POLITECNICO DI TORINO Collegio di Ingegneria Elettrica

Corso di Laurea Magistrale in Ingegneria Elettrica

Tesi di Laurea Magistrale

Ottimizzazione delle reti di distribuzione

Relatore: Prof. Gianfranco Chicco Candidato Francesco Rizzo

Correlatore: Prof. Andrea Mazza

Anno Accademico 2017/2018

Indice

1	Intr	oduzione	4		
2	Me	todi di ottimizzazione delle reti di distribuzione	6		
	2.1	Generalità	6		
	2.2	Metodi di ottimizzazione	8		
	2.3	Riconfigurazione ottimale in condizioni di normale funziona-			
		mento	9		
3	Imp	olementazione riconfigurazione ottimale	17		
	3.1	Rete esempio	17		
	3.2	Miglioramento iterativo	19		
	3.3	Simulated annealing	24		
4	Pianificazione della generazione distribuita con riconfigura-				
	zior	le	29		
	4.1	Introduzione	29		
	4.2	Rete esempio	30		
	4.3	Algoritmo evoluzionistico	32		
	4.4	Risultati	36		
5	Ottimizzazione multi-obiettivo: Calcolo dell'ipervolume				
	5.1	Introduzione	40		
	5.2	Ipervolume	41		
	5.3	Calcolo dell'ipervolume	43		
	5.4	Contributi di tutti i punti all'ipervolume	47		
	5.5	Risultati	53		
6	Applicazioni 5				
	6.1	Riconfigurazione ottimale	57		

A Tab	elle	64
A.1	Implementazione riconfigurazione	
	ottimale	64
A.2	Pianificazione della generazione	
	distribuita con riconfigurazione	66
A.3	Ottimizzazione multi-obiettivo:	
	Calcolo dell'ipervolume	81
A.4	Applicazioni	123

Capitolo 1 Introduzione

La richiesta di energia elettrica è in continuo aumento e, assieme ad essa la percezione dei problemi ambientali e gli standard di qualità richiesti. A questi fattori si uniscono i cambiamenti subiti dal sistema elettrico negli ultimi anni, dove il paradigma obsoleto della generazione concentrata sta facendo posto alla nuova tendenza di distribuire le unità di generazione sul territorio. Questo cambiamento coinvolge direttamnete i sistemi di distribuzione che si sono trasformati da reti passive a reti attive.

Alla luce di tutto questo, l'ottimizzazione è diventata un punto fondamentale della gestione dei sistemi di distribuzione, coinvolgendone tutti gli stadi, dalla pianificazione all'esercizio.

La peculiare struttura delle reti di distibuzione, in particolare, offre la possibilità di scegliere una determinata configurazione radiale al fine di migliorare le prestazioni del sistema. Il problema di identificare una configurazione ottimale, rispetto a determinati obiettivi, è detto riconfigurazione ottimale. Le prestazioni che possono essere incrementate sono di diverso tipo e possono comprendere le perdite del sistema ed altri aspetti tecnici e di qualità del servizio, importanti nella gestione del sistema specie se comportano premi o penalità da parte del regolatore.

La grande variabiltà dei carichi e dei generatori, caratteristica del funzionamento odierno della rete, contestualmente all'evoluzione tecnologica dei sistemi a microprocessore, ha accresciuto l'iteresse verso i metodi di ottimizzazione, aprendo alla possibilità di controllare il funzionamento del sistema in tempo reale. Ad ogni modo la natura del problema della riconfigurazione, rende difficoltoso lo sviluppo di tali strumenti. Innanzitutto il numero delle possibili configurazioni della rete cresce con legge combinatoria con le dimensioni del sistema, rendendo intrattabile, nei casi pratici, la ricerca esaustiva della soluzione ottimale. Inoltre le funzioni obiettivo tipiche sono caratterizzate da numerosi massimi e minimi locali, il che complica l'individuazione della soluzione ottima in termini globali.

Per quanto riguarda i problemi di pianificazione, la tendenza a distribuire le unità di generazione apre nuove possibilità per l'ottimizzazione del sistema. Infatti l'integrazione delle unità distribuite consente di migliorare le prestazioni della rete, ad ogni modo tali benefici sono legati ad una scelta attenta della posizione e della taglia dei generatori da installare.

In genere l'ottimizzazione dei sistemi di distribuzione viene condotta considerando diverse funzioni obiettivo spesso in contrasto tra loro. In questi casi non è possibile individuare una singola soluzione ottimale, bensì un insieme di soluzioni di compromesso, che formano il fronte di Pareto. Il numero di punti che costituiscono il fronte di Pareto può essere molto elevato e gli algoritmi di ottimizzazione multi-obiettivo forniscono solo una approssimazione del fronte effettivo. L'ipervolume è un indicatore che può essere utilizzato come misura della qualità di un'approssimazione del fronte di Pareto.

Nel presente lavoro sono presentati i principali metodi di ottimizzazione, assieme alle tipiche funzioni obiettivo e ai vincoli cui sono soggette le reti di distribuzione. Viene inoltre affrontato il problema della riconfigurazione ottimale e discussi gli algoritmi implementati (miglioramento iterativo e simulated annealing) per la sua risoluzione. Il problema del posizionamento e del dimensionamento ottimali delle unità distribuite viene approcciato impiegando un algoritmo evoluzionistico in cui la valutazione delgi individui viene effettuata considerando la possibilità di riconfigurare la rete seguendo l'evoluzione giornaliera dei carichi.

Viene inoltre definito l'indicatore di ipervolume e descritti gli algoritmi implementati per il suo calcolo su spazi delle funzioni obiettivo a due e tre dimensioni.

Gli algoritmi iplementati sono descritti e applicati prendendo in considerazioni diverse reti esempio. I risultati delle simulazioni sono infine presentati e discussi.

Capitolo 2

Metodi di ottimizzazione delle reti di distribuzione

2.1 Generalità

Le reti di distribuzione sono la parte del sistema elettrico che trasferisce energia dalla rete di trasmissione agli utenti. La porzione di rete di distribuzione in media tensione (MT) ha una struttura debolmente magliata e viene esercita radialmente, lasciando aperti i rami ridondanti. Questa peculiarità offre la possibilità di garantire buone prestazioni in termini di continuità del servizio, unita alla relativa semplicità degli schemi di protezione risultante dall'esercizio radiale. La gestione dei sistemi di distribuzione è un compito arduo e dà origine ad una serie di problemi di ottimizzazione. L'interesse verso questi ultimi è continuamente alimentato dalle incessanti evoluzioni della rete e del sistema elettrico nel suo complesso.

Esistono vari approcci all'ottimizzazione dei sistemi di distribuzione. Una prima possibile distinzione è tra [6]:

- problemi di pianificazione ottimale
- problemi di riconfigurazione ottimale

Lo scopo della pianificazione ottimale è l'individuazione dell'insieme di interventi più efficace al fine di migliorare il funzionamento del sistema. Gli obiettivi rispetto a cui si ottimizza sono generalmente economici. Il problema della pianificazione può essere formulato in due diversi modi: pianificazione operativa, pianificazione in espansione. Nel primo caso l'analisi viene condotta a carico e numero di nodi della rete costante e gli interventi che si valutano sono tipicamente l'eliminazione, sostituzione o aggiunta di linee e trasformatori e la modifica della struttura dei nodi. La pianificazione in espansione

Figura 2.1: Approcci all'ottimizzazione dei sistemi di distribuzione

invece si propone di individuare il migliore piano di investimenti al fine di ottenere un funzionamento economico ed affidabile della rete. Lo studio è condotto a carico variabile, e deve tenere conto di aspetti economici e sociali oltre che tecnici. Occorre inoltre prevedere le evoluzioni delle variabili che influenzano il problema. L'incertezza associata a queste previsioni è tale da rendere impraticabile l'impiego di strumenti deterministici o dei classici modelli probabilistici. In genere si conduce un'analisi per scenari pesati, dove ogni scenario rappresenta una data combinazione delle variabili incerte.

Il problema della riconfigurazione invece si occupa della ricerca di una topologia della rete che ottimizzi una serie di obiettivi. Anche qui si possono distinguere due tipi di riconfigurazione: in emergenza, in esercizio. La riconfigurazione in emergenza studia la problematica della rialimentazione dei carichi a seguito di un guasto. Il risultato del processo è un piano di rialimentazione che porti il sistema dalla configurazione iniziale a quella ottima. La bontà di una soluzione viene valutata secondo diversi criteri, ma in generale si privilegiano azioni rapide e capaci di rialimentare il maggior numero di carichi con il minor numero di manovre [13]. Aspetti come le perdite o i profili di tensione vengono in secondo piano e i vincoli di rete possono essere leggermente rilassati, accettando violazioni di piccola entità che possano essere mantenute fino all'eliminazione del guasto. Nella riconfigurazione in condizioni di normale funzionamento invece si sfruttano i gradi di libertà offerti dalla ridondanza dei rami per migliorare uno o più aspetti del funzionamento della rete. Gli obiettivi sono dunque di natura tecnica e includono riduzione delle perdite, miglioramento dei profili di tensione, bilanciamento del carico su linee e trasformatori. La soluzione è una configurazione radiale della rete e deve rispettare un insieme di vincoli tecnici di esercizio.

I problemi descritti sopra sono problemi combinatori e per la loro risoluzione è possibile impiegare gli strumenti messi a disposizione dalla teoria dell'ottimizzazione.

2.2 Metodi di ottimizzazione

Esistono numerose tecniche che possono essere impiegate per la risoluzione dei problemi di ottimizzazione dei sistemi di distribuzione. Tra queste si può, in prima analisi, fare una distinzione tra:

- metodi deterministici
- metodi meta-euristici

Appartengono alla prima categoria quegli algoritmi in cui la ricerca della soluzione segue regole predeterminate e le decisioni non hanno componenti casuali. Tipicamente questi metodi comportano minori sforzi computazionali, ad ogni modo tendono a bloccarsi sui minimi locali delle funzioni obiettivo. I seguenti algoritmi sono esempi comuni di metodi deterministici:

- Ricerca esaustiva. In teoria è possibile trovare la soluzione ottimale del problema valutando tutte le possibili soluzioni e scegliendo la migliore: questa tecnica è detta ricerca esaustiva. Tuttavia, nei problemi di ottimizzazione relativi ai sistemi di distribuzione, il numero delle possibili soluzioni è in genere talmente elevato da rendere impraticabile il calcolo di ognuna di esse. La ricerca esaustiva può dunque essere impiegata quando la dimensione del problema è modesta (questo è raramente il caso dei problemi pratici) e restituisce la soluzione globalmente ottimale.
- Tecniche branch and bound. In questo caso si limita il numero delle soluzioni da analizzare eliminando quelle che necessariamente non possono rappresentare l'ottimo.
- Miglioramento iterativo. Questo metodo parte da una soluzione accettabile del problema e ricerca ad ogni iterazione una soluzione migliore tra quelle del vicinato. L'algoritmo facilmente si blocca su minimi o massimi locali.
- Ricerca tabu. Con questo metodo si fissano delle mosse "tabu", che non vengono eseguite durante la procedura, ad esempio per un certo numero di iterazioni, al fine di guidare la ricerca verso la soluzione ottimale.

Nei metodi euristici, d'altro canto, le decisioni vengono prese in funzione di variabili casuali. Generalmente i metodi sono costruiti a imitazione di processi naturali. Si può pensare di classificare i metodi euristici in:

- Metodi con singolo aggiornamento delle soluzioni.
- Metodi basati sulle popolazioni.

Nel primo caso una sola soluzione viene generata ad ogni passo dell'algoritmo, e viene deciso se mantenerla o meno in base ai criteri di accettazione propri del metodo. A questa famiglia di tecniche appartiene il simulated annealing, che simula il processo tecnologico della ricottura dei metalli. Nell'altra tipologia di metodi euristici, insiemi di soluzioni vengono generate ad ogni iterazione. Si agisce poi su queste popolazioni trasformandole secondo le modalità peculiari dell'algoritmo. Alcuni esempi di tecniche euristiche basate sulle popolazioni sono elencati di seguito.

- Algoritmi evoluzionistici. Sono una famiglia di algoritmi ispirati ai processi di selezione naturale. In particolare agiscono sulle popolazioni mediante operatori che simulano i fenomeni di ricombinazione, mutazione, selezione e riproduzione. Due importanti esponenti di questa famiglia sono gli algoritmi genetici e la programmazione evoluzionistica [11].
- Ant colony search. Questo algoritmo imita le colonie di formiche alla ricerca di una fonte di cibo;
- Honey bee mating. Altro algoritmo ispirato alla natura, stavolta i modelli comportamentali imitati sono quelli delle api.
- Particle swarm optimization. Algoritmo basato sul comportamento degli stormi di uccelli.

I metodi meta-euristici riscuotono sempre maggior successo, dato che esplorano un gran numero di soluzioni e sono relativamente semplici da implementare, eccezion fatta per la gestione di alcuni vincoli, in primis il vincolo di radialità della rete nei problemi di riconfigurazione, che si rivela piuttosto delicata.

2.3 Riconfigurazione ottimale in condizioni di normale funzionamento

Come già accennato i sistemi di distribuzione MT hanno una struttura debolmente magliata operata radialmente. La topologia della rete può essere efficacemente descritta mediante un grafo. I nodi del grafo sono in genere suddivisi in nodi di alimentazione, rappresentativi delle cabine primarie, e nodi di carico, che modellizzano i carichi e i generatori connessi alla rete e le cabine secondarie. I rami che connettono i diversi nodi corrispondono a linee o trasformatori. In una rete con N nodi, di cui S di alimentazione, e B rami, il numero Λ di rami ridondanti da mantenere aperti per avere una struttura radiale è dato dalla seguente espressione:

$$\Lambda = B - N + S \tag{2.1}$$

Non è sufficiente tuttavia aprire arbitrariamente Λ rami per avere una topologia radiale, in quanto nella maggior parte dei casi questa strategia si tradurrebbe nella formazione di maglie e isole di nodi. Non esistono criteri generali per estrarre le possibili configurazioni radiali da una rete e, a tal fine, occorre applicare gli strumenti forniti dalla teoria dei grafi al sistema in studio. Si può comunque dire che il numero delle possibili configurazioni radiali generate da una rete cresce con legge combinatoria al crescere di N e B.

A parità di carichi e generazioni, ad ognuna delle possibili configurazioni corrispondono diverse caratteristiche di funzionamento. La riconfigurazione ottimale ha lo scopo di trovare la migliore configurazione relativamente a uno o più aspetti dell'esercizio del sistema. La bontà di una soluzione è valutata mediante una o più funzioni obiettivo, di cui si ricercano in genere i minimi o i massimi globali. Le funzioni obiettivo tipicamente impiegate nella riconfigurazione ottimale sono le perdite, le deviazioni delle tensioni dei nodi rispetto ai valori nominali, il bilanciamento del carico sui rami della rete. Un elenco più completo delle funzioni comunemente usate è proposto più avanti, per adesso basti notare che queste funzioni dipendono dalla configurazione della rete (variabile discreta) e che presentano numerosi massimi e minimi locali.

Le caratteristiche descritte sopra rendono la riconfigurazione ottimale un problema difficile da risolvere. La natura combinatoria del problema rende impraticabile la ricerca esaustiva della soluzione, che è l'unico strumento che garantisce la convergenza sull'ottimo globale delle funzioni obiettivo in modo non asintotico. Mentre gli altri metodi deterministici, quali il miglioramento iterativo, per loro natura rimangono intrappolati sui minimi e massimi locali delle funzioni, per alcuni algoritmi meta-euristici è stata dimostrata la convergenza asintotica all'ottimo globale. In ogni caso, tale convergenza non è garantita per tempi di esecuzione finiti.

Vincoli

Un aspetto importante della riconfigurazione è che le soluzioni, per essere accettabili, devono soddisfare un insieme di vincoli tecnici che garantiscono il corretto funzionamento della rete. Un elenco dei vincoli più comuni è proposto di seguito.

- Radialità. La soluzione del problema deve essere una configurazione radiale.
- Tensioni ai nodi. Le tensioni nodali devono essere comprese tra un valore minimo V_n^{min} e un valore massimo V_n^{max} . Per il nodo n questo vincolo può essere formulato come segue.

$$V_n^{\min} - V_n \le 0 \tag{2.2}$$

$$V_n - V_n^{max} \le 0 \tag{2.3}$$

• Limite termico dei rami. La corrente che percorre un ramo non deve essere superiore al limite termico. Per il generico ramo *b* il vincolo si traduce in:

$$I_b - I_b^{max} \le 0 \tag{2.4}$$

• Correnti di guasto. Si possono introdurre vincoli sui valori massimi delle correnti di guasto monofase (I_n^{ft}) e di corto circuito trifase (I_n^{3f}) imponendo per il nodo n

$$I_n^{ft} - I_n^{ft,max} \le 0 \tag{2.5}$$

$$I_n^{3f} - I_n^{3f,max} \le 0 (2.6)$$

• Numero di manovre. In genere si limita il numero di manovre *sw* necessario per passare dalla configurazione iniziale a quella ottimale. Il vincolo si esprime come segue:

$$sw - sw^{max} \le 0 \tag{2.7}$$

• Numero di interruttori in cascata. Per evitare problemi di selettività delle protezioni si può imporre che nel percorso tra l'alimentazione s e un nodo n non siano presenti interruttori in cascata. Il vincolo si può formalizzare come sotto.

$$m_{int}\left(path(n,s)\right) - 1 \le 0 \tag{2.8}$$

dove con m_{int} si indica il numero di interruttori.

• Utenti con contratti con doppia consegna. Deve essere garantita per questi utenti l'alimentazione da due sorgenti indipendenti.

Esistono due strategie di trattamento di vincoli [6]:

- Approccio rigido. Le soluzioni con violazione dei vincoli vengono scartate, questa strategia è tipicamente impiegata negli algoritmi deterministici.
- Approccio flessibile. Le soluzioni con violazione dei vincoli vengono mantenute al fine di allargare lo spazio di ricerca. Questa strategia può essere implementata penalizzando le soluzioni con violazione. Se la funzione obiettivo deve essere minimizzata, ad esempio, la penalizzazione consiste nel sommare alla funzione iniziale un termine proporzionale alla violazione del vincolo. I coefficienti moltiplicativi devono essere abbastanza alti in modo da evitare che la soluzione finale non soddisfi i vincoli. Questa strategia è generalmente utilizzata nei metodi euristici.

Un discorso a parte va fatto per il vincolo di radialità. Nei metodi che generano una singola soluzione per iterazione (miglioramento iterativo, simulated annealing, ricerca tabu) si utilizzano dei meccanismi di perturbazione per spostarsi nello spazio delle configurazioni radiali da una soluzione ad un'altra nel suo vicinato. Il meccanismo più usato è quello del branch exchange. Più complesso è invece garantire la radialità nei metodi basati sulle popolazioni, dove alcuni operatori non garantiscono soluzioni radiali ed occorre verificare il rispetto del vincolo.

Branch exchange

Un possibile meccanismo per spostarsi nello spazio delle configurazioni radiali generate da una rete è il branch exchange, di cui esistono due versioni, openclose e close-open. In questo lavoro si è utilizzata la versione close-open che può essere brevemente descritta come segue.

- Partendo da una configurazione radiale della rete, identificata dagli stati dei rami (aperto o chiuso), si chiude uno dei rami aperti.
- Il risultato di questa chiusura è la formazione di una maglia nel grafo della rete. Si possono dunque identificare i rami che appartengono alla maglia.
- Aprendo uno di questi rami si ottiene una configurazione che conserva la proprietà di radialità della soluzione di partenza.

Figura 2.2: Versione close-open del branch-exchange

Funzioni obiettivo

Le funzioni obiettivo rispetto alle quali può essere condotta l'ottimizzazione sono varie. Un elenco non esaustivo è di seguito riportato.

• Perdite della rete. Le perdite della rete sono la funzione obiettivo più comune. In genere sia i carichi che le generazioni sono variabili nel tempo. Per tener conto di queste evoluzioni è possibile scandire il tempo in intervalli discreti Δt , tipicamente su base oraria. Una formulazione generale dell'energia persa sui rami della rete è data dalla seguente equazione:

$$W_{perdite} = \sum_{j=1}^{J} \sum_{b=1}^{B} R_b I_{jb}^2 \Delta t$$
(2.9)

dove R_b è la resistenza del *b*-esimo ramo, I_{jb} è la corrente che fluisce nel *b*-esimo ramo nel *j*-esimo intervallo di tempo, *B* è il numero complessivo di rami, *J* è il tempo totale di osservazione.

• Carico massimo dei rami. Un'altra funzione obiettivo, da minimizzare, può essere il carico massimo dei rami, vale a dire il massimo rapporto tra la corrente che effettivamente percorre un ramo e un valore base (generalmente il limite termico). In formule:

$$L_{max} = \max_{b \in \mathbf{B}} \left\{ \frac{I_b}{I_b^{(r)}} \right\}$$
(2.10)

in cui *b* è il generico ramo appartenente all'insieme **B** dei rami della rete, I_b è la corrente nel ramo e $I_b^{(r)}$ è la corrente di riferimento.

• Bilanciamento del carico sulle linee. È desiderabile avere una distribuzione uniforme del carico sui rami della rete. La seguente funzione (da minimizzare) può essere usata per ottimizzare questo aspetto:

$$\Delta B^{tot} = \sum_{b \in \mathbf{B}} \left(\frac{A_b}{A_b^{(r)}}\right)^2 \tag{2.11}$$

con *b* ramo generico appartenente all'insieme **B** dei rami della rete, A_b potenza apparente che attraversa il ramo *b*, $A_b^{(r)}$ potenza apparente di riferimento per il ramo.

• Bilanciamento del carico sui trasformatori. Consiste nel ripartire il carico sui trasformatori in base alla loro potenza di dimensionamento. Una possibile formulazione della funzione obiettivo è la seguente:

$$\Delta T^{tot} = \sum_{t \in \mathbf{T}} \left(\frac{A_t - l_t A_{LL}^{tot}}{l_t A_{LL}^{tot}} \right)$$
(2.12)

dove A_{LL}^{tot} è la potenza apparente totale della rete (comprese le perdite), A_t è la potenza apparente che interessa il trasformatore t appartenente all'insieme **T** dei trasformatori del sistema, mentre l_t è il seguente rapporto:

$$l_t = \frac{A_t^{(r)}}{\sum_{\nu \in \mathbf{T}} A_{\nu}^{(r)}}$$
(2.13)

in cui $A_t^{(r)}$ è la potenza nominale del trasformatore t, mentre al denominatore compare la somma delle potenze nominali dei trasformatori della rete. Anche questa funzione obiettivo va minimizzata.

• Deviazioni delle tensioni dei nodi dai valori nominali. La funzione può essere formalizzata in questi termini:

$$\Delta V^{max} = \max\left\{ \left| V^{(r)} - \max_{n \in \mathbf{N}} (V_n) \right|, \left| V^{(r)} - \min_{n \in \mathbf{N}} (V_n) \right| \right\}$$
(2.14)

in cui si indica con n il generico nodo nell'insieme **N** dei nodi della rete. ΔV^{max} è il massimo scostamento delle tensioni nodali V_n dal valore di riferimento $V^{(r)}$. La funzione obiettivo deve essere minimizzata. • Deviazioni delle tensioni dei nodi dai valori nominali, tenendo conto dell'energia assorbita dai nodi. La funzione può essere espressa come segue:

$$\Delta V' = \sum_{j=1}^{J} \sum_{n \in \mathbf{N}} C_n E_{n,j} \left(V_{n,j} - V^{(r)} \right)^2$$
(2.15)

dove $E_{n,j}$ e $V_{n,j}$ sono rispettivamente l'energia assorbita e la tensione al nodo n nel j-esimo intervallo di tempo, $V^{(r)}$ è la tensione di riferimento, **N** indica l'insieme dei nodi della rete, mentre J è il tempo totale di osservazione. I contributi di ciascun nodo alla funzione obiettivo sono pesati mediante i coefficienti C_n definiti dall'analista.

• Altre funzioni obiettivo possono tenere in considerazioni indici di affidabilità come l'energia non servita (ENS) o altri indicatori (SAIFI, SAIDI).

Ottimizzazione multiobiettivo

Il modo classico di affrontare i problemi di riconfigurazione è quello di ottimizzare rispetto ad una singola funzione obiettivo (tipicamente le perdtite). Ad ogni modo è spesso desiderabile migliorare simultaneamente più aspetti del funzionamento della rete, in questo caso si parla di ottimizzazione multiobiettivo.

Esistono due possibili tecniche di ottimizzazione multiobiettivo. Nei casi in cui i singoli obiettvi siano in conflitto, si ricorre alla costruzione del fronte di Pareto e al concetto di soluzione non dominata. Una soluzione è detta non dominata se non esiste nessun'altra soluzione che migliori allo stesso tempo tutte le funzioni obiettivo. L'insieme delle soluzioni non dominate forma il fronte di Pareto. In generale non è possibile calcolare per intero il fronte di Pareto ed è necessario fare riferimento alla migliore approssimazione disponibile (best-known Pareto front). Le soluzioni che appartengono al fronte rappresentano soluzioni di compromesso tra cui il decisore è chiamato a scegliere la migliore. In genere il processo decisionale è assistito mediante un ordinamento delle soluzioni non dominate in base a determinati criteri.

In alcuni casi, quando il fronte di Pareto è convesso, si può prescindere dal calcolo delle soluzioni non dominate. Una tecnica alternativa consiste nel creare una funzione complessiva che tenga conto di tutti gli obiettivi dell'ottimizzazione. Un metodo per creare questa funzione è per somma pesata delle singole funzioni obiettivo. In formule:

$$F = \sum_{i=1}^{N} c_i f_i \tag{2.16}$$

dove F è la funzione globale, c_i è il peso associato all'*i*-esima funzione obiettivo f_i , N è il numero di obiettivi considerati. La scelta dei pesi è a discrezione dell'analista, ad ogni modo se le singole funzioni obiettivo sono normalizzate in per unità si ottengono buoni risultati con ordini di grandezza dei coefficienti c_i simili [9]. Creata questa funzione obiettivo complessiva è possibile risolvere il problema impiegando le tecniche di ottimizzazione mono-obiettivo.

Capitolo 3

Implementazione riconfigurazione ottimale

3.1 Rete esempio

Figura 3.1: Rete esempio a 16 nodi

Il problema della riconfigurazione ottimale in normale funzionamento è stato risolto per la rete di Figura 3.1 implementando due diversi algoritmi: miglioramento iterativo e simulated annealing.

La rete è costituita da 16 nodi, di cui 3 nodi di alimentazione (indicati come S01, S02, S03), e 16 rami. I dati della rete sono presentati nelle tabelle A.1 e A.2 dell'Appendice A. La prima tabella riporta i carichi connessi ai nodi

della rete, le colonne rappresentano i carichi a potenza costante $(P \in Q)$ e ad ammettenza costante $(G \in B)$. La seconda tabella invece si riferisce ai parametri dei rami, rappresentati mediante il circuito equivalente a Π . In particolare $R \in X$ sono le parti reale e immaginaria dell'impedenza longitudinale, mentre B è la suscettanza trasversale. Tutti i valori sono espressi in per unità e i valori base usati sono $S_{base} = 1$ MVA e $V_{base} = 23$ kV, per le potenze e le tensioni rispettivamente.

In accordo con l'equazione 2.1, è necessario tenere 3 rami aperti per avere un esercizio radiale. Esistono esattamente 190 diverse configurazioni radiali che possono essere estratte dalla rete. Per facilitare l'identificazione di queste ultime, la rete originaria è stata ridotta ad una rete equivalente applicando i semplici criteri elencati sotto [8].

- I tre nodi di alimentazione sono stati sostituiti con un unico nodo S0. Tale sostituzione è giustificata, ai fini dell'identificazione delle configurazioni radiali, in quanto i nodi di alimentazione sono tra loro connessi a mezzo della rete di trasmissione.
- Tutti i nodi che hanno un solo ramo incidente possono essere eliminati nella rete equivalente, assieme ai rami suddetti. Questi rami infatti non possono essere mantenuti aperti durante l'esercizio senza isolare il nodo che alimentano.
- Tutti i rami in serie che formano un percorso tra due nodi possono essere sostituiti con un unico ramo nella rete ridotta. Se i rami in serie sono m_r , al ramo equivalente è associata una molteplicità pari a m_r . Ciò significa che aprendo il ramo equivalente nella rete ridotta è possibile generare m_r diverse configurazioni radiali della rete originaria, una per ogni ramo del percorso.

La rete ridotta è presentata in Figura 3.2. La numerazione dei nodi segue quella della rete di partenza, mentre per quanto riguarda i rami, la tabella A.3 (in Appendice A) riporta la correlazione tra i rami della rete equivalente e della rete originaria e le molteplicità dei rami equivalenti.

Le configurazioni radiali associate alla rete ridotta sono 16 e sono riportate nella tabella A.4 dell'Appendice A. A partire da queste, tenendo conto delle equivalenze con la rete di partenza, sono state estratte tutte le configurazioni radiali della rete esempio.

Per identificare una particolare configurazione radiale della rete esempio sono necessarie due informazioni: lo stato dei singoli rami e la topologia della rete. La prima informazione può essere fornita sotto forma di una lista dei

Figura 3.2: Rete ridotta

rami aperti OB, che contiene tutti e soli i rami che sono mantenuti aperti in una particolare configurazione radiale. Per quanto rigurada la topologia occore descrivere le connessioni effettivamente esistenti tra i nodi. Un primo modo di modellizzare le connessioni consiste nello scrivere una lista delle incidenze (le prime tre colonne della tabella A.2 sono un esempio di lista delle incidenze). Ad ogni modo, vista la necessità di eseguire calcoli sulla rete, la descrizione più conveniente risulta essere quella matriciale. La matrice delle incidenze \mathbf{L} è pertanto una traduzione della lista delle incidenze in termini matriciali ed è stata usata nell'implementazione per modellizzare la rete e risolvere le equazioni di load flow. A tal proposito, l'algoritmo impiegato per risolvere i flussi di potenza è il backward-forward-sweep (di seguito BFS) [4]. Occorre infine notare che in ognuna delle possibili configurazioni radiali, è possibile identificare tre sottoreti (dorsali) radiali indipendenti. Negli algoritmi descritti di seguito, che fanno uso del branch-exchange per spostarsi nello spazio delle soluzioni, il BFS viene applicato a ciascuna di queste dorsali singolarmente. Questa scelta è giustificata dal fatto che il branch-exchange coinvolge al più due dorsali, mantenendo invariata la terza. Si può pertanto ridurre i tempi di computazione del load flow eseguendo il BFS per le sole dorsali interessate dalle modifiche.

3.2 Miglioramento iterativo

Il miglioramento iterativo è un algoritmo di ottimizzazione deterministico, che parte da una configurazione radiale e applica iterativamente il branchexchange in modo da migliorare la funzione obiettivo. Il diagramma di flusso dell'algoritmo è proposto in Figura 3.3.

L'algoritmo parte acquisendo i dati della rete, che ne definiscono la topologia e i parametri di rami e nodi. Le variabili del problema sono le possibili configurazioni radiali della rete esempio, che possono essere identificate mediante una lista dei rami aperti. A partire dalla lista dei rami aperti e dalle informazioni contenute nella tabella A.2 può essere costruita la matrice delle incidenze L, usata per modellizzare la topologia della rete.

L'algoritmo parte da una soluzione accettabile del problema, ovvero da una configurazione radiale che soddisfa i vincoli. Questa configurazione viene inizializzata sotto forma della lista dei rami aperti OB_o . Durante ciascuna iterazione della procedura vengono eseguite le seguenti azioni:

- Si chiude ciascuno dei rami in OB_o , ad ogni richiusura si forma una maglia M nel grafo.
- Nota la maglia M, si apre ciascuno dei rami appartenenti ad essa e si calcola il valore della funzione obiettivo.
- Si accetta una nuova soluzione solo se comporta un miglioramento della funzione obiettivo.

Terminato il ciclo, la configurazione di partenza per la prossima iterazione viene aggiornata alla soluzione migliore. L'algoritmo si arresta quando nessun miglioramento è stato registrato nel corso dell'ultima iterazione. Il metodo rimane facilmente intrappolato sui minimi locali della funzione obiettivo, e la soluzione finale dipende fortemente dalla soluzione di partenza. Nonostante questi difetti, il miglioramento iterativo è in genere più veloce di altri algoritmi e questo è un vantaggio specie nelle applicazioni che richiedono un'ottimizzazione in tempo reale. La convergenza può inoltre essere accelerata guidando la ricerca con opportuni criteri. Ad esempio si può limitare il numero dei rami di M da aprire ai soli rami adiacenti al ramo di OB_o oggetto della richiusura. Altri criteri possono stimare gli effetti di un apertura individuando quelle più efficaci ai fini del miglioramento della funzione obiettivo [12].

Figura 3.3: Diagramma di flusso del miglioramento iterativo

Per quanto riguarda i vincoli, questi vanno trattati in maniera rigida, scartando le soluzioni con violazioni. Il vincolo di radialità è automaticamente soddisfatto in quanto l'algoritmo parte da una soluzione radiale e si sposta nello spazio delle soluzioni mediante il meccanismo del branch-exchange.

Risultati

Figura 3.4: Configurazione ottimale

L'algoritmo è stato implementato e usato per risolvere il problema della riconfigurazione ottimale per la rete di Figura 3.1, usando come funzione obiettivo le perdite del sistema. Come risultato dell'ottimizzazione, la configurazione di Figura 3.4 è la soluzione che garantisce le minime perdite, che valgono 468,1 kW (con i dati delle tabelle A.1 e A.2, e con tensioni dei nodi slack pari a 1 pu).

Data la sensibilità del metodo rispetto alla soluzione di partenza, l'algoritmo è stato eseguito partendo da ognuna delle possibili configurazioni radiali. Quasi tutte le esecuzioni hanno portato alla soluzione globalmente ottimale illustrata in Figura 3.4, l'unica eccezione è costituita dalla configurazione di Figura 3.5. Questa soluzione non si è rivelata un punto di partenza ammissibile, dato che non è possibile calcolare la funzione obiettivo a causa della mancata convergenza del BFS.

La tabella 3.1 riporta l'andamento dell'errore sulle tensioni durante l'esecuzione del BFS, mostrando come l'algoritmo non converga.

Figura 3.5: Configurazione per cui il BFS non converge

Iterazione	Errore [pu]
1	0.2837
2	0.1485
3	0.0816
4	0.0584
5	0.0421
43	0.0606
44	0.0921
45	0.1644
46	0.3962
47	2.2163
48	332.8948
49	1.1019
50	0.4042
51	0.1884

Tabella 3.1: Evoluzione dell'errore con il numero di iterazioni del BFS

3.3 Simulated annealing

In metallurgia, il processo di ricottura (annealing), consiste nel riscaldamento di una lega, fino a raggiungere una temperatura superiore a quella di austenitizzazione, e nel successivo lento raffreddamento della lega stessa, al fine di ottenere un cristallo di elevata qualità. Il simulated annealing è un algoritmo meta-euristico, che imita il processo di ricottura e può essere utilmente impiegato per la risoluzione dei problemi combinatori di ottimizzazione.

Nella ricottura, durante la fase di raffreddamento, il metallo passa da uno stato iniziale ad uno stato di minima energia che corrisponde alla formazione di un cristallo perfetto. Durante questa fase, i cambiamenti di stato avvengono nella direzione delle energie decrescenti, ad ogni modo transizioni da uno stato i ad uno stato j del solido che comportano aumenti di energia possono ancora avvenire con una probabilità pari a [3] [1]

$$p = e^{\left(\frac{E_i - E_j}{kT}\right)} \tag{3.1}$$

dove E_i ed E_j sono le energie associate ai due stati, k è la costante di Boltzmann e T è la temperatura del metallo, supposto in equilibrio termico.

Questo modello è sfruttato nel simulated annealing per risolvere i problemi di ottimizzazione. In questo caso, si propone un'analogia tra la funzione obiettivo del problema e l'energia nell'equazione 3.1 mentre la temperatura diventa la variabile di controllo dell'algoritmo. Durante la ricerca della soluzione ottimale pertanto, oltre a soluzioni che comportano miglioramenti della funzione obiettivo, vengono accettate anche quelle che conducono a peggioramenti, con una probabilità di accettazione dipendente dalla temperatura secondo l'equazione 3.1. Questa caratteristica si traduce nel principale pregio del simulated annealing, ovvero la capacità di ampliare lo spazio di ricerca delle soluzioni e scappare dai minimi locali della funzione obiettivo.

Il simulated annealing (SA) è stato implementato per risolvere il problema della riconfigurazione ottimale per la rete di Figura 3.1 e il diagramma di flusso dell'algoritmo è proposto in Figura 3.6. L'ottimizzazione è stata ancora una volta condotta considerando come unica funzione obiettivo le perdite del sistema.

Così come il miglioramento iterativo, anche il SA parte da una soluzione ammissibile del problema, identificata dalla lista dei rami aperti OB_o . Il meccanismo mediante il quale si esplora lo spazio delle soluzioni è ancora quello del branch-exchange, che garantisce il rispetto del vincolo di radialità della rete.

L'algoritmo è costitutito da due cicli innestati. Nel ciclo esterno avvengono le modifiche della variabile di controllo C, che sono state implementate secondo

l'equazione seguente.

$$C[iter+1] = \alpha \cdot C[iter] \tag{3.2}$$

dove con *iter* si identifica la generica iterazione del ciclo esterno, mentre α è un parametro costante minore di 1 detto cooling rate.

Nel ciclo interno avviene invece la ricerca della soluzione. Partendo da una soluzione radiale, si procede come segue:

- Si estrae casualmente, con distribuzione di probabilità uniforme, uno dei rami appartenenti alla lista dei rami aperti OB_o . Tale ramo viene chiuso con conseguente formazione della maglia M.
- Analogamente a quanto fatto al punto sopra, uno dei rami appartenenti a *M* viene scelto in modo casuale per l'apertura.
- Si calcola il valore della funzione obiettivo per la configurazione così ottenuta. Se la nuova configurazione comporta un miglioramento della funzione obiettivo questa viene accettata e la soluzione migliore viene aggiornata.
- Se la nuova configurazione comporta un peggioramento della funzione obiettivo, questa può ancora essere accettata. In questo caso si procede all'estrazione casuale di un numero r compreso tra 0 e 1 da una distribuzione di probabilità uniforme e la nuova configurazione viene accettata se:

$$e^{\left(\frac{\Delta P_{migliore} - \Delta P_{corrente}}{C}\right)} > r$$
 (3.3)

dove $\Delta P_{migliore} - \Delta P_{corrente}$ è il peggioramento (negativo) della funzione obiettivo e C è il valore della variabile di controllo. Se la disequazione 3.3 è soddisfatta la configurazione diventa la configurazione di partenza per la prossima iterazione del ciclo interno.

Nell'implementazione dell'algoritmo, il ciclo interno termina dopo un numero massimo di configurazioni analizzate $N_{analizzate}$ o dopo un numero massimo di configurazioni accettate $N_{accettate}$. Nelle prime fasi dell'esecuzione dell'algoritmo, quando il valore della variabile di controllo C è relativamente elevato, la probabilità di accettare una configurazione è altresì elevata e, generalmente, l'arresto del ciclo interno avviene a causa del secondo criterio. Mano a mano che l'esecuzione prosegue, il ciclo esterno riduce progressivamente il valore della variabile di controllo e conseguentemente la probabilità di accettare nuove soluzioni. In questi frangenti l'arresto è tipicamente dovuto al soddisfacimento del primo criterio.

Figura 3.6: Diagramma di flusso del simulated annealing

L'algoritmo termina, infine, quando nell'arco delle ultime N_s iterazioni del ciclo esterno non sono stati registrati miglioramenti della funzione obiettivo. Un altro parametro importante del SA è il valore iniziale della variabile di controllo, C_o , che determina la probabilità di accettare peggioramenti nella prima iterazione del ciclo di controllo. Un possibile metodo per inizializzare C_o consiste nell'eseguire un certo numero di spostamenti nello spazio delle soluzioni del problema, secondo il meccanismo descritto sopra. Per tutte le configurazioni esplorate si calcola il valore della funzione obiettivo e si prosegue fino a registrare N_o peggioramenti. Indicando con $\overline{\Delta P}$ (< 0) il valore medio di questi ultimi e definendo la probabilità iniziale p_o di accettare peggioramenti, C_o può essere calcolato secondo la seguente equazione:

$$C_o = \frac{\overline{\Delta P}}{\ln\left(p_o\right)} \tag{3.4}$$

Dato che il SA utilizza estrazioni di numeri casuali, è opportuno fissare il seme del generatore di numeri casuali ξ , per assicurare la ripetibilità dei risultati ottenuti. Ultimo parametro spesso usato nell'implementazione del SA è la soglia di accettazione δ che ha il duplice scopo di accelerare la convergenza, prendendo in considerazioni solo diminuzioni sensibili della funzione obiettivo rispetto alla migliore soluzione, e di rendere più significativi i confronti tra valori della funzione obiettivo relative a due configurazioni differenti, problema particolarmente sentito nel caso di rappresentazine numerica floating point. Nel caso in cui si adottasse questo parametro, una soluzione per essere considerata la migliore deve soddisfare la seguente diseguaglianza:

$$\Delta P_{corrente} - \Delta P_{migliore} < -\delta \tag{3.5}$$

in cui $\Delta P_{corrente}$ è valore delle perdite nella configurazione in esame e $\Delta P_{migliore}$ è il valore delle perdite nella soluzione migliore.

Ultima considerazione va fatta sulla gestione dei vincoli. Dato che il processo di ricerca è capace di sfuggire ai minimi locali della funzione da ottimizzare, è possibile seguire un approccio di tipo flessibile con l'introduzione di funzioni obiettivo penalizzate. Questa strategia consente di allargare ulteriormente lo spazio in cui la soluzione viene ricercata, nella speranza che l'algoritmo restituisca come soluzione quella globalmente ottimale.

Risultati

Il SA è stato implementato per la rete di Figura 3.1 e i risultati sono brevemente ricapitolati.

I parametri usati sono riportati nella tabella 3.2.

Parametro	Valore
ξ	1
p_o	0.1
N_o	10
$C_o \; (\text{eq.3.4})$	0.1979
α	0.98
δ	0
$N_{accettate}$	10
$N_{analizzate}$	50
N_s	2

Tabella 3.2: Parametri usati per nell'esecuzione del SA

L'algoritmo ha restituito come soluzione ottimale quella di Figura 3.4, che corrisponde al minimo globale delle perdite del sistema, pari a 468.1 kW.

Capitolo 4

Pianificazione della generazione distribuita con riconfigurazione

4.1 Introduzione

L'integrazione delle unità di generazione distribuita (DG) nelle reti di distribuzione può contribuire a migliorare diversi aspetti del funzionamento del sistema, come ad esempio profili di tensione, perdite totali, indici di affidabilità e di qualità dell'energia elettrica [5]. Ad ogni modo l'ottenimento dei benefici citati sopra non può prescindere da un'attenta scelta della posizione e della taglia delle unità di generazione. Nel seguito il problema della pianificazione della DG è stato risolto impiegando un algoritmo evoluzionistico e considerando gli effetti della riconfigurazione della rete.

Lo studio è stato condotto su una rete esempio con 203 nodi (di cui uno di alimentazione) e 210 rami, considerando per ogni nodo le distribuzioni delle potenze attive e reattive nel corso di una giornata, note con risoluzione temporale di 15 minuti.

L'algoritmo proposto valuta l'efficacia dell'installazione di generatori nei vari nodi della rete allo scopo di ridurre le perdite totali. Per valutare la bontà di una soluzione, la funzione obiettivo (perdite) è stata calcolata risolvendo successivamente il problema della riconfigurazione ottimale per ciascuno degli intervalli di variazione del carico. Il metodo impiegato per trovare le configurazioni ottimali della rete è quello del simulated annealing già discusso al capitolo 3. L'uscita dell'intero processo di ottimizzazione è pertanto la potenza e il nodo di installazione delle DG che rendono minime le perdite del sistema, funzionante in ogni intervallo di tempo nella migliore topologia in accordo con la soluzione del simulated annealing. Nel seguito viene descritto l'algoritmo implementato e vengono presentati i risultati ottenuti.

4.2 Rete esempio

Figura 4.1: Rete esempio a 202 nodi

La rete esempio presa in considerazione è riportata in Figura 4.1. Dalla rete è possibile estrarre $3.2142 \cdot 10^9$ configurazioni radiali mantenendo 8 rami aperti, in accordo con l'equazione 2.1, numero che rende proibitiva la ricerca esaustiva della topologia migliore nei problemi di riconfigurazione ottimale. I dati dei rami della rete sono presentati nella tabella A.5 dell'appendice A. In particolare le prime tre colonne riportano la lista delle incidenze, le colonne denominate R, $X \in B$ indicano i parametri del modello a Π mentre S_{lim} rappresenta il vincolo sul massimo valore della potenza apparente in transito sui rami. I valori di R, X, $B \in S_{lim}$ sono espressi in per unità, usando come valori base $S_{base} = 1$ MVA e $V_{base} = 20$ kV.

Per quanto riguarda le potenze prelevate e iniettate nei nodi della rete, queste sono descritte mediante dei profili di carico. Ciascun profilo fa riferimento ad un intervallo di tempo pari a 24 ore, discretizzato in sottointervalli di 15 minuti. Esempi di profili di carico sono presentati nella Figura 4.2, che riporta gli andamenti delle potenze attive, assorbite e generate, e della potenza reattiva assorbita al nodo 199.

Figura 4.2: Profili di carico relativi al nodo 199

4.3 Algoritmo evoluzionistico

L'algoritmo impiegato per la pianificazione delle risorse distribuite è derivato dagli algoritmi genetici. Ad ogni modo, utilizzando una differente codifica delle soluzioni, nel seguito è indicato con il termine più generale di algoritmo evoluzionistico.

Gli algoritmi genetici sono metodi di ottimizzazione basati sul concetto di popolazione. Con ciò si intende che ad ogni iterazione, l'algoritmo genera un insieme di punti nello spazio delle soluzioni a partire dai quali vengono ricercate soluzioni migliori. Altra peculiarità di questo tipo di algoritmi è che utilizzano delle misure di qualità delle soluzioni per trovare l'ottimo e non necessitano di informazioni aggiuntive (ad esempio derivate) [3], caratteristica che li rende estremamente versatili.

Una popolazione è composta da un insieme di individui che costituiscono una codifica delle soluzioni. Gli individui, chiamati cromosomi, sono rappresentati mediante stringhe i cui elementi sono detti geni. Negli algoritmi genetici la codifica delle stringhe è binaria, sicché i geni possono assumere solo i valori 0 e 1. L'algoritmo implementato, invece usa stringhe i cui elementi assumono valori reali. Nella codifica impiegata ogni gene rappresenta un nodo della rete in cui è possibile l'installazione di un generatore. Il valore dell'elemento indica invece la taglia del generatore rappresentata come frazione di una taglia di riferimento P_0 . In particolare, nella versione implementata ciascun gene può assumere i valori 0, 0.2, 0.4, 0.6, 0.8 e 1.

L'algoritmo parte da una popolazione iniziale, costituita da $n_{popolazione}$ individui e inizializzata in modo casuale. I migliori cromosomi sono dunque scelti mediante il processo di selezione come base per la successiva generazione. A tal fine, è necessaria una misura della qualità degli individui della popolazione, detta funzione di fitness. Nei problemi in cui si ricerca il minimo della funzione obiettivo, la funzione di fitness può essere formulata secondo la seguente equazione:

$$\Psi_{i} = \frac{\frac{1}{f(i)}}{\frac{1}{\sum_{i=1}^{N} f(i)}}$$
(4.1)

dove *i* indica l'*i*-esimo individuo della popolazione, f(i) è il valore della funzione obiettivo corrispondente e Ψ_i rappresenta la funzione di fitness. La formulazione proposta è valida nel caso in cui f(i) possa assumere solo valori positivi, come accade per le perdite.

La scelta degli individui a partire dai quali verrà generata la popolazione dell'iterazione successiva è effettuata sulla base dei valori di fitness e utilizza criteri probabilistici. Esistono diversi modi di implementare la selezione [1], in questo caso è stata adottata la strategia detta della roulette truccata (biased roulette wheel). In accordo con quest'ultima, viene costruita la distribuzione di fitness cumulativa e gli individui migliori vengono selezionati mediante estrazione di un numero casuale compreso nell'intervallo [0,1]. Gli individui con fitness più elevata hanno pertanto maggiore probabilità di essere scelti, ad ogni modo non c'è nessuna garanzia che i cromosomi migliori vengano preservati. Per evitare che le soluzioni migliori vengano perse, dunque, si è adottato il criterio di elitismo, secondo il quale i migliori n_{elite} individui vengono conservati intatti per la successiva iterazione. Il processo si arresta quando $n_{popolazione} - n_{elite}$ individui sono stati selezionati: questi formano la popolazione intermedia a cui vengono applicati gli operatori genetici.

Gli operatori genetici sono il meccanismo mediante il quale l'algoritmo si sposta nello spazio delle soluzioni. Gli operatori fondamentali sono:

- mutazione
- crossover

L'operatore di mutazione agisce sui singoli geni. Nella versione classica degli algoritmi genetici la mutazione avviene con probabilità $p_{mutazione}$ e consiste nella negazione del gene in questione. Dato che nell'algoritmo utilizzato la codifica dei geni non è binaria, è necessario estendere il concetto di mutazione. La versione dell'operatore di mutazione implementata può essere riassunta come segue:

Figura 4.3: Logica dell'operatore di mutazione

- Per ogni stringa della popolazione intermedia viene estratto un numero r, compreso tra 0 e 1, da una distribuzione uniforme di probabilità;
- Se $r < p_{mutazione}$ un gene del cromosoma viene scelto per la mutazione. Il gene viene individuato mediante una nuova estrazione casuale;

• L'operatore cambia il valore del gene. Come detto precedentemente, i valori che un gene può assumere sono quelli dell'insieme $\{0, 0.2, 0.4, 0.6, 0.8, 1\}$. Se il valore originario è uno dei valori estremi, 0 o 1, l'operatore cambia il valore dell'elemento in 0.2 o 0.8 rispettivamente. Se, al contrario, prima della mutazione il gene è pari a uno dei valori intermedi, la direzione del cambiamento viene decisa mediante l'estrazione di un numero casuale r e il valore dell'elemento viene modificato nel valore più vicino in quella direzione. La Figura 4.3 ha lo scopo di chiarire la logica su cui si basa l'operatore di mutazione.

L'operatore di crossover agisce invece su coppie di stringhe generando due nuovi individui. Anche in questo caso esistono diverse varianti dell'operatore, quella impiegata può essere descritta come segue.

(b) Dopo il crossover

Figura 4.4: Esempio di crossover

- Estratto un numero casuale r compreso tra 0 e 1, il crossover avviene se $r < p_{crossover}$, dove $p_{crossover}$ rappresenta la probabilità di crossover;
- Se la condizione sopra è soddisfatta viene individuato un punto di taglio nelle stringhe mediante estrazione casuale;
- Le porzioni di stringhe dopo il punto di taglio vengono dunque scambiate generando due nuovi cromosomi. Il processo è esemplificato dalla Figura 4.4.

Figura 4.5: Diagramma di flusso dell'algoritmo evoluzionistico
A seguito dell'applicazione degli operatori genetici, la popolazione generata viene presa come punto di partenza per l'iterazione successiva. I passi descritti si ripetono fino a quando non è soddisfatto il criterio di arresto. La scelta di quest'ultimo è particolarmente delicata dato che può determinare la mancata o la precoce convergenza dell'algoritmo. Nel presente lavoro la ricerca si arresta quando il migliore elemento trovato non varia per N_{stop} iterazioni successive. Nella Figura 4.5 viene proposto il diagramma di flusso dell'algoritmo evoluzionistico.

4.4 Risultati

L'algoritmo evoluzionistico implementato è stato impiegato per risolvere il problema della minimizzazione delle perdite per la rete di Figura 4.1. In particolare sono state effettuate le seguenti due prove:

- Caso 1: prendendo in considerazione tutti i nodi della rete come possibili candidati per l'installazione di un generatore, senza vincoli sul numero massimo di installazioni.
- Caso 2: limitando il numero di nodi in cui è possibile installare un generatore a $n_{generatori}$, scelti dall'utente.

Per gestire il vincolo S_{lim} sulla massima potenza apparente in transito sui rami si è adottato un approccio flessibile, penalizzando le soluzioni che presentano violazione del vincolo. In particolare, per il caso in esame, la penalizzazione è stata applicata secondo la seguente relazione:

$$f_{pen} = \sum_{b=1}^{B} R_b I_b^2 \Delta t [1 + \rho_b \cdot C_{pen} \cdot (S_{lim} - S_b)^2]$$
(4.2)

dove f_{pen} è la funzione obiettivo penalizzata, R_b è la resistenza del *b*-esimo ramo, I_b la corrente che lo percorre, Δt l'intervallo di tempo considerato, C_{pen} è un coefficiente di penalità, S_{lim} è la massima potenza apparente ammissibile in transito sul ramo e S_b è la potenza apparente che fluisce attraverso il ramo. Il coefficiente ρ_b vale 1 se ci sono violazioni sul ramo *b*, 0 in caso contrario.

Le funzioni penalizzate vengono calcolate in ogni quarto d'ora e utilizzate come funzioni obiettivo dal simulated annealing. Terminato l'algoritmo di riconfigurazione ottimale, la somma delle funzioni obiettivo penalizzate viene impiegata come funzione obiettivo dell'algoritmo evoluzionistico sovrastante. I parametri utilizzati in ciascuno dei casi descritti sopra sono riassunti nella tabella A.6 in appendice A. Per quanto riguarda il Caso 1, la soluzione dell'algoritmo evoluzionistico prevede l'inserimento nella rete di 155 generatori. La taglia e la posizione di questi sono riportati nella tabella A.7 dell'appendice A, dove viene indicato il nodo e la potenza dei generatori. Nella simulazione le DG forniscono potenza costante pari a quella indicata in tabella A.7 per tutto l'arco della giornata.

I risultati dell'algoritmo di riconfigurazione ottimale (SA) sono invece presentati nella tabella A.8, che indica i rami aperti della configurazione ottimale della rete in ciascun intervallo di tempo preso in considerazione. Il valore delle perdite totali della rete sulle 24 ore è pari a 4.5509 MWh.

Nel Caso 2 si sono scelti i 10 nodi indicati nella tabella 4.1 come possibili candidati a ospitare un nuovo generatore. Per fare ciò si sono impiegati cromosomi composti da 10 geni, ognuno corrispondente a un nodo della tabella 4.1, ed è stato possibile ridurre la dimensione della popolazione rispetto al Caso 1 (vedi la tabella A.6), con vantaggi dal punto di vista del tempo di esecuzione.

Nodo 80 88 168 128 163 119 92 70 109 47

Tabella 4.1: Nodi candidati all'installazione di un generatore nel Caso 2

La soluzione dell'algoritmo evoluzionistico è riportata nella tabella A.9 dell'appendice A, dove sono indicati per ogni nodo le taglie dei generatori da installare. La tabella A.10 invece riporta le configurazioni ottimali della rete per ogni quarto d'ora. Le perdite totali della rete relative alla soluzione ottimale risultano pari a 6.7354 MWh.

Confronto

Di seguito i risultati ottenuti dalle simulazioni vengono comparati. A tal fine vengono proposti i risultati ottenuti dalle simulazioni sulla rete non ottimizzata (di seguito Caso 0), in modo da evidenziare i miglioramenti che derivano dall'ottimizzazione.

Nel Caso 0 pertanto non è considerata l'installazione di nuovi generatori e la configurazione della rete, descritta nella tabella A.11 dell'appendice A, è costante durante l'intervallo di 24 ore preso in esame. Le perdite totali del sistema nelle condizioni descritte ammontano a 9.8715 MWh.

La tabella 4.2 riassume i valori delle perdite complessive per i casi introdotti sopra.

Caso	Perdite totali [MWh]
Caso 0	9.8715
Caso 1	4.5509
Caso 2	6.7354

Tabella 4.2: Consuntivo delle perdite nei casi presi in esame

Figura 4.6: Confronto delle perdite e dei profili di tensione per i diversi casi

Dall'ispezione della tabella si notano i miglioramenti della funzione obiettivo ad opera del processo di ottimizzazione, in particolare il Caso 1 presenta il minor valore delle perdite totali.

Nella Figura 4.6 sono mostrati gli andamenti delle perdite durante la giornata e i profili di tensione per il quarto d'ora compreso tra le 18:45 e le 19:00. Si può notare che per le perdite i miglioramenti più evidenti si hanno nella parte finale della giornata (dalle 16:00 in poi). Questo è da attribuire al modo in cui si sono modellizzate le DG (iniezioni di potenza attiva costanti sulle 24 ore) e all'andamento dei profili di carico. In particolare, la Figura 4.7 mostra il profilo di carico cumulativo di tutti i nodi, da cui risulta che il picco della domanda si verifica proprio nella seconda parte della giornata.

Figura 4.7: Potenza complessiva

Dall'analisi dei risultati si può inferire che il Caso 1 comporta il maggior miglioramento della funzione obiettivo e, pur non costituendo l'obiettivo dell'ottimizzazione, dei profili di tensione. Ad ogni modo il numero di interventi richiesti (installazione di 155 generatori) lo rende privo di significato pratico nell'ambito del problema della pianificazione della rete. Rimane comunque significativo ai fini di illustrare la potenzialità del'inserimento delle generazioni distribuite ai fini di migliorare le prestazioni del sistema considerate. Più significativo dal punto applicativo è il Caso 2, che comporta miglioramenti non trascurabili della funzione obiettivo rispetto al Caso 0, e prevede l'installazione di un numero limitato di generatori.

Capitolo 5

Ottimizzazione multi-obiettivo: Calcolo dell'ipervolume

5.1 Introduzione

L'ottimizzazione dei sistemi di distribuzione viene sovente condotta prendendo in considerazione diverse funzioni obiettivo, spesso in contrasto tra loro. In genere, pertanto, non esiste un'unica soluzione che sia la migliore rispetto a tutti gli obiettivi, ma un insieme di soluzioni di compromesso, dette soluzioni non dominate, che formano il fronte di Pareto. Per gran parte dei problemi di ottimizzazione multiobiettivo il numero di punti che formano il fronte di Pareto è estremamente elevato (in alcuni casi infinito) e gli algoritmi dedicati alla soluzione di tali problemi forniscono solo un'approssimazione del fronte effettivo.

L'ipervolume è un indicatore che può essere impiegato come misura della qualità di un'approssimazione del fronte di Pareto. Le applicazioni dell'ipervolume ai problemi di ottimizzazione multiobiettivo sono molteplici. Ad esempio, negli algoritmi evoluzionistici la selezione degli individui migliori può essere fatta in base al contributo di questi ultimi all'ipervolume [14]. Sempre nell'ambito degli algoritmi menzionati sopra, in alcuni casi si mantiene un archivio dei punti visitati durante la ricerca; per limitare le dimensioni dell'archivio occorre scegliere un certo numero di soluzioni significative da salvare, scelta che può essere fatta individuando i punti non dominati che massimizzano l'ipervolume [10]. In generale l'indicatore può essere utilizzato per estrarre k punti da un insieme di n > k soluzioni non dominate.

Nel seguito vengono definiti i concetti di soluzione non dominata e fronte di Pareto. Viene introdotto l'ipervolume e descritti gli algoritmi implementati per il calcolo dell'idicatore su spazi delle funzioni obiettivo a due e tre dimensioni.

Gli algoritmi vengono infine impiegati per calcolare l'ipervolume di un insieme di soluzioni non dominate ricavate da simulazioni effettuate sulla rete di Figura 4.1.

5.2 Ipervolume

Figura 5.1: Esemplificazione del concetto di soluzione dominata (a) e fronte di Pareto (b) per problemi a due dimensioni

Un problema di ottimizzazione multiobiettivo può essere generlamente formulato come segue [2]:

$$\min_{\mathbf{x}\in\Re^m} \mathbf{f}(\mathbf{x}) = [f_1(\mathbf{x}), f_2(\mathbf{x}), f_3(\mathbf{x}), ..., f_d(\mathbf{x})]$$
(5.1)

dove $\mathbf{x} = [x_1, x_2, x_3, ..., x_m]$ è il vettore delle variabili decisionali, $\mathbf{f}(\mathbf{x})$ è il vettore delle funzioni obiettivo relativo a $\mathbf{x} \in d$ è il numero delle funzioni obiettivo.

La soluzione ideale del problema di ottimizzazione sarebbe quella che presenta il minor valore di tutte le funzioni obiettivo. Ad ogni modo, nella maggior parte dei casi questa soluzione non esiste e la definizione di ottimo deve essere estesa introducendo il concetto di soluzione dominata [7].

Dati due vettori $\mathbf{a} \in \mathbf{b}$ nello spazio delle variabili decisionali, si dice che \mathbf{a} domina \mathbf{b} se:

$$f_i(\mathbf{a}) \le f_i(\mathbf{b}), \forall i \in \{1, 2, 3, ..., d\}$$
 (5.2)

Una soluzione si dice non dominata se non esiste nessuna soluzione che la domini. L'insieme delle soluzioni non dominate di un problema costituisce l'insieme delle soluzioni ottimali secondo Pareto mentre il corrispondente insieme di punti nello spazio delle funzioni obiettivo definisce il fronte di Pareto. I punti che formano il fronte di Pareto corrispondono a soluzioni di compromesso, tra le quali il decisore è chiamato a scegliere.

Nella Figura 5.1 sono esemplificati i concetti di soluzione dominata e fronte di Pareto. In particolare la Figura 5.1(a) mostra due soluzioni nello spazio delle funzioni obiettivo a due dimensioni, dove la soluzione A domina la soluzione B. Nella Figura 5.1(b), sempre nello spazio delgi obiettivi a due dimensioni, viene riportato un insieme di soluzioni ed evidenziato il fronte di Pareto (punti in rosso).

L'ipervolume è un indicatore che si basa sul concetto di dominanza e può essere impiegato come misura della qualità di un insieme di soluzioni.

Figura 5.2: Esempio di ipervolume per d = 2

Figura 5.3: Esempio di ipervolume per d = 3

Preso un insieme di punti $\mathbf{P} \subset \Re^d$ e un punto di riferimento r nello spazio degli obiettivi, l'ipervolume misura la grandezza (misura di Lebesgue) della regione di spazio dominata dai punti in \mathbf{P} e limitata superiormente dal punto r [7]. Nelle figure 5.2 e 5.3 sono mostrati due esempi di ipervolume per d = 2 e d = 3. Nei due casi l'indicatore è pari all'area (Figura 5.2) e al volume (Figura 5.3) delle regioni di spazio evidenziate.

Se **P** è una approssimazione del fronte di Pareto, l'ipervolume può essere impiegato come indice di qualità dell'approssimazione, e più precisamente, maggiore è l'indicatore migliore l'approssimazione del fronte.

5.3 Calcolo dell'ipervolume

Di seguito vengono descritti gli algoritmi implementati per il calcolo dell'ipervolume su due e tre dimensioni.

Ottimizzazione rispetto a due obiettivi

Il calcolo dell'ipervolume su uno spazio delgi obiettivi a due dimensioni viene ricondotto al calcolo di aree di rettangoli.

Dette f_1 e f_2 le funzioni obiettivo, l'algoritmo implementato parte da una lista P di punti non dominati, ordinata in senso decrescente della coordinata f_2 , e dal punto di riferimento r. Durante l'esecuzione i punti di P vengono visitati nell'ordine specificato sopra e per ciascuno viene determinata l'area del rettangolo corrispondente, come mostrato in Figura 5.4. Il valore dell'ipervolume viene dunque aggiornato sommando l'area del rettangolo appena

Figura 5.4: Calcolo dell'ipervolume per d = 2

calcolata. La Figura 5.5 riporta lo schema di flusso dell'algoritmo, dove la variabile *area* fa riferimento alle aree dei rettangoli citati sopra.

Figura 5.5: Schema di flusso dell'algoritmo per il calcolo dell'ipervolume su spazi degli obiettivi a due dimensioni

Ottimizzazione rispetto a tre obiettivi

Il calcolo dell'ipervolume su spazi degli obiettivi a tre dimensioni può essere ricondotto al calcolo di ipervolumi su due dimensioni.

Dette f_1 , f_2 e f_3 le funzioni obiettivo, l'algoritmo parte da una lista P di punti non dominati, ordinata nel senso crescente della coordinata f_3 , e dal punto di riferimento r. L'ordinamento di P è lessicologico per facilitare la gestione dei punti con lo stesso valore della coordinata f_3 . Ogni punto della lista Pcosì ordinata individua un piano a f_3 costante; i piani dividono idealmente l'ipervolume totale in fette e ciascun punto di P determina determina l'inizio di una fetta. Il volume di ogni fetta può essere dunque valutato calcolando l'area della base e moltiplicandola per la distanza secondo f_3 dei piani che la delimitano.

Durante l'esecuzione l'algoritmo visita i punti della lista P e per ciascuno calcola la fetta di ipervolume corrispondente. Per fare ciò viene usata una lista T contenente tutti i punti di P già visitati e le cui proiezioni sul piano (f_1, f_2) non sono dominate. La lista viene mantenuta ordinata nel senso crescente della coordinata f_2 .

Se p è l'*i*-esimo punto di P e T la lista citata sopra, l'ipervolume su due dimensioni delle proiezioni sul piano (f_1, f_2) di p e dei punti di T rispetto alla proiezione di r costituisce l'area della base dell'*i*-esima fetta di ipervolume. Se tale ipervolume è immagazzinato nella variabile *area*, il volume della fetta è ottenuto moltiplicando *area* per l'altezza della fetta Δf_3 , dove Δf_3 è la differenza tra le coordinate f_3 dei punti i e i + 1 della lista P. Per il calcolare il volume dell'ultima fetta di ipervolume occorre considerare come punto i + 1 il punto di riferimento r.

Quando un nuovo punto viene visitato la variabile area viene aggiornata. A tal fine, visitando l'*i*-esimo punto di P, indicato avanti come p, vengono compiute le seguenti operazioni.

- Viene considerata la proiezione di p nel piano (f_1, f_2) .
- Vengono individuati i punti di T le cui proiezioni sono dominate da p. A questo scopo vengono determinati i punti $q \in s$, detti delimitatori esterni di p. In particolare q è il punto con il più piccolo valore di $f_1(q) > f_1(p)$ e tale che $f_2(q) < f_2(p)$. Individuato q la lista T viene scandita nel senso crescente di f_2 fino a trovare un punto non dominato da p, che coincide con il punto s. Con riferimento alla Figura 5.6(a), q ed s corrispondono rispettivamente ai punti $t_1 \in t_4$. Tutti i punti compresi tra $q \in s$ nella lista ordinata T sono dominati da p.

- Viene calcolato l'ipervolume dei punti dominati rispetto al punto r' (Figura 5.6(b)). Questo corrisponde al contributo dei punti dominati alla variabile *area*.
- Viene calcolato l'ipervolume di p rispetto al punto r' (Figura 5.6(c)). Questo corrisponde al contributo di p da aggiungere alla variabile *area*.
- Viene aggiornata la variabile *area*, togliendo il contributo dei punti dominati e aggiungendo il contributo di *p*.
- Viene aggiornato l'ipervolume totale aggiungendo il volume della fetta.
- Viene aggiornata la lista T rimuovendo i punti dominati e aggiungendo il punto p.

Nella Figura 5.7 viene proposto lo schema di flusso dell'algoritmo.

Figura 5.6: Operazioni sulla variabile area durante l'*i*-esima iterazione dell'algoritmo

Figura 5.7: Diagramma di flusso dell'algoritmo per il calcolo dell'ipervolume su tre dimensioni

5.4 Contributi di tutti i punti all'ipervolume

Detto $\mathbf{P} \subset \Re^d$ un insieme di punti non dominati nello spazio degli obiettivi a d dimensioni, il contributo del punto $p \in \mathbf{P}$ all'ipervolume può essere definito come segue [7]:

$$H(p, \mathbf{P}) = H(\mathbf{P}) - H(\mathbf{P} \setminus \{p\})$$
(5.3)

Dove $H(p, \mathbf{P})$ indica il contributo di p all'ipervolume, $H(\mathbf{P})$ è l'ipervolume dell'insieme di punti \mathbf{P} , mentre $H(\mathbf{P} \setminus \{p\})$ è l'ipervolume relativo ai punti di \mathbf{P} escluso p.

Il contributo di p all'ipervolume è pertanto una misura della regione di spazio esclusivamente dominata da p. Gli algoritmi implementati per il calcolo dell'ipervolume possono essere modificati per calcolare i contributi all'ipervolume di tutti i punti. Di seguito una breve descrizione dei nuovi algoritmi per il calcolo dei contributi.

Ottimizzazione rispetto a due obiettivi

Per i problemi di ottimizzazione con due funzioni obiettivo, partendo da una lista P di punti non dominati, il problema del calcolo dei contributi dei punti di P all'ipervolume consiste nel determinare l'area della porzione di spazio esclusivamente dominata da ciascun punto. Nella Figura 5.8, a titolo di esempio, viene evidenziato (in blu) il contributo del punto p_2 all'ipervolume. L'algoritmo implementato visita ogni punto della lista P, ordinata in senso crescente della coordinata f_1 , e per ciascuno determina il punto r' mostrato in Figura 5.8. Note le coordinate di r' è dunque possibile calcolare il contributo del punto in esame p, operazione che corrisponde a determinare l'area del rettangolo di vertici r' e p.

Figura 5.8: Contributo di p_2 all'ipervolume per problemi a due dimensioni

Ottimizzazione rispetto a tre obiettivi

L'algoritmo proposto nella sezione 5.3 per il calcolo dell'ipervolume su spazi delle funzioni obiettivo a tre dimensioni può essere modificato in modo da determinare il contributo di ciascun punto all'ipervolume. Il nuovo algoritmo parte dalla lista di punti non dominati P ordinata nel senso crescente della coordinata f_3 . Tutti i punti appartenenti alla lista vengono visitati e, con riferimento alle proiezioni sul piano (f_1, f_2) , viene mantenuta una lista T dei punti visitati e non dominati, ordinata in senso crescente della coordinata f_2 . La porzione di spazio esclusivamente dominata da un generico punto viene idealmente suddivisa in prismi, i quali vengono determinati durante l'esplorazione della lista P. Al fine di chiarire il funzionamento dell'algoritmo, viene proposta la Figura 5.9.

Figura 5.9: Prismi relativi al punto p nel momento in cui viene visitato

In particolare la Figura si riferisce al momento dell'esecuzione in cui viene visitato il punto p della lista P. In nero sono evidenziati i punti che compongono la lista T fin a quel momento, mentre i rettangoli in arancione indicano le porzioni di piano esclusivamente dominate da p. Ognuno di questi rettangoli costituisce la base inferiore di un prisma associato al punto p. Tutti i prismi relativi ad ogni punto vengono salvati e descritti mediante due vertici l e u, come mostrato nella Figura 5.10. Quando un prisma viene creato vengono fissate le coordinate di l e le coordinate $f_1 e f_2$ di u.

Visitando il punto p' successivo a p nella lista P, i prismi di p che sono parzialmente o totalmente dominati da p' devono essere chiusi, dove con chiudere si intende fissare la coordinata f_3 del vertice u. Con riferimento alla Figura 5.11, il prisma B è parzialmente dominato mentre il prisma C è totalmente dominato da p'. Entrambi i prismi vengono pertanto chiusi e un nuovo prisma D viene aperto per tener conto della parte del prisma B non dominata da p'.

Figura 5.10: Vertici $l \in u$ nello spazio a tre dimensioni (a) e loro proiezioni sul piano (f_1, f_2) (b)

Le operazioni compiute dall'algoritmo ad ogni iterazione possono essere riassunte come segue.

- Visitando il punto *p* vengono individuati i delimitatori esterni e i punti dominati da *p*.
- Vengono creati i prismi relativi a p. La coordinata f_3 dei vertici l di questi prismi viene posta pari alla corrispondente coordinata di p.
- Vengono chiusi i prismi relativi ai punti dominati da p.
- Vengono aggiornati i prismi relativi ai delimitatori esterni. In particolare vengono chiusi i prismi parzialmente o totalmente dominati da p. Per tutti i prismi chiusi durante l'iterazione la coordinata f_3 dei vertici u viene posta pari alla corrispondente coordinata di p. Per ogni prisma dominato parzialmente viene creato un nuovo prisma che tiene conto

della porzione di spazio non dominata da p. I vertici bassi l di questi prismi hanno coordinata f_3 pari a quella di p.

• Viene aggiornata la lista T dei punti visitati e non dominati, aggiungendo p alla lista e rimuovendo i punti da esso dominati.

Figura 5.11: Prismi aperti relativi al punto p prima (a) e dopo (b) la visita del punto p^\prime

Visitati tutti i punti della lista P, vengono chiusi i prismi rimasti aperti fissando per i vertici u la coordinata f_3 pari a quella del punto di riferimento r. Per ogni punto viene dunque determinato il volume complessivo dei prismi

ad esso relativi, che corrisponde al contributo del punto all'ipervolume. Nella Figura 5.12 è proposto lo schema di flusso dell'algoritmo descritto sopra.

Figura 5.12: Schema di flusso per il calcolo dei contributi di tutti i punti all'ipervolume per spazio degli obiettivi a tre dimensioni

5.5 Risultati

Gli algoritmi descritti sopra sono stati impiegati per calcolare l'ipervolume, in due e tre dimensioni, di un'insieme di punti ottenuti da simulazioni sulla rete di Figura 4.1.

Più precisamente, per ottenere i punti si è utilizzato l'algoritmo evoluzionistico descritto al capitolo 4, ottimizzando di volta in volta una delle funzioni obiettivo. Terminate le simulazioni si sono dunque messe assieme le popolazioni finali di ciascun processo di ottimizzazione e si sono estratti da questo insieme i punti non dominati. L'algoritmo evoluzionistico è stato applicato prendendo in considerazione solo il quarto d'ora compreso tra le 18:45 e le 19:00, e i parametri utilizzati per l'ottimizzazione di ciascuna funzione obiettivo sono riportati nella tabella A.12 dell'appendice A.

Le funzioni obiettivo prese in considerazione, già introdotte al capitolo 2, sono riportate di seguito:

$$f_1 = W_{perdite} = \sum_{j=1}^{J} \sum_{b=1}^{B} R_b I_{jb}^2 \Delta$$
(5.4)

$$f_2 = \Delta V max = \max\left\{ \left| V^{(r)} - \max_{n \in \mathbf{N}} (V_n) \right|, \left| V^{(r)} - \min_{n \in \mathbf{N}} (V_n) \right| \right\}$$
(5.5)

$$f_3 = \Delta V' = \sum_{j=1}^{J} \sum_{n \in \mathbf{N}} C_n E_{n,j} \left(V_{n,j} - V^{(r)} \right)^2$$
(5.6)

I coefficienti C_n usati per il calcolo della funzione f_3 sono riportati nella tabella A.13.

Di seguito sono riportati i risultati ottenuti dal calcolo dell'ipervolume considerando due e tre funzioni obiettivo.

Ottimizzazione rispetto a due funzioni obiettivo

Per il calcolo dell'ipervolume su due dimensioni si sono considerate le funzioni obiettivo f_1 e f_3 , calcolate secondo le equazioni 5.4 e 5.6. I punti non dominati utilizzati e il punto di riferimento r sono indicati nella tabella A.14 dell'appendice A.

Il valore dell'ipervolume trovato è pari a $4.1088 \cdot 10^{-4}$, corrispondente all'area della regione di piano evidenziata in Figura 5.13.

Il contributo di ciascun punto all'ipervolume è stato inoltre calcolato utilizzando l'algoritmo descritto nella sezione 5.4. La tabella A.15 dell'appendice A presenta la lista dei punti non dominati ordinati in senso decrescente del contributo all'ipervolume.

Figura 5.13: Ipervolume calcolato usando come funzioni obiettivo $f_1 \in f_3$

Ottimizzazione rispetto a tre funzioni obiettivo

Figura 5.14: Ipervolume calcolato usando come funzioni obiettivo f_1,f_2 e f_3

I punti non dominati e il punto di riferimento utilizzati per il calcolo dell'ipervolume su tre dimensioni sono proposti nella tabella A.30 dell'appendice A. Il valore dell'ipervolume trovato è pari a $1.0844 \cdot 10^{-5}$, corrispondente al volume della regione di spazio evidenziata in Figura 5.14.

La lista dei punti ordinata in base ai contributi all'ipervolume è presentata nella tabella A.31 dell'appendice A.

Le figure 5.15 e 5.16 riportano la crescita dell'ipervolume e le proiezioni dei punti di T sui piani (f_1, f_2) , $(f_1, f_3) \in (f_2, f_3)$ durante le iterazioni dell'algoritmo con riferimento agli istanti in cui vengono visitati i punti 8(a), 9(b), 10(c) e 11(d).

Figura 5.15: Crescita dell'ipervolume durante le iterazioni dell'algoritmo

Figura 5.16: Proiezioni dei punti di T sui piani (f_1, f_2) , (f_1, f_3) e (f_2, f_3) durante le iterazioni dell'algoritmo

Capitolo 6 Applicazioni

6.1 Riconfigurazione ottimale

Gli algoritmi descritti al capitolo 3 sono stati impiegati per risolvere il problema della riconfigurazione ottimale per la rete di Figura 6.1.

Figura 6.1: Rete oggetto della riconfigurazione ottimale

Figura 6.2: Profili di potenza attiva assorbita (a) e generata (b) e di potenza reattiva (c) relativi al nodo 47

In particolare la rete è costituita da 206 nodi e 213 rami ed è possibile estrarre

 $1.5164 \cdot 10^8$ configurazioni radiali mantenendo 7 rami aperti. I dati dei rami sono presentati nella tabella A.56 dell'appendice A, dove con R, $X \in B$ vengono indicati i parametri del modello a Π e con I_b^{max} il limite termico dei rami. Tutti i parametri sono espressi in per unità impiegando come valori base $S_{base} = 1$ MVA e $V_{base} = 10.5$ kV.

Le potenze assorbite e generate ai nodi della rete sono fornite mediante profili discretizzati in intervalli di un'ora. Esempi di tali profili sono proposti nella Figura 6.2 con riferimento al nodo 47.

L'ottimizzazione è stata condotta impiegando sia il miglioramento iterativo che il simulated annealing e i risultati ottenuti sono presentati nel seguito.

Risultati

La rete è stata ottimizzata considerando le perdite totali del sistema come funzione obiettivo. I vincoli considerati sono il limite termico dei rami (tabella A.56) e le massime e minime tensioni ammissibili ai nodi (1.1 e 0.9 p.u. rispettivamente).

Le configurazioni ottimali per ogni intervallo di tempo ottenute dall'esecuzione del miglioramento iterativo sono riportate nella tabella A.57 dell'appendice A e il valore ottimale delle perdite durante l'arco della giornata risulta pari a 1.3867 MWh.

La Figura 6.3 mostra l'andamento della funzione obiettivo con le iterazioni dell'algoritmo, con riferimento all'intervallo di tempo compreso tra le 16:00 e le 17:00, mentre la tabella 6.1 riporta le configurazioni migliori al termine di ciascuna iterazione.

Figura 6.3: Andamento delle perdite con le iterazioni del miglioramento iterativo per l'intervallo di tempo compreso tra le 16:00 e le 17:00

Iterazione		Rami aperti					
0	207	208	209	210	211	212	213
1	45	56	102	196	207	208	210
2	10	56	102	181	196	207	208
3	1	10	56	102	123	196	208
4	1	10	56	102	123	196	208

Tabella 6.1: Migliori configurazioni della rete al termine di ciascuna iterazione del miglioramento iterativo

Per quanto riguarda il simulated annealing, si è impiegata una funzione obiettivo penalizzata per la gestione dei vincoli. I coefficienti di penalità e i parametri dell'algoritmo utilizzati sono riassunti nella tabella A.58 dell'appendice A. In particolare nella tabella si indicano con ρ_1 , $\rho_2 \in \rho_3$ i coefficienti relativi ai vincoli di massima corrente dei rami, massima tensione e minima tensione dei nodi rispettivamente.

Il valore ottimale delle perdite ottenuto con il simulated annealing è pari a 1.5603 MWh e le configurazioni ottimali della rete durante la giornata sono riportate nella tabella A.59. In figura 6.4 viene riportato l'andamento della funzione obiettivo con le iterazioni dell'algoritmo nell'intervallo di tempo tra le 16:00 e le 17:00 mentre le relative configurazioni sono riportate nella tabella 6.2.

Figura 6.4: Andamento delle perdite con le iterazioni del simulated annealing per l'intervallo di tempo compreso tra le 16:00 e le 17:00

Iterazione	Rami aperti						
0	207	208	209	210	211	212	213
1	2	64	89	127	164	193	207
2	2	64	89	127	164	193	207
3	1	101	102	107	139	196	208
4	1	101	102	107	139	196	208
5	1	101	102	107	139	196	208
6	1	101	102	107	139	196	208
7	1	101	102	107	139	196	208
8	1	101	102	107	139	196	208

Tabella 6.2: Migliori configurazioni della rete al termine di ciascuna iterazione del simulated annealing

La figura 6.5 confronta l'andamento delle perdite della rete nel caso base e dopo l'ottimizzazione con i due metodi descritti. L'andamento della tensione al nodo 106 è inoltre riportata in figura 6.6 nei tre casi mentre nella figura 6.7 vengono proposti i profili di tensione nell'ora compresa tra le 21:00 e le 22:00.

Figura 6.5: Andamento delle perdite durante la giornata

Figura 6.6: Andamento della tensione al nodo 106 durante la giornata

Figura 6.7: Profili di tensione tra le 21:00 e le 22:00

Infine nella tabella 6.3 vengono riassunti i valori delle perdite totali della rete prima dell'ottimizzazione e dopo l'esecuzione del miglioramento iterativo e del simulated annealing.

Caso	Perdite [MWh]
Miglioramento iterativo	1.3867
Simulated annealing	1.5603
Caso base	2.7832

Tabella 6.3: Consuntivo delle perdite totali della rete

Appendice A

Tabelle

A.1 Implementazione riconfigurazione ottimale

Nodo	P[pu]	Q[pu]	G[pu]	B[pu]
S1	0	0	0	0
S2	0	0	0	0
S3	0	0	0	0
04	2	1.6	0	0
05	3	1.5	0	1.1
06	2	0.8	0	1.2
07	1.5	1.2	0	0
08	4	2.7	0	0
09	5	3	0	1.2
10	1	0.9	0	0
11	0.6	0.1	0	0.6
12	4.5	2	0	3.7
13	1	0.9	0	0
14	1	0.7	0	1.8
15	1	0.9	0	0
16	2.1	1	0	1.8

Tabella A.1: Carichi della rete a 16 nodi

Ramo	Nodo di partenza	Nodo di arrivo	R[pu]	X[pu]	B[pu]
R01	S01	04	0.00075	0.001	0
R02	S02	08	0.0011	0.0011	0
R03	S03	13	0.0011	0.0011	0
R04	04	05	0.0008	0.0011	0
R05	04	06	0.0009	0.0018	0
R06	05	11	0.0004	0.0004	0
R07	06	07	0.0004	0.0004	0
R08	07	16	0.0009	0.0012	0
R09	08	09	0.0008	0.0011	0
R10	08	10	0.0011	0.0011	0
R11	09	11	0.0011	0.0011	0
R12	09	12	0.0008	0.0011	0
R13	10	14	0.0004	0.0004	0
R14	13	14	0.0009	0.0012	0
R15	13	15	0.0008	0.0011	0
R16	15	16	0.0004	0.0004	0

Tabella A.2: Dati dei rami per la rete a 16 nodi

	Rete ridotta	Rete originaria	Molteplicità
ſ	А	R01	1
	В	R02	1
	\mathbf{C}	R03	1
	D	R04, R06, R09, R11	4
	E	R10, R13, R14	3
	F	R05, R07, R08, R15, R16	5

Tabella A.3: Rami della rete a 16 nodi ridotta

N°	Rami aperti
1	DFΕ
2	C D F
3	ВDF
4	ΒFΕ
5	$\mathbf{B} \mathbf{C} \mathbf{E}$
6	$\mathbf{B} \mathbf{C} \mathbf{F}$
7	C D E
8	$\mathbf{B} \mathbf{C} \mathbf{D}$
9	A D E
10	ΑFΕ
11	$A \subset F$
12	$A \subset E$
13	A C D
14	ΑBΕ
15	A B D
16	АВF

Tabella A.4: Configurazioni radiali della rete a 16 nodi ridotta

A.2 Pianificazione della generazione distribuita con riconfigurazione

Ramo	Da	A	R[pu]	X[pu]	B[pu]	$S_{lim}[pu]$		
1	42	41	0.000233	0.000122	0.000000	10.3923		
2	44	43	0.000210	0.000110	0.000000	10.3923		
3	46	45	0.000276	0.000144	0.000000	10.3923		
4	42	47	0.000129	0.000067	0.000000	10.3923		
5	44	48	0.000162	0.000085	0.000000	10.3923		
6	50	49	0.000279	0.000146	0.000000	10.3923		
7	50	51	0.000185	0.000097	0.000000	10.3923		
8	22	52	0.000211	0.000111	0.000000	10.3923		
9	21	42	0.000053	0.000028	0.000000	10.3923		
10	53	46	0.000229	0.000120	0.000000	10.3923		
11	51	54	0.000225	0.000118	0.000000	10.3923		
12	55	50	0.000498	0.000261	0.000000	10.3923		
13	57	56	0.000216	0.000113	0.000000	10.3923		
····								

Ramo	Da	A	R[pu]	X[pu]	B[pu]	$S_{lim}[pu]$
14	58	44	0.000165	0.000086	0.000000	10.3923
15	60	59	0.000299	0.000157	0.000000	10.3923
16	41	61	0.000419	0.000219	0.000000	10.3923
17	44	53	0.000142	0.000074	0.000000	10.3923
18	62	57	0.000141	0.000074	0.000000	10.3923
19	57	58	0.000170	0.000089	0.000000	10.3923
20	63	62	0.001529	0.000801	0.000000	10.3923
21	65	64	0.000192	0.000101	0.000000	10.3923
22	61	66	0.000195	0.000102	0.000000	10.3923
23	68	67	0.000145	0.000076	0.000000	10.3923
24	69	60	0.000176	0.000092	0.000000	10.3923
25	16	70	0.000062	0.000032	0.000000	10.3923
26	62	71	0.000182	0.000095	0.000000	10.3923
27	72	55	0.000186	0.000098	0.000000	10.3923
28	73	65	0.000132	0.000069	0.000000	10.3923
29	75	74	0.000178	0.000093	0.000000	10.3923
30	2	76	0.000232	0.000121	0.000000	10.3923
31	71	75	0.000187	0.000098	0.000000	10.3923
32	77	68	0.000154	0.000080	0.000000	10.3923
33	79	78	0.000218	0.000114	0.000000	10.3923
34	13	80	0.000037	0.000019	0.000000	10.3923
35	74	81	0.000096	0.000050	0.000000	10.3923
36	83	82	0.000158	0.000083	0.000000	10.3923
37	84	72	0.000190	0.000100	0.000000	10.3923
38	86	85	0.000322	0.000169	0.000000	10.3923
39	83	73	0.000173	0.000091	0.000000	10.3923
40	88	87	0.000192	0.000100	0.000000	10.3923
41	55	79	0.000190	0.000099	0.000000	10.3923
42	87	77	0.000154	0.000081	0.000000	10.3923
43	72	89	0.000196	0.000102	0.000000	10.3923
44	20	83	0.000039	0.000020	0.000000	10.3923
45	77	90	0.000144	0.000076	0.000000	10.3923
46	23	91	0.000077	0.000040	0.000000	10.3923
47	93	92	0.000212	0.000111	0.000000	10.3923
48	94	69	0.000219	0.000115	0.000000	10.3923
49	95	88	0.000145	0.000076	0.000000	10.3923
50	97	96	0.000220	0.000115	0.000000	10.3923

Ramo	Da	А	R[pu]	X[pu]	$B[\mathrm{pu}]$	$S_{lim}[pu]$			
51	98	84	0.000379	0.000199	0.000000	10.3923			
52	40	94	0.000135	0.000071	0.000000	10.3923			
53	33	99	0.000115	0.000060	0.000000	10.3923			
54	100	97	0.000249	0.000130	0.000000	10.3923			
55	33	101	0.000078	0.000041	0.000000	10.3923			
56	37	102	0.000168	0.000088	0.000000	10.3923			
57	84	103	0.000161	0.000084	0.000000	10.3923			
58	40	104	0.000062	0.000032	0.000000	10.3923			
59	105	86	0.000282	0.000148	0.000000	10.3923			
60	99	106	0.000143	0.000075	0.000000	10.3923			
61	107	95	0.000185	0.000097	0.000000	10.3923			
62	109	108	0.000187	0.000098	0.000000	10.3923			
63	110	109	0.000168	0.000088	0.000000	10.3923			
64	12	111	0.000075	0.000039	0.000000	10.3923			
65	112	98	0.000190	0.000100	0.000000	10.3923			
66	10	113	0.000041	0.000022	0.000000	10.3923			
67	115	114	0.000269	0.000141	0.000000	10.3923			
68	63	100	0.001424	0.000746	0.000000	10.3923			
69	116	110	0.000140	0.000073	0.000000	10.3923			
70	3	105	0.000151	0.000079	0.000000	10.3923			
71	117	112	0.000220	0.000115	0.000000	10.3923			
72	108	118	0.000210	0.000110	0.000000	10.3923			
73	28	93	0.000130	0.000068	0.000000	10.3923			
74	63	107	0.001136	0.000595	0.000000	10.3923			
75	27	119	0.000154	0.000081	0.000000	10.3923			
76	63	117	0.000660	0.000346	0.000000	10.3923			
77	63	120	0.001041	0.000545	0.000000	10.3923			
78	25	121	0.000116	0.000061	0.000000	10.3923			
79	123	122	0.000198	0.000104	0.000000	10.3923			
80	104	115	0.000269	0.000141	0.000000	10.3923			
81	35	124	0.000074	0.000039	0.000000	10.3923			
82	10	116	0.000170	0.000089	0.000000	10.3923			
83	122	125	0.000110	0.000057	0.000000	10.3923			
84	127	126	0.000156	0.000082	0.000000	10.3923			
85	129	128	0.000185	0.000097	0.000000	10.3923			
86	120	130	0.000163	0.000085	0.000000	10.3923			
87	132	131	0.000139	0.000073	0.000000	10.3923			

Ramo	Da	A	R[pu]	X[pu]	$B[\mathrm{pu}]$	$S_{lim}[pu]$		
88	133	132	0.000165	0.000087	0.000000	10.3923		
89	8	134	0.000042	0.000022	0.000000	10.3923		
90	11	123	0.000031	0.000016	0.000000	10.3923		
91	136	135	0.000138	0.000072	0.000000	10.3923		
92	15	137	0.000014	0.000007	0.000000	10.3923		
93	131	136	0.000142	0.000075	0.000000	10.3923		
94	63	127	0.000372	0.000195	0.000000	10.3923		
95	11	138	0.000112	0.000059	0.000000	10.3923		
96	124	139	0.000174	0.000091	0.000000	10.3923		
97	139	140	0.000218	0.000114	0.000000	10.3923		
98	141	129	0.000196	0.000252	0.000000	17.8401		
99	39	142	0.000078	0.000041	0.000000	10.3923		
100	136	143	0.000146	0.000077	0.000000	10.3923		
101	129	144	0.000207	0.000108	0.000000	10.3923		
102	130	133	0.000167	0.000088	0.000000	10.3923		
103	145	141	0.000065	0.000084	0.000000	17.8401		
104	63	146	0.000956	0.000501	0.000000	10.3923		
105	9	147	0.000009	0.000005	0.000000	10.3923		
106	147	148	0.000178	0.000093	0.000000	10.3923		
107	63	149	0.000000	0.000000	0.000000	17.8401		
108	151	150	0.000271	0.000142	0.000000	10.3923		
109	144	152	0.000316	0.000166	0.000000	10.3923		
110	153	151	0.000166	0.000087	0.000000	10.3923		
111	146	154	0.000216	0.000113	0.000000	10.3923		
112	156	155	0.000161	0.000084	0.000000	10.3923		
113	149	145	0.000038	0.000049	0.000000	17.8401		
114	148	153	0.000162	0.000085	0.000000	10.3923		
115	157	156	0.000318	0.000167	0.000000	10.3923		
116	151	158	0.000095	0.000050	0.000000	10.3923		
117	155	159	0.000270	0.000142	0.000000	10.3923		
118	161	160	0.000301	0.000158	0.000000	10.3923		
119	63	157	0.000376	0.000197	0.000000	10.3923		
120	163	162	0.000218	0.000114	0.000000	10.3923		
121	141	163	0.000197	0.000103	0.000000	10.3923		
122	165	164	0.000235	0.000123	0.000000	10.3923		
123	153	166	0.000154	0.000081	0.000000	10.3923		
124	166	167	0.000111	0.000058	0.000000	10.3923		
····								

Ramo	Da	A	R[pu]	X[pu]	B[pu]	$S_{lim}[pu]$
125	4	168	0.000122	0.000064	0.000000	10.3923
126	169	165	0.000251	0.000132	0.000000	10.3923
127	152	170	0.000320	0.000168	0.000000	10.3923
128	167	171	0.000305	0.000160	0.000000	10.3923
129	159	169	0.000235	0.000123	0.000000	10.3923
130	165	172	0.000215	0.000113	0.000000	10.3923
131	170	161	0.000271	0.000142	0.000000	10.3923
132	31	173	0.000169	0.000088	0.000000	10.3923
133	175	174	0.000981	0.000911	0.000000	8.6602
134	161	176	0.000245	0.000128	0.000000	10.3923
135	176	177	0.000143	0.000075	0.000000	10.3923
136	38	178	0.000975	0.000905	0.000000	8.6602
137	180	179	0.000196	0.000102	0.000000	10.3923
138	177	181	0.000121	0.000064	0.000000	10.3923
139	32	175	0.000015	0.000008	0.000000	10.3923
140	34	182	0.000113	0.000059	0.000000	10.3923
141	6	180	0.000293	0.000153	0.000000	10.3923
142	6	183	0.000114	0.000060	0.000000	10.3923
143	175	184	0.001355	0.001258	0.000000	8.6602
144	34	185	0.000266	0.000139	0.000000	10.3923
145	34	186	0.000246	0.000129	0.000000	10.3923
146	185	187	0.000164	0.000086	0.000000	10.3923
147	14	188	0.000732	0.000680	0.000000	8.6602
148	14	189	0.000503	0.000467	0.000000	8.6602
149	187	190	0.000189	0.000099	0.000000	10.3923
150	178	191	0.000794	0.000737	0.000000	8.6602
151	193	192	0.000877	0.000814	0.000000	8.6602
152	195	194	0.000200	0.000105	0.000000	10.3923
153	196	195	0.000651	0.000604	0.000000	8.6602
154	190	196	0.001572	0.001460	0.000000	8.6602
155	197	193	0.001080	0.001003	0.000000	8.6602
156	189	197	0.000843	0.000783	0.000000	8.6602
157	193	198	0.000863	0.000801	0.000000	8.6602
158	196	199	0.001413	0.001312	0.000000	8.6602
159	198	200	0.000870	0.000808	0.000000	8.6602
160	199	201	0.001013	0.000941	0.000000	8.6602
161	201	202	0.000799	0.000742	0.000000	8.6602

Ramo	Da	А	R[pu]	X[pu]	B[pu]	$S_{lim}[pu]$			
162	168	1	0.000296	0.000155	0.000000	10.3923			
163	30	2	0.000214	0.000112	0.000000	10.3923			
164	122	3	0.000071	0.000037	0.000000	10.3923			
165	162	4	0.000212	0.000111	0.000000	10.3923			
166	126	5	0.000149	0.000078	0.000000	10.3923			
167	181	6	0.000266	0.000140	0.000000	10.3923			
168	145	7	0.000065	0.000034	0.000000	10.3923			
169	139	8	0.000163	0.000085	0.000000	10.3923			
170	146	9	0.002218	0.002059	0.000000	8.6602			
171	27	10	0.000332	0.000308	0.000000	8.6602			
172	63	11	0.000259	0.000136	0.000000	10.3923			
173	26	12	0.000117	0.000062	0.000000	10.3923			
174	85	13	0.000175	0.000092	0.000000	10.3923			
175	24	14	0.000541	0.000502	0.000000	8.6602			
176	147	15	0.000304	0.000283	0.000000	8.6602			
177	17	16	0.000141	0.000131	0.000000	8.6602			
178	46	17	0.000319	0.000296	0.000000	8.6602			
179	101	18	0.000093	0.000087	0.000000	8.6602			
180	167	19	0.000488	0.000453	0.000000	8.6602			
181	101	20	0.000304	0.000283	0.000000	8.6602			
182	59	21	0.000746	0.000693	0.000000	8.6602			
183	51	22	0.000351	0.000326	0.000000	8.6602			
184	94	23	0.000451	0.000419	0.000000	8.6602			
185	184	24	0.000380	0.000353	0.000000	8.6602			
186	138	25	0.000207	0.000109	0.000000	10.3923			
187	5	26	0.000138	0.000073	0.000000	10.3923			
188	130	27	0.000281	0.000261	0.000000	8.6602			
189	35	28	0.000149	0.000078	0.000000	10.3923			
190	97	29	0.000057	0.000030	0.000000	10.3923			
191	89	30	0.000107	0.000056	0.000000	10.3923			
192	172	31	0.000347	0.000182	0.000000	10.3923			
193	173	32	0.001068	0.000991	0.000000	8.6602			
194	90	33	0.000240	0.000223	0.000000	8.6602			
195	183	34	0.000131	0.000069	0.000000	10.3923			
196	5	35	0.000103	0.000054	0.000000	10.3923			
197	126	36	0.000032	0.000017	0.000000	10.3923			
198	81	37	0.000223	0.000117	0.000000	10.3923			
Ramo	Da	А	R[pu]	X[pu]	$B[\mathrm{pu}]$	$S_{lim}[pu]$			
------	-----	-----	----------	----------	------------------	---------------			
199	32	38	0.000142	0.000132	0.000000	8.6602			
200	8	39	0.000474	0.000440	0.000000	8.6602			
201	29	40	0.000104	0.000055	0.000000	10.3923			
202	64	53	0.000361	0.000189	0.000000	10.3923			
203	76	74	0.000970	0.000508	0.000000	10.3923			
204	78	60	0.000721	0.000378	0.000000	10.3923			
205	119	106	0.000283	0.000148	0.000000	10.3923			
206	150	143	0.000525	0.000275	0.000000	10.3923			
207	154	139	0.000245	0.000128	0.000000	10.3923			
208	174	171	0.001074	0.000998	0.000000	8.6602			
209	193	196	0.001084	0.002168	0.000000	14.7224			
210	0	63	0.000050	0.001667	0.000000	120.0000			

Tabella A.5: Dati dei rami della rete a 202 nodi

Genera	le	
Parametro	Caso 1	Caso 2
ξ (seme numeri casuali)	1	1
C_{pen}	10	10
Simulated anneali	ng (sez.	3.3)
Parametro	Caso 1	Caso 2
p_o	0.1	0.1
N _o	200	200
C_o	5.065	979.53
δ	0	0
$N_{accettate}$	50	50
Nanalizzate	100	100
N_s	2	2
α	0.98	0.98
Algoritmo evolu	izionisti	co
Parametro	Caso 1	Caso 2
$p_{crossover}$	0.5	0.5
$p_{mutazione}$	0.1	0.1
$n_{popolazione}$	100	50
$n_{generatori}$	202	10
n_{elite}	1	1
N_{stop}	5	5
N _{max}	150	150
P_0 [pu]	0.5	2

Tabella A.6: Parametri impiegati per l'ottimizzazione

Nodo	P[MW]	Nodo	P[MW]	Nodo	P[MW]	Nodo	P[MW]
1	0.20	34	0.50	71	0.10	106	0.10
2	0.50	35	0.20	72	0.20	107	0.40
3	0.30	36	0.20	75	0.20	108	0.50
4	0.30	37	0.10	76	0.10	109	0.30
7	0.10	38	0.30	78	0.50	111	0.30
8	0.40	39	0.40	79	0.30	112	0.50
9	0.30	40	0.50	80	0.20	113	0.10
10	0.50	43	0.20	81	0.20	115	0.30
11	0.10	44	0.10	82	0.40	116	0.30
12	0.20	45	0.30	83	0.40	117	0.40
13	0.10	46	0.30	84	0.30	118	0.20
			•	••			•

Nodo	P[MW]	Nodo	P[MW]	Nodo	P[MW]	Nodo	P[MW]
14	0.30	47	0.20	85	0.10	119	0.40
15	0.50	49	0.30	86	0.30	121	0.50
16	0.40	50	0.30	87	0.50	123	0.20
17	0.20	52	0.10	88	0.50	128	0.10
18	0.10	53	0.50	89	0.30	129	0.20
19	0.10	55	0.30	90	0.30	163	0.10
20	0.30	56	0.50	91	0.10	174	0.50
21	0.20	57	0.30	92	0.40	175	0.50
22	0.40	60	0.50	93	0.50	176	0.40
23	0.20	61	0.50	94	0.50	177	0.50
24	0.40	62	0.30	95	0.10	179	0.20
25	0.30	63	0.10	96	0.50	180	0.30
27	0.30	64	0.30	97	0.20	181	0.40
29	0.10	65	0.10	98	0.10	182	0.30
30	0.30	66	0.40	99	0.10	183	0.50
31	0.20	67	0.30	100	0.30		
32	0.20	68	0.40	101	0.50		
33	0.30	69	0.10	102	0.10		

Tabella A.7: Posizione e taglia dei generatori da installare senza vincolo sul numero di installazioni

Ora				Rami	apert	i		
0:00-0:15	28	45	96	124	155	170	203	204
0:15-0:30	28	45	96	124	155	170	203	204
0:30-0:45	28	45	96	124	155	170	203	204
0:45-1:00	28	45	96	124	155	170	203	204
1:00-1:15	28	45	96	124	155	170	203	204
1:15-1:30	28	45	96	124	155	170	203	204
1:30-1:45	28	45	96	124	155	170	203	204
1:45-2:00	28	45	96	124	155	170	203	204
2:00-2:15	28	45	96	124	155	170	203	204
2:15-2:30	28	45	96	124	155	170	203	204
2:30-2:45	28	45	96	124	155	170	203	204
2:45-3:00	28	45	96	124	155	170	203	204
3:00-3:15	28	45	96	124	155	170	203	204
3:15-3:30	28	45	96	124	155	170	203	204
3:30-3:45	28	45	96	124	155	170	191	204
				_				

				•				
Ora				Rami	apert	i		
3:45-4:00	28	45	96	124	155	170	191	204
4:00-4:15	28	45	96	124	155	170	191	204
4:15-4:30	28	45	96	110	124	155	191	204
4:30-4:45	28	96	110	124	155	191	194	204
4:45-5:00	28	96	110	124	155	191	194	204
5:00-5:15	28	96	110	124	155	191	194	204
5:15-5:30	28	96	110	124	155	191	194	204
5:30-5:45	28	96	110	124	155	191	194	204
5:45-6:00	28	96	110	124	155	191	194	204
6:00-6:15	28	96	110	124	155	191	194	204
6:15-6:30	28	96	110	124	155	191	194	204
6:30-6:45	28	96	110	124	155	191	194	204
6:45-7:00	28	96	110	124	155	191	194	204
7:00-7:15	28	96	110	124	155	191	194	204
7:15-7:30	28	96	110	124	156	163	194	204
7:30-7:45	28	96	110	124	156	163	194	204
7:45-8:00	28	96	110	124	156	163	194	204
8:00-8:15	28	96	110	124	156	163	194	204
8:15-8:30	28	96	110	124	156	163	194	204
8:30-8:45	28	96	110	124	156	163	194	204
8:45-9:00	28	96	110	124	156	163	194	204
9:00-9:15	28	53	108	111	128	156	163	204
9:15-9:30	28	53	108	111	128	156	163	204
9:30-9:45	28	53	108	111	128	156	163	204
9:45-10:00	28	53	108	111	128	156	163	204
10:00-10:15	28	53	108	111	128	156	163	204
10:15-10:30	28	53	108	111	128	156	163	204
10:30-10:45	28	53	108	111	128	156	163	204
10:45-11:00	28	53	108	111	128	156	163	204
11:00-11:15	28	53	108	111	128	156	163	204
11:15-11:30	28	53	108	111	128	156	163	204
11:30-11:45	28	53	108	111	128	156	163	204
11:45-12:00	28	53	108	111	128	156	163	204
12:00-12:15	28	53	108	111	128	156	163	204
12:15-12:30	28	53	108	111	128	156	163	204
12:30-12:45	28	53	108	111	128	148	163	204
12:45-13:00	28	53	108	111	128	148	163	204

				•				
Ora				Rami	apert	i		
13:00-13:15	28	53	108	111	128	148	163	204
13:15-13:30	28	53	108	111	128	148	163	204
13:30-13:45	28	53	108	111	128	148	163	204
13:45-14:00	28	53	108	111	128	148	163	204
14:00-14:15	28	53	108	111	128	148	163	204
14:15-14:30	28	53	108	111	128	148	163	204
14:30-14:45	28	53	108	111	128	148	163	204
14:45-15:00	26	28	53	108	111	128	148	204
15:00-15:15	26	28	53	108	111	128	148	204
15:15-15:30	26	28	53	108	111	128	148	204
15:30-15:45	26	28	53	108	111	128	148	204
15:45-16:00	26	28	53	108	111	128	148	204
16:00-16:15	26	28	53	108	111	128	148	204
16:15-16:30	26	28	53	108	111	128	148	204
16:30-16:45	26	28	53	108	111	128	148	204
16:45-17:00	26	28	108	111	128	148	204	205
17:00-17:15	26	28	108	111	128	148	204	205
17:15-17:30	26	28	108	111	128	148	204	205
17:30-17:45	26	28	108	111	128	148	204	205
17:45-18:00	26	28	108	111	128	148	204	205
18:00-18:15	26	28	108	111	128	148	204	205
18:15-18:30	26	28	108	111	128	148	204	205
18:30-18:45	26	28	108	111	128	148	204	205
18:45-19:00	26	28	108	111	128	148	204	205
19:00-19:15	26	28	108	111	128	148	204	205
19:15-19:30	26	28	108	111	128	148	204	205
19:30-19:45	26	28	108	111	128	148	204	205
19:45-20:00	26	28	108	111	128	148	204	205
20:00-20:15	26	28	108	111	128	148	204	205
20:15-20:30	28	43	108	111	128	148	204	205
20:30-20:45	28	43	108	111	128	148	204	205
20:45-21:00	28	43	108	111	128	148	204	205
21:00-21:15	28	43	110	111	128	148	204	205
21:15-21:30	28	43	110	111	128	148	204	205
21:30-21:45	28	31	110	111	128	148	204	205
21:45-22:00	28	31	110	111	128	148	204	205
22:00-22:15	28	31	110	111	128	148	204	205

				•						
Ora		Rami aperti								
22:15-22:30	31	110	111	128	148	202	204	205		
22:30-22:45	31	110	111	128	148	202	204	205		
22:45-23:00	31	110	111	128	148	202	204	205		
23:00-23:15	31	110	111	128	148	202	204	205		
23:15-23:30	31	110	111	128	148	202	204	205		
23:30-23:45	31	110	111	128	148	202	204	205		
23:45-24:00	31	44	45	110	111	128	148	204		

Tabella A.8: Configurazioni ottimali della rete a 202 nodi nel Caso1

Nodo	80	88	168	128	163	119	92	70	109	47
P[MW]	1.60	1.60	0.80	2.00	0.40	2.00	1.20	2.00	2.00	2.00

Tabella A.9: Taglia e nodo di installazione dei generatori nel Caso2

Ora				Ram	i aper	ti		
0:00-0:15	21	52	75	110	111	133	163	209
0:15-0:30	21	52	75	110	111	133	163	209
0:30-0:45	21	52	75	110	111	133	163	209
0:45-1:00	21	52	75	110	111	133	163	209
1:00-1:15	21	52	75	110	111	133	163	209
1:15-1:30	21	52	75	110	111	133	163	209
1:30-1:45	21	52	75	110	111	133	163	209
1:45-2:00	21	52	75	110	111	133	163	209
2:00-2:15	21	52	75	110	111	133	163	209
2:15-2:30	21	52	75	110	111	133	163	209
2:30-2:45	21	75	110	111	163	204	208	209
2:45-3:00	21	75	110	111	163	204	208	209
3:00-3:15	21	75	110	111	163	204	208	209
3:15-3:30	21	75	110	111	163	204	208	209
3:30-3:45	21	75	110	111	163	204	208	209
3:45-4:00	21	75	110	111	163	204	208	209
4:00-4:15	21	75	110	111	163	204	208	209
4:15-4:30	21	75	110	111	163	204	208	209
4:30-4:45	21	75	110	111	163	204	208	209
4:45-5:00	21	75	110	111	163	204	208	209
5:00-5:15	21	75	110	111	163	204	208	209

				••				
Ora				Ram	i aper	ti		
5:15-5:30	21	75	110	111	163	204	208	209
5:30-5:45	21	75	110	111	163	204	208	209
5:45-6:00	21	75	110	111	163	204	208	209
6:00-6:15	21	75	110	111	163	204	208	209
6:15-6:30	21	75	110	111	163	204	208	209
6:30-6:45	21	75	110	111	163	204	208	209
6:45-7:00	21	75	110	111	163	204	208	209
7:00-7:15	21	75	110	111	163	204	208	209
7:15-7:30	21	75	110	111	163	204	208	209
7:30-7:45	21	75	110	111	163	204	208	209
7:45-8:00	21	75	110	111	163	204	208	209
8:00-8:15	21	75	110	111	163	204	208	209
8:15-8:30	21	75	110	111	163	204	208	209
8:30-8:45	21	75	110	111	163	204	208	209
8:45-9:00	21	75	110	111	163	204	208	209
9:00-9:15	21	75	110	111	163	204	208	209
9:15-9:30	21	75	110	111	163	204	208	209
9:30-9:45	21	75	110	111	163	204	208	209
9:45-10:00	21	75	110	111	163	204	208	209
10:00-10:15	21	75	110	111	163	204	208	209
10:15-10:30	21	30	75	110	111	204	208	209
10:30-10:45	21	30	75	110	111	204	208	209
10:45-11:00	21	30	75	110	111	204	208	209
11:00-11:15	21	30	75	110	111	204	208	209
11:15-11:30	21	30	75	110	111	204	208	209
11:30-11:45	21	30	75	110	111	204	208	209
11:45-12:00	21	30	75	110	111	204	208	209
12:00-12:15	21	30	75	110	111	204	208	209
12:15-12:30	21	30	75	110	111	204	208	209
12:30-12:45	21	30	75	110	111	204	208	209
12:45-13:00	21	30	75	110	111	204	208	209
13:00-13:15	21	30	75	110	111	204	208	209
13:15-13:30	21	30	75	110	111	204	208	209
13:30-13:45	21	30	75	110	111	204	208	209
13:45-14:00	21	30	75	110	111	204	208	209
14:00-14:15	21	30	75	110	111	204	208	209
14:15-14:30	21	30	75	110	111	204	208	209

			•					
Ora				Ram	i aper	ti		
14:30-14:45	21	30	75	110	111	204	208	209
14:45-15:00	21	30	75	110	111	204	208	209
15:00-15:15	21	30	75	110	111	204	208	209
15:15-15:30	21	30	75	110	111	204	208	209
15:30-15:45	21	30	75	110	111	204	208	209
15:45-16:00	21	30	75	110	111	204	208	209
16:00-16:15	21	30	75	110	111	204	208	209
16:15-16:30	21	30	75	110	111	204	208	209
16:30-16:45	21	30	75	110	111	204	208	209
16:45-17:00	21	30	75	110	111	204	208	209
17:00-17:15	21	43	75	110	111	204	208	209
17:15-17:30	21	43	75	110	111	204	208	209
17:30-17:45	21	43	75	110	111	204	208	209
17:45-18:00	21	43	75	110	111	204	208	209
18:00-18:15	21	43	75	110	111	204	208	209
18:15-18:30	21	43	53	110	111	204	208	209
18:30-18:45	21	43	53	110	111	204	208	209
18:45-19:00	21	43	53	110	111	204	208	209
19:00-19:15	21	43	53	110	111	204	208	209
19:15-19:30	21	43	53	110	111	204	208	209
19:30-19:45	21	43	53	110	111	204	208	209
19:45-20:00	21	43	53	110	111	204	208	209
20:00-20:15	21	43	53	110	111	204	208	209
20:15-20:30	21	43	53	110	111	204	208	209
20:30-20:45	21	43	53	110	111	204	208	209
20:45-21:00	21	43	53	110	111	204	208	209
21:00-21:15	21	43	53	110	111	204	208	209
21:15-21:30	21	43	53	110	111	204	208	209
21:30-21:45	21	43	53	110	111	204	208	209
21:45-22:00	21	43	53	110	111	204	208	209
22:00-22:15	21	30	53	110	204	207	208	209
22:15-22:30	21	30	53	110	204	207	208	209
22:30-22:45	21	30	53	110	204	207	208	209
22:45-23:00	21	30	75	110	133	204	207	209
23:00-23:15	21	30	75	110	133	204	207	209
23:15-23:30	21	30	75	110	133	204	207	209
23:30-23:45	21	30	75	110	133	204	207	209

Ora				Ram	i aper	ti		
23:45-24:00	21	30	75	110	133	204	207	209

Tabella A.10: Configurazioni ottimali della rete a 202 nodi nel Caso2

Ora				Rami	aperti	i		
0:00-24:00	202	203	204	205	206	207	208	209

Tabella A.11: Configurazione nel caso base

Generale										
Parametro	f_1	f_2	f_3							
ξ (seme numeri casuali)	1,2,3	1,2,3	1,2,3							
$V^{(r)}[pu]$	1	1	1							
Simulated annealing	(sez. 3.3)		,							
Parametro	f_1	f_2	f_3							
p_o	0.1	0.1	0.1							
N_o	10	10	10							
C_o	6.101	0.6093	0.6107							
δ	0	0	0							
$N_{accettate}$	10	10	10							
$N_{analizzate}$	50	50	50							
N_s	2	2	2							
α	0.98	0.98	0.98							
Algoritmo	evoluzionis	stico								
Parametro	f_1	f_2	f_3							
$p_{crossover}$	0.5	0.5	0.5							
$p_{mutazione}$	0.1	0.1	0.1							
$n_{popolazione}$	100	100	100							
$n_{generatori}$	202	202	202							
n_{elite}	1	1	1							
N_{stop}	10	10	10							
N_{max}	180	180	180							
P_0 [pu]	0.5	0.5	0.5							

A.3 Ottimizzazione multi-obiettivo: Calcolo dell'ipervolume

Tabella A.12: Parametri impiegati per l'ottimizzazione delle tre funzioni obiettivo

Nodo	C_n								
1	0.5	42	2.0	83	2.0	124	0.5	165	0.5
2	0.5	43	2.0	84	0.5	125	0.5	166	2.0
3	0.5	44	2.0	85	0.5	126	0.5	167	2.0
4	0.5	45	2.0	86	0.5	127	0.5	168	0.5
5	0.5	46	2.0	87	0.5	128	0.5	169	0.5
6	2.0	47	2.0	88	0.5	129	0.5	170	0.5
····									

Nodo	C_n								
7	0.5	48	2.0	89	0.5	130	0.5	171	2.0
8	0.5	49	2.0	90	2.0	131	0.5	172	0.5
9	2.0	50	2.0	91	2.0	132	0.5	173	0.5
10	0.5	51	2.0	92	0.5	133	0.5	174	2.0
11	0.5	52	2.0	93	0.5	134	0.5	175	2.0
12	0.5	53	2.0	94	2.0	135	0.5	176	2.0
13	0.5	54	2.0	95	0.5	136	0.5	177	2.0
14	2.0	55	0.5	96	2.0	137	2.0	178	2.0
15	2.0	56	0.5	97	2.0	138	0.5	179	2.0
16	2.0	57	0.5	98	0.5	139	0.5	180	2.0
17	2.0	58	2.0	99	2.0	140	0.5	181	2.0
18	2.0	59	2.0	100	0.5	141	0.5	182	2.0
19	2.0	60	2.0	101	2.0	142	0.5	183	2.0
20	2.0	61	2.0	102	2.0	143	0.5	184	2.0
21	2.0	62	0.5	103	0.5	144	0.5	185	2.0
22	2.0	63	0.5	104	2.0	145	0.5	186	2.0
23	2.0	64	2.0	105	0.5	146	0.5	187	2.0
24	2.0	65	2.0	106	2.0	147	2.0	188	2.0
25	0.5	66	2.0	107	0.5	148	2.0	189	2.0
26	0.5	67	2.0	108	0.5	149	0.5	190	2.0
27	0.5	68	2.0	109	0.5	150	2.0	191	2.0
28	0.5	69	2.0	110	0.5	151	2.0	192	2.0
29	2.0	70	2.0	111	0.5	152	0.5	193	2.0
30	0.5	71	0.5	112	0.5	153	2.0	194	2.0
31	0.5	72	0.5	113	0.5	154	0.5	195	2.0
32	2.0	73	2.0	114	2.0	155	0.5	196	2.0
33	2.0	74	0.5	115	2.0	156	0.5	197	2.0
34	2.0	75	0.5	116	0.5	157	0.5	198	2.0
35	0.5	76	0.5	117	0.5	158	2.0	199	2.0
36	0.5	77	2.0	118	0.5	159	0.5	200	2.0
37	0.5	78	0.5	119	0.5	160	2.0	201	2.0
38	2.0	79	0.5	120	0.5	161	2.0	202	2.0
39	0.5	80	0.5	121	0.5	162	0.5		
40	2.0	81	0.5	122	0.5	163	0.5		
41	2.0	82	2.0	123	0.5	164	0.5		

Tabella A.13: Pesi dei nodi per il calcolo di $f_{\rm 3}$

Punto	f_1	f_3
1	0.20414	0.00586
2	0.20352	0.00594
3	0.20417	0.00559
4	0.20528	0.00559
5	0.20212	0.00609
6	0.22189	0.00542
7	0.20346	0.00608
8	0.20198	0.00687
9	0.12376	0.01440
10	0.12688	0.01377
11	0.24185	0.00541
12	0.24232	0.00516
13	0.24294	0.00510
r	0.24294	0.01440

Tabella A.14: Punti non dominati e punto di riferimento per il calcolo dell'ipervolume su due dimensioni

Punto	Contributo
2	$473756.586657 \cdot 10^{-10}$
10	$33193.287121 \cdot 10^{-10}$
4	$10523.240123 \cdot 10^{-10}$
3	$9820.350441 \cdot 10^{-10}$
8	$2990.040820 \cdot 10^{-10}$
12	$1575.926261 \cdot 10^{-10}$
9	$1032.466838 \cdot 10^{-10}$
6	$887.303081 \cdot 10^{-10}$
11	$63.282998 \cdot 10^{-10}$
7	$21.296841 \cdot 10^{-10}$
5	$2.966975 \cdot 10^{-10}$
1	0
13	0

Tabella A.15: Punti ordinati in senso decrescente del contributo all'ipervolume per ottimizzazione rispetto a due obiettivi

Nodo	P[MW]								
1	0.2	43	1.0	81	0.8	127	1.0	167	0.6
3	1.0	44	1.0	82	0.8	128	0.4	169	0.4
4	0.8	45	0.6	83	0.2	129	0.8	170	0.4
5	0.6	46	0.8	84	0.8	130	0.4	171	0.2
6	0.6	47	1.0	85	0.2	131	1.0	172	0.2
7	0.2	48	0.8	86	0.8	132	0.2	173	0.8
8	1.0	49	0.2	88	1.0	133	0.6	174	0.6
9	0.2	50	0.4	89	0.8	134	0.2	175	0.4
10	0.4	51	0.4	90	0.8	135	1.0	176	1.0
11	0.2	52	1.0	92	0.8	136	0.6	177	0.2
12	0.8	53	1.0	95	0.8	137	0.2	178	0.4
14	1.0	54	0.8	96	1.0	138	1.0	179	0.2
15	0.4	55	0.4	97	1.0	139	0.4	180	1.0
16	0.8	56	0.8	98	0.8	140	0.4	181	1.0
17	0.8	57	0.8	99	0.8	141	0.2	182	1.0
18	0.8	58	1.0	100	0.4	142	0.6	184	0.6
19	0.8	59	0.8	101	0.2	143	0.4	185	0.4
20	0.6	60	0.2	102	0.4	144	0.6	186	0.4
21	0.2	61	0.2	103	0.2	145	0.8	188	1.0
22	0.4	62	0.6	105	0.2	146	0.4	189	1.0
23	0.6	63	0.2	106	1.0	147	0.8	190	1.0
25	0.4	64	0.8	107	0.8	148	0.6	191	1.0
26	0.8	65	0.2	109	0.2	149	0.8	192	0.6
27	1.0	66	0.8	110	0.8	150	0.2	193	0.6
28	0.6	67	0.6	111	0.4	151	1.0	194	1.0
29	1.0	69	1.0	113	1.0	152	0.6	195	1.0
30	0.2	70	0.8	114	0.8	153	0.4	196	0.6
32	1.0	71	0.6	115	0.8	154	1.0	197	0.2
34	0.8	72	0.6	116	0.8	155	1.0	198	0.4
35	0.6	73	0.6	117	0.8	156	0.6	199	0.8
36	0.8	74	0.6	118	0.8	157	1.0	200	0.6
37	1.0	75	1.0	120	1.0	158	0.8	201	0.4
38	0.8	76	0.6	121	0.6	160	0.2		
39	0.6	77	0.8	122	1.0	161	0.2		
40	0.8	78	0.2	124	0.2	162	0.6		
41	0.2	79	1.0	125	0.2	164	0.8		
42	0.6	80	0.4	126	0.8	165	0.2		

Tabella A.16: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 1

Nodo	P[MW]								
1	0.8	40	0.4	81	0.2	116	0.6	155	0.6
2	1.0	41	0.6	82	1.0	117	0.2	161	0.2
3	0.6	42	0.8	83	0.6	119	0.2	163	0.6
4	1.0	43	0.4	84	0.6	120	1.0	164	0.6
5	0.8	44	0.4	85	0.6	121	0.4	166	1.0
6	0.8	45	0.2	86	0.8	122	0.4	167	0.8
7	1.0	46	0.6	87	0.2	124	0.6	168	1.0
8	0.8	47	1.0	88	0.4	125	1.0	169	1.0
9	0.6	48	0.6	89	0.4	127	0.2	170	1.0
10	0.4	49	0.6	91	0.2	128	0.8	171	1.0
12	0.4	50	1.0	92	0.8	129	1.0	175	0.8
14	0.6	51	0.8	93	0.4	130	1.0	176	0.4
16	0.8	52	0.6	94	0.4	131	0.2	178	0.6
17	0.8	54	0.2	96	0.8	132	1.0	179	1.0
18	1.0	55	1.0	97	0.8	133	0.2	180	0.4
19	1.0	56	0.8	98	0.2	134	1.0	181	1.0
20	0.6	57	0.2	99	0.2	135	0.2	182	0.6
21	0.4	58	1.0	100	0.4	136	0.2	183	1.0
23	0.4	60	0.2	101	0.2	138	0.8	184	0.2
24	1.0	61	1.0	102	0.8	139	1.0	185	0.4
25	0.6	64	0.2	103	1.0	141	1.0	187	0.2
26	0.8	66	0.4	104	0.6	142	0.4	188	0.4
27	0.2	67	0.4	105	0.2	143	0.6	189	0.2
29	0.8	68	0.2	107	1.0	144	1.0	191	0.2
31	0.6	69	0.2	108	0.2	146	0.6	193	0.2
32	0.8	70	0.8	109	0.4	147	0.8	194	0.2
33	0.8	71	1.0	110	0.8	148	1.0	195	0.6
34	1.0	72	1.0	111	0.6	149	1.0	196	0.2
36	1.0	74	1.0	112	1.0	150	0.6	197	0.6
37	1.0	76	1.0	113	0.6	151	1.0	198	0.4
38	0.4	77	0.8	114	0.8	152	0.4	201	0.4
39	0.2	80	0.6	115	0.8	154	0.2		

Tabella A.17: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 2

Nodo	P[MW]								
1	0.2	39	0.2	82	0.2	123	0.6	161	0.2
2	0.8	41	0.6	83	0.2	124	0.8	162	1.0
3	0.2	42	0.6	84	0.8	125	0.6	163	0.4
4	0.2	43	1.0	85	0.8	126	0.2	164	0.8
5	0.6	45	0.8	86	0.2	127	0.8	165	1.0
6	1.0	46	1.0	87	0.2	128	0.4	166	1.0
7	0.2	47	0.6	89	0.8	129	0.8	167	0.6
8	0.4	48	0.2	90	0.4	130	1.0	168	0.6
9	0.2	49	0.2	93	0.8	131	0.6	170	1.0
10	0.4	50	0.8	95	0.4	132	0.4	171	0.6
14	1.0	51	1.0	96	1.0	133	0.2	175	0.6
16	1.0	52	0.4	97	1.0	135	1.0	177	0.2
17	1.0	55	0.8	98	0.8	136	1.0	179	0.6
18	0.8	56	0.4	99	0.2	137	1.0	180	0.4
19	1.0	57	0.8	100	0.8	138	0.6	181	0.2
20	0.6	58	0.2	101	0.4	140	1.0	182	1.0
21	0.4	60	0.2	102	1.0	141	0.2	183	0.8
22	1.0	64	0.4	104	1.0	142	0.8	184	0.4
23	0.8	65	0.4	105	0.4	143	0.2	185	0.2
24	0.2	67	0.2	106	0.6	144	0.8	186	0.2
25	0.6	68	1.0	107	0.6	145	0.2	187	0.6
26	1.0	69	0.2	109	0.6	147	0.6	189	0.2
27	0.2	70	0.6	110	1.0	149	0.4	190	0.8
28	0.6	71	1.0	111	0.6	150	1.0	191	0.4
29	0.4	72	0.8	112	0.6	151	0.8	192	0.8
30	0.8	73	1.0	113	0.2	152	0.6	193	0.2
31	1.0	74	1.0	114	0.2	153	1.0	194	0.2
32	0.2	75	0.6	115	0.4	154	0.6	195	0.8
33	0.8	76	0.8	117	0.4	155	0.6	197	0.6
34	0.6	77	0.8	118	0.6	156	0.8	198	0.6
35	0.6	78	1.0	119	1.0	157	0.6		
36	1.0	79	0.6	120	1.0	158	0.4		
37	0.6	80	0.6	121	0.8	159	0.4		
38	0.4	81	0.4	122	0.6	160	0.2		

Tabella A.18: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 3

Nodo	P[MW]								
1	0.4	39	1.0	77	0.6	124	1.0	164	1.0
2	0.6	40	0.8	78	0.8	125	0.2	165	0.8
3	0.2	41	0.4	79	1.0	126	0.8	166	0.4
4	0.4	42	0.2	80	0.8	127	1.0	167	1.0
5	0.2	43	0.4	83	1.0	128	0.2	168	0.4
7	1.0	44	0.4	84	0.6	129	0.6	170	0.2
8	0.2	45	0.6	85	0.2	130	0.6	171	0.2
9	0.2	46	0.2	88	0.8	131	0.4	173	0.6
10	0.6	47	0.4	89	0.6	132	0.2	174	1.0
11	0.8	48	0.8	93	0.8	133	1.0	175	0.8
12	0.2	49	0.4	94	0.4	134	0.6	176	1.0
13	0.4	50	1.0	97	0.2	135	1.0	177	0.6
14	0.6	52	0.4	99	1.0	137	0.8	178	0.2
15	1.0	53	0.2	100	0.4	140	0.2	179	0.8
16	1.0	55	0.2	101	0.2	141	1.0	181	0.2
17	0.8	56	0.8	102	0.6	142	0.2	182	0.6
18	0.6	57	0.6	103	1.0	143	1.0	183	0.8
19	0.2	58	0.4	104	0.6	144	0.4	184	0.8
20	0.6	59	1.0	105	1.0	145	0.6	186	1.0
21	1.0	60	0.6	107	0.2	146	1.0	189	0.4
22	0.4	61	0.2	108	0.6	147	0.6	190	0.8
23	0.6	62	0.6	109	0.6	148	0.6	191	0.2
24	0.6	63	1.0	110	0.2	149	1.0	192	0.6
25	0.8	64	0.6	111	0.2	150	1.0	193	0.4
27	0.8	65	0.4	112	0.2	151	0.2	194	0.6
28	0.4	67	0.6	113	0.2	152	0.8	195	0.2
29	0.6	68	0.4	114	1.0	153	0.6	196	1.0
30	1.0	69	1.0	115	0.4	154	1.0	197	0.8
31	0.8	70	1.0	116	0.6	156	0.6	200	0.8
32	0.2	71	0.2	117	1.0	157	0.8	201	0.4
33	0.6	72	0.2	118	0.8	158	0.4		
34	1.0	73	1.0	119	0.8	159	0.6		
36	0.4	74	0.6	120	0.8	160	1.0		
37	0.8	75	0.6	122	0.2	162	0.8		
38	0.6	76	1.0	123	1.0	163	0.2		

Tabella A.19: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 4

Nodo	P[MW]								
1	1.0	42	0.6	84	0.2	123	0.2	166	0.2
3	0.6	43	0.2	85	1.0	124	0.2	167	1.0
5	0.4	44	0.8	86	0.2	125	0.6	168	0.6
6	0.4	45	0.8	87	0.6	126	0.6	170	0.2
7	1.0	47	0.8	88	0.4	127	0.2	172	1.0
8	0.6	48	0.2	89	0.6	128	0.2	173	1.0
9	0.2	49	0.8	91	0.4	129	0.2	174	0.6
10	0.6	50	0.2	92	0.2	131	0.2	175	0.2
11	0.4	51	0.2	93	1.0	132	0.6	176	0.4
12	0.6	52	1.0	94	0.4	133	0.6	177	0.8
13	0.2	54	1.0	95	0.4	134	0.6	178	0.8
14	0.8	55	0.4	96	0.4	135	1.0	179	0.2
15	1.0	57	0.4	97	0.2	136	0.8	180	0.6
16	0.6	58	1.0	98	0.4	137	0.2	181	1.0
18	0.4	59	0.6	99	0.4	138	1.0	182	0.8
20	0.2	61	0.8	101	0.2	139	1.0	183	1.0
21	0.6	62	1.0	102	1.0	140	0.6	184	0.4
22	0.2	63	1.0	103	1.0	141	0.2	185	0.8
23	0.2	64	0.8	104	1.0	142	0.8	186	1.0
24	0.6	65	0.2	105	0.2	143	1.0	188	0.2
25	0.2	66	0.4	106	0.6	145	0.6	189	0.8
28	0.8	69	0.6	107	0.4	147	1.0	190	0.2
29	0.2	70	0.6	108	0.2	148	1.0	191	1.0
30	0.6	71	0.8	109	1.0	149	0.8	192	1.0
31	0.8	72	1.0	110	0.6	151	0.4	193	0.2
32	0.2	74	0.8	111	0.8	153	0.2	194	0.8
33	0.6	75	1.0	112	0.4	154	1.0	195	0.6
34	0.8	76	1.0	113	1.0	155	0.6	196	1.0
35	0.4	77	0.2	114	1.0	157	0.8	197	0.4
36	0.2	78	0.4	115	0.8	158	0.8	198	0.6
37	0.8	79	1.0	116	0.2	159	0.6	199	1.0
38	0.8	80	1.0	117	0.2	161	0.8	201	0.4
39	1.0	81	0.4	119	1.0	162	0.4		
40	0.8	82	0.8	120	0.4	163	0.8		
41	0.8	83	0.8	122	0.2	165	0.4		

Tabella A.20: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 5

Nodo	P[MW]								
1	1.0	42	0.6	83	0.2	127	0.2	171	0.2
2	0.2	43	1.0	84	0.8	128	0.2	172	1.0
4	1.0	45	0.8	85	0.8	129	0.2	173	0.8
5	1.0	46	1.0	86	0.8	131	0.2	174	1.0
6	0.8	47	0.6	88	1.0	132	0.6	175	0.2
7	0.2	48	0.2	89	0.8	133	0.6	176	0.2
8	0.4	49	0.2	90	0.8	134	0.6	177	1.0
9	0.4	50	0.8	92	0.8	135	1.0	179	0.8
10	0.8	51	1.0	95	0.8	136	0.8	180	1.0
11	0.6	52	0.4	96	1.0	137	0.2	181	0.8
12	1.0	55	0.8	97	1.0	138	1.0	182	0.6
13	0.6	56	0.4	98	0.8	139	1.0	183	0.4
15	0.4	57	0.8	100	0.6	140	0.6	184	0.2
16	1.0	58	0.2	101	0.4	141	0.2	186	0.4
17	1.0	60	0.2	104	0.6	142	0.8	187	0.6
18	0.4	64	0.4	105	0.2	143	1.0	188	0.2
19	0.4	65	0.4	106	1.0	145	0.6	189	1.0
22	0.2	67	0.2	107	0.6	147	1.0	190	1.0
23	0.4	68	1.0	109	0.4	148	1.0	191	0.2
24	0.6	69	0.2	110	0.4	149	0.8	192	0.6
25	0.4	70	0.6	112	0.2	151	0.4	193	1.0
26	0.2	71	1.0	113	0.4	153	0.2	194	0.6
27	0.6	72	0.8	114	0.2	154	1.0	195	0.4
28	0.8	73	1.0	115	0.6	155	0.6	196	1.0
29	0.8	74	1.0	116	0.6	157	0.8	197	0.6
30	0.4	75	0.6	117	0.2	158	0.8	198	0.6
32	0.6	76	0.8	119	0.2	159	0.6	199	0.8
35	0.8	77	0.8	120	0.4	161	0.8	200	0.2
36	0.4	78	1.0	122	0.2	162	0.4	201	0.8
37	0.2	79	0.6	123	0.2	163	0.8		
38	0.8	80	0.6	124	0.2	165	0.4		
39	0.2	81	0.4	125	0.6	169	0.8		
41	0.6	82	0.2	126	0.6	170	0.4		

Tabella A.21: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 6

Nodo	P[MW]								
1	0.4	40	0.4	81	0.4	124	0.2	158	1.0
2	0.6	41	0.6	82	0.2	125	0.6	159	0.4
3	0.8	42	0.8	83	0.2	126	0.6	161	0.6
4	0.6	43	0.4	84	0.8	127	0.2	165	0.8
6	0.4	45	1.0	85	0.8	128	0.2	166	0.8
7	0.4	47	1.0	86	0.8	129	0.2	167	0.4
8	0.2	48	0.2	88	1.0	131	0.2	168	0.6
9	0.2	49	0.2	89	0.8	132	0.6	169	1.0
10	0.6	50	0.8	90	0.8	133	0.6	170	0.8
13	0.8	51	1.0	92	0.8	134	0.6	171	0.4
14	1.0	52	0.4	95	0.8	135	1.0	172	0.6
15	0.6	55	0.8	96	1.0	136	0.8	173	0.4
16	0.4	56	0.4	97	1.0	137	0.2	174	0.2
17	0.8	57	0.8	98	0.8	138	1.0	175	0.8
18	1.0	58	0.2	100	0.6	139	1.0	176	0.2
19	1.0	60	0.2	101	0.4	140	0.6	177	0.6
20	0.6	64	0.4	104	0.6	141	0.2	179	0.4
21	0.4	65	0.4	105	0.2	142	0.8	180	0.4
23	0.4	67	0.2	106	1.0	143	1.0	181	0.6
24	1.0	68	1.0	107	0.8	145	0.8	184	0.8
25	0.6	69	0.2	109	0.4	146	1.0	185	0.4
26	0.8	70	0.6	110	0.4	147	0.4	188	1.0
27	0.2	71	1.0	112	0.2	148	0.2	189	1.0
29	0.8	72	0.8	113	0.4	149	0.2	192	0.8
31	0.6	73	1.0	114	0.2	150	1.0	193	1.0
32	0.8	74	1.0	115	0.6	151	0.4	194	0.8
33	1.0	75	0.6	116	0.6	152	0.8	196	0.6
34	1.0	76	0.8	117	0.2	153	0.2	197	0.6
36	1.0	77	0.8	119	0.2	154	0.4	198	1.0
37	1.0	78	1.0	120	0.4	155	0.6	199	0.8
38	0.4	79	0.6	122	0.2	156	0.8	201	0.8
39	0.2	80	0.6	123	0.2	157	0.4		

Tabella A.22: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 7

Nodo	P[MW]								
1	0.4	41	0.4	85	1.0	124	0.4	165	0.8
2	0.6	42	0.2	86	0.6	125	0.2	166	0.8
4	1.0	43	0.4	87	0.2	126	1.0	167	0.4
5	0.4	44	0.4	88	0.2	127	0.6	168	0.6
6	0.8	45	0.6	91	0.8	128	0.8	169	1.0
7	0.8	46	0.2	92	0.4	129	0.4	170	0.8
8	0.6	48	0.2	93	0.2	130	0.6	171	0.4
9	1.0	50	0.2	94	0.2	131	0.8	172	0.6
11	0.8	51	0.8	95	1.0	132	0.6	173	0.4
12	1.0	52	1.0	97	0.8	133	1.0	174	1.0
13	1.0	55	1.0	98	0.2	134	0.8	175	0.2
14	0.2	57	0.8	99	0.2	136	1.0	176	0.8
15	0.2	58	0.8	100	0.4	137	1.0	177	0.2
16	1.0	59	0.6	101	0.6	138	1.0	178	0.6
17	0.2	60	0.2	102	1.0	140	0.4	179	0.2
18	0.2	61	0.2	103	1.0	141	0.6	180	0.8
19	0.4	62	0.2	104	0.4	143	0.6	181	0.4
20	0.8	63	0.4	105	0.6	144	0.6	182	0.6
21	0.6	64	1.0	106	0.8	145	0.8	184	0.4
22	1.0	65	1.0	107	0.2	146	1.0	185	0.2
23	0.6	66	0.8	108	0.6	147	0.4	186	0.6
24	0.6	68	1.0	109	0.4	148	0.2	187	0.2
25	1.0	69	0.8	110	1.0	149	0.2	188	0.4
26	0.6	72	0.2	111	0.4	150	1.0	190	0.8
28	0.6	73	0.2	112	0.8	151	0.4	191	0.2
29	1.0	74	1.0	113	0.2	152	0.8	192	0.4
30	0.8	75	0.4	114	0.2	153	0.2	194	0.8
32	0.2	76	1.0	116	1.0	154	0.4	195	0.8
34	1.0	77	0.6	118	1.0	155	0.6	196	0.8
36	0.4	79	0.6	119	1.0	156	0.8	197	1.0
37	0.8	80	0.8	120	1.0	157	0.4	201	0.6
38	0.6	81	0.2	121	0.2	158	1.0		
39	1.0	82	0.4	122	0.6	159	0.4		
40	0.8	84	0.2	123	1.0	161	0.6		

Tabella A.23: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 8

Nodo	P[MW]								
1	0.2	39	0.2	76	0.2	125	0.2	168	0.6
2	0.2	40	0.2	77	0.8	126	0.8	169	1.0
3	0.4	41	0.8	78	1.0	127	0.6	171	0.8
4	1.0	42	0.8	79	1.0	129	0.2	172	0.6
5	0.6	43	0.6	80	0.6	130	0.8	173	0.6
6	0.4	44	0.2	81	0.8	131	1.0	174	0.4
7	0.2	45	1.0	82	0.4	132	1.0	175	1.0
9	0.2	46	0.4	83	1.0	133	0.6	176	0.8
10	0.8	47	0.8	84	0.6	134	0.4	177	0.8
11	0.6	48	1.0	86	1.0	135	0.8	178	0.2
12	1.0	50	0.2	87	0.8	136	0.6	179	0.8
13	0.2	51	1.0	88	1.0	138	0.4	180	0.2
14	0.4	52	1.0	89	0.2	139	0.8	181	0.6
15	0.2	53	0.8	91	1.0	141	1.0	183	0.4
16	0.6	54	0.4	92	0.8	142	1.0	184	0.8
17	1.0	55	0.8	94	0.8	143	1.0	185	1.0
18	0.8	56	0.2	95	0.8	144	0.8	186	0.4
19	0.4	57	1.0	96	1.0	145	1.0	187	0.8
20	1.0	58	0.4	97	0.8	146	0.4	188	0.8
21	0.8	60	0.8	102	0.2	147	0.2	189	0.6
22	0.6	61	0.8	103	1.0	148	0.8	190	0.4
23	1.0	62	0.4	104	0.6	149	0.6	191	0.8
24	0.8	63	0.6	105	0.6	150	1.0	192	0.8
25	1.0	64	1.0	106	1.0	151	0.6	193	0.2
27	0.6	65	0.2	108	0.2	152	0.8	194	0.8
28	0.4	66	0.8	109	0.6	153	0.4	196	0.8
29	0.6	67	0.8	110	1.0	157	0.2	197	0.6
30	0.4	68	0.8	111	0.6	158	0.8	198	1.0
31	0.4	69	1.0	113	0.8	159	1.0	200	0.8
32	1.0	70	0.8	114	0.2	161	1.0	201	0.8
33	1.0	71	1.0	115	0.8	162	0.8		
35	1.0	72	0.6	116	0.4	163	0.8		
36	0.4	73	0.6	117	1.0	164	0.8		
37	0.6	74	1.0	118	0.8	165	0.8		
38	1.0	75	1.0	119	0.6	167	0.4		

Tabella A.24: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 9

Nodo	P[MW]								
1	0.6	41	0.8	78	1.0	119	0.6	168	0.2
2	0.6	42	0.8	79	1.0	125	0.2	169	0.6
3	0.4	43	0.6	80	0.6	126	0.8	170	0.4
4	1.0	44	0.2	81	0.8	127	0.6	172	0.8
5	0.6	45	1.0	82	0.4	130	0.8	173	0.8
6	0.4	46	0.4	83	1.0	131	1.0	174	0.6
9	0.2	47	0.8	84	0.6	132	1.0	175	0.8
10	0.8	48	1.0	86	1.0	133	0.6	177	0.2
11	0.6	50	0.2	87	0.8	134	0.4	178	0.6
12	1.0	51	1.0	88	1.0	135	0.8	179	0.6
13	0.2	52	1.0	89	0.2	136	0.6	180	0.8
14	0.4	53	0.8	91	1.0	138	0.4	181	0.6
15	0.2	54	1.0	92	0.8	139	0.8	183	0.4
16	0.6	55	0.8	94	0.8	141	1.0	184	1.0
17	1.0	56	0.2	95	0.8	142	1.0	185	0.8
18	0.8	57	1.0	96	1.0	143	1.0	186	0.2
19	0.4	58	0.4	97	0.6	144	0.8	187	0.2
20	0.2	60	0.8	98	0.8	145	1.0	188	1.0
21	0.8	61	0.8	99	1.0	146	0.4	189	0.6
22	0.8	62	0.4	100	0.2	147	0.2	190	1.0
23	1.0	63	0.6	101	0.2	148	0.8	191	0.4
24	0.8	64	1.0	103	1.0	149	0.6	192	0.2
25	1.0	65	0.2	104	0.6	150	1.0	193	1.0
27	0.6	66	0.8	105	0.6	151	0.6	194	1.0
28	0.4	67	0.8	106	1.0	152	1.0	195	0.2
29	0.6	68	0.8	108	0.2	153	0.4	196	0.8
30	0.4	69	1.0	109	0.6	157	0.2	197	0.6
31	0.4	70	0.8	110	1.0	158	0.8	198	1.0
32	1.0	71	1.0	111	0.6	159	1.0	200	0.8
33	1.0	72	0.6	113	0.8	161	1.0	201	0.8
35	1.0	73	0.6	114	0.2	162	0.8		
36	0.2	74	1.0	115	0.8	163	0.8		
37	0.6	75	1.0	116	0.4	164	0.8		
38	1.0	76	0.2	117	1.0	165	0.8		
39	0.2	77	0.8	118	1.0	167	0.8		

Tabella A.25: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 10

Nodo	P[MW]								
1	1.0	40	0.8	79	0.4	120	0.8	166	1.0
2	0.6	41	0.2	80	0.8	121	0.6	167	0.6
3	1.0	42	0.6	82	1.0	122	0.4	168	0.6
4	1.0	43	1.0	83	0.6	125	1.0	169	1.0
5	0.4	44	1.0	84	1.0	126	0.4	170	0.4
6	0.8	45	0.6	85	1.0	127	0.6	171	1.0
7	1.0	46	0.8	86	0.2	128	0.4	172	0.6
8	0.6	47	1.0	87	0.2	129	0.8	173	0.6
9	1.0	48	0.8	88	1.0	130	0.2	174	0.4
10	1.0	49	0.2	89	1.0	131	0.2	175	0.2
11	1.0	50	0.4	90	1.0	132	0.6	176	0.6
12	0.4	51	0.4	91	0.6	133	1.0	177	1.0
13	0.2	52	1.0	92	0.2	134	0.4	178	0.8
14	0.8	53	1.0	94	0.8	135	0.8	179	0.8
15	1.0	54	0.8	95	0.2	136	0.2	180	1.0
16	0.8	55	0.4	96	0.8	137	1.0	181	0.2
17	0.6	56	0.8	97	0.8	139	0.8	183	1.0
18	1.0	57	0.8	98	0.2	140	0.4	184	0.6
19	0.4	58	1.0	99	0.2	141	0.4	185	0.8
20	1.0	59	0.8	100	0.8	142	0.6	186	0.2
21	0.8	60	0.4	101	0.6	143	1.0	187	1.0
22	0.6	61	0.4	102	1.0	144	0.8	188	1.0
23	0.2	62	0.6	103	0.8	146	1.0	189	0.2
24	1.0	63	0.2	104	0.8	147	0.2	190	1.0
25	1.0	64	0.8	105	0.2	150	0.8	191	0.6
26	1.0	65	1.0	106	0.8	151	0.6	192	0.2
27	1.0	66	1.0	107	0.8	153	1.0	193	0.6
29	1.0	67	0.8	108	0.6	154	0.8	194	0.8
30	0.6	68	1.0	109	0.6	155	0.4	195	0.4
31	0.6	69	1.0	110	1.0	156	1.0	196	0.6
32	1.0	70	0.8	111	0.8	158	1.0	197	0.4
33	0.4	72	0.2	112	0.6	159	0.2	198	1.0
34	1.0	73	0.6	113	1.0	160	1.0	199	1.0
35	0.2	74	1.0	114	0.2	161	0.6	200	0.6
36	0.4	75	0.8	115	1.0	162	1.0	201	1.0
37	0.4	76	0.6	116	0.6	163	0.8		
38	1.0	77	1.0	117	0.2	164	0.4		
39	0.8	78	0.2	118	0.8	165	0.8		

Tabella A.26: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 11

Nodo	P[MW]								
1	1.0	40	0.8	79	0.4	120	0.8	165	0.8
2	0.6	41	0.2	80	0.8	121	0.6	166	1.0
3	1.0	42	0.6	82	1.0	122	0.4	167	0.6
4	1.0	43	1.0	83	0.6	125	1.0	168	0.6
5	0.4	44	1.0	84	1.0	126	0.4	169	1.0
6	0.8	45	0.6	85	1.0	127	0.6	170	0.4
7	1.0	46	0.8	86	0.2	128	0.4	171	1.0
8	0.6	47	1.0	87	0.2	129	0.8	172	0.6
9	1.0	48	0.8	88	1.0	130	0.2	173	0.6
10	1.0	49	0.2	89	1.0	131	0.2	174	0.4
11	1.0	50	0.4	90	1.0	132	0.6	175	0.2
12	0.4	51	0.4	91	0.6	133	1.0	176	0.6
13	0.2	52	1.0	92	0.2	134	0.4	177	1.0
14	0.8	53	1.0	94	0.8	135	0.8	178	0.8
15	1.0	54	0.8	95	0.2	136	0.2	179	0.8
16	0.8	55	0.4	96	0.8	137	1.0	180	1.0
17	0.6	56	0.8	97	0.8	139	0.8	181	0.2
18	1.0	57	0.8	98	0.2	140	0.4	183	1.0
19	0.4	58	1.0	99	0.2	141	0.4	184	0.6
20	1.0	59	0.8	100	0.8	142	0.6	185	0.8
21	0.8	60	0.4	101	0.6	143	1.0	186	0.2
22	0.6	61	0.4	102	1.0	144	0.8	187	1.0
23	0.2	62	0.6	103	0.8	145	0.2	188	1.0
24	1.0	63	0.2	104	0.8	146	1.0	189	0.2
25	1.0	64	0.8	105	0.2	147	0.2	190	1.0
26	1.0	65	1.0	106	0.8	150	0.8	191	0.6
27	1.0	66	1.0	107	0.8	151	0.6	192	0.2
29	1.0	67	0.8	108	0.6	153	1.0	193	0.6
30	0.6	68	1.0	109	0.6	154	0.8	194	0.8
31	0.6	69	1.0	110	1.0	155	0.4	195	0.6
32	1.0	70	0.8	111	0.8	156	1.0	196	0.6
33	0.4	72	0.2	112	0.6	158	1.0	197	0.4
34	1.0	73	0.6	113	1.0	159	0.2	198	1.0
35	0.2	74	1.0	114	0.2	160	1.0	199	1.0
36	0.4	75	0.8	115	1.0	161	0.6	200	0.6
37	0.4	76	0.6	116	0.6	162	1.0	201	1.0
38	1.0	77	1.0	117	0.2	163	0.8		
39	0.8	78	0.2	118	0.8	164	0.4		

Tabella A.27: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 12

Nodo	P[MW]								
1	1.0	40	0.8	79	0.4	120	0.8	166	1.0
2	0.6	41	0.2	80	0.8	121	0.6	167	0.6
3	1.0	42	0.6	82	1.0	122	0.4	168	0.6
4	1.0	43	1.0	83	0.6	125	1.0	169	1.0
5	0.4	44	1.0	84	1.0	126	0.4	170	0.4
6	0.8	45	0.6	85	1.0	127	0.6	171	1.0
7	1.0	46	0.8	86	0.2	128	0.4	172	0.6
8	0.6	47	1.0	87	0.2	129	0.8	173	0.6
9	1.0	48	0.8	88	1.0	130	0.2	174	0.4
10	1.0	49	0.2	89	1.0	131	0.2	175	0.2
11	1.0	50	0.4	90	1.0	132	0.6	176	0.6
12	0.4	51	0.4	91	0.6	133	1.0	177	1.0
13	0.2	52	1.0	92	0.2	134	0.4	178	0.8
14	0.8	53	1.0	94	0.8	135	0.8	179	0.8
15	1.0	54	0.8	95	0.2	136	0.2	180	1.0
16	0.8	55	0.4	96	0.8	137	1.0	181	0.2
17	0.6	56	0.8	97	0.8	139	0.8	183	1.0
18	1.0	57	0.8	98	0.2	140	0.4	184	0.6
19	0.4	58	1.0	99	0.2	141	0.4	185	0.8
20	1.0	59	0.8	100	0.8	142	0.6	186	0.2
21	0.8	60	0.4	101	0.6	143	1.0	187	1.0
22	0.6	61	0.4	102	1.0	144	0.8	188	1.0
23	0.2	62	0.6	103	0.8	147	0.6	189	0.2
24	1.0	63	0.2	104	0.8	149	0.2	190	1.0
25	1.0	64	0.8	105	0.2	150	0.8	191	0.6
26	1.0	65	1.0	106	0.8	151	0.6	192	0.2
27	1.0	66	1.0	107	0.8	153	1.0	193	0.6
29	1.0	67	0.8	108	0.6	154	0.8	194	0.8
30	0.6	68	1.0	109	0.6	155	0.4	195	0.4
31	0.6	69	1.0	110	1.0	156	1.0	196	0.6
32	1.0	70	0.8	111	0.8	158	1.0	197	0.4
33	0.4	72	0.2	112	0.6	159	0.2	198	1.0
34	1.0	73	0.6	113	1.0	160	1.0	199	1.0
35	0.2	74	1.0	114	0.2	161	0.6	200	0.6
36	0.4	75	0.8	115	1.0	162	1.0	201	1.0
37	0.4	76	0.6	116	0.6	163	0.8		
38	1.0	77	1.0	117	0.2	164	0.4		
39	0.8	78	0.2	118	0.8	165	0.8		

Tabella A.28: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 13

Soluzione		Rami aperti								
1	29	75	81	110	115	167	201	202		
2	29	75	81	110	115	167	201	202		
3	29	75	81	110	115	167	201	202		
4	29	75	81	110	115	167	201	202		
5	29	75	81	110	115	167	201	202		
6	26	75	104	110	115	167	201	202		
7	29	75	81	110	115	167	201	202		
8	29	75	81	110	115	167	201	202		
9	28	33	60	110	111	133	175	203		
10	28	33	60	96	110	175	191	208		
11	21	33	53	102	104	115	163	167		
12	21	33	53	102	104	115	163	167		
13	21	33	53	102	104	115	163	167		

Tabella A.29: Ottimizzazione rispetto a due obiettivi: configurazioni ottimali

Punto	f_1	f_2	f_3
1	0.24294	0.04392	0.00510
2	0.24232	0.04326	0.00516
3	0.24425	0.04263	0.00532
4	0.24185	0.04391	0.00541
5	0.22189	0.03875	0.00542
6	0.20528	0.03758	0.00559
7	0.20417	0.03799	0.00559
8	0.20414	0.03819	0.00586
9	0.20352	0.03881	0.00594
10	0.20346	0.03925	0.00608
11	0.20212	0.03954	0.00609
12	0.20198	0.04130	0.00687
13	0.12688	0.02835	0.01377
14	0.12376	0.02838	0.01440
15	0.15263	0.02716	0.01543
16	0.14863	0.02755	0.01546
17	0.14627	0.02800	0.01550
18	0.15162	0.02703	0.01569
19	0.14508	0.02725	0.01584
20	0.13888	0.02827	0.01589
21	0.14312	0.02785	0.01632
22	0.13379	0.02831	0.01726
23	0.13879	0.02826	0.01822
r	0.24425	0.04392	0.01822

Tabella A.30: Punti non dominati e punto di riferimento per il calcolo dell'ipervolume su tre dimensioni

Punto	Contributo
13	$98947973.465285\cdot 10^{-14}$
14	$18515280.520597 \cdot 10^{-14}$
6	$13344764.283095 \cdot 10^{-14}$
18	$2955533.271814\cdot 10^{-14}$
11	$2081314.242569\cdot 10^{-14}$
5	$1902965.397382\cdot 10^{-14}$
15	$1177309.913475\cdot 10^{-14}$
19	$757872.982815 \cdot 10^{-14}$
7	$353592.955517 \cdot 10^{-14}$
9	$260236.945522 \cdot 10^{-14}$
12	$257678.230697 \cdot 10^{-14}$
21	$155063.459980 \cdot 10^{-14}$
20	$76937.581305 \cdot 10^{-14}$
16	$65879.131097 \cdot 10^{-14}$
2	$33840.512135 \cdot 10^{-14}$
17	$28220.825973 \cdot 10^{-14}$
22	$19181.116840 \cdot 10^{-14}$
8	$14224.634949 \cdot 10^{-14}$
10	$11651.709703 \cdot 10^{-14}$
4	$5.780057 \cdot 10^{-14}$
1	0
3	0
23	0

Tabella A.31: Punti ordinati in senso decrescente del contributo all'ipervolume per ottimizzazione rispetto a tre obiettivi

Nodo	P[MW]								
1	0.8	43	1.0	84	0.6	122	0.2	163	0.6
2	1.0	44	1.0	85	0.4	123	0.4	164	0.2
3	0.8	45	0.2	86	0.6	124	1.0	165	1.0
4	0.4	46	1.0	87	1.0	125	0.8	166	1.0
5	0.8	47	1.0	88	0.8	127	0.4	167	0.8
6	1.0	48	0.8	89	0.2	128	0.2	168	0.6
7	0.6	49	1.0	90	0.8	129	0.6	169	0.8
8	0.8	50	1.0	91	0.8	131	0.8	170	0.8
9	0.2	51	0.8	92	0.8	132	1.0	172	1.0
10	0.8	52	0.8	93	0.2	134	0.8	173	0.2
11	1.0	53	0.8	94	0.6	135	0.6	174	0.4
12	1.0	54	0.6	95	0.6	136	0.8	175	1.0
13	0.2	55	0.6	97	1.0	137	0.2	176	0.4
14	0.6	56	0.8	98	0.2	138	1.0	177	0.8
15	0.8	57	0.2	99	0.8	139	0.8	178	1.0
16	1.0	59	1.0	100	1.0	140	0.8	179	0.4
17	0.8	60	1.0	101	1.0	141	0.8	182	0.8
18	1.0	61	0.6	102	1.0	142	0.6	183	1.0
19	0.6	62	1.0	103	1.0	143	0.4	184	1.0
20	1.0	64	0.2	104	1.0	144	0.8	185	0.4
21	0.6	65	0.4	105	0.2	145	0.2	188	0.8
22	0.2	67	0.6	106	0.6	146	0.6	190	0.8
24	0.8	68	0.8	107	0.4	148	0.2	191	0.4
25	0.8	69	1.0	108	0.6	149	0.2	192	0.8
26	0.8	70	0.6	109	0.2	150	1.0	194	1.0
27	0.6	71	1.0	110	0.4	152	0.4	195	0.2
29	0.6	72	1.0	111	0.8	153	1.0	196	0.8
30	1.0	73	1.0	112	0.8	154	0.2	197	0.2
31	0.4	75	0.4	114	0.8	155	0.2	198	0.8
35	0.4	76	0.2	115	0.6	156	0.8	199	0.4
36	0.2	77	0.6	116	0.4	157	0.8	200	0.2
38	0.2	78	0.2	117	0.2	158	0.8	201	0.8
39	0.4	79	0.8	118	1.0	159	0.6		
40	0.8	81	0.2	119	1.0	160	1.0		
41	0.2	82	0.4	120	0.6	161	0.2		
42	1.0	83	0.6	121	0.2	162	0.4		

Tabella A.32: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 1

Nodo	P[MW]								
2	0.4	42	1.0	83	0.4	122	0.8	167	0.6
3	0.8	43	1.0	84	0.2	123	0.4	169	0.4
4	0.6	44	1.0	85	0.8	124	1.0	170	0.4
5	0.4	45	0.2	86	0.8	125	0.2	171	0.4
6	1.0	46	1.0	87	0.4	126	0.6	172	0.8
7	0.6	47	1.0	88	1.0	127	0.2	173	0.6
8	0.6	48	0.8	89	0.6	130	1.0	174	1.0
9	1.0	49	1.0	91	0.2	131	0.2	176	0.8
10	0.8	50	1.0	92	0.6	132	0.6	177	0.8
11	1.0	51	0.8	93	0.8	133	0.2	178	1.0
12	1.0	52	0.8	94	0.2	134	0.6	179	0.4
13	0.2	53	0.8	95	1.0	136	0.2	180	0.6
14	0.6	54	0.6	97	1.0	137	0.4	181	1.0
15	0.8	55	0.6	98	0.2	138	0.8	182	0.8
16	1.0	56	0.8	99	0.8	139	1.0	183	0.6
17	0.8	57	0.2	100	1.0	140	0.6	185	0.8
18	1.0	59	1.0	101	1.0	141	0.8	186	1.0
19	0.6	60	1.0	102	1.0	144	0.8	187	0.8
20	1.0	61	0.6	103	1.0	145	1.0	188	1.0
21	0.8	62	1.0	104	1.0	146	0.8	189	1.0
22	0.8	64	0.2	105	0.2	147	0.2	190	0.4
23	0.6	65	0.4	106	0.6	148	1.0	191	1.0
24	0.8	67	0.6	107	0.4	149	0.4	192	0.2
25	1.0	68	0.8	108	0.6	152	0.8	193	0.4
26	0.8	69	1.0	109	0.2	153	0.2	194	0.4
27	0.6	70	0.6	110	0.4	155	0.6	195	0.6
29	0.6	71	1.0	111	0.8	156	0.6	196	0.8
30	1.0	72	1.0	112	0.8	158	0.2	197	0.8
31	0.4	73	1.0	114	0.8	159	1.0	198	1.0
35	0.4	75	0.4	115	0.6	160	0.4	199	0.6
36	0.2	76	0.2	116	0.4	161	0.8	201	1.0
38	0.2	79	1.0	117	0.2	162	1.0		
39	0.4	80	0.8	119	1.0	163	0.4		
40	0.8	81	0.6	120	0.8	165	0.2		
41	0.2	82	1.0	121	0.4	166	0.6		

Tabella A.33: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 2

Nodo	P[MW]								
2	0.4	42	1.0	83	0.4	122	0.2	163	0.6
3	0.8	43	1.0	84	0.2	123	0.4	164	0.2
4	0.6	44	1.0	85	0.8	124	1.0	165	1.0
5	0.4	45	0.2	86	0.8	125	0.8	166	1.0
6	1.0	46	1.0	87	0.4	127	0.4	167	0.8
7	0.6	47	1.0	88	1.0	128	0.2	168	0.6
8	0.6	48	0.8	89	0.6	129	0.6	169	0.8
9	1.0	49	1.0	91	0.2	131	0.8	170	0.8
10	0.8	50	1.0	92	0.6	132	1.0	172	1.0
11	1.0	51	0.8	93	0.8	134	0.8	173	0.2
12	1.0	52	0.8	94	0.2	135	0.6	174	0.4
13	0.2	53	0.8	95	1.0	136	0.8	175	1.0
14	0.6	54	0.6	97	1.0	137	0.2	176	0.4
15	0.8	55	0.6	98	0.2	138	1.0	177	0.8
16	1.0	56	0.8	99	0.8	139	0.8	178	1.0
17	0.8	57	0.2	100	1.0	140	0.6	179	0.4
18	1.0	59	1.0	101	1.0	141	0.8	182	0.8
19	0.6	60	1.0	102	1.0	142	0.6	183	1.0
20	1.0	61	0.6	103	1.0	143	0.4	184	1.0
21	0.8	62	1.0	104	1.0	144	0.8	185	0.4
22	0.8	64	0.2	105	0.2	145	1.0	188	0.8
23	0.6	65	0.4	106	0.6	146	0.8	190	0.8
24	0.8	67	0.6	107	0.4	147	0.2	191	0.4
25	1.0	68	0.8	108	0.6	148	1.0	192	0.8
26	0.8	69	1.0	109	0.2	149	0.4	194	1.0
27	0.6	70	0.6	110	0.4	152	0.8	195	0.2
29	0.6	71	1.0	111	0.8	153	0.2	196	0.8
30	1.0	72	1.0	112	0.8	155	0.6	197	0.2
31	0.4	73	1.0	114	0.8	156	0.6	198	0.8
35	0.4	75	0.4	115	0.6	157	0.2	199	0.4
36	0.2	76	0.2	116	0.4	158	0.2	200	0.2
38	0.2	79	1.0	117	0.2	159	1.0	201	0.8
39	0.4	80	0.8	119	1.0	160	0.4		
40	0.8	81	0.6	120	0.6	161	0.8		
41	0.2	82	1.0	121	0.2	162	0.4		

Tabella A.34: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 3

Nodo	P[MW]								
1	0.4	42	0.8	81	0.2	121	0.4	159	0.2
2	1.0	43	0.8	82	0.8	123	0.4	161	0.8
3	0.4	44	0.6	83	0.4	124	0.6	162	1.0
4	0.2	45	0.8	85	0.8	125	0.4	164	0.6
5	1.0	46	0.2	88	0.6	126	0.6	165	1.0
6	0.8	47	1.0	89	0.4	127	0.8	166	0.6
7	1.0	48	0.2	90	1.0	128	0.8	167	1.0
8	1.0	49	1.0	91	0.4	129	0.8	168	1.0
9	0.6	50	1.0	92	0.8	130	1.0	169	0.4
10	1.0	51	0.6	93	0.6	131	0.4	171	0.8
11	0.4	52	0.6	94	0.8	132	1.0	172	0.8
12	0.2	53	1.0	95	0.8	133	0.6	173	1.0
13	0.6	54	1.0	96	1.0	134	0.4	174	0.6
14	0.2	55	0.2	97	0.6	135	0.4	175	0.6
15	1.0	56	0.4	98	0.4	136	0.6	176	0.6
16	1.0	57	0.4	99	1.0	137	0.6	177	0.6
17	0.4	58	1.0	100	0.4	138	0.6	178	0.6
19	1.0	59	1.0	101	0.6	139	1.0	179	0.8
20	0.4	61	0.6	102	0.2	140	0.8	180	1.0
21	0.8	62	0.2	103	1.0	141	0.4	182	0.6
22	0.6	63	1.0	104	0.4	142	0.6	183	0.8
23	0.8	64	0.6	105	0.6	143	1.0	184	0.6
24	0.4	65	1.0	106	0.2	144	1.0	185	0.8
25	0.8	66	0.6	107	0.6	145	0.2	186	0.4
27	0.4	67	0.8	108	0.6	146	0.8	187	0.6
28	1.0	69	0.2	109	1.0	147	0.8	188	1.0
29	0.6	70	1.0	110	0.4	148	0.4	189	1.0
30	0.6	71	1.0	111	0.6	149	0.2	190	0.6
31	0.8	72	0.2	112	0.8	150	0.4	191	0.2
32	0.8	73	0.8	113	0.4	151	1.0	192	0.2
33	1.0	74	0.8	114	0.4	152	0.6	193	0.6
34	0.8	75	0.6	115	0.6	153	0.8	195	1.0
35	0.6	76	1.0	116	1.0	154	1.0	196	0.2
36	0.6	77	0.2	117	0.2	155	0.4	197	1.0
39	1.0	78	0.2	118	0.4	156	1.0	198	0.6
40	0.6	79	0.4	119	0.6	157	0.8	201	1.0
41	0.4	80	0.6	120	0.4	158	1.0		

Tabella A.35: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 4

Nodo	P[MW]								
1	0.4	43	0.8	83	0.4	126	0.2	164	0.6
2	1.0	44	0.6	85	0.8	127	0.8	165	0.4
3	0.4	45	0.8	87	0.2	128	0.8	166	0.6
4	0.2	46	0.2	88	0.6	129	0.8	167	0.8
5	1.0	47	1.0	89	0.4	130	1.0	169	1.0
6	0.8	48	0.2	90	1.0	131	0.4	170	0.8
7	1.0	49	1.0	91	0.4	132	1.0	171	0.8
8	1.0	50	1.0	92	0.8	133	0.6	172	0.4
9	0.6	51	0.6	93	0.6	134	0.4	173	0.6
10	1.0	52	0.6	94	0.8	135	0.4	174	0.8
11	0.4	53	1.0	95	0.8	136	0.6	175	0.2
12	0.2	54	1.0	96	1.0	137	0.6	176	0.4
13	0.6	55	0.2	97	0.6	138	0.6	177	0.8
14	0.2	56	0.4	98	0.4	139	1.0	178	0.2
15	1.0	57	0.4	99	1.0	140	0.8	179	1.0
16	1.0	58	1.0	100	0.4	141	0.4	180	0.2
17	0.4	59	1.0	101	0.6	142	0.6	181	0.6
19	1.0	61	0.6	102	0.2	143	1.0	183	0.6
20	0.4	62	0.2	103	1.0	144	1.0	185	0.2
21	0.8	63	1.0	104	0.4	145	0.2	186	0.4
22	0.6	64	0.6	105	0.6	146	0.8	187	1.0
23	0.8	65	1.0	106	0.2	147	0.8	188	0.4
24	0.4	66	0.6	107	0.6	148	0.4	189	1.0
25	0.8	67	0.8	108	0.6	149	0.2	191	0.6
27	0.4	69	0.2	109	0.8	150	0.4	192	1.0
28	1.0	70	1.0	110	1.0	151	1.0	193	0.6
29	0.6	71	1.0	111	0.4	152	0.6	194	0.6
30	0.6	72	0.2	112	0.4	153	0.4	195	0.6
31	0.8	73	0.8	113	0.6	154	0.2	196	0.4
32	0.8	74	0.6	114	0.2	155	0.6	198	1.0
33	1.0	75	0.6	115	0.2	156	1.0	199	1.0
34	0.8	76	1.0	116	0.2	157	0.4	200	1.0
35	0.6	77	0.2	117	0.4	158	1.0	201	1.0
36	0.6	78	0.2	118	1.0	159	0.2		
39	1.0	79	0.4	119	0.2	160	0.6		
40	0.6	80	0.6	120	0.2	161	0.6		
41	0.4	81	0.2	122	0.2	162	0.4		
42	0.8	82	0.8	124	0.6	163	1.0		

Tabella A.36: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 5

Nodo	P[MW]								
1	0.4	41	0.4	80	0.6	120	0.4	159	0.2
2	1.0	42	0.8	82	0.8	121	0.4	161	0.8
3	0.4	43	0.8	83	0.4	123	0.4	162	1.0
4	0.2	44	0.6	85	0.8	124	1.0	164	0.6
5	1.0	45	0.8	88	0.6	125	0.2	165	1.0
6	0.8	46	0.2	89	0.4	126	0.8	166	0.6
7	1.0	47	1.0	90	1.0	127	1.0	167	1.0
8	1.0	49	1.0	91	0.4	128	1.0	168	1.0
9	0.6	50	1.0	92	0.8	129	0.2	169	0.4
10	1.0	51	0.6	93	0.6	130	0.2	171	0.8
11	0.4	52	0.6	94	0.8	131	1.0	172	0.8
12	0.2	53	0.8	95	0.8	133	1.0	174	1.0
13	0.6	54	1.0	96	1.0	135	0.4	177	0.4
14	0.2	55	0.2	97	0.4	136	0.6	178	1.0
15	1.0	56	0.4	98	0.4	137	0.6	179	1.0
16	1.0	57	0.4	99	1.0	138	0.6	180	0.2
17	0.4	58	1.0	100	0.4	139	1.0	181	0.4
18	1.0	59	1.0	101	0.6	140	0.8	182	0.6
20	0.6	61	0.6	102	0.2	141	0.4	183	0.8
21	0.2	62	0.2	103	1.0	142	0.6	184	1.0
22	0.8	63	1.0	104	0.4	143	1.0	187	0.2
23	0.8	64	0.6	105	0.6	144	1.0	188	1.0
24	0.2	65	1.0	106	0.2	145	0.2	189	0.4
26	0.4	66	0.6	107	0.6	146	0.8	191	0.2
27	1.0	67	0.8	108	0.6	147	0.8	192	0.2
28	0.4	69	0.2	109	0.8	148	0.4	193	0.6
29	0.4	70	1.0	110	1.0	149	0.2	194	0.6
30	0.8	71	1.0	111	0.4	150	0.4	195	0.6
32	0.4	72	0.2	112	0.4	151	1.0	196	0.4
33	1.0	73	0.8	113	0.6	152	0.6	198	1.0
34	0.6	74	0.8	114	0.2	153	0.8	199	1.0
36	1.0	75	0.6	115	0.2	154	1.0	200	1.0
37	0.6	76	1.0	116	0.2	155	0.4	201	1.0
38	0.6	77	0.2	117	0.4	156	1.0		
39	0.2	78	0.2	118	0.4	157	0.8		
40	0.6	79	0.4	119	0.8	158	1.0		

Tabella A.37: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 6

Nodo	P[MW]								
1	0.2	43	1.0	81	0.8	127	1.0	167	0.6
3	1.0	44	1.0	82	0.8	128	0.4	169	0.4
4	0.8	45	0.6	83	0.2	129	0.8	170	0.4
5	0.6	46	0.8	84	0.8	130	0.4	171	0.2
6	0.6	47	1.0	85	0.2	131	1.0	172	0.2
7	0.2	48	0.8	86	0.8	132	0.2	173	0.8
8	1.0	49	0.2	88	1.0	133	0.6	174	0.6
9	0.2	50	0.4	89	0.8	134	0.2	175	0.4
10	0.4	51	0.4	90	0.8	135	1.0	176	1.0
11	0.2	52	1.0	92	0.8	136	0.6	177	0.2
12	0.8	53	1.0	95	0.8	137	0.2	178	0.4
14	1.0	54	0.8	96	1.0	138	1.0	179	0.2
15	0.4	55	0.4	97	1.0	139	0.4	180	1.0
16	0.8	56	0.8	98	0.8	140	0.4	181	1.0
17	0.8	57	0.8	99	0.8	141	0.2	182	1.0
18	0.8	58	1.0	100	0.4	142	0.6	184	0.6
19	0.8	59	0.8	101	0.2	143	0.4	185	0.4
20	0.6	60	0.2	102	0.4	144	0.6	186	0.4
21	0.2	61	0.2	103	0.2	145	0.8	188	1.0
22	0.4	62	0.6	105	0.2	146	0.4	189	1.0
23	0.6	63	0.2	106	1.0	147	0.8	190	1.0
25	0.4	64	0.8	107	0.8	148	0.6	191	1.0
26	0.8	65	0.2	109	0.2	149	0.8	192	0.6
27	1.0	66	0.8	110	0.8	150	0.2	193	0.6
28	0.6	67	0.6	111	0.4	151	1.0	194	1.0
29	1.0	69	1.0	113	1.0	152	0.6	195	1.0
30	0.2	70	0.8	114	0.8	153	0.4	196	0.6
32	1.0	71	0.6	115	0.8	154	1.0	197	0.2
34	0.8	72	0.6	116	0.8	155	1.0	198	0.4
35	0.6	73	0.6	117	0.8	156	0.6	199	0.8
36	0.8	74	0.6	118	0.8	157	1.0	200	0.6
37	1.0	75	1.0	120	1.0	158	0.8	201	0.4
38	0.8	76	0.6	121	0.6	160	0.2		
39	0.6	77	0.8	122	1.0	161	0.2		
40	0.8	78	0.2	124	0.2	162	0.6		
41	0.2	79	1.0	125	0.2	164	0.8		
42	0.6	80	0.4	126	0.8	165	0.2		

Tabella A.38: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 7

Nodo	P[MW]								
1	0.8	40	0.4	81	0.2	116	0.6	155	0.6
2	1.0	41	0.6	82	1.0	117	0.2	161	0.2
3	0.6	42	0.8	83	0.6	119	0.2	163	0.6
4	1.0	43	0.4	84	0.6	120	1.0	164	0.6
5	0.8	44	0.4	85	0.6	121	0.4	166	1.0
6	0.8	45	0.2	86	0.8	122	0.4	167	0.8
7	1.0	46	0.6	87	0.2	124	0.6	168	1.0
8	0.8	47	1.0	88	0.4	125	1.0	169	1.0
9	0.6	48	0.6	89	0.4	127	0.2	170	1.0
10	0.4	49	0.6	91	0.2	128	0.8	171	1.0
12	0.4	50	1.0	92	0.8	129	1.0	175	0.8
14	0.6	51	0.8	93	0.4	130	1.0	176	0.4
16	0.8	52	0.6	94	0.4	131	0.2	178	0.6
17	0.8	54	0.2	96	0.8	132	1.0	179	1.0
18	1.0	55	1.0	97	0.8	133	0.2	180	0.4
19	1.0	56	0.8	98	0.2	134	1.0	181	1.0
20	0.6	57	0.2	99	0.2	135	0.2	182	0.6
21	0.4	58	1.0	100	0.4	136	0.2	183	1.0
23	0.4	60	0.2	101	0.2	138	0.8	184	0.2
24	1.0	61	1.0	102	0.8	139	1.0	185	0.4
25	0.6	64	0.2	103	1.0	141	1.0	187	0.2
26	0.8	66	0.4	104	0.6	142	0.4	188	0.4
27	0.2	67	0.4	105	0.2	143	0.6	189	0.2
29	0.8	68	0.2	107	1.0	144	1.0	191	0.2
31	0.6	69	0.2	108	0.2	146	0.6	193	0.2
32	0.8	70	0.8	109	0.4	147	0.8	194	0.2
33	0.8	71	1.0	110	0.8	148	1.0	195	0.6
34	1.0	72	1.0	111	0.6	149	1.0	196	0.2
36	1.0	74	1.0	112	1.0	150	0.6	197	0.6
37	1.0	76	1.0	113	0.6	151	1.0	198	0.4
38	0.4	77	0.8	114	0.8	152	0.4	201	0.4
39	0.2	80	0.6	115	0.8	154	0.2		

Tabella A.39: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 8
Nodo	P[MW]								
1	0.2	39	0.2	82	0.2	123	0.6	161	0.2
2	0.8	41	0.6	83	0.2	124	0.8	162	1.0
3	0.2	42	0.6	84	0.8	125	0.6	163	0.4
4	0.2	43	1.0	85	0.8	126	0.2	164	0.8
5	0.6	45	0.8	86	0.2	127	0.8	165	1.0
6	1.0	46	1.0	87	0.2	128	0.4	166	1.0
7	0.2	47	0.6	89	0.8	129	0.8	167	0.6
8	0.4	48	0.2	90	0.4	130	1.0	168	0.6
9	0.2	49	0.2	93	0.8	131	0.6	170	1.0
10	0.4	50	0.8	95	0.4	132	0.4	171	0.6
14	1.0	51	1.0	96	1.0	133	0.2	175	0.6
16	1.0	52	0.4	97	1.0	135	1.0	177	0.2
17	1.0	55	0.8	98	0.8	136	1.0	179	0.6
18	0.8	56	0.4	99	0.2	137	1.0	180	0.4
19	1.0	57	0.8	100	0.8	138	0.6	181	0.2
20	0.6	58	0.2	101	0.4	140	1.0	182	1.0
21	0.4	60	0.2	102	1.0	141	0.2	183	0.8
22	1.0	64	0.4	104	1.0	142	0.8	184	0.4
23	0.8	65	0.4	105	0.4	143	0.2	185	0.2
24	0.2	67	0.2	106	0.6	144	0.8	186	0.2
25	0.6	68	1.0	107	0.6	145	0.2	187	0.6
26	1.0	69	0.2	109	0.6	147	0.6	189	0.2
27	0.2	70	0.6	110	1.0	149	0.4	190	0.8
28	0.6	71	1.0	111	0.6	150	1.0	191	0.4
29	0.4	72	0.8	112	0.6	151	0.8	192	0.8
30	0.8	73	1.0	113	0.2	152	0.6	193	0.2
31	1.0	74	1.0	114	0.2	153	1.0	194	0.2
32	0.2	75	0.6	115	0.4	154	0.6	195	0.8
33	0.8	76	0.8	117	0.4	155	0.6	197	0.6
34	0.6	77	0.8	118	0.6	156	0.8	198	0.6
35	0.6	78	1.0	119	1.0	157	0.6		
36	1.0	79	0.6	120	1.0	158	0.4		
37	0.6	80	0.6	121	0.8	159	0.4		
38	0.4	81	0.4	122	0.6	160	0.2		

Tabella A.40: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 9

Nodo	P[MW]								
1	0.4	39	1.0	77	0.6	124	1.0	164	1.0
2	0.6	40	0.8	78	0.8	125	0.2	165	0.8
3	0.2	41	0.4	79	1.0	126	0.8	166	0.4
4	0.4	42	0.2	80	0.8	127	1.0	167	1.0
5	0.2	43	0.4	83	1.0	128	0.2	168	0.4
7	1.0	44	0.4	84	0.6	129	0.6	170	0.2
8	0.2	45	0.6	85	0.2	130	0.6	171	0.2
9	0.2	46	0.2	88	0.8	131	0.4	173	0.6
10	0.6	47	0.4	89	0.6	132	0.2	174	1.0
11	0.8	48	0.8	93	0.8	133	1.0	175	0.8
12	0.2	49	0.4	94	0.4	134	0.6	176	1.0
13	0.4	50	1.0	97	0.2	135	1.0	177	0.6
14	0.6	52	0.4	99	1.0	137	0.8	178	0.2
15	1.0	53	0.2	100	0.4	140	0.2	179	0.8
16	1.0	55	0.2	101	0.2	141	1.0	181	0.2
17	0.8	56	0.8	102	0.6	142	0.2	182	0.6
18	0.6	57	0.6	103	1.0	143	1.0	183	0.8
19	0.2	58	0.4	104	0.6	144	0.4	184	0.8
20	0.6	59	1.0	105	1.0	145	0.6	186	1.0
21	1.0	60	0.6	107	0.2	146	1.0	189	0.4
22	0.4	61	0.2	108	0.6	147	0.6	190	0.8
23	0.6	62	0.6	109	0.6	148	0.6	191	0.2
24	0.6	63	1.0	110	0.2	149	1.0	192	0.6
25	0.8	64	0.6	111	0.2	150	1.0	193	0.4
27	0.8	65	0.4	112	0.2	151	0.2	194	0.6
28	0.4	67	0.6	113	0.2	152	0.8	195	0.2
29	0.6	68	0.4	114	1.0	153	0.6	196	1.0
30	1.0	69	1.0	115	0.4	154	1.0	197	0.8
31	0.8	70	1.0	116	0.6	156	0.6	200	0.8
32	0.2	71	0.2	117	1.0	157	0.8	201	0.4
33	0.6	72	0.2	118	0.8	158	0.4		
34	1.0	73	1.0	119	0.8	159	0.6		
36	0.4	74	0.6	120	0.8	160	1.0		
37	0.8	75	0.6	122	0.2	162	0.8		
38	0.6	76	1.0	123	1.0	163	0.2		

Tabella A.41: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 10

Nodo	P[MW]								
1	1.0	42	0.6	84	0.2	123	0.2	166	0.2
3	0.6	43	0.2	85	1.0	124	0.2	167	1.0
5	0.4	44	0.8	86	0.2	125	0.6	168	0.6
6	0.4	45	0.8	87	0.6	126	0.6	170	0.2
7	1.0	47	0.8	88	0.4	127	0.2	172	1.0
8	0.6	48	0.2	89	0.6	128	0.2	173	1.0
9	0.2	49	0.8	91	0.4	129	0.2	174	0.6
10	0.6	50	0.2	92	0.2	131	0.2	175	0.2
11	0.4	51	0.2	93	1.0	132	0.6	176	0.4
12	0.6	52	1.0	94	0.4	133	0.6	177	0.8
13	0.2	54	1.0	95	0.4	134	0.6	178	0.8
14	0.8	55	0.4	96	0.4	135	1.0	179	0.2
15	1.0	57	0.4	97	0.2	136	0.8	180	0.6
16	0.6	58	1.0	98	0.4	137	0.2	181	1.0
18	0.4	59	0.6	99	0.4	138	1.0	182	0.8
20	0.2	61	0.8	101	0.2	139	1.0	183	1.0
21	0.6	62	1.0	102	1.0	140	0.6	184	0.4
22	0.2	63	1.0	103	1.0	141	0.2	185	0.8
23	0.2	64	0.8	104	1.0	142	0.8	186	1.0
24	0.6	65	0.2	105	0.2	143	1.0	188	0.2
25	0.2	66	0.4	106	0.6	145	0.6	189	0.8
28	0.8	69	0.6	107	0.4	147	1.0	190	0.2
29	0.2	70	0.6	108	0.2	148	1.0	191	1.0
30	0.6	71	0.8	109	1.0	149	0.8	192	1.0
31	0.8	72	1.0	110	0.6	151	0.4	193	0.2
32	0.2	74	0.8	111	0.8	153	0.2	194	0.8
33	0.6	75	1.0	112	0.4	154	1.0	195	0.6
34	0.8	76	1.0	113	1.0	155	0.6	196	1.0
35	0.4	77	0.2	114	1.0	157	0.8	197	0.4
36	0.2	78	0.4	115	0.8	158	0.8	198	0.6
37	0.8	79	1.0	116	0.2	159	0.6	199	1.0
38	0.8	80	1.0	117	0.2	161	0.8	201	0.4
39	1.0	81	0.4	119	1.0	162	0.4		
40	0.8	82	0.8	120	0.4	163	0.8		
41	0.8	83	0.8	122	0.2	165	0.4		

Tabella A.42: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 11

Nodo	P[MW]								
1	1.0	42	0.6	83	0.2	127	0.2	171	0.2
2	0.2	43	1.0	84	0.8	128	0.2	172	1.0
4	1.0	45	0.8	85	0.8	129	0.2	173	0.8
5	1.0	46	1.0	86	0.8	131	0.2	174	1.0
6	0.8	47	0.6	88	1.0	132	0.6	175	0.2
7	0.2	48	0.2	89	0.8	133	0.6	176	0.2
8	0.4	49	0.2	90	0.8	134	0.6	177	1.0
9	0.4	50	0.8	92	0.8	135	1.0	179	0.8
10	0.8	51	1.0	95	0.8	136	0.8	180	1.0
11	0.6	52	0.4	96	1.0	137	0.2	181	0.8
12	1.0	55	0.8	97	1.0	138	1.0	182	0.6
13	0.6	56	0.4	98	0.8	139	1.0	183	0.4
15	0.4	57	0.8	100	0.6	140	0.6	184	0.2
16	1.0	58	0.2	101	0.4	141	0.2	186	0.4
17	1.0	60	0.2	104	0.6	142	0.8	187	0.6
18	0.4	64	0.4	105	0.2	143	1.0	188	0.2
19	0.4	65	0.4	106	1.0	145	0.6	189	1.0
22	0.2	67	0.2	107	0.6	147	1.0	190	1.0
23	0.4	68	1.0	109	0.4	148	1.0	191	0.2
24	0.6	69	0.2	110	0.4	149	0.8	192	0.6
25	0.4	70	0.6	112	0.2	151	0.4	193	1.0
26	0.2	71	1.0	113	0.4	153	0.2	194	0.6
27	0.6	72	0.8	114	0.2	154	1.0	195	0.4
28	0.8	73	1.0	115	0.6	155	0.6	196	1.0
29	0.8	74	1.0	116	0.6	157	0.8	197	0.6
30	0.4	75	0.6	117	0.2	158	0.8	198	0.6
32	0.6	76	0.8	119	0.2	159	0.6	199	0.8
35	0.8	77	0.8	120	0.4	161	0.8	200	0.2
36	0.4	78	1.0	122	0.2	162	0.4	201	0.8
37	0.2	79	0.6	123	0.2	163	0.8		
38	0.8	80	0.6	124	0.2	165	0.4		
39	0.2	81	0.4	125	0.6	169	0.8		
41	0.6	82	0.2	126	0.6	170	0.4		

Tabella A.43: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 12

Nodo	P[MW]								
1	0.4	40	0.4	81	0.4	124	0.2	158	1.0
2	0.6	41	0.6	82	0.2	125	0.6	159	0.4
3	0.8	42	0.8	83	0.2	126	0.6	161	0.6
4	0.6	43	0.4	84	0.8	127	0.2	165	0.8
6	0.4	45	1.0	85	0.8	128	0.2	166	0.8
7	0.4	47	1.0	86	0.8	129	0.2	167	0.4
8	0.2	48	0.2	88	1.0	131	0.2	168	0.6
9	0.2	49	0.2	89	0.8	132	0.6	169	1.0
10	0.6	50	0.8	90	0.8	133	0.6	170	0.8
13	0.8	51	1.0	92	0.8	134	0.6	171	0.4
14	1.0	52	0.4	95	0.8	135	1.0	172	0.6
15	0.6	55	0.8	96	1.0	136	0.8	173	0.4
16	0.4	56	0.4	97	1.0	137	0.2	174	0.2
17	0.8	57	0.8	98	0.8	138	1.0	175	0.8
18	1.0	58	0.2	100	0.6	139	1.0	176	0.2
19	1.0	60	0.2	101	0.4	140	0.6	177	0.6
20	0.6	64	0.4	104	0.6	141	0.2	179	0.4
21	0.4	65	0.4	105	0.2	142	0.8	180	0.4
23	0.4	67	0.2	106	1.0	143	1.0	181	0.6
24	1.0	68	1.0	107	0.8	145	0.8	184	0.8
25	0.6	69	0.2	109	0.4	146	1.0	185	0.4
26	0.8	70	0.6	110	0.4	147	0.4	188	1.0
27	0.2	71	1.0	112	0.2	148	0.2	189	1.0
29	0.8	72	0.8	113	0.4	149	0.2	192	0.8
31	0.6	73	1.0	114	0.2	150	1.0	193	1.0
32	0.8	74	1.0	115	0.6	151	0.4	194	0.8
33	1.0	75	0.6	116	0.6	152	0.8	196	0.6
34	1.0	76	0.8	117	0.2	153	0.2	197	0.6
36	1.0	77	0.8	119	0.2	154	0.4	198	1.0
37	1.0	78	1.0	120	0.4	155	0.6	199	0.8
38	0.4	79	0.6	122	0.2	156	0.8	201	0.8
39	0.2	80	0.6	123	0.2	157	0.4		

Tabella A.44: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 13

Nodo	P[MW]								
1	0.4	41	0.4	85	1.0	124	0.4	165	0.8
2	0.6	42	0.2	86	0.6	125	0.2	166	0.8
4	1.0	43	0.4	87	0.2	126	1.0	167	0.4
5	0.4	44	0.4	88	0.2	127	0.6	168	0.6
6	0.8	45	0.6	91	0.8	128	0.8	169	1.0
7	0.8	46	0.2	92	0.4	129	0.4	170	0.8
8	0.6	48	0.2	93	0.2	130	0.6	171	0.4
9	1.0	50	0.2	94	0.2	131	0.8	172	0.6
11	0.8	51	0.8	95	1.0	132	0.6	173	0.4
12	1.0	52	1.0	97	0.8	133	1.0	174	1.0
13	1.0	55	1.0	98	0.2	134	0.8	175	0.2
14	0.2	57	0.8	99	0.2	136	1.0	176	0.8
15	0.2	58	0.8	100	0.4	137	1.0	177	0.2
16	1.0	59	0.6	101	0.6	138	1.0	178	0.6
17	0.2	60	0.2	102	1.0	140	0.4	179	0.2
18	0.2	61	0.2	103	1.0	141	0.6	180	0.8
19	0.4	62	0.2	104	0.4	143	0.6	181	0.4
20	0.8	63	0.4	105	0.6	144	0.6	182	0.6
21	0.6	64	1.0	106	0.8	145	0.8	184	0.4
22	1.0	65	1.0	107	0.2	146	1.0	185	0.2
23	0.6	66	0.8	108	0.6	147	0.4	186	0.6
24	0.6	68	1.0	109	0.4	148	0.2	187	0.2
25	1.0	69	0.8	110	1.0	149	0.2	188	0.4
26	0.6	72	0.2	111	0.4	150	1.0	190	0.8
28	0.6	73	0.2	112	0.8	151	0.4	191	0.2
29	1.0	74	1.0	113	0.2	152	0.8	192	0.4
30	0.8	75	0.4	114	0.2	153	0.2	194	0.8
32	0.2	76	1.0	116	1.0	154	0.4	195	0.8
34	1.0	77	0.6	118	1.0	155	0.6	196	0.8
36	0.4	79	0.6	119	1.0	156	0.8	197	1.0
37	0.8	80	0.8	120	1.0	157	0.4	201	0.6
38	0.6	81	0.2	121	0.2	158	1.0		
39	1.0	82	0.4	122	0.6	159	0.4		
40	0.8	84	0.2	123	1.0	161	0.6		

Tabella A.45: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 14

Nodo	P[MW]								
1	0.2	39	0.2	76	0.2	125	0.2	168	0.6
2	0.2	40	0.2	77	0.8	126	0.8	169	1.0
3	0.4	41	0.8	78	1.0	127	0.6	171	0.8
4	1.0	42	0.8	79	1.0	129	0.2	172	0.6
5	0.6	43	0.6	80	0.6	130	0.8	173	0.6
6	0.4	44	0.2	81	0.8	131	1.0	174	0.4
7	0.2	45	1.0	82	0.4	132	1.0	175	1.0
9	0.2	46	0.4	83	1.0	133	0.6	176	0.8
10	0.8	47	0.8	84	0.6	134	0.4	177	0.8
11	0.6	48	1.0	86	1.0	135	0.8	178	0.2
12	1.0	50	0.2	87	0.8	136	0.6	179	0.8
13	0.2	51	1.0	88	1.0	138	0.4	180	0.2
14	0.4	52	1.0	89	0.2	139	0.8	181	0.6
15	0.2	53	0.8	91	1.0	141	1.0	183	0.4
16	0.6	54	0.4	92	0.8	142	1.0	184	0.8
17	1.0	55	0.8	94	0.8	143	1.0	185	1.0
18	0.8	56	0.2	95	0.8	144	0.8	186	0.4
19	0.4	57	1.0	96	1.0	145	1.0	187	0.8
20	1.0	58	0.4	97	0.8	146	0.4	188	0.8
21	0.8	60	0.8	102	0.2	147	0.2	189	0.6
22	0.6	61	0.8	103	1.0	148	0.8	190	0.4
23	1.0	62	0.4	104	0.6	149	0.6	191	0.8
24	0.8	63	0.6	105	0.6	150	1.0	192	0.8
25	1.0	64	1.0	106	1.0	151	0.6	193	0.2
27	0.6	65	0.2	108	0.2	152	0.8	194	0.8
28	0.4	66	0.8	109	0.6	153	0.4	196	0.8
29	0.6	67	0.8	110	1.0	157	0.2	197	0.6
30	0.4	68	0.8	111	0.6	158	0.8	198	1.0
31	0.4	69	1.0	113	0.8	159	1.0	200	0.8
32	1.0	70	0.8	114	0.2	161	1.0	201	0.8
33	1.0	71	1.0	115	0.8	162	0.8		
35	1.0	72	0.6	116	0.4	163	0.8		
36	0.4	73	0.6	117	1.0	164	0.8		
37	0.6	74	1.0	118	0.8	165	0.8		
38	1.0	75	1.0	119	0.6	167	0.4		

Tabella A.46: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 15

Nodo	P[MW]								
1	0.6	41	0.8	78	1.0	119	0.6	168	0.2
2	0.6	42	0.8	79	1.0	125	0.2	169	0.6
3	0.4	43	0.6	80	0.6	126	0.8	170	0.4
4	1.0	44	0.2	81	0.8	127	0.6	172	0.8
5	0.6	45	1.0	82	0.4	130	0.8	173	0.8
6	0.4	46	0.4	83	1.0	131	1.0	174	0.6
9	0.2	47	0.8	84	0.6	132	1.0	175	0.8
10	0.8	48	1.0	86	1.0	133	0.6	177	0.2
11	0.6	50	0.2	87	0.8	134	0.4	178	0.6
12	1.0	51	1.0	88	1.0	135	0.8	179	0.6
13	0.2	52	1.0	89	0.2	136	0.6	180	0.8
14	0.4	53	0.8	91	1.0	138	0.4	181	0.6
15	0.2	54	1.0	92	0.8	139	0.8	183	0.4
16	0.6	55	0.8	94	0.8	141	1.0	184	1.0
17	1.0	56	0.2	95	0.8	142	1.0	185	0.8
18	0.8	57	1.0	96	1.0	143	1.0	186	0.2
19	0.4	58	0.4	97	0.6	144	0.8	187	0.2
20	0.2	60	0.8	98	0.8	145	1.0	188	1.0
21	0.8	61	0.8	99	1.0	146	0.4	189	0.6
22	0.8	62	0.4	100	0.2	147	0.2	190	1.0
23	1.0	63	0.6	101	0.2	148	0.8	191	0.4
24	0.8	64	1.0	103	1.0	149	0.6	192	0.2
25	1.0	65	0.2	104	0.6	150	1.0	193	1.0
27	0.6	66	0.8	105	0.6	151	0.6	194	1.0
28	0.4	67	0.8	106	1.0	152	1.0	195	0.2
29	0.6	68	0.8	108	0.2	153	0.4	196	0.8
30	0.4	69	1.0	109	0.6	157	0.2	197	0.6
31	0.4	70	0.8	110	1.0	158	0.8	198	1.0
32	1.0	71	1.0	111	0.6	159	1.0	200	0.8
33	1.0	72	0.6	113	0.8	161	1.0	201	0.8
35	1.0	73	0.6	114	0.2	162	0.8		
36	0.2	74	1.0	115	0.8	163	0.8		
37	0.6	75	1.0	116	0.4	164	0.8		
38	1.0	76	0.2	117	1.0	165	0.8		
39	0.2	77	0.8	118	1.0	167	0.8		

Tabella A.47: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 16

Nodo	P[MW]								
1	0.8	42	1.0	83	1.0	123	0.4	165	1.0
2	0.8	43	0.8	84	0.6	124	0.2	166	0.8
3	0.2	44	0.2	86	1.0	125	0.6	167	0.6
4	0.4	45	1.0	87	1.0	126	0.8	168	1.0
5	0.8	46	0.2	88	0.8	127	0.2	169	0.4
6	0.8	47	1.0	89	0.4	128	0.2	170	0.2
7	0.2	48	0.2	90	0.8	129	0.4	171	0.2
8	0.4	49	1.0	91	1.0	130	1.0	172	0.6
9	1.0	50	1.0	92	0.6	131	0.6	173	1.0
10	1.0	51	0.6	93	1.0	134	0.4	174	0.8
11	0.2	52	0.6	94	0.8	135	0.8	175	1.0
12	0.4	53	0.8	95	0.4	136	1.0	176	0.4
14	1.0	54	1.0	96	1.0	137	0.8	177	0.8
16	0.2	55	0.2	97	0.6	138	1.0	178	0.8
17	0.4	56	0.4	98	0.6	139	0.6	179	0.2
18	0.8	57	0.4	99	0.6	142	0.6	180	0.4
19	1.0	58	0.6	100	0.6	143	0.2	181	1.0
20	1.0	59	0.8	101	0.4	144	0.2	182	0.6
21	1.0	61	0.8	102	1.0	145	0.4	183	1.0
22	1.0	62	1.0	103	0.8	146	0.2	184	1.0
23	1.0	63	0.2	104	0.2	147	0.8	185	0.8
24	0.8	64	0.8	105	1.0	148	1.0	186	0.6
25	0.2	65	1.0	106	1.0	149	0.2	187	1.0
27	1.0	66	0.6	107	0.4	150	0.8	188	0.8
28	0.4	67	0.8	109	0.4	151	0.4	189	0.8
29	0.4	69	1.0	110	0.6	152	0.2	191	1.0
30	0.4	70	0.8	111	0.2	153	0.4	192	0.4
31	0.6	71	0.8	112	1.0	154	0.8	193	1.0
32	0.8	72	1.0	113	0.6	156	0.4	194	1.0
33	0.8	73	0.6	114	0.6	157	0.2	195	0.6
34	0.6	74	0.2	115	0.8	158	0.6	196	0.4
35	0.2	75	0.6	116	0.6	159	0.2	197	0.4
36	0.4	77	0.6	117	0.6	160	0.2	198	0.8
37	0.8	78	0.4	118	1.0	161	0.8	199	1.0
38	1.0	79	0.4	119	0.6	162	0.2	200	0.4
40	0.2	80	0.8	121	1.0	163	0.8	201	1.0
41	0.6	81	0.6	122	0.6	164	0.8		

Tabella A.48: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 17

Nodo	P[MW]								
1	0.8	42	1.0	83	1.0	121	1.0	165	1.0
2	0.8	43	0.8	84	0.6	122	0.6	166	0.8
3	0.2	44	0.2	85	0.2	123	0.4	167	0.6
4	0.4	45	1.0	86	1.0	124	0.2	168	1.0
5	0.8	46	0.2	87	1.0	125	0.6	169	0.4
6	0.8	47	1.0	88	0.8	126	0.8	170	0.2
7	0.2	48	0.2	89	0.4	127	0.2	171	0.2
8	0.4	49	1.0	90	0.8	128	0.2	172	0.6
9	1.0	50	1.0	91	1.0	129	0.4	173	1.0
10	1.0	51	0.6	92	0.6	130	1.0	174	0.8
11	0.2	52	0.6	93	1.0	131	0.6	175	1.0
12	0.4	53	0.8	94	0.8	134	0.4	176	0.4
14	1.0	54	1.0	95	0.4	135	0.8	177	0.8
16	0.2	55	0.2	96	1.0	136	1.0	178	0.8
17	0.4	56	0.4	97	0.6	137	0.8	179	0.2
18	0.8	57	0.4	98	0.6	138	1.0	180	0.4
19	1.0	58	0.6	99	0.6	139	0.6	181	1.0
20	1.0	59	0.8	100	0.6	142	0.4	182	0.6
21	1.0	61	0.8	101	0.4	143	0.2	183	1.0
22	1.0	62	1.0	102	1.0	144	0.2	184	1.0
23	1.0	63	0.2	103	0.8	145	0.6	185	0.8
24	0.8	64	0.8	104	0.2	147	0.8	186	0.6
25	0.2	65	1.0	105	1.0	148	1.0	187	1.0
27	1.0	66	0.6	106	1.0	149	0.2	188	0.8
28	0.4	67	0.8	107	1.0	150	0.8	189	0.8
29	0.4	69	1.0	108	0.6	151	0.4	191	1.0
30	0.4	70	0.8	109	0.2	153	0.4	192	0.4
31	0.6	71	0.8	110	0.6	154	0.8	193	1.0
32	0.8	72	1.0	111	0.2	156	0.4	194	1.0
33	0.8	73	0.6	112	1.0	157	0.2	195	0.4
34	0.6	74	0.2	113	0.6	158	0.6	196	0.4
35	0.2	75	0.6	114	0.6	159	0.2	197	0.4
36	0.4	77	0.6	115	0.8	160	0.2	198	0.8
37	0.8	78	0.4	116	0.6	161	1.0	199	1.0
38	1.0	79	0.4	117	0.4	162	0.2	200	0.4
40	0.2	80	0.8	118	1.0	163	0.8	201	1.0
41	0.6	81	0.6	119	0.6	164	0.8		

Tabella A.49: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 18

Nodo	P[MW]								
1	0.8	42	1.0	83	1.0	122	0.6	166	0.8
2	0.8	43	0.8	84	0.6	123	0.4	167	0.6
3	0.2	44	0.2	86	1.0	124	0.2	168	0.8
4	0.4	45	1.0	87	1.0	125	0.6	169	0.4
5	0.8	46	0.2	88	0.8	126	0.8	170	0.2
6	1.0	47	1.0	89	0.4	127	0.2	171	0.2
7	0.2	48	0.2	90	0.8	128	0.2	172	0.6
8	0.4	49	1.0	91	1.0	129	0.4	173	1.0
9	1.0	50	1.0	92	0.6	130	1.0	174	0.8
10	1.0	51	0.6	93	1.0	131	0.6	175	1.0
11	0.2	52	0.6	94	0.8	134	0.4	176	0.4
12	0.4	53	0.8	95	0.4	135	0.8	177	0.8
14	1.0	54	1.0	96	1.0	136	1.0	178	0.8
16	0.2	55	0.2	97	0.6	137	0.8	179	0.2
17	0.4	56	0.4	98	0.6	138	1.0	180	0.4
18	0.8	57	0.4	99	0.6	139	0.6	181	1.0
19	1.0	58	0.6	100	0.6	142	0.6	182	0.6
20	1.0	59	0.8	101	0.4	143	0.2	183	1.0
21	1.0	61	0.8	102	1.0	144	0.2	184	1.0
22	1.0	62	1.0	103	0.8	145	0.4	185	0.8
23	1.0	63	0.2	104	0.2	147	0.8	186	0.6
24	0.8	64	0.8	105	1.0	148	1.0	187	1.0
25	0.2	65	1.0	106	1.0	149	0.2	188	0.8
27	1.0	66	0.6	107	1.0	150	0.8	189	0.8
28	0.4	67	0.8	108	0.6	151	0.4	191	1.0
29	0.4	69	1.0	109	0.2	153	0.4	192	0.4
30	0.4	70	0.6	110	0.6	154	0.8	193	1.0
31	0.6	71	0.8	111	0.2	156	0.4	194	1.0
32	0.8	72	1.0	112	1.0	157	0.2	195	0.4
33	0.8	73	0.6	113	0.6	158	0.6	196	0.4
34	0.6	74	0.2	114	0.6	159	0.2	197	0.4
35	0.2	75	0.6	115	0.8	160	0.2	198	0.8
36	0.2	77	0.6	116	0.6	161	0.8	199	1.0
37	0.6	78	0.4	117	0.4	162	0.2	200	0.4
38	1.0	79	0.4	118	1.0	163	0.8	201	1.0
40	0.2	80	0.8	119	0.6	164	0.8		
41	0.6	81	0.6	121	1.0	165	1.0		

Tabella A.50: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 19

Nodo	P[MW]								
1	1.0	40	0.8	79	0.4	120	0.8	166	1.0
2	0.6	41	0.2	80	0.8	121	0.6	167	0.6
3	1.0	42	0.6	82	1.0	122	0.4	168	0.6
4	1.0	43	1.0	83	0.6	125	1.0	169	1.0
5	0.4	44	1.0	84	1.0	126	0.4	170	0.4
6	0.8	45	0.6	85	1.0	127	0.6	171	1.0
7	1.0	46	0.8	86	0.2	128	0.4	172	0.6
8	0.6	47	1.0	87	0.2	129	0.8	173	0.6
9	1.0	48	0.8	88	1.0	130	0.2	174	0.4
10	1.0	49	0.2	89	1.0	131	0.2	175	0.2
11	1.0	50	0.4	90	1.0	132	0.6	176	0.6
12	0.4	51	0.4	91	0.6	133	1.0	177	1.0
13	0.2	52	1.0	92	0.2	134	0.4	178	0.8
14	0.8	53	1.0	94	0.8	135	0.8	179	0.8
15	1.0	54	0.8	95	0.2	136	0.2	180	1.0
16	0.8	55	0.4	96	0.8	137	1.0	181	0.2
17	0.6	56	0.8	97	0.8	139	0.8	183	1.0
18	1.0	57	0.8	98	0.2	140	0.4	184	0.6
19	0.4	58	1.0	99	0.2	141	0.4	185	0.8
20	1.0	59	0.8	100	0.8	142	0.6	186	0.2
21	0.8	60	0.4	101	0.6	143	1.0	187	1.0
22	0.6	61	0.4	102	1.0	144	0.8	188	1.0
23	0.2	62	0.6	103	0.8	146	1.0	189	0.2
24	1.0	63	0.2	104	0.8	147	0.2	190	1.0
25	1.0	64	0.8	105	0.2	150	0.8	191	0.6
26	1.0	65	1.0	106	0.8	151	0.6	192	0.2
27	1.0	66	1.0	107	0.8	153	1.0	193	0.6
29	1.0	67	0.8	108	0.6	154	0.8	194	0.8
30	0.6	68	1.0	109	0.6	155	0.4	195	0.4
31	0.6	69	1.0	110	1.0	156	1.0	196	0.6
32	1.0	70	0.8	111	0.8	158	1.0	197	0.4
33	0.4	72	0.2	112	0.6	159	0.2	198	1.0
34	1.0	73	0.6	113	1.0	160	1.0	199	1.0
35	0.2	74	1.0	114	0.2	161	0.6	200	0.6
36	0.4	75	0.8	115	1.0	162	1.0	201	1.0
37	0.4	76	0.6	116	0.6	163	0.8		
38	1.0	77	1.0	117	0.2	164	0.4		
39	0.8	78	0.2	118	0.8	165	0.8		

Tabella A.51: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 20

Nodo	P[MW]								
1	1.0	40	0.8	79	0.4	120	0.8	165	0.8
2	0.6	41	0.2	80	0.8	121	0.6	166	1.0
3	1.0	42	0.6	82	1.0	122	0.4	167	0.6
4	1.0	43	1.0	83	0.6	125	1.0	168	0.6
5	0.4	44	1.0	84	1.0	126	0.4	169	1.0
6	0.8	45	0.6	85	1.0	127	0.6	170	0.4
7	1.0	46	0.8	86	0.2	128	0.4	171	1.0
8	0.6	47	1.0	87	0.2	129	0.8	172	0.6
9	1.0	48	0.8	88	1.0	130	0.2	173	0.6
10	1.0	49	0.2	89	1.0	131	0.2	174	0.4
11	1.0	50	0.4	90	1.0	132	0.6	175	0.2
12	0.4	51	0.4	91	0.6	133	1.0	176	0.6
13	0.2	52	1.0	92	0.2	134	0.4	177	1.0
14	0.8	53	1.0	94	0.8	135	0.8	178	0.8
15	1.0	54	0.8	95	0.2	136	0.2	179	0.8
16	0.8	55	0.4	96	0.8	137	1.0	180	1.0
17	0.6	56	0.8	97	0.8	139	0.8	181	0.2
18	1.0	57	0.8	98	0.2	140	0.4	183	1.0
19	0.4	58	1.0	99	0.2	141	0.4	184	0.6
20	1.0	59	0.8	100	0.8	142	0.6	185	0.8
21	0.8	60	0.4	101	0.6	143	1.0	186	0.2
22	0.6	61	0.4	102	1.0	144	0.8	187	1.0
23	0.2	62	0.6	103	0.8	145	0.2	188	1.0
24	1.0	63	0.2	104	0.8	146	1.0	189	0.2
25	1.0	64	0.8	105	0.2	147	0.2	190	1.0
26	1.0	65	1.0	106	0.8	150	0.8	191	0.6
27	1.0	66	1.0	107	0.8	151	0.6	192	0.2
29	1.0	67	0.8	108	0.6	153	1.0	193	0.6
30	0.6	68	1.0	109	0.6	154	0.8	194	0.8
31	0.6	69	1.0	110	1.0	155	0.4	195	0.6
32	1.0	70	0.8	111	0.8	156	1.0	196	0.6
33	0.4	72	0.2	112	0.6	158	1.0	197	0.4
34	1.0	73	0.6	113	1.0	159	0.2	198	1.0
35	0.2	74	1.0	114	0.2	160	1.0	199	1.0
36	0.4	75	0.8	115	1.0	161	0.6	200	0.6
37	0.4	76	0.6	116	0.6	162	1.0	201	1.0
38	1.0	77	1.0	117	0.2	163	0.8		
39	0.8	78	0.2	118	0.8	164	0.4		

Tabella A.52: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 21

Nodo	P[MW]								
1	1.0	41	0.2	80	0.8	121	0.6	167	0.6
2	0.6	42	0.6	82	1.0	122	0.4	168	0.6
3	1.0	43	1.0	83	0.6	125	1.0	169	1.0
4	1.0	44	1.0	84	1.0	126	0.4	170	0.4
5	0.4	45	0.6	85	1.0	127	0.6	171	1.0
6	0.8	46	0.8	86	0.2	128	0.4	172	0.6
7	1.0	47	1.0	87	0.2	129	0.8	173	0.6
8	0.6	48	0.8	88	1.0	130	0.2	174	0.4
9	1.0	49	0.2	89	1.0	131	0.2	175	0.2
10	1.0	50	0.4	90	1.0	132	0.6	176	0.6
11	1.0	51	0.4	91	0.6	133	1.0	177	1.0
12	0.4	52	1.0	92	0.2	134	0.4	178	0.8
14	0.8	53	1.0	94	0.8	135	0.8	179	0.8
15	1.0	54	0.8	95	0.2	136	0.2	180	1.0
16	0.8	55	0.4	96	0.8	137	1.0	181	0.2
17	0.6	56	0.8	97	0.8	139	0.8	183	1.0
18	1.0	57	0.8	98	0.2	140	0.4	184	0.6
19	0.4	58	1.0	99	0.2	141	0.4	185	0.8
20	1.0	59	0.8	100	0.8	142	0.6	186	0.2
21	0.8	60	0.2	101	0.6	143	1.0	187	1.0
22	0.6	61	0.2	102	1.0	144	0.8	188	1.0
23	0.2	62	0.6	103	0.8	146	1.0	189	0.2
24	1.0	63	0.2	104	0.8	147	0.2	190	1.0
25	1.0	64	0.8	105	0.2	150	0.8	191	0.6
26	1.0	65	1.0	106	0.8	151	0.6	192	0.2
27	1.0	66	1.0	107	0.8	153	1.0	193	0.6
29	1.0	67	0.8	108	0.8	154	0.8	194	0.8
30	0.6	68	1.0	109	0.6	155	0.4	195	0.8
31	0.6	69	1.0	110	1.0	156	1.0	196	0.6
32	1.0	70	0.8	111	0.8	158	1.0	197	0.4
33	0.4	72	0.2	112	0.6	159	0.2	198	1.0
34	1.0	73	0.6	113	1.0	160	1.0	199	1.0
35	0.2	74	1.0	114	0.2	161	0.6	200	0.6
36	0.4	75	0.8	115	1.0	162	1.0	201	1.0
37	0.4	76	0.6	116	0.6	163	0.8		
38	1.0	77	1.0	117	0.2	164	0.4		
39	0.8	78	0.2	118	0.8	165	0.8		
40	0.8	79	0.4	120	0.8	166	1.0		

Tabella A.53: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 22

Nodo	P[MW]								
1	1.0	40	0.8	79	0.4	120	0.8	166	1.0
2	0.6	41	0.2	80	0.8	121	0.6	167	0.6
3	1.0	42	0.6	82	1.0	122	0.4	168	0.6
4	1.0	43	1.0	83	0.6	125	1.0	169	1.0
5	0.4	44	1.0	84	1.0	126	0.4	170	0.4
6	0.8	45	0.6	85	1.0	127	0.6	171	1.0
7	1.0	46	0.8	86	0.2	128	0.4	172	0.6
8	0.6	47	1.0	87	0.2	129	0.8	173	0.6
9	1.0	48	0.8	88	1.0	130	0.2	174	0.4
10	1.0	49	0.2	89	1.0	131	0.2	175	0.2
11	1.0	50	0.4	90	1.0	132	0.6	176	0.6
12	0.4	51	0.4	91	0.6	133	1.0	177	1.0
13	0.2	52	1.0	92	0.2	134	0.4	178	0.8
14	0.8	53	1.0	94	0.8	135	0.8	179	0.8
15	1.0	54	0.8	95	0.2	136	0.2	180	1.0
16	0.8	55	0.4	96	0.8	137	1.0	181	0.2
17	0.6	56	0.8	97	0.8	139	0.8	183	1.0
18	1.0	57	0.8	98	0.2	140	0.4	184	0.6
19	0.4	58	1.0	99	0.2	141	0.4	185	0.8
20	1.0	59	0.8	100	0.8	142	0.6	186	0.2
21	0.8	60	0.4	101	0.6	143	1.0	187	1.0
22	0.6	61	0.4	102	1.0	144	0.8	188	1.0
23	0.2	62	0.6	103	0.8	147	0.6	189	0.2
24	1.0	63	0.2	104	0.8	149	0.2	190	1.0
25	1.0	64	0.8	105	0.2	150	0.8	191	0.6
26	1.0	65	1.0	106	0.8	151	0.6	192	0.2
27	1.0	66	1.0	107	0.8	153	1.0	193	0.6
29	1.0	67	0.8	108	0.6	154	0.8	194	0.8
30	0.6	68	1.0	109	0.6	155	0.4	195	0.4
31	0.6	69	1.0	110	1.0	156	1.0	196	0.6
32	1.0	70	0.8	111	0.8	158	1.0	197	0.4
33	0.4	72	0.2	112	0.6	159	0.2	198	1.0
34	1.0	73	0.6	113	1.0	160	1.0	199	1.0
35	0.2	74	1.0	114	0.2	161	0.6	200	0.6
36	0.4	75	0.8	115	1.0	162	1.0	201	1.0
37	0.4	76	0.6	116	0.6	163	0.8		
38	1.0	77	1.0	117	0.2	164	0.4		
39	0.8	78	0.2	118	0.8	165	0.8		

Tabella A.54: Ottimizzazione rispetto a tre obiettivi: nodo di installazione e taglia dei generatori per la soluzione 23

Soluzione				Ram	i aper	ti		
1	28	33	111	123	203	205	206	209
2	28	33	111	123	203	205	206	209
3	28	33	111	123	203	205	206	209
4	21	30	33	60	96	106	110	144
5	21	30	41	60	96	106	110	144
6	21	30	41	60	96	106	110	144
7	29	75	81	110	115	167	201	202
8	29	75	81	110	115	167	201	202
9	29	75	81	110	115	167	201	202
10	29	75	81	110	115	167	201	202
11	29	75	81	110	115	167	201	202
12	26	75	104	110	115	167	201	202
13	29	75	81	110	115	167	201	202
14	29	75	81	110	115	167	201	202
15	28	33	60	110	111	133	175	203
16	28	33	60	96	110	175	191	208
17	26	33	55	75	106	111	124	209
18	26	33	55	75	106	111	124	209
19	26	33	55	75	106	111	124	209
20	21	33	53	102	104	115	163	167
21	21	33	53	102	104	115	163	167
22	21	33	53	102	104	115	163	167
23	21	33	53	102	104	115	163	167

Tabella A.55: Ottimizzazione rispetto a tre obiettivi: configurazioni ottimali

A.4 Applicazioni

Ramo	Da	А	R[pu]	X[pu]	B[pu]	$I_b^{max}[pu]$
1	100	2	0.00127	0.00105	0	4.75
2	132	3	0.00002	0.00002	0	4.75
3	40	4	0.00012	0.00022	0	5.84
4	3	5	0.00043	0.00035	0	4.75
5	68	6	0.00073	0.00026	0	2.46
6	203	7	0.00007	0.00007	0	3.78
7	206	8	0.00017	0.00016	0	3.78
8	207	9	0.00009	0.00006	0	2.91
			••	•		

Ramo	Da	A	R[pu]	X[pu]	B[pu]	$I_b^{max}[pu]$			
9	34	10	0.00092	0.00088	0	3.78			
10	141	11	0.00132	0.00127	0	3.78			
11	147	12	0.00001	0.00001	0	3.78			
12	149	13	0.00041	0.00021	0	2.04			
13	153	14	0.00004	0.00002	0	2.04			
14	1	15	0.00035	0.00064	0	5.84			
15	59	16	0.00108	0.00089	0	4.75			
16	16	17	0.00226	0.00187	0	4.75			
17	136	18	0.00008	0.00003	0	3.06			
18	162	19	0.00884	0.00615	0	2.91			
19	85	20	0.00073	0.00061	0	4.75			
20	126	21	0.00215	0.00150	0	2.91			
21	75	22	0.00071	0.00058	0	5.09			
22	200	23	0.00170	0.00083	0	2.04			
23	189	24	0.00097	0.00093	0	3.78			
24	187	25	0.00040	0.00028	0	2.91			
25	110	26	0.00031	0.00021	0	2.91			
26	197	27	0.00003	0.00003	0	3.78			
27	197	28	0.00132	0.00068	0	2.04			
28	195	29	0.00033	0.00017	0	2.04			
29	93	30	0.00108	0.00075	0	2.91			
30	180	31	0.00083	0.00080	0	3.78			
31	179	32	0.00073	0.00071	0	3.78			
32	178	33	0.00002	0.00002	0	3.78			
33	8	34	0.00094	0.00078	0	4.75			
34	129	35	0.00005	0.00004	0	4.75			
35	126	36	0.00031	0.00011	0	2.46			
36	174	37	0.00187	0.00180	0	3.78			
37	173	38	0.00001	0.00001	0	3.78			
38	171	39	0.00286	0.00201	0	2.91			
39	15	40	0.00007	0.00013	0	5.84			
40	170	41	0.00007	0.00007	0	3.78			
41	40	42	0.00063	0.00061	0	3.78			
42	202	43	0.00002	0.00002	0	3.78			
43	5	44	0.00071	0.00015	0	2.46			
44	140	45	0.00001	0.00001	0	3.78			
45	83	46	0.00058	0.00038	0	2.91			

Ramo	Da	A	R[pu]	X[pu]	B[pu]	$I_b^{max}[pu]$			
46	138	47	0.00041	0.00039	0	3.78			
47	47	48	0.00049	0.00022	0	3.06			
48	183	49	0.00009	0.00006	0	2.91			
49	182	50	0.00015	0.00014	0	3.78			
50	181	51	0.00036	0.00035	0	3.78			
51	181	52	0.00059	0.00030	0	2.04			
52	4	53	0.00031	0.00056	0	5.84			
53	205	54	0.00009	0.00009	0	3.78			
54	154	55	0.01198	0.01156	0	3.78			
55	180	56	0.00104	0.00100	0	3.78			
56	17	57	0.00226	0.00187	0	4.75			
57	194	58	0.00071	0.00037	0	2.04			
58	135	59	0.00059	0.00049	0	4.75			
59	154	60	0.00003	0.00003	0	3.78			
60	171	61	0.00027	0.00026	0	3.78			
61	113	62	0.00063	0.00022	0	2.46			
62	158	63	0.00080	0.00042	0	2.04			
63	192	64	0.00092	0.00047	0	2.04			
64	10	65	0.00243	0.00234	0	3.78			
65	17	66	0.00142	0.00063	0	3.06			
66	96	67	0.00053	0.00061	0	3.78			
67	203	68	0.00043	0.00042	0	3.78			
68	5	69	0.00004	0.00003	0	4.75			
69	1	70	0.00018	0.00017	0	3.78			
70	193	71	0.00079	0.00056	0	2.91			
71	196	72	0.00269	0.00257	0	3.78			
72	188	73	0.00034	0.00024	0	2.91			
73	176	74	0.00048	0.00034	0	2.91			
74	191	75	0.00003	0.00002	0	2.91			
75	160	76	0.00030	0.00029	0	3.78			
76	190	77	0.00034	0.00024	0	2.91			
77	179	78	0.00001	0.00001	0	3.78			
78	91	79	0.02287	0.02187	0	3.78			
79	90	80	0.00041	0.00018	0	3.06			
80	29	81	0.00038	0.00019	0	2.04			
81	62	82	0.00015	0.00007	0	3.06			
82	53	83	0.00494	0.00477	0	3.78			

Ramo	Da	A	$R[\mathrm{pu}]$	X[pu]	B[pu]	$I_b^{max}[pu]$			
83	184	84	0.00007	0.00007	0	3.78			
84	21	85	0.00047	0.00047	0	6.26			
85	159	86	0.00110	0.00029	0	2.04			
86	92	87	0.00021	0.00011	0	2.04			
87	69	88	0.00007	0.00006	0	4.75			
88	27	89	0.00218	0.00208	0	3.78			
89	46	90	0.00020	0.00017	0	4.75			
90	199	91	0.00108	0.00103	0	3.78			
91	13	92	0.00005	0.00003	0	2.04			
92	196	93	0.00013	0.00009	0	2.91			
93	187	94	0.00011	0.00007	0	2.91			
94	80	95	0.00009	0.00003	0	2.46			
95	28	96	0.01833	0.02104	0	3.78			
96	61	97	0.00006	0.00005	0	3.78			
97	153	98	0.00067	0.00065	0	3.78			
98	164	99	0.01883	0.01237	0	2.91			
99	1	100	0.00013	0.00011	0	4.75			
100	4	101	0.00118	0.00053	0	3.06			
101	124	102	0.00120	0.00115	0	3.78			
102	1	103	0.11067	0.08000	0	4.75			
103	166	104	0.00259	0.00091	0	2.46			
104	106	105	0.00222	0.00099	0	3.06			
105	165	106	0.00003	0.00003	0	3.78			
106	111	107	0.00090	0.00087	0	3.78			
107	112	108	0.00056	0.00037	0	2.91			
108	23	109	0.00882	0.00310	0	2.46			
109	56	110	0.00187	0.00131	0	2.91			
110	169	111	0.00187	0.00180	0	3.78			
111	99	112	0.00029	0.00019	0	2.91			
112	115	113	0.00093	0.00033	0	2.46			
113	186	114	0.00196	0.00052	0	2.46			
114	30	115	0.00163	0.00085	0	2.04			
115	87	116	0.00071	0.00037	0	2.04			
116	161	117	0.00011	0.00007	0	2.91			
117	193	118	0.01284	0.00339	0	2.04			
118	168	119	0.00006	0.00002	0	2.46			
119	108	120	0.00019	0.00012	0	2.91			
				•					

				•		
Ramo	Da	A	R[pu]	X[pu]	B[pu]	$I_b^{max}[pu]$
120	141	121	0.00000	0.00000	0	3.78
121	189	122	0.00009	0.00006	0	2.91
122	177	123	0.00110	0.00029	0	2.04
123	56	124	0.00047	0.00045	0	3.78
124	104	125	0.00367	0.00164	0	3.06
125	192	126	0.00055	0.00045	0	5.09
126	170	127	0.00005	0.00004	0	4.75
127	103	128	0.00022	0.00016	0	4.75
128	152	129	0.00033	0.00027	0	4.75
129	163	130	0.00080	0.00036	0	3.06
130	198	131	0.00092	0.00041	0	3.06
131	2	132	0.00010	0.00009	0	4.75
132	88	133	0.00002	0.00002	0	4.75
133	206	134	0.00101	0.00027	0	2.04
134	156	135	0.00391	0.00175	0	4.75
135	17	136	0.00197	0.00088	0	3.06
136	18	137	0.00005	0.00003	0	2.04
137	83	138	0.00073	0.00071	0	3.78
138	2	139	0.00011	0.00009	0	4.75
139	138	140	0.00030	0.00029	0	3.78
140	140	141	0.00120	0.00115	0	3.78
141	146	142	0.00037	0.00024	0	2.91
142	72	143	0.00017	0.00008	0	3.06
143	198	144	0.00015	0.00007	0	3.06
144	61	145	0.00030	0.00029	0	3.78
145	57	146	0.00644	0.00423	0	2.91
146	11	147	0.00269	0.00259	0	3.78
147	131	148	0.00409	0.00183	0	3.06
148	147	149	0.00051	0.00049	0	3.78
149	163	150	0.00059	0.00049	0	4.75
150	62	151	0.00612	0.00215	0	2.46
151	175	152	0.00001	0.00001	0	3.78
152	116	153	0.00041	0.00021	0	2.04
153	149	154	0.00120	0.00115	0	3.78
154	55	155	0.00018	0.00017	0	3.78
155	155	156	0.00016	0.00014	0	4.75
156	156	157	0.00453	0.00202	0	3.06

Ramo	Da	А	R[pu]	X[pu]	B[pu]	$I_b^{max}[pu]$		
157	157	158	0.00026	0.00014	0	2.04		
158	158	159	0.00029	0.00015	0	2.04		
159	16	160	0.00209	0.00093	0	3.06		
160	57	161	0.01567	0.00550	0	2.46		
161	117	162	0.00011	0.00007	0	2.91		
162	162	163	0.00069	0.00031	0	3.06		
163	142	164	0.00011	0.00007	0	2.91		
164	120	165	0.00042	0.00028	0	2.91		
165	165	166	0.00087	0.00057	0	2.91		
166	166	167	0.00034	0.00023	0	2.91		
167	167	168	0.00432	0.00152	0	2.46		
168	168	169	0.01667	0.00585	0	2.46		
169	70	170	0.00018	0.00017	0	3.78		
170	41	171	0.00024	0.00023	0	3.78		
171	145	172	0.00002	0.00002	0	3.78		
172	172	173	0.00018	0.00017	0	3.78		
173	172	174	0.00194	0.00187	0	3.78		
174	174	175	0.00319	0.00308	0	3.78		
175	175	176	0.00011	0.00007	0	2.91		
176	176	177	0.00011	0.00007	0	2.91		
177	152	178	0.00132	0.00127	0	3.78		
178	178	179	0.00041	0.00039	0	3.78		
179	32	180	0.00051	0.00049	0	3.78		
180	102	181	0.00047	0.00045	0	3.78		
181	51	182	0.00001	0.00001	0	3.78		
182	182	183	0.00017	0.00016	0	3.78		
183	183	184	0.00120	0.00115	0	3.78		
184	184	185	0.00005	0.00005	0	3.78		
185	185	186	0.00015	0.00008	0	2.04		
186	26	187	0.00153	0.00107	0	2.91		
187	94	188	0.00344	0.00241	0	2.91		
188	188	189	0.00061	0.00043	0	2.91		
189	122	190	0.00095	0.00067	0	2.91		
190	190	191	0.00003	0.00002	0	2.91		
191	22	192	0.00025	0.00020	0	5.09		
192	20	193	0.00038	0.00031	0	4.75		
193	56	194	0.00092	0.00088	0	3.78		
				•				

				•		
Ramo	Da	A	R[pu]	X[pu]	B[pu]	$I_b^{max}[pu]$
194	194	195	0.00033	0.00032	0	3.78
195	195	196	0.00075	0.00072	0	3.78
196	72	197	0.00187	0.00179	0	3.78
197	67	198	0.00742	0.00331	0	3.06
198	197	199	0.00015	0.00008	0	2.04
199	89	200	0.00734	0.00258	0	2.46
200	5	201	0.00002	0.00002	0	4.75
201	201	202	0.00067	0.00065	0	3.78
202	202	203	0.00008	0.00008	0	3.78
203	5	204	0.00002	0.00002	0	4.75
204	204	205	0.00011	0.00010	0	3.78
205	205	206	0.00165	0.00159	0	3.78
206	8	207	0.00016	0.00014	0	4.75
207	15	2	0.00008	0.00015	0	5.84
208	5	53	0.00000	0.00000	0	181.85
209	185	90	0.00140	0.00135	0	3.78
210	65	11	0.00067	0.00065	0	3.78
211	128	24	0.00615	0.00445	0	4.75
212	107	71	0.00104	0.00100	0	3.78
213	200	191	0.00066	0.00046	0	2.91

Tabella A.56: Dati dei rami della rete a 206 nodi

Ora			R	ami aj	perti		
0:00-1:00	1	10	56	102	184	195	208
1:00-2:00	1	10	56	102	195	208	209
2:00-3:00	1	10	56	89	102	195	208
3:00-4:00	1	10	56	89	102	194	208
4:00-5:00	1	10	56	102	195	208	209
5:00-6:00	45	56	102	195	207	208	210
6:00-7:00	1	10	56	71	102	181	208
7:00-8:00	1	10	56	71	102	123	208
8:00-9:00	1	10	56	102	123	196	208
9:00-10:00	1	10	56	102	123	196	208
10:00-11:00	1	10	56	102	123	196	208
11:00-12:00	1	10	56	102	123	196	208
12:00-13:00	1	10	56	71	102	123	208
13:00-14:00	1	10	56	102	123	196	208
14:00-15:00	1	10	56	102	123	196	208
15:00-16:00	1	10	56	102	123	196	208
16:00-17:00	1	10	56	102	123	196	208
17:00-18:00	1	10	56	102	123	196	208
18:00-19:00	1	10	56	102	123	196	208
19:00-20:00	1	10	56	102	123	196	208
20:00-21:00	1	10	56	102	123	196	208
21:00-22:00	1	10	56	102	123	196	208
22:00-23:00	1	10	56	71	101	102	208
23:00-24:00	1	10	50	56	71	102	208

Tabella A.57: Configurazioni ottimali della rete a 206 nodi ottenute con il miglioramento iterativo

Parametro	Valore
ξ (seme numeri casuali)	1
C_1	10
C_2	10
C_3	10
p_o	0.1
N_o	100
$C_o \; ({\rm eq.3.4})$	0.19
lpha	0.98
δ	0
$N_{accettate}$	100
$N_{analizzate}$	200
N_s	5

Tabella A.58: Parametri del simulated annealing impiegati per l'ottimizzazione della rete a 206 nodi

Ora	Rami aperti							
0:00-1:00	1	10	52	56	151	194	211	
1:00-2:00	1	16	131	139	182	194	211	
2:00-3:00	4	16	23	99	139	183	194	
3:00-4:00	102	163	177	194	207	208	210	
4:00-5:00	1	4	10	16	45	195	211	
5:00-6:00	9	26	56	99	102	131	182	
6:00-7:00	1	102	140	141	182	194	208	
7:00-8:00	1	56	102	131	140	182	193	
8:00-9:00	4	89	99	102	145	193	204	
9:00-10:00	1	39	98	102	140	181	194	
10:00-11:00	56	64	88	102	182	207	208	
11:00-12:00	1	52	71	98	102	139	209	
12:00-13:00	52	56	99	101	102	137	195	
13:00-14:00	1	26	56	102	131	137	184	
14:00-15:00	9	102	141	180	196	207	208	
15:00-16:00	2	56	102	140	181	199	207	
16:00-17:00	52	56	99	102	137	181	195	
17:00-18:00	3	71	99	102	119	140	181	
18:00-19:00	10	119	127	131	180	194	207	
19:00-20:00	1	39	56	102	137	181	196	
20:00-21:00	1	4	10	89	102	141	194	
21:00-22:00	1	2	23	56	71	82	182	
22:00-23:00	2	23	56	89	140	193	207	
23:00-24:00	56	99	123	140	194	207	211	

Tabella A.59: Configurazioni ottimali della rete a 206 nodi ottenute con il simulated annealing

Bibliografia

- [1] Modern heuristic optimization techniques. Wiley Interscience, 2008.
- [2] Nature-inspired optimization algorithms. Elsevier, 2014.
- [3] A. Augugliaro, L. Dusonchet, and E. Riva Sanseverino. Genetic, simulated annealing and tabu search algorithms: Three heuristic methods for optimal reconfiguration and compensation of distribution networks. *International Transactions on Electrical Energy Systems*, 9(1):35–41, January-February 1999.
- [4] E.Bompard, E.Carpaneto, G.Chicco, and R.Napoli. Convergence of the backward/forward sweep method for the load-flow analysis of radial distribution systems. *International Journal of Electrical Power and Energy Systems*, 22:521–530, October 2000.
- [5] M. Esmaeili, M. Sedighizadeh, and M. Esmaili. Multi-objective optimal reconfiguration and dg (distributed generation) power allocation in distribution networks using big bang-big crunch algorithm considering load uncertainty. *Energy*, 103:86–99, 2016.
- [6] G.Chicco, A.Mazza, and A.Russo. Optimization and decision-making in electrical distribution networks. In *International Conference and Expo*sition on Electrical and Power Engineering (EPE 2012), pages 297–306, Iasi, 25-27 Ottobre 2012.
- [7] A.P. Guerrero and C.M. Fonseca. Computing and updating hypervolume contributions in up to four dimension. *IEE Transactions on Evolutionary Computation*, 22(3):449–463, June 2018.
- [8] H.Andrei and G.Chicco. Identification of the radial configurations extracted from the weakly meshed structures of electrical distribution systems. *IEEE Transactions on Circuits and Systems I: Regular Papers*, 55:1149–1158, May 2008.

- [9] I.Roytelman, V.Melnik, S.S.H.Lee, and R.L.Lugtu. Multi-objective feeder reconfiguration by distribution managment system. 11:517 – 522, 1995.
- [10] J.D. Knowles and D.W. Corne. Bounded archiving using the Lebesgue measure. In *The 2003 Congress on Evolutionary Computation-CEC*, volume 4, pages 2490–2497, 8-12 December 2003.
- [11] O.Bradan, S.Mekhilef, H.Mokhils, and W.Dahalan. Optimal reconfiguration of distribution system connected with distributed generations: A review of different methodologies. *Renewable and Sustainable Energy Review*, 73:854–867, June 2017.
- [12] S.Civanlar, J.J.Grainger, H.Yin, and S.S.H.Lee. Distribution feeder reconfiguration for loss reduction. *IEEE Transactions on Power Delivery*, 3(3):1217–1223, July 1988.
- [13] S.J.Lee, S.I.Lim, and B.S.Ahn. Service restoration of primary distribution systems based on fuzzy evaluation of multi-criteria. 13(3):1156–1163, 1998.
- [14] E. Zitzler and L. Künzli. Indicator-based selection in multiobjective search. In Yao X. et al. (eds) Parallel Problem Solving from Nature -PPSN VIII. PPSN 2004. Lecture Notes in Computer Science, volume 3242, pages 832–842, 2004.