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Abstract 

 
  This thesis work focused on the research of the autonomous driving 

car model and of the steering and speed control of autonomous vehicles. 

   The different level of vehicle dynamic model are considered such as 

kinematic model and bicycle model with the linear or nonlinear tire 

model.  

The controller is split in 2 parts, the first one is longitudinal controller 

corresponding to change of speed, and the other is lateral one which is 

mainly related to the steering angle. The lateral controller is based on 

the MPC theory, and the longitudinal one use the PID theory. The entire 

controller, which is developed in the matlab and simulink, should work 

well simultaneously to follow the desired path. To test it, the different 

scenario is generated by the autonomous driving toolbox in matlab. 

  To get more reliable data of the vehicle state, we are using the Carsim 

software co-simulating with matlab, making our consideration more 

comprehensive. 

 It’s important to see how the controller parameters (step horizon, cost 

function) have the effect on the results. 
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Chapter 1 Introduction: 

1.1 General idea of autonomous driving 

car 

  Autonomous driving car is the car that fulfills the transportation task 

without the human intervention, using the computer inside the car to 

simulate the behavior of the driver and make decision. 

  Getting the environment data from the variety of sensor, based on the 

information of road, localization of vehicle, and the obstacle the 

controller will give the command. 

  Here the autonomous driving system can be divided by the 4 parts 

which is system management, environment sensing, path planning, and 

vehicle control. 

(1) environment sensing 

  The same as the human driving car, autonomous driving car need the 

information of driving environment in real time. There are 2 ways to get 

the data, the one is by the help of all the sensor inside the vehicle , 

combined with the environment to have sensor fusion, trying to let 

vehicle ‘understand ’ the environment, the other is through the internet 

to supply the data of the outside area. For example by the vehicular 

networking vehicle can easily get the road data in front of it also the 

driving trend of the car which is around the autonomous driving car. 
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  Environment sensing system uses these data correlating with the 

model inside the computer to understand and recognize the situation. 

  Environment sensing system is key parts to have reliable driving 

behavior which means it is also the most difficult part to fulfill. As we all 

know to drive in the city at least autonomous driving car need recognize 

the road the traffic light and all the traffic sigh related to traffic rules. 

Getting the data from environment sensing system transfer it to path 

planning system. 

   

(2)Path planning system 

  Path planning means inside the environment which has obstacle, 

based on a certain standard such as minimal the length of path or 

minimal the energy to be used, finding a path from starting point to the 

final destination without any interruption. 

  At present path planting system mainly used theory coming from 

research about robotics. In general there are 2 parts: global path 

planning and local path planning. 

  Global path planning means under the condition of knowing the total 

map of environment, using the local environment information such as 

the location of obstacle and the boundary of the road, autonomous 

driving car can confirm the optimist path to follow. 

But when the condition is changing such as the other car interrupt 
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the path that autonomous driving car followed, it is important to use the 

local path planning to re-plan the path. Local path planning, which 

according to sensor data representing local environment information, 

generate the path need to be followed. It is under the guide of global 

path planning; In the process of planning consider not only the minimal 

energy to be used, safety issues but also problem of dynamic 

environment constraints. 

  In the process of local path planning another issue should pay 

attention to is the motion planning, which means that local path should 

consider the constraint of vehicle dynamic. 

 Using model predictive control theory into autonomous driving path 

planning process, the important issue is that how to solve the vehicle 

dynamic constraints. We will discuss it in the following chapter. 
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(3) vehicle control system 

Vehicle control system, in which include longitudinal and lateral 

direction control, generate the command to follow the path coming from 

path planning system. The same as the robotic control there is difference 

between the path and the trajectory. Trajectory which considers space 

and time simultaneously is one kind of path. The essence of path 

planning is trying to minimal the error between the vehicle location and 

the reference trajectory through control of vehicle motion. If we talk 

about the trajectory it also includes error within time. 

 Vehicle control system is important part of autonomous driving car. 

Environment sensing, path planning must integrate with vehicle control 

system. Under all the condition of driving, especially with very high 

speed, vehicle dynamic has much more effect on the results. All the 

parameter such as side slip of the vehicle, the friction coefficient 

figure  1 vehicle control 
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between the tire and the road, aerodynamic need to consider compared 

with low speed condition. 

 

(4)system management  

  Autonomous driving car first is a system work, in which there are a lot 

of sensors, actuators, and electronic control unit need to work together, 

to fulfill variety of functions such as car following, lane keeping, 

emergency stopping, and obstacle avoidance. Different function need to 

cooperate with different sensor and actuators to make sure the safety 

and comfortable regulation. 

  When the new condition is facing or the autonomous driving car 

receive the new requirement from the passage the system management 

should assign different function to actuators based on data coming from 

different sensor. 

  At the same time system management should supervise the whole 

autonomous driving car to check what kind of situation of the parts 

inside the car.  
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1.2 MPC for path planning and tracking 

application. 

   

  Vehicle dynamic model play an important role in solving the problem 

of autonomous driving car path planning and tracking. Introducing the 

dynamic model in path planning process could increase the real-time 

capability by reducing the computation quantity. 

   Felipe KUHNE purpose a control scheme based on vehicle kinematic 

model for wheeled mobile robot. Using MPC to have better constraints 

condition, by the help of Quadratic programming (QP) to handle 

linearization problem of wheeled mobile robot model.[1] 

   Razvan.C.Rafaila consider autonomous driving car model with 

dynamic model but take in to account the nonlinear tire force. The 

nonlinear model predictive control model use optimization algorithm to 

have the minimal value of cost function.[2] 

  Matthew Brown put the local path planning and path tracking in same 

control system using model predictive control. All the results must be 

generated before calculation which takes into account the desired path 

positioned in two safe envelopes. 

  The one envelope represents stability problem optimization the other 

gives indicator of obstacle avoidance.[3] 
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Jonathan Y.Goh generates insight from professional drivers. They give 

an approach to control autonomous drifting to have better performance 

of path tracking problem. 

  The reference path is generated point by point from all the equilibrium 

of drifting points considering the side slip angle of tire is no more very 

small meaning non linear of tire force.[4]  

  Jiechao LIU investigates the effect of different degree of freedom on 

performance of model predictive controller. The indicators such as time 

to reach the target point and the deviation from desired path are used to 

judge the performance.[5] 

  Steven C peters design path tracking controller consider differential 

flatness to explore the limits of tire force with better performance in 

trajectory tracking problem.[6] 

  Path following problem is formed to geometry way to design the 

control algorithm [7-11], it is important to consider the closed loop 

controller including both longitudinal and lateral direction.[12],and the 

driver model detailed information in paper[13 14]. 
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1.3 thesis problem statement   

  This thesis tries to investigate the application of model predictive 

control (MPC) in autonomous driving car. Starting from the vehicle 

kinematic and dynamic model building within linear or nonlinear tire 

model, following the discussion of concepts about the model predictive 

control such as optimization, cost function, quadratic programming and 

constraints. 

  A nonlinear mathematical model for a vehicle with dynamic constrains 

is developed based on the vehicle data coming from Carsim. Test in the 

simulink with various kinds of scenarios to see the final performance of 

the controller. Carsim vehicle model is embedded as simulink s-function 

and controller is designed by the help of matlab mpc toolbox. 

  An important issue should be specified which is prediction horizon; it 

is the main parameter in mpc controller. The prediction horizon 

influences the final performance of the controller and the computation 

cost. For autonomous driving car it is quiet important to fulfill the path 

tracking in real time, otherwise the vehicle is easily to meet the 

dangerous situation due to the delay of the time. 
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Chapter 2 Vehicle and tire 

model 
 

  Autonomous driving car need to know the car model such as kinematic 

or dynamic model to fulfill the function of path planning and path 

tracking. From the first chapter we have insight that the better known of 

vehicle dynamic model especially when design the path planning system 

putting dynamic model in it, the better the path tracking results will 

present. It means that the reliable vehicle model is not only precondition 

of designing of mpc controller, but also basement of path tracking. 

  When design mpc controller it is important to consider driving 

situation of autonomous driving car. In order to have proper 

autonomous driving motion control we must choose proper variable to 

have precise prediction of vehicle motion changing. 

  Motion of vehicle on the road is very complicated, in order to have 

right descriptions of car motion; one of the useful approaches is complex 

system of differential equations, choosing different variable representing 

motion of car. 

  Adding vehicle kinematic or dynamic model inside mpc controller, we 

can confirm aim of control for the controller. Especially in motion 

planning, by the help of linearization and simplification of vehicle model, 
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requirement of real time performance can be met. 

  The linearization and simplification are important approach to solve 

the car model such as tire elliptical model and point mass model of car. 

In this chapter we present some models of the car, their assumptions 

and constraints. 

 

2.1 kinematic model 

 

Kinematic is kind of theory represents the motion of points and 

group of objects, neglecting the force that have effects on the motion. 

  Kinematic is always in direction of geometry of motion to make the 

research, considering as a branch of mathematics. Kinematics problem 

begins by describing the geometry of the system and declaring the initial 

conditions of any known values of position, velocity and/or acceleration 

of points within the system.[1] 

 

 
figure  2 kinematic model 



16 
 

As figure 2. showed,              represent the coordinate of center 

point of front axles and rear axles,   represent yaw angle of vehicle,   

is steering angle of front axle,                rear axle,    is speed of 

front  axle, l is wheel base of vehicle. 

  R is radius of trajectory of the center of mass of rear wheel, P is 

Instantaneous center of rotation, M is center point of rear axle, N is 

center point of rear axle. 

  At the center point of rear axle M, the speed is: 

                   

The kinematic constrains of front and rear axles are: 

                          

                               =0 

Combined with the upper 2 parts of formula we can get:    

 

 
           

          
  

Considering the geometry relation of front and rear axles: 

                                         

 
           

           
  

 

 the yaw rate is : 
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  is yaw rate of the car, at the same time from yaw rate  the radius of 

curvature R and steering angle of front axle can get: 

                          

 
  

  
 

      
       

  

 

Finally the kinematic model is : 

 

   

   

  

 = 

    
    
       

    

  

  The model can be described in a more uniform way which is state 

space matrix. Here state variable is [       ] and the control variable is 

[    ]. The new model is : 

 

 

   

   

  

 = 

    
    
 
   + 
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2.2 dynamic model 

 

  Vehicle dynamic mainly used to analysis the vehicle suspension 

effect including quarter car model and the drivability of car. In drivability 

analysis focused on the longitudinal and lateral dynamic issues.[15] 

  In this thesis we want use mpc controller finishes the path tracking 

function, as well as to simplify vehicle dynamic model to reduce 

computation cost, in order to confirm real time.[16] 

  Using kinematic model is not reliable especially when the speeds are 

increased and path curvatures are changing. But in such condition, 

dynamic model has good performance in path tracking performance. 

  The dynamic model of the car is very complicated and has more 

degree of freedom to handle. At the same time the system is nonlinear 

discontinuous. 

  Before build vehicle dynamic model we need purpose some ideal 

assumption: 

1. The road is considered as flat surface, the motion is planar. 

2. Neglect the effect of motion of suspension 

3. Consider the linear tire model neglecting decoupled effect in 2 

directions. 
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4. The load transfer is not into consideration 

5. Neglect aerodynamic force. 

2.2.1 bicycle model  

  

  Based on above 5 ideal assumptions, there are 3 direction of motion 

for planar vehicle which are longitudinal, lateral and yaw motion of the 

car. 

  As illustrated in figure 3, coordinate system oxyz is fixed in the vehicle; 

xoz is midplane of left and right. The original point is in center of gravity 

of the car. Coordinate system OXY fixed in the road. 

  About the force in figure: 

            are the longitudinal force of front and rear tire 

            are the lateral force of front and rear tire 

figure  3 bicycle model 
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           are  the tire force in x direction 

           are the tire force in y direction 

Applying Newton’s second law of motion along the X-axis ,Y-axis and Z- 

axis: 

              +     

              +     

                   

Where m and     denote the vehicle mass and yaw inertia, 

respectively.  and    denote vehicle longitudinal and lateral velocities, 

respectively, and   is the turning rate around a vertical axis at the 

vehicle’s centre of gravity. 

  The longitudinal and lateral tire force components in the vehicle body 

frame are modeled as follows: 

   

                      

                      

                      

                      

The longitudinal and lateral tire forces are given by Pacejka’s model. 

They are nonlinear functions of the tire slip angles α,slip ratios σ, normal 

forces Fz and friction coefficient between the tire and road μ: 

Fl = fl(α, σ, Fz, μ),  
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Fc = fc(α, σ, Fz, μ). 

The slip angles are defined as follows: 

       
  
  

 

where the tire lateral and longitudinal velocity components are 

computed from: 

                 

                 

The velocity component can be calculated from: 

                            

                                         

The slip ratios s is approximated as follows: 

   

      

 
           

  
 

   
            

  

The friction coefficient μ is assumed to be a known constant and is 

the same at all four wheels. We use the static weight distribution to 

estimate the normal force on the wheels. They are approximated as: 

    
   

          
                               

   

      
 

Finally consider the vehicle fixed coordinate system and inertial 

frame. 
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2.2.2 Tire model 

  Making research on vehicle dynamic, the longitudinal and lateral force 

with aligning torque has effect on drivability and handling stability. Due 

to the reason of complex behavior of tire, the dynamic model is non 

linear. So the important issue to generate dynamic model is choosing 

reliable and useful tire model. 

  Pacejka purposes the magic formula which uses trigonometric 

function to represent longitudinal and lateral force [22 23]. Finding 

relationship between side slip angel and force in different direction, the 

characteristics of tire can be presented. 

  The usual form of magic formula is: 

   

 

Where Y is output of function which can be longitudinal or lateral tire 

force. B,C,D,Sv are the coefficients correlate to the experiment data. In 

the following part we show some typical example of tire plots using 

pacejka formula. 

  Figure 4 shows the lateral tire force as function of side slip angle at 

different value of friction coefficient. 

Figure 5 shows the longitudinal tire force as function of slip ratio at 

different value of friction coefficient. 
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Using pacejka formula for controller designed is also too much 

figure  4 lateral force 

figure  5 longitudinal force 
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complicated, which means the more simplified model needs to be 

presented. From the figure we can easily find that based on the 

assumption of side slip angle or slip ratio is very small, the tire force is in 

the linear region. The formula can be changed to: 

       

Where    is cornering stiffness coefficient of tire, it is related to 

frication coefficient and normal force  . 

 

 

 

 

 

 

 

 

 

  Figure6 shows difference between pacejka model and linear model. 

The linear tire model is the simplest one which can be used in dynamic 

model to design mpc controller without damage to the performance of 

path tracking. 

 

 

figure  6 linear tire force 
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2.2.3 linear bicycle model. 

   

  To linear dynamic model, based on the small angle assumption, 

approximate all trigonometric function using first order Taylor expansion: 

                     

After that the side slip angle are: 

   
      

  
   ,        

      

  
 

Combined equations ,the lateral tire force are: 

         
      

  
                  

      

  
      

Substitute the equation we get the linear dynamic equation. 
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Chapter 3 MPC controller 

for lateral control 

  This chapter the general knowledge of mpc is presented to show the 

reason why that the controller is using mpc theory. Following section is 

to show an example of simple controller tracking a desired path. Inside 

controller the vehicle model is kinematic model because the reduction of 

complexity at first. 

  The rest of this chapter is to illustrate the controller that used 

commonly to fulfill path tracking function based on dynamic vehicle 

model.[17 18 19 20 21 ] 

 

3.1 overview of model predictive control 

   
  MPC is a method to control process with a variety of constrains. 

Chemical industry firstly introduce to factory since 1980s. Nowadays the 

use of this control theory has expanded to power electronics and 

autonomous driving car, because of the advantage of current timeslot 

optimization while keeping future time slots in account.  

 Inside mpc control process there are 3 critical steps: prediction model, 

rolling optimization and feedback correction. 
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Model Predictive Control optimizes the output of a plant over a finite 

horizon in an iterative manner (Refer to Figure 7). At time step k, the 

initial value of current plant state is known, the control input is 

calculated for finite time steps in future k = t + 0T; t + 1T; :::; t + 

pT ,where p is previewed prediction horizon steps. During calculation the 

problem has transferred to an open loop, constrained, finite time one.  

In practical situations, only the first value of control sequence could be 

the input to the system. Because of the model simplification and added 

disturbances or other kind of noise which can cause error between the 

predicted output and the actual process output.  

Thus only the first step of the control strategy is applied to the plant 

and the plant state is measured again to be used as the initial state for 

the next time step. This feedback of the measurement information to 

figure  7  mpc algorithm 
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the optimizer adds robustness to the control. The plant state is sampled 

again and the whole process is repeated again with the newly acquired 

states. The prediction time window [t + 0T; t + 1T; :::; t + pT ] shifts 

forward at every time step (reason why MPC is also known as Receding 

Horizon Control.  

  Figure8 shows that general mpc used for autonomous driving car. 

The 3 main components are dynamic optimizer, the vehicle model, and 

the cost function and constraints. 

  The output from the mpc controller will be the input to the vehicle; 

here mpc controller is for lateral control which means the output is 

steering angle. Usually to control a vehicle we need also 2 more 

parameter the throttle and the brake which will be discussed in next 

chapter. The ground vehicle can be simulated in simulink by a block. The 

state estimator gives all the indication of the vehicle in which represents 

all state of vehicle. The output of this block will be the input to mpc as 

figure  8  MPC controller 
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the new initial condition of next time step calculation. 

  The task of sensor is to give information of environment which may be 

the boundaries of 2 roads, the position of obstacle, and the presence of 

other cars.  

 

3.2 LTI model predictive control 

algorithm 

 

  LTI model prediction control algorithm is based on LTI model as 

prediction model which is also common used model in model predictive 

control. Compared with nonlinear model predictive control the 

advantage is that computation is simple and better real time 

performance. For autonomous driving car the real time performance of 

algorithm is important issue to consider. Due to that reason here the 

introduction of LTI model predictive control algorithm is presented. 

  As said before in following parts we divide 3 topics to discuss: 

prediction function, optimization solution and feedback. 

  (1)prediction function: 

   Consider following discrete linear model: 
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  We can set as : 

          
      

        
  

A new state space equation: 

                                                 

                   

All the matrix is defined as: 

                             
        
   

         
    
  
   

                                     

     

In order to simplify calculation, purpose assumption: 

                        

                        

Considering prediction horizon is Np, control horizon is Nc. The output of 

control sequence and the output of system in prediction horizon is 

calculated by:  
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To make the relation more clearly, set system output in future time as 

matrix: 

                    

 

 

 

From equation we know state variable and output in prediction horizon 

is calculated by the current state        and control increment  , 

which is the function of prediction. 

 

(2) optimization solution 

In fact control increment is unknown for us only after setting target 
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requirement and solves it. Finally we can get the control sequence 

in prediction horizon. 

        
 

   

                                         

 

Setting target function like upper one, by the help of some method we 

can transfer it to quadratic programming problem. Quadratic 

programming (QP) is the process of solving a special type of 

mathematical optimization problem—specifically, a (linearly constrained) 

quadratic optimization problem, that is, the problem of optimizing 

(minimizing or maximizing) a quadratic function of several variables 

subject to linear constraints on these variables. Quadratic programming 

is a particular type of nonlinear programming. 

  Equation set control quantity as state quantity in target function but 

with some disadvantage such as no possibility to set constraint to control 

increment. So if we change the control increment as state quantity. 

Optimized target function: 

                                      （     ）                   

 

Q and R is weight matrix ,the whole equation is used for tracking 

the desired path. At the same time it must based on some constraints 

such as : 
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Control quantity constraint: 

                                          

Control increment constraint: 

                                                    

 Output constraint: 

                                          

 

From here the whole optimization solution is finished, solving all these 

equation with different constraints, the control sequence in future time 

can be calculated. 

 

(3) Feedback 

After solving all the equation, the control increment sequence in 

future time : 

   
      

       
              

   

Based on model predictive control theory, setting the first one in the 

sequence as the input control to the system.  

               
  

The system execute control input till next time step. In next time step the 

system based on current information predict future output. 
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3.3Nonlinear model predictive control 

  In order to use linear model predictive control, the first requirement 

is to have linearized vehicle dynamic model. Apart from the nonlinear 

model predictive, linear model predictive control is a second choice. As 

the research is going on, nonlinear model predictive control is used in 

more common area. 

  For a nonlinear system, consider the model like that: 

                                          

              

 

Where f is transfer function of system,  is n dimensional state variable 

is m dimensional control variable,  is state vatiable constraint,  is 

control variable constraint. 

  Set f(0,0)is a stable point of system, and also the control target of 

system. For any time horizon N, consider following target function     

                                           
    

Where U(t) is control sequence in horizon N,      is all the state variable 

sequence under control input sequence. Inside the target function    

the first item represents tracking ability, the second item presents 

constraints. 

  Combined with model and target function, nonlinear model predictive 

control is to solve the problem under all kind of constraints in every time 
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step. For example: 

                          

                                                        

                                                                     

                                                                 

                               

                               

If we get the results from equation satisfy all requirement and constrains,  

the optimal control sequence U(t) will meet. Based on the model 

predictive control theory, setting the first item, which is inside the 

control sequence, as input to the controlled system. 

  In next time step, system gets new current state and solves the 

equation; continue setting first item as input to system. For any 

nonlinear system during calculation there are N(n+m) variable, n  

nonlinear constraints, also including control increment constraints and 

output constraints.  

  So the more dof of dynamic system the more calculation power 

needed. In our case vehicle dynamic model is 3 dof model, the 

advantage of nonlinear model predictive control is still there. Otherwise 

for high dof vehicle model it needs some simplification, to obey the 

requirement in real time. 
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3.4 numerical method for nonlinear 

system 

   
  In nonlinear model predictive control, by the nonlinear model, 

current state and control sequence, predict the future state of system. 

It is an iteration process, but with unknown control sequence. Due to 

that reason it needs an iteration equation to have an approximate 

solution of differential equation. 

 Usually there are 2 methods, one is Euler method, and the other is 

Runge-Kutta method. 

The Euler method (also called forward Euler method) is a first-order 

numerical procedure for solving ordinary differential equations (ODEs) 

with a given initial value. It is the most basic explicit method for 

numerical integration of ordinary differential equations. 

  The Euler method is a first-order method, which means that the local 

error (error per step) is proportional to the square of the step size, and 

the global error (error at a given time) is proportional to the step size. 

The Euler method often serves as the basis to construct more complex 

methods. 

  For a differential equation: 
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  Using Euler method, the result in time n+1 can be calculated from 

time n. the iteration equation is  

                  

But usually this method has a very low level of precision. So in some 

condition we try to use another method. 

the Runge–Kutta methods are a family of implicit and explicit iterative 

methods, which include the well-known routine called the Euler Method, 

used in temporal discretization for the approximate solutions of ordinary 

differential equations. 

  Usually the method is : 

        
 

 
                

          

             

         
 

 
    

  
 
  

         
 

 
    

  
 
  

                  

 

 

Here one important issue needs to be specify, the more precision the 

results we require, the lower the computation speed.  
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3.5 dynamic model in path coordinate  

 

In order to control autonomous driving cars it is important to represent 

dynamic model in to path coordinate. Based on constant longitudinal 

speed assumption, the relationship between path r(s) and yaw rate can 

be found: 

   

After that the lateral acceleration derived as: 

        

 

  

 

 

        

Where     is orthogonal distance of center of gravity to the 

desired path.                             
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The state space model in tracking error variables is therefore given by: 
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Chapter4 Longitudinal 

control  

 
  After talking about longitudinal control, it is mandatory to analysis the 

longitudinal control, this chapter is focus on how to use PID control 

theory to design our longitudinal controller. 

  First the general introduction of PID is presented, after that the 

desired velocity profile is calculated as the reference for controller [12 

15]. Since the longitudinal and lateral dynamic of the vehicle is coupled, 

the simplest part, which is elliptical tire model, is derived to have general 

understanding on it. 

 

 

4.1 Overview of PID theory 

 PID controller is composed of 3 parts: proportional part, integral part 

and derivative part. It mainly used for linear time invariant system. 

 PID controller is the most common used controller in industry control 

area. The general theory is about control loop feedback technology. It 

takes the state value from system and compared it with a reference one. 
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Based on this error applies a correction take in to account proportional, 

integral, and derivative terms (denoted P, I, and D respectively), hence 

the name. 

  The main target of controller is to let the output of system as same as 

the desired value. PID controller adjusts input according to the history 

data and error to make system more stable. 

  In some application there is no mandatory to use all 3 parts of 

controller. Usually sometimes only PI or PD or only P parts are presented 

in controller. 

Figure 9 shows the basic principles of theory and how the 3 parts are 

applied to the system. According to the error value which is the 

difference between desired setpoint and process output, controller 

generate control input under the algorithm of pid and this input try to 

minimize the error value   

 
figure  9 PID control 

 

P means proportional to the current value of error. By the help of gain 

factor”k” directly multiplied the error value, using proportional response 

https://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwj1kIHyssDdAhWODOwKHcw3CkQQjRx6BAgBEAU&url=https://zh.wikipedia.org/wiki/PID%E6%8E%A7%E5%88%B6%E5%99%A8&psig=AOvVaw12SjL3b-LQ4BojlVOxoGXA&ust=1537217265988253
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to compensate system. 

 

I is represents past value of error and integrate it them over time. Due 

to the condition that after proportional control there is a still the error 

between current state and desired one which is called residual error. The 

I parts try to eliminate residual error. When the residual error turn to be 

0, the integral will not continue increase. 

  D is a part taking in to account the future trend of error. By the help of 

derivation of error value, the mission of this part is to reduce change rate 

of error value to make it more stable. 

  The total function can be expressed as : 

    

Where    denote as proportional terms,    denote as integral terms 

and    denote as derivative part. 
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4.2 introduction of longitudinal control 

   
  After talking about the lateral control of the autonomous driving 

cars, it is also important to spend time in longitudinal control, since that 

the vehicle can’t drive with constant speed. 

  These days a lot of work and research has developed to solve 

challenge in security problem hence that even in today there are also 

millions of people are injured because of car accident. It is the reason 

that every car maker is trying to use ADAS to reduce this big number. In 

other words the ADAS is also the low level of autonomous driving cars. 

  One of the common used method is that multi point preview 

model[24], this model divide the desired path ahead of vehicle to some 

points based on the deviation between the point and current lane 

generate signal of steering angle and throttle/ brake. 

  An active cruise control (ACC) is also used by a majority of vehicles. 

The main target is to keep vehicle speed and safety distance between 

cars. An mpc based control algorithm is generated [25] with the 

advantage of minimal fuel consumption. 

  Since the vehicle is a system work that every parts have deeply 

relationship with each other. 

  Here we just specify some important parts such as: 

  The longitudinal and lateral motions are kinematic and dynamic 
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coupling, because of the yaw motion. 

  When the vehicle is accelerating or cornering, there are longitudinal 

and lateral accelerations. Due to that the load transfer is happening and 

the vehicle is no more in static state. 

  The constraint of tire force which called the elliptical model of the tire 

is coupled in longitudinal and lateral direction. 

  It is complex to consider all the effects simultaneously. It is necessary 

to have a nonlinear dynamic model to capture all the effects. Since in the 

lateral controller which is developed base on mpc theory spends a lot of 

time to do calculation. If in longitudinal controller also the nonlinear 

model is used which will be a big challenge for the data processor inside 

the car. While the real time performance is the first priority of total 

system. 

  Due to the reason of simplification, here the longitudinal controller is 

developed by PID theory, using the previewed curvature of path in front 

of vehicle, getting data from camera, calculating the desired velocity 

while cornering. Here the lateral and longitudinal coupled effects have 

effects on the maximal friction force of tire. Based on the desired 

velocity and current one, The output of longitudinal controller is signal of 

throttle or brake pedal to simulate the driver and it is convenient to 

directly send this signal to ECU inside autonomous driving cars.   
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 4.3 desired velocity generation 

 
  When the vehicle is cornering, it is important to clearly know the 

relationship between the steering angel and centrifugal force. If the tire 

cannot generate enough force to balance the centrifugal and 

aerodynamic force, the vehicle will out of the control which we called 

under steering/over steering.  

   

figure  10 force distribution in 4 wheels 

 

 From figure 10 shows：we assume that the vehicle is driving in flat road 

and neglect aerodynamic force because that the simple model we want 

to have. 

  Taking into account the centrifugal force and tire frication force in   

direction to finish the equilibrium equation. 
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  Here we assume    are conflated with the tire lateral cornering 

force  . The vertical force on each tire are assumed to be equal which 

means all the tire have same frication coefficient    . Based on all these 

assumption, the approach is referred to ideal steering. 

       

      

  Combined with all the upper equation  

   

 
        

 

 
   

  Where k denotes the curvature of road. Thus finally we can get the 

desired velocity: 

        
  

   
 

  To make conclusion of this section, from curvature of the road the 

maximal velocity is calculated. It is one of the constraints of longitudinal 

controller otherwise the vehicle will go out of the lanes. 

  The maximal velocity is reference speed of PID controller, time by time 

the controlled calculated the error between current speed and maximal 

one. Based on the error controller generate signal of throttle/brake 
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pedal to control the speed of the car. 

4.4 Coupled effect between longitudinal 

and lateral direction. 

  After getting the maximal velocity, it is mandatory to make research 

on the relationship between coupled effect of longitudinal and lateral 

direction. In the past the force is generated separately, only the lateral 

force to control of the steer of the vehicle and investigate the 

performance of autonomous driving cars. 

  But now due to the presence of longitudinal controller, the tire forces 

are generated in both directions at the same time. The condition itself is 

changed and the constraints and relationship need to investigate to 

make sure the good results. 

  From the research when increase the longitudinal force of the tire that 

figure  11 frication coefficient as function of slip ratio 



48 
 

has certain side slip angle, the force in lateral direction is decreases. The 

result is same as showed in figure11 

  By applying the driving or braking torque to the tire with a certain side 

slip angle, the shape of frication coefficient is changed along different 

side slip angle. 

  A set of experiment set longitudinal force is in x-axis and lateral force 

is in y-axis with constant side slip angle. The results is showed in figure 

12 

   

 

 

 

 

 

 

  Apart from the sideslip angle there are some other parameters 

influencing the curvy of force such as the speed of the car, the tire and 

road condition. The different material and distribution of different layers 

have effects also. 

  Due to the reason of simplification, a model is purposed to 

approximate the curve. Using elliptical approximation the tire behavior is 

represented by the equation: 

figure  12  longitudinal and lateral force based on experiment data 
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  Where     are the lateral force at the given side slip angle with no 

longitudinal force applied. The     is maximal longitudinal force with 

no lateral force which means no side slip angle 

  Using cornering stiffness   substitute lateral force: 

 
  

   
 
 

  
  
   
 
 

   

Finally the elliptical model of tire is generated to show the couple effect 

of lateral and longitudinal direction in figure 13 

   

figure  13 elliptical model 

 

Based on the output of mpc controller, the steering angle and side slip 

angle of tire, the lateral force need to apply to the tire is calculated by:  
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  From lateral force substitute it in to elliptical model; the available 

longitudinal force is generated. The available longitudinal force divide 

the mass of the vehicle is the acceleration limit of the vehicle. The limit is 

another constraint of PID controller. 

   

 

figure  14 sequence of longitudinal control 

In figure14 it presents the sequence of the data. Starting from the lane 

center estimate block, which will be discussed detailed in next chapter, 

the curvature of the path is calculated. After due to the prediction 

characteristic of mpc controller, the previewed curvature is current 

curvature plus the value that curvature derivative multiplies the 

prediction horizon.  Based on the maximal previewed curvature the 

maximal reference velocity is generated, sending it to the PID controller, 

according to the difference between the desired velocity and current 
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velocity, the output is acceleration signal. The saturation rate limit 

considers maximal longitudinal force available applied to the tire. Taking 

in to account the couple effect in 2 directions, the system put first 

priority into lateral control otherwise the vehicle will go out of the lanes. 

Inside linear model longitudinal dynamic block, by the help of simple 

transfer function, the input signal which is acceleration transfers to 

output signal which is speed. Using this speed re-send it to mpc 

controller updates all the sate inside model. The total architecture of 

longitudinal and lateral controller is showed in following figure.  

 
figure  15 total architecture of control algorithm 
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Chapter 5 Results 

 

This chapter introduces the simulation environment based on matlab 

and simulink to show the general function of blocks. The test bench 

developed in simulink by the help of some example provided by Matlab 

Company. It is a basement for our process giving the opportunity to test 

the control algorithm performance.   

Carsim model is also as s-function introduced to our system because 

that it is more comprehensive model taking into account the 

aerodynamic force and some dynamic effects of the vehicle. Let the 

performance more reliable. 

Here first we show the results only with mpc controller to see the 

performance about the autonomous driving car in constant speed. 

Second Carsim math model representing the whole vehicle system is 

introduced into simulink, to see the effects of vehicle dynamic such as 

load transfer.  After that the results is related to condition including 

both longitudinal and lateral controller.  

Inside Carsim it provides a procedure of lane keeping function which is 

same as our project. It provides an opportunity to have benchmarking 

with Carsim. The same scenario is generated both in Carsim and simulink. 

The results from 2 methods are compared. 
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5.1 simulink environment  

   
Using matlab to simulate the autonomous driving cars is because that 

the powerful computation model and a variety of toolbox that can be 

directly used in our project, such as model predictive control toolbox and 

automated driving system toolbox.  

The automated driving system toolbox provides algorithms and tools 

to design and simulate autonomous driving systems. The system give 

possibility to generate different scenario including all traffic information, 

simulate the entire sensor that embedded in the car and deal with data. 

figure 16 presents the total environment of our simulink model which 

can be divided into some parts. As discussed before there are 

figure  16 total simulink environment 
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longitudinal and lateral control parts, the vehicle and environment parts, 

estimate lane center part to simulate the sensor getting the data of 

vehicle path. 

The general ideal of our system is to keep the vehicle in its lane and 

follow the curved road by controlling the front steering angle. This goal is 

achieved by driving the lateral deviation e1 and the relative yaw angle e2 

to be small. As figure 17 shows: 

Controller calculates a steering angle for the ego car based on the 

following inputs: 

1. Previewed curvature (derived from Lane Detections) 

2. Ego longitudinal velocity 

3. Lateral deviation (derived from Lane Detections) 

4. Relative yaw angle (derived from Lane Detections) 

 

figure  17 lateral deviation and relative yaw angle 
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Using the function representing the vehicle dynamic model, giving the 

steering angle and the longitudinal velocity, we can have the vehicle 

state during driving. The output can be: 

1. Longitudinal position of the car(X coordinate) 

2. Lateral position(Y coordinate) 

3. Longitudinal velocity 

4. Lateral velocity 

5. Yaw angle  

6. Yaw rate  

All these data are used to estimate current state of the autonomous 

driving car and re-send it to our controller to correct the control variable 

in next step time that we have discussed more detailed in chapter 2. 

  About the vehicle and environment parts 

figure  18 vehicle and environment part 
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Giving the scenario reader to test different scenario generates the ideal 

left and right lane boundaries based on the position of the vehicle. From 

lane detection, the previewed curvature, the lane markings, the relative 

yaw angle and the lateral deviation can be followed to get. 

 The scenario, which including the information of road , the path lines, 

the ego car which is controlled by controller, and the other car as 

obstacle with its drive path, use to test the performance of control 

algorithms. Following figure presents different scenario. 
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5.2 cooperation simulation with Carsim 

  Carsim is the software developed by Mechanical Simulation 

Corporation; it mainly used to simulate the dynamic behavior of vehicle. 

The software simulates the response results with respects to the inputs 

figure  19 different scenario 
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such as driver command, the road condition and the aerodynamic force. 

  

 
figure  20 carsim configuration 

 

  The vehicle parameter data getting from Carsim is showed in table 5.1. 

Inside Carsim vehicle model it defines vehicle dimension parameters, 

vehicle mass and moment of inertia in different direction. In mpc 

controller the vehicle bicycle model is 3 dof. 

                             Table 5.1 

     Parameter                                        value 

      M:total mass                                   1412kg 

      lf :distance form GC to front axle 1.015m 

lr:distance from GC to rear axle 1.89m 

J:vehicle yaw moment of inertia             1536.7kgm^2 
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figure  21 vehicle dimension 

 

  After that it is mandatory to set sending vehicle model as s-function to 

simulink. Specify the input and output of s-function. The figure 22 23 

presents the general configuration. 

figure  22 input set 



60 
 

  

 

 Input signal set: 

 1: steering angle            2: Vehicle speed 

One thing must be mentioned here before the input signal of steering 

angle is representing the steering angle of tire. But in Carsim it is defined 

by the angle of steering wheel. So the transmission ration is introduced. 

    

Output signal set： 

1. Longitudinal position                          2.Lateral position 

3. Longitudinal velocity                          4.Lateral velocity 

5. Relative yaw angle                            6.Yaw rate 

 

Finally we change the vehicle state function to Carsim s-function, to have 

figure  23 output set 
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more comprehensive and reliable data. As figure 24: 

 

figure  24 carsim s-function 

5.3 Benchmarking with Carsim   

  Here the procedure we choose lane keeping normal driving, to 

compare the results 

 

figure  25 carsim lane keeping function 
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The speed controller can calculate target speed as a function of 

curvature in the reference target path, combined with driver 

aggressiveness 

The acceleration limits used to determine target speed are based on a 

skill level and aggressiveness limits 

Skill 0 : Ax and Ay are not combined. The target speed is adjusted to 

allow acceleration either longitudinally or laterally, but never both at 

once.  

 

figure  26 acceleration constraints 

 

Skill 1: Ax and Ay are combined using straight lines, allowing some 

combination of lateral and longitudinal acceleration. However, the 

combined acceleration does not make use of as much available friction 
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as is used in pure longitudinal or pure lateral acceleration.  

Skill 2: Ax and Ay are combined using a friction ellipse, providing a 

consistent use of available friction regardless of the direction of the total 

acceleration vector. 

After that talking about the path preview length set the data as same as 

camera configuration and characteristic of lane detection function. 

 

 

 

Previewing of the target path is configured with four length parameters 

1.Arc length used to estimate curvature: Length of path segment used to 

calculate curvature at the mid-point of the segment 

2. Preview start :The portion of the reference path that is previewed 

figure  27  preview length 
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starts this distance in front of the origin of the vehicle sprung mass 

coordinate system (typically the origin is at the center of the front axle) 

3. Total preview: This defines the portion of the reference path that is 

previewed. Longer distances sometimes give better results for 

complicated paths combined with aggressive acceleration settings. 

4. Preview interval: Interval for calculating path curvature and target 

speed over the preview path 

 

Finally generate the same scenario both in matlab and Carsim to 

compare the results  

 
figure  29 scenario in matlab 

 

 

  

figure  28 scenario in carsim 
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5.4performance and final result plots 

  
5.4.1 lane keeping assistant system only with lateral 

control 
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  From figure 30, the results of controller are presented such as 

curvature, lateral deviation, relative yaw angle, steering angle and driver 

path of autonomous car. In the driver path plot the blue line represents 

center line of two boundaries the red line is path of vehicle. 

  The controller performance is good enough to achieve lane keeping 

requirement. The steering angle is in the range of [-0.2 +0.3] rad. 

 

figure  30 performance plot A 
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5.4.2 lane keeping assistant system with both 

longitudinal and lateral control. 
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  Apart from items introduced before here the acceleration command 

and longitudinal velocity are included. Based on the curvature the 

reference velocity is calculated and autonomous driving car follows it. 

Since the velocity is not constant as before when cross curvature the 

speed is higher than before. As the result of it the steering angle is in the 

range of [-0.4 +0.5] 

 

  

figure  31 performance plot B 
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5.4.3 benchmarking with Carsim 
 

  Speed comparison 

  

Steering angle comparison 

G-G plot comparison 
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  G-G plot, which represents the time history of longitudinal and lateral 

acceleration, is a main indicator of formula racing car. Here the results of 

2 software is quiet same. 

  Due to the reason of software default set in Carsim the speed profile is 

starting from speed limit which is 80 km/h since in matlab it starts from 

0km/h. For the steering angle matlab has smoother maneuver than 

Carsim.  

  

figure  32 benchmarking reslts comparision 

Vehicle path comparison 
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