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Abstract

This thesis work focused on the research of the autonomous driving
car model and of the steering and speed control of autonomous vehicles.
The different level of vehicle dynamic model are considered such as
kinematic model and bicycle model with the linear or nonlinear tire
model.

The controller is split in 2 parts, the first one is longitudinal controller
corresponding to change of speed, and the other is lateral one which is
mainly related to the steering angle. The lateral controller is based on
the MPC theory, and the longitudinal one use the PID theory. The entire
controller, which is developed in the matlab and simulink, should work
well simultaneously to follow the desired path. To test it, the different
scenario is generated by the autonomous driving toolbox in matlab.

To get more reliable data of the vehicle state, we are using the Carsim
software co-simulating with matlab, making our consideration more
comprehensive.

It’s important to see how the controller parameters (step horizon, cost

function) have the effect on the results.



Content

L0700 (=1 o1 PSSRSO PP SR 3
(@ F=T o) o<l R o 4o Yo [¥ ot o o 2SS 6
1.1 General idea of aUtONOMOUS AFIVING CAl.ccccciciiiiiiieeee e e e e 6
1.2 MPC for path planning and tracking application..........ccccccveeiiiiiee e, 11
1.3 thesis problem statemMENT .......cuiii i e 13
Chapter 2 Vehicle and tire MOdel..........cooociiiiiiiiiieccee et 14
2.1 KINEMAtiC MOTEI ....coeiiiieiieee ettt s 15
B ¥ T Y ol 4T Yo =1 I USPUR 18

b 2 N o1 ol [Tt s To Yo 11 RSP SR 19
2.2.2 TN MOTEL..eeiiiiie ettt st e e e eans 22
2.2.3 linear bicyCle MOEl.....ccoiiiiiieee e e e 25
Chapter 3 MPC controller for lateral control .........cooccveiiiiiii e 26
3.1 overview of model predictive CONtrol .........ccceeeee i 26
3.2 LTI model predictive control algorithm ........cc..coovciiiiiiciiiecee e 29
3.3Nonlinear model predictive CONLrol...........uviiiiiiiie e e 34
3.4 numerical method for NONliNEar SYStEM .......c..eiiieciiii i 36
3.5 dynamic model in path coordinate ......ccceevvciiieieciiic 38
Chapterd Longitudinal CoNtrol...........ueieiiiii e 40
4.1 0Verview Of PID thEOIY ....uviiiiiie ettt et e et bae e e e nrae e e aneeas 40
4.2 introduction of longitudinal coNtrol ... 43
4.3 desired VeloCity ENEratioN ........ciiicviee it 45
4.4 Coupled effect between longitudinal and lateral direction. ......cccccoevvvvceiiinceee e, 47
(010 =Y o =Y g TN R (=T U] SRR 52
5.1 SiMUlINK @NVIFONMENT......oiiiiiiiii e e e s e e e s are e e e s snraeeeas 53
5.2 cooperation simulation With carsim..........ccceeiii i 57



5.3 Benchmarking With Carsimi.......ccoccuiiiiiiiiie et e e e saaee s 61

5.4performance and final result PIOTS.......ccuviiieciiii i 65
5.4.1 lane keeping assistant system only with lateral control ........cccccceeeeiieeiiiieee e, 65
5.4.2 lane keeping assistant system with both longitudinal and lateral control. ........... 67
5.4.3 benchmarking With Carsim ........ccccoeeeiiiii i 70

REFEIEINCE ..ttt st sttt r e s st s an e s b e n e sneenaes 72



figure
figure
figure
figure
figure
figure
figure
figure
figure
figure
figure
figure
figure
figure
figure
figure
figure
figure
figure
figure
figure
figure
figure
figure
figure
figure
figure
figure
figure
figure
figure
figure

LIST OF FIGURES

1 VENICIE CONEIOL.. ..ttt s e e s e e 9
2 KINEMALIC MO ...coneiiiiiiieeeee et e s 15
3N o1 To0Y ol [T s T Yo 1= IS U 19
B 1AtErAl FOICE .ottt ettt et e st e e e nee s 23
o3 (o] aT=4 1 (U T g =1 I o) ol <R 23
6 1iN@AT TIr€ FOrCE ...ttt s 24
72 4 Y Tol=1 F-={o T a1 4 Y o' TSR 27
8 IMIPC CONEIOIET ...ttt et et e st e s e s s 28
O PID CONTIOL ..ttt et ettt e st e st e s bt e e e e st e e saneesnee s 41
10 force distribution in 4 Wheels .......ccc.eoiiiiiiiiiiiee e 45
11 frication coefficient as function of slip ratio ......cccecccevieeeee i, 47
12 longitudinal and lateral force based on experiment data........cccccceeeeciviveeenenn. 48
13 elliptical MOAEL...ccc i e et e e e e e e b e aeeeeeeean 49
14 sequence of longitudinal coNtrol.........ooocciieeeie e 50
15 total architecture of control algorithm ........c..ceeviiiiieicr e, 51
16 total simulink @NVIroNMENt.........cooiiiiiii e 53
17 lateral deviation and relative yaw angle .........coovvverieciiee e 54
18 vehicle and enviroNMENT Part..........eeeeieeiiiiiieeee e e e e e e e e rrrae e e e 55
19 different SCENAIIO .. .eiiiieiiie ettt et e s b e e neeeneeenas 57
20 carsim CoNfIUIAtION ......ccuiiiieiiee e e e e saaee s 58
21 vehicle diMENSION «...oiiiiiiiee ettt et sn e e nee s 59
7 0 o 11 5 - 59
P2 T 1 U1 o161 ] = PP 60
24 carsim S-FUNCHION ...eiiiiiieeeee et 61
25 carsim lane keeping fUNCLION .......coouiiiiiie e 61
26 acceleration CONSTrAINTS ......ciiiiiiie et 62
27 PrevieW [8NGEN ..o e 63
29 5€eNario iN MAtlab ...cooeiiii e 64
28 SCENANIO 1N CATSIM c.niieiieiiiiiee ettt e e et e s e e st e e e s amre e e s e nreeesanneeeesanneeeens 64
30 Performance PIOT A e e e e e e e e aae s 66
N o1l a oY a =Yg Tol=l o] (o) Al = J SRR 69
32 benchmarking reslts COmMPariSioN ........ccccuiieeciier e saeee s 71


file:///F:/autonomous%20driving/%e6%80%bb%e7%bb%93/abstract9.20.docx%23_Toc525316173
file:///F:/autonomous%20driving/%e6%80%bb%e7%bb%93/abstract9.20.docx%23_Toc525316175
file:///F:/autonomous%20driving/%e6%80%bb%e7%bb%93/abstract9.20.docx%23_Toc525316176
file:///F:/autonomous%20driving/%e6%80%bb%e7%bb%93/abstract9.20.docx%23_Toc525316177
file:///F:/autonomous%20driving/%e6%80%bb%e7%bb%93/abstract9.20.docx%23_Toc525316178
file:///F:/autonomous%20driving/%e6%80%bb%e7%bb%93/abstract9.20.docx%23_Toc525316179
file:///F:/autonomous%20driving/%e6%80%bb%e7%bb%93/abstract9.20.docx%23_Toc525316180
file:///F:/autonomous%20driving/%e6%80%bb%e7%bb%93/abstract9.20.docx%23_Toc525316183
file:///F:/autonomous%20driving/%e6%80%bb%e7%bb%93/abstract9.20.docx%23_Toc525316184
file:///F:/autonomous%20driving/%e6%80%bb%e7%bb%93/abstract9.20.docx%23_Toc525316188
file:///F:/autonomous%20driving/%e6%80%bb%e7%bb%93/abstract9.20.docx%23_Toc525316189
file:///F:/autonomous%20driving/%e6%80%bb%e7%bb%93/abstract9.20.docx%23_Toc525316190
file:///F:/autonomous%20driving/%e6%80%bb%e7%bb%93/abstract9.20.docx%23_Toc525316191
file:///F:/autonomous%20driving/%e6%80%bb%e7%bb%93/abstract9.20.docx%23_Toc525316194
file:///F:/autonomous%20driving/%e6%80%bb%e7%bb%93/abstract9.20.docx%23_Toc525316195
file:///F:/autonomous%20driving/%e6%80%bb%e7%bb%93/abstract9.20.docx%23_Toc525316199
file:///F:/autonomous%20driving/%e6%80%bb%e7%bb%93/abstract9.20.docx%23_Toc525316201
file:///F:/autonomous%20driving/%e6%80%bb%e7%bb%93/abstract9.20.docx%23_Toc525316202
file:///F:/autonomous%20driving/%e6%80%bb%e7%bb%93/abstract9.20.docx%23_Toc525316203
file:///F:/autonomous%20driving/%e6%80%bb%e7%bb%93/abstract9.20.docx%23_Toc525316204

Chapter 1 Introduction:

1.1 General idea of autonomous driving
car

Autonomous driving car is the car that fulfills the transportation task
without the human intervention, using the computer inside the car to
simulate the behavior of the driver and make decision.

Getting the environment data from the variety of sensor, based on the
information of road, localization of vehicle, and the obstacle the
controller will give the command.

Here the autonomous driving system can be divided by the 4 parts
which is system management, environment sensing, path planning, and
vehicle control.

(1) environment sensing

The same as the human driving car, autonomous driving car need the
information of driving environment in real time. There are 2 ways to get
the data, the one is by the help of all the sensor inside the vehicle ,
combined with the environment to have sensor fusion, trying to let
vehicle ‘understand ’ the environment, the other is through the internet
to supply the data of the outside area. For example by the vehicular
networking vehicle can easily get the road data in front of it also the

driving trend of the car which is around the autonomous driving car.



Environment sensing system uses these data correlating with the
model inside the computer to understand and recognize the situation.

Environment sensing system is key parts to have reliable driving
behavior which means it is also the most difficult part to fulfill. As we all
know to drive in the city at least autonomous driving car need recognize
the road the traffic light and all the traffic sigh related to traffic rules.
Getting the data from environment sensing system transfer it to path

planning system.

(2)Path planning system

Path planning means inside the environment which has obstacle,
based on a certain standard such as minimal the length of path or
minimal the energy to be used, finding a path from starting point to the
final destination without any interruption.

At present path planting system mainly used theory coming from
research about robotics. In general there are 2 parts: global path
planning and local path planning.

Global path planning means under the condition of knowing the total
map of environment, using the local environment information such as
the location of obstacle and the boundary of the road, autonomous
driving car can confirm the optimist path to follow.

But when the condition is changing such as the other car interrupt



the path that autonomous driving car followed, it is important to use the
local path planning to re-plan the path. Local path planning, which
according to sensor data representing local environment information,
generate the path need to be followed. It is under the guide of global
path planning; In the process of planning consider not only the minimal
energy to be used, safety issues but also problem of dynamic
environment constraints.

In the process of local path planning another issue should pay
attention to is the motion planning, which means that local path should
consider the constraint of vehicle dynamic.

Using model predictive control theory into autonomous driving path
planning process, the important issue is that how to solve the vehicle

dynamic constraints. We will discuss it in the following chapter.



(3) vehicle control system

Vehicle control system, in which include longitudinal and lateral
direction control, generate the command to follow the path coming from
path planning system. The same as the robotic control there is difference
between the path and the trajectory. Trajectory which considers space

and time simultaneously is one kind of path. The essence of path
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figure 1 vehicle control

planning is trying to minimal the error between the vehicle location and
the reference trajectory through control of vehicle motion. If we talk
about the trajectory it also includes error within time.

Vehicle control system is important part of autonomous driving car.
Environment sensing, path planning must integrate with vehicle control
system. Under all the condition of driving, especially with very high
speed, vehicle dynamic has much more effect on the results. All the

parameter such as side slip of the vehicle, the friction coefficient
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between the tire and the road, aerodynamic need to consider compared

with low speed condition.

(4)system management

Autonomous driving car first is a system work, in which there are a lot
of sensors, actuators, and electronic control unit need to work together,
to fulfill variety of functions such as car following, lane keeping,
emergency stopping, and obstacle avoidance. Different function need to
cooperate with different sensor and actuators to make sure the safety
and comfortable regulation.

When the new condition is facing or the autonomous driving car
receive the new requirement from the passage the system management
should assign different function to actuators based on data coming from
different sensor.

At the same time system management should supervise the whole
autonomous driving car to check what kind of situation of the parts

inside the car.
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1.2 MPC for path planning and tracking
application.

Vehicle dynamic model play an important role in solving the problem
of autonomous driving car path planning and tracking. Introducing the
dynamic model in path planning process could increase the real-time
capability by reducing the computation quantity.

Felipe KUHNE purpose a control scheme based on vehicle kinematic
model for wheeled mobile robot. Using MPC to have better constraints
condition, by the help of Quadratic programming (QP) to handle
linearization problem of wheeled mobile robot model.[1]

Razvan.C.Rafaila consider autonomous driving car model with
dynamic model but take in to account the nonlinear tire force. The
nonlinear model predictive control model use optimization algorithm to
have the minimal value of cost function.[2]

Matthew Brown put the local path planning and path tracking in same
control system using model predictive control. All the results must be
generated before calculation which takes into account the desired path
positioned in two safe envelopes.

The one envelope represents stability problem optimization the other

gives indicator of obstacle avoidance.[3]
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Jonathan Y.Goh generates insight from professional drivers. They give
an approach to control autonomous drifting to have better performance
of path tracking problem.

The reference path is generated point by point from all the equilibrium
of drifting points considering the side slip angle of tire is no more very
small meaning non linear of tire force.[4]

Jiechao LIU investigates the effect of different degree of freedom on
performance of model predictive controller. The indicators such as time
to reach the target point and the deviation from desired path are used to
judge the performance.[5]

Steven C peters design path tracking controller consider differential
flatness to explore the limits of tire force with better performance in
trajectory tracking problem.[6]

Path following problem is formed to geometry way to design the
control algorithm [7-11], it is important to consider the closed loop
controller including both longitudinal and lateral direction.[12],and the

driver model detailed information in paper[13 14].
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1.3 thesis problem statement

This thesis tries to investigate the application of model predictive
control (MPC) in autonomous driving car. Starting from the vehicle
kinematic and dynamic model building within linear or nonlinear tire
model, following the discussion of concepts about the model predictive
control such as optimization, cost function, quadratic programming and
constraints.

A nonlinear mathematical model for a vehicle with dynamic constrains
is developed based on the vehicle data coming from Carsim. Test in the
simulink with various kinds of scenarios to see the final performance of
the controller. Carsim vehicle model is embedded as simulink s-function
and controller is designed by the help of matlab mpc toolbox.

An important issue should be specified which is prediction horizon; it
is the main parameter in mpc controller. The prediction horizon
influences the final performance of the controller and the computation
cost. For autonomous driving car it is quiet important to fulfill the path
tracking in real time, otherwise the vehicle is easily to meet the

dangerous situation due to the delay of the time.
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Chapter 2 Vehicle and tire
model

Autonomous driving car need to know the car model such as kinematic
or dynamic model to fulfill the function of path planning and path
tracking. From the first chapter we have insight that the better known of
vehicle dynamic model especially when design the path planning system
putting dynamic model in it, the better the path tracking results will
present. It means that the reliable vehicle model is not only precondition
of designing of mpc controller, but also basement of path tracking.

When design mpc controller it is important to consider driving
situation of autonomous driving car. In order to have proper
autonomous driving motion control we must choose proper variable to
have precise prediction of vehicle motion changing.

Motion of vehicle on the road is very complicated, in order to have
right descriptions of car motion; one of the useful approaches is complex
system of differential equations, choosing different variable representing
motion of car.

Adding vehicle kinematic or dynamic model inside mpc controller, we
can confirm aim of control for the controller. Especially in motion
planning, by the help of linearization and simplification of vehicle model,

14



requirement of real time performance can be met.

The linearization and simplification are important approach to solve
the car model such as tire elliptical model and point mass model of car.
In this chapter we present some models of the car, their assumptions

and constraints.

2.1 kinematic model

Kinematic is kind of theory represents the motion of points and
group of objects, neglecting the force that have effects on the motion.
Kinematic is always in direction of geometry of motion to make the
research, considering as a branch of mathematics. Kinematics problem
begins by describing the geometry of the system and declaring the initial
conditions of any known values of position, velocity and/or acceleration

of points within the system.[1]

Y

t/ X 0 A
figure 2 kinematic model
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As figure 2. showed,(X;Yr), (X;Y;.) represent the coordinate of center
point of front axles and rear axles, @ represent yaw angle of vehicle, ¢
is steering angle of front axle, V. is speed of rear axle, V; is speed of
front axle, | is wheel base of vehicle.

R is radius of trajectory of the center of mass of rear wheel, P is
Instantaneous center of rotation, M is center point of rear axle, N is
center point of rear axle.

At the center point of rear axle M, the speed is:

V. = X, cos@ + Y, sin@
The kinematic constrains of front and rear axles are:
Xf sin(¢ + 6¢) — Yf cos(¢p + &)
X, sin @ — Y, cos =0

Combined with the upper 2 parts of formula we can get:

X, =V.cosg
Y, = V. sin @

Considering the geometry relation of front and rear axles:

X=X, +lcose
Y=Y, +Ising

the yaw rate is :

v

w = —tan &

16



w is yaw rate of the car, at the same time from yaw rate the radius of

curvature R and steering angle of front axle can get:

R =
8¢ = tan"1(1/R)

v
W

Finally the kinematic model is :

X, ] r cose
Y,|=| sin@ |V,
@] ltan O¢/1

The model can be described in a more uniform way which is state
space matrix. Here state variable is [X, Y, ¢] and the control variable is

[V, ®]. The new model is :

X,] rcos @ 0
Y. |=[sin@ |+ 0| w
0 1

@

17



2.2 dynamic model

Vehicle dynamic mainly used to analysis the vehicle suspension
effect including quarter car model and the drivability of car. In drivability
analysis focused on the longitudinal and lateral dynamic issues.[15]

In this thesis we want use mpc controller finishes the path tracking
function, as well as to simplify vehicle dynamic model to reduce
computation cost, in order to confirm real time.[16]

Using kinematic model is not reliable especially when the speeds are
increased and path curvatures are changing. But in such condition,
dynamic model has good performance in path tracking performance.

The dynamic model of the car is very complicated and has more
degree of freedom to handle. At the same time the system is nonlinear
discontinuous.

Before build vehicle dynamic model we need purpose some ideal
assumption:

1. The road is considered as flat surface, the motion is planar.

2. Neglect the effect of motion of suspension

3. Consider the linear tire model neglecting decoupled effect in 2

directions.
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4. The load transfer is not into consideration

5. Neglect aerodynamic force.

2.2.1 bicycle model

Based on above 5 ideal assumptions, there are 3 direction of motion
for planar vehicle which are longitudinal, lateral and yaw motion of the
car.

As illustrated in figure 3, coordinate system oxyz is fixed in the vehicle;
xoz is midplane of left and right. The original point is in center of gravity

of the car. Coordinate system OXY fixed in the road.

y %

(9]

figure 3 bicycle model

About the force in figure:
Fif F)r  arethe longitudinal force of front and rear tire

Fos F.  arethe lateral force of front and rear tire

19



Fir Fx+ are thetire forcein x direction

Fo¢e F are the tire force in y direction

yf Ltyr

Applying Newton’s second law of motion along the X-axis ,Y-axis and Z-
axis:
mX = my@ + 2F ¢+2F,,
my = mx@ + 2F¢+2F,
[, = 2aFyr— 2b Fy,

Where m and I, denote the vehicle mass and yaw inertia,
respectively.xand y denote vehicle longitudinal and lateral velocities,
respectively, and@ is the turning rate around a vertical axis at the

vehicle’s centre of gravity.

The longitudinal and lateral tire force components in the vehicle body

frame are modeled as follows:

Fy¢ = Fjrcos 8¢ — F ¢ sin ¢
Fyr = Fjpcos &, — F.sin d,
Fyf = Flf sin 8f — FCf CcoS 8f

Fy,r = Fi. sin 8, — F,. cos 6,

y
The longitudinal and lateral tire forces are given by Pacejka’s model.
They are nonlinear functions of the tire slip angles a,slip ratios o, normal

forces Fz and friction coefficient between the tire and road u:

FIl =fl(a, o, Fz, p),

20



Fc =fc(a, o, Fz, W).
The slip angles are defined as follows:
-1 VC

oa=tan - —
vl

where the tire lateral and longitudinal velocity components are
computed from:
U] = Uy, Sin 8 + vy cos b
Uc = Uy COS 8 — Uy Sin
The velocity component can be calculated from:
Ve =y+a@ Uy =J—bo
Uyt = X Uyr = X
The slip ratios s is approximated as follows:
M(U > 1w,V #E0)

S =

v
l1—Ww<rw,w#0
o (0 <TOL O 0)

The friction coefficient p is assumed to be a known constant and is
the same at all four wheels. We use the static weight distribution to

estimate the normal force on the wheels. They are approximated as:

bmg amg
Fy=———— Fp=—r
Z 2(+b) ' 2(a+b)

Finally consider the vehicle fixed coordinate system and inertial

frame.

Y =xsingp +ycos @

X=x%xcos@ +ysin@

21



2.2.2 Tire model

Making research on vehicle dynamic, the longitudinal and lateral force
with aligning torque has effect on drivability and handling stability. Due
to the reason of complex behavior of tire, the dynamic model is non
linear. So the important issue to generate dynamic model is choosing
reliable and useful tire model.

Pacejka purposes the magic formula which uses trigonometric
function to represent longitudinal and lateral force [22 23]. Finding
relationship between side slip angel and force in different direction, the
characteristics of tire can be presented.

The usual form of magic formula is:

Y (X) = Dsin(C arctan(BO(X))) + 5,.

Where Y is output of function which can be longitudinal or lateral tire
force. B,C,D,Sv are the coefficients correlate to the experiment data. In
the following part we show some typical example of tire plots using
pacejka formula.

Figure 4 shows the lateral tire force as function of side slip angle at
different value of friction coefficient.

Figure 5 shows the longitudinal tire force as function of slip ratio at
different value of friction coefficient.
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complicated, which means the more simplified model needs to be
presented. From the figure we can easily find that based on the
assumption of side slip angle or slip ratio is very small, the tire force is in

the linear region. The formula can be changed to:

Where C, is cornering stiffness coefficient of tire, it is related to

frication coefficient and normal forceF,,.

4000k " — Parcejka model
===Linear model

3000

2000

1000}

—2000F

—3000F

I

4000}
-20 -10 0 10 20
Slip angle[deg|

figure 6 linear tire force

Figure6 shows difference between pacejka model and linear model.
The linear tire model is the simplest one which can be used in dynamic
model to design mpc controller without damage to the performance of

path tracking.
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2.2.3 linear bicycle model.

To linear dynamic model, based on the small angle assumption,
approximate all trigonometric function using first order Taylor expansion:
cosO =1,sin0 =0,tan0 =0

After that the side slip angle are:

_yrae o y=b
7

(X =
f X X

Combined equations ,the lateral tire force are:

o ad b
Fee = Cf(y 2 8¢) Fer = Cr(y <p)

X X

Substitute the equation we get the linear dynamic equation.

Vv, + aq Vy, — b(
my = —mx + 2[C; (y—(p — af) 4o 2%
VX VX
Vy + aq Vy, — b(
I(p = 2aCf <yv—(p — 8f> + ZbCry—(p
X

X
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Chapter 3 MPC controller
for lateral control

This chapter the general knowledge of mpc is presented to show the
reason why that the controller is using mpc theory. Following section is
to show an example of simple controller tracking a desired path. Inside
controller the vehicle model is kinematic model because the reduction of
complexity at first.

The rest of this chapter is to illustrate the controller that used
commonly to fulfill path tracking function based on dynamic vehicle

model.[17 18 19 20 21 ]

3.1 overview of model predictive control

MPC is a method to control process with a variety of constrains.
Chemical industry firstly introduce to factory since 1980s. Nowadays the
use of this control theory has expanded to power electronics and
autonomous driving car, because of the advantage of current timeslot
optimization while keeping future time slots in account.

Inside mpc control process there are 3 critical steps: prediction model,

rolling optimization and feedback correction.
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Model Predictive Control optimizes the output of a plant over a finite
horizon in an iterative manner (Refer to Figure 7). At time step k, the
initial value of current plant state is known, the control input is
calculated for finite time steps in future k =t + OT; t + 1T, =, t +
pT ,where p is previewed prediction horizon steps. During calculation the
problem has transferred to an open loop, constrained, finite time one.
In practical situations, only the first value of control sequence could be

the input to the system. Because of the model simplification and added

Past Future
‘._____..--‘2/-—.'—-—-‘
‘.__.-""-
I.’
I’
.r‘/ e —— ~
1
o u
| Fe=——
o s e ol —— -
U P
e e e ol
B Prediction Horizon N
V Sampling Time
L = L L L L IHI L L
| | | | | | | | |
ko k+1 k42 - k+p

figure 7 mpc algorithm
disturbances or other kind of noise which can cause error between the
predicted output and the actual process output.
Thus only the first step of the control strategy is applied to the plant
and the plant state is measured again to be used as the initial state for

the next time step. This feedback of the measurement information to
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the optimizer adds robustness to the control. The plant state is sampled
again and the whole process is repeated again with the newly acquired
states. The prediction time window [t + OT; t + 1T; ::;; t + pT ] shifts
forward at every time step (reason why MPC is also known as Receding
Horizon Control.

Figure8 shows that general mpc used for autonomous driving car.
The 3 main components are dynamic optimizer, the vehicle model, and
the cost function and constraints.

The output from the mpc controller will be the input to the vehicle;
here mpc controller is for lateral control which means the output is
steering angle. Usually to control a vehicle we need also 2 more

parameter the throttle and the brake which will be discussed in next

Environment
Sensors  e———————
MPC
Contfral Signals Measured
Dynamic Steering, throttle, brake |UNMANNed| o, 41 4
Optimizer Ground
Vehicle

Cost Fundion% Vehicle ‘ Estimated State
& Constraints Model ‘ States Estimator

figure 8 MPC controller

chapter. The ground vehicle can be simulated in simulink by a block. The
state estimator gives all the indication of the vehicle in which represents

all state of vehicle. The output of this block will be the input to mpc as
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the new initial condition of next time step calculation.
The task of sensor is to give information of environment which may be
the boundaries of 2 roads, the position of obstacle, and the presence of

other cars.

3.2 LTI model predictive control
algorithm

LTI model prediction control algorithm is based on LTI model as
prediction model which is also common used model in model predictive
control. Compared with nonlinear model predictive control the
advantage is that computation is simple and better real time
performance. For autonomous driving car the real time performance of
algorithm is important issue to consider. Due to that reason here the
introduction of LTI model predictive control algorithm is presented.

As said before in following parts we divide 3 topics to discuss:
prediction function, optimization solution and feedback.

(1)prediction function:

Consider following discrete linear model:

x(k+ 1) = Agx(k) + By cu(k)
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We can set as :

[ xklv)
S(kt) = [u(k _ 1|t)]

A new state space equation:
E(k + 1]t) = A E(k|t) + By (Au(k]t)

n&lt) = Cy &k

All the matrix is defined as:

In order to simplify calculation, purpose assumption:

>

ke =Ak=1t+N-1

o
I
o

k.t t,k=1,"‘,t+N_1

Considering prediction horizon is Np, control horizon is Nc. The output of

control sequence and the output of system in prediction horizon is

calculated by:

£(t+ Np|t) = A PECt]0) + A PBeAu(tl)) + +A: 7 ¢ BeAu(t + Ne|o)

n(t+Ny|t) =C, K?pi(tlt) + C, Klt\lp_l'B'tAu(tlt) +--

4G AP BAu(t + N[t
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To make the relation more clearly, set system output in future time as

matrix:
Y(t) = WE(t|t) + OAU(t)
Fyg(t+111¢2)7 e,
n(t+211¢) CA; An(rl t)
Yo = | —_— %ﬂ AT(Y) = Au(t +111t)
gt +N_| 1) Ca
Au(e + N | t)
-t + N, | t)A ~F,A."'=
F €8 0 0 0 7
CA,B, C.B, 0 0
® =|CA"'B, CA" B C B,
CA*B, CAN'B CAB
LCA™'B, CAB C A vy |

From equation we know state variable and output in prediction horizon
is calculated by the current state &(t|t) and control incrementA U,

which is the function of prediction.

(2) optimization solution

In fact control increment is unknown for us only after setting target
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requirement and solves it. Finally we can get the control sequence

in prediction horizon.

N
J09) = )X (R +IROQU Gk + 1K) + u"(k+ = LfIORu (ke +j = 11K)
j=1

Setting target function like upper one, by the help of some method we
can transfer it to quadratic programming problem. Quadratic
programming (QP) is the process of solving a special type of
mathematical optimization problem—specifically, a (linearly constrained)
guadratic optimization problem, that is, the problem of optimizing
(minimizing or maximizing) a quadratic function of several variables
subject to linear constraints on these variables. Quadratic programming
is a particular type of nonlinear programming.

Equation set control quantity as state quantity in target function but
with some disadvantage such as no possibility to set constraint to control
increment. So if we change the control increment as state quantity.
Optimized target function:

JE®),ult— 1),AU() = Z|nt +ilt) = neer (t+1[t) [|2¢ + TllAult +i[D)[|25

Q and R is weight matrix ,the whole equation is used for tracking
the desired path. At the same time it must based on some constraints

such as :
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Control quantity constraint:
Upnin(t+ k) <u(t+Kk) <up(t+k),k=01,,N.—1
Control increment constraint:
Aupi,(t+ k) < Au(t+Kk) < Aup(t+Kk),k=0,1,-,N. — 1
Output constraint:

len(t + k) S Y(t + k) S Ymax(t + k),k = 0;11“'; NC - 1

From here the whole optimization solution is finished, solving all these
equation with different constraints, the control sequence in future time

can be calculated.

(3) Feedback
After solving all the equation, the control increment sequence in
future time :
AU = [Aug, Augy g, Augpn 1]
Based on model predictive control theory, setting the first one in the
sequence as the input control to the system.
u(t) =u(t—1) + Aug

The system execute control input till next time step. In next time step the

system based on current information predict future output.
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3.3Nonlinear model predictive control

In order to use linear model predictive control, the first requirement
is to have linearized vehicle dynamic model. Apart from the nonlinear
model predictive, linear model predictive control is a second choice. As
the research is going on, nonlinear model predictive control is used in
more common area.

For a nonlinear system, consider the model like that:
§(t+ 1) = f(&(D), u(®)

g exu®erT

Where f is transfer function of system,& is n dimensional state variable
is m dimensional control variable,y is state vatiable constraint,I' is
control variable constraint.

Set f(0,0)is a stable point of system, and also the control target of
system. For any time horizon N, consider following target function Jy:

In(EM®, U®) = TR 1 1(EK), u(k) + P(E(t + N))

Where U(t) is control sequence in horizon N, &(t) is all the state variable
sequence under control input sequence. Inside the target function Jy
the first item represents tracking ability, the second item presents
constraints.

Combined with model and target function, nonlinear model predictive

control is to solve the problem under all kind of constraints in every time

34



step. For example:

min JnGe Up)

S.t Eerit = M(Ekpuke), k=t N—-1
Skt € X k=t ,N—-1
U € T k=t-N—1
Skt = §(1)
Ent € Xfin

If we get the results from equation satisfy all requirement and constrains,
the optimal control sequence U(t) will meet. Based on the model
predictive control theory, setting the first item, which is inside the
control sequence, as input to the controlled system.

In next time step, system gets new current state and solves the
equation; continue setting first item as input to system. For any
nonlinear system during calculation there are N(n+m) variable, nN
nonlinear constraints, also including control increment constraints and
output constraints.

So the more dof of dynamic system the more calculation power
needed. In our case vehicle dynamic model is 3 dof model, the
advantage of nonlinear model predictive control is still there. Otherwise
for high dof vehicle model it needs some simplification, to obey the

requirement in real time.
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3.4 numerical method for nonlinear
system

In nonlinear model predictive control, by the nonlinear model,
current state and control sequence, predict the future state of system.
It is an iteration process, but with unknown control sequence. Due to
that reason it needs an iteration equation to have an approximate
solution of differential equation.
Usually there are 2 methods, one is Euler method, and the other is
Runge-Kutta method.

The Euler method (also called forward Euler method) is a first-order
numerical procedure for solving ordinary differential equations (ODEs)
with a given initial value. It is the most basic explicit method for
numerical integration of ordinary differential equations.

The Euler method is a first-order method, which means that the local
error (error per step) is proportional to the square of the step size, and
the global error (error at a given time) is proportional to the step size.
The Euler method often serves as the basis to construct more complex
methods.

For a differential equation:

y' () = f(ty(D)
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Using Euler method, the result in time n+1 can be calculated from

time n. the iteration equation is
Yn+1 = ¥n + hf(ty, yn)

But usually this method has a very low level of precision. So in some
condition we try to use another method.

the Runge—Kutta methods are a family of implicit and explicit iterative
methods, which include the well-known routine called the Euler Method,
used in temporal discretization for the approximate solutions of ordinary
differential equations.

Usually the method is :

1
Yn+1 = Yn T g (ky + 2k, + 2k3 + ky)

tn+1 - tn +h

ky = hf(tn: Yn)

h k4
kz = hf(tn + E,yn + 7)

h k,
k3 = hf(tn + E,yn + 7)

k4 - hf(tn + h, yn + k3)

Here one important issue needs to be specify, the more precision the

results we require, the lower the computation speed.
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3.5 dynamic model in path coordinate

In order to control autonomous driving cars it is important to represent
dynamic model in to path coordinate. Based on constant longitudinal
speed assumption, the relationship between path r(s) and yaw rate can
be found:

r(s) = k(s)vy.

After that the lateral acceleration derived as:

Uy (s) = K(s) v,

t"?a:g = [Ij-'y + vgT) — t.ly("‘{]
iyl = (9

= 'f.-"y + Uy 6"5 .

€cqg = Uy + Vg SIN(H,)

Where e, is orthogonal distance of center of gravity to the

desired path. 6, is defined as 6 — 8,

. . —(er+ep) .
€eg — II.‘rgE — #(PCQ - "f-rxfs"e‘}
brep — Lo - . T
4 |:rt?—f(-ir — I'.r:| (HE + 3.(5/]“} 0 (_f-&
MU, m
. —(cf +cr) . cf + cr
eg — —— € fl
Ceg MU, Cog + m ©
ooy —Frey - J N . I
I ) i/ [M _ e.-'.r] r(s)+ L8
Ty m

MU
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E'rcr' — gf(.’f

|£EJ'.n-z +7(s) = T {écg — vzt)
zUz
— (fch + ffcr) ) ¢
fI E (6 +1(s)) + LL s
zVUz m
- brer — Lyey . lrep — brer
EE — Cc ‘96
1.v, Ceg 1.
— (gch + chr.) . ]
! (B +1(s)) + LL5 — #(s).
I.vg m

The state space model in tracking error variables is therefore given by:

0 1 0 0 €cq
D —{’CJ-+C,.) Cy+er ffo—ffo C’
muy ™m M, g
0 0 0 1 A,
0 frer—Lpcy frep—Erer —{fJQrCJr—i-fgrc,_} 5
L Iz'l"z I_—_ I;_."L‘z €
0 0
cy frer—Epey
m n mu. Vg
+ 0+ r(s)
0
Erey —{t’ﬂtc;+fzcr)
. L I v, i
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Chapter4 Longitudinal
control

After talking about longitudinal control, it is mandatory to analysis the
longitudinal control, this chapter is focus on how to use PID control
theory to design our longitudinal controller.

First the general introduction of PID is presented, after that the
desired velocity profile is calculated as the reference for controller [12
15]. Since the longitudinal and lateral dynamic of the vehicle is coupled,
the simplest part, which is elliptical tire model, is derived to have general

understanding on it.

4.1 Overview of PID theory

PID controller is composed of 3 parts: proportional part, integral part
and derivative part. It mainly used for linear time invariant system.

PID controller is the most common used controller in industry control
area. The general theory is about control loop feedback technology. It

takes the state value from system and compared it with a reference one.
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Based on this error applies a correction take in to account proportional,
integral, and derivative terms (denoted P, |, and D respectively), hence
the name.

The main target of controller is to let the output of system as same as
the desired value. PID controller adjusts input according to the history
data and error to make system more stable.

In some application there is no mandatory to use all 3 parts of
controller. Usually sometimes only Pl or PD or only P parts are presented
in controller.

Figure 9 shows the basic principles of theory and how the 3 parts are
applied to the system. According to the error value which is the
difference between desired setpoint and process output, controller
generate control input under the algorithm of pid and this input try to

minimize the error value

» P K e(t)

+ t
—Setpoint Error» | K,,'f e(r)dr Process —Output—»
0

D «k, dj;) ‘

figure 9 PID control

P means proportional to the current value of error. By the help of gain

factor”k” directly multiplied the error value, using proportional response
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to compensate system.

| is represents past value of error and integrate it them over time. Due
to the condition that after proportional control there is a still the error
between current state and desired one which is called residual error. The
| parts try to eliminate residual error. When the residual error turn to be
0, the integral will not continue increase.

D is a part taking in to account the future trend of error. By the help of
derivation of error value, the mission of this part is to reduce change rate
of error value to make it more stable.

The total function can be expressed as :

de(t)
dt =’

u(t) = Kye(t) + K; /{;E e(t')dt' + Kgq

Where K,, denote as proportional terms, K; denote as integral terms

and K4 denote as derivative part.
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4.2 introduction of longitudinal control

After talking about the lateral control of the autonomous driving
cars, it is also important to spend time in longitudinal control, since that
the vehicle can’t drive with constant speed.

These days a lot of work and research has developed to solve
challenge in security problem hence that even in today there are also
millions of people are injured because of car accident. It is the reason
that every car maker is trying to use ADAS to reduce this big number. In
other words the ADAS is also the low level of autonomous driving cars.

One of the common used method is that multi point preview
model[24], this model divide the desired path ahead of vehicle to some
points based on the deviation between the point and current lane
generate signal of steering angle and throttle/ brake.

An active cruise control (ACC) is also used by a majority of vehicles.
The main target is to keep vehicle speed and safety distance between
cars. An mpc based control algorithm is generated [25] with the
advantage of minimal fuel consumption.

Since the vehicle is a system work that every parts have deeply
relationship with each other.

Here we just specify some important parts such as:

The longitudinal and lateral motions are kinematic and dynamic
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coupling, because of the yaw motion.

When the vehicle is accelerating or cornering, there are longitudinal
and lateral accelerations. Due to that the load transfer is happening and
the vehicle is no more in static state.

The constraint of tire force which called the elliptical model of the tire
is coupled in longitudinal and lateral direction.

It is complex to consider all the effects simultaneously. It is necessary
to have a nonlinear dynamic model to capture all the effects. Since in the
lateral controller which is developed base on mpc theory spends a lot of
time to do calculation. If in longitudinal controller also the nonlinear
model is used which will be a big challenge for the data processor inside
the car. While the real time performance is the first priority of total
system.

Due to the reason of simplification, here the longitudinal controller is
developed by PID theory, using the previewed curvature of path in front
of vehicle, getting data from camera, calculating the desired velocity
while cornering. Here the lateral and longitudinal coupled effects have
effects on the maximal friction force of tire. Based on the desired
velocity and current one, The output of longitudinal controller is signal of
throttle or brake pedal to simulate the driver and it is convenient to

directly send this signal to ECU inside autonomous driving cars.
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4.3 desired velocity generation

When the vehicle is cornering, it is important to clearly know the
relationship between the steering angel and centrifugal force. If the tire
cannot generate enough force to balance the centrifugal and
aerodynamic force, the vehicle will out of the control which we called

under steering/over steering.
| ' X |
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figure 10 force distribution in 4 wheels

From figure 10 shows: we assume that the vehicle is driving in flat road
and neglect aerodynamic force because that the simple model we want
to have.

Taking into account the centrifugal force and tire frication force in n

direction to finish the equilibrium equation.
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mV~2
R Z i
Here we assume P, are conflated with the tire lateral cornering
forceFy. The vertical force on each tire are assumed to be equal which
means all the tire have same frication coefficient . Based on all these
assumption, the approach is referred to ideal steering.
F, = Z F,
F; = mg
Combined with all the upper equation

mV?
R

= pymg

Where k denotes the curvature of road. Thus finally we can get the

desired velocity:

gH

vx—max - |k|

To make conclusion of this section, from curvature of the road the
maximal velocity is calculated. It is one of the constraints of longitudinal
controller otherwise the vehicle will go out of the lanes.

The maximal velocity is reference speed of PID controller, time by time
the controlled calculated the error between current speed and maximal
one. Based on the error controller generate signal of throttle/brake
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pedal to control the speed of the car.

4.4 Coupled effect between longitudinal
and lateral direction.

After getting the maximal velocity, it is mandatory to make research
on the relationship between coupled effect of longitudinal and lateral
direction. In the past the force is generated separately, only the lateral
force to control of the steer of the vehicle and investigate the
performance of autonomous driving cars.

But now due to the presence of longitudinal controller, the tire forces
are generated in both directions at the same time. The condition itself is
changed and the constraints and relationship need to investigate to
make sure the good results.

From the research when increase the longitudinal force of the tire that

figure 11 frication coefficient as function of slip ratio 47



has certain side slip angle, the force in lateral direction is decreases. The
result is same as showed in figurell

By applying the driving or braking torque to the tire with a certain side
slip angle, the shape of frication coefficient is changed along different
side slip angle.

A set of experiment set longitudinal force is in x-axis and lateral force
is in y-axis with constant side slip angle. The results is showed in figure

12

braking acceleration
3 ] ] ] ] ] 1 Ll I I I

T T T
-3 -2 -1 0 1 Fe[kN] 3

figure 12 longitudinal and lateral force based on experiment data

Apart from the sideslip angle there are some other parameters
influencing the curvy of force such as the speed of the car, the tire and
road condition. The different material and distribution of different layers
have effects also.

Due to the reason of simplification, a model is purposed to
approximate the curve. Using elliptical approximation the tire behavior is
represented by the equation:
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2
Fy Fx \* _
V) +(X) =1
Fyo Fxo
Where Fy, are the lateral force at the given side slip angle with no
longitudinal force applied. The F,, is maximal longitudinal force with
no lateral force which means no side slip angle
Using cornering stiffnessC, substitute lateral force:
() +() =1
Coct F../
Finally the elliptical model of tire is generated to show the couple effect

of lateral and longitudinal direction in figure 13

Fy

figure 13 elliptical model

Based on the output of mpc controller, the steering angle and side slip

angle of tire, the lateral force need to apply to the tire is calculated by:
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Slip angles:

Vy + b7
Uy

Uy — L1

ap = taﬁ._l( )—9

)

ay = tan™(
Uz

Lateral forces:

Fyp = Cyay

Er;r = Cra,
From lateral force substitute it in to elliptical model; the available
longitudinal force is generated. The available longitudinal force divide

the mass of the vehicle is the acceleration limit of the vehicle. The limit is

another constraint of PID controller.

Uz —maz
Previewed Curvature Desired J,
Long. velocit Acceleration ra
Lane Max command % Linear Model
Center Yz PID “long. dynamics”
Estimate 7 Vo

Saturation max acceleration
figure 14 sequence of longitudinal control

In figureld it presents the sequence of the data. Starting from the lane
center estimate block, which will be discussed detailed in next chapter,
the curvature of the path is calculated. After due to the prediction
characteristic of mpc controller, the previewed curvature is current
curvature plus the value that curvature derivative multiplies the
prediction horizon. Based on the maximal previewed curvature the
maximal reference velocity is generated, sending it to the PID controller,
according to the difference between the desired velocity and current
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velocity, the output is acceleration signal. The saturation rate limit
considers maximal longitudinal force available applied to the tire. Taking
in to account the couple effect in 2 directions, the system put first
priority into lateral control otherwise the vehicle will go out of the lanes.
Inside linear model longitudinal dynamic block, by the help of simple
transfer function, the input signal which is acceleration transfers to
output signal which is speed. Using this speed re-send it to mpc
controller updates all the sate inside model. The total architecture of

longitudinal and lateral controller is showed in following figure.
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figure 15 total architecture of control algorithm
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Chapter 5 Results

This chapter introduces the simulation environment based on matlab
and simulink to show the general function of blocks. The test bench
developed in simulink by the help of some example provided by Matlab
Company. It is a basement for our process giving the opportunity to test
the control algorithm performance.

Carsim model is also as s-function introduced to our system because
that it is more comprehensive model taking into account the
aerodynamic force and some dynamic effects of the vehicle. Let the
performance more reliable.

Here first we show the results only with mpc controller to see the
performance about the autonomous driving car in constant speed.
Second Carsim math model representing the whole vehicle system is
introduced into simulink, to see the effects of vehicle dynamic such as
load transfer. After that the results is related to condition including
both longitudinal and lateral controller.

Inside Carsim it provides a procedure of lane keeping function which is
same as our project. It provides an opportunity to have benchmarking
with Carsim. The same scenario is generated both in Carsim and simulink.
The results from 2 methods are compared.
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5.1 simulink environment

Using matlab to simulate the autonomous driving cars is because that
the powerful computation model and a variety of toolbox that can be
directly used in our project, such as model predictive control toolbox and
automated driving system toolbox.

The automated driving system toolbox provides algorithms and tools
to design and simulate autonomous driving systems. The system give
possibility to generate different scenario including all traffic information,
simulate the entire sensor that embedded in the car and deal with data.

figure 16 presents the total environment of our simulink model which

figure 16 total simulink environment

can be divided into some parts. As discussed before there are
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longitudinal and lateral control parts, the vehicle and environment parts,
estimate lane center part to simulate the sensor getting the data of
vehicle path.

The general ideal of our system is to keep the vehicle in its lane and
follow the curved road by controlling the front steering angle. This goal is
achieved by driving the lateral deviation el and the relative yaw angle e2

to be small. As figure 17 shows:

¥ L eft lane

Lanecenterdine

e Right lane

Ty Relative yaw angie
p— L]

o \

Previewed lane curvature
X

[
Lateral geviation

figure 17 lateral deviation and relative yaw angle

Controller calculates a steering angle for the ego car based on the
following inputs:

1. Previewed curvature (derived from Lane Detections)

2. Ego longitudinal velocity

3. Lateral deviation (derived from Lane Detections)

4. Relative yaw angle (derived from Lane Detections)
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Using the function representing the vehicle dynamic model, giving the
steering angle and the longitudinal velocity, we can have the vehicle
state during driving. The output can be:

1. Longitudinal position of the car(X coordinate)

2. Lateral position(Y coordinate)

3. Longitudinal velocity

4. Lateral velocity

5. Yaw angle

6. Yaw rate

All these data are used to estimate current state of the autonomous
driving car and re-send it to our controller to correct the control variable
in next step time that we have discussed more detailed in chapter 2.

About the vehicle and environment parts

Vehicle and Environment
Vehicle dynamics Actors and Sensor Simulation
ZDHD
XY Positions prer L pos Aclors @
I m
Actors
Steering Angle
Steering Angle ZUHD
XY Velocities o u i vel Lane sensor
mm Vi Pack to Custom
" =M Ego Actor Soenario Lane Boundaries Fmmmm=y Lane Det‘:‘;i’;n el bkl
v Reader Boundaries Gengrator Detections
204 packEgo [Sensor Index: 1) Lane Detections
Anck =
Yaw Angle Al yaw
I m
Ego Velocity I
. |Z0H
Egovelocity TRt O _— Lane Markings @
o o Lane Markings
Vehicle Dynamics Pack EgoActor Scenario Reader

figure 18 vehicle and environment part
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Giving the scenario reader to test different scenario generates the ideal

left and right lane boundaries based on the position of the vehicle. From

lane detection, the previewed curvature, the lane markings, the relative

yaw angle and the lateral deviation can be followed to get.

The scenario, which including the information of road , the path lines,

the ego car which is controlled by controller, and the other car as

obstacle with its drive path, use to test the performance of control

algorithms. Following figure presents different scenario.
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figure 19 different scenario

5.2 cooperation simulation with Carsim

Carsim is the software developed by Mechanical Simulation
Corporation; it mainly used to simulate the dynamic behavior of vehicle.

The software simulates the response results with respects to the inputs
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such as driver command, the road condition and the aerodynamic force.
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Open-Loop Steering =
Zero Degrees #1 \ C-Class, Halchback 2012

View Stale variables in math model (lex) ¥
LCSClacst

figure 20 carsim configuration

The vehicle parameter data getting from Carsim is showed in table 5.1.
Inside Carsim vehicle model it defines vehicle dimension parameters,
vehicle mass and moment of inertia in different direction. In mpc
controller the vehicle bicycle model is 3 dof.

Table 5.1

Parameter value

M:total mass 1412kg

If :distance form GC to front axle 1.015m
Ir:distance from GC to rear axle 1.89m
J:vehicle yaw moment of inertia 1536.7kgm”2
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All dimensions and coordinates
are in millimeters

¥4
A
Height for
animator: 1610 )
[ Lateral coordinate of sprung mass center Lateral coordinate of
Width for hitch
animator 1015 | 0
1916 E Mass center of sprung mass
- B 540 -
Left Right Left Right 315
325 325 325 325
X <&
Sprung mass
coordinate system 2910
3850

The insria properties are for the sprung mass in the design configuration, with no

additional loading.

Sprung mass: 1270

Roll inertia (1xx):

Pitch inertia (lyy): 1536.7
Yaw inertia (Izz): 1536.7
Product (Ixy): 0
Product (xz): 0
Product (lyz): 0

kg Edit radii of gyration

kg-m2, Rx: 0.650 m

kg-m2 Ry: 1.100 m

kg-m2 Rz: 1.100 m

kg-m2 Inertia and radius of gyration are related
kg-m2 by the equation: | = M"R*R

kg-m2

Radii must be specified with numbers;
formulas are not supported

Advanced seftings (optional license required)

Basic

21 vehicle dimension

figure

After that it is mandatory to set sending vehicle model as s-function to

simulink. Specify the input and output of s-function. The figure 22 23

presents the general configuration.

Choose run to getimport information v

Categories

Select by type of component v

Aerodynamics
Brakes
Environment
Powertrain
Speed controller
Sprung mass
Steering
Suspensions
Tires

~
Full Internal Model MBIO_Channels\_Channels\import_76efbd 75-c69 View Spreadsheet
This tabbed text file lists 315 Import variables.
Available Variables Variables Activated for Import
IMP_FX_AERO (N) Move Name Mode Initial Value
IMP_FY_AERO (N)
IMP_FZ_AERO (N) Seléc;eld 1 IMP_STEER_SW Replace |~ 0.0
e variable
IMP_MX_AERO (N-m) upldown | 2 IMP_SPEED Replace |~ 0.0
IMP_MY_AERO (N-m) in the list

IMP_MZ_AERO (N-m)
IMP_WIND_HEADING (deg)
IMP_WIND_SPEED (kmh)

Double-click to activate a variable

Antiustad impar uarishlas ~am ha salalatad Deine P

figure 22 inputset

i
U

Clear
List

Double-click a row number to deactivate a variable

59



Input signal set:

1: steering angle

2: Vehicle speed

One thing must be mentioned here before the input signal of steering

angle is representing the steering angle of tire. But in Carsim it is defined

by the angle of steering wheel. So the transmission ration is introduced.

Choose run to get export information ¥

Export variables can be created using
equations that vou provide here. The svntax is:

figure 23 output set

Output signal set:
1. Longitudinal position
3. Longitudinal velocity

5. Relative yaw angle

Double-click on a variable name here to activate it

Full Internal Model MO _Channels\O_Channels\Export_5041739¢-ae

View Spreadsheet
This tabbed text file lists 620 output variables.

Categories ‘Quiput Variables Variables Activated for Export
Select by units > Bk Stat-Brake apply status () 4 Move 1. Xo
B 7 Clt_D1_2 - Front diff. 2nd clutch control (-) e e 2.Yo
1im Cit_D2_2 - Rear diff. 2nd clutch control (-) varable 3.Vx
c Clt_D3_2 - Trans. case, 2nd clutch control (-) upldewn 4. Vy
deg ClutchD1 - Front diff. clutch control (-) in the list 5. Yaw
deglg ClutchD2 - Rear diff. clutch control () 6. AvVz
degfs ClutchD3 - Transfer case clutch control (-)

deg/s2 ClutchL1 - Front left whi. clutch control (-)

g ClutchL2 - Rear left whi. clutch control (-)

kg ClutchR1 - Front right whi. olutch control (-)

kg-m2 ClutchR2 - Rear right whi. clutch control (-)

Kals ClutehTr - Transmission clutch control (-)

Kinv ¢l_stat - Clutch locked state (<) Clear

kmih dZdXair - X slope at road aero reference 1(-) List

KW dZdX_L1- Ground X slope under tire L1 (-)

" dZdX_L2 - Ground X slope under tire L2 (-)

mm dZdX_R1 - Ground X slope under tire R1 (-)

mmis dZdX_R2 - Ground X slepe under tire R2 (-)

mmg dZdYair - Y slope at road aero reference 1 (-)

MPa dZdY_L1- Ground Y slope under tire L1 (-)

N v dZdY_L2 - Ground Y slope under tire L2 (-) v

Double-click on a variable
name here to deactivate it
Optional equations (written and processed after the above list):

2.Lateral position
4.Lateral velocity

6.Yaw rate

Finally we change the vehicle state function to Carsim s-function, to have
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more comprehensive and reliable data. As figure 24:

=

—I—P
XY Positions
)
XY Velocities

1
1 convert —————
O e | i r
Steering Angle
Low pass filler
|l ﬁ
YW Angle

CarSim S-Function! ~ f——1 o
Vehicle Code: 277 e

Ego Velocity

‘Yaw Rate

figure 24 carsim s-function

5.3 Benchmarking with Carsim

Here the procedure we choose lane keeping normal driving, to

compare the results

Simulated Test Specifications Run Control: Built-In Solvers Analyze Results (Post Processing)
Vehidle Configuration: Ind_Ind i Run Math Model Models:  ~ Video Video +Plat [ |Setcolor
D-Class, Sedan -

180 deg. Azimuth, 10 deg. El., Veh. Ref.

Procedure v

Do not set output type here ¥ 'Write all outputs Plot More plots: 0 ¥
Lane Keeping. Normal Driving #4 e D ? He b
Output Variables: hd
Show more options on this screen
Miscellaneous Data
Miscellaneous: Generic Links I~
Five HUD Links v D Settime step here
Miscellaneous: v
Do not settime, stafion, or direction here ¥
Miscellaneous: v
D‘Sel driver controls here,
DAdvanced sefings DOverIay animations and plots with other runs

carsim D-Class, Sedan View Log fils of parsfiles and events

MECHANICAL SIMUILATION 1S N-Clase )

figure 25 carsim lane keeping function



The speed controller can calculate target speed as a function of
curvature in the reference target path, combined with driver
aggressiveness

The acceleration limits used to determine target speed are based on a
skill level and aggressiveness limits

Skill 0 : Ax and Ay are not combined. The target speed is adjusted to

allow acceleration either longitudinally or laterally, but never both at

once.
Ax
- A
Skill =2 Ax Max: throttle
Skill =1
Skill=0

Ay
-Ay Max: gy Ll
right turn left turn

wr

-Ax Max: braking

wr

figure 26 acceleration constraints

Skill 1: Ax and Ay are combined using straight lines, allowing some
combination of lateral and longitudinal acceleration. However, the
combined acceleration does not make use of as much available friction
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as is used in pure longitudinal or pure lateral acceleration.

Skill 2: Ax and Ay are combined using a friction ellipse, providing a
consistent use of available friction regardless of the direction of the total
acceleration vector.

After that talking about the path preview length set the data as same as

camera configuration and characteristic of lane detection function.

Path Preview Lengths
Arclength used to

esfimate curvature: 30
Preview start: 2
Total preview : 50

2

Preview interval (resalution):

2 =2 3 =2

ICar Position [m]
[ wrt center line

25

figure 27 preview length

Previewing of the target path is configured with four length parameters
1.Arc length used to estimate curvature: Length of path segment used to
calculate curvature at the mid-point of the segment

2. Preview start :The portion of the reference path that is previewed
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starts this distance in front of the origin of the vehicle sprung mass
coordinate system (typically the origin is at the center of the front axle)
3. Total preview: This defines the portion of the reference path that is
previewed. Longer distances sometimes give better results for
complicated paths combined with aggressive acceleration settings.

4. Preview interval: Interval for calculating path curvature and target

speed over the preview path

Finally generate the same scenario both in matlab and Carsim to

compare the results

Global Y coordinate (m) New path with X-Y table, IDs set automatically
301.4- — 300
~ - T ~—
250- ——
’ —
250.0- ~— 250
zzs.u—\\
2000- | - \ 200 |
L B o T~ \
1760~ — S )
‘\\‘\7 // 1 |-
150.0- — el | 50
p
125.0- > P \
100.0- 4 ! dogir
75.0- s \ y ‘ E
/ \ -
50.0- ! : 50
250- L it ¢ \
00 ! : | o
-25.0- - I
-50.0- / ! o <
{ \ _—
-75.0- ; L e |
100.0- : i ’ | -100
1250~
N -150
150.0- e 4 < =
— - L
| S SR RS S
1705+ ] L | | | i T i | | | 200
-154.4 -1250-1000 -750 500 -260 00 250 500 750 1000 1250 150.0 1750 2048
MNlnkal ¥ nnnrdinata (m)
figure 28 scenario in carsim figure 29 scenario in matlab
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5.4performance and final result plots

5.4.1 lane keeping assistant system only with lateral

control

Path curvature

0.05

0.04 s
,

0.03 | |
0.02 |JJ

0.01

path curvature

-0.01

-0.02

-0.03

-0.04

10 15 20
time [samples]

Lateral Deviation

25

[ateral deviation [ ]
o

| ‘ I

1 |

aa—

50

100 150 200 250

time [samples]

Relative Yaw Angle

300

relative yaw rate [rad/secz]
o
N

50

100 150

200 250
time [samples]

300
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Steering angle

steering angle [rad]

o] =y 10 15 20 25
time [samples]

Road and driver path

B 4 100

60 40 20 0 -20 -40
Y (m)

figure 30 performance plot A

From figure 30, the results of controller are presented such as
curvature, lateral deviation, relative yaw angle, steering angle and driver
path of autonomous car. In the driver path plot the blue line represents
center line of two boundaries the red line is path of vehicle.

The controller performance is good enough to achieve lane keeping

requirement. The steering angle is in the range of [-0.2 +0.3] rad.
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5.4.2 lane keeping assistant system with both

longitudinal and lateral control.

Path curvature
0.05

0.04

o o
o o
N

o
o
it

path curvature

-0.01

-0.02

-0.03

_0.04 | | | |
0] 2 4 6 8 10
time [samples]

Lateral Deviation

|ateral deviation []
(=]

o] 2 4 5 8 10
time [samples]

Relative Yaw Angle

relative yaw rate [rad/sec'2]

2 4 6 8 10
time [samples]
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steering angle [rad]

Steering angle

20

10

[m/sec?]
o

A
o

=
=
©
IS
=
S
S
>
w©

30

time [samples]

Acceleration Command

10

<4 (5] 8

time [samples]

Longitudinal Velocity

—— Reference Vx
VW limit
x

Feedback Vx

7

4 6 8

time [samples]



1100

180

160

X (m)

<140

120

figure 31 performance plot B

Apart from items introduced before here the acceleration command
and longitudinal velocity are included. Based on the curvature the
reference velocity is calculated and autonomous driving car follows it.
Since the velocity is not constant as before when cross curvature the
speed is higher than before. As the result of it the steering angle is in the

range of [-0.4 +0.5]
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5.4.3 benchmarking with Carsim

el and o vl

Speed Liml Target, and Actusl - Lane Keeping, Nerma Drvng &4 5
Speed k)

- T — ||
© St T (g e . - 7IE’EME'HDD'I}‘
h l I o /A vy

| IR
" ' M TN
. \c - N 1
= [l 7 BF R A
I :
© | { t
z
X
® ' sk i
. i
|
45 ‘ | - 4
I i
] |
|
0 w o m w0 om0 wo e w0 a0 om0 0
e [ § il i} 1 5 1

Speed comparison sags

Stearig: Handahes Argl :Lane Keepig, Nerml Dring #4
Steerng wheelangl - g

—— Stearing wh 8]

Steering angle comparison

Longhaina vs.Lateal Accel : Lane Keepig, Nomal Dridng 84 XY Plot
Long. acceéeralion. vehie - iy
0 =
. o
02 8
§ 4
o |
o
! i
S
2
01
4
02 5 |
S -—'.f-
03 S I
10
-10 -8 £ 4 -2 [} 2 4 L] 8 "
435 Rk 245 420 015 Q10 005 I 0o (A1) 015 0 025 [EY) X Axis
Lateral accelration vehick -

G-G plot comparison
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etice P2t wih Road Edges :Lane Keepng, Normal Drving 84
(Giokal Y coardiate -m

Lt Egge
¥ RightEdge
| — Vi Trach
a TagelPah

Bk 120 10 -100 B 40 B L 0 -4 -0 2 -0 ]

Global X coordinate -m

Vehicle path comparison

figure 32 benchmarking reslts comparision

G-G plot, which represents the time history of longitudinal and lateral
acceleration, is a main indicator of formula racing car. Here the results of
2 software is quiet same.

Due to the reason of software default set in Carsim the speed profile is
starting from speed limit which is 80 km/h since in matlab it starts from

Okm/h. For the steering angle matlab has smoother maneuver than

Carsim.
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