜃𝑠) cos(𝜃𝑠) ∗ cos (𝜙𝑠)

] 

 

 
 
(4.3) 

 
With 𝑅𝑠𝑏 is the rotation matrix from parafoil body {𝑏𝑝} system of reference to payload {s} frame 
defined by three Euler angles 𝜙𝑠, 𝜃𝑠, 𝜓𝑠. The payload has one “free” relative yaw motion. 
 

[
0
0
𝑟𝑠

] − 𝑹𝒔𝒃 ∗ [

𝑝𝑝

𝑞𝑝

𝑟𝑝
] = [

−1 0 0
0 −1 0
0 0 1

] ∗ [

𝑝𝑠

𝑞𝑠

𝑟𝑠
] 

 

 
 
(4.4) 

 

[

𝑝𝑠

𝑞𝑠

𝑟𝑠
] = [

0
0
𝜓�̇�

] + [
cos(𝜓𝑠) sin(𝜓𝑠) 0

−sin(𝜓𝑠) cos(𝜓𝑠) 0
0 0 1

] ∗ [

𝑝𝑝

𝑞𝑝

𝑟𝑝
] 

 

 
 
(4.5) 

 

[

𝑝�̇�

𝑞�̇�

𝑟�̇�

] = 𝐺 + 𝐾1 ∗ 𝑟�̇� + 𝐾2 ∗ [

𝑝�̇�

𝑞�̇�

𝑟�̇�

] 

 

 
 
(4.6) 

 

𝑮 = (𝑟𝑠 − 𝑟𝑝) ∗ [
− sin(𝜓𝑠) cos(𝜓𝑠) 0

− cos(𝜓𝑠) − sin(𝜓𝑠) 0
0 0 0

] ∗ [
𝑝
𝑞
𝑟
] 

 

 
 
(4.7) 

 

𝑲𝟏 = [
0
0
1
] 

 

 
 
(4.8) 

 

𝑲𝟐 = [
cos(𝜓𝑠) sin(𝜓𝑠) 0

− sin(𝜓𝑠) cos(𝜓𝑠) 0
] 

 
 
(4.9) 
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4.2   EQUATIONS OF MOTION 
With equations (4.5) and (4.6), the 7 DOF model equations of motion can be written in a 

fashion similar to the 6 DOF ones (Chapter 3.1  ).  
In the 7 DOF and 8 DOF models the moment acting on the parafoil-payload connection 

lines can be expressed as: 

 

𝑴𝑪 = [
0
0

𝑀𝐶𝑍

] + 𝑹𝒔𝒃 ∗ [
𝑀𝐶𝑋

𝑀𝐶𝑌

0
] = [

0
0

𝑀𝐶𝑍

] + 𝑹𝒔𝒃 ∗ [
1 0
0 1
0 0

] ∗ [
𝑀𝐶𝑋

𝑀𝐶𝑌
]

= [
0
0

𝑀𝐶𝑍

] + 𝑹𝒔𝒃 ∗ 𝑬 ∗ [
𝑀𝐶𝑋

𝑀𝐶𝑌
] 

 

 
 
 
(4.10) 

𝑀𝐶𝑍 = −𝐾𝜓(𝜓𝑠) ∗ 𝜓𝑠 + 𝐾𝑟(𝜓𝑠) ∗ 𝜓�̇� 
 

 
(4.11) 

The twisting moment 𝑀𝐶𝑍 is modelled as a spring and damper mechanism, in which the 
coefficients 𝐾𝜓 𝑎𝑛𝑑 𝐾𝑟 can widely vary from PADs to PADs. Sometimes a simplified line induced 
moment linked to the rising lines is introduced in the 9 DOF model as well, with a similar fashion 
of the one in equation (4.11) [15]. 𝑀𝐶𝑌 𝑎𝑛𝑑 𝑀𝐶𝑋 are usually unknown and are introduced in the 
equation of motions: they are expressed in the parafoil body reference frame {𝑏𝑝}. As well the 
forces exchanged between payload and parafoil (𝑭𝒄 = [𝐹𝐶𝑋, 𝐹𝐶𝑌, 𝐹𝐶𝑍]′) are expressed in the 
parafoil body reference frame.  

The overall linear velocities are expressed in NED ([�̇� �̇� �̇�]′), they are derived in the 
parafoil-payload connection point C: 𝑽𝒄 = [𝑢𝑐  𝑣𝑐 𝑤𝑐]′. 

The parafoil angular velocities are expressed in the parafoil body reference frame {𝑏𝑝}, 
the payload relative angular velocities are expressed in the payload reference frame {s}. 

The first two equations are related to the parafoil motion, the last two to the payload 
relative motion. 

The parafoil canopy is considered already inflated at the beginning of the simulation and 
it is considered as a rigid body with a certain inclination (rigging angle 𝜇) and fixed distances 
(𝒓𝑪𝑩, 𝒓𝑩𝑴, 𝒓𝑪𝑺, 𝒓𝑩𝑨, 𝒓𝑪𝑴). 

The equations of motion for the 7 DOF can be written as: 

 

𝑨𝟒𝒙𝟏𝟐 ∗ 𝒃𝟏𝟐𝒙𝟏 =

[
 
 
 
𝑭𝒑

𝑴𝒑

𝑭𝒔

𝑴𝒔]
 
 
 
 

 
 
(4.12) 

𝑨𝟒𝒙𝟏𝟐= 
 

[
 
 
 
 
(𝑚𝑝 + 𝑚𝑒) ∗ 𝑰𝟑𝒙𝟑 + 𝑴𝒇′ −𝑴𝒇

′ ∗ 𝑺(𝒓𝑪𝑴) − (𝑚𝑝 + 𝑚𝑒) ∗ 𝑺(𝒓𝑪𝑩) 𝟎𝟑𝒙𝟏 −𝑰𝟑𝒙𝟑 𝟎𝟑𝒙𝟐

𝑺(𝒓𝑩𝑴) ∗ 𝑴𝒇
′ 𝑰𝒑 + 𝑰𝒇 − 𝑺(𝒓𝑩𝑴) ∗ 𝑴𝒇

′ ∗ 𝑺(𝒓𝑪𝑴) 𝟎𝟑𝒙𝟏 𝑺(𝒓𝑪𝑩) 𝑬

𝑚𝑠 ∗ 𝑹𝒔𝒃 −𝑚𝑠 ∗ 𝑺(𝒓𝑪𝑺) ∗ 𝑲𝟐 −𝑚𝑠 ∗ 𝑺(𝒓𝑪𝑺) ∗ 𝑲𝟏 𝑹𝒔𝒃 𝟎𝟑𝒙𝟐

𝟎𝟑𝒙𝟑 𝑰𝒔 ∗ 𝑲𝟐 𝑰𝒔 ∗ 𝑲𝟏 −𝑺(𝒓𝑪𝑺) ∗ 𝑹𝒔𝒃 −𝑅𝑠𝑏 ∗ 𝐸]
 
 
 
 

 

 
 

 
 
 
 
(4.13) 
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𝒃𝟏𝟐𝒙𝟏 = [𝑢�̇�   𝑣�̇�  𝑤�̇�   𝑝�̇�  𝑞�̇�  𝑟�̇�  𝑟�̇�  𝐹𝐶𝑋  𝐹𝐶𝑌  𝐹𝐶𝑍  𝑀𝐶𝑋  𝑀𝐶𝑌 ]′ 

 

 
 
(4.14) 

𝑭𝒑 = 𝑭𝒂
𝒑

+ 𝑭𝒃
𝒑

+ 𝑭𝒈
𝒑  

−𝑺(𝝎𝒑) ∗ [(𝑚 + 𝑚𝑒)𝑰𝟑𝒙𝟑 + 𝑴𝒇
′ ] ∗ [

𝑢𝑐

𝑣𝑐

𝑤𝑐

] + 𝑺(𝝎𝒑) ∗ 𝑴𝒇
′ ∗ 𝑺(𝒓𝑪𝑴) ∗ [

𝑝𝑝

𝑞𝑝

𝑟𝑝
] + 𝑺(𝝎𝒑)

∗ 𝑴𝒇
′ ∗ 𝑹𝒃𝒏 ∗ 𝑾 − (𝑚𝑝 + 𝑚𝑒) ∗ 𝑺(𝝎𝒑) ∗ 𝑺(𝝎𝒑) ∗ 𝒓𝑪𝑩 

 

 
 
 
(4.15) 

𝑴𝒑 

= 𝑴𝒂+𝑴𝒃
𝒑
+ 𝑺(𝒓𝑩𝑨) ∗ 𝑭𝒂

𝒑
− [

0
0

𝑀𝐶𝑍

]

− [𝑺(𝝎𝒑) ∗ (𝑰𝒑 + 𝑰𝒇
′ ) − 𝑺(𝒓𝑩𝑴) ∗ 𝑺(𝝎𝒑) ∗ 𝑴𝒇

′ ∗ 𝑺(𝒓𝑪𝑴)] ∗ [

𝒑𝒑

𝒒𝒑

𝒓𝒑

]

− 𝑺(𝒓𝑩𝑴) ∗ 𝑺(𝝎𝒑) ∗ 𝑴𝒇
′ ∗ [

𝑢𝑐

𝑣𝑐

𝑤𝑐

] + 𝑺(𝒓𝑩𝑴) ∗ 𝑺(𝝎𝒑) ∗ 𝑴𝒇
′ ∗ 𝑹𝒃𝒏 ∗ 𝑾 

 

 
 
 
 
 
(4.16) 

𝑭𝒔 = 𝑭𝒂
𝒔 + 𝑭𝒈

𝒔 + 𝑚𝑠 ∗ 𝑺(𝒓𝑪𝑺) ∗ 𝑮 − 𝑚𝑠 ∗ 𝑹𝒃𝒔 ∗ 𝑺(𝝎𝒑) ∗ [

𝑢𝑐

𝑣𝑐

𝑤𝑐

] − 𝑚𝑠 ∗ 𝑺(𝝎𝒔)

∗ 𝑺(𝝎𝒔) ∗ 𝒓𝑪𝑺 
 

 
 
(4.17) 

 

𝑴𝒔 = −𝑰𝒔𝑮 + 𝑹𝒔𝒃 ∗ 𝑴𝒄 − 𝑺(𝝎𝒔) ∗ 𝑰𝒔 ∗ [

𝑝𝑠

𝑞𝑠

𝑟𝑠
] 

 

 
 
 
(4.18) 

[

𝜙�̇�

�̇�𝑝

�̇�𝑝

] =

[
 
 
 
 
 1 sin(𝜙𝑝) ∗

sin(𝜃𝑝)

cos(𝜃𝑝)
cos(𝜙𝑝) ∗

sin(𝜃𝑝)

cos(𝜃𝑝)

0 cos (𝜙𝑝) − sin(𝜙𝑝)

0 sin(𝜙𝑝) ∗
1

cos (𝜃𝑝)
cos(𝜙𝑝) ∗

1

cos (𝜃𝑝)]
 
 
 
 
 

∗ [

𝑝𝑝

𝑞𝑝

𝑟𝑝
] 

 

 
 
 
(4.19) 

[
𝜙�̇�

𝜃�̇�

] = [
1 sin(𝜙𝑝) ∗

sin(𝜃𝑝)

cos(𝜃𝑝)
cos(𝜙𝑝) ∗

sin(𝜃𝑝)

cos(𝜃𝑝)

0 cos (𝜙𝑝) − sin(𝜙𝑝)

] ∗ [

𝑝𝑠

𝑞𝑠

𝑟𝑠
] 

 
𝜓�̇� = 𝑟𝑠 − 𝑟 

 

 
 
 
 
(4.20) 
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[
�̇�
�̇�
�̇�
] = 𝑹′𝒃𝒏 ∗ [

𝑢
𝑣
𝑤

] 

 
 
(4.21) 
 
 

Almost all the formulas are explained in section 3.1  however we should describe some new 
entries: 

“𝒓𝑪𝑴” is the vector from the parafoil apparent mass center to the connection point C. 
“𝒓𝑪𝑺” is the vector from the payload mass centre to the connection point C. 
“𝒓𝑪𝑩” is the vector from the parafoil centre of gravity to the connection point C. 
“𝒓𝑩𝑨” is the vector from parafoil center of gravity to the parafoil aerodynamic center. 
“𝑭𝒈

𝒑
” and “𝑭𝒈

𝒔 ” are the parafoil and payload weight forces: 

 

𝐹𝑔 = (𝑚𝑝𝑎𝑟𝑎𝑓𝑜𝑖𝑙 + 𝑚𝑒) ∗ 𝑔 ∗ [

− sin(𝜃)

cos(𝜃) ∗ sin(𝜙)

cos(𝜃) ∗ cos(𝜙)
] 

 

 
 
(4.22) 

𝐹𝑔 = (𝑚𝑝𝑎𝑦𝑙𝑜𝑎𝑑) ∗ 𝑔 ∗ 𝑹𝒔𝒃 ∗ [

− sin(𝜃)

cos(𝜃) ∗ sin(𝜙)

cos(𝜃) ∗ cos(𝜙)
] 

 

 
 
(4.23) 

The data used for simulations are the same as in section 3.1  and 3.2  The damping coefficient and 
the system stiffness can vary from system to system, we have used: 

 
𝐾𝜓 = 0.2 𝑁 ∗

𝑚

𝑟𝑎𝑑
 ; 𝐾𝑟 = 0 𝑁 ∗

𝑚

𝑟𝑎𝑑
 

 

 
(4.24) 

In this model the inertias of parafoil and payload are included in 𝑰𝒑 𝑎𝑛𝑑 𝑰𝒔 , respectively as: 

 

𝐼𝑥𝑝 = (
𝑣𝑣𝑜𝑙 ∗ 𝜌 + 𝑚𝑝

12
) ∗ (𝑏2 + 𝑡2) 

 

𝐼𝑦𝑝 = (
𝑣𝑣𝑜𝑙 ∗ 𝜌 + 𝑚𝑝

12
) ∗ (𝑐2 + 𝑡2) 

 

𝐼𝑧𝑝 = (
𝑣𝑣𝑜𝑙 ∗ 𝜌 + 𝑚𝑝

12
) ∗ (𝑏2 + 𝑐2) 

 

 
 
 
 
 
(4.25) 

 
𝐼𝑥𝑝𝑏

= 𝐼𝑥𝑝 ∗ cos2(𝜇) + 𝐼𝑧𝑝 ∗ sin2(𝜇) 
𝐼𝑦𝑝𝑏

= 𝐼𝑦𝑝 
𝐼𝑧𝑝𝑏

= 𝐼𝑥𝑝 ∗ 𝑠𝑖𝑛2(𝜇) + 𝐼𝑧𝑝 ∗ 𝑐𝑜𝑠2(𝜇) 

𝐼𝑥𝑧𝑝𝑏
=

1

2
∗ (𝐼𝑥𝑝 − 𝐼𝑧𝑝) ∗ sin (2 ∗ 𝜇) 

 
 
 
(4.26) 
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𝑰𝒑 = [

𝐼𝑥𝑝𝑏
0 𝐼𝑥𝑧𝑝𝑏

0 𝐼𝑦𝑝𝑏
0

𝐼𝑥𝑧𝑝𝑏
0 𝐼𝑧𝑝𝑏

] 

 

 
 
(4.27) 

 
𝐼𝑥𝑠 =

𝑚𝑙

12
∗ (𝑧𝑠

2 + 𝑦𝑠
2) 

𝐼𝑦𝑠 =
𝑚𝑙

12
∗ (𝑧𝑠

2 + 𝑦𝑠
2) 

𝐼𝑧𝑠 =
𝑚𝑙

12
∗ (𝑧𝑠

2 + 𝑦𝑠
2) 

 
 
 
(4.28) 

 

𝑰𝒔 = [

𝐼𝑥𝑠 0 0
0 𝐼𝑦𝑠 0

0 0 𝐼𝑧𝑠

] 

 

 
 
(4.29) 

 

4.3   SIMULATIONS 
The 7 DOF is the preferred candidate for the mission: we want to have a stable payload 

for terrain relative navigation (TRN). Less degree of freedom can be linked to less cargo 
oscillations. Moreover, with a 7 DOF we can still perfectly match the data from Airborne. The 
system validation will be performed using both Airborne data and [8] plots.  

However, the probe will probably still be spinning when the parafoil will be deployed: the 
9 DOF solution may become a good alternative to solve this problem. Before taking a definitive 
decision, we must understand the entity of the spinning and how it can afflict the parafoil 
deployment. 

4.3.1   TITAN SIMULATIONS 
The simulations will focus on a S-maneuver to highlight the constrained oscillations of 

the payload. The simulations are made for a parafoil with L/D of 2.1 and deployment altitude of 
4000 m. 

The model keeps into account a more complex geometrical parameters definition from [8] 
a more complex iteration between payload and parafoil: the aerodynamic definition must be 
different from the 6 DOF model (derived from a set from [8]) to respect the requirement on the 
efficiency. When the true aerodynamic of the vehicle will be computed with CFD analysis, the 
guideline parameters should come from the definitive parafoil configuration (7,8 or 9 DOF).   

The load swing highlight in the payload yaw plot it’s a relative motion between the 

payload and the parafoil, the systems moves accordingly to the ram-air wing. On the pitch and roll 
plots the payload detached dynamics is highly damped through the link structure and the lines 
damping and stiffness: we can catch an oscillatory behavior linked to the load yaw motion. Even 
with a strong link the probe will have some relative motion: the 7 DOF model is not usually used 
on Earth because at the equilibrium conditions the parafoil and the load tend to have a differential 
pitch angle, positive for the first and negative for the latter.  

 



53 
 

 

Figure 58: On-plane 7 DOF S-maneuver. 

 

Figure 59: Altitude vs Downrange for 7 DOF. 

 

Figure 60: Roll angle S-maneuver 7 DOF. 
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                                                  Figure 61: Pitch angle S-maneuver 7 DOF. 
 

 

 

Figure 62: Yaw angle S-maneuver 7 DOF 
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                                                 Figure 63: Payload yaw motion S-maneuver 7 DOF 

 

 

 

 

Figure 64: Payload angular velocities S-maneuver 7 DOF (highlight on the control response behavior). 
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                                  Figure 65: Parafoil angular velocities S-maneuver 7 DOF. 
 
 

 

 
Figure 66: Angle of attack S-maneuver 7 DOF. 
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Figure 67: Angle of attack of total system S-maneuver 7 DOF. 

 
 
 

 

Figure 68: Flightpath angle S-maneuver 7 DOF. 
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4.3.2   AIRBORNE VALIDATION 

The model is again validated with Airborne data on Titan with a low glide system 
(

𝐿

𝐷
= 2.1) and a high glide system (𝐿

𝐷
= 4). This last simulation can catch the overall trend but 

not match perfectly with Airborne data: we don’t have their full aerodynamic but just an indication 

on the efficiency they have used for those simulations. We assumed the aerodynamic of a system 
of similar characteristics, however the difference can be easily spotted in the simulation with wind. 
The cause can be the different pitching moment: if they use an aerodynamic profile different from 
ours then the behavior against the wind will be different. 

 

                                          Figure 69: Low-glide steady state Titan descent. 

 
 

 

Figure 70:High glide steady state Titan descent. 
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4.3.3   EARTH ENVIRONMENT VALIDATION 
The simulation is performed on Earth environment (see [16]) at 400 m with payload and 

parafoil pitch angles of 1.8 deg and 1 deg respectively. The control performs an S-maneuver with 
𝑉𝑖 = {8.6,0,4.2}   𝑚/𝑠 .  

 

Figure 71: Control maneuver history [16]. 

 

 

                                            Figure 72: Yaw angle oscillations [16] 
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5   PADS HIGH FIDELITY MODEL: 8 DOF 
The 8 DOF model is very similar to the 7 DOF in its formulation: however, the payload 

gains one degree of freedom more, a relative pitch. The major part of the autonomous PADs is 
connected as an 8 DOF: unfortunately, the model is highly sensible to the inputs as aerodynamics, 
the rotation damping and stiffness of the risers. The geometry of the parafoil should be already 
well defined: a wrong geometry definition will make the computation highly instable. Moreover, 
the entity of the apparent masses (and of the related moments) on Titan enhance the instabilities 
in the computation.  

The rising lines fashion does not seem appropriate for Titan: the pitch oscillation can be 
quite intense, it is not the best solution for a TRN system on the load. However, the model is 
reported to complete the rose of the available high-fidelity examples. 

The 7 DOF,8 DOF and complete 9 DOF should be used after a clear definition of the 
PADs parameters to exploit their functionalities. The alien environment and the possible position 
of the AGU (Airborne Guidance Unit) on the payload complicates the modelling.  

For the simulations the same data of sections 3.1  and 3.2  will be used. The parafoil 
canopy is already fully inflated at the beginning of the simulations and it is considered as a 3D 
rigid body. 

All the quantities used in this chapter have already been explained in chapters 04   

 

Figure 73: 8 DOF model parafoil-payload connection. 

 

5.1   EQUATIONS OF MOTION 
As in the 7 DOF model the payload has a relative motion in respect of the parafoil that can be 
expressed as: 
 

𝝎𝒔
𝒃

𝒔 = 𝝎𝒔
𝒔 − 𝑹𝒔𝒃 ∗ 𝝎𝒑 = 𝑹𝜽𝒔

∗ [
0
𝜃�̇�

0
] + 𝑹𝜽𝒔

∗ 𝑹𝝍𝒔
∗ [

0
0
𝜓�̇�

] 

 

(5.1) 
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𝑹𝜽𝒔
= [

cos(𝜃𝑠) 0 − sin(𝜃𝑠)
0 1 0

sin(𝜃𝑠) 0 cos(𝜃𝑠)
] 

 

 
 
(5.2) 

𝑹𝝍𝒔
= [

cos(𝜓𝑠) sin(𝜓𝑠) 0

− sin(𝜓𝑠) cos(𝜓𝑠) 0
0 0 1

] 

 

 
 
(5.3) 

[

𝑝𝑠

𝜃�̇�

𝜓�̇�

] = [

0 − tan(𝜃𝑠)
1 0

0
1

cos(𝜃𝑠)

] ∗ [
𝑞𝑠

𝑟𝑠
] + 

[
 
 
 

cos(𝜓𝑠)

cos(𝜃𝑠)

sin (𝜓𝑠)

cos(𝜃𝑠)
0

sin (𝜓𝑠) −cos (𝜓𝑠) 0

− cos(𝜓𝑠) ∗ tan (𝜃𝑠) − sin(𝜓𝑠) ∗ tan (𝜃𝑠) 1]
 
 
 

∗ [

𝑝𝑝

𝑞𝑝

𝑟𝑝
] 

 

[

𝑝𝑠

𝑞𝑠

𝑟𝑠
] = 𝑅𝑠𝑏 ∗ [

𝑝𝑝

𝑞𝑝

𝑟𝑝
] + [

0 0 −sin(𝜃𝑠)
0 1 0
0 0 cos(𝜃𝑠)

] ∗ [

0
�̇�𝑠

�̇�𝑠

] 

 

 
 
 
 
 
 
(5.4) 

[

𝑝�̇�

𝑞�̇�

𝑟�̇�

] = 𝐺 + 𝐾1 ∗ [
𝑞�̇�

𝑟�̇�
] + 𝐾2 ∗ [

𝑝�̇�

𝑞�̇�

𝑟�̇�

] 

 

 
 
(5.5) 

 

𝐺 = [

− 𝑠𝑖𝑛(𝜓𝑠) ∗ (𝑟𝑠 − 𝑟𝑝) ∗ 𝑝𝑝 + 𝑐𝑜𝑠(𝜓𝑠) ∗ (𝑟𝑠 − 𝑟𝑝) ∗ 𝑞𝑝

−𝑐𝑜𝑠(𝜓𝑠) ∗ (𝑟𝑠 − 𝑟𝑝) ∗ 𝑝𝑝 − sin(𝜓𝑠) ∗ (𝑟𝑠 − 𝑟𝑝) ∗ 𝑞𝑝

0

] 

 

 
 
 
(5.6) 

𝐾1 = [
0 tan(𝜃𝑠)
1 0
0 1

] 

 

 
 
(5.7) 
 
 

𝐾2 = [

cos(𝜓𝑠)

cos(𝜃𝑠)

sin(𝜓𝑠)

cos(𝜃𝑠)
0

0 0 0
0 0 0

] 

 

 
 
 
(5.8) 
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The connection point moment 𝑀𝑐 in 8 DOF model is expressed as: 
 
 

𝑴𝑪 = [
0
0

𝑀𝐶𝑍

] + 𝑹𝒔𝒃 ∗ [
𝑀𝐶𝑋

0
0

] = [
0
0

𝑀𝐶𝑍

] + 𝑹𝒔𝒃 ∗ [
1
0
0
] ∗ [𝑀𝐶𝑋]

= [
0
0

𝑀𝐶𝑍

] + 𝑹𝒔𝒃 ∗ 𝑬 ∗ [𝑀𝐶𝑋] 

 

 
 
 
(5.9) 

𝑀𝐶𝑍 = −𝐾𝜓(𝜓𝑠) ∗ 𝜓𝑠 + 𝐾𝑟(𝜓𝑠) ∗ 𝜓�̇� 
 

 
(5.10) 

The equations of motion for the 8 DOF can be written as: 

𝑨𝟒𝒙𝟏𝟐 ∗ 𝒃𝟏𝟐𝒙𝟏 =

[
 
 
 
𝑭𝒑

𝑴𝒑

𝑭𝒔

𝑴𝒔]
 
 
 
 

 
 
(5.11) 

𝑨𝟒𝒙𝟏𝟐= 
 

[
 
 
 
 
(𝑚𝑝 + 𝑚𝑒) ∗ 𝑰𝟑𝒙𝟑 + 𝑴𝒇′ −𝑴𝒇

′ ∗ 𝑺(𝒓𝑪𝑴) − (𝑚𝑝 + 𝑚𝑒) ∗ 𝑺(𝒓𝑪𝑩) 𝟎𝟑𝒙𝟐 −𝑰𝟑𝒙𝟑 𝟎𝟑𝒙𝟏

𝑺(𝒓𝑩𝑴) ∗ 𝑴𝒇
′ 𝑰𝒑 + 𝑰𝒇 − 𝑺(𝒓𝑩𝑴) ∗ 𝑴𝒇

′ ∗ 𝑺(𝒓𝑪𝑴) 𝟎𝟑𝒙𝟐 𝑺(𝒓𝑪𝑩) 𝑬

𝑚𝑠 ∗ 𝑹𝒔𝒃 −𝑚𝑠 ∗ 𝑺(𝒓𝑪𝑺) ∗ 𝑲𝟐 −𝑚𝑠 ∗ 𝑺(𝒓𝑪𝑺) ∗ 𝑲𝟏 𝑹𝒔𝒃 𝟎𝟑𝒙𝟏

𝟎𝟑𝒙𝟑 𝑰𝒔 ∗ 𝑲𝟐 𝑰𝒔 ∗ 𝑲𝟏 −𝑺(𝒓𝑪𝑺) ∗ 𝑹𝒔𝒃 −𝑅𝑠𝑏 ∗ 𝐸]
 
 
 
 

 

 
 

 
 
 
 
(5.12) 

 
𝒃𝟏𝟐𝒙𝟏 = [𝑢�̇�   𝑣�̇�  𝑤�̇�  𝑝�̇�  𝑞�̇�  𝑟�̇�  𝑞�̇�  𝑟�̇�  𝐹𝐶𝑋  𝐹𝐶𝑌  𝐹𝐶𝑍  𝑀𝐶𝑋]′ 

 

 
 
(5.13) 

𝑭𝒑 = 𝑭𝒂
𝒑

+ 𝑭𝒃
𝒑

+ 𝑭𝒈
𝒑  

−𝑺(𝝎𝒑) ∗ [(𝑚 + 𝑚𝑒)𝑰𝟑𝒙𝟑 + 𝑴𝒇
′ ] ∗ [

𝑢𝑐

𝑣𝑐

𝑤𝑐

] + 𝑺(𝝎𝒑) ∗ 𝑴𝒇
′ ∗ 𝑺(𝒓𝑪𝑴) ∗ [

𝑝𝑝

𝑞𝑝

𝑟𝑝
] + 𝑺(𝝎𝒑)

∗ 𝑴𝒇
′ ∗ 𝑹𝒃𝒏 ∗ 𝑾 − (𝑚𝑝 + 𝑚𝑒) ∗ 𝑺(𝝎𝒑) ∗ 𝑺(𝝎𝒑) ∗ 𝒓𝑪𝑩 

 

 
 
 
(5.14) 

 
𝑴𝒑 = 𝑴𝒂 + 𝑴𝒃

𝒑
+ 𝑺(𝒓𝑩𝑨) ∗ 𝑭𝒂

𝒑 

−[𝑺(𝝎𝒑) ∗ (𝑰𝒑 + 𝑰𝒇
′ ) − 𝑺(𝒓𝑩𝑴) ∗ 𝑺(𝝎𝒑) ∗ 𝑴𝒇

′ ∗ 𝑺(𝒓𝑪𝑴)] ∗ [

𝒑𝒑

𝒒𝒑

𝒓𝒑

] − 

𝑺(𝒓𝑩𝑴) ∗ 𝑺(𝝎𝒑) ∗ 𝑴𝒇
′ ∗ [

𝑢𝑐

𝑣𝑐

𝑤𝑐

] + 𝑺(𝒓𝑩𝑴) ∗ 𝑺(𝝎𝒑) ∗ 𝑴𝒇
′ ∗ 𝑹𝒃𝒏𝑾 − [

0
0

𝑀𝐶𝑍

] 

 

 
 
 
 
 
 
(5.15) 
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𝑭𝒔 = 𝑭𝒂
𝒔 + 𝑭𝒈

𝒔 + 𝑚𝑠 ∗ 𝑺(𝒓𝑪𝑺) ∗ 𝑮 − 𝑚𝑠 ∗ 𝑹𝒃𝒔 ∗ 𝑺(𝝎𝒑) ∗ [

𝑢𝑐

𝑣𝑐

𝑤𝑐

] − 𝑚𝑠 ∗ 𝑺(𝝎𝒔)

∗ 𝑺(𝝎𝒔) ∗ 𝒓𝑪𝑺 
 

 
 
(5.16) 

 

𝑴𝒔 = −𝑰𝒔𝑮 + 𝑹𝒔𝒃 ∗ 𝑴𝒄 − 𝑺(𝝎𝒔) ∗ 𝑰𝒔 ∗ [

𝑝𝑠

𝑞𝑠

𝑟𝑠
] 

 

 
 
 
(5.17) 

[

𝜙�̇�

�̇�𝑝

�̇�𝑝

] =

[
 
 
 
 
 1 sin(𝜙𝑝) ∗

sin(𝜃𝑝)

cos(𝜃𝑝)
cos(𝜙𝑝) ∗

sin(𝜃𝑝)

cos(𝜃𝑝)

0 cos (𝜙𝑝) − sin(𝜙𝑝)

0 sin(𝜙𝑝) ∗
1

cos (𝜃𝑝)
cos(𝜙𝑝) ∗

1

cos (𝜃𝑝)]
 
 
 
 
 

∗ [

𝑝𝑝

𝑞𝑝

𝑟𝑝
] 

 

 
 
 
(5.18) 

[𝜙�̇�] = [1 sin(𝜙𝑝) ∗
sin(𝜃𝑝)

cos(𝜃𝑝)
cos(𝜙𝑝) ∗

sin(𝜃𝑝)

cos(𝜃𝑝)
] ∗ [

𝑝𝑠

𝑞𝑠

𝑟𝑠
] 

 
𝜃�̇� = 𝑞𝑠 + sin(𝜓𝑠) ∗ 𝑝 − cos(𝜓𝑠) ∗ 𝑞 

 

𝜓�̇� =
1

cos (𝜃𝑠)
∗ 𝑟𝑠 − cos(𝜓𝑠) ∗ tan(𝜃𝑠) ∗ 𝑝 − sin(𝜓𝑠) ∗ tan(𝜃𝑠) ∗ 𝑞 − 𝑟 

 

 
 
 
 
(5.19) 

[
�̇�
�̇�
�̇�
] = 𝑹′𝒃𝒏 ∗ [

𝑢
𝑣
𝑤

] 

 
 
(5.20) 
 
 

Almost all the formulas are explained in section 3.1  and 4.2  The position vectors are similar to 
those in the 7 DOF.  

“𝒓𝑪𝑴” is the vector from the parafoil apparent mass centre to the connection point C. 
“𝒓𝑪𝑺” is the vector from the payload mass centre to the connection point C. 
“𝒓𝑪𝑩” is the vector from the parafoil centre of gravity to the connection point C. 
“𝒓𝑩𝑨” is the vector from parafoil centre of gravity to the parafoil aerodynamic center. 

The data used for simulations are the same as in section 3.1  and 3.2  The damping coefficient and 
the system stiffness vary from the 7 DOF: there is a different kind of connection between payload 
and parafoil. 

 
𝐾𝜓 = 0.09 𝑁 ∗

𝑚

𝑟𝑎𝑑
 ; 𝐾𝑟 = 0.005 𝑁 ∗

𝑚 ∗ 𝑠

𝑟𝑎𝑑
 

 

 
(5.21) 
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5.2   SIMULATIONS 
The simulations are similar to those of the 7 DOF. For the validation we lack knowledge 

of the stiffness and damping of the risers used in the models in [16]: in the paper the data for the 
7 DOF are reported. Nevertheless, we can match the overall trends: that is our main focus. The 
Airborne comparison is neglected on the 8 DOF, was computationally demanding and, for now, 
this shouldn’t be the definitive parafoil configuration. 

5.2.1   TITAN SIMULATION 
As for the 7 DOF of freedom the simulation follows an S-maneuver that starts at 4000 m 

(𝑢𝑐 = 8.6
𝑚

𝑠
  𝑣𝑐 = 0

𝑚

𝑠
  𝑤𝑐 = 4.2

𝑚

𝑠
) with an overall efficiency of 2. 

 

Figure 74: Downrange 8 DOF. 
 

 

Figure 75: Descending Trajectory 8 DOF. 
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                                                    Figure 76: Pitch angle 8 DOF. 

 

 

 

Figure 77: Roll angle 8 DOF. 
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                                                                  Figure 78: Yaw angle 8 DOF. 

 

 

 

Figure 79: Payload yaw motion 8 DOF (the oscillation is damped). 
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Figure 80: Payload pitch motion 8 DOF. 

 

         

Figure 81: Yaw angle comparison 8 DOF. The parameters and aerodynamics used in [16] 
are not well reported, so we couldn’t match the data. This model is highly sensible to the 

line stiffness and damping, without the true values used in the simulations is difficult even 
to reply the trend. 
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6   PADS HIGH FIDELITY MODEL: 9 DOF 
The 9 DOF models represents a parafoil and payload linked in one point: the motion of 

the two system is joined through the vector of forces 𝑭𝒄, put in the connection point C. 
The simplified model captures the peculiarity of this PADs configuration with a small 

computational cost. The major part of the 9 DOF in literature ( [14], [17], [18]) use “simplified 

models”: they are robust to computation and few geometrical information are needed. 
However, those models detached the sideslip angle 𝛽, the rigging angle 𝜇 of the parafoil 

and they don’t give clarifying explanation of how the wind is accommodate, if accommodate in 

the equations. For the rigging angle an annotation must be made: the simplified 9 DOF model 
consider the equation of motion written in the {𝑏𝑝} reference system frame. The rigging angle 
enters in the computation when the distance between the connection point C and the parafoil center 
of mass is evaluated. All the quantities for the parafoil, comprising the apparent mass and inertia 
affect, are written in {𝑏𝑝}: that simplified the formulations. Moreover, this formulation resembles 
more how we would test the PADs for system identification. We evaluate the parafoil 
characteristics as a solo system, then we analyze the load peculiarity and, at the end, the system 
characteristics will be computed. 

The model develop for the JPL, takes into account those aspects keeping the computation 
and the equation of motion simple in their input requirements but affective in their modelling. 

We still have few information on the Titan parafoil real geometry and aerodynamic: less 
guesses are given, less uncertainties are introduced.  

6.1   SIMPLIFIED MODEL 
The model is more similar to 6 DOF described in section 3.1  for its intrinsically 

simplicity, but payload and parafoil are two distinct systems. The main difference from the others 
high-fidelity models described before lays in the payload angular motions. They are described 
respect the external system of reference in the {s} frame and not as a parafoil relative rotations.   

 

 

Figure 82: Simplified 9 DOF model representation [14]. 
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6.1.1   EQUATIONS OF MOTION 
The simplified model equations of motion can be written as: 

𝑨𝟒𝒙𝟏𝟐 ∗ 𝒃𝟏𝟐𝒙𝟏 =

[
 
 
 
𝑭𝒔

𝑭𝒑

𝑴𝒔

𝑴𝒑]
 
 
 
 

 
 
(6.1) 

𝑨𝟒𝒙𝟏𝟐= 
 

[
 
 
 
 
−𝑚𝑠 ∗ 𝑰𝟑𝒙𝟑 ∗ 𝑺(𝒓𝑪𝑺) 𝟎𝟑𝒙𝟑 𝑚𝑠 ∗ 𝑰𝟑𝒙𝟑 ∗ 𝑻𝒔𝒏 𝑹𝒔𝒏

𝟎𝟑𝒙𝟑 −(𝑚𝑝 ∗ 𝑰𝟑𝒙𝟑 + 𝑴𝒇) ∗ 𝑺(𝒓𝑪𝑷) (𝒎𝒑 ∗ 𝑰𝟑𝒙𝟑 + 𝑴𝒇) ∗ 𝑻𝒃𝒏 −𝑻𝒃𝒏

𝑰𝒔 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 −𝑺(𝒓𝑪𝑩) ∗ 𝑻𝒔𝒏

𝟎𝟑𝒙𝟑 𝑰𝒑 + 𝑰𝒇 𝟎𝟑𝒙𝟑 𝑺(𝒓𝑪𝑷) ∗ 𝑻𝒃𝒏 ]
 
 
 
 

 

 
 

 
 
 
 
(6.2) 

 
𝒃𝟏𝟐𝒙𝟏 = [𝑝�̇�  𝑞�̇�  𝑟�̇� 𝑝�̇�  𝑞�̇�  𝑟�̇�  𝑢�̇�   𝑣�̇� 𝑤�̇�  𝐹𝐶𝑋  𝐹𝐶𝑌  𝐹𝐶𝑍 ]′ 

 

 
(6.3) 

𝑭𝒑 = 𝑭𝒂
𝒑

+ 𝑭𝒃
𝒑

+ 𝑭𝒈
𝒑  

−𝑺(𝝎𝒑) ∗ (𝑚𝑝 ∗ 𝑰𝟑𝒙𝟑 + 𝑴𝒇) ∗ 𝑺(𝝎𝒑) ∗ 𝒓𝑪𝑷 − 𝑺(𝝎) ∗ 𝑴𝒇 ∗ (𝑹𝒃𝒏 ∗ 𝑽𝒄 + 𝑺(𝝎)

∗ 𝒓𝑪𝑷) 
 

 
 
(6.4) 

𝑴𝒑 
= 𝑴𝒂 + 𝑴𝒃

𝒑
− 𝑹𝒃𝒏 ∗ 𝑹′

𝒔𝒏 ∗ 𝑴𝒄 − 𝑺(𝝎) ∗ (𝑰𝒑 + 𝑰𝒔) ∗ 𝝎𝒑 − 𝚵 ∗ 𝑴𝒇 ∗ 𝑽𝒑 
 

 
 
(6.5) 

𝑭𝒔 = 𝑭𝒂
𝒔 + 𝑭𝒈

𝒔 − 𝑚𝑠 ∗ 𝑺(𝝎𝒔) ∗ 𝑺(𝝎𝒔) ∗ 𝒓𝑪𝑺 
 

 
(6.6) 

 

𝑴𝒔 = 𝑴𝒂
𝒔 + 𝑴𝒄 − 𝑺(𝝎𝒔) ∗ 𝑰𝒔 ∗ [

𝑝𝑠

𝑞𝑠

𝑟𝑠
] 

 

 
 
 
(6.7) 

[

𝜙�̇�

�̇�𝑝

�̇�𝑝

] =

[
 
 
 
 
 1 sin(𝜙𝑝) ∗

sin(𝜃𝑝)

cos(𝜃𝑝)
cos(𝜙𝑝) ∗

sin(𝜃𝑝)

cos(𝜃𝑝)

0 cos (𝜙𝑝) − sin(𝜙𝑝)

0 sin(𝜙𝑝) ∗
1

cos (𝜃𝑝)
cos(𝜙𝑝) ∗

1

cos (𝜃𝑝)]
 
 
 
 
 

∗ [

𝑝𝑝

𝑞𝑝

𝑟𝑝
] 

 

 
 
 
(6.8) 
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[

𝜙�̇�

�̇�𝑠

�̇�𝑠

] =

[
 
 
 
 
 1 sin(𝜙𝑠) ∗

sin(𝜃𝑠)

cos(𝜃𝑠)
cos(𝜙𝑠) ∗

sin(𝜃𝑠)

cos(𝜃𝑠)

0 cos (𝜙𝑠) − sin(𝜙𝑠)

0 sin(𝜙𝑠) ∗
1

cos (𝜃𝑠)
cos(𝜙𝑠) ∗

1

cos (𝜃𝑠)]
 
 
 
 
 

∗ [

𝑝𝑠

𝑞𝑠

𝑟𝑠
] 

 

 
 
(6.9) 

[
�̇�
�̇�
�̇�
] = [

𝑢
𝑣
𝑤

] 

 
 
(6.10) 
 
 

𝑴𝑪 = [
0
0

𝑀𝐶𝑍

] = [

0
0

𝐾𝑝𝑠𝑖 ∗ (𝜓𝑝
̅̅̅̅ − 𝜓𝑠

̅̅ ̅) + 𝐾𝑟 ∗ (𝜓𝑝
̅̅̅̅  ̇ − 𝜓𝑠

̅̅ ̅̇)
] 

 
        𝐾𝜓 = 0.07 𝑁 ∗

𝑚

𝑟𝑎𝑑
; 𝐾𝑟 =0.005 𝑁 ∗

𝑚∗𝑠

𝑟𝑎𝑑
; 

 

 
 
(6.11) 

 

𝜓𝑝
̅̅̅̅ = tan−1 (

sin(𝜙𝑝) ∗ sin(𝜃𝑝) ∗ cos(𝜓𝑝) − cos(𝜙𝑝) ∗ sin(𝜓𝑝)

cos(𝜃𝑝) ∗ cos(𝜓𝑝)
)   

 

 
 
(6.12) 

𝜓𝑠
̅̅ ̅ = tan−1 (

sin(𝜙𝑠) ∗ sin(𝜃𝑠) ∗ cos(𝜓𝑠) − cos(𝜙𝑠) ∗ sin(𝜓𝑠)

cos(𝜃𝑠) ∗ cos(𝜓𝑠)
)   

 

 
(6.13) 

𝜓𝑝
̅̅ ̅̇̅ = − cos(𝜓𝑝

̅̅̅̅ ) ∗ t𝜃𝑝
̅̅̅̅ ∗ 𝑝𝑝 + sin(𝜓𝑝

̅̅̅̅ ) ∗ t𝜃𝑝
̅̅̅̅ ∗ 𝑞𝑝 + 𝑟𝑝 

 

 
(6.14) 

 
𝜓𝑠
̅̅ ̅̇ = − cos(𝜓𝑠

̅̅ ̅) ∗ t𝜃𝑠
̅̅ ̅ ∗ 𝑝𝑠 + sin(𝜓𝑠

̅̅ ̅) ∗ t𝜃𝑠
̅̅ ̅ ∗ 𝑞𝑠 + 𝑟𝑠 

 

 
 
(6.15) 

 

t𝜃𝑝
̅̅̅̅ =

cos(𝜙𝑝) ∗ sin(𝜃𝑝) ∗ cos(𝜓𝑝) + sin(𝜙𝑝) ∗ sin (𝜓𝑝)

cos(𝜃𝑝) ∗ 𝑐𝑜𝑠(𝜓𝑝)
∗ cos (𝜓𝑝

̅̅̅̅ ) 

 

 
 
 
(6.16) 

 

t𝜃𝑠
̅̅ ̅ =

cos(𝜙𝑠) ∗ sin(𝜃𝑠) ∗ cos(𝜓𝑠) + sin(𝜙𝑠) ∗ sin (𝜓𝑠)

cos(𝜃𝑠) ∗ 𝑐𝑜𝑠(𝜓𝑠)
∗ cos (𝜓𝑠

̅̅ ̅) 

 

 
 
(6.17) 

 

 
 
 



71 
 

Where: 
• “𝑀𝐶𝑍” is the twisting moments between parafoil and payload, its definition is slightly 

different from the one given for the 7 DOF and 8 DOF model. This definition is explained 
in [18]. 

• “𝒓𝑪𝑷” is the vector from the parafoil centre of mass to the connection point C: 

 
𝒓𝑪𝑷 = [𝑅𝑝 ∗ sin(𝜇)   0  𝑅𝑝 ∗ cos (𝜇)]′ 

 

 
(6.18) 

• “𝒓𝑪𝑺” is the vector from the payload centre of mass to the connection point C: 
 

𝒓𝑪𝑺 = [0   0  
𝑧𝑠

2
] ′ 

 

 
(6.19) 

• “𝚵” is the skew matrix formed by parafoil velocity: 
 

𝑺(𝑽𝒑) = [

0 −𝑉𝑧 𝑉𝑦
𝑉𝑧 0 −𝑉𝑥

−𝑉𝑦 𝑉𝑥 0
] 

 

 
 
(6.20) 

 

6.2   SIMULATIONS 
We have performed a series of simulations for the simplified 9 DOF: only the most 

significant ones will be reported. As for the 6 DOF steady state, spiral maneuver, S-maneuver and 
validation simulations will be reported. From the steady state, we can catch the system equilibrium 
values. The other simulations will highlight how the computation handle long control and a more 
realistic control. The apparent masses and inertias relative terms can create problems on the 
stability of the simulations: on Titan environment this problem enhance. 

• Steady state simulations: from 40 km of altitude with initial speed vector {𝑢𝑐 , 𝑣𝑐 , 𝑤𝑐} =
{8.6 0 4.2}. 

 

Figure 83: Angle of attack simplified 9 DOF. 
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Figure 84: Flight-path angle simplified 9 DOF. 

 

 
 

 

Figure 85: Pitch angle simplified 9 DOF. 
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Figure 86: Roll angle simplified 9 DOF 

 

 

 

Figure 87: Yaw angle simplified 9 DOF. 

 
• Spiral control simulations: from 40 km of altitude with initial speed vector {𝑢𝑐, 𝑣𝑐 , 𝑤𝑐} =

{8.6 0 4.2} 𝑚/𝑠. 
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Figure 88: Spiral maneuver deflection. simplified 9 DOF. 

 

 
 
 

 

Figure 89: Descending trajectory spiral maneuver simplified 9 DOF. 
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Figure 90: Pitch angle spiral maneuver simplified 9 DOF. 
 

 

 

Figure 91: Roll angle spiral maneuver simplified 9 DOF. 
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Figure 92: Yaw angle spiral maneuver simplified 9 DOF. 

 

 

 

Figure 93: Payload angular velocity spiral maneuver simplified 9 DOF. 
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Figure 94: Parafoil Angular velocity spiral maneuver simplified 9 DOF. 

 
• S-maneuver simulations: from 4 km with initial speed vector {𝑢𝑐 , 𝑣𝑐 , 𝑤𝑐} =

{8.6 0 4.2} 𝑚/𝑠. 
 

 

Figure 95: Control deflection S-maneuver. 
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Figure 96: Descending trajectory S-maneuver. 

 
 
 

 

 

Figure 97: Downrange trajectory S-maneuver. 

 



79 
 

 

Figure 98: Sideslip angle S-maneuver. 

 

 

 

Figure 99: Pitch angle S-maneuver. 
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Figure 100: Roll angle S-maneuver. 

 

 
 

 

Figure 101: Yaw angle S-maneuver. 
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Figure 102: Payload angular velocities S-maneuver. 

 

 

Figure 103: Parafoil angular velocities S-maneuver. 

 
• University of Rome, “La Sapienza” validation: the control in [14] is defined as angle 

deflection, in our model is defined as a normalized length that refers to how much of brake 
is pulled. 
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Figure 104: XZ-plane symmetric deflection comparison. 

 

Figure 105: Efficiency symmetric deflection comparison. 

 

Figure 106: Angle of attack symmetric deflection comparison. 
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6.3   COMPLETE MODEL 
The 9 DOF “complete model” differs from the simplified one because it takes into account 

some apparent masses effects and payload-parafoil relative motion that are not specified in the 
other models. However, to be able to use this model we need a more accurate geometry parameters 
identification (the number of position vectors is equal to those for the 7 and 8 DOF) and a 
consistent aerodynamic.  

This model can be useful if we want to isolate the motion of the payload in respect of the 
parafoil: but the computation time and the number of needed information for the model increase. 
More about this model can be find in [8]. 

 

 

Figure 107: 9 DOF schematic representation. 

 

6.3.1   EQUATIONS OF MOTION 
The 9 DOF complete model equations of motion are very similar to those in sections 4.2  

and 5.1  However, in the original model the lines twisting moment is not considered: a successive 
version of the model tries to insert the line contribution to the overall dynamics [15].  

𝑨𝟒𝒙𝟏𝟐 ∗ 𝒃𝟏𝟐𝒙𝟏 =

[
 
 
 
𝑭𝒑

𝑴𝒑

𝑭𝒔

𝑴𝒔]
 
 
 
 

 
 
(6.21) 
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𝑨𝟒𝒙𝟏𝟐= 
 

[
 
 
 
 
(𝑚𝑝 + 𝑚𝑒) ∗ 𝑰𝟑𝒙𝟑 + 𝑴𝒇′ −𝑴𝒇

′ ∗ 𝑺(𝒓𝑪𝑴) − (𝑚𝑝 + 𝑚𝑒) ∗ 𝑺(𝒓𝑪𝑩) 𝟎𝟑𝒙𝟑 −𝑰𝟑𝒙𝟑

𝑺(𝒓𝑩𝑴) ∗ 𝑴𝒇
′ 𝑰𝒑 + 𝑰𝒇 − 𝑺(𝒓𝑩𝑴) ∗ 𝑴𝒇

′ ∗ 𝑺(𝒓𝑪𝑴) 𝟎𝟑𝒙𝟑 𝑺(𝒓𝑪𝑩)

𝑚𝑠 ∗ 𝑹𝒔𝒃 𝟎𝟑𝒙𝟑 −𝑚𝑠 ∗ 𝑺(𝒓𝑪𝑺) 𝑹𝒔𝒃

𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝑰𝒔 −𝑺(𝒓𝑪𝑺) ∗ 𝑹𝒔𝒃]
 
 
 
 

 

 
 

 
(6.22) 

 
 

𝒃𝟏𝟐𝒙𝟏 = [𝑢�̇�   𝑣�̇� 𝑤�̇�   𝑝�̇�  𝑞�̇�  𝑟�̇�  𝑝�̇�  𝑞�̇�  𝑟�̇�  𝐹𝐶𝑋  𝐹𝐶𝑌  𝐹𝐶𝑍 ]′ 
 

 
 
 
(6.23) 

 
 

𝑭𝒑 = 𝑭𝒂
𝒑

+ 𝑭𝒃
𝒑

+ 𝑭𝒈
𝒑  

−𝑺(𝝎𝒑) ∗ [(𝑚 + 𝑚𝑒)𝑰𝟑𝒙𝟑 + 𝑴𝒇
′ ] ∗ [

𝑢𝑐

𝑣𝑐

𝑤𝑐

] + 𝑺(𝝎𝒑) ∗ 𝑴𝒇
′ ∗ 𝑺(𝒓𝑪𝑴) ∗ [

𝑝𝑝

𝑞𝑝

𝑟𝑝
] + 𝑺(𝝎𝒑)

∗ 𝑴𝒇
′ ∗ 𝑹𝒃𝒏 ∗ 𝑾 − (𝑚𝑝 + 𝑚𝑒) ∗ 𝑺(𝝎𝒑) ∗ 𝑺(𝝎𝒑) ∗ 𝒓𝑪𝑩 

 

 
 
 
 
(6.24) 

 
 
 
 

𝑴𝒑 

= 𝑴𝒂 + 𝑴𝒃
𝒑

+ 𝑺(𝒓𝑩𝑨) ∗ 𝑭𝒂
𝒑

− [
0
0

𝑀𝐶𝑍

]

− [𝑺(𝝎𝒑) ∗ (𝑰𝒑 + 𝑰𝒇
′ ) − 𝑺(𝒓𝑩𝑴) ∗ 𝑺(𝝎𝒑) ∗ 𝑴𝒇

′ ∗ 𝑺(𝒓𝑪𝑴)] ∗ [

𝒑𝒑

𝒒𝒑

𝒓𝒑

]

− 𝑺(𝒓𝑩𝑴) ∗ 𝑺(𝝎𝒑) ∗ 𝑴𝒇
′ ∗ [

𝑢𝑐

𝑣𝑐

𝑤𝑐

] + 𝑺(𝒓𝑩𝑴) ∗ 𝑺(𝝎𝒑) ∗ 𝑴𝒇
′ ∗ 𝑹𝒃𝒏 ∗ 𝑾 

 

 
 
 
 
 
 
 
 
 
 
 
(6.25) 

𝑭𝒔 = 𝑭𝒂
𝒔 + 𝑭𝒈

𝒔 + 𝑚𝑠 ∗ 𝑺(𝒓𝑪𝑺) ∗ 𝑮 − 𝑚𝑠 ∗ 𝑹𝒃𝒔 ∗ 𝑺(𝝎𝒑) ∗ [

𝑢𝑐

𝑣𝑐

𝑤𝑐

] − 𝑚𝑠 ∗ 𝑺(𝝎𝒔)

∗ 𝑺(𝝎𝒔) ∗ 𝒓𝑪𝑺 
 

 
 
(6.26) 

 

𝑴𝒔 = 𝑴𝒂
𝒔 + 𝑹𝒔𝒃 ∗ 𝑴𝒄 − 𝑺(𝝎𝒔) ∗ 𝑰𝒔 ∗ [

𝑝𝑠

𝑞𝑠

𝑟𝑠
] 

 

 
 
 
(6.27) 
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[

𝜙�̇�

�̇�𝑝

�̇�𝑝

] =

[
 
 
 
 
 1 sin(𝜙𝑝) ∗

sin(𝜃𝑝)

cos(𝜃𝑝)
cos(𝜙𝑝) ∗

sin(𝜃𝑝)

cos(𝜃𝑝)

0 cos (𝜙𝑝) − sin(𝜙𝑝)

0 sin(𝜙𝑝) ∗
1

cos (𝜃𝑝)
cos(𝜙𝑝) ∗

1

cos (𝜃𝑝)]
 
 
 
 
 

∗ [

𝑝𝑝

𝑞𝑝

𝑟𝑝
] 

 

 
 
 
(6.28) 

 

[

𝜙�̇�

�̇�𝑠

�̇�𝑠

] =

[
 
 
 
 
 1 sin(𝜙𝑠) ∗

sin(𝜃𝑠)

cos(𝜃𝑠)
cos(𝜙𝑠) ∗

sin(𝜃𝑠)

cos(𝜃𝑠)

0 cos (𝜙𝑠) − sin(𝜙𝑠)

0 sin(𝜙𝑠) ∗
1

cos (𝜃𝑠)
cos(𝜙𝑠) ∗

1

cos (𝜃𝑠)]
 
 
 
 
 

∗ [

𝑝𝑠

𝑞𝑠

𝑟𝑠
] 

 

 
 
 
 
(6.29) 

[
�̇�
�̇�
�̇�
] = 𝑹′𝒃𝒏 ∗ [

𝑢
𝑣
𝑤

] 

 
 
(6.30) 
 
 

𝑴𝑪 = [
0
0

𝑀𝐶𝑍

] ; 𝐾𝜓 = 0.07 𝑁 ∗
𝑚

𝑟𝑎𝑑
; 𝐾𝑟 =0.005 𝑁 ∗

𝑚∗𝑠

𝑟𝑎𝑑
;  

 

 
 
(6.31) 

 

6.4   COMPLETE 9 DOF SIMULATIONS 
In this section the results of a S-maneuver are presented. Fewer simulation has been made 

for this model: there is still a limited application in the projects view. The simplified 9 DOF can 
for now satisfy our requirements for this preliminary phase. If the 9 DOF will be the chosen 
configuration more analysis can be performed with this last implemented model. 
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                                         Figure 108: Control deflection complete 9 DOF. 
 
 
 
 
 

 
Figure 109: Descending trajectory complete 9 DOF. 
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Figure 110: Downrange trajectory complete 9 DOF. 
 

 

 

Figure 111: Flight-path angle complete 9 DOF. 
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Figure 112: Sideslip angle complete 9 DOF. 

 

 

 

Figure 113: Pitch angle complete 9 DOF. 

 



89 
 

 

Figure 114: Roll angle complete 9 DOF. 

 

 

Figure 115: Yaw angle complete 9 DOF. 

• Validation: we tried to match the trend of the plots in [18], unfortunately we lack their 
exact inputs parameters. The simulation is made on Earth environment. 
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Figure 116: Pitch angle trend comparison. 

 

 

Figure 117: Roll angle trend comparison. 
 



91 
 

7   HANG GLIDER LOW FIDELITY MODEL: 6 
DOF 

We project to use a steerable system to deliver safely the payload to a landing site: the 
hang glider can give even more maneuverability and a wider range, it can be able to reach 
interesting landing sites with a better control authority. Small shifts of the loads can origin 
complex patterns, fulfil many different trajectories and, maybe, reach difficult landing sites. The 
issue that we would have to face is how to deploy a hang glider from a spinning probe: the 
complexity lays in both the unfolding maneuver and the rotation of the payload. We would need 
to de-spin the load and then find a way to open the glider or we can deploy the system after the 
parafoil on a lower altitude. We could than enhance the motion planning capabilities of all the 
probe or of one particular scientific payload. 

To understand the capability of the system, we developed a 6 DOF model of the hang 
glider. In literature, some models can be find: most of them are already linearized ( [19], [20], [6]) 
or have higher degrees of freedom, usually 9 ( [21], [22]).  The main aim of this model is to capture 
the dynamics of the glider. However, we want to keep the equations simple with few inputs that 
can be well-known even in this preliminary phase of the project. 

The model recalls the one of the parafoil in chapter 3  the main differences are: 
• No rigging angles 
• Flat wing for the glider (the apparent masses and inertias are evaluated in respect to a flat 

wing, see section 0). 
• The control of the glider is given displacing the load to generate maneuvering moments 

to shape the trajectory. 
The hang glider wing reference frame will be called {p} as for the parafoil, the direction 

of the axis and characteristics are the same just with a quite different wing shape.  In the formulas 
the quantities related to the hang glider will be label with a “g” as apex. 

 

 

Figure 118: Hang glider side view. 
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7.1   EQUATIONS OF MOTION 
The equations of motion can be written as: 

[
𝑚 ∗ 𝑰𝟑𝒙𝟑 + 𝑴𝒇 −𝑴𝒇 ∗ 𝑺(𝒓𝑩𝑴)

𝑺(𝒓𝑩𝑴) ∗ 𝑴𝒇 𝑰 + 𝑰𝒇 − 𝑺(𝒓𝑩𝑴) ∗ 𝑴𝒇 ∗ 𝑺(𝒓𝑩𝑴)
] ∗

[
 
 
 
 
 
�̇�
�̇�
�̇�
�̇�
�̇�
�̇� ]
 
 
 
 
 

= [
𝑭
𝑴

] 

 

 
(7.1) 

𝑭 = 𝑭𝒂
𝒈

+ 𝑭𝒂
𝒔 + 𝑭𝒈

𝒈
+ 𝑭𝒈

𝒔 − 𝑚 ∗ 𝑺(𝝎) ∗ [
𝑢
𝑣
𝑤

] − 𝑺(𝝎) ∗ 𝑴𝒇 ∗ ([
𝑢
𝑣
𝑤

] − 𝑺(𝒓𝑩𝑴) ∗ [
𝑝
𝑞
𝑟
])

+ 𝑺(𝝎) ∗ 𝑴𝒇 ∗ 𝑹𝒃𝒏 ∗ 𝑾 
 

 
(7.2) 

𝑴 = 𝑴𝒂
𝒈

+ 𝑺(𝒓𝑩𝑴) ∗ 𝑭𝒂
𝒈

+ 𝑺(𝒓𝑩𝑴) ∗ 𝑭𝒈
𝒈

+ 𝑺(𝒓𝑩𝑺) ∗ 𝑭𝒂
𝒔 + 𝑺(𝒓𝑩𝑺) ∗ 𝑭𝒈

𝒔 − 𝑺(𝝎) ∗ 𝑰

∗ [
𝑝
𝑞
𝑟
] − 𝑺(𝝎) ∗ 𝑰𝒇 ∗ [

𝑝
𝑞
𝑟
] − 𝑺(𝒓𝑩𝑴) ∗ 𝑺(𝝎) ∗ 𝑴𝒇

∗ ([
𝑢
𝑣
𝑤

] − 𝑺(𝒓𝑩𝑴) ∗ [
𝑝
𝑞
𝑟
] − 𝑹𝒃𝒏 ∗ 𝑾) 

 

 
(7.3) 

[

�̇�

�̇�
�̇�

] =

[
 
 
 
 
 1 sin(𝜙) ∗

sin(𝜃)

cos(𝜃)
cos(𝜙) ∗

sin(𝜃)

cos(𝜃)

0 cos (𝜙) − sin(𝜙)

0 sin(𝜙) ∗
1

cos (𝜃)
cos(𝜙) ∗

1

cos (𝜃)]
 
 
 
 
 

∗ [
𝑝
𝑞
𝑟
] 

 

 
(7.4) 

[
�̇�
�̇�
�̇�
] = 𝑹′𝒃𝒏 ∗ [

𝑢
𝑣
𝑤

] 

 
 
(7.5) 
 
 

Where: 
• “m” is the overall system mass:  

 
𝑚 = 𝑚𝑝𝑎𝑦𝑙𝑜𝑎𝑑 + 𝑚𝑝𝑎𝑟𝑎𝑓𝑜𝑖𝑙 + 𝑚𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 𝑙𝑖𝑛𝑒𝑠 

 

 
(7.6) 

• “𝑴𝒇” is the hang glider apparent mass tensor. 
• “𝑰𝒇” is the hang glider apparent inertia tensor. 
• “W” is the wind vector expressed in the navigation frame{n}. 

 
𝑽𝒈𝒓𝒐𝒖𝒏𝒅 = 𝑽𝒂𝒊𝒓𝒔𝒑𝒆𝒆𝒅 − 𝑾 

 

 
(7.7) 

• “𝑺(𝒓𝑩𝑴)” is the skew-symmetric matrix that replace the vector product "𝒓𝑩𝑴 × " 
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𝑺(𝒓𝑩𝑴) = [

0 −𝑧𝐵𝑀 𝑦𝐵𝑀

𝑧𝐵𝑀 0 −𝑥𝐵𝑀

−𝑦𝐵𝑀 𝑥𝐵𝑀 0
] 

 

 
 
(7.8) 

 
Where 𝒓𝑩𝑴 is the vector that points from the origin of the body reference frame to the 
glider center of gravity. In our model it is evaluated as: 

 
𝒓𝑩𝑴 = [ 𝑥𝐵𝑀   𝑦𝐵𝑀  𝑧𝐵𝑀] 

 

 
(7.9) 

𝑥𝐵𝑀 = 𝑥𝐵𝑀𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒 + 𝛿𝑥 ∗
𝑧𝐵𝑆

𝑧𝐵𝑀
  ; 𝑦𝐵𝑀 = 𝛿𝑦 ∗

𝑧𝐵𝑆

𝑧𝐵𝑀
   

 

 
(7.10) 

The 𝛿𝑥  𝑎𝑛𝑑 𝛿𝑦 are the payload displacements that change the position of the system center 
of mass. Therefore, they are needed to find the position vector from body reference frame 
{b} to {p}. If you change the load position, the system C.G. will shift [4]. 

• “𝑺(𝒓𝑩𝑺)” is the skew-symmetric matrix that replace the vector product 𝒓𝑩𝑺 ×: 

𝑺(𝒓𝑩𝑺) = [

0 −𝑧𝐵𝑆 𝑦𝐵𝑆

𝑧𝐵𝑆 0 −𝑥𝐵𝑆

−𝑦𝐵𝑆 𝑥𝐵𝑆 0
] 

 

 
(7.10) 

Where 𝒓𝑩𝑺 is the vector that points from the origin of the body reference frame to the 
payload mass center. In our model it is evaluated as: 

 
𝒓𝑩𝑺 = [𝛿𝒙 + 𝑥𝐵𝑆  𝛿𝑦   𝑧𝐵𝑆] 

 

 
(7.11) 

• “𝛿𝑥” is the payload longitudinal displacement used for control. 
• “𝛿𝑦” is the payload lateral displacement used for control. 
• “𝑆(𝝎)” is the skew-symmetric matrix of the system rates: 

 

𝑺(𝝎) = [

0 −𝑟 𝑞
𝑟 0 −𝑝

−𝑞 𝑝 0
] 

 

 
 
(7.12) 

• “𝑭𝒂 
𝒈

”  is the hang glider aerodynamic force vector expressed as: 
 

𝑭𝒂 
𝒈

=
1

2
∗ 𝜌 ∗ 𝑉𝑎𝑔

2 ∗ 𝑆𝑔 ∗ 𝑹𝒈𝒘 ∗ [

−(𝐶𝐿0 + 𝐶𝐿𝑎𝑙𝑝ℎ𝑎 ∗ 𝛼 + 𝐶𝐿𝑑𝑠 ∗ 𝛿�̅�)

𝐶𝑌𝑏𝑒𝑡𝑎 ∗ 𝛽

−(𝐶𝐷0 + 𝐶𝐷𝑎2 ∗ 𝛼2 + 𝐶𝐷𝑑𝑠 ∗ 𝛿�̅�)

] 

 

 
 
(7.13) 

 
 
 
Where 
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➢  “𝑹𝒑𝒘” is the rotation matrix between the wind frame {w} and hang glider frame 
{p}. The matrix is expressed in terms of angle of attach, 𝛼, and sideslip angle,  𝛽. 

 

𝑹𝒑𝒘 = 𝑹𝜶 ∗ 𝑹𝜷 = [
cos(𝛼) 0 − sin(𝛼)

0 1 0
sin(𝛼) 0 cos(𝛼)

] ∗ [
cos(𝛽) sin(𝛽) 0

−sin(𝛽) cos(𝛽) 0
0 0 1

 ] 

 

(7.14) 

𝛼 = tan−1 (
𝑤𝑔

𝑢𝑔
) 

 

(7.15) 

𝛽 = tan−1

(

 
𝑣𝑔

√𝑢𝑔
2 + 𝑤𝑔

2

)

  

 

(7.16) 

𝑽𝒂𝒈 = ([
𝑢
𝑣
𝑤

] + 𝑺(𝝎) ∗ 𝒓𝑩𝑴 − 𝑹𝒃𝒏 ∗ 𝑾)

= (𝑽 + 𝑺(𝝎) ∗ 𝒓𝑩𝑴 − 𝑹𝒃𝒏 ∗ 𝑾) 
 

(7.17) 

𝑉𝑎𝑔 = √𝑢𝑔
2 + 𝑣𝑔

2 + 𝑤𝑔
2 

 

(7.18) 

• “𝑴𝒂 
𝒈

”  is the hang glider aerodynamic moment vector expressed as: 
 

𝑴𝒂 
𝒈

=
1

2
∗ 𝜌 ∗ 𝑉𝑎𝑔

2 ∗ 𝑆𝑔

∗

[
 
 
 
 
 
 𝑏(𝐶𝑙𝛽 ∗ 𝛽 +

𝑏

2 ∗ 𝑉𝑎
∗ 𝐶𝑙𝑟 ∗ 𝑟 +

𝑏

2 ∗ 𝑉𝑎
∗ 𝐶𝑙𝑝 ∗ 𝑝 + 𝐶𝑙𝛿𝑎

∗ 𝛿𝑎
̅̅ ̅)

𝑐̅ ∗ (𝐶𝑚0 + 𝐶𝑚𝛼 ∗ 𝛼 +
𝑏

2 ∗ 𝑉𝑎
∗ 𝐶𝑚𝑞 ∗ 𝑞)

𝑏(𝐶𝑛𝛽 ∗ 𝛽 +
𝑏

2 ∗ 𝑉𝑎
∗ 𝐶𝑛𝑝 ∗ 𝑝 +

𝑏

2 ∗ 𝑉𝑎
∗ 𝐶𝑛𝑟 ∗ 𝑟 + 𝐶𝑛𝛿𝑎

∗ 𝛿𝑎
̅̅ ̅

]
 
 
 
 
 
 

 

 

 
 
 
 
 
 
(7.19) 

• “𝑭𝒂 
𝒔 ” is the payload aerodynamic force vector expressed as: 

 
 

𝑭𝒂
𝒔 =

1

2
∗ 𝜌 ∗ 𝑉𝑎𝑠

2 ∗ 𝑆𝑠 ∗ 𝑹𝒔𝒘 ∗ [
−𝐶𝐷𝑠

 0
0

] 

 

 
 
(7.20) 

 
Where  

➢ “𝑹𝒔𝒘” is the rotation matrix between the wind frame {w} and payload body frame 
{s}. The matrix has the same expression as the one for the parafoil. 
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𝑽𝒔 = ([
𝑢
𝑣
𝑤

] + 𝑺(𝝎) ∗ 𝒓𝑩𝑪 − 𝑹𝒃𝒏 ∗ 𝑾) 

 

 
 
(7.21) 

 

𝑉𝑎𝑠 = √𝑢𝑠
2 + 𝑣𝑠

2 + 𝑤𝑠
2 

 

 
 
(7.22) 

The aerodynamic moment of the payload is usually neglected: however, if the payload has 
some lifting characteristics, we should include it in the computation. 

•  “𝑭𝒈
𝒈

” is the glider weight force expressed in body frame as: 
 

𝑭𝒈
𝒈

= (𝑚𝑔𝑙𝑖𝑑𝑒𝑟) ∗ [

− sin(𝜃)

cos(𝜃) ∗ sin(𝜙)

cos(𝜃) ∗ cos(𝜙)
] 

 

 
 
(7.23) 

• “𝑭𝒈
𝒈

” is the payload weight force expressed in body frame as: 

 

𝑭𝒈
𝒔 = (𝑚𝑝𝑎𝑦𝑙𝑜𝑎𝑑) ∗ [

− sin(𝜃)

cos(𝜃) ∗ sin(𝜙)

cos(𝜃) ∗ cos(𝜙)
] 

 

 
 
 
 
 
(7.24) 

• The apparent masses and inertias generate a set of forces and moments that can be 
expressed as: 

𝑭𝒂𝒑𝒑 = −{[𝑴𝒇 ∗ ([
�̇�
�̇�
�̇�

] − 𝑺(𝒓𝑩𝑴) ∗ [
�̇�
�̇�
�̇�

])]

+ [𝑺(𝝎) ∗ 𝑴𝒇 ∗ ([
𝑢
𝑣
𝑤

] − 𝑺(𝒓𝑩𝑴) ∗ [
𝑝
𝑞
𝑟
] − 𝑹𝒃𝒏 ∗ 𝑾)]} 

 

 
 
 
 
(7.25) 

𝑴𝒂𝒑𝒑 = −(𝑴𝒇 ∗ [
�̇�
�̇�
�̇�
] + 𝑺(𝝎) ∗ 𝑴𝒇 ∗ 𝑹𝒑𝒃 ∗ [

𝑝
𝑞
𝑟
]) + 𝑺(𝒓𝑩𝑴) ∗ 𝑭𝒂𝒑𝒑 

 

 
 
(7.26) 

 

7.2   GEOMETRICAL CHARACTERISTICS OF THE HANG 
GLIDER 

The geometry of the problem is different from the parafoil. However, the same concerns 
on the reliability of the aerodynamics and the geometrical guesses rise even in this case. 

The initial parameters used are recall in Table 11 (the payload parameters are the same 
use in section 3.2  for the parafoil). The latero-directional aerodynamics is modelled with 
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aerodynamic coefficients from [20], the longitudinal aerodynamics is derived from plots from [23] 
for a [20] similar hang glider. 

Table 11: Hang Glider geometrical inputs. 
𝑏 = 15 𝑚 Hang Glider wing span 
𝐴𝑅 = 7 Hang Glider wing aspect ratio 

𝑐𝑚𝑒𝑎𝑛 =
𝑏

𝐴𝑅
= 1.43 𝑚 

Hang Glider wing mean 
aerodynamic chord 

𝑡 = 0.14 𝑚 Hang Glider wing mean thickness 
𝑆 = 𝑏 ∗ 𝑐𝑚𝑒𝑎𝑛 = 14.3 𝑚2 Hang Glider wing surface 

𝑅 = 0.12 ∗ 𝑏 = 1.2 𝑚 Hang Glider hang straps length 
𝜎 = 1.5 Hang Glider wing aerial density 

𝑙𝑔𝑝 = 0.143 𝑚 Hang Glider distance between the wing mass center and 
the payload hang point in the XY-plane. 

𝑚𝑔 = Hang Glider Mass 

 
Table 12: Latero-directional aerodynamic coefficients 

𝐶𝑌𝛽
= 0.037 𝐶𝑌𝑝

= 0.23 𝐶𝑌𝑟
= 0.015 

𝐶𝑙𝛽 = −0.137 𝐶𝑙𝑝 = −0.84 𝐶𝑙𝑟 = 0.072 
𝐶𝑛𝛽

= 0.034 𝐶𝑛𝑝
= −0.370 𝐶𝑛𝑟

= −0.027 
𝐶𝐷𝑝𝑎𝑦𝑙𝑜𝑎𝑑

= 0.4   
 

 

 
Figure 119: Hang Glider lift coefficient. 

 

 
Figure 120: Hang Glider drag coefficient. 
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Figure 121: Hang Glider moment coefficient. 

 
   

The inertia of the payload can be written as in section 3.2.1  for the hang glider the 
formulas are similar: 

 
𝐼𝑥ℎ𝑔 =

𝑚𝑔

12
∗ (𝑏2 + 𝑡2) 

 

 
(7.27) 

 
𝐼𝑦ℎ𝑔

=
𝑚𝑔

12
∗ (𝑐2 + 𝑡2) 

 

 
(7.28) 

 
𝐼𝑧ℎ𝑔

=
𝑚𝑔

12
∗ (𝑏2 + 𝑐2) 

 

 
(7.29) 

The system inertia used in the equation of motion can be written as: 

 
𝐼𝑥 = 𝐼𝑥ℎ𝑔

+ 𝐼𝑥𝑠 + 𝑚𝑔 ∗ 𝑟𝑧ℎ𝑔
2 + 𝑚𝑠 ∗ 𝑟𝑧𝑠

2  
 

 
(7.30) 

 
𝐼𝑦 = 𝐼𝑦ℎ𝑔

+ 𝐼𝑦𝑠 + 𝑚𝑔 ∗ 𝑟𝑧ℎ𝑔
2 + 𝑚𝑠 ∗ 𝑟𝑧𝑠

2 + 𝑚𝑔 ∗ 𝑟𝑥ℎ𝑔
2 + 𝑚𝑠 ∗ 𝑟𝑥𝑠

2  
 

 
(7.31) 

 
𝐼𝑧 = 𝐼𝑧ℎ𝑔

+ 𝐼𝑧𝑠 + 𝑚𝑔 ∗ 𝑟𝑧ℎ𝑔
2 + 𝑚𝑠 ∗ 𝑟𝑧𝑠

2 + 𝑚𝑔 ∗ 𝑟𝑥ℎ𝑔
2 + 𝑚𝑠 ∗ 𝑟𝑥𝑠

2  
 

 
(7.32) 

Where the distance along z of the glider and the payload is: 

 

𝑙𝑧 =
𝑧𝑠

2
+ 𝑅 +

𝑡

2
 

 
(7.33) 
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The distance along z between the glider center of mass and the system C.G and between 
the payload center of mass and the system C.G are formulated as: 

 

𝑟𝑧𝑠 = 𝑙𝑧 ∗ (
𝑚𝑔

𝑚𝑔 + 𝑚𝑠
) 

 

(7.34) 

 
𝑟𝑧ℎ𝑔 = 𝑟𝑧𝑔 − 𝑙𝑧 

 
(7.35) 

The distance along x between the glider center of mass and the system C.G and between 
the payload center of mass and the system C.G are formulated as: 

𝑟𝑥𝑠 = −𝑙𝑔𝑠 ∗ (
𝑚𝑔

𝑚𝑔 + 𝑚𝑠
) 

 
(7.36) 

 
𝑟𝑥ℎ𝑔 = 𝑙𝑔𝑠 ∗ |𝑟𝑥𝑠| 

 

 
(7.37) 

 
 

7.3   STEADY STATE SIMULATIONS 
The hang glider is a high efficiency system (𝐿

𝐷
= 4 ÷ 5) that seems to benefit the high-

density Titan atmosphere: however, at high altitude (≈ 40 km) some oscillations of small amplitude 
are experienced. The steady state simulations are performed for a deployment of the hang glide at 
40 km with an airspeed velocity of  𝑉𝑎 = 11 𝑚/𝑠 to decrease the overall oscillation period: the 
higher is the deployment velocity the longer will be the time needed to stabilize the system at that 
altitude.  

The overall angle of attack is smaller than the parafoil case study. Nevertheless, the 
efficiency and the gliding performances are increased. The main issue of the hang-glider could be 
the complexity of the system deployment after the aeroshell entry. The parafoil can be easily 
folded: folding a hang-glider imply an accurate study on the shape and deployment of the system. 
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Figure 122: Angle of attack hang glider. 

 

 
 

 

Figure 123: Flightpath angle hang glider. 
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Figure 124: Efficiency of the hang glider. 

 

7.4   ASYMMETRIC DEFLECTION SIMULATION 
Both a spiral maneuver and an S-maneuver have been simulated to study the capability of 

the system: that results show that a small shift of the lift (around the tens of centimeters) can  
accommodate a stable maneuver. The S-maneuver is performed at 40 km with a 𝑉𝑎 = 11 𝑚/𝑠 and 
will be presented in this section. 

 

Figure 125: Sideslip angle S-maneuver. 
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Figure 126: Roll angle S-maneuver. 

 

 

 

Figure 127: Yaw angle S-maneuver. 
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Figure 128: Pitch angle S-maneuver. 

 

 

 

Figure 129: XY-plane S-maneuver. 
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Figure 130: XZ-plane S-maneuver. 
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8   PAYLOAD WINGSUIT LOW FIDELITY MODEL: 6 
DOF 

The wingsuit was first thought as a possible alternative to merge the hang glider 
characteristic with the parafoil simple deployments for a large payload. The simulations show that 
the solution is not the most feasible choice: however, for small payload we can not only exploit 
the wingsuit simple deployment but even land “vertically” in a fashion similar to that of a flying 

squirrel (used as the main model to study this dynamic system [24]). In this section will be 
analyzed this solution for small payloads. The model needs still development: for other missions 
with different requirements, targeting the surface of Titan with small gliding sessions the solution 
start to be very interesting. 

 

Figure 131: Flying squirrel configuration. The mammal usually increase its performance 
during flight modifying its paw configuration. 

 

8.1   EQUATIONS OF MOTION 
The wingsuit model is composed of a 3 DOF model to size the wingsuit dimensions: fixed 

the 𝐶𝐿 𝑎𝑛𝑑 𝐶𝐷 for a rectangular wing of AR of 2, we can find the required wingsuit area to obtain 
a stable flight based on the payload weight. Than the parameters are inserted in a 6 DOF model. 
The simulation is performed taking into account a small tail to attach at the payload: the “tail” is 
needed to stabilize the vehicle. The wingsuit is unstable in low angle/low velocities regimes: to 
have a stable flight we must trim the system with a tail. The horizontal stabilizer dimensions should 
be computed case by case thinking about the performances we would like to have and the glider 
capabilities.   

The mathematical expressions for the wingsuit are easier than in the previous cases: they 
detach the apparent masses effect, the force expressions are simple and straightforward. The only 
difficult point is to find how to size the tail. 
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[
(𝑚 + 𝑚𝑒) ∗ 𝑰𝟑𝒙𝟑 𝟎𝟑𝒙𝟑

𝟎𝟑𝒙𝟑 𝑰
] ∗

[
 
 
 
 
 
�̇�
�̇�
�̇�
�̇�
�̇�
�̇� ]
 
 
 
 
 

= [
𝑭
𝑴

] 

 

 
 
 
(8.1) 

𝑭 = 𝑭𝒂
𝒘𝒔 + 𝑭𝒈 
 

𝑭𝒂 
𝒘𝒔 =

1

2
∗ 𝜌 ∗ 𝑉𝑎𝑝

2 ∗ 𝑆𝑝 ∗ [

−(𝐶𝐿0 + 𝐶𝐿𝑎𝑙𝑝ℎ𝑎 ∗ 𝛼 + 𝐶𝐿𝑑𝑠 ∗ 𝛿�̅�)

𝐶𝑌𝑏𝑒𝑡𝑎 ∗ 𝛽

−(𝐶𝐷0 + 𝐶𝐷𝑎2 ∗ 𝛼2 + 𝐶𝐷𝑑𝑠 ∗ 𝛿�̅�)

] 

 

𝑭𝒈 = (𝑚𝑝𝑎𝑟𝑎𝑓𝑜𝑖𝑙 + 𝑚𝑒 + 𝑚𝑝𝑎𝑦𝑙𝑜𝑎𝑑) ∗ 𝑔 ∗ [

− sin(𝜃)

cos(𝜃) ∗ sin(𝜙)

cos(𝜃) ∗ cos(𝜙)
] 

 

 
 
 
 
 
(8.2) 

𝑴 = 𝑴𝒂 − 𝑺(𝝎) ∗ 𝑰 ∗ [
𝑝
𝑞
𝑟
] − 𝑺(𝝎) ∗ 𝑰𝒇

′ ∗ [
𝑝
𝑞
𝑟
] + 𝑭𝒂𝒕𝒂𝒊𝒍

∗ (𝒄𝒑𝒘𝒔
− 𝒄𝒑𝒕𝒂𝒊𝒍

) 

 

𝑴𝒂 
𝒑

=
1

2
∗ 𝜌 ∗ 𝑉𝑎𝑝

2 ∗ 𝑆𝑝 ∗

[
 
 
 
 
 
 𝑏(𝐶𝑙𝛽 ∗ 𝛽 +

𝑏

2 ∗ 𝑉𝑎
∗ 𝐶𝑙𝑟 ∗ 𝑟 +

𝑏

2 ∗ 𝑉𝑎
∗ 𝐶𝑙𝑝 ∗ 𝑝)

𝑐̅ ∗ (𝐶𝑚0 + 𝐶𝑚𝛼 ∗ 𝛼 +
𝑏

2 ∗ 𝑉𝑎
∗ 𝐶𝑚𝑞 ∗ 𝑞)

𝑏(𝐶𝑛𝛽 ∗ 𝛽 +
𝑏

2 ∗ 𝑉𝑎
∗ 𝐶𝑛𝑝 ∗ 𝑝 +

𝑏

2 ∗ 𝑉𝑎
∗ 𝐶𝑛𝑟 ∗ 𝑟

]
 
 
 
 
 
 

 

 

 
 
 
 
 
 
(8.3) 

[

�̇�

�̇�
�̇�

] =

[
 
 
 
 
 1 sin(𝜙) ∗

sin(𝜃)

cos(𝜃)
cos(𝜙) ∗

sin(𝜃)

cos(𝜃)

0 cos (𝜙) − sin(𝜙)

0 sin(𝜙) ∗
1

cos (𝜃)
cos(𝜙) ∗

1

cos (𝜃)]
 
 
 
 
 

∗ [
𝑝
𝑞
𝑟
] 

 

 
 
 
(8.4) 

[
�̇�
�̇�
�̇�
] = 𝑹′𝒃𝒏 ∗ [

𝑢
𝑣
𝑤

] 

 
 
(8.5) 
 
 

The maneuvering is performed shifting the “tail” to side or up and down: the contribute 
of the tail will mainly affect the overall moment. “(𝒄𝒑𝒘𝒔

− 𝒄𝒑𝒕𝒂𝒊𝒍
)” is the distance between the 

center of pressure of the wing and the center of pressure of the wingsuit tail. 
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8.2   STEADY STATE SIMULATIONS 
Some initial steady state simulations have been performed for the wingsuit to understand 

its capabilities to land vertically.  

 

Figure 132: Vertical landing small robot wingsuit model. 

 

Figure 133: Gliding ratio small robot wingsuit model. 

 

Figure 134: Pitch angle small robot wingsuit model. 
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9   PADS GUIDANCE, NAVIGATION AND CONTROL 
Part of this research was to develop models for a high precision delivery system on Titan 

environment, the other part is focused on how to use those models in a possible flight scenario in 
which Titan winds will make the parafoil drift away from target and some maneuvering will be 
required to land on spot. In this section a guidance navigation and control system will be analyzed 
for prove the capability of the models in plausible operational conditions and to lay the foundation 
of this kind on analysis.  

 

 

Figure 135: GNC model for the parafoil. 

In PADs GNC some important assumptions are made to simplify the equation and the 
approach of the trajectory definition: 

• The sideslip angle 𝛽 is small so that we can confound heading angle and yaw angle 
𝜒𝑤𝑖𝑛𝑑 𝑟𝑒𝑓 𝑓𝑟𝑎𝑚𝑒 ≅ 𝜓𝑁𝐸𝐷. 

• The wind is usually considered consistent only along the x-axis. 
• The PADs should land against the wind (downwind). This will prevent payload roll-over, 

will decrease the landing speed and will permit a flare maneuver. 

9.1   WIND ESTIMATOR 
The environmental conditions should affect the planned trajectory and the parafoil 

performance during descent. The true guidance system should re-plane the trajectory every 
interval of time to take into account the strong wing uncertainties during descent.  

During flight the wind can be estimated from the airspeed lecture of the Pitot and the IMU 
(Inertial Measurement Unit) will give the system linear velocities as output. 

𝑾 = 𝑽𝑵𝑬𝑫 − 𝑽𝒂𝒊𝒓𝒔𝒑𝒆𝒆𝒅 
These lectures are affected by a noisy environments and errors: the values must be filtered 

to find a reliable quantity to use to plane the needed corrective maneuver.  
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Table 13: Noisy uncertainties used for the wind estimation [25]. 
𝜎𝑎𝑖𝑟𝑠𝑝𝑒𝑒𝑑 ≅ 0.2 𝑚/𝑠 Uncertainty on airspeed lecture 

𝜎𝑁𝐸𝐷 ≅ 0.1 𝑚/𝑠 Uncertainty on ground speed lecture 
𝜎𝑓𝑙𝑖𝑔ℎ𝑡𝑝𝑎𝑡ℎ ≅ 1 𝑑𝑒𝑔 Uncertainty on flightpath angle (from TRN) 
𝜎ℎ𝑒𝑎𝑑𝑖𝑛𝑔 ≅ 1 𝑑𝑒𝑔 Uncertainty on heading angle (from TRN) 
 

�̇�𝑚 = �̇�𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑚𝑜𝑑𝑒𝑙 + 𝜎�̇� ∗ 𝑝�̇� 
�̇�𝑚 = �̇�𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑚𝑜𝑑𝑒𝑙 + 𝜎�̇� ∗ 𝑝�̇� 
�̇�𝑚 = �̇�𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑚𝑜𝑑𝑒𝑙 + 𝜎�̇� ∗ 𝑝�̇� 

𝑉𝑎𝑚 = 𝑉𝑎𝑖𝑟𝑠𝑝𝑒𝑒𝑑 + 𝜎𝑎𝑖𝑟𝑠𝑝𝑒𝑒𝑑 ∗ 𝑝𝑎𝑖𝑠𝑝𝑒𝑒𝑑 
𝛾𝑎𝑚 = 𝛾𝑎 + 𝜎𝑓𝑙𝑖𝑔ℎ𝑡𝑝𝑎𝑡ℎ ∗ 𝑝𝑓𝑙𝑖𝑔ℎ𝑡𝑝𝑎𝑡ℎ 

𝜒𝑎𝑚 = 𝜒𝑎 + 𝜎ℎ𝑒𝑎𝑑𝑖𝑛𝑔 ∗ 𝑝ℎ𝑒𝑎𝑑𝑖𝑛𝑔 
 
The {𝑝�̇� , 𝑝�̇� , 𝑝�̇�, 𝑝𝑎𝑖𝑠𝑝𝑒𝑒𝑑 , 𝑝𝑓𝑙𝑖𝑔ℎ𝑡𝑝𝑎𝑡ℎ, 𝑝ℎ𝑒𝑎𝑑𝑖𝑛𝑔 } are random number normally 

distributed: with this expedient we can simulate the noisy measurements while descending in Titan 
atmosphere with our software. 

From those measurements affected by error we can estimate the wind that need to be 
filtered. 

 
𝑤𝑥𝑚

= �̇�𝑚 − 𝑉𝑎𝑚 ∗ cos(𝜒𝑎𝑚) ∗ cos (𝛾𝑎𝑚) 
𝑤𝑦𝑚 = �̇�𝑚 − 𝑉𝑎𝑚 ∗ sin(𝜒𝑎𝑚) ∗ cos (𝛾𝑎𝑚) 

𝑤𝑧𝑚
= �̇�𝑚 − 𝑉𝑎𝑚 ∗ sin (𝛾𝑎𝑚) 

 
To filter the wind evaluations, we can use a “recursive mean value estimation”, a filter 

(e.g. Nonlinear Estimation Filter) or a predictive method that propagate the wind profile up to 
ground level (but it can be quite expensive in terms of computational power). 

We chose to use the “recursive mean value estimation”: simple formulation, reliable 
results and works throughout all the GNC simulation. 

• Mean Error along all the trajectory between exponential wind profile and estimated wind 
profile (derived from [1]): 0.002%. 

• Max Error along all the trajectory between exponential wind profile and estimated wind 
profile: 20% 

• Wind evaluated every 0.1 s (every GNC step). 
The standard “recursive mean value estimation” method is thought for PADs in Earth 

environment and for far lower altitudes than in Titan case study. The classic formulas are reported 
in [26]. 

�̅�𝒙𝒌+𝟏
= (𝑘 ∗ �̅�𝒙𝒌

+ 𝒘𝒙)/(𝑘 + 1) 
�̅�𝒚𝒌+𝟏

= (𝑘 ∗ �̅�𝒚𝒌
+ 𝒘𝒚)/(𝑘 + 1) 

 
(9.1) 

The expression (9.1) is useful if the wind environment doesn’t change abruptly during the 
simulated scenario: in our case the longitudinal wind changes in its intensity during the descent 
from 40 km. An update formulation that takes into account only the previous 100 steps to evaluate 
the mean wind and detach errors from propagating (9.1). 

If   𝑖 ≤ 𝑘1 
�̅�𝒙𝒌+𝟏

= (𝑘 ∗ 𝒎𝒆𝒂𝒏(�̅�𝒙𝒌
) + 𝒘𝒙)/(𝑘 + 1) 

�̅�𝒚𝒌+𝟏
= (𝑘 ∗ 𝒎𝒆𝒂𝒏(�̅�𝒚𝒌

) + 𝒘𝒚)/(𝑘 + 1) 
If 𝑖 > 𝑘1 

�̅�𝒙𝒌+𝟏
= (𝑘 ∗ 𝒎𝒆𝒂𝒏(�̅�𝒙𝒌

(𝑖 − 𝑘1: 𝑖)) + 𝒘𝒙)/(𝑘 + 1) 
�̅�𝒚𝒌+𝟏

= (𝑘 ∗ 𝒎𝒆𝒂𝒏(�̅�𝒚𝒌
(𝑖 − 𝑘1: 𝑖)) + 𝒘𝒚)/(𝑘 + 1) 

 
(9.2) 
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Figure 136:Zonal wind estimation. 

 

 

 

 

Figure 137: Meridian wind estimation. 
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Figure 138: Wind detail for the first 10 minutes of simulations. 

 

 

9.2   DENSITY ESTIMATOR 
During the flight the density will be estimated from the sensors, so we should add some 

noisy measurements even in that case. The density derives from an exponential formulation that 
depends on the height [3]: 

 

𝜌 = 5.43 ∗ 𝑒−0.0512∗
ℎ

1000 
 

 
(9.3) 

To introduce some randomness, we can again think to perturb the airspeed as in the 
Kalman filter or the height lecture used in (9.3).  

The first method is explained in [25] the second is based on the perturbation of the lecture 
from the radar altimeter. The system uncertainty can be approximated as 2-5% of the indicated 
height from measurement, we can obtain our value of uncertain density indication. 

In the GNC simulations we will use a “fading memory filter”: it is a recursive method 
similar to the linear-polynomial Kalman filter, but with an easiest formulation (less computational 
burdensome) due to the constant gain value. For a first order filter the gain 𝛽 is equal to 0.8. 

 
ℎ𝑘 = ℎ𝑘−1 + (1 − 𝛽) ∗ (ℎ𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − ℎ𝑘−1) 

ℎ𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = ℎ𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑚𝑜𝑑𝑒𝑙 + 𝜎ℎ𝑒𝑟𝑟𝑜𝑟

= ℎ𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑚𝑜𝑑𝑒𝑙 ∗ {
1.05 𝑖𝑓 ℎ > 5000 
1.02 𝑖𝑓 ℎ < 5000

 

𝜌𝑘 = 𝜌𝑘−1 + (1 − 𝛽) ∗ (𝜌𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑚𝑜𝑑𝑒𝑙 − 𝜌𝑘−1) 
 

(9.4) 
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Figure 139: Titan air density estimation. 

9.3   MOTION PLANNING 
The parafoil trajectory must be planned towards the nearest point of interest (near the 

entry point): we would need a quick generation of a feasible trajectory. Usually for PADs the 
trajectory is planned with a 3 DOF model on plane: the variables of interest are {𝑥, 𝑦, 𝜓}. From 
the wanted trajectory a series of waypoints is then computed on plane. In our deployment situation 
(40 km at 22 m/s) we need to take into account a more complex 3 DOF model that consider the 
sphericity of the planet. The model will generate a trajectory with {𝑉𝑎 , 𝛾𝑎 . 𝜒𝑎} (airspeed, flightpath 
angle and heading angle) and 𝜙𝑎 (bank angle) as a control. From this path we will compute our 
waypoints identified by a (𝑥, 𝑦, 𝑧) tern. The final point of the trajectory is {𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓}𝑁𝐸𝐷

=

{0,0,0}𝑁𝐸𝐷: with this expedient it will be easier to find a simple expression for optimize the 
trajectory for minimum control or as a Dubin path. During path planning usually only the wind 
vector is assumed to be 𝑊 = {𝑊𝑥 , 0,0} where the wind component along x is the strongest one. In 
the true simulated trajectory, the lateral wind and the wind gust will be taken into account. 
However, the controlled 6 DOF system should be able to contrast those inputs even with a discrete 
control. 

9.3.1   3 DOF MODEL WITH SPHERICAL PLANET 
The mathematical expressions used to define the waypoints are presented shortly in this 

section. The complete formulation can be found in [27]. In this case the body is modelized as a 
point mass with lift, drag, lateral force and buoyancy force (L, D, Y, B). The variable are the 
airspeed and the airspeed related flightpath angle and heading angle, that usually differ from the 
flightpath angle and heading angle associated to the NED quantities. However, in this formulation 
the body axis and the wind axis coincide [25]. Throughout all the formulation the wind is 
accommodated in the control equations (9.14-9.16) as in [26]. 

𝑉�̇� = (
𝐵

𝑚
− 𝑔) ∗ 𝑠𝑖𝑛(𝛾𝑎) −

𝐷

𝑚
  

 
(9.5) 
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�̇�𝑎 =
𝑉𝑎

𝑅𝑝 + ℎ
∗ cos(𝛾𝑎) + (

𝐵

𝑚
− 𝑔) ∗

cos(𝛾𝑎)

𝑉𝑎
+

L ∗ cos(𝜙𝑎) + 𝑌 ∗ sin (𝜙𝑎)

𝑚 ∗ 𝑉𝑎
 

 
(9.6) 

�̇�𝑎 = −
𝑉𝑎

𝑅𝑝 + ℎ
∗ cos(𝛾𝑎) ∗ cos(𝜒𝑎) ∗ tan (𝜆) +

L ∗ sin(ϕ𝑎) − Y ∗ sin (ϕa)

𝑚 ∗ 𝑉𝑎
 

 
(9.7) 

�̇� = 𝑉𝑎 ∗ sin(𝛾𝑎) = ℎ̇ 

 
(9.8) 

Λ̇ =
𝑉𝑎 ∗ cos(𝛾𝑎) ∗ cos (𝜒𝑎)

𝑟 ∗ cos (𝜆)
 

 
(9.9) 

�̇� =
𝑉𝑎 ∗ cos(𝛾𝑎) ∗ 𝑠𝑖𝑛(𝜒𝑎)

𝑟
 

 
(9.10) 

�̇� = 𝑉𝑎 ∗ 𝑠𝑖 𝑛(𝛾𝑎) + 𝑤𝑥 

 
(9.11) 

�̇� = 𝑉𝑎 ∗ cos(𝛾𝑎) ∗ cos (𝜒𝑎) + 𝑤𝑦 
 
(9.12) 

�̇� = 𝑉𝑎 ∗ cos(𝛾𝑎) ∗ sin(𝜒𝑎) + 𝑤𝑧 

 
(9.13) 

tan (𝜙𝑎) =
�̇�𝑏 ∗ 𝑟 ∗ 𝑉𝑎

𝑟 ∗ 𝑔 − 𝑉𝑎2
  

 

(9.14) 

 

�̇�𝑏 =
2 ∗ 𝑉𝑎 ∗ cos(𝛾𝑎) ∗ sin(𝜒𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝜒𝑎)

𝐿
   

 

(9.15) 

𝐿 = 𝑘 ∗ √(𝑦𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑦)
2
+ (𝑥𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑥)

2 (9.16) 

L is used to scale the intensity of the heading angle taking into account the distance 
between target and parafoil. This quantity can be modified with the k parameter: with different k 
we will obtain different trajectory that keeps into account the wind and that are all potentially 
feasible. Varying that quantity and the wind environment and the bank angle control, we can shape 
our path and find different solution to landing site.  To automate the process an optimal control 
with a minimization process is needed. From simulations seems that k should be equal to one in 
the energy management or terminal guidance phases where the distance between parafoil and 
target is small but can assume different values to shape the homing phase accordingly to a mission 
requirement or a scientific task. In the following simulations k is assumed equal to the unity, if not 
explicitly reported in the plots description. 

If we plane to arrive to a point at 30 km of distance from the release point a possible path 
can be seen in the following figures. The parafoil it’s upwind in the homing phase, when the wind 
intensity decreases below 3 m/s at 10 km the system can perform more intense maneuvers and 
start to aim more effectively at the landing site and land downwind. Throughout all the trajectory 
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the bank angle is limited in its intensity: we want a feasible trajectory for the system. For small 
PADs a continuous bank angle over 1 m/s can make the vehicle unstable and the 6 DOF model 
can experience some problems in following the planned path. To minimize the bank angle and 
land on point in every different scenario we would need to optimize our trajectory for minimum 
control. 

 

 

Figure 140: Trajectory from motion planning ( 𝜙𝑎𝑚𝑎𝑥
= 0.7 𝑟𝑎𝑑/𝑠) 

 

 

 
Figure 141: Trajectory from motion planning: tracks on x-y and x-z planes. 
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Figure 142: Motion planning reference trajectory latitude and longitude. 

 
The trajectory presented in the previous figures is one possible trajectory with a strong 

bank angle limitation [28]. The turn maneuver can cause quicker altitude loss and a steep spiral 
for descent. It can be hard to follow with a discrete control, at least with a simple proportional 
control in time domain. With a more raffinate control theory we should be able to perform any 
kind trajectory. If we simulate a series of trajectory with maximum bank angle of 𝜙𝑎 = 1.2 𝑟𝑎𝑑/𝑠, 
we can obtain different trajectories that lands on our target with different k values (all the other 
quantities are kept equal for the four paths). 

 

Figure 143: Trajectories obtained varying maximum bank angle and k. 

If we change the entry point keeping ( 𝜙𝑎𝑚𝑎𝑥
= 0.7 𝑟𝑎𝑑/𝑠), we can plot different 

trajectories that will try to land at the target {xf, yf, zf} = {0,0,0} km. The entries point will lie on 
a circle of radius 5 km around the nominal entry point, {x0, y0, z0} = {−30,30,40} km. However, 
without an optimizing tool and with the bank angle limitation the landing spots will can be 
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delimited in an ellipse of major axis of 4 km along x (northing) and a minor axis of 2 km along y 
(easting). The error in position at the entry point at 40 km will perturb the touchdown point, 
keeping all the other parameters equal. Future work will expand this analysis into a more detailed 
Montecarlo analysis. 

 

Figure 144: Scattering in the landing site with  𝜙𝑎𝑚𝑎𝑥
= 0.7

𝑟𝑎𝑑

𝑠
 

 

 

 

Figure 145: Scattering in the landing site with  𝜙𝑎𝑚𝑎𝑥
= 0.7

𝑟𝑎𝑑

𝑠
 (more complete Montecarlo Analysis) 
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Figure 146: Scattering in the landing site with  𝜙𝑎𝑚𝑎𝑥
= 0.7

𝑟𝑎𝑑

𝑠
  end points.. 

 

9.4   PROPORTIONAL CONTROL 
The control used in the routine is a simple fixed gain proportional control in time domain. 

In this preliminary phase we are not focused on the efficiency of the control but how the PADs 
will behave under some environmental effects, not precise sensor lectures and time-limited 
actuation. 

 
𝛿𝑎 = 𝐾𝑝1

(𝑡) ∗ 𝜒𝑑𝑜𝑡 = 𝐾𝑝2
(𝑡) ∗ Δ𝜒 = 𝐾𝑝2

(𝑡) ∗ (𝜒𝑤𝑎𝑦𝑝𝑜𝑖𝑛𝑡 − 𝜒𝑝𝑎𝑟𝑎𝑓𝑜𝑖𝑙) 
 

 
(9.17) 

The control will try to follow the on-plane trajectory (North-East). However, some 
waypoints cannot be reached because the 6 DOF PADs, with a more complex dynamics and 
various outside environmental effects, seems to lose altitude quicker than when it is modelled as 
a point mass object. If we follow the on-plane trajectory exactly we can land before our target. To 
obviate this problem the control algorithm aims always at the nearest waypoint with a lower height 
than the parafoil actual altitude.  
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Figure 147: 6 DOF PADs trajectory under control inputs. 
 

 

 

Figure 148: 6 DOF PADs trajectory under control inputs. 

9.5   PARAFOIL AND HANG GLIDER: COMPARISON  
The hang glider is a system with a higher efficiency than the parafoil, however its 

deployment from a probe can be tricky. Assuming a greater un-folding complexity, it is natural to 
ask: which is the advantage in terms of trajectory? If we plan to follow a trajectory similar to that 
of the parafoil presented in 9.3  the hang glider will have an energy management and will circulate 
the landing point. That can help us to analyze more accurately our landing spot and, if it is the 
case, change it a little. Or we can aim to further targets with the efficiency benefits: we can have 
more than 60 km of possible exploration radius even accommodating wind uncertainties. The hang 
glider is a potential good solution for planetary exploration due to its maneuverability and agility. 
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Figure 149: Titan steady state descent for parafoil and hang-glider. 
 

 

 

 

Figure 150: Titan descent for parafoil and hang-glider with maneuvering (2). 
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Figure 151: Titan descent for parafoil and hang-glider with maneuvering (1).  
For the hang glider k=0.5. 

 

 
 
 

 

Figure 152:Titan descent for parafoil and hang-glider with maneuvering (3). 
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Figure 153: Titan hang-glider descent with 60 km range. 
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10   CONCLUSIONS AND FUTURE DEVELOPMENTS 
In this thesis, I presented a summary of the work performed in five months at the JPL (Jet 

Propulsion Laboratory) on the dynamics of autonomous parafoils and other autonomous flight 
solutions.  

The analysis of high-efficiency gliding systems (i.e., high lift over drag systems) can 
identify new and more efficient solutions for terminal descent. The present work follows this trend 
by studying the advantages of a parafoil for autonomous precision delivery of a probe in the Titan 
environment. The previous successful mission to Titan, the Huygens probe, used a series of drag-
only parachutes to drop the payload (low lift to drag parachute). However, this solution provides 
a limited maneuverability to negotiate the not well-known environmental conditions (air density 
and winds) and the possibility of targeting different landing sites of scientific interest, shaping the 
trajectory accordingly. With a ram-air system (a parafoil) one can fly over different interesting 
sites, map them ahead of time, and even allow the re-planning of the trajectory to land near the 
most desirable sites.  

To analyze all these possibilities, dynamics models of the PADs (Precision Aerial 
Delivery System), with different degrees of freedom, had to be developed and tested. Three 
degree-of-freedom models focused on the trajectory development. Six degree-of-freedom models 
were needed to evaluate the parafoil-payload system overall system behavior. Seven to nine 
degree-of-freedom models were needed to determine the payload-canopy interaction. These 
models were tested those in the relevant environmental conditions on Titan, from the 
aerodynamics to the wind effect to a noisy sensor reading. As a consequence, the performance of 
the system trying to follow a trajectory in the uncertain atmosphere was evaluated.  

To realize these tasks, we relied on the methodologies derived from dynamics system 
modelling for the related equations of motion, from the aerodynamics to investigate the effect of 
the forces that enable the descent on Titan, from the GN&C (Guidance, Navigation and Control) 
to determine the requirements posed by autonomy. Consequently, the aim of this work was to 
provide a system modeling and simulation framework to ultimately allow the development of a 
complete GN&C system that will lead to a feasible system design, and which advantages these 
high lift solutions can bring to future missions to Titan. 

Specifically, the work was carried out along the following topics: 
• Modeling and simulation of the dynamics and control of the parafoil and probe system 

during terminal descent: We have developed several parafoil dynamics models. The 6 
DOF (degrees-of-freedom) model is a comprehensive model of all the possible parafoil-
payload link fashions. The model encloses all the principal characteristic of the system 
and it is usually used to build and test the GN&C system. The 7 DOF model, which allows 
a mechanical constraint between parafoil and payload, facilitates the payload stabilization. 
In this project the control unit was arranged to lay on the load. Also, strong oscillations 
can make the TRN (Terrain Relative Navigation) system imprecise, thereby requiring a 
careful stability analysis. The 8 DOF model gives the payload the freedom to oscillate 
both in pitch and yaw, and it is the most used model for Earth delivery systems. The only 
drawback was the uncontrolled pitch oscillation. The 9 DOF model enabled all the 
rotations of the parafoil relative to the payload. Nevertheless, this system can be a good 
solution for a spinning load: the mechanical constraint separates the parafoil and payloads 
dynamics. For this very initial phase of the project with still little information on the 
possible aspect of the parafoil, considering a 6 DOF model was determined to be the best 
solution to analyze the problem. For all models we tested S-turn and spiral maneuvers and 
validated our results with previously published results. Unfortunately, it is difficult to find 
the exact initial conditions on published results, so in some cases we limited ourselves to 
match the overall trend.  

• Modeling and simulation of the dynamics of hang-glider: The hang glider can be an 
effective solution to deploy a payload with a range around 80km from the entry point and 
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with wide maneuverability. The folding and deployment of a hang-glider and the rotating 
load can be an issue. However, we explored its capabilities and compared it to the parafoil. 

• Modeling and simulation of the dynamics of wing-suit: We felt that a wingsuit was a 
trade-off solution between the high hang glider efficiency and an easy deployment. The 
obstacle lays in the intrinsic instability of the system and its difficult control and in the 
payload-wing aerodynamics interaction. The wingsuit is usually stable for high angle of 
attack at high speeds and this stability windows is small and identifiable only using CFD 
(Computational Fluid Dynamics) analysis. Moreover, the payload with a possible 
biconical shape and a huge mass makes the modelling difficult. However, the wingsuit is 
more appropriate for small payloads (like CubeSat) or with systems that should “land 

vertically” on a wall or similar. 
• Aerodynamics modeling: Another complication in this preliminary project phase, with 

few information from past mission is how should we model the aerodynamics of our 
systems? If we cannot use a CFD code in which upload the information of Titan 
atmosphere obtained from Cassini-Huygens mission, can we find an initial aerodynamics 
estimation tool to acquire data for the simulations? To answer these questions, we 
compared the results from the lifting-line theory and the panel method on Earth 
environment and then attempted to extrapolate the aerodynamics on Titan based on the 
Reynolds number. It is still a rough estimation, but it can help us to evaluate the initial 
aerodynamics performance on Titan. 

• Guidance, Navigation, and Control (GN&C): We began to develop a guidance, navigation 
and control tool in order to enable trajectory generation with a quick optimization tool. In 
this thesis we presented a preliminary trajectory design, an estimation method for wind 
and density, and a proportional control scheme. The work needs still maturation but can 
be a good starting point. Furthermore, from this preliminary GN&C we are able to 
evaluate the capabilities of the parafoil on Titan environment in various stressing 
conditions. 
 
As a next step, future work should focus on: 

• An accurate analysis of the aerodynamics on Titan atmosphere, better if using CFD codes. 
The Reynolds number on Titan is generally higher than on Earth (from Huygens data), 
that means less drag but probable anticipated stall and flux break on the airfoil that leads 
to less lift. 

• Building a guidance scheme that can adjust itself during the descent to take into account 
a consistent and unsettling variation in the wind environment or in other parameters that 
will need a re-planning of the trajectory. 

• Optimizing the trajectory to insert the motion planning in the integration loop of the 
GN&C: in the computer program developed for this thesis the path is planned before the 
navigation and control loop. If we can optimize the trajectory control to land exactly on 
target by changing the inputs at each step, we can solve the more complex problem of the 
trajectory re-planning. 

• Defining a more elegant and efficient control, possibly in frequency domain, to shape the 
six DOF trajectory. The control should take into account the different flight regimes, the 
actuator dynamics to shape the on-off actuation timing, the flare maneuvers and the 
asymmetric deflections. 

• Develop a full Montecarlo analysis that will consider the entire entry trajectory from the 
atmospheric entry interface at 170 km to the touchdown performed with a parafoil. 
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