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Abstract

Carbon cycle has recently been revised in view of the understanding of the contribution
of inland waters to the definition of the total C budget. Particularly, the role of rivers
has been revaluated, recognizing their relevance as active components of this cycle, and
not merely as passive pipes that convey carbon from lands to oceans, and thus driving
numerous academic institutions to point their researches to the so-called River Carbon
Cycle. As the contribution of Politecnico di Torino in such direction is the investigation
of the carbon sequestration in riparian corridors, this dissertation was inserted in this
frame by the definition of its two main objectives: the evaluation of the use of LiDAR
to estimate riparian biomass and the calibration of a stochastic model, which describes
riparian vegetation growth according to topographic and hydrological constraints, on
the basis of real LiDAR data measurements.

LiDAR, Light Detection And Ranging systems, is a remote sensing technique that is
based on the principle of measuring distances by laser light and it has a wide range of
applications, as forestry. Although numerous LiDAR-based models for the estimation of
above-ground biomass in forest stands have been regressed, no studies concern riparian
corridors, where tree population is generally younger and sparser. Thus, the reliability
of these forest models in riparian environments was tested. Firstly, an insight about the
state of the art of LiDAR technology and its airborne implementation for forestry was
provided. Secondly, a selection of literature models was applied to the study area, which
was a segment of Cinca River (Spain), in order to choose the most reliable one, after the
processing of LiDAR data with FUSION/LDV, which is a free software package released
by the US Department of Agriculture (USDA). Finally, the influence of grid discretization
on results and the consistency of the chosen model with consolidated allometric formulas
were evaluated. The achieved results were the definition of a procedure that combines
the use of GIS and FUSION/LDV for determining vegetation statistics and the choice
of the model proposed by Means et al. (2000) for the conversion of these statistics in
above-ground biomass. This model demonstrated to be implementable with a relatively
coarse grid discretization (i.e. cellsize 10x10 m), thus requiring short computation time,
and to return biomass values that are consistent with the ones provided by allometric
formulas.

The distribution of phreatophyte riparian vegetation can be described by a stochas-
tic model that was provided by Camporeale and Ridolfi in 2006. According to this,
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vegetation dynamics are influenced by the randomness of hydrological fluctuations and
topography of the riparian transect. Thus, input data for the model are hydrological
and geometric information as well as parameters linked to biological features of vegeta-
tion. Despite literature values were already available for most of these parameters, the
one that represents the ratio between the rates of, respectively, vegetation decay and
growth, still needed to be properly set. To this purpose, a method to process the avail-
able data and calibrate the model was defined. According to this method, hydrological
data are processed with HEC-RAS and MATLAB to obtain the probability distribution
function and integral scale of water levels, while the geometry is set by the realization
of a DTM with FUSION/LDV. The probability distribution function of vegetation and
its two first moments are obtained by the implementation of the previously defined pro-
cedure for processing LiDAR data. Finally a MATLAB script based on least squares
allows to to minimize the deviation among computed values of dimensionless biomas-
sand real LiDAR-derived data. The definition of this procedure was done referring to
the hydrological data and LiDAR acquisitions that were available for the Cinca River’s
study area.
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Chapter 1

Introduction

The carbon cycle is one of the fundamental biogeochemical processes that enable life on
Earth. It comprises fluxes regulated by geological and biological processes, that means
carbon exchanges among the various environmental matrices, the long-term sequestra-
tion in carbon sinks and its eventual release. Although carbon cycle has been studied
since the end of XVIII century [26], it has been recently updated in view of the revalu-
ation of the active contribution of inland waters to the definition of the total C budget
[13], [19].

As a consequence, institutions have started to address their researches to a deeper
understanding of the rivers dynamics in this frame, particularly focusing on the role of
riparian vegetation.

The conventional carbon cycle

Carbon is one of the major component of organic compounds and part of minerals, such
as carbonates, and it is mutually exchanged among the various environmental matrices
that constitute the Earth system. This continuous series of parallel processes is called
Carbon Cycle and, in its conventional description, it consists of carbon circulation among
three reservoirs [13], [19], [49]:

• Atmosphere: it is the smallest in terms of storage as it relevance is mainly due to
the linkage it provides to the other two matrices. Import of carbon in atmosphere
derives from outgassing from water and biological respiration.

• Lands: they store a large amount of carbon both in soil and vegetation. Import of
carbon derives either from the uptake of vegetation during photosynthesis or from
the dry and wet deposition of particles from atmosphere.

• Oceans: they constitute the largest reservoirs, storing carbon in both its inorganic
and organic speciations. Dissolved inorganic carbon (DIC), namely the ensemble
of dissolved CO2, HCO3

- and CO3
2-, derives from the weathering of rocks; while
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1 – Introduction

dissolved organic carbon (DOC) and particulate organic carbon (POC)1 consist
of both living organisms and fragments of dead ones. Part of the input carbon
is directly uptaken from atmosphere, while another part is conveyed by surface
streams and groundwater2.

Definition of River Carbon Cycle

Inland waters constitute solely the 1% of Earth’s surface and, in the conventional carbon
cycle, are considered as pipes that passively convey carbon from lands to oceans and thus
not contributing to the C budget. Nevertheless, in the last decade, studies have shown
that they play an active role in carbon cycle, as burial and outgassing could strongly
influence the amount of carbon conveyed to the ocean [13].

Focusing to the so-called River Carbon Cycle, Cole et al. (2007) [19] demonstrated
that streams are place of active C transformation and that their inclusion in C budget
could reduce imbalances that currently occur when computing C fluxes among reser-
voirs. Also, they provided roughly estimates that show how much the import of carbon
from land to rivers exceeds the amount of carbon delivered by rivers to oceans, thus
highlighting the relevance of the actions of streams in the carbon cycle. According to
them, lands deliver approximately 1.9 Pg·y-1 of C to rivers, while solely 0.9 Pg·y-1 are
conveyed to oceans. The remaining 1.0 Pg·y-1 are partially buried in sediments along
the streams (≈ 0.23 Pg·y-1) or emitted to atmosphere by outgassing, that means by the
expiration of water biota (≈ 0.75 Pg·y-1). As the import from terrestrial ecosystem is
equal or exceeds the gross primary production of riparian environments, rivers play both
the role of net sources of CO2 to the atmosphere and net sinks of C in sediments.

Focusing on the role of riparian vegetation

As anthropic activities are strongly influencing carbon fluxes, thus altering the pre-
existing equilibrium and increasing the release of carbon dioxide into the atmosphere [49],
various techniques have been developed to deal with CO2 excess, promoting innovative
sinks for carbon capture and storage. The simplest one is the nature-inspired forestation,
or rather the forced establishment of stands of trees in unvegetated areas, in order to
enhance the conversion from carbon dioxide to biomass [15]. Nevertheless, in the frame
of forestation, the relevance of riparian environments in C budget is usually neglected,
focusing solely on the capability of forests to sequester carbon dioxide.

1DOC and POC are both convey to oceans by streams. DOC constitutes the major transfer of carbon
from terrestrial ecosystems and it flows with water. On the contrary, POC usually tends to settle and
its movement consists of a series of discrete events led by hydrodynamics lift and drag and, therefore,
influenced by the hydrological regime. However, separation between DOC and POC is not sharp, as
their properties vary with continuity and the two phases continuously interact along the river flow [12].

2River Carbon Cycle refers to the processes occurring along streams and comprising C transfer and
transformation.
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Indeed, carbon sequestration in river corridors could exceed the storage in mature
forests, as the continuous process of growth and uprooting, exerted by streams on ri-
parian vegetation, enhances both the storage of carbon in the dead biomass, which
is buried or transported downstream by the river itself, and the capture of additional
carbon by the growth of new colonizing species. Hence, the contribution of riparian
vegetation for carbon sequestration may be essential, especially in those areas where
the anthropic expansion has reduced the spaces that could have been available for the
ordinary forestation, and, therefore, needs to be more deeply investigated.
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Chapter 2

Objectives

As the role of streams in the carbon cycle has been revaluated, numerous academic in-
stitutions are now pointing their researches to deepen the various aspects of the River
Carbon Cycle. Among them, Politecnico di Torino is focusing on evaluating the amount
of carbon that can be potentially sequestered by vegetation in riparian corridors, com-
paring it with the amount stored in the floodplain. In such frame, this dissertation
had two main objectives: the evaluation of the use of LiDAR measurement to estimate
riparian vegetation biomass and the calibration of a stochastic model, which describes
riparian vegetation growth according to topographic and hydrological constraints, on
the basis of real data deriving from raw LiDAR data acquisition and processing.

LiDAR for estimating riparian biomass

Despite LiDAR technologies are widely used in forestry and a number of both site-
specific and large-scale models to convert airborne LiDAR data in biomass have been
released, neither specific models addressed to relate LiDAR measurements with riparian
vegetation have been defined nor the reliability of existing ones has been assessed. Thus,
one of the two objectives of this dissertation was to understand the state of the art in the
use of airborne LiDAR for estimating above-ground biomass in riparian corridors and to
define a methodology to this purpose. Such methodology was successively applied to the
study area in order to obtain the vegetation data necessary for the model calibration.

Stochastic model calibration

In 2006, Camporeale and Ridolfi [16] defined a stochastic models that relates the distri-
bution of riparian vegetation with the topography of the river transect, the hydrological
regime and the intrinsic features of local vegetation. Although most of the parameters
referring to vegetation had already been determined for the most common tree species
in temperate climate, the one related to vegetation decay and its ratio with the rate
of growth, still needed to be properly set on the basis of real measurements. The sec-
ond objective of this dissertation was, therefore, to define a procedure for the stochastic
model calibration and implementing it in the study area.
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Chapter 3

Study case

3.1 Context
The study area was a segment of Cinca River, 13 km long, in the region of Aragón, Spain.
A complete description of Cinca river is reported in Estudio de la calidad ecológica
integral de los tramos fluviales más importantes del Río Cinca, [61], [62].

Cinca River has its source in the Pineta Valley, in Pireneos Mountains, and it flows
from NE towards SW, ending in the confluence with Segre River. It is one of the major
tributaries of Ebro River, being 191 km long and having a catchment area, which is shown
in Figure 3.1, of 10,000 m2. Despite the relevant level of anthropization, especially in its
middle and lower segments where there is a high number of hydroelectric plants, small
reservoirs, mainly dedicated to large irrigation infrastructures and industries, and urban
settlements, the contribution of Cinca River to Ebro discharge shows a marked seasonal
regime [62]. Cinca River has numerous affluents; among these, the most important right-
bank tributaries are Vellos, Ara, Vero and Alcanadre Rivers and left-bank are Barrosa,
Cinqueta, Nata, Ésera, Isábena, Sosa and Clamor Amarga (also called Tamarite) Rivers.

With respect to hydromorphology and ecology, headwaters are in good conditions,
while the lower segments are affected by anthropic interventions that reduce the water
level and alter the water quality. Nevertheless, although water quality decreases moving
downstream, due to the anthropic pressure, the ecological status of the river is defined
at least as moderate in all its segments, that means riparian habitats are not strongly
affected by artificial water regulation and vegetation dynamics occurs along the river.
Riparian vegetation comprises shrubs and young trees, even though its spread in the
floodplain has been reduced and controlled to create room for crop fields and artificial
embankments [62].

3.2 Study area
The choice of a segment of Cinca River as study area was done according to morpho-
logical features, or rather looking for sections where the river was not channelized, but
wandering, with bars and islands. Also, the pressure of crop fields and infrastructures was
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3 – Study case

Figure 3.1. Geographic location of Cinca River catchment. Red colour indicates Spain,
while green colour indicates Cinca catchment.

considered in order to find an area where riparian vegetation had enough room to grow.
Finally, the availability of temporal series of daily streamflows was taken into account
to describe local hydrological characteristics of the river and calibrate the stochastic
vegetation model

The selected segment is delimited by two tributaries of Cinca River, starting at
the confluence of Alcanadre River, close to the town of Ballobar, and downstream the
confluence with Clamor Amarga River, which is close to the town of Zaidín. Its length
is approximately 13 km and the corresponding catchment area is 9,409 km2.

Hydromorphological features

Cinca River, whose bed is constituted by Quaternary sediments, flows in an alluvial
floodplain made of conglomerates, gravel and clay. This floodplain is more than 2 km
wide and it is surrounded by low hills of soft materials, as sandstones and marls [62].
Orthophotos show that the selected segment can be classified as wandering, having some
bars and islands.
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3.3 – Available hydro-morphological data

Riparian vegetation

As crop fields occupy part of the floodplain, riparian vegetation can grow only along
a narrow band between the fields and the water or above the islands. Most of the
vegetation is constituted by shrubs, whose dominant species are bitter willow (Salix
Elaeagnos), black willow (Salix Atrocinerea) and white willow (Salix Alba). Also, there
are some mastics (Pistacia Lentiscus), black poplars (Populus Nigra) and white poplars
(Populus alba). Grass-like plants, as common reeds (Arundo Donax and Phragmites
Australis), and bulrush (Typha sp.), grow where inundations are more frequent [61].

3.3 Available hydro-morphological data

Overall information about the study area

The report Estudio de la calidad ecológica integral de los tramos fluviales más impor-
tantes del Río Cinca, carried out by United Research Services Corporation (URS) and
commissioned by Comisaría de Aguas de la Confederación Hidrográfica del Ebro (CHE),
provides an insight about the hydromorphological and biological status of the Cinca
River and its major tributaries (i.e. Alcanadre, Ésera, Ara e Isábena Rivers). Particu-
larly, volume II, Río Cinca: Informe de síintesis [62], consists of an overview of the entire
river, expliciting hydromorphological, physico-chemical and ecological parameters, while
volume III, Río Cinca: Atlas [61], deepens the description focusing to one of the 14
segments, which constitute the river, per chapter. The study area is part of the 13th
segment, however no bathymetric cross sections were found.

Hydrological data

Hydrometric data were derived from the network of gauging stations that monitor water
discharges and levels in the Ebro catchment. They were provided by Confederación
Hidrográfica del Ebro [3]. As there were no stations along the selected segment, the
data used in this study were taken from hydrometric station 9017 that is located in
the town of Fraga, downstream the town of Zaidín, and that refers to a catchment
area including both the catchment of the selected segment and the catchment of the
Clamor Amarga tributary. In Figure 3.2 the catchment of the station 9017 (on the left)
is compared to the catchment of the study segment (on the right), while in Figure 3.3
the selected segment is highlighted by colour red and the location of the two gauging
stations by black dots.

Gauging stations 9017 and 9225 provided the temporal series of average, minimum
and maximum daily discharge and water level, respectively expressed in m3s-1 and in m,
despite only the average daily discharges were used for calibrating the stochastic model.
Temporal availability of data for both the gauging stations are summarized in Table 3.1.
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3 – Study case

Figure 3.2. Comparison between catchment areas.

Table 3.1. Length of temporal series for the selected gauging stations.

Station Date of measurements
9017 from 03/10/1947 to 31/12/2017
9225 from 22/04/2008 to 31/12/2017

Two main issues accompanied the availability of hydrometric data. Firstly, hydro-
metric useful data comprised only flow rates1, while the calibration of the stochastic
model required as input the probability density function and the integral scale of water
level in a plethora of points along the segment; to solve this problem, a conversion from
these to water levels was done, as explained at Section 9. Secondly, the available data
did not refer to the sole selected segment, as station 9017 is located at the ending sec-
tion of Cinca River and station 9225 is related to Clamor Amarga affluent; thus, it was
necessary to understand if the contribution of Clamor Amarga was negligible so that
data from station 9017 could be referred directly to the selected segment.

1Even though water levels measured at station 9017 and 9225 were available, they could not be used.
In fact, water level is a site-specific parameter depending on many factor, such as river width, slope and
roughness at the measuring section. Thus, values that are measured close to hydrometric stations are
not representative for the entire segment, unless the feature of the channel are the same.
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3.3 – Available hydro-morphological data

Figure 3.3. Position of the selected segment (red line) and the hydrometric
stations (black dots).

To this purpose, data from station 9017 were compared to data from station 9225,
which is located at the end of Clamor Amarga tributary, just before its confluence with
Cinca River, in order to highlight an eventual influence of the discharge of Clamor
Amarga on the Cinca regime. As shown in Figure 3.4 and Figure 3.5, the contribution
of Clamor Amarga River was negligible as it represented, on average, only 6.5% of the
total discharge of Cinca River with RMSE equal to 2.7 m3·s-1. Figure 3.4 and Figure 3.5
refer to measurements from 22nd April 2008 to 31st December 2017, as this represents
the available recording interval for station 9225.

LiDAR data

LiDAR data for biomass estimation were downloaded by Centro de Descargas, an on-
line platform of Centro Nacional de Información Geográfica (CNIG), where all the data
generated by Instituto Geográfico Nacional (IGN) are available for public users. LiDAR
acquisitions above Spanish territory are made according to the Plan Nacional de Orto-
fotografía Aérea (PNOA), whose aim is creating a 3D point clouds for the entire nation.
The involved equipment is a small-footprint and discrete-return airborne laser scanner,
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3 – Study case

Figure 3.4. Analysis of the possibility to neglect the contribution of Clamor Amarga
tributary to the total discharge of Cinca River.

Figure 3.5. Quantification of Clamor Amarga discharge in percentage. The blue line
indicates the average percentage, equal to 6.5.

the geodetic reference system is ETRS89 and the cartographic projection is UTM. The
point density is 0.5 points·m-2 as first coverage and 1.0 points·m-2 as second coverage,
while the elevation RMSE is less than 0.20 m. Due to the high precision of PNOA acqui-
sitions, the 3D point clouds allow users to realize accurate terrain and surface models.
More in detail, the study area was scanned on 20th October 2016 with a point density
of 0.5 points·m-2. LiDAR datasets were downloaded as .laz files, each of which covers a
square portion of territory with side 2 km long [7]. Thus, nine datasets, whose names are
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3.3 – Available hydro-morphological data

reported in Table 3.2, had to be merged to completely cover the study area, as shown
in Figure 3.6.

The intent of the PNOA was to have at least 0.5 points·m-2 [1] and the used datasets
have a nominal return density of 0.68 points·m-2, as found out by processing data with
FUSION/LDV software (see Section 5.1) and by observing the resulting first returns
density images in Figure 3.7. In Figure 3.8, the intensity of returning pulses is shown,
ranging from black (i.e. no return, pulses completely absorbed by the surface) to white
(i.e. pulses completely reflected by the target surface).

In this dissertation, LiDAR outcomes were used to evaluate models for biomass
estimation and to provide vegetation data for the stochastic model calibration.

Table 3.2. List of used datasets, downloaded from Centro de Descargas [1].

2016
PNOA_2016_ARA_266-4612_ORT-000-COL
PNOA_2016_ARA_268-4612_ORT-000-COL
PNOA_2016_ARA_268-4610_ORT-000-COL
PNOA_2016_ARA_270-4610_ORT-000-COL
PNOA_2016_ARA_272-4610_ORT-000-COL
PNOA_2016_ARA_272-4608_ORT-000-COL
PNOA_2016_ARA_274-4608_ORT-000-COL
PNOA_2016_ARA_272-4606_ORT-000-COL
PNOA_2016_ARA_274-4606_ORT-000-COL
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Figure 3.6. LiDAR data coverage of the study area. Red writings are the name of the
data file downloaded by CNIG online platform 9[1].

14



3.3 – Available hydro-morphological data

Figure 3.7. First returns density. Yellow indicates no points, red density less
than 1 point·m-2, green density ranging from 1 to 3 point·m-2 and blue density
higher than 3 point·m-2.
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Figure 3.8. Intensity of return in grey scale. Black indicates complete absorption of
pulses while white indicates complete reflection.
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Chapter 4

Introduction

Light Detection And Ranging systems (LiDAR) is a remote sensing technique that is
based on the principle of measuring distances by laser light and it has a wide field of
application, ranging from meteorology to traffic management.

To reproduce 3D digital elevation model, LiDAR technology is usually mounted on
an aircraft so that a wide area can be investigated [45]; LiDAR provides a 3D point cloud
that represents the location where surfaces have been hit by the laser beam and that can
be processed to reproduce the topographic surface of the ground and the elevation model
of vegetation and buildings. Although LiDAR was born in 1960s, commercial airborne
laser-scanner technologies started to develop solely in the second half of 1990s [24]. Since
that moment, the number of fields of application of such technology has increased so fast
that the advantages, but also the obstacles, in the use of LiDAR in these contexts has
been solely partially studied, leaving a wide room for further researches.

This dissertation aimed to evaluate airborne LiDAR potentialities for the estimation
of above-ground biomass in riparian corridors. One of the main objective was to compare
and evaluate the models that have already been proposed and used in ordinary forestry
to transform LiDAR raw data in a measure of above-ground biomass. The goal was
to assess their validity also for estimating riparian vegetation and define a standard
methodology for this kind of investigations in river corridors. LiDAR data related to the
study area (see Section 3.2) were processed with FUSION/LDV, a free software package
released by United States Department of Agriculture (USDA).

4.1 LiDAR functioning principles and equipment

The functioning principle of LiDAR systems is based on the measurement of return
times of emitted signals. As the speed of light is known, return times are transformed in
distance data that, in turn, are used to reproduce elevation models of Earth’s surface.

LiDAR is an active remote sensing system since it does not simply receive pulses
from external sources, but it emits its own signal. This signal is an electromagnetic
pulse that ranges from ultraviolet to infrared light (i.e. from 0.1 µm to 2.0 µm in
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wavelength1). Once a pulse is emitted, it travels towards the Earth’s surface, hits the
target objects and it is reflected back to LiDAR sensors that register the elapsed time
of this return. As the delay is related to distance through the speed of light, the farther
the target surface is, the longer the associated return time is. However, not all the
surfaces respond to laser pulses at the same way. Solid surfaces, as buildings and ground,
completely reflect the pulse, whereas water totally absorbs it, avoiding the pulse to come
back to the aircraft and provide a time information. Vegetation acts differently as the
top of the canopy reflects part of the pulse, providing a return time that is defined first
return, while the other part passes through it and is reflected by the ground. Usually,
in vegetated areas, 1 to 5 returns correspond to one emitted pulses, allowing a vertical
characterization of the vegetation structure [40]. Thus, raw data provided by LiDAR
systems is a three-dimensional point cloud representing the Earth’s surface with both
its natural and anthropic elements.

Many are the ways to classify LiDAR systems. One differentiation can be done ac-
cording to the features of recorded signals, distinguishing in discrete return systems, if
for each emitted signal they record solely the major peaks in the returning electromag-
netic wave and associate a point in space to each peak, and full waveform recording, if
LiDAR systems digitize the entire reflected energy giving a complete vertical profile [24],
[68]. They can further be divided in profiling, if they record solely along the imaginary
vertical line that runs from the sensor to the ground, and scanning, if they captured a
series of adjacent profiles along an imaginary horizontal swathe on the ground that runs
on either side of the sensor [68]. Another classification can rely on the size of laser beam
diameter at the ground level, discriminating small-footprint systems, if diameter ranges
from 0.15 to 1 m and large-footprint systems, in case the diameter is larger than 10 m
[68]. Also, systems can be categorized according to the platform they are mounted on:

• Ground-based: from a historical point of view, the first application of this type was
meteorology, as LiDAR can profile aerosols, water vapor, temperature and other
atmospheric parameters [39]. Nowadays, portable versions of this technology, also
called terrestrial laser scanning, are used to measure the damage of anthropic
structures and ground movements as landslides and debris flows, but also to scan
archaeological artifacts; the equipment of these systems usually consists of a small
size and light weight laser scanning device and a laptop to register data [35].

• Spaceborne: these kind of LiDAR systems are usually large-footprint and full wave-
form recording and operate in various contexts. Examples for this category are
Mars Orbiter Laser Altimeter (MOLA), Lunar Laser Ranging Instrument (LLRI),
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)
and Geoscience Laser Altimeter System (GLAS). MOLA and LLRI are used in
astronomy; the former is part of the Mars Global Surveyor spacecraft launched in

1Wavelength is linked to the target of LiDAR surveys. Meteorology usually requires infrared waves
(1.5 - 2 µm) or ultraviolet (around 0.25 µm), terrestrial mapping near-infrared (around 1.0 µm) and
bathymetry blu-green light (0.5 - 0.6 µm).
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1996 to map Mars surface [6], while the latter was launched in 2008 and designed
to provide data about lunar topography with a resolution of 10 m [5]. CALIPSO
was launched in 2006 to obtain high precision profile of clouds and aerosols [2].
GLAS was launched in 2003 to study ice-sheets altimetry and evolution, measure
vegetation and collect atmospheric data; it emits 40 laser pulses per second, cap-
turing spots having a footprint of around 70 m and spaced 170 m apart along
Earth’s surface [4], [68].

• Airborne: as the name suggests, the equipment of airborne LiDAR systems is
mounted on a moving platform, namely a single- or twin-engine plane or a heli-
copter, and comprises different instruments [38], [68]:

– Laser scanning unit: it both emits and receives electromagnetic pulses. Al-
though several configurations of this technology have been released, generally
commercial systems for geomatics and forestry belong to the small-footprint
typology and they work emitting discrete signals, typically around 200,000
pulses per second. Usually small-footprint systems are discrete return whereas
large-footprint systems are full waveform recording as they return a complete
vertical profile of vegetation. Depending on the sensor model, the scanner
uses a rotating prism or a oscillating mirror to address the pulses across a
line of the land below the aircraft, whilst the motion of the aircraft itself al-
lows for the collection of parallel lines. The simultaneous combination of such
a longitudinal and transverse motion allows for the achievement of a complete
coverage of the investigated area.

– Global Positioning System (GPS): part of this instrumentation is located on
the ground as reference points, while the core is positioned on the aircraft. It
provides the position and orientation of the laser scanning unit, during the
emission and reception of pulses, in an absolute coordinate systems. Thanks
to this information, also the distance calculated from recorded return time can
be transformed in a XYZ point in the reference absolute coordinate systems.

– Inertial Measurement Unit (IMU): it monitors and measures roll, pitch and
yaw of the aircraft in order to correct the coordinates provided by GPS.

– Computer: it controls the functioning of the whole equipment and stores
collected data. Its clock records the exact time of emission and reception of
pulses.

As it is explained in the following section, fields of application of airborne LiDAR
are numerous, due to their versatility and capability in providing low-cost, fast
and easy post-processing of data.

With respect to the possibility to detect vegetation and measure its biomass, all the
three category of LiDAR are commonly used. On the one hand, terrestrial laser scanner
can capture the features of a single tree or a small stand [35]. On the other hand, space-
borne full waveform-recording systems provide information about large areas, despite the
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accuracy of measured vegetation height declines with increasing slope of investigated ter-
rain; accuracy is further affected by the intrinsic features of this instrumentation2. Also
the adoption of full waveform-recording systems in forestry has been studied during the
last decades, even though this technology is usually more employed in research than in
practice, where Airborne Laser Scanning (ALS) systems are largely preferred. In fact,
ALS can provide reliable values for inventory parameters3 regardless the density of pulse
returns4, especially if regression models to relate vegetation metrics given by LiDAR and
biomass are calibrated with on-field measures.

4.2 Examples of Airborne LiDAR application

During the 1960s, Fiocco and Smullin built the first LiDAR system [23], implementing
the theoretical studies of Schawlow and Townes about maser [53] and the ruby laser
invented by Maiman5 [37]. Meteorology was the first field of application of LiDAR as
well as topography [39]; for example, in 1971 a laser altimeter was used to scan the moon
surface during Apollo 15 mission [10]. Since its first development, LiDAR technology
has been mounted on flying platform; however, the spatial accuracy of measures done by
these airborne systems considerably improved after the creation of GPS, in the 1970s.

Similarly to other remote sensing techniques, at the beginning of their development
LiDAR systems were private and dedicated to research. It was solely starting from 1995
that LiDAR was on commerce for the public, allowing for a speeding up of its advance-
ment [24]. First commercial applications mostly concerned agriculture, geomatics and
forestry, involving both terrestrial and airborne systems. On the one hand, terrestrial
laser scanner were, and currently are, widely used in farming and intensive agriculture,
as a LiDAR-based detection can be used to characterize weeds that have grown in crop
fields, once the typical height of the crop vegetation and weeds have been defined, allow-
ing for large scale monitoring of field productivity [11]. Also, the association of LiDAR
data about crop height with measures of green laser return intensity indicates the nitro-
gen content in some food crop, such as wheat plantations, for which the N-concentration

2Indeed, the penetration of highly dense canopy and the detection of ground require high pulse energy
and, therefore, a low pulse rate, leading to low resolution and scarce density of sampling in the study
area [68].

3Forest inventory parameters: indicators of the main features of trees in a stand, namely basal area,
diameter at breast height (DBH), maximum, minimum and mean height, timber volume, number of
trees per hectare, total biomass, canopy bulk density, canopy fuel load [66].

4Actually, some studies have pointed out that low densities of returns lead to an underestimation of
vegetation height [27], [42], but in many cases this effect is negligible [44], [64].

5Maser and laser are the acronyms respectively of Microwave Amplification by Stimulated Emission
of Radiation and Light Amplification by Stimulated Emission of Radiation. The basic functioning is the
same for both technologies but they operate in different fields of electromagnetic spectrum as the maser
works with microwaves (i.e. λ = 1 - 100 mm), while the laser with visible light (i.e. λ = 4·10-6 - 7·10-6

mm). LiDAR systems are based on laser technology.
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in the early development stages is crucial for achieving the potential maximum produc-
tivity; hence, LiDAR becomes a diagnostic tool to be used for managing plantations [22].
On the other hand, the advance of airborne systems (ALS) mainly concerned forestry
and geomatics, fields where LiDAR potentialities have been investigated, as example,
for landscape monitoring and wood production planning. Currently, the main uses of
airborne LiDAR can be sum up as:

• Creating high resolution DTMs: accuracy of DTMs that have been realized starting
from LiDAR data is proven not only in bare areas, where the error is usually less
than 0.15 m, but also in vegetated ones; in fact, although the error slightly increases
with canopy density, it always remains negligible, allowing for a sub-meter accuracy
[20], [32], [51].

• Mapping coastline and bathymetry: accuracy of LiDAR measurements is high
not only in topography, but also in bathymetry6, allowing users to create high
precision maps of shorelines or flooding zones and monitor evolution of coastlines,
thus supporting coastal research and environmental management; if coupled with
hyperspectral imagery, airborne LiDAR also provides maps of wetlands, beaches,
coral reefs, and submerged aquatic vegetation [32].

• Mapping vegetation structures: due to limited temporal and economic resources
and, sometimes, to safety concern and a scarce physical accessibility to the investi-
gated site, field surveys allow for data collection solely in circumscribed areas [42].
On the contrary, remote sensing represents a fast and cheap solution to cover wide
areas [45]. The representation of processed LiDAR data in a GIS environment
provides a useful tool for analyzing, developing projects and monitoring, once the
relationship between LiDAR measures and on-field inventory parameters have been
calibrated [42]. One illustrative example is the case of New Zealand that developed
a carbon inventory system relying on ALS acquisitions [25].

• Estimating wood volume for timber and fuel production: models that relate LiDAR
data and wood volume or vegetation biomass may facilitate the quantification of
potential timber production and wildfire hazard, becoming a useful tool for forest
planning and management [40], [57].

• Assessing the consequences of defoliation and insect infestations: while usually de-
foliation is assessed by time-consuming on-field sampling, scholars are now propos-
ing to use LiDAR technique as an innovative mapping and monitoring tool for
estimating the damage caused by insect infestation. This assumption relies on the
hypothesis that an increased proportion of returns corresponds to a more intense

6In this application emitted electromagnetic waves must be a blue or green laser in order to maximize
the capability of the pulse to penetrate water; LiDAR system for topographic purposes usually operates
with near-infrared signals that, conversely, are completely absorbed by water and cannot investigate
underwater ground [32].
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defoliation [64]. Also, defoliation can be estimated by comparing the values of
leaf area index (LAI)7 at different times, having defined LAI as dependent on the
degree of pulse penetration through the canopy layer [55].

In this dissertation, solely the potentialities of LiDAR in mapping vegetation structures
and estimating volume, or biomass, are analyzed. In the following section, a brief review
of selected articles and studies concerning these purposes is reported.

4.3 A review of existing approaches to relate biomass to
vegetation size

Biomass estimation through allometric equations has been widely studied and a large
numbers of models have been tested. The basic principle is to correlate plant morpho-
logical parameters to volume, or biomass, by calibrating regression models whose data
usually derive from on-field measurements. The first models were calibrated for small
stands, providing site-specific equations that neither have a good fit on more extended ar-
eas, where the features of vegetation lose their homogeneity, nor can distinguish among
tree components8 [30], [58], [59]. Therefore, starting from the 1990s, new allometric
models for large-scale estimation have been developed. One of the most representative
examples is the series of equations set by Jenkins et al. in 2003 [30] and subsequently
adopted by USDA Forest Service to develop the carbon budget of United States. Jenk-
ins et al. aimed to create generalized equations that well fitted the vegetation features
regardless its location across the country and that were consistent in terms of form, defi-
nition and required input data. To this purpose, they merged information from existing
literature in order to set a database of the various models that had been calibrated
on U.S. tree samples until that time. Collected models were organized according to
sample taxonomy and geographic location and subsequently processed to return gener-
alized equations for each species group. These equations allow to predict above-ground
biomass, and the relative subdivision in tree components, and they require as input data
solely DBH9, while the other parameters are given once the tree species are identified.
The authors highlighted that the choice of DBH instead of mean height as independent
variable was due to the scarce accuracy in the measurements of this latter in case of
closed-canopy stands. However, also this extrapolation of large-scale biomass data from
allometry demonstrated to be affected by a high number of uncertainty. As Jenkins et al.
reported, large variability in biomass values was due to noise in measurements and the

7Leaf area index (LAI): dimensionless parameter that characterizes the tree canopy. For broadleaf
species, it is equal to the ratio between the one-sided green leaf area and the ground surface area (m2/m2)
[55].

8Tree components: foliage, coarse roots, stem bark and stem wood [30].
9DBH: Diameter at Breast Height, is the diameter of the trunk of a standing tree, conventionally

measured at 1.37 m from the ground.
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small size of sample plots, while it seemed not to be related to regional vegetation pat-
terns. Moreover, inconsistency in definitions and measuring methods among the various
models could have affected the process of generalization.

Jenkins et al. generalized equation is:

ABdry = exp(β0 + β1ln(D)), (4.1)

where ABdry is above-ground dry biomass expressed in kg, D is DBH expressed in cm
and β0, β1 are parameters that depend on tree species. In the case of Cinca River, β0
and β1 can be set as, respectively, -2.2094 and 2.386710. The authors also provided an
equation to calculate the contribution of each tree component to the total biomass:

ratio = exp

3
β0, ratio + β1, ratio

D

4
(4.2)

Set of βi values for hardwood are listed in Table 4.1.

Table 4.1. Value of parameters for determining the ratio of each tree com-
ponent and total biomass [30].

Biomass component β0, ratio β1, ratio
Foliage -4.0813 5.8816

Coarse root -1.6911 0.8160
Stem bark -2.0129 -1.6805
Stem wood -0.3065 -5.5240

In the attempt to overcome the uncertainties affecting allometric large-scale estima-
tions, the use of remote sensing techniques has started to be analyzed. The advantages
related to remote sensing are mainly the required short time for data acquisition, the
low-cost for investigations on wide areas and the independence from ground accessibility
to the site. Despite agencies promoted satellite imagery [10], [2], [4], [5], [6], also airborne
laser scanning has been largely developed, releasing a plethora of regression models for
volume and biomass estimation. However, the objective of this dissertation was mod-
elling riparian vegetation in temperate regions and, therefore, a large part of literature
was neglected, as most of the studies were conducted in different climates, for example
tropical regions, where the growth of vegetation follows different temporal and spatial
scales. In the following paragraphs a short review of the proposed models is reported.

He et al. (2013) [29]

The authors developed equations for relating physical features of vegetation with biomass,
since they stated that LiDAR could provide the most accurate measurements of ground

10Values given by the authors for Hardwood - aspen/alder/cottonwood/willow.
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and canopy elevation, even though in conditions of extreme slope or high canopy closure.
By attempting various combination of statistics inventory parameters with biomass, the
authors found good correlations between mean first return elevation, or the 10th and 90th
percentiles of first returns, and above-ground and stem biomass, while the first return
above 2 m, or the 75th and 90th percentiles of first returns elevation, were correlated
to crown biomass. In general, crown biomass showed a weaker correlation with LiDAR
data. Also, they found that canopy cover could be related to biomass values. Although
this paper focused solely on Picea Crassifolia species and its related sample area was
located at a very high altitude, the model was accounted among the ones to be tested for
riparian biomass estimation, because the operating conditions were very similar to those
of the study site. In fact, the instrumentation consisted in a small footprint airborne
laser scanning with low density (about 1 point·m-2) and discrete returns. Moreover,
the procedure to convert raw data into statics inventory parameters was similar to the
one that was defined, in this dissertation, for riparian corridors (see Section 5.2). The
proposed equation for above-ground biomass estimation is:

AB = −9.013 + 10.812h+ 25.105CC (4.3)

AB is above-ground biomass expressed in Mg·ha-1, h is the mean canopy height and CC
is the canopy cover that ranges from 0 (i.e. no cover) to 1 (i.e. completed cover).

Lefsky et al. (2002) [34]

The authors’ aim was to return a simple model for estimating above-ground biomass
in temperate and boreal regions with airborne LiDAR acquisitions, as it would reduce
the effort and expense of fieldwork for following investigations about biomass and car-
bon storage. Firstly, they defined one regression model for each of the analyzed biomes
(i.e. boreal coniferous, temperate coniferous and temperate deciduous) by relating field
measurements with LiDAR data and, finally, they combined the three models in one gen-
eralized relationships between above-ground biomass and LiDAR-derived mean canopy
height:

AB = 0.378h2 (4.4)

AB is above-ground biomass expressed in Mg·ha-1, while h is the mean canopy height
expressed in meters.

However, the authors processed large-footprint SLICER waveform data to define this
equation and not specifics about its application to small-footprint and discrete-return
data were given.

Li et al. (2008) [36]

By using data acquired by a high-density discrete return LiDAR equipment, the authors
analyzed the possibility to develop LiDAR-based models for estimating above-ground
biomass with a small set of LiDAR metrics that have an easy intelligible biological
meaning, in contrast with the models offered by literature that were often made up of a
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large number of variables, difficult to interpret in a physical perspective. Furthermore,
they compared models that had been obtained by using different methods for selecting
the variables, such as stepwise regression, Bayesian modelling average and principle
component analysis.

As the authors studied three different forest types, they released four different sets of
equations (i.e. one for each forest type and one generalized) containing relationships that
had been defined by using each of the three selection methods. In this dissertation, only
the generalized equations were tested, since all the forest types differed from typical
riparian vegetation in temperate regions. Stepwise regression and Bayesian methods
returned the same model:

LN(AB) = 5.49 + 0.42h+ 5.18hcv − 00.66h50 + 0.66h75 − 0.3h90 + 2.98CC (4.5)

While the principle component analysis gave two different equations:

LN(AB) = 11.23 − 0.42h1 + 0.7h2 − 0.64h3 (4.6)

LN(AB) = 5.64 + 0.11h+ 5.66hcv + 3.14CC (4.7)

AB is above-ground biomass expressed in kg·ha-1, CC is the canopy cover, h is the
mean canopy height, hcv is the coefficient of variation of canopy height and the subscript
numbers indicate the percentile of canopy height.

Means et al. (1999) [41]

The authors investigated the use of large-footprint scanning airborne LiDAR in mature
forests, providing a model for above-ground biomass estimations that is valid if the
considered stand has a biomass of at least 1000 Mg·ha-1:

AB = 55 + 0.385h2 (4.8)

AB is the above-ground biomass expressed in Mg·ha-1 and h is the mean canopy height
expressed in m.

Means et al. (2000) [40]

According to the authors, LiDAR showed a potential for commercial applications in
forest industry, allowing for the estimation of the main physical features of stands (i.e.
height, basal area and volume) with reduced or null field work. This statement was
confirmed by scatter-plots and regression analyses that returned relationships between
small footprint LiDAR data and these features.

Even though large footprint LiDAR could provide reliable estimates, the authors
focused on small footprint instruments because they were the ones commercially available
at that time. The proposed height and stem wood volume equations are:

h = 7.69 + 1.90h90 − 1.23hmax (4.9)
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ln(V ) = 2.532 + 0.05651h80 + 2.355CC20 − 0.1581h0 (4.10)

considering the entire tree population and:

h = 1.75 + 0.87h90 − 1.59h0 (4.11)

V = −83.4 + 16.29h80 + 9327CC90 (4.12)

neglecting the old-growth stands. V is the volume expressed in m3·ha-1, h is the vegeta-
tion height expressed in meters and CC is the canopy cover. Subscript numbers indicate
the percentiles and the maximum height.

Despite the outcome of these equations is the stem wood volume of a stand and the
authors did not mention the intent of estimating the total biomass, fresh wood biomass
can be calculated starting from them, if the fresh wood density is known. Obviously,
this biomass could underestimate the real value as it does not comprise the contribution
of foliage to the total amount. Values of fresh wood density ρfresh for various tree species
can be directly found in literature or they can be calculated starting from literature
values of dry density ρdry (i.e. wood-specific gravity) and typical moisture content θ
[63]:

ρfresh = ρdry · (1 + θ) (4.13)

Observations on selected models

Although numerous models have been created to estimate above-ground biomass in forest
stands, no studies have been addressed to riparian corridors, where tree population is
generally younger and sparser. Thus, one of the objectives of this dissertation was to
test the reliability of these forest models in the case of their implementation for riparian
vegetation. As no local field data of the Cinca River were available, the evaluation was
done by comparing the obtained results one another and with literature data.

It is important to highlight that solely above-ground biomass was considered in
this dissertation. Although the below-ground fraction can account for 20-26% of the
whole biomass, methods for its estimation are poorly developed, being neither frequently
implemented on-field nor standardized [50]. The use of LiDAR technology for this kind
of estimations has been scarcely studied and limited literature currently refers to it,
despite some attempts made with discrete return LiDAR showed a good correlation
between LiDAR data and below-ground biomass, due to its strong relation to the size
of trees, which it is easily measured with LiDAR [44].

A final consideration, regarding the LiDAR data that are commonly used for biomass
estimation, must be done. Indeed LiDAR systems provide information about both eleva-
tion of hit surfaces with respect to the ground and intensity of the returning pulses, but
the presented models concern solely regressions between elevation metrics and biomass.
Return intensity, which is related to the ratio between the amount of energy detected
by the receiver for a given reflection point and the amount of total energy emitted for
the laser pulse, is rarely used in LiDAR analyses [24], [27], [38] and the few available
studies involving return intensity, mainly focus on its potential for discerning surface
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materials11. Song et al., for example, [56] analyzed the classification of urban elements,
as asphalt, roofs, trees and grass by using LiDAR intensity data, though specifying that
these usually are affected by high noise due to the variation of intensity response from
target surfaces if the angle of reflection changes12. Other studies have been made to
create a classification procedure to separate different land covers by using a combina-
tion of intensity and elevation data [14], [17], despite the reliability of intensity-based
classification of vegetation and individual trees is debated [28].

In the paucity of literature about intensity-based biomass estimates, an illustrative
example was provided by García et al. [27]. In the context of a mixed species Mediter-
ranean forest, the authors showed how LiDAR could provide a measure of biomass
by combining elevation and intensity statistics. According to them, intensity-related
variables could better explain the variance of biomass and increase the accuracy of its
estimation, especially when the study area is occupied by heterogeneous tree species.
However, although the defined model was provided by the authors and it was developed
for a Spanish forests, it was neglected in the development of this dissertation because of
three main reasons:

• Biological inconsistency: the proposed model was regressed considering pine forests
(Pinus nigra Arn., Pinus sylvestris L. and Pinus Pinaster Ait.) and oaks (Quercus
faginea Lam., Quercus ilex L. and Quercus pyrenaica Willd.) that do not belong
to the same genus of typical trees in riparian corridors.

• Impossibility of a proper intensity calibration: the reliability of this type of esti-
mates depends on the calibration of intensity values that, in turn, usually relies on
the knowledge of scan angle and/or altitude of the flying platform for each emitted
pulse. In the context of this dissertation, solely the average height of the scanning
flight was provided by CNIG thus preventing a proper calibration.

• Inadequacy to the thesis requirements: the proposed equation was considered too
complex for the purposes of this dissertation. Indeed, the final goal of this review
was not only to select a model for estimating biomass in riparian corridors, but
also to choose a simple and linear procedure to define the probability distribution
function of this biomass for a given altitude. García et al. model was inadequate
to this purpose as the equation they proposed requires too many steps and leads
solely to an average value for biomass, neglecting its probability distribution.

11Return intensity is related to the geometry of the acquisition (e.g. scan angle, distance source-target),
but also to the density of foliage in tree canopies [27].

12The solution proposed by the authors was to normalize intensity data by the angle of reflection even
though other scholars, as Hasegawa [28], stated that sometimes this correction is not applicable and that
not all the surface can be classified according to intensity.
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Chapter 5

Method

In order to process LiDAR data provided by Centro Nacional de Información Geográfica,
both GIS and specific software for managing LiDAR data were used. QGIS, which is a
free and open-source geographic information system [9], was chosen as GIS environment
because of its easy-to-learn interface and the large variety of operations and plugins it
offers, whilst FUSION/LDV software package was selected as instrument for handling
LiDAR datasets.

Before defining a procedure to test the biomass estimation models with an embed-
ded implementation of these software, a study about FUSION/LDV functioning and
potentialities was required. At Section 5.1 a selection of FUSION/LDV operations is
described in order to facilitate the comprehension of the procedure illustrated at Section
5.2.

5.1 LiDAR data processing with FUSION/LDV

FUSION/LDV is a system of software for the processing and visualization of LiDAR
data. This software package is free and it has been developed by the Forest Service of
US Department of Agriculture as a research tool for working with LiDAR data, whose
size usually requires great computational efforts for commercial GIS software [38]. The
package comprises:

• Task-specific command-line programs: running one or more of this programs allows
for filtering, clipping and processing LiDAR data. Tailoring them is possible by
rewriting the command-line, so that the final outcome can be customized according
to the users’ requirements.

• FUSION software: it provides the primary interface to display the outcome of the
command-line programs.

• LDV - LiDAR Data Viewer: it provides an environment for three-dimensional
visualization and analysis of data subsets.
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Despite the large set of operations that the software package offers, just a sequence of
few command lines was sufficient for areal biomass estimation. The following paragraph
offers an insight into these basic operations, noting that specifications for each program
are stated in the FUSION/LDV handbook [38].

Lda2Las

Raw LiDAR data usually are stored in .las format. However large datasets are com-
pressed in .laz format and require a conversion prior to the import in the FUSION/LDV
environment. Thus, the Lda2Las command-line program must be run:

Lda2Las [switches] InputFile OutputFile

InputFile is the .laz file, while OutputFile is the generated .las file1. Switches are
optional commands to customize programs.

FilterData

Unless the data provider guarantees the quality of the datasets, it is recommended to
filter data before processing them. The relative command-line program is FilterData:

FilterData [switches] FilterType FilterParms WindowSize
OutputFile DataFile

FilterType is the filtering algorithm 2, WindowsSize is the size of the window used to
computed the standard deviation of elevation or the maximum and minimum values,
OutputFile is the filtered .las file. DataFile is the .txt file that lists the original data
file.

PolyClipData

Usually LiDAR data are stored in datasets that cover a square area (e.g. the data used
in the case study were subdivided in square areas with a side 2 km long). If the aim
is to analyzed solely a part of this square, it is recommend to clip the dataset with
PolyClipData:

PolyClipData [switches] PolyFile OutputFile DataFile

InputFile is the original .las file, while OutputFile is the clipped .las file. PolyFile is the
.shp file that defines the area of interest.

1the .las file constitutes the raw data in FUSION interface.
2FUSION supports four algorithms: outlier that removes returns above or below the mean elevation

± the product between the standard deviation of elevation and a user-defined constant; outlier2 that is
an upgrade of the former; minimum that removes all returns except the ones with minumum elevation;
maximum that removes all returns except the ones with maximum elevation.
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Catalog

FUSION does not display .las data. Thus, an associated .bpm grey scale intensity image3
must be created with Catalog:

Catalog [switches] DataFile CatalogFile

DataFile is the .txt file containing the path of the .las file and CatalogFile is the name
of the outcome. Useful switches in this case are:

• /image creates an image files that shows the area covered by LiDAR data.

• /index creates indices for LiDAR files.

• /coverage creates an image that shows nominal coverage for all the datasets listed
in the .txt file.

• /firstdensity:area,min,max creates an image that shows the density of first returns
in the area represented by each pixel. area is the pixel area, min andmax define the
interval of acceptable point density per unit area. If the first return densities of a
cell is comprised between the minimum and maximum set values, the visualization
colour is green, if it is lower red and if it is higher blue.

• /intensity:2,0,255 creates a grey scale intensity image using the average intensity
for all first returns within each pixel. area is the pixel area, min and max are,
respectively, the minimum and maximum intensity value.

GroundFilter

Once the data have been clipped and filtered, and the grey scale intensity image has
been created, the ground points can be extracted from the 3D cloud with GroundFilter:

GroundFilter [switches] OutputFile CellSize DataFile

OutputFile is the .lda file containing the ground points, Cellsize is the size of the cell
that is used to select the ground points and create the intermediate surface. It may
differ from the size of cell in the final DTM. DataFile is the .txt file that lists the .las
input file. Usually the following switches are used:

• /gparam:#, /wparam:#, /aparam:#, /bparam:# are the parameters used in the
weight equation (??). Default values are respectively: -2.0, 2.5, 1.0, 4.0.

• /tolerance:# is the tolerance value for the final filtering of the ground points,
meaning that only the points beyond # units from the final intermediate surface
model are excluded from the output file. The default value corresponds to the
weight.

3the .bpm file must be associated to image command in FUSION interface.
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• /iteration:# is the number of iterations for the filtering process. The default value
is 5.

• /lda forces the output file to be written in .lda format even when the input is a
.las file.

The filtering algorithm for creating the intermediate surface comprises a system of three
equations and it has been adapted from Kraus & Pfeifer [33] by FUSION/LDV devel-
opers. It consists of an iterative process: the outcome of the first stage, that is a surface
that lies between the true ground and the canopy surface, is computed considering equal
weights for all the points of the 3D cloud and becomes the input for the subsequent
computation. Starting from the second step, weights are defined by Kraus & Pfeifer
system of equations:

pi = 1 for vi ≤ g (5.1)

pi = 1
1 + a(vi − g)b for g < vi ≤ (g + w) (5.2)

pi = 0 for (g + w) < vi (5.3)

If vi is the vertical distance between the i point and the computed surface, ground
points are expected to be under this surface, while canopy point above it. The parameters
a and b determine the steepness of the weight function, g indicates which points are
related to the maximum weight (i.e. weight 1 is assigned to points located below the
surface by more than g along the vertical direction) and w defines the upper limit for
point to have an influence on the ground surface modelling; all the points above the
surface by more than w have a weight equal to zero. After the fixed number of iteration
is run, bare-earth points are used to create the final intermediate surface. These points
are those that satisfy the conditions set by Equation 5.1 and Equation 5.2, unless the
/tolerance:# switch is used, since in that case all the points within the specified tolerance
distance from the final surface are considered bare-earth points and used for the surface
creation.

GridSurfaceCreate

GridSurfaceCreate command-line program reproduces the 3D model of ground surface
in .dtm format4:

GridSurfaceCreate [switches] SurfaceFile CellSize XYunits Zunits
CoordSys Zone HorizDatum VertDatum DataFile

4In FUSION environment, the .dtm file of ground surface must be associated to the label Bare earth.
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SurfaceFile is the output .dtm file, while CellSize is the size of the grid cell of the DTM.
XYunits and Zunits must be specified as M for meters or F for feet. CoordSys is the
coordinate system for the surface, defined as 0 if unknown, 1 for UTM, 2 for state plane,
and Zone is the corresponding zone for the surface in the chosen coordinate system,
defined 0 if unknown. Horizdatum is the horizontal datum for the surface, defined as 0
if unknown, 1 for NAD27, 2 for NAD83 and VertDatum is the vertical datum for the
surface, defined as 0 for unknown, 1 for NGVD29, 2 for NAVD88, 3 for GRS80. DataFile
is the .txt file containing the path of the input .las file.

CanopyModel

DTM is not the solely elevation model that LiDAR data processing can produce. The
CanopyModel command-line programs allows users to create 3D surface models that
reproduce the shape of canopy5. By modifying the command line, two different types of
surface models can be realized:

• Canopy Surface Model (CSM): 3D elevation models whose z-coordinates refer to
elevation from sea level.

• Canopy Height Model (CHM): 3D elevation models having the same shape of the
relative CSMs, but whose z-coordinates refer to elevation from the ground surface.

For obtaining the CSM, the relative command line is:

CanopyModel [switches] SurfaceFile CellSize XYunits Zunits
CoordSys Zone HorizDatum VertDatum DataFile

The meaning of the various elements of the command line is the same of GridSurface-
Create. If the desired output is the CHM, the switch /ground:GroundSurfaceFile.dtm
must be added.

Dtm2Ascii

In order to visualize the surface models created with GridSurfaceCreate and Canopy-
Model in GIS enviroment, Dtm2Ascii must be used:

Dtm2Ascii [switches] InputFile OutputFile

InputFile is the .dtm file to convert, while OutputFile is the .asc file to import in GIS
environment. Usually the /raster switch is used; it interprets the DTM points as the
attribute for a cell, adjusting the origin of the ASCII grid file so that the lower left data
point is the center of the lower left grid cell.

5In FUSION environment, the .dtm file of canopy surface must be associated to the label Canopy.
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GridMetrics

To extract statistic information about elevation and intensity of the returns, GridMetrics
program may be used. It splits the covered area according to a grid and computes
descriptive statistic parameters6 for the data contained in each cell. The output is a
ASCII text file in the .csv format whose rows represent one cell and columns are the
computed parameters. The sintax of the command line is:

GridMetrics [switches] GroundFile HeightBreak CellSize
OutputFile DataFile

GroundFile is the .dtm file representing the computed DTM, HeightBreak is the eleva-
tion value considered for cover calculation 7, Cellsize is the size of the cell that is used
to compute the statistics, OutputFile is the .csv file with the results and DataFile is the
.txt file that lists the .las input file. Useful switches may be:

• /outlier:min,max defines the lower and upper limits of the elevation interval outside
which points are considered as outliers.

• /strata[x1,x2,...,xn] counts the returns in different height strata. x1,x2,..,xn repre-
sent the limit of these strata.

Csv2Grid

Finally, to convert .csv data in a ASCII format to be visualized in GIS, CSV2Grid may
be used:

Csv2Grid [switches] InputFile Column OutputFile

InputFile is the .csv file, Column is the parameter to be visualized (e.g. mean elevation)
and OutputFile is the outcoming raster.

5.2 Testing and evaluation of biomass estimation models

As literature offers models to estimate forest biomass, FUSION/LDV software package
and GIS were used to test them in the study area and assess their reliability for ri-
parian vegetation. Firstly, the whole study area was considered and models were used

6GridMetrics returns the position of the cell in the grid, the elevation (or intensity) maximum, min-
imum, mean, mode, standard deviation, variance, coefficient of variation, interquantile range, skewness,
kurtosis, the L-moments and the 1st, 5th, 10th, 20th, 25th, 30th, 40th, 50th, 60th, 70th, 75th, 80th, 90th,
95th, 99th percentiles. Moreover the elevation statistics comprise the number of the various returns (i.e.
first, second, etc.) above the heightbreak.

7Cover for a specific area is calculated as the ratio between the number of returns above the height-
break and the total returns. Heightbreak is an arbitrary value, but it is commonly set equal to 1.37 that
corresponds to the height, in cm, at which the DBH is measured.
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to estimate biomass along all the segment and in the relative floodplain. Models were
compared each other in order to select the ones that returned consistent results and the
influence of chosen cell size was assessed. Secondly, the consistency of the selected models
was tested comparing LiDAR-estimated biomass with the value obtained by allometric
formulas, in those areas where vegetation could have grown undisturbed. The selection
of this area was done according to the comparison of various orthophotos over time, in
order to understand where vegetation growth had not been affected by flow fluctuations.

Creation of DTM

The .laz compressed datasets, related to the study area, were converted in a comprehen-
sive .las file by running Lda2Las and the corresponding grey scale image was obtained
with Catalog. Importing the grey scale images in GIS environment, the exact shape of
the study area was selected and saved in a .shp file to be used to clip the dataset with
PolyClipData8. Since the moderate level of anthropization, the selection of the flood-
plain was done also according to the artificial boundaries, such as high traffic roads,
facilities and crop fields.

Secondly, GroundFilter was run; g and w parameters were set respectively equal
to -1 and 2.0, while the tolerance was fixed as 0.1. Various numbers of iterations were
tried, but no relevant differences were noticed in the outcomes. A final number of 20 was
decided to find a balance between precision and short computational time. CellSize was
defined equal to 2, as FUSION/LDV developers suggests to set the same size of LiDAR
acquisition [38].

Finally, the DTM was created with GridSurfaceCreate. Before running it, the com-
mand line had been modified by defining:

• CellSize = 2, equal to the units of LiDAR data in the study area [1].

• XYunits, XYunits = M meaning meters.

• CoordSys = 1, as the coordinate system is UTM.

• Zone = 31 N, which is the UTM zone number of the study area.

• HorizDatum, VertDatum = 0, as both the horizontal datum and vertical datum
were unknown.

In this case, the FilterData operation was neglected, since the source of the data explicits
that they had been already preprocessed [1].

8Clipping the shape of the study area was necessary as each dataset covers a square area 2 km x 2
km, including not only the riverbed and floodplain, but also the limiting area that are not object of this
dissertation.
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Biomass estimation

The command line GridMetrics was run various times to obtain elevation statistics by
discretizing the study area in square cells with side 2, 10 and 20 m long. Cell sizes were
defined according to the procedures adopted by the authors of the selected models, that
are summarized in Table 5.1.

Table 5.1. Selected models for biomass estimation. Overlined characters indicate aver-
aged values, while subscript numbers indicate percentiles.

Author Model Eq.Ref.
He et al. (2013) AB= -9.013+10.812h+ 25.105CC 4.3
Lefsky et al.(2002) AB = 0.378h2 4.4
Li et al.(2008) ln(AB)=5.49+0.42h+5.18hcv-00.66h50+0.66h75-0.3h90+2.98CC 4.5

ln(AB)=11.23-0.42h1+0.7h2-0.64h3 4.6
ln(AB)=5.64+0.11h+5.66hcv+3.14CC 4.7

Means et al. (1999) AB = 55+0.385h2 4.8
Means et al. (2000) ln(V) = 2.532+0.05651h80+2.355CC20-0.1581h0 4.10

V = -83.4+16.29h80+9327CC90 4.12

Equation 4.3 was implemented on 20x20 m cells [29], while Equation 4.10 and Equa-
tion 4.12 on 10x10 m cells [40]. As the other models worked on the whole area [34], [36],
[41], the various discretizations were compared. Also Equation 4.1 (i.e. Jenkins et al.)
was implemented as it represented a useful instrument to have an order of magnitude of
above-ground biomass, despite the authors declared that this generalized equation might
be affected by uncertainties and it had to be used carefully in site-specific applications
[30]. This model calculated dry above-ground biomass ABdry, and therefore solely the
dry wood amount was accounted and converted in fresh biomass by considering the mul-
tiplying factor (1+θ), where θ is the moisture content of wood. The ratio of dry wood
and total dry biomass was computed with Equation 4.2.

Following a similar procedure, also biomass in two sub-areas was evaluated. The first
sub-area consisted of one9 of the nine datasets downloaded from CNIG [1] for the year
2016 and it was used to analyze the behaviour of estimation model when varying cell
size; the reduction of study area for this analysis was done with the purpose of shortening
computational time. The second sub-area was a small plot, shown in Figure 6.6, defined
by observing orthophotos taken over time and choosing one spot where vegetation had
grown without being affected by river flow variability. In this spot, vegetation is expected
to have reached its maximum growth10 and, therefore, the value of biomass provided by
the chosen model should be comparable with the one returned by the allometric formula
of Jenkins et al. that, as explained in the following sections, does not account for flood

9Dataset name: PNOA_2016_ARA_270-4610_ORT-000-COL.
10If vegetation has reached its maximum size, its biomass value represents the carrying capacity for

that species in those specific conditions (e.g. water and nutrients availability, mechanic stress).
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uprooting or excessive exposure.

Error metrics

For each implemented model, biomass values were computed for the three chosen cell
sizes (i.e. 2x2, 10x10 and 20x20 m). In those cases the authors had specified cell size
(He et al. 2013 and Means et al. 2000) solely the results relative to that discretization
were reported; in the other cases, results were presented as the average value among the
various discretizations ± the standard deviation.

The analysis of the influence of cell size on results was carried out in two different
ways. If a specific cell size had been indicated, the mismatch among the reference value
(i.e. the biomass computed for the specific cell size) and the values obtained by varying
discretization was measured with three error metrics and percentage change. Otherwise,
general considerations on differences among results were done. Percentage change was
computed as:

V = ABfinal
ABinitial

· 100 − 100, (5.4)

where negative values of V indicate lower estimates, while positive higher estimates.

The chosen error metrics were:

• Mean Bias Error (MBE): it provides a measure of the magnitude of the errors in
the set of values; due to its linearity, it weights at the same way all the individual
differences, even though the negative and positive errors could compensate each
other returning and underestimate the error.

MBE = 1
N

·
NØ
i=1

ABi −ABref (5.5)

N indicates the total amount of i-th values ABi to compare with the reference
one ABref. Negative MAE values indicate that on overall the computed AB are
smaller than the reference value.

• Mean Absolute Error (MAE): similarly to MBE it weights at the same way all
the individual differences, but, conversely to MBE, the presence of absolute value
prevents considerations about the direction of the error and avoids the measure of
the errors to be underestimated.

MAE = 1
N

·
NØ
i=1

|ABi −ABref| (5.6)

MAE values ranges from 0 to ∞; lower MAEs correspond to smaller errors and
higher accuracy.
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• Root Mean Square Error (RMSE): as errors are squared before the average calcu-
lation, RMSE associates higher weights to large errors. Square differences avoid
considerations about the direction of the error.

RMSE =

öõõô 1
N

·
NØ
i=1

(ABi −ABref)2 (5.7)

AsMAE, RMSE values ranges from 0 to ∞ and accuracy increases when RMSE
decreases.

Although RMSE is one of the most reported metrics [67], used especially when large
errors must be avoided, in this dissertation also the other two metrics were calculated as
their comparison could lead to interesting considerations. MBE was the only metrics,
among the chosen three, that indicated the direction of the error. MAE was compared
to RMSE in order to understand the variability of occurred errors: the more RMSE
exceeded MAE, the less errors were distributed homogeneously among the measures.
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Chapter 6

Results and discussion

6.1 Implementation of selected models

The DTM of the study area that was created with FUSION/LDV, starting from available
LiDAR data, is shown in Figure 6.1. As the floodplain ranges from 0 to approximately
5.4 meters in relation to the water surface at the time of the acquisition, the DTM was
subdivided in 54 altitude bands in order to facilitate the visualization in GIS, setting
tbe water surface as the lowest band. The distribution of vegetation in the study area is
shown in Figure 6.2, where the mean vegetation height, computed for the finest cell grids
(i.e. 2x2 m), is displayed. The selected models were implemented and evaluated both
individually, according to literature values and allometric formulas, and in comparison
each other.

Jenkins et al. 2003

Equation 4.1 required as input data tree-specific parameters β0, β1, whose values for
the study area were found in literature [30], and DBH. As processing of LiDAR data
provided the average vegetation height, Equation 8.7, was used to find the relative
DBH and compute biomass1. Also the moisture content θ was set for this equivalent
vegetation, with a value equal to 1.055. The resulting above-ground dry biomass was,
on average, 43.4 ± 0.5 Mg·ha-1. Considering the sole wood contribution (e.g stem and
branches) and converting it in fresh biomass, the resulting value was 86.7 ± 1.1 Mg·ha-1

He et al. 2013

Equation 4.3 was implemented on 20x20 m cells and the resulting above-ground biomass
was 41.4 Mg·ha-1. This value was perfectly aligned with the interval proposed by the

1The tree-specific parameters of Equation 8.7 were set considering average values between poplars
and willows. As explained at Section 8.1, an equivalent vegetation with intermediate characteristics
between these two species was considered for the study area.
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Figure 6.1. DTM of the study area. Legend values indicate the topographic height in
relation to the mean water surface.

authors [29], according to whom above-ground biomass ranges from 0 to 230 Mg·ha-1.
The computed value could be valid for the shrubs that occupied the study area.

Lefsky et al. 2002

As the authors computed above-ground biomass considering the average height of vege-
tation in the entire study area [34], Equation 4.4 was implemented experimenting various
configurations; for each configuration the average value among the three different cell
sizes was considered as each discretization led to a different values for h. Firstly, a
biomass value of 7.9 ± 1.3 Mg·ha-1 was obtained defining a value of h for each cell.
Secondly, h was set as the average value of all the study area and the resulting biomass
was 3.6 ± 1.0 Mg·ha-1.

The results of the two configurations were less than the minimum proposed by the
authors for deciduous forests in temperate climates, 11.4 Mg·ha-1 [34]. Nevertheless, the
authors did not specify the age of the young forest they considered and differences in
results may be explained by high renovation rate of riparian vegetation due to continuous
uprooting caused by floods. In addition to this, it must be considered that the models
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Figure 6.2. Vegetation coverage of the study area. Legend values indicate
the vegetation height.

were created for full waveform recording LiDAR systems and no specifications about its
implementation for discrete return were given by the authors.

Li et al. 2008

All the three models, Equation 4.5, Equation 4.6 and Equation 4.7, gave unrealistic
results. One cause of this discrepancies could have been the principles on which the
models relied; the authors, in fact, did not consider the canopy cover, or rather the
ratio between first returns above heightbreak and total first returns, as a independent
variable, but filtered the data to obtain only the return above 2 m [36].

As an attempt, GridMetrics was run other six times, three filtering values above 1.3
m (2x2, 10x10 and 20x20 m cell grids), which is the reference breast height, and three
filtering above 2 m (2x2, 10x10 and 20x20m cell grids). However, also in those cases the
results were neither consistent each other nor realistic.
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Means et al. 1999

Similarly to Lefsky et al., this model estimates biomass starting from the average veg-
etation height of the whole study area. Therefore, also Equation 4.8 was tested for
different configurations, both changing the cell size and considering the average height
for individual cells and the entire area.

Despite this model referred to large-footprint scanning airborne LiDAR, it returned
consistent values for all the combinations. The resulting biomass was 63.1 ± 1.3 Mg·ha-1
considering h for each cell and 58.7 ± 1.0 Mg·ha-1 considering a h for all the area.

Means et al. 2000

Before implementing the proposed models, an equivalent fresh wood density for the
mixed riparian vegetation was defined. As the study area is mostly occupied by willows
(ρfresh = 0.82 Mg·m-3) and poplars (ρfresh = 0.66 Mg·m-3) , the chosen density was an
average value, equal to 0.74 Mg·m-3. Models were first applied to 10x10 m cells, as
specified by the authors [40], and subsequently tested for 2x2 and 20x20 cell size in
order to evaluate the influence of grid size on results.

Equation 4.10 returned 58.6 Mg·ha-1 for 10x10 m cells, while Equation 4.12 returned
2736.9 Mg·m3, a value that could be referred to very mature forests and it is not realistic
in the case of riparian corridors.

6.2 Comparison among models

As the models provided by Li et al. 2003 (Equations 4.5, 4.6 and 4.7) and the second
model of Means et al. 2000 (Equation 4.12) did not seem reliable for riparian biomass
estimation through small footprint discrete LiDAR, they were discarded from the short-
list.

The remaining models were compared in order to understand their mutual consis-
tency. The value provided by Jenkins et al. allometric formula (i.e. approximately 87
Mg·ha-1) was considered as a reference for the order of magnitude of biomass in the
study area. He et al. 2013 (Equation 4.3) underestimated biomass, probably because it
was regressed for a specific tree species that do not belong to temperate riparian vege-
tation; Lefsky et al. 2003 (Equation 4.4) strongly underestimated biomass presumably
because the models were regressed for full waveform-recording LiDAR data; Means et
al. 1999 (Equation 4.8) and Means et al. 2000 (Equation 4.10) led to consistent results,
especially when Equation 4.8 was computed with an average value of height for all the
area, regardless the average values returned for each discrete cell. It must be highlighted
that Equation 4.8 returns a biomass equal to 55 Mg·ha-1 when average height is equal
to zero (i.e. it considers that a certain amount of biomass is always present, even when
there are no trees) and this could lead to mismatches with Equation 4.10. Assuming, for
example, no crown cover (CC=0), Equation 4.10 gives values lower than 55 Mg·m3 in
all those cases that h80<15.4 m, which are vegetation heights likely to occur in riparian
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corridors. Hence, Equation 4.8 is not reliable in those cases, where vegetation in prox-
imity of the water is usually young and small size. However, increasing CC, the height
threshold decreases and the range of applicability of Equation 4.8 enlarges. In Table 6.1,
the explained results are reported.

Biomass values provided by Equation 4.10 were assessed as consistent also with the
one computed through Jenkins et al. generalized equation. In fact, even though the
former seemed an underestimation, it was considered that:

• Equation 4.10 returned volume values that were transformed in biomass through
fresh wood density; hence, the foliage biomass, which accounts for around 3% of
total biomass for the study case [30], was neglected.

• Equation 4.1 could provide only indicative values for small-scale areas and, above
all, that it does not considered the vegetation removal action of rivers.

Table 6.1. Above-ground biomass computed values (Mg·ha-1) for the study area.

Cell size He et al. 2013 Lefsky et al. 2003 Lefsky et al. 2003 Means et al. 1999 Means et al. 1999 Means et al. 2000
cells average height areal average height cells average height areal average height

Eq. 4.3 Eq. 4.4 Eq. 4.4 Eq. 4.8 Eq. 4.8 Eq. 4.10
2 33.9 8.9 3.4 64.1 58.5 57.6
10 30.9 6.4 2.8 61.5 57.8 58.6
20 41.4 8.5 4.7 63.6 59.7 68.3

6.3 Influence of grid discretization

The analysis of the influence that grid discretization could have on results was carried
out solely for the two most relevant models, or rather Equation 4.8, considering an areal
average for h, and Equation 4.10. Anyway, the choice of cell size for grid discretization
seemed not to greatly affect the results, as shown in Figure 6.3. In the case of Equation
4.10, the results for 10x10 cell size were considered as reference values, since 10x10
m is the grid size used by the authors [40]; errors were generally overestimation for
coarser discretization, while slightly and negligible underestimation for smaller cells.
With respect to Equation 4.8, not a similar observation may have been done as the
authors did not computed biomass by discretizing the area in cells, but they considered
the whole territory, and not a cell size can be fixed as reference value in comparison to
which evaluating eventual mismatches among results; moreover, variations of results for
changing cell size are less than 2 Mg·ha-1 and could, therefore, be neglected.

When considering the whole study area, the choice of grid size slightly influenced
results for biomass estimation. However, it was necessary to verify if discretization
represented a discriminating factor when the estimation had to be done for very narrow
and complex areas, as in the case of splitting the study segment according to topographic
bands (see Section 8). In that case, in fact, it could happen that areas were less wide than
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Figure 6.3. Comparison among different cell size for the same selected spot.

the cell size and, according to GIS visualization, it seemed that larger cells tended to
overcome the boundaries of the selected band, computing biomass also for the adjacent
territories, as visible in Figure 6.4. Thus, a subplot of the study area was taken as
reference site to analyze the effect of cell size on biomass estimation and verify that the
bias shown in Figure 6.4 was solely related to visualization and not to numeric results. As
reported in Figure 6.5, all the cell sizes led to similar biomass trends, except for Equation
4.10 with 2 m cells that tended to overestimate biomass of around 40% in comparison
to the reference value (i.e. Equation 4.10 with 10 m cells). Furthermore, GridMetrics
computed for 2 m cells did not recorded vegetation returns for certain altitude bands.
20 m cells slightly underestimated biomass, with values that are usually 5% lower than
the reference ones, while, as stated at Section 6.2, Equation 4.8 led to consistent results
with the reference values (underestimation of 2%), unless the biomass is less than 55
Mg·ha-1, as happened in the study area above altitudes of 5 m in relation to the river
bed.

An overview about error metrics for the various discretizations, assuming Equation
4.10 as reference, is reported in Table 6.2. Metrics confirmed what the percentage change
had already highlighted. Equation 4.10 with 2 m cells tended to overestimate biomass
(MBE is positive), with large errors; the same equation but with 20x20 m cells, had
a good match with reference values, only slightly underestimating biomass (MBE is
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Figure 6.4. Comparison among statics about vegetation height, for a specific altitude
band (in red), computed with different cell discretizations.

negative), despite errors were not homogeneously distributed (RMSE is almost the
double of MAE). The similarity between Equation 4.8 and the reference case was high
and led to the best error metrics when the sole altitude bands below 5 m in relation
to the river bed were considered, while it was unacceptable when the entire altitude
spectrum was taken in account.

Table 6.2. Error metrics for varying cell size. The second row represents the case in
which cell size is 2x2 m for Equation 4.8, but results above 5 m in altitude are excluded
because biomass is less than 55 Mg·ha-1.

Cell size MBE MAE RMSE
2 (Eq. 4.8) -7.2 11.0 19.2
2 (Eq. 4.8) -2.7 4.9 5.8
2 (Eq. 4.10) 15.1 28.8 94.5
20 (Eq. 4.10) -3.1 4.8 7.3

In summary, the chosen model for defining the distribution of biomass in the study
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Figure 6.5. Comparison among biomass trends for different cell sizes.

area was Means et al. 2000 (i.e. Equation 4.10, associated to the discretization of the
area in 10 m cells). This represented a good compromise between reliability of results
and computational time. Although Equation 4.8 for 2x2 m cells returned consistent
results with Equation 4.10, it was discarded because of the lack of results for specific
altitude bands, the incapacity of recording biomass value lower than 55 Mg·ha-1 and the
long computational time it would have entailed.

6.4 Comparison of computed carrying capacity
Implementing the chosen model (i.e. Means et al. 2000, Equation 4.10, with 10x10
m cells) on a small plot where vegetation is expected to have grown undisturbed, thus
achieving a biomass value close to its carrying capacity, the reliability of the model was
assessed. Indeed, the biomass the model returned had to be comparable to the value
provided by the consolidated allometric model of Jenkins et al. (Equation 4.1), which
does not take into account the variability of conditions of riparian environments.

The selected spot is shown in Figure 6.6. Jenkins et al. formula was implemented by
considering the average vegetation height deriving by LiDAR acquisition and returned a
biomass value of 138.6 Mg·ha-1 that represents the maximum biomass of the specific tree
population in the study site when reaching that height and that could be considered as
a local carrying capacity. As Equation 4.10 returned a biomass value of 112.4 Mg·ha-1
and, therefore, was consistent with Jenkins et al., the model was assessed as sufficiently
reliable and used to achieve the second objective of this dissertation.
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6.4 – Comparison of computed carrying capacity

Figure 6.6. Selected area for comparing the biomass computed with the selected
model and allometric formulas.
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Part II

Stochastic model calibration





Chapter 7

Modelling riparian vegetation
dynamics

In 2006, Camporeale and Ridolfi [16], formulated a stochastic process describing the
distribution of phreatophyte riparian vegetation by modelling the impact that the ran-
domness of hydrological fluctuations has on its growth. One of the two objectives of this
dissertation was to define a procedure for calibrating this model, starting from hydro-
logical data and the outcomes of LiDAR acquisitions that were available for the study
area.

Calibration focused on one parameter that still needed to be properly set, k, which
represents the ratio between the rate of vegetation decay during inundations and the
rate of vegetation growth during exposure, and it required a set of parameters and input
data. The former were mainly found in literature, while the latter consisted of geometric,
hydrometric and biological site-specific information and were collected in different ways:

• Hydrometric data: time series of river discharges, which had been provided by
Confederación Hidrográfica del Ebro [3], were processed in order to obtain statistics
about water levels.

• Biological data: the required information concerning riparian vegetation biomass
were obtained by processing raw LiDAR data previously downloaded from CNIG
online platform [1].

• Geometry: the topography of the study area was defined by the outcomes of LiDAR
data processing, while the configuration of the phreatic surface was assumed as
horizontal.

In summary, the software used for the calibration were FUSION/LDV, QGIS, HEC-
RAS and MATLAB. As explained in Part III, vegetation data were processed with
FUSION/LDV, while geometric data also required the use of QGIS. HEC-RAS allowed
to define the hydrological rating curves. All the computations were made by creating
scripts in MATLAB.
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7 – Modelling riparian vegetation dynamics

7.1 Processes and factors influencing riparian vegetation
evolution

Considering the riparian environment as constituted by three components, namely the
stream, the topographic site and the riparian vegetation, river dynamics can be explained
as an ensemble of processes driven by the interactions occurring among the elements of
this triad. As a matter of fact, each of these components continuously exerts disturbances
to the others so that they mutually influence their behaviour. In response to these
disturbances, the riparian environment evolves in time and space, forced to shift from
the existing status towards a new equilibrium. Disturbances mainly consist of river flow
fluctuations, geomorphological processes, as erosion and sedimentation, and the action
of the colonizing vegetation and they cannot be deterministically predicted because of
the randomness of their occurrence and their effects [65].

Assuming a vegetation-centric perspective, riparian vegetation is strongly controlled
by geomorphological processes and river flow fluctuations in each phase of its life cycle
[16], [52], [65], though its mutually feedback actions on riparian morphology and the local
hydrodynamic field. Regarding the initial phase of vegetation life, geomorphological
processes contribute to the creation of an adequate site for the establishment of pioneer
vegetation, since the deposition of fresh alluvial substrate leads to optimum conditions
for seed germination, but they could also prevent vegetation to born because of burial and
scouring. Flow regime, or rather the combination of stream velocities and water stages,
creates room for new vegetation, too, as high flows can remove pre-existing vegetation
(i.e. uprooting due to flooding). Moreover, flow regime influences species selection and
zonation by conditioning the dispersion of reproductive material by hydrochory and the
moisture and nutrients conditions of soil substrates. After seed germination, vegetation
grows accordingly to the moisture conditions and availability of nutrients and oxygen,
but it can be inhibited by mechanical stress or change in conditions. Thus, during
this phase, flow variability can affect the size the vegetation can reach both regarding
its above-ground components and the roots. Low water stages induce drought stress
affecting vegetation growth; particularly, if the level of phreatic surface declines below
the minimum level that allows vegetation survival, an overall biomass reduction in the
riparian corridor occurs. Also, high flows cause stress to vegetation. High water levels
induce anoxia, reducing the amount of oxygen available at the root depth, whereas high
velocities cause vegetation damage and uprooting and are usually associated to high
sediment load fluxes that can bury existing vegetation. In each location, the site-specific
conditions (i.e, moisture, depth of water table, nutrients, oxygen) define the carrying
capacity of a vegetation species, or rather the maximum size a tree can achieve in those
conditions.

Hydrogeomorphological disturbances are not the solely processes by which the re-
cruitment, zonation, growth and decline of riparian vegetation are influenced, as also
secondary factors play a relevant role in changing the existing status of riparian vegeta-
tion and modify the conditions that favour its development [16], [21], [52], [54], [65]:
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7.2 – Description of the stochastic model

• Hydrological factor: hydrodynamics field usually is not homogeneous and vari-
ability in roughness and local change in flow direction can alter its influence on
sediment transport and vegetation growth.

• Biological factors: regardless the conditions in the riparian environment, vegeta-
tion growth can be affected by interspecific competition among different species.
Invasion of allochthonous species, due to both natural convey of alien seeds by the
stream and anthropic import, causes a reduction of indigenous plants simultane-
ously to an increase of alien ones, leading to variations of the overall amount of
biomass.

• Wood debris factor: the accumulation of wood debris promotes the establishment
of new vegetation. Wood debris constitute an obstacle to the ordinary flow, pro-
moting scouring upstream and sedimentation downstream, thus creating a new
island that can be colonized. Colonization is also favoured by the abundance of
nutrients provided by dead wood.

• Anthropic factor: human activities strongly alter the flow regime, both in quantity
and quality, and have, therefore, an influence on vegetation growth and survival.
Furthermore, regardless hydrological conditions, biomass can be reduced by tree
cutting as well as the species selection and zonation can be controlled by human
pressure (e.g. import of allochthonous species and establishment of settlements
and crops fields along rivers).

• Animals factor: mechanical damage or uprooting of weeds and trees in their early
phase of growth can be induced by the action of herbivorous, even though the
unpredictability and low probability of this occurrence usually prevent it to be
mentioned, while modelling vegetation dynamics.

• Other external factors: finally, vegetation can be influenced both directly by ran-
dom events such as wildfires, which completely remove the existing vegetation while
creating optimum soil conditions for the colonization of fire-adapted species1, and
indirectly by climate change, which is gradually varying hydrological regime that,
in turn, modifies its effects on riparian vegetation.

7.2 Description of the stochastic model

With the purpose of keeping the model analytically tractable [16], the authors decided
to include solely the key processes conditioning the evolution of riparian vegetation by
setting a series of simplifying hypotheses. Firstly, interspecific interactions in vegetation
species, due to synergy or competitiveness, were overlooked, despite the features of the

1Fire-adapted species: species that can recover from wildfire faster than others and that are, therefore,
most favoured in colonizing areas with a high wildfire hazard [54].
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7 – Modelling riparian vegetation dynamics

various species were taken in account to set the vegetation-related parameters. Secondly,
in order to maintain constant the geometric asset of the problem, a steady river morphol-
ogy was assumed, neglecting sedimentation, erosion and the influence that vegetation
may have on these processes. Thirdly, the time delay between the vertical movements
of the river water surface and the related change of groundwater level in the adjacent
unconfined aquifer were disregarded considering that this delay is usually negligible in
comparison to the timescale of interactions between vegetation and groundwater. Also,
other crucial aspects were neglected, such as the eventual action of the external fac-
tors listed in the previous section (e.g. heterogeneity in flow hydraulics, accumulation
of wood debris, influence of water quality on vegetation growth and decay, feedback of
the the various species to climate change and the presence of herbivorous animals). By
excluding these factors, the model could focus on the basic actions that regulate the
dynamics of growth and decay of vegetation in riparian corridors, returning the steady
state probability density function of vegetation biomass and its main statistics.

To sum up, according to this model, the stochasticity of vegetation dynamics is due to
flow variability. This randomness is described by the variable h, representing the water
levels, its probability density function and the integral scale. Also the other variables
are random variables, as they all depend of water level (e.g. depth of phreatic surface δ,
probability of inundation P I and exposure PE, carrying capacity β and growth rate α).

Temporal scale

The timescale, to which the model refers, ranges from a day to several years, as it
accounts for both the short-term effect of inundations and the slower processes of vege-
tation growth. However, the results of the models must be evaluated in the long-term,
as the simplifications could affect the short-term interpretations.

Geometric setting

This model refers to the spatial scale of a reach and the geometry configuration is set
as a generic riparian transect with vertical datum coincident to the minimum water
level, as shown in Figure 7.1. This configuration can be completely described by four
dimensionless variables:

x = x* − w*

w* (7.1)

h = h* − h*

h*
(7.2)

ζ = ζ* − h*

h*
(7.3)

η = η* − h*

h*
(7.4)
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x is the transversal coordinate, whose origin is located at the intersection between the
river bed and the minimum water level, w is the river width, h, ζ and η indicate the
elevation of, respectively, the river water surface, the phreatic surface level and the to-
pographic elevation of riverbed, in reference to the vertical datum. Overlined characters
refer to the average value, while ∗ indicates dimensional parameters.

Figure 7.1. Sketch of the riparian transect, including the main variables of the model.
Source: Camporeale and Ridolfi [16].

Input parameters

This stochastic model requires a set of input parameters that can be classified in three
groups:

• Hydrometric parameters: hydrological fluctuations are describes by the water level
h, which is a random variable, and its probability density function (pdf) p(h),
autocorrelation function (ACF) ρh(s*) and integral scale τ* constitute part of the
necessary input data for running the model. Defining t as time and s as delay, the
ACF is:

ρh(s*) = h(t*)h(t* + s*)
h2(t*)

(7.5)

The integral scale corresponds to the area of ACF and represents the memory of
a signal that, in this case, is the time series of water levels:

τ* =
Ú x

0
ρh(s*)ds* (7.6)

• Geometric parameters: once the vertical datum has been set, the variables η(x)
and ζ(x, h) completely describe the geometric configuration of the scenario the
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7 – Modelling riparian vegetation dynamics

model refers to. Starting from these two variables, a third one, the depth of the
phreatic surface δ(x, h) can be defined:

δ(x, h) = η(x) − ζ(x, h) (7.7)

As already stated, since both ζ and δ depend on the random variable h, they are
random variables too.

• Biologic parameters: the features of vegetation are completely defined once a set
of parameters has been fixed:

– n, m, p, α2: these are numerical constants depending on the characteristics of
vegetation and whose values can be found in literature. A set of α2 for various
tree species was found by setting m=n=p=1 and fitting Equation 7.10 to the
logistic Verhulst’s model2.

– K: it is a positive coefficient that must be determined empirically and that
depends on vegetation species. It is related to the decay of vegetation and it
is necessary to computed the parameter α1 that describes the rate of decay
of vegetation due to damages caused by flooding:

α1 = K(h− η) (7.8)

As the water level h raises, the stress that vegetation has to deal with increases
and so the rate of decay. This trend is explained by observing that high
water levels, corresponding to inundations, create anoxic conditions that affect
vegetation health and mechanically damage or uproot the weakest plants.
The assumption at the basis of the definition of this parameter is that the
negative effects of flooding exceed the positive ones. K is the parameter whose
calibration was part of the objectives of this dissertation.

– a, δopt, δ1, δ2: these parameters lead to the definition of dimensionless carry-
ing capacity V c. More in detail, δ1 and δ2 limit the range of depths of phreatic
surface that allows vegetation to survive; a and δopt determine the values of
V c inside the range [δ1, δ2]. All these parameters are dimensionless, but they
derive from dimensional measures that have been normalized in relation to
the average dimensional water level h*, as explained at Section 8.1.

Output

Information about the distribution of vegetation along the riparian corridor, in relation
to topography, hydrological regime and vegetation features, are the expected outcome
of this stochastic model.

2Verhulst’s logistic model: a sigmoid curve describing the growth of population. According to it,
population grows exponentially during the earliest phases, slowing the growth rate in time until an
asymptote, the carrying capacity of that population, is reached. In practice, this trend means that the
growth rate is inversely proportional to the amount of population.
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In practice, the probability distribution function (pdf) of the dimensionless biomass
p(ν) and its first four moments are the model output. These values can be converted
in dimensional biomass, if the carrying capacity is known, and further transformed in
carbon so that the potential of carbon sequestration in the riparian corridor can be
defined. The conversion of vegetation biomass and carbon is a simple proportion as the
carbon content is around the 50% of total dry biomass [48].

Formulation

The starting point for formulating the stochastic model that must be calibrated is the
couple of equations that constitute a simple model of vegetation dynamics:

dν

dt*
= −α1νn for h ≥ η (7.9)

dν

dt*
= α2ν

m(V c − ν)p for h < η, (7.10)

where t* is dimensional time. The first equation of this model describes the response of
riparian vegetation to floods: as the negative consequences of inundation are assumed
as greater than the positive ones, Equation 7.9 models the decay of vegetation. On the
contrary, the second one, Equation 7.10, describes the growth of phreatophyte plants
during exposure period. During this growing phases, biomass cannot exceed the carrying
capacity that, in turn, depends on groundwater level.

Considering the probabilities of inundation P I and exposure PE along the x-coordinate,
the parameters α1 and V c can be approximated by their weighted average values:

P I =
Ú ∞

η(x)
p(h)dh (7.11)

PE =
Ú η(x)

−1
p(h)dh (7.12)

éα1ê = 1
P I

Ú ∞

η(x)
α1p(h)dh (7.13)

éV cê = 1
PE

Ú η(x)

−1
V cp(h)dh (7.14)

Equations 7.11, 7.12, 7.13, 7.14 can be inserted in Equations 7.9 and 7.10:

dν

dt*
= −éα1êνn for h ≥ η (7.15)

dν

dt*
= α2ν

m(éV cê − ν)p for h < η (7.16)
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Scaling both the equations by α2 and assuming the following dimensionless parame-
ters t, α and β, Equations 7.9 and 7.10 become:

dν

dt
= −ανn for h ≥ η (7.17)

dν

dt
= νm(β − ν)p for h < η, (7.18)

where:
t = α2t

* (7.19)

α =
éα1ê
α2

= K(h− η)
α2

= k(h− η)
α2

(7.20)

β = éV cê (7.21)

As the use of Equation 7.9 instead of Equation 7.10, and vice versa, depends solely on
the switching between inundation and exposure, the two equations can be summarized
in a single stochastic equation:

dν

dt
= f(ν) + E(t)g(ν) (7.22)

E(t) allows for the switching between inundation and exposure states, while the functions
f(ν) and g(ν) are formulated in a way to return Equation 7.17 in case of flooding ∆I
and Equation 7.18 in case of exposure ∆E:

f(ν) = ∆Iν
m(β − ν)p + α∆Eν

n

∆I − ∆E
(7.23)

g(ν) = ανn + (β − ν)pνm

∆E − ∆I
(7.24)

The solution of Equation 7.22 is the pdf of dimensionless vegetation p(ν), whose steady
state function, obtained for t → ∞, is:

p(ν) = N

α
ν
β(1−ατ)−(α+β)P I

αβτ (β − ν)
P I
βτ

-1(α+ β − ν) (7.25)

N is a normalization constant so that
s ∞

0 p(ν)dν = 1. Equation 7.25 is valid if:

P I <
β

α+ β
(7.26)

This condition depends on bed elevation η(x) and it allows for the determination of the
physical limits of the riparian corridors.

Finally, starting from Equation 7.25, the first two moments of dimensionless vegeta-
tion µ1 and µ2 can be computed:

µ1 =
Ú β

0
(ν)dν = βρ1(βε2σ1 − ε1ρ0σ2)

(βε1ρ1 − ρ0ρ21)σ2
(7.27)
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7.2 – Description of the stochastic model

µ2 = β2ρ1
(βε1ρ1−ρ0ρ2σ1)2σ22σ3

[βε1ρ1σ1σ2(βε3σ2 + ε2ρ0σ3)

−(ε12ρ02ρ1σ22σ3) − σ1
2(βε3ρ0ρ2σ22 + ε2(β2ε2ρ1 − ρ0

2ρ2σ2)σ3)] (7.28)

The parameters for computing these moments are defined as:

ρ0 = α+ β (7.29)

ρ1 = Γ
51 − P I

ατ

6
(7.30)

ρ2 = Γ
51 − P I

ατ
− P I
βτ

6
(7.31)

σi = Γ
51 − P I

ατ
+ i

6
(7.32)

εi = Γ
51 − P I

ατ
− P I
βτ

+ i

6
, (7.33)

where Γ[·] is the Gamma function.

Equation 7.27 was used to calibrate the stochastic model, while Equation 7.28 to
validate the results by comparing the computed second moment of vegetation in the
study area and the LiDAR-derived values.
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Chapter 8

Vegetation data

Although the stochastic model allows for the definition of the evolution of riparian veg-
etation at any point of the fluvial corridor, the aim of this dissertation was to calibrate
the decay parameter K, or rather its ratio with the growth rate α2, k = K

α2
. Hence,

vegetation had to be an input data. More in detail, the required information were the
parameters n, m, p, α2, β and the probability density function of vegetation p(ν). Values
for parameters n, m, p, which depend on vegetation characteristics, were found in liter-
ature. By processing the available LiDAR data, values for ν, which is the dimensionless
vegetation biomass, were estimated and p(ν), which describes the trend of vegetation
for increasing topographic altitude was defined. The dimensionless carrying capacity V c
was computed by defining values for the parameters δ1 and δ2.

As models for estimating biomass from LiDAR acquisitions returned a dimensional
value of vegetation ν*, expressed as Mg·ha-1, the dimensional carrying capacity V c

* was
computed and used for normalizing ν*, obtaining dimensionless biomass ν.

8.1 Vegetation characteristics in the study area

As mentioned at Section 3.2, most of the floodplain is occupied by crop fields, pressing
riparian vegetation in a narrow band along the water banks or above the islands, which
are sparsely present. Riparian vegetation, is mainly constituted by shrubs, whose dom-
inant species are bitter willow (Salix Elaeagnos), black willow (Salix Atrocinerea) and
white willow (Salix Alba) but also mastics (Pistacia Lentiscus), black poplars (Populus
Nigra) and white poplars (Populus alba). In the spots where inundations are more likely
to occur, grass-like plants, as common reeds (Arundo Donax and Phragmites Australis)
and bulrush (Typha sp.) grow [61].

Due to the mixture of trees in the study area and paucity of literature data about less
common species, an equivalent tree population was defined. In this case, a tree species
with intermediate features between willows (Salix spp.1) and poplars (Populus spp.)

1Spp.: in botany it indicates that the author is referring to all the species of a certain genus. It is
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8 – Vegetation data

was considered sufficiently realistic. The calibration of needed parameters for running
the stochastic model relied on this assumption.

Parameters m, n, p

Parameters m, n and p are numerical constants and they are related to the characteris-
tics of vegetation. Despite the assignation of values to these parameters may influence
the solution of the model, in this dissertation they were fixed equal to 1, according to
literature examples [16].

Parameter α2

Values of α2, which regulates the intrinsic rate of vegetation growth, were found in
literature for Populus Deltoides (α2 = 13·105 d-1) and Salix Nigra (α2 = 28·105 d-1).
These values had been set by fitting Equation 7.10 with already validated logistic model
for vegetation growth [16].

Parameters δ1, δ2, β

Starting from the values of the optimum depth δopt
* of water table, δ1 and δ2

2 were
calculated as:

δ1 = δopt −
√
a (8.1)

δ2 = δopt +
√
a (8.2)

These dimensionless parameters are the results of normalization of dimensional values
in relation to the average dimensional water level h*; δopt is equal to the ratio between
dimensional depth δopt* and h*, while a is equal to the product between the constant a*

and h*2:

δopt = δopt
*

h*
(8.3)

a = a*h* (8.4)

Once these parameters are fixed, the dimensionless carrying capacity V c can be calcu-
lated as:

V c = V c(δ) = 1 − a(δ − δopt)2 for δ1 ≤ δ ≤ δ2 (8.5)

V c = V c(δ) = 0 for δ < δ1 or δ > δ2 (8.6)

generally used when there is a mixture of plants of the same genus, but the precise amount of elements
for each species inside the genus is not known.

2δopt
* is the depth of phreatic surface that allows for optimal vegetation growth, while δ1 and δ2

are respectively the lower and upper limit of the range of phreatic surface depth allowing for vegetation
survival.
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8.2 – Definition of the equivalent carrying capacity

Literature values of δopt* for Populus spp. and Salix spp. are reported in Table 8.1
together with their average value that was considered for the equivalent tree population
in the study area. As the study area was split in eleven subareas (i.e. eleven reaches,
see Section 8.3), a set of eleven values for h was defined and reported in Table 9.1.
Regarding a*, a reference value (a*=0.055) was found in literature [16].

Table 8.1. Computed δopt
* for the two tree species and the average equivalent

value δopt,eq
* for the study area.

Tree Species δopt
* δopt,eq

*

(m) (m)
Populus spp. 1.0 0.75
Salix spp. 0.5

8.2 Definition of the equivalent carrying capacity
Despite the dimensionless carrying capacity V c was calculated with Equations 8.5 and
8.6, it was necessary to define a value for the dimensional carrying capacity V c

* related
to willows and poplars, which are the two species constituting the equivalent tree popu-
lation of the study area. V c

* values were required to normalized dimensional vegetation
biomass ν*, provided by LiDAR data processing, and obtaining ν.

Literature offers equations to compute the dimensional carrying capacity through
allometric relations. As the consistency between the chosen model for LiDAR estimation
of biomass (Means et al. 2000) and the allometric formula of Jenkins et al. had been
previously tested, this latter was used to compute local values of V c

*3. However, Jenkins
et al. formula (Equation 4.1) requires DBH as input data and also another allometric
model was necessary in order to relate the available information (i.e. the statistics about
vegetation height) to DBH:

Hv,max = b1 + b2Dv,max − b3Dv,max
2, (8.7)

where Hv,max and Dv,max refer to the maximum size of the plant for optimal growing
conditions; b1 is the breast height, equal to 137 cm, while b2 and b3 are growth rate
parameters, whose values were found in literature [47] and reported in Table 8.2. This
relation was initially formulated by Trorey (1932) [60] and successively proposed again
by Ker and Smith (1955) [31]. In summary, the procedure to obtain V c

* consisted of:

• Computation of the maximum DBH Dmax : Equation 8.7 was implemented, once
the maximum vegetation height was set according to LiDAR measurements.

3Local means that the carrying capacity was computed for each topographic band z within all the
reaches i, obtaining a z · i matrix of V c

* values.

65



8 – Vegetation data

Table 8.2. Values of bi parameters for the study case.

Tree Species b1 b2 b3
(cm) (-) (cm-1)

Populus spp. 137 28.42 0.0388
Salix spp. 137 24.15 0.1348

• Computation of dry above-ground biomass: Jenkins et al. model (see Equation
4.1) was used to this purpose. Literature values for input parameters were the
ones shown in Section 4.3.

• Conversion of dry biomass in fresh biomass: the stem and bark fraction of dry
biomass accounts for approximately the 97% of the total above-ground biomass.
According to Equation 4.13, the ratio between fresh and dry biomass is equal to
(1 + θ), where θ is the moisture content. Typical moisture values for the two
reference species, willows and poplars, were found in literature and reported in
Table 8.2.

Table 8.3. Values of θ for the study case.

Tree Species θ θeq
(%) (%)

Populus spp. 129 105.5
Salix spp. 82

As this procedure was repeated for each of the 54 topographic bands, the result was
an array of 54 V c(z) values, representing local carrying capacity. The trend of carrying
capacity for increasing altitude is shown in Figure 8.1. The maximum value was chosen
as reference carrying capacity for the entire area: Vc,eq

* = 142.5 Mg·ha-1.
This procedure was included in the MATLAB script reported in Appendix A.

8.3 Distribution of vegetation in the riparian corridor

In order to understand the relationship between biomass and topography, a procedure
similar to the one used for testing biomass models was adopted. Through FUSION/LDV
package LiDAR data were processed, while the visualization of surface models and their
splitting according to altitude was made in GIS environment. Also MATLAB was used
with the purpose of regressing the inclined plane that represents the average surface of
water level during the LiDAR acquisition.

Reference LiDAR data were the same that were used in Part III, or rather the LiDAR
datasets captured on 20th October 2016 and downloaded from CNIG online platform [1].
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8.3 – Distribution of vegetation in the riparian corridor

Figure 8.1. Trend of carrying capacity for increasing altitude in the study area.

Creation of the ground surface model and definition of reaches

Similarly to what was described at Section 5.2, .laz files related to the sample area were
firstly transformed in a .las file by running LDA2LAS and then clipped by PolyClipData
in order to eliminate all the data outside the floodplain. Successively, intensity and
first return intensity images were created with Catalog as well as a DTM through the
sequence of GroundFilter and GridSurfaceCreate command lines. The z-coordinates of
points constituting this DTM referred to absolute altitude (i.e. metres above sea level).

The comparison among DTM, intensity images and first return density images al-
lowed for the definition of the water surface boundaries at the time of acquisition. Then,
the selected river segment was divided in sections of approximately homogeneous water
surface width, defining eleven reaches. These reaches were used for both estimating
biomass estimation and processing hydrometric data.
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Regression of water surface

As the final goal of defining a LiDAR processing procedure was to understand the relation
between vegetation biomass and floodplain topography, the DTM was normalized in
relation to the river bed altitude. However, LiDAR provided only the water surface and
not the river bed profile, since water completely absorbs LiDAR pulses. Thus, in a first
moment, the DTM was normalized in relation to the inclined plane that represented the
average water surface at the time of acquisition4.

The normalized DTM was created by combining GIS and MATLAB functions. A
large number of water surface points, constituting a 3D cloud, were selected in QGIS
and finally the plane was defined through a least square regression of z-coordinates in
MATLAB.

Considering the plane equation:

z = a+ bx+ cy (8.8)

the optimal approximate plane was the one that minimized the sum of the N squares of
the deviations between the theoretical values zi* located on the plane and the empirical
values zi derived from LiDAR measures:

NØ
i=1

(zi* − zi)2 = min (8.9)

Therefore, the outcome of the regression was the value for the parameters a, b and c.
The used MATLAB script is reported in Appendix A.

After the definition of the inclined plane equation, a punctual .shp file representing
the points that belong to the plane was imported in QGIS and a DTM of the plane
was created by interpolating the imported points. Finally, Raster Calculator functions
allowed for the normalization of the ground surface, by subtracting to each point the
altitude of the plane in the same position.

Estimation of biomass for the various reaches

For a better understanding of the adopted procedure, the steps that have been followed
for each reach are briefly explained:

• Split of DTMs: as the goal was to analyze the trend of biomass with topography,
every normalized DTM was split into altitude bands 0.10 m high, by running
Reclass command in QGIS.

• Creation of shapefiles: every altitude bands was converted into a .shp file in order
to clip the LiDAR dataset with FUSION.

4A further correction was made after the calculation of water depth at the time of acquisition.
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8.3 – Distribution of vegetation in the riparian corridor

• Use of FUSION/LDV functions: for each altitude band, the sequence of PolyClip-
Data, GroundFilter, GridSurfaceCreate and GridMetrics was run to obtain statics
about vegetation height and cover.

• Computation of biomass statistics: average, standard deviation and pdf were com-
puted for each altitude band by processing FUSION/LDV output files with MAT-
LAB and implementing Means et al. (2000) formula (Equation 4.10).

The implemented script is reported in Appendix B. As explained at Section 6.3, cell
size for GridMetrics did not affect biomass computed values, not even if altitude bands
had complex shapes and small width. The chosen model for estimating above-ground
riparian biomass was the one proposed by Means et al. 2000 (Equation 4.10). Equation
4.10 returned the volume of above-ground vegetation V , expressed in m3·ha-1 and, there-
fore, it was converted in biomass AB through the equivalent density ρv,eq expressed in
Mg·ha-1. This dimensional value of biomass was normalized according to the equivalent
carrying capacity V c,eq

* and obtaining dimensionless biomass ν.
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Chapter 9

Hydrological data

The hydrometric input parameters of the model describe the randomness of hydrological
fluctuations in the fluvial segment and consist of statistical functions of water levels h,
namely the pdf p(h), the ACF ρh(s*) and the related integral scale τ*. However, also the
average water level in each reach was computed as it was fundamental for the conversion
of various dimensional parameters (e.g. ζ*, η*, δ*, a*) to the related dimensionless ones
(e.g. ζ, η, δ, a).

As the solely available data were the Cinca discharges of the historical series that
had been provided by Confederación Hidrográfica del Ebro [3], water level statistics were
computed after having processed these discharges. The first step was to correct the DTM
that had been realized for the study area by processing LiDAR data in FUSION/LDV.
This correction was done in order to create the river channel and import cross sections
in HEC-RAS. Successively, HEC-RAS 1D was run eleven times to compute the water
levels in the various reaches for all of the reference flow rates, which were a set of eleven
percentiles of the available series of Cinca discharges. After that, the resulting water
levels were processed in MATLAB defining a rating curve h − Q for each one of the
reach. Finally, all the rating curves were used to create temporal series of water levels
starting from the series of flow rates and statistics about these series were computed.

9.1 HEC-RAS modelling for the study case

HEC-RAS overview

The Hydrologic Engineering Center’s River Analysis System (HEC-RAS) is an embedded
system of software that enables users to simulate 1D and 2D steady and unsteady river
flow, compute of movable boundary sediment transport and model water temperature
and constituent transport, as explained in its users’ manual [46].

In order to collect the hydrometric data that the stochastic model calibration re-
quired, the sole 1D steady flow river component was used. The software calculates water
surface profiles for steady gradually varied flow by computing water stages through-
out the interior cross sections. Water stages are the outcomes of an iterative procedure,
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9 – Hydrological data

called standard step method, that relies on the solution of the mono-dimensional1 energy
equation among two adjacent cross sections:

Z2 + Y 2 + a2V 2
2

2g = Z1 + Y 1 + a1V 1
2

2g + he (9.1)

Z is river bed elevation in relation to the topographic datum, Y the water surface
elevation in relation to the river bed, aV 2

2g is the kinetic height, or rather the height of
the energy grade line in relation to the water surface. The coefficient a is the kinetic
correction factor, V the flow longitudinal velocity and g the gravitational acceleration.
The factor he represents the energy head loss from section (2) to section (1).

The kinetic correction factor a can be calculated by comparing the kinetic height aV 2
2g

and the weighted average of kinetic height according to the flow rate of the individual

sections

Nq
i=1

Qi
V i

2
2g

Qtot
. Considering as N different sections the main central channel and the

floodplain:

aV 2

2g =

Nq
i=1

Qi
V i2
2g

Qtot
−→ a =

Nq
i=1

V i
2Qi

V 2Qtot
(9.2)

The energy head loss he comprises both the contribution of friction and the contri-
bution of fluid expansion/contraction:

he = LSf + C|a2v2
2

2g − a1v1
2

2g | (9.3)

C is the factor of fluid expansion/contraction that ranges between 0 and 1 and L the
reach length, weighted on flow rates of central channel (ch), left floodplain (l) and right
floodplain (r):

L = LchQch + LlQl + LrQr
Qch +Ql +Qr

(9.4)

Sf is the loss of head per unit reach length computed through Chézy’s Formula:

Q = 1
n
SR2/3Sf

1/2 −→ Sf =
3

Qn

SR2/3

4
2 (9.5)

The standard step method comprises few phases:

1. Assuming that the boundary condition at cross section (1) has been set and the
discharge flowing in the reach is known, a water surface elevation at the upstream
cross section (2)2 h2* is arbitrarily chosen.

1Solely the longitudinal component of velocity is considered.
2Cross section (2) is located upstream in case of subcritical regime and downstream in case of super-

critical regime.
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9.1 – HEC-RAS modelling for the study case

2. V 2 is calculated by knowing the cross section geometry, the flow rate and h2*.

3. Sf and he are calculated with Equations 9.3 and 9.5.

4. Y 2 is calculated by knowing all the other parameters.

5. Equation 9.1 is used to compute h2

6. The new value for the water level at section (2), h2, is compared with the one
set at phase 1, h2*, and the procedure is repeated until convergence, |h2* − h2| <
threshold.

In case of transition between slow and fast flows, the water surface level pass through
the critical depth and the Equation 9.1 loses its validity. Thus, the software uses the
Moment Equation:

a2Q2
2

gA2
+A2Y 2 − a1Q1

2

gA1
−A1Y 1 +

3
A1 +A2

2

4
LS0 −

3
A1 +A2

2

4
LSf = 0 (9.6)

aiQi2
gAi

is the hydrodynamic component of hydraulic force at the i-th section, AiY i is
the hydrostatic component, (A1+A2

2 )LS0 is the contribution of inertial force along the
longitudinal flow direction and (A1+A2

2 )LSf is the contribution of frictional force. S0 is
the river bed slope.

Input data for HEC-RAS modelling comprise the description of the channel (i.e.
length and shape of the reach, cross sections geometry and roughness), a set of bound-
ary conditions and the geometry of eventual structures (e.g. bridges, weirs, culverts).
Boundary conditions for steady flow analyses can be specified as:

• Known water surface: if the reach ends (or starts) in a water basin of known water
depth, this water surface elevation can constitute a boundary condition for the
system.

• Critical depth: choosing this type of boundary condition the software computes
the critical depth for each cross section without needing other information.

• Normal depth: if the river slope defined by users, the depth that guarantees the
uniform flow can be calculated by the software and set as boundary conditions.

• Rating curve: this type of boundary condition requires the specification of water
stages for different flow rates.

In case of subcritical flow, as in the study segment, a downstream boundary condition is
required to run the simulation, while an upstream one is required in case of supercritical
flow. For mixed regime, both upstream and downstream must be set.
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9 – Hydrological data

Import of the geometry

As the impossibility to obtain river cross sections from literature or in field surveys,
exploitation of LiDAR data was considered the most suitable solution. However, despite
processing LiDAR data led to the creation of a DTM of the study area, bathymetry was
not represented in this DTM as the electromagnetic signal emitted by the laser scanning
system during the LiDAR acquisition had not the right wavelength to pass through water
and capture the river bed, being stopped by the water surface3.

In order to overcome this limitation, the DTM was corrected by processing it in
QGIS. Firstly, the comparison among DTM, intensity images and first return density
images allowed for the definition of the water surface boundaries at the time of acquisition
so that DTM4 could be split in land, islands and water. Secondly, water was divided
in eleven reaches where the water surface width was approximately homogeneous and,
according to Chézy’s Formula, water depth at the time of acquisition was found for each
of the these reaches. Assuming, uniform flow, Chézy’s Formula is:

Q = SC(Ri)1/2 (9.7)

Where S is the cross section of the river, C the factor of flow resistance representing
the roughness of the channel, R the hydraulic radius of the section and i is the slope
of energy line that, in case of uniform flow, is assumed equal to the slope of river bed.
Choosing the Manning’s formula to explicit the friction factor C:

C = 1
n
R1/6 (9.8)

Equation 9.7 can be written as:

Q = S
1
n
R2/3i1/2 (9.9)

Where n is the Manning’s coefficient describing the roughness of the channel. Assuming
the shape of river cross sections as rectangles having height equal to h and width equal
to the water surface width b, the hydraulic radius is R Ä h and Equation 9.9 becomes:

Q = 1
n
bi1/2h5/3 (9.10)

In this case, all the parameters were known except for water depth h:

3As explained at Chapter 4.1, laser wavelength is linked to the target of LiDAR surveys. Data that
were used in this dissertation had been captured with a laser light of around 1 µm, while bathymetry
requires blu-green light having wavelength equal to 0.5 - 0.6 µm.

4The DTM to be modified was the one that had been previously normalized in relation to the plane
representing water surface during LiDAR acquisition (see Section 8.3) so that the water depth could be
simply subtracted. Successively, in order to import the geometry in Hec-Ras, the corrected DTM was
denormalized.
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9.1 – HEC-RAS modelling for the study case

• Q : daily average discharge for the day of LiDAR scanning, 20th October 2016, was
found in the available temporal series of discharges [3] being equal to 31.3 m3·s-1.

• n : Manning’s coefficient was set equal to 0.03. This value, consistent with the
geological description of the area, was initially found among the reports of a project
in the Ebro catchment [8] and successively confirmed by one of the authors of a
study about Cinca River flooding in the city of Fraga [43]. For the river banks
Manning’s coefficient was increased to 0.1, according to both existing projects [8]
and literature reference values [18].

• b : water surface width, assumed equal to the bed width in a rectangular geometry,
was measured on the created DTM for each reach.

• i : slope of river bed was defined during the creation of a inclined plane that
represented the average water surface during the acquisition, as explain at Section
8.3. The resulting value, i = 0.003 is consistent to the ones found in literature [62].

Once the water depth for all the reaches was calculated, all the eleven parts composing
the water DTM were corrected by lowering the altitude of their points and thus artifi-
cially creating the river channel. Finally, a more realistic DTM of the study area was
created by merging corrected water, islands and land DTMs.

As the chosen GIS software was QGIS, the plugin that was used to import the study
geometry in Hec-Ras, was Q-RAS. This plugin was able to create cross section profiles
along the river segment, once the axis of the river and the position of the cross sections
had been set. In this case, twenty-six cross sections were located approximately 200 m
apart along the river axis.

Definition of boundary conditions

Mixed flow regime was chosen to compute water surface profiles. Thus, the discharge
flowing in the segment had to be set, together with upstream and downstream boundary
conditions.

Starting from the available temporal series of discharges, eleven percentiles were
computed (1st, 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, 90th,10th, 100th) and set as
upstream condition for eleven simulations.

The chosen type of boundary condition was normal depth, or rather fixing a slope
value i so that the software could compute the normal depth for the reach. As already
mentioned, it was set i = 0.003 for each simulation.

Processing of HEC-RAS outcomes

After each simulations, water levels in all the cross sections were recorded and imported
in MATLAB where thy were processed in order to computed the input parameters for
the stochastic model calibration. The process consisted in few steps that were iterated
for all the eleven reaches and that can be summarized as:
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9 – Hydrological data

• Definition of the rating curve: the curve that fitted water levels h computed by
HEC-RAS versus the reference discharges Q could be described by the equation:

Q = AhB (9.11)

The chosen values of parameters A and B were the ones that guarantee the best
matching between the computed curve and real data.

• Computation of a temporal series of water levels: once the rating curve had been
defined, it could be applied to the historical series of discharge converting it in a
temporal series of water levels.

• Computation of statistics: average, standard deviation, probability distribution
function, cumulative distribution function, autocorrelation function and integral
scale were calculated starting from the temporal series of water levels. The chosen
type of distribution was lognormal due to its good fit of available data.

The used MATLAB script is reported in Appendix C.

9.2 Resulting hydrometric data
The average h and standard deviation σh of water levels for all the eleven reaches are
reported in Table 9.1, while an overview of the probability density functions is shown in
Figure C.2. τ* was approximately 13 days for every reach.

Table 9.1. Results of hydrometric data processing.

Reach h σh
m m

1 1.51 0.68
2 1.63 0.66
3 1.09 0.57
4 1.50 0.59
5 1.32 0.60
6 2.08 0.78
7 1.21 0.54
8 1.02 0.62
9 1.54 0.66
10 1.37 0.51
11 1.23 0.53
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Chapter 10

Model calibration

Once all the necessary parameters had been set according to literature values and the
input data had been collected, the stochastic model was calibrated. To this purpose,
a MATLAB script was created in order to define an array of k(z) values, or rather
one parameter k for each topographic band z. Those values were set as the ones that
minimize the square deviations between computed data of dimensionless biomass µ1,C
and LiDAR-measured data µ1,L, according to Equation 7.27:

µ1 =
s β

0 (ν)dν = βρ1(βε2σ1−ε1ρ0σ2)
(βε1ρ1−ρ0ρ21)σ2

The reliability of the calibrated values can be tested by comparing computed and
LiDAR-derived values for the two first moments and pdf for each topographic band.

10.1 Considerations and assumptions

The expected objective of calibration was to set a value of the parameter k for each
altitude band z, yet considering that the study area was split in 11 reaches having
homogeneous hydrological features. Some considerations about the boundaries of the
interval of values that k can assume and some simplifications regarding input parameters
were made in order to facilitate the process:

• k: as Equation 7.25 is valid if Condition 7.26 is satisfied, this condition can be
used to define the upper limit of k for each topographic band. Thus, defining:

a = 1
P I

Ú ∞

η(x)
(h− η)p(h)dh, (10.1)

α can be written as:
α = ka (10.2)
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10 – Model calibration

and Condition 7.26 becomes:

k <
β

a

3 1
P I

− 1
4

= βs ∞
η(x)(h− η)p(h)dh(1 − P I) (10.3)

The lower limit for k was set as 0, considering that the rate of vegetation decay
and growth are positive by definition and that negative values have no a physical
significance.

• β: having normalized the LiDAR-derived dimensional values of biomass according
to the maximum carrying capacity of the area, local variability of the dimensionless
carrying capacity β can be neglected, assuming β = 1. Also, the reference to
a unique value of carrying capacity allowed for the comparison among different
topographic bands.

• η : as the dimensional topographic heights refer to the average water surface,
while the model refers to a vertical datum that is set equal to the minimum water
level, the difference between the water level during the LiDAR acquisition and the
minimum water level was computed and used for the correction. To this purpose,
the two known flow rates Qacq, Qmin and the coefficients Ai, Bi were used to define
the water levels, through the definition of rating curves (Equation 9.11). The
corrected dimensional values were then normalized according to Equation 7.4 in
order to obtain their dimensionless corresponding ones.

10.2 Computation and results

The proposed solution consisted in creating a MATLAB one-variable functionmu_dev(k),
which returns the square deviations among LiDAR-derived dimensionless biomass values
and computed ones, and using an already existing function (i.e fminbnd). The function
fminbnd allows to find the value of k that minimizes the function mu_dev(k) and it
must be run for each altitude band, setting 0 as lower limit and the value provided by
the implementation of Condition 10.3 as upper limit.

The process is reported in Appendix D. In practice, firstly, the initial part of function
mu_dev(k) must be run until the upper limit is computed and successively the entire
script can be used for the calibration, returning k(z) values.

Upper limits for k

The implementation of Condition 10.3 returned an array of values representing ku that
is the upper limit of k for each altitude z. As the probability of inundation P I decreases
with altitude, as well as the integral

s ∞
η(x)(h− η)p(h)dh, ku has an increasing trend, as

it is shown in Figure 10.1. Consequently, the interval of valid k enlarges with z.
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10.2 – Computation and results

Resulting k(z)

Figure 10.1 also shows the calibrated values of the parameter k(z), comparing them with
the related upper limits ku(z). Despite also k exponentially increases with altitude, it is
always lower than the related upper limit. Considering that k is the ratio between the
rate of vegetation decay and growth, it can also be expressed as:

k = K

α2
Ä T g

2T d
, (10.4)

where T g and T d are respectively the time needed by vegetation for an overall growth
of 90% (i.e. from ν=0.05 to ν=0.95) and decay by 90% (i.e. from ν=0.95 to ν=0.05)
[16]. Thus, the exponential growth of k physically means that the timescales of growth
become much longer than timescales for decay when altitude increases. This means that
inundations, despite their probability of occurrence decreases for high altitude, more
easily affect vegetation growth and survival in the upper topographic bands when they
occur. This behaviour can be explained by the lower degree of adaptation to floods for
vegetation that has grown far from water surface.
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10 – Model calibration

Figure 10.1. Trend of k for increasing altitude z and comparison with the upper limits ku.
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Chapter 11

Conclusion

Referring to the case study, which was a segment of Cinca River in Spain, two procedures
were defined during this dissertation. The first one allows to estimate riparian biomass
starting from raw LiDAR data, while the second one leads to the calibration of the
stochastic model that describes dynamics of riparian vegetation.

After a short analysis about the state of the art of LiDAR technology, particularly
focusing on the use of airborne laser scanner in forestry, a procedure for processing
LiDAR raw data and return above-ground biomass was delineated. The first step of
this method consists in the combined use of GIS software and FUSION/LDV to obtain
statistics about vegetation height and coverage and it can be easily implemented once the
command-line for FUSION/LDV are properly set. The second step allows to transform
these statistics in biomass by implementing Means et al. (2000) model. This model
was chosen after having tested its reliability in riparian environments by comparing the
results it provides with the ones computed with allometric formulas. In addition, it
demonstrated to provide reliable results when the study area has complex and narrow
shapes, regardless the chosen grid discretization.

The procedure for stochastic model calibration relies on the use of LiDAR-derived in-
formation (i.e. biomass estimates and topography) and hydrological data. LiDAR data
are processed with both GIS and FUSION/LDV software in order to return topography,
while also Means et al. formula is used to obtain biomass. Hydrological data are pro-
cessed with HEC-RAS and MATLAB to obtain statistics of water levels. Calibration is
done according to a least square process that minimizes the deviations among computed
and measured dimensionless first moments of vegetation. The results of calibration is
an array of one k value for each topographic classes.

Follow-up activities will consist of a in situ survey for the validation of the method for
biomass estimation. Also, the outcomes of calibration will be evaluated and the method
will be further improved in order to return consistent second moments and probability
distribution functions of vegetation for each location of the riparian corridor.
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Appendix A

Regression of water surface plane

%MATLAB SCRIPT FOR REGRESSING THE INTERPOLATION PLANE

%xcoord, ycoord and zcoord are vectors containing respectively
%the x-coordinates, y-coordinates and z-coordinates of the points
%in the 3D cloud representing Cinca River water surface.

%exp is the matrix of exponents for the generic surface equation:
%z=coeff(1)*x^m(1,1)*y^m(1,2)+...+coeff(n)*x^m(n,1)*y^m(n,2)
%In the case of a plane, the surface equation is:
%z=coeff(1)+coeff(2)*x+coeff(3)*y
%that corresponds to the generic equation having:
%exp=[0 0; 1 0; 0 1]

%Matrix_X, Matrix_Y are the coordinates of points belonging to
%the regressed plane that will be interpolated in GIS environment
%to create a plane DTM.

%z_new is the expected outcome, or rather the z-coordinates of
%points belonging to the plane.

%O is the matrix containing the x,y,z coordinates of points
%constituting the regression plane.

%WATER SURFACE POINTS ACQUISITION AND VISUALIZATION

x=xcoord;
y=ycoord;
z=zcoord;
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A – Regression of water surface plane

figure(1)
scatter3(x,y,z)
title(’Water surface’)
xlabel(’x’)
ylabel(’y’)
zlabel(’z’)

%LEAST SQUARE REGRESSION

exp=[0 0; 1 0; 0 1];
i=length(exp);
for s=1:i

num(s)=sum(z.*x.^exp(s,1).*y.^exp(s,2));
for r=1:i

den(s,r)=sum(x.^exp(r,1).*y.^exp(r,2).*x.^exp(s,1).*y.^exp(s,2));
end

end
coeff=(num/den)’;

%as division does not exist for matrices, the symbol /
%indicates the solution to the system of equations: coeff*den=num

%DEFINITION AND VISUALIZATION OF POINTS BELONGING TO THE PLANE

x_new=Matrix_X;
y_new=Matrix_Y;
dim=size(x_new)’;
N=dim(1);
M=dim(2);
for j=1:N;

for k=1:M;
z_new(j,k)=coeff(1)+coeff(2)*x_new(j,k)+coeff(3)*y_new(j,k);

end
end

figure(2)
surf(x_new,y_new,z_new)
title(’Regression Plane’)
xlabel(’x’)
ylabel(’y’)
zlabel(’z’)

O=[x_new(:) y_new(:) z_new(:)];
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Figure A.1. Points belonging to the water surface at the time of acquisition,
selected in GIS environment.

87



A – Regression of water surface plane

Figure A.2. Regression plane representing the water surface of Cinca River at
the time of acquisition.
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Appendix B

Computing biomass statistics

%MATLAB SCRIPT FOR COMPUTING VEGETATION CARRYING CAPACITY

%The equivalent carrying capacity (Vc*), expressed in Mg/ha, must be
%computed to convert dimensional above-ground biomass in dimensionless
%values.

%The maximum vegetation height (Hmax) is firstly converted in maximum DBH
%(Dmax) with Trorey (or Ker & Smith) formula:
%Hmax= b1+b2*DmaxH-b3*Dmax^2 --> b3*Dmax^2-b2*Dmax+(-b1+Hmax)=0
%The input parameters are:
b1=137; %cm
b2=(28.42+24.15)/2;
b3=(0.0388+0.1348)/2;

%Once Dmax is known, Jenkins et al. formula can be applied:
%Vc*_dry=exp(beta0+beta1*ln(Dmax))
%The input parameters are:
beta0=-2.2094;
beta1=2.3867;

%As this formula returns the dry above-ground biomass, this is converted in
%fresh above-ground biomass, knowing that the ratio between fresh and dry
%wood is (1+theta), where theta is the moisture content. In this conversion
%solely the wood fraction of above-ground dry biomass is considered (i.e.
%foliage is neglected) --> solely the 97% of Vc*_dry is converted.
theta=1.055;
percentage=0.97;

%Local carrying capacity is computed for each topography band, ranging from
%0 to 5.4 m. Altitude is expressed in relation to the
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B – Computing biomass statistics

%inclined plane that represents the average water surface at the time of
%LiDAR acquisition --> z_max=54
i_max=11;
z_max=54;

%Import of elevation statistics computed with FUSION
delimiterIn=’,’; %to import FUSION output in MATLAB
headerlinesIn=1; %to import FUSION output in MATLAB
for z = 1:z_max;

Hmax(z)=0;

for i=1:i_max;
v_star=[];
Sum_Average=0;
Sum_StDev=0;
Sum_Average_lognorm=0;
Sum_StDev_lognorm=0;
Sum_Skew=0;
Sum_Skew_lognorm=0;
Sum_Hmax=0;
Count=0;
formatSpec = ’%s%d%s%d%s%d%s’;
A1 = ’...directory...\’;
A2 = i;
A3 = ’\’;
A4 = i;
A5 = ’_DN’;
A6 = z;
A7 = ’_all_returns_elevation_stats.csv’;
filename = sprintf(formatSpec,A1,A2,A3,A4,A5,A6,A7);
A = importdata(filename,delimiterIn,headerlinesIn);
l=length(A.data);
for m=1:l;

if A.data(m,8)~=-9999
Sum_Hmax=Sum_Hmax+A.data(m,7);
Count=Count+1;

end
end

if (Sum_Hmax/Count)*100> Hmax(z)
Hmax(z)=(Sum_Hmax/Count)*100; %cm

end
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end %i

%Computation of Vc*
%solely the higher Dmax solution is considered:
Dmax(z,1)=(b2+sqrt((b2^2)-4*b3*(-b1+Hmax(z))))/(2*b3);
Vc_dry=exp(beta0+beta1*log(Dmax(z,1)));
Vc(z,1)=Vc_dry*(1+theta)*percentage/1000; %Mg/ha

end %z

Figure B.1. Trend of carrying capacity for increasing altitude in the study area.

%MATLAB SCRIPT FOR COMPUTING VEGETATION STATISTICS

%Above-ground biomass (AB)is computed with the formula provided by
%Means et al. 2000: %ln(V)=2.532+0.05651*h_80+2.355*(CC/100)-0.1581*h_0
%Where: V is above-ground vegetation volume expressed in kg/ha,
%h_80, h_0 are percentiles of vegetation height, expressed in meters,
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B – Computing biomass statistics

%CC is the canopy cover, expressed as percentage.

%In order to convert V in AB, the equivalent biomass density (rho),
%expressed in Mg/m3, is used.
rho=0.74;

%In order to convert AB in dimensionless biomass (v), AB is normalized in
%relation to the equivalent carrying capacity (Vc*), expressed in Mg/ha.
Vc=142.5;

%AB statistics must be computed for each of the 11 reaches --> i_max=11
%For each reach, topography was split in 54 altitude band, every 0.1
%meters, ranging from 0 to 5.4 m. Altitude is expressed in relation to the
%inclined plane that represents the average water surface at the time of
%LiDAR acquisition --> z_max=54
i_max=11;
z_max=54;

%Average and standard deviation values are obtained by a weighted average
%of the statistics of each reach. The weighting factors depends on the
%extension of the altitude band in each reach.

Average_z=zeros(z_max,1);
St_Dev_z=zeros(z_max,1);
Average_lognorm_z=zeros(z_max,1);
St_Dev_lognorm_z=zeros(z_max,1);

%pdf for the various altitude bands and reaches constitute a 2D array
%having 54 rows,
%corresponding to the altitude bands, and 101 columns, corresponding to the
%values of pdf for each step of the graduate axis representing
%dimensionless biomass. This axis ranges from 0 to 1 and has a step every
%0.01.
v_axis=[0:0.01:1];
m_max=101;
pdf_norm=zeros(z_max,m_max);
pdf_logn=zeros(z_max,m_max);

%Import of elevation statistics computed with FUSION
delimiterIn=’,’; %to import FUSION output in MATLAB
headerlinesIn=1; %to import FUSION output in MATLAB
for z = 1:z_max;
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Count=0;
Tot=0;
v_star=[];
v=[]

for i=1:i_max;

Count_zi(z,i)=0;
formatSpec = ’%s%d%s%d%s%d%s’;
A1 = ’...directory...’;
A2 = i;
A3 = ’\’;
A4 = i;
A5 = ’_DN’;
A6 = z;
A7 = ’_all_returns_elevation_stats.csv’;
filename = sprintf(formatSpec,A1,A2,A3,A4,A5,A6,A7);
A = importdata(filename,delimiterIn,headerlinesIn);
l(i)=length(A.data);
if i==1

for m=1:l(i);
if A.data(m,8)~=-9999

Count=Count+1;
Count_zi(z,i)=Count_zi(z,i)+1;
v_star(Count,1)=(exp(2.532+0.05651*A.data(m,35)+
2.355*(A.data(m,49)/100)-0.1581*A.data(m,6)))*rho;
%Conversion of v_star (dimensional) in v (dimensionless)
v(Count,1)=v_star(Count,1)/Vc;

end
end

if Count_zi(z,i)~=0
%Average
Average(z,i)=mean(v(1:length(v)));
Average_lognorm(z,i)=mean(v(1:length(v)));
%Standard Deviation
St_Dev(z,i)=std(v(1:length(v)));
St_Dev_lognorm(z,i)=std(v(1:length(v)));

ll=length(v);
Tot=Tot+Count_zi(z,i);
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B – Computing biomass statistics

%Average
Average_z(z,1)=Average_z(z,1)+(Count_zi(z,i))*Average(z,i);
Average_lognorm_z(z,1)=Average_lognorm_z(z,1)
+(Count_zi(z,i))*Average_lognorm(z,i);

%Standard Deviation
St_Dev_z(z,1)=St_Dev_z(z,1)+(Count_zi(z,i))*St_Dev(z,i);
St_Dev_lognorm_z(z,1)=St_Dev_lognorm_z(z,1)
+(Count_zi(z,i))*St_Dev_lognorm(z,i);

end

else for m=1:length(A.data);
if A.data(m,8)~=-9999

Count=Count+1;
Count_zi(z,i)=Count_zi(z,i)+1;
v_star(Count,1)=(exp(2.532+0.05651*A.data(m,35)+
2.355*(A.data(m,49)/100)-0.1581*A.data(m,6)))*rho;
%Conversion of v_star (dimensional) in v (dimensionless)
v(Count,1)=v_star(Count,1)/Vc;

end
end

if Count_zi(z,i)~=0
%Average
Average(z,i)=mean(v(ll+1:length(v)));
Average_lognorm(z,i)=mean(log(v(ll+1:length(v))));
%Standard Deviation
St_Dev(z,i)=std(v(ll+1:length(v)));
St_Dev_lognorm(z,i)=std(log(v(ll+1:length(v))));

ll=length(v);

Tot=Tot+Count_zi(z,i);
%Average
Average_z(z,1)=Average_z(z,1)+(Count_zi(z,i))*Average(z,i);
Average_lognorm_z(z,1)=Average_lognorm_z(z,1)
+(Count_zi(z,i))*Average_lognorm(z,i);

%Standard Deviation
St_Dev_z(z,1)=St_Dev_z(z,1)+(Count_zi(z,i))*St_Dev(z,i);
St_Dev_lognorm_z(z,1)=St_Dev_lognorm_z(z,1)
+(Count_zi(z,i))*St_Dev_lognorm(z,i);
end%if

end
end
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%Average
Average_z(z,1)=Average_z(z,1)/Tot;
Average_lognorm_z(z,1)=Average_lognorm_z(z,1)/Tot;
%Standard Deviation
St_Dev_z(z,1)=St_Dev_z(z,1)/Tot;
St_Dev_lognorm_z(z,1)=St_Dev_lognorm_z(z,1)/Tot;
%pdf
pdf_norm(z,:)=normpdf(v_axis,Average_z(z,1),(St_Dev_z(z,1)));
pdf_logn(z,:)=lognpdf(v_axis,Average_lognorm_z(z,1),St_Dev_lognorm_z(z,1));

end%z
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Appendix C

Computing hydrometric statistics

%MATLAB SCRIPT FOR COMPUTING HYDROMETRIC STATISTICS

%Reference discharges through which computing the rating curves
Q_ref=Reference_Q; %m3/s, imported

%Number of reaches
b=11;

%Water levels h computed with HEC-RAS for the reference discharges
h_ref=h_hecras’;

%CREATION OF A RATING CURVE FOR EACH REACH

%Assuming the relation between h and Q is Q=A*h^B:
%log10(Q)=log10(A)+B*log10(h)
%logq=log10(Q), logh=log10(h), a=log10(A) --> q=a+Bh

% Coeff is the matrix of coefficients A and B
% Corr is the R factor for the computing rating curves

%Conversion of h and Q variables in their logarithms
for j=1:b;

for k=1:length(Q_ref);
logh(k,j)=log10(h_ref(k,j));
end

end
logq=log10(Q_ref);

%Fitting of the curves
for j=1:b;
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C – Computing hydrometric statistics

p=polyfit(logh(:,j),logq,1);
Coeff(1,j)=10^p(1,2);
Coeff(2,j)=p(1,1);

for k=1:length(Q_ref)
h_calc(k,j)=(Q_ref(k)/Coeff(1,j))^(1/Coeff(2,j));

end
Corr(1,j)=corrcoef(h_ref(j), h_calc(j));

end

%COMPUTATION OF A TEMPORAL SERIES OF WATER LEVELS (h) FOR EACH REACH

Q=Q_series;
%h=rand(length(Q),b);
for j=1:b;

for k=1:length(Q);
h_star(k,j)= (Q(k)/Coeff(1,j))^(1/Coeff(2,j)); %meters

end

%scaling water level in relation to the vertical datum, set as the
%minimum water level
h_min(1,j)=min(h_star(:,j));
h_star(:,j)=h_star(:,j)-h_min(1,j);

end

%Q_series is the historic series of Cinca discharges

%COMPUTATION OF STATISTICS FOR EACH REACH

%mean and standard deviation
for j=1:b;

Average_star(1,j)=mean(h_star(:,j));
Std_star(1,j)= std(h_star(:,j));

end
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Figure C.1. Rating curves for the eleven reaches.

for j=1:b;
%lognormal distribution
h_axis=[0:0.1:10]’;
ln_h_star(:,j)=log(h_star(:,j));
ind=0;
sum_av=0;
sum_ds=0;
for k=1:length(ln_h_star);

if ln_h_star(k,j)~= -Inf
ind=ind+1;
sum_av=sum_av+ln_h_star(k,j);

end
end
ln_Average(1,j)=sum_av/ind;

for k=1:length(ln_h_star);
if ln_h_star(k,j)~= -Inf

sum_ds=sum_ds+(ln_h_star(k,j)-ln_Average(1,j))^2;
end

end
ln_St_Dev(1,j)=sqrt(sum_ds/ind);
p_h_logn_star(:,j)=lognpdf(h_axis, ln_Average(1,j), ln_St_Dev(1,j));
cdf_logn_star(:,j)=cdf(’logn’,h_axis, ln_Average(1,j), ln_St_Dev(1,j));

%Normalization of dimensional h_star in h and visualization of distributions
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C – Computing hydrometric statistics

h_ax= (h_axis-Average_star(1,j))/Average_star(1,j);
figure(2)
plot(h_ax,p_h_logn_star)
title(’LogNormal probability distribution function of the water level’)
xlabel(’h (m)’)
ylabel(’p(h)’)
axis([-1 10 0 1])
hold on
figure(3)
plot(h_ax,cdf_logn_star)
title(’LogNormal cumulative distribution function of the water level’)
xlabel(’h (m)’)
ylabel(’P(h)’)
axis([-1 10 0 1])
hold on
figure(6)

end

Figure C.2. Computed pdf for the eleven reaches.

%Autocorrelation and integral scale
tau=ones(1,b);
lags=1000; %values fixed after some attempts
Q_tot=Q_complete’;%import data from SAIHEbro
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Figure C.3. Computed CDF for the eleven reaches.

for j=1:b;
for k=1:length(Q_tot);

h_tot(k,j)= (Q_tot(k)/Coeff(1,j))^(1/Coeff(2,j));
end

end

for j=1:b;
xmax=0;
figure(3+j) %to create a figure for each reach
autocorr(h_tot(:,j),’NumLags’,lags,’NumSTD’,2);
title(’LogNormal probability distribution function of the water level’)
xlabel(’s* (d)’)
ylabel(’rho(s*) (d)’)
y(:,j)=autocorr(h_tot(:,j),’NumLags’,lags,’NumSTD’,2);
k=1;

while k<lags
if y(k,j)<0.2 %threshold for computing the integral scale

xmax=k;
k=lags;

else
k=k+1;

end
end
for k=1:xmax;

tau(1,j)=tau(1,j)+y(k,j);
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C – Computing hydrometric statistics

end
end

Figure C.4. Computed autocorrelation function for the first reach.
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Appendix D

Stochastic model calibration

%SCRIPT FOR THE STOCHASTIC MODEL CALIBRATION

%Once the altitude z is set, the MATLAB function @fminbnd is used to define
%the value of k that minimizes the function @min_mu, or rather that
%minimizes the deviation among LiDAR-derived values and computed ones.

%import of upper limit of k
lim=importdata(’...directory...\condition_ku.mat’);

for zz=1:54; %amount of altitude bands
save(’..directory..\zz.mat’,’zz’)
k(zz,1)=fminbnd(@min_dev,0,lim(zz));

end

%SCRIPT OF THE FUNCTION min_dev(k)

function [mu_z]=min_dev(k)

%study area comprises 11 subreaches and 54 altitude bands
i_max=11;
z=importdata(’...directory...\zz.mat’);

ind_j=0;

%INPUT VEGETATION

%import of the outcomes of "MATLAB SCRIPT FOR COMPUTING VEGETATION
%STATISTICS"
mu_lidar=importdata(’...directory...\Average_veg.mat’);
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D – Stochastic model calibration

%parameters linked to vegetation features
W=importdata(’...directory...\W.mat’); %weighting factors for
%vegetation according to the extension of the z altitude band in
%each reach
alpha2=20.5*10^(-5);
beta=1;

%INPUT HYDROLOGY

%The mean value (h_mean), pdf (p_h) and integral scale (tau) of
%dimensionless water levels have been computed with
%"SCRIPT FOR COMPUTING HYDROMETRIC STATISTICS"
W_idr=importdata(’...directory...\W_idr.mat’);%weighting factors for
%hydrological data according to the reach extension

%pdf
load(’ph’);
load(’tau_star’);
for l=1:length(ph);

ph(l,1)=0;
for i=1:11

ph(l,1)=ph(l,1)+Pesi_idr(1,i)*ph(l,i);

end
end
%integral scale
tau=tau_star*alpha2;
Tau=0;
for i=1:11;

Tau=Tau+tau(1,i)*Pesi_idr(1,i);
end
tau=tau;

%h_axis
Q_acq=31.3; %m3/s
Q_min=1; %m3/s
load(’h_mean);
load(h_axis);
shift_average=0;
h_m=0;
for i=1:i_max;

water_level_acq(1,i)=(Q_acq/Coeff(1,i))^(1/Coeff(2,i));
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water_level_min(1:i)=(Q_min/Coeff(1,i))^(1/Coeff(2,i));
shift(1,i)=(water_level_acq(1,i)-water_level_min(1,i))*Pesi_idr(1,i);
shift_average=shift_average+shift(1,i);
h_m=h_m+h_mean(1,i)*Pesi_idr(1,i);%weighted averaged water level

end%i

%INPUT GEOMETRY
altitude=z*0.1; %meters above average water surface
eta_star=(z*0.1+shift_average);
eta=(eta_star-h_m/h_m);

%COMPUTATION
dev=0; %deviation

%Probability of inundation (Pi)
Pi=0;
for n=1:length(h_axis)

if h_axis(n)<eta
ind=n;

else n=length(h_axis+1);
end

end
for n=(ind+1):length(h_axis);

Pi=Pi+ph(n,1)*0.1;
end

%Decay rate (alpha1/k)
alpha=0;
sum2=0;
for n=(ind+1):length(h_axis);

g=(h_ax(n,1)-eta)*ph(n,1);
sum2=sum2+g*0.1;

end
alpha=sum2/Pi;

condition_ku(z,1)= (beta/alpha)*(1/Pi-1);

%mu1 and deviation
if Pi < (beta/(k*alpha+beta))

rho0=k*alpha+beta;
rho1=gamma((1-Pi)/(k*alpha*Tau));
rho2=gamma((1-Pi)/(k*alpha*Tau)-Pi/(beta*Tau));
sigma1=gamma((1-Pi)/(k*alpha*Tau)+1);
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D – Stochastic model calibration

sigma2=gamma((1-Pi)/(k*alpha*Tau)+2);
epsilon1=gamma((1-Pi)/(k*alpha*Tau)-Pi/(beta*Tau)+1);
epsilon2=gamma((1-Pi)/(k*alpha*Tau)-Pi/(beta*Tau)+2);

mu1(z,1)=((beta*rho1*(beta*epsilon2*sigma1-epsilon1*rho0*sigma2))/
((beta*epsilon1*rho1-rho0*rho2*sigma1)*sigma2));

dev=((mu_lidar(z,1)-mu1(z,1)))^2;

else dev=9999;

end

mu_z=scarto;

end

0.9
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