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Abstract

In the last few years, deep learning has obtained successful results in the challenging tasks

of video understanding. In the first part of this thesis we review some of the most heavily

researched tasks in video classification with the corresponding datasets.

Afterwards, we present a survey of the state-of-the-art deep learning methods, explain-

ing the different intuitions to capture the temporal evolution of videos. More precisely,

deep neural networks are extended to understand not only what a video contains, as it was

for image content analysis, but also what is happening, capturing dynamic information

from different frames.

Next, we describe more in detail the Inflated 3D network (I3D), characterized by 3D

convolution, and the new configurations adopted in this work, which include different

solutions: non-local blocks, spatiotemporal feature gates and temporal dilation, designed

to better capture spatio-temporal features. We demonstrate how the model benefits from

these techniques, which we believe can become fundamental elements of future video-based

neural networks.

We train these models on the Jester hand gesture dataset and we compare the dif-

ferent results. Spatiotemporal feature gates and temporal dilation are then combined,

in order to build the most accurate model of this research, called Modified-I3D. This

model reaches comparable results to other state-of-the-art solutions, while keeping a good

balance between accuracy and computational efficiency.

Finally, we introduce such model in a real-time hand gesture recognition system, as

a first step for a novel human-computer interaction through camera. We visualize, with

the Grad-CAM algorithm extended to videos, on which input regions the Modified-I3D

activates. We observe that these correspond to the hand movements, showing that the

model predictions are consistent.
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Chapter 1

Introduction

The work of this thesis consists in implementing and optimizing an algorithm capable of

correctly classifying the content of videos with high confidence. In particular, we build a

hand gesture classifier for a novel video-based human-computer interaction.

To develop a robust video classifier is essential to capture both spatial and temporal

events. The classifer needs to extract the spatial contents from each frame and to ana-

lyze the motion information from the sequence of frames. To tackle this problems, we

choose to exploit deep learning solutions, since convolutional neural networks have shown

great results for both image and video content analysis. More precisely, we modify a 3D

convolutional neural network, pre-trained on a human action dataset, proposing various

solutions designed to improve spatio-temporal features retrieval. Afterward, we fine-tune

the distinct configurations on the selected hand gesture dataset and we apply the best

solution for real-time video stream analysis.

1.1 Introduction to Deep Learning

1.1.1 From Visual Perception to Deep Neural Networks

In animal evolution, the origin of eyes is believed to have happened around 540 million

years ago and the major developments of the eye supposingly evolved in only a few million

years. This event has been a turning point in animal history, since it provided new ways

of interacting with the outer world. The fight for survival made it necessary for all

animals to develop eyes, each species started evolving in parallel multiple eye types and

subtypes, adapting to the surrounding environment. A convincing theory, proposed by

5



CHAPTER 1. INTRODUCTION 6

Figure 1.1: Biological neuron (left) and its mathematical model counterpart (right).

zoologist Andrew Parker, supports that the evolution of eyes played a significant role in

the explosion of the number of animal species [26].

At first, predecessors of eyes were capable of spotting ambient brightness, in particular

to discriminate light from dark. However, this was not enough to be considered vision,

since no shapes or light direction were detected. Furthermore, with the evolution of optical

systems, animals were capable of detecting shapes and colors of objects, allowing them to

better interact with the surrounding habitat.

More precisely, the animal eyes collect images, which are then sent as electrical signals

to the visual cortex and other areas of the brain through optic nerves. From the studies

of Hubel and Wiesel in the early 50s, which describe the visual mechanism of mammals,

it was noted that the primary visual cortex responds to simple information, such as

oriented edges, and, as the information moves along the visual processing pathway, the

brain capture more and more the complexity of visual informations, until the complex

visual world is recognized. These studies inspired the recent development of computer

vision with artificial neural networks, which loosely model the human brain capability of

processing visual and acustic signals.

The human nervous system is composed by approximately 86 billion neurons, con-

nected by around 1014 - 1015 synapses. Similarly, the basic computational units of ar-

tificial neural networks, called as well neuron, is a simplified mathematical model of its

biological counterpart, as shown in figure 1.1. It consists of a weighted sum

y = Wx+ b, (1.1)

where W and b are the weight matrix and the biases vector respectively, while x is either
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Figure 1.2: Different configurations of Neural Networks. 2-layer Neural Network: three
inputs, one hidden layer of 4 neurons and one output layer with 2 neurons (left). 3-layer
Neural Network with three inputs, two hidden layers of 4 neurons each and one output
layer (right). Notice that in both cases there are connections (synapses) between neurons
across layers, but not within a layer.

the input of the network or the outputs of neurons from earlier layers. On top of eq. 1.1

a non-linearity f is applied, called activation function, necessary to the entire network to

capture non-trivial information.

The artificial neurons are then collected in multiple layers, normally organized in a

cascade fashion, where each layer takes as input the output of the previous one (figure

1.2). This enables the network to capture multiple level of representation. Deep learn-

ing takes its name by the growing number of layers, that recent neural networks have

adopted, expanding the potential of such algorithms to learn additional and more com-

plex features. These solutions have been applied to various fields such as computer vision,

speech recognition, natural language processing and machine translation.

Several types of layers have been introduced, depending on the type of application we

are interested in. In computer vision tasks, the core building block of the network is called

convolutional layer, which gives the name to the family of convolutional neural networks

(CNNs). The standard 2D convolutional layers are composed by a set of learnable 3D

filters, spatially small but with the same depth1 extention of the input volume, as shown

in figure 1.3a. This operation performes a convolution of such filters across the height and

width of the input activation map, produced by the previous hidden layer, or the input

image, and it computes dot products between the filters’ weights and the input regions.

Each convolutional layer produces an output volume, which corresponds to the con-

1With depth we mean the 3rd dimension of the input volume, i.e. for an RGB input image the depth
corresponds to the 3 color channels



CHAPTER 1. INTRODUCTION 8

(a) Convolutional layer example (b) Filters visualization

Figure 1.3: Example of a convolutional layer on an input image 32 × 32 × 3, with filter
size 5× 5× 3 and a total of 10 filters. The resulting activation map of the layer is shown
as the 32 × 32 × 10 volume (left). Visualization of the learned filters of size 11 × 11 × 3
from the first convolutional layer in the AlexNet architecture [20] (right).

catenation of the 2D activation maps computed by each filter. As shown in figure 1.3a,

the depth of the output volume is equal to the number of filters contained inside the

layer. Filters can learn different types of patterns and they activate when similar features

are spotted in the corresponding input feature map. For example the first layer usually

detects various edge orientations or color blobs, as shown in figure 1.3b.

1.1.2 Backpropagation and Parameters Update

So far we have only discussed the forward step of a neural network, where an input signal

propagates through the units of the hidden layers to produce the output. However, in

order to find the best set of parameters that maps the inputs to the correct outputs, we

need to train the network with a backward step. This corresponds to an optimization

problem computed in two steps, where the weights are updated in order to minimize a

given error function:

• backpropagation: calculating the partial derivatives of the error with respect to

the weights;

• parameters update: adopting an optimization algorithm, such as stochastic gra-

dient descent (SGD), to update the weights using the derivatives.

The two steps are applied iteratively, first by computing the gradient of the error

(loss) function E(l, F (x;W )), where l and F correspond respectively to the correct set

of labels (ground truth) and the model function; then by updating the weights W . The
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SGD algorithm, at a timestep t, computes the update as

Wt+1 = Wt − α∇WtE(li, F (xi;Wt)) (1.2)

where α ∈ [0, 1] is a constant coefficient, called learning rate, and (li, xi) represents a

sample of N tuples of labels and inputs from the whole dataset.

Backpropagation is computed using the chain rule twice. Given the output oj of a

neuron j

oj = φ(netj) = φ

(
n∑
k=1

wkjok

)
, (1.3)

where φ is a non-linear activation function and netj is the input of j, we compute the

partial derivate of the error function E with respect to a weight wij as

∂E

∂wij
=
∂E

∂oj

∂oj
∂netj

∂netj
∂wij

. (1.4)

The last derivatives of the right-hand term is computed as

∂netj
∂wij

=
∂

∂wij

(
n∑
k=1

wkjok

)
=

∂

∂wij
wijoi = oi; (1.5)

if the neuron belongs to the first hidden layer, oi is equal to the input xi.

The partial derivative of oj with respect to its input netj corresponds to

∂oj
∂netj

=
∂

∂netj
φ(netj); (1.6)

if φ is not differentiable, such as the ReLU function, this is dealt with some approxima-

tions.

Finally the partial derivative of the error with respect to oj is

∂E

∂oj
=
∂E

∂y
, (1.7)

when j is in the output layer and y is the output of the network. Otherwise, considering

E as a function of the neurons set L = u, v, ..., z, composed by the neurons that recives

input from the neuron j, we obtain the following recursive formula
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∂E

∂oj
=
∂E(netu, netv, ..., netz)

∂oj
=
∑
l∈L

(
∂E

∂netl

∂netl
∂oj

)
=
∑
l∈L

(
∂E

∂ol

∂ol
∂netl

wjl

)
. (1.8)

1.2 Computer Vision and Deep Learning Libraries

In this section we introduce and describe the main libraries employed to implement this

thesis project. First of all, we base our implementations on Python, as programming

language. This choice is determined by its readability and because most of the open

source machine learning libraries use Python interfaces. This accelerates the research,

due to the high amount of open source material available, on top of which we base our

experiments.

The core library, chosen to implement computer vision tasks, is OpenCV (Open Source

Computer Vision), originally developed by Intel Corporation, then by Willow Garage and

later by Itseez. Its design aims at computational efficiency and real-time applications. Its

optimized code is used by the large community of computer vision researchers to develop

a wide range of tasks. In our case, we benefit from this tool in various way, such as:

• video preprocessing: extracting subsets of frames from video clips and resizing them;

• real-time application: extraction of frames from cameras and visualization in real-

time;

• video postprocessing: capturing relevant video frames and applying heatmaps.

Many open source machine learning frameworks are available for research in the field

of deep learning. Among them we choose the TensorFlow library, developed by the Google

Brain team. This choice was made considering its high number of contributors and the

easy deployment across multiple CPUs and GPUs. TensorFlow is a library for large-scale

computations, basing its structure on tensors and graphs. Tensors are the core units,

represented as multi-dimensional arrays, whose values depend on the input data of the

graph. Instead, the computational graphs contain all the operations and tensors necessary

for a specific task. Graphs are composed by nodes, which represent the operations that

consume and produce tensors, and by edges, that depict the tensors values flowing through

the graph.
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Furthermore, we build our neural networks with the use of Sonnet, a library build on

top of TensorFlow, developed by the DeepMind team.

1.3 Purpose of the Thesis

Computer vision received a great boost with the introduction of deep learning algorithms,

reaching state-of-the-art on many tasks and expanding the number of applications where

computer vision can be applied. The variety of branches covered so far consist of image

understanding (i.e. image classification and object detection,), video understanding (i.e.

video classification and action detection), style transfer (i.e. artistic style transfer), image

generation and image resolution improvement. Among these, the major contributions and

research are produced in the field of image understanding, while many others are still in

the early development.

The aim of the thesis consists in the study of the recent tasks of video classification

and the corresponding state-of-the-art algorithms. More specifically, we focus on human

actions classification, implementing an upgraded deep learning network built for video

classification. Finally, we fine-tune such network on a hand gesture dataset, for further

real-time applications.

We believe that video classification research is still in its early stages. In fact, most

of the solutions proposed are just a straightforward evolution from image understanding

CNNs. This is reasonable, due to the great success of extracting spatial features with

convolutional layers. However, we assume that more suitable building blocks can be-

come fundamental elements of newer architectures, to capture temporal evolution more

accurately. For this purpose, we design new configurations of an already existing neural

network, in order to compare different building blocks, which contribute to improving the

original model.

1.4 Application

The applications covered in video classification mostly depend on the type of videos we

want to classify: sports, surveillance cameras, movies and more. For this reason many

task specific datasets recently came out to help researchers in new developments.
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Figure 1.4: Hand gesture recognition workflow. The higlighted part in green shows the
steps that are covered in this thesis.

Our research focuses on the task of gesture recognition, which is defined as the

interpretation of human gestures by a computer. The types of gestures can be categorized

in three main groups: hand gestures, body gestures and facial gestures. Depending on

the application we wish to develop, we choose a subset of gestures to be classified by the

computer. As a new way of interacting, gesture recognition is shown to have a strong

potential in different fields, for example

• sign language recognition: to facilitate deaf and non-deaf people to comunicate;

• video games interface: to provide a more realistic and controller-free interface with

the game;

• human-computer interaction: to support users to interact with a computer with

simple gestures performed in front of a video camera.

In the work of this thesis we focus on human-computer interaction. We apply our

solutions to the video stream captured by a computer camera, where the goal is to correctly

classify a set of human hand gestures, performed in front of the computer. Similarly to

a touchpad or a touchscreen, which link the movement of the fingers on top of it to

a computer response, our solution permits a computer to understand different gestures

through a video camera and to associate them to a corresponding action, without the

help of any external device. In figure 1.4 we show the workflow steps for a hand gesture

recognition system.
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Chapter 2

Video Classification

Deep learning architectures have been very successful in computer vision, producing re-

sults comparable and in a few cases superior to human accuracy. In particular, after

the presentation of the AlexNet architecture [20], in the 2012 ImageNet competition,

convolutional neural networks start spreading for image content analysis, such as:

• image classification: assigning a label to an input image, given a fixed set of cate-

gories, figure 2.1a;

• object detection: localizing and classifying instances of objects in an input image,

figure 2.1b;

• semantic segmentation: pixel-wise partitioning of an image into regions (segments),

each having the same semantic content, figure 2.1c;

• instance segmentation: pixel-wise partitioning of the individual entities within a

scene, figure 2.1d;

• image captioning : generating text, which describes the content of the image, figure

2.1e.

After AlexNet, many other architectures had been proposed aiming at higher perfor-

mances, faster computations and greater generality.

While many of the previously listed tasks have been widely developed and many

solutions have been proposed, much less work has been done regarding video related

tasks. The upgrade of computer performances and the growth of video data on internet

15
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(a) Image classification (b) Object detection (c) Semantic segm. (d) Instance segm.

(e) Image captioning

Figure 2.1: Examples of different image related tasks. Taken from COCO dataset [22].

help researchers to develop new deep learning architectures for video content analysis. The

major contributions have been done in video classification, which is a form of pattern

recognition applied to videos. Similarly to image classification, the objective here consists

in training a classifier to identify objects, animals, actions or other types of content from

a video, in order to output the correct label from a set of categories, whose semantic

content depends on the considered application.

We can distinguish between supervised and unsupervised learning, depending on

the type of input data. Supervised machine learning algorithms are trained on already

labeled data. In this case the algorithms adjust their parameters to predict the correct

output for the largest number of input data from the training set. On the contrary,

unsupervised algorithms base their training on unlabeled data. In this case there is no

correct answer and the algorithms can autonomously discover interesting structure in the

data.

As for the majority of the machine learning algorithms, the approaches adopted for

our task are based on supervised learning.
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2.1 Video Overview

Videos are discrete temporal sequences of images/frames, displayed in rapid succesion to

simulate movement. The higher the frame rate (frame per second) and frame resolution

(number of pixel of each frame), the greater the affinity with the real scene that is recorded.

Our studies consist in enabling computers to capture spatial and temporal information

from videos, analogous to humans comprehension of the real world through the visual

system.

While the recognition of objects or animals can be done from still pictures, their

interactions with the surrounding environment can be equivocal from static images. To

collect such information we analyze the temporal evolution of videos, to determine more

clearly what is happening. For example, analyzing an image of a football player shooting

the ball loses a lot of information from the original scene. First, a shot might be mistaken

for a cross and, even though a more expert eye could distinguish between the two types of

actions from the body position of the player the image does not provide enough clues to

answer to the following questions: Did the player score? Was the shot blocked by someone?

Where did the ball go?. This briefly introduces why working with video increases the

number of useful information to extract, in order to answer in a more exhaustive way not

only to the question Who/What is appearing?, but also to What is going on?.

The additional temporal dimension in the video domain makes the problem more

complex to handle compared to images. For such reason, it is fundamental to implement

a solution capable of capturing representative patterns from multiple frames and not on a

single frame level. In terms of deep neural networks, in order to extract spatio-temporal

informations, the straightforward solutions consist in a form of transfer learning from

image based CNNs. Transfer learning refers to the reuse of a pre-trained neural network

for a different but releted problem. Most of the times CNNs are not trained from scratch

with random initialization, but they frequently exploit pre-trained models on larger and

more generic datesets as good initialization.

Different approaches are implemented, depending on the type of videos in considera-

tion: trimmed or untrimmed. Trimmed videos are short segments of videos, containing

a particular action, object or event for their entire length. On the contrary, untrimmed

videos are full videos, where only short parts have significant content. In other words,

from an untrimmed video we can extract as many trimmed videos as the number of signif-
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Name Type Size Classes Year
Hollywood21 [23] Action & scene recognition 3669 22 2009

HMDB51 [21] Action recognition 6766 51 2011
UCF101 [32] Action recognition 13320 101 2012

Sports-1M [18] Sport action recognition 1100000 487 2014
ActivityNet [3] Action recognition 28000 203 2015

YouTube-8M2 [1] Video classification 8000000 4716 2016
20BN-Something-Something [11] Action recognition 108000 174 2017

20BN-Jester [37] Hand gesture recognition 148000 27 2017
Moments in Time [24] Action recognition 1000000 339 2017

Kinetics [19] Action recognition 306000 400 2017

Table 2.1: Some of the most relevant video datasets used for computer vision applications.

icant segments. For this reason working with untrimmed videos requires more attention

in the selection of the input frames.

Furthermore, the presence of camera motion in videos can often reprensent an obstacle

in the prediction of our model. To overcome this challenge, it is important to develop

robust model trained on datasets with a wide variety of videos, containing both camera

motion and fixed camera.

Another difficulty, also faced when working with images, is how to extract 3D infor-

mation from videos. For this reason a few multi-view datasets have been published, where

the same video is recorded from different angles, with multiple cameras.

2.2 Tasks and Datasets

While the research on images spread widely on numerous tasks, working with videos

reached satisfying results in a limited number of tasks. Due to the high complexity

of videos, the prospect of a machine capable of understanding at a human level the

surrounding world through visual inputs is still out of reach. For this reason the wide

field of video understanding has been partitioned in subtasks and different approaches

have been proposed, depending on the type of problem.

For each task, a satisfying number of public datasets are now available and are used

as benchmarks, in order to save time and resources for researchers, who can only focus

on implementing the best architectures. Datasets play a crucial role in machine learning,

shaping a model in what and how well it can learn. The size, in terms of number of videos,

1The classes of Hollywood2 are divided in 12 action classes and 10 scene classes.
2YouTube-8M contains a mix of video entities, such as activities, objects, scenes and events.
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and the variation of videos in each class (different lights, viewpoints, contexts, etc.) are

fundamental for the ability of models to generalize. Very large datasets are especially

necessary for deep neural networks. For this reason, recent datasets show a conspicuos

growth in size and number of categories. Moreover, the number of classes and what they

represent are significant for the type of application of interest. For instance, we have sport

datasets, movie scenes datasets and dynamic scenes datasets. Also the most prevalent

human activity datasets can differentiate between heterogeneus action sets, typically a

wide variaty of actions in various situations or scenarios, and specific action sets, such as

detection of abandoned objects, recognition of activities of daily living, crowd behaviour,

detection of human falls, gait analysis, or pose and gesture recognition.

Furthermore, the way actions are grouped inside of datasets can strongly characterize

the concepts learned by models. Usually datasets contain high-level actions, where the

goal is to choose a class in a discriminative way, teaching the model to recognize what it

univocally characterizes such action. As a drawback, this classification of actions do not

allow the model to learn motion primitives, such as “moving”, “pushing”, “dropping”,

“holding”, “poking” and many others, that are intrinsically contained in high-level actions.

For example, the phrase “opening SOMETHING” will have drastically different visual

counterparts, depending on whether “SOMETHING” in this phrase is replaced by “door”,

“zipper”, “blinds”, “bag”, or “mouth”. However, the concept of “opening” has some

common features, such as the movement of something to allow access, passage, or a view

through an empty space. To truly understand these concepts, the ability to generalize

among all the possible use cases and to learn the common features is required. For this

specific purpose, the ”something something” video database was introduced [11].

In the following sections, we present some of the most heavily reserched tasks.

2.2.1 Dynamic Scene Recognition

From the early research on image-based scene classification, new studies on video-based

dynamic scene recognition came out as a natural evolution of this field. Here the target

consists in classifying scenes from dynamic patterns, in a wide range of circumstances.

For example, if the scene in consideration is a waterfall, the water flow represents an

important feature, not taken in consideration when working with images.

This area of studies can be useful to provide priors for subsequent operations, such as
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(a) Beach (b) Forest Fire (c) Highway (d) Waterfall

Figure 2.2: Sample frames of dynamic scenes, taken from YUP++ Dynamic Scenes
dataset [9].

object and action recognition, or it could be useful in browsing image or video databases.

Recent results show that video-based deep learning approaches greatly outperforms

both static or hand-crafted methods.

A new challenging dataset of dynamic scenes, called YUP++ [9], has recently been

released, which more than doubles the size of those previously available. It contains 20

classes and they are grouped in two subsets: with static camera and with camera motion,

in order to highlight the different performances in both situation and to build more robust

models. The set of classes contained in the dataset are: beach, city street, elevator, forest

fire, fountain, highway, lightning storm, ocean, railway, rushing river, sky clouds, snowing,

waterfall, windmill farm, building collapse, escalator, falling trees, fireworks, marathon

and waving flags. We see some example in figure 2.2.

2.2.2 Action Recognition

Video surveillance, human-computer interaction, learning for robotics, web-video search

and retrieval, medical diagnosis, retail analytics, elderly care, sports analytics and many

other high-impact societal applications made the understanding of human actions an

essential task to accomplish in computer vision; with the term action we mean a ”mean-

ingful interaction” between humans and the surrounding environment. Given all these

applications, action recognition became the most heavily researched task in the field of

video classification, due to the impossibility of manually analyzing all data. Here the task

consists in the recognition of human activities, which can be grouped in the following

macro-classes:

• body-motion: e.g. running, jumping, smiling;

• human-human interaction: e.g. shaking hands, kissing, hugging;

• human-object interaction: e.g. writing, driving, drinking.
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(a) Dunking Basketball (b) Juggling Balls

(c) Skateboarding (d) Ski Jumping

Figure 2.3: Sample frames containing human actions, taken from Kinetics human action
video dataset [19].

In this challenge, temporal features play a fundamental role. An action is strongly

characterized by its temporal evolution and it is necessary to distinguish among ambiguos

classes. For example, a single frame is usually not sufficient to determine if a person is

sitting or getting up, eating or yawning etc.

The huge amount of existing actions and the numerous possible ways these can be

performed require very large datasets, to improve the performances of models. However,

this is not always possible and many of them include only the classes needed for a specific

application.

As shown for image classification and image detection, a conspicuous boost of perfor-

mances on small datasets is noted when a model is pre-trained on larger ones, such as

ImageNet [6] or COCO [22]. For this reason the Kinetics human actions dataset [19] was

proposed, containing 400 classes with at least 400 video clips for action, where each clip

is obtained by cropping 10s from a YouTube video. Some examples are shown in figure

2.3.

2.2.3 Event Recognition

The recognition of events, defined as a set of characterizing concepts, is a more complex

task. Here the surrounding context, the objects and the actions involved have fundamental

roles in correctly classifying such events. For example, a party can be characterized by

a group of people dancing (body-motion), people talking (human-human interaction),

beverages and food (objects) and many other concepts. Likewise, every sport is defined

by a set of human actions (running, jumping, etc.), objects (balls, rackets, etc.) and

location (gym, swimming pool, etc.).
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Figure 2.4: Example of action detection, where blue lines denote the ground-truth in-
stances, the red and yellow lines denote the cases of bad localization and multiple detec-
tion, respectively. Image taken from [43].

2.2.4 Temporal Action Detection

This field is not stricktly related with video classification, since the goal is not simply to

attribute a label to a video, but it consists in detecting the temporal window in which an

instance takes place. This task is more a step beyond action recognition. More precisely,

the objective is not only the classification of human actions appearing in continuous,

untrimmed video streams, but also the localization of the activity in time. One common

way to handle this task is to adopt the paradigm proposal + classification [42], inspired

by bounding box proposals from object detection methods [28].



Chapter 3

Methods

While image content analysis requires only the extraction of spatial features, for video

understanding we wish to capture also the temporal features in order to have a better

insight of how spatial information evolve over time. 2D convolutional layers have been

the core building block for spatial feature extraction, which simply look for spatially

small patterns at different level of abstraction, such as edge orientation, depending on the

depth of the architecture where the layers are located. For example, the first hidden layer,

which directly ”looks” at the input image, activates when some relatively simple patterns

are spotted, e.g. the filters shown in figure 1.3; the next few layers learn to recognize

collections of shapes like eyes or noses, and deeper layers learn even higher-order features,

like faces.

Based on this intuition, numerous new CNNs architectures have been developed, which

tend to chain more and more convolutional layers in a deeper fashion. This allows the

CNN to learn meaningful patterns from complex data, such as images, and to improve

generalization. On the contrary, very wide and shallow architectures can be very good in

memorization, but they easily tend to overfit the training dataset. Numerous deep image

classification networks have been proposed, such as Inception [33], VGG-16 [31], ResNet

[12] and DenseNet [35], and used as a valuable initialization for video understanding.

A trivial solution to extend these models to video classification can be thought of as

follow: using an image classification network to output a label for each distinct frame and

assigning to the whole video the most prevalent label. This can yield good accuracy, but it

does not extract any information on the temporal evolution of the video, which represents

the second main component to correctly classify videos. For example, this solution is not

23
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Figure 3.1: 2D and 3D convolution operations. a) Applying 2D convolution on a 2D
input. b) Applying 2D convolution on a 3D input. c) Applying 3D convolution on 3D
input, preserving temporal information of the input signal. Image taken from [34].

capable of distinguishing between an opening door or a closing door, since the network

captures well the spatial information about the door, but it is not able to collect any clues

about the movement of the door.

Different type of spatio-temporal features extractors have been proposed, adjusting

for our tasks the previously mentioned image-based architectures, with specific solutions.

They can be grouped into three main categories:

• 3D-CNNs.

• Two-Stream networks.

• RNN-based networks.

3.1 3D-CNNs

An intuitive solution proposed to tackle this problem is extending the convolutional layers

in a 3D fashion [16], which is implemented by using 3D kernels, figure 3.1. In this way

the new architectures are able to extract not only spatial features, but also to retrive

temporal information between adjacent frames. It was empirically demonstrated by [34]

that 3× 3× 3 is the best kernel size to implement 3D convolution, currently used in most

of the proposed networks based on 3D-CNNs, such as Inflated 3D ConvNet (I3D) [4].

This approach achieves better results than previously proposed hand-crafted methods.

However, some problems emerged in using this type of architecture. First, the high com-

putational cost and high memory demand of these network require great computational

resources (GPUs). Second, this solution makes it extremely difficult to train very deep

networks from scratch.
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3.1.1 3D Convolution

During the forward step, 2D convolution is performed by convolving across the width

and height of the input volume, and computing a dot product between the convolutional

filters and the input region, in order to extract spatial features. More properly, the output

value vxyij of a 2D convolutional layer i, at position (x, y) of the jth feature map, where

j = 1, ..., Fi and Fi is the number of filters (or kernels) inside of the layer, is computed as

vxyij = φ

(
bij +

Fi−1−1∑
m=0

Hi−1∑
p=0

Wi−1∑
q=0

wpqijmv
(x+p)(y+q)
(i−1)m

)
. (3.1)

φ is an activation function such as tanh, ReLU , max(0, x), sigmoid or other non-linear

functions, essential for neural networks to compute nontrivial problems; bij is the bias of

the analyzed feature map; wpqijm is the value of the jth kernel at position (p, q) linked to

the mth feature map from the previous layer; Hi and Wi are the height and the width

of kernels in the ith layer. For a 2D convolutional layer the set of parameters to train is

wi ∈ RFi×Fi−1×Hi×Wi .

This solution is extended for videos in a 3D fashion, in order to capture representative

patterns in multiple adjacent frames. This is achieved by convolving 3D kernels not only

spatially, but also along the temporal dimension of the 4D input hyper-volume, thereby

capturing motion information. The value at position (x, y, z) of a feature map j, obtained

by the 3D convolution operation, is now

vxyzij = φ

(
bij +

Fi−1−1∑
m=0

Hi−1∑
p=0

Wi−1∑
q=0

Di−1∑
r=0

wpqrijmv
(x+p)(y+q)(z+r)
(i−1)m

)
, (3.2)

where Di is the size of the 3D kernels in the ith layer along the temporal dimension. For

a 3D convolutional layer the set of parameters to train is wi ∈ RFi×Fi−1×Hi×Wi×Di . As

previously mentioned, the size of Hi, Wi and Di are generally set to 3.

3.1.2 Layer Redistribution

Afterwards, a new redistribution of 3D convolutional layers has been proposed, in order

to overcome the previously listed problems. In particular, 3 × 3 × 3 convolutions are

rearranged as a combination of 1×3×3 filters (equivalent to 2D spatial convolution) plus
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Figure 3.2: Different Pseudo-3D Convolutional blocks built on top of Residual Unit.
Image taken from [27].

3 × 1 × 1 filters (equivalent to 1D temporal convolution) in a parallel or series fashion1.

With this approach spatial and temporal computations are decoupled, in the way that

spatial convolutions are computed as in eq. 3.1 and the value obtained from temporal

convolution, at position z of the jth feature map, is

vzij = φ

(
bij +

Fi−1−1∑
m=0

Di−1∑
r=0

wrijmv
z+r
(i−1)m

)
, (3.3)

with wi ∈ RFi×Fi−1×Di as set of learnable parameters and Di usually set to 3.

Multiple ways of arranging these two layers have been exploited (figure 3.2) and the

efficiency of different configurations depends specifically on the type of architecture used

as backbone (Inception, ResNet, etc.). We call this redistribution as pseudo-3D convo-

lution, from the paper [27]. By adopting this solution, the number of parameters of the

networks decreases and it facilitates the fine-tuning of pre-trained models. Nontheless,

the accuracy of the models tends to increase.

3.2 Two-Stream Networks

First proposed by [30], the two-stream approach takes inspiration from the widely accepted

two-stream hypothesis in the human visual system [10]. The hypothesis argues that

humans have two pathways for capturing visual information:

1This notation presumes as dimensions ordering: frames×hight×width. Other notations could use
3× 3× 1 filters for 2D spatial convolution and 1× 1× 3 for 1D temporal convolution.
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Figure 3.3: Two-Stream architecture. Image taken from [30].

• the ventral stream (or ”what pathway”), which is in charge of the recognition of

objects;

• the dorsal stream (or ”where pathway”), which is involved in determining the ob-

jects’ spatial location relative to the viewer.

Similarly, the Two-Stream architectures, proposed for learning spatial and temporal

features, incorporates two separate streams:

• the spatial/appearence stream;

• the temporal/motion stream.

Each stream is implemented with a deep CNN, normally the same architecture for

both, and the two scores are then combined with a fusion method (averaging, SVM, etc.).

What characterizes the two streams is the input they receive. The spatial stream

takes as input the RGB frames and it is able to capture static features2. It is shown

that the spatial stream can represent a competitive solution on its own, but it fails in the

distinction of those classes with the same spatial representation and different temporal

evolution. For this reason the temporal stream is introduced, which normally receives as

input optical flow [14].

3.2.1 Optical Flow

Optical flow describes the apparent motion between two consecutive frames caused by

the movement of objects or camera motion. It is represented as a 2D vector field, where

2This stream is nothing else than the naive approach described before.
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Figure 3.4: Optical Flow. Image taken from [30].

each vector shows the direction and the intensity of the movement in a specific location

(pixel-wise). It is computed on top of the brightness constancy constraint, which asserts

that the brightness of two adjacent frames remains constant. In other words, given the

image intensity I(x, y, t) at point (x, y) and time t, the previews assumption affirms that

I(x, y, t) = I(x+ δx, y + δy, t+ δt). (3.4)

Expanding the right hand side with Taylor series approximation, we obtain

I(x, y, t) = I(x, y, t) + δx
∂I

∂x
+ δy

∂I

∂y
+ δt

∂I

∂t
+ ε. (3.5)

Subtracting I(x, y, t), dividing by δt and in the limit of δt→ 0, we get

dx

dt

∂I

∂x
+
dy

dt

∂I

∂y
+
∂I

∂t
= 0, (3.6)

which can be rewritten as

∇I · V T = −It, (3.7)

where ∇I =
[
∂I
∂x
, ∂I
∂y

]
and V =

[
dx
dt
, dy
dt

]
= [u, v] is the velocity vector or optical flow of

I(x, y, t). Since we have two unknown variables (u, v), we need another constraint to solve

this equation. Many methods have been proposed, the one implemented by OpenCV3 is

based on the Lucas-Kanade method. This solution is based on the assumption that

neighbouring pixels have similar motion, in particular, the Lucas-Kanade method takes a

3×3 patch as neighbours. We have now 9 equations for two unknown variables, hence the

3This implementation is used by many of the Two-Stream networks.
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Figure 3.5: Residual connection (on the left) and multiplicative connection (on the right).
Image taken from [8].

system is over-determined, and by applying the least square fit method we finally obtain

u
v

 =

 ∑
i I

2
xi

∑
i IxiIyi∑

i IxiIyi
∑

i I
2
yi

−1 −∑i IxiIti

−
∑

i IyiIti

 . (3.8)

As a drawback, optical flow requires intensive computations and it has to be computed

before training. For this reason RGB difference has been proposed [39] as a faster and

competitive alternative to optical flow, suitable for real-time applications.

3.2.2 Improving Two-Stream Networks

The research on Two-Stream networks has brought to many improvements, for example

introducing 3D or pseudo-3D convolutions inside the networks, to enable each stream to

capture spatio-temporal features autonomously.

Furthermore, [7] and [8] have proposed new types of connections between motion

stream and appearence stream, to allow interaction between the two streams (figure 3.5).

They are placed at different locations of the network, in order to exchange information

at many possible scales.

Another solution is to extend the Two-Stream architectures with an additional Audio

stream, able to extract relevant information from the audio of a video.
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Figure 3.6: Example of architecture 3D-CNN + LSTM. Image taken from [36].

3.3 RNN-based Networks

Another solution is based on modelling long-term sequences with Recurrent Neural Net-

works (RNNs). This is done by connecting a multi-layer RNN to the output of a CNN,

to enable the network to extract spatio-temporal features from the global content of the

video. RNNs are adequate solutions for video related tasks, since they can directly map

variable-length input and can model complex temporal dynamics. Most of the implemen-

tations use Long Short-Term Memory (LSTM) networks [13] or Gated Recurrent Units

(GRUs) [5]. Similarly to previous methods, also for this type of architecture, replac-

ing 2D-CNN with 3D-CNN or Pseudo-3D-CNN can improve the network performance

effectively.

This approach has not yet reached the accuracy of Two-Stream networks, but it is

mostly used for real-time applications. This is due to its ability of extracting long-term

temporal features from continuous video streams.
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Networks Architecture

In order to choose the best deep neural network to use as a backbone for our experiment,

several aspects were taken into account. First, we choose to implement our research in

TensorFlow with Python interface, due to its highly flexible system architecture and the

high amount of documentation and contributors, which is arguably considered one of the

best deep learning framework. Second, we select a model with pre-trained weights on large

datasets, in order to speed up the fine-tuning process on new datasets and improving the

achieved results. Third, we select a network with a simple architecture, to better evaluate

when new solutions boost the model accuracy.

For these reasons, we adopt in this research the Inflated 3D architecture (I3D) [4],

already implemented in TensorFlow and pre-trained on ImageNet and then Kinetics-400

training sets. For computational reasons, we decide to limit our reasearch only on the

RGB stream of the architecture and to discard the flow stream, which requires longer

computations for the optical flow extraction and the training process of Two-Stream

networks.

This architecture obtains great results on multiple datasets and it was the pioneer

in Kinetics dataset training, generated by the same team. They demonstrate how, us-

ing pre-trained weights on Kinetics, contributes to boosting the fine-tuning process on

smaller datasets, similarly to ImageNet for image classification. We give a more detailed

description of the I3D and the novel architecture configurations in the next subsections.

31
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Figure 4.1: The Inflated Inception-V1 architecture. Where Inc. indicates the inflated
inception module, shown in figure 4.2b. The stride of convolution and pooling operators
is 1 where it is not specified. The batch normalization layers, ReLUs and the final softmax
are not shown. The theoretical sizes of receptive field sizes for a few layers in the network
are provided in the format “time,height,width” – the units are frames and pixels. The
predictions are obtained convolutionally in time and averaged. Taken from [15].
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(a) Inception module with dimensionality
reduction [33].

(b) Inflated inception module with dimen-
sionality reduction [4].

Figure 4.2: Comparison of 2D inception module (left) and 3D inception module (right).

4.1 I3D Architecture

Image classification has led the researchers to develop very deep convolutional neural net-

work, in order to capture a higher number of features and hence improving the accuracy.

Later, many of these networks have been reproposed and adapted to carry out video re-

lated tasks. In our case, the Inflated 3D network exploites the Inception-v1 architecture

[33], reshaping the 2D weights, pre-trained on ImageNet, as valuable initialization for the

3D convolutional layers. This is obtained by repeating the weights of the 2D kernels N

times along the temporal dimension of the corresponding 3D kernels and dividing them

by N .

The basic unit of the Inception-v1 architecture is called inception module, shown in

figure 4.2a. This is composed by a set of convolutional layers with different filters’ sizes

(1× 1 and 3× 3) and a 3× 3 max pooling layer, arranged in both parallel and sequential

ways; lastly the outputs are concatenated. The 1× 1 convolutional layers is placed before

the 3×3, as a form of embedding, in order to reduce the number of parameters, removing

computational bottlenecks.

In the I3D architecture, with inflation we mean the transformation of the inception

blocks in a 3D fashion, in particular we transform 2D convolution (N×N) into 3D con-

volution (N×N×N), as we previously described. In figure 4.2 we show the comparison
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Figure 4.3: Batch Normalizing Transform. Taken from [15].

between the inception module structure, in the Inception-v1, and its inflated version, in

the I3D architecture.

Moreover, in the I3D network, a batch normalization layer is used [15], as explained

in figure 4.3, and a Rectified linear unit (ReLU) activation function

ReLU(x) =

0, for x < 0

x, for x ≥ 0

(4.1)

following each convolutional layer, except for the last one.

Furthermore, other adjustments on the original Inception-v1 architecture are made,

to better face the temporal evolution of videos. Particular attention was paid to the

receptive field in the temporal dimension. The receptive field is the region in the input

space that a feature is looking at. This is characterized by its center location and its

size. The size of the receptive field of a layer i along one dimension can be computed

recursively as

li = li−1 + (ki − 1)
i−1∏
j=1

sj, (4.2)

where li−1 is the size of the receptive field of the previous layer, ki is the filter size of

layer i and sj is the stride of layer j. Moreover, the closer the pixels to the center of the

receptive field, the more they contribute to the output of the feature, which suggests that

a feature focuses its attention on the center of such region.

In spatial convolution, the receptive field is treated symmetrically along the horizontal
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Figure 4.4: Examples of long range dependencies from distant pixels in space and time.
Images taken from [40].

and vertical extentions of the input image, since equal strides and kernels are generally

adopted and the input image has usually equal height and width.

Different considerations have to be made regarding temporal convolution. Here, the

receptive field corresponds to the number of frames from the input space that are seen by

a temporal feature. For this reason, it was chosen for the first two max-pooling layers to

adopt asymmetric filters (1 × 3 × 3) and temporal stride equal to 1, while adapting the

remaining max pooling layers with symmetric structures.

The final average pooling layer has kernel equal to 2 × 7 × 7 or 2 × 4 × 4 depending

on the size of the input image, 224× 224 and 100× 100 respectively.

It is shown in figure 4.1 the complete architecture and the receptive field sizes of few

layers.

4.2 Non-Local Operators

Most of the architectures proposed for video understanding usually just leverage on the

strength of image related CNNs, while only a few ad hoc solutions have been proposed.

To further improve the modelling of temporal evolutions in videos, we believe that is

necessary to investigate new solutions, specifically designed to capture spatio-temporal

features. For this reason, we start analyzing two non-local operations as new components

of the network, in order to capture dependencies from distant pixels in space and time, as

shown in 4.4. These operations are designed to learn features from any two positions, on

the contrary to convolution, which operates on local neighbours of the input, separately.

Our aim is to test and compare such non-local operations on the I3D architecture,

seeking for a higher accuracy of the network.

First, we introduce the non-local block, proposed by [40]. Here the non-local oper-
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ation is performed as

yi =
1

C(x)

∑
∀j

f(xi, xj)g(xj), (4.3)

where x and y are respectively the input and output signals of the block, both with

equal size. The function f captures the relationship between different locations of the

input i and j; g computes a representation of the input signal and C(x) corresponds to a

normalization factor. Notice that all positions in space and time (∀j) are put in relation

with each other.

More precisely, the normalization factor is computed as C(x) =
∑
∀j f(xi, xj), g repre-

sents a linear embedding computed with a 1× 1× 1 convolution weight matrix Wg, which

reduces in half the number of the input channels:

g(xj) = Wgxj. (4.4)

Furthermore, we choose from [40] the embedded gaussian implementation of f :

f(xi, xj) = eθ(xi)
Tφ(xj), (4.5)

with θ(xi) and φ(xj) representing two linear embeddings similar to g. The eq. 4.3 repre-

sents a generalization of the self-attention module from [38], used in machine translation.

For a given i, 1
C(x)

f(xi, xj) represents the softmax along the dimension j. For this reason,

we can rewrite eq. 4.3 as

y = softmax(xTW T
θ Wφx)g(x). (4.6)

Finally, the non-local block is defined as

zi = Wzyi + xi (4.7)

where Wz computes a position-wise embedding, also computed with 1×1×1 convolution.

In this case we double the number of channels, in order to output a matrix matching

the size of the input x. A representation of the non-local block is shown in figure 4.5.

This block follows the structure of residual connections, typical of ResNets architectures

[12], which are the networks where these blocks were originally introduced [40]. We
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Figure 4.5: A spacetime non-local block. The shape of the feature maps are shown, e.g.
T ×H ×W × 512 for 512 channels. 1× 1× 1 convolutions are represented as blue boxes,
⊗ denotes matrix multiplication and ⊕ denotes element-wise sum. Taken from [40].

study if non-local blocks guarantee a substantial improvement, also on a network with an

extremely different structure from ResNet, such as I3D.

In the I3D architecture, we choose to insert only 2 non-local blocks, in order to prevent

the overloading of its computational complexity. We place the 2 blocks at different depths,

to extract non-local features at distinct levels of abstraction. Following [41], which shows

that higher-level layers better model temporal evolution compared to lower-level’s one,

we choose to include the non-local blocks in between deeper and more abstract inception

modules. In particular, one is set in between the 6th and 7th inception module and the

other right before the last inception module. We refer to this modified version of the

architecture as Non Local I3D (NL-I3D).

Another solution for combining information across space and time was recently pro-

posed by [41], called spatiotemporal feature gating. The purpose of this paper is to

directly improve the I3D network, first by replacing 3D convolutions with spatiotemporal-

separable 3D convolutions (pseudo-3D), which are mentioned in chapter 3.1.2. However,

we do not further investigate on this direction.

The spatiotemporal feature gating is defined as

yi = A⊗ xi, (4.8)
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where xi ∈ RD is a feature vector at a specific time frame and position of the full feature

matrix x ∈ RT×W×H×D. The feature vector xi is multiplied elementwise by an adaptive

weight vector A ∈ RD, computed as

A = σ(Wavg poolST (x)), (4.9)

with W ∈ RD×D representing a weight matrix, σ() the sigmoid function and avg poolST :

RT×W×H×D → RD is a spatiotemporal average pooling function.

Following the design of the S3D-G architecture from [41], we place such feature gates

after the 3D convolutional layers inside of inception modules with a filter size greater

than 1× 1× 1, and again we insert the gates in the 6th and the second-to-last inception

modules, similarly as before, to better compare this solution with the non-local block. We

call this version of the architecture as Gated I3D (G-I3D).

4.3 Temporal Convolution Dilation

In this section we further investigate how to capture long range dependencies between

frames, in order to help the network to learn global aspects of videos from distant frames.

The small motion features captured by the standard temporal convolution (included in

3D convolution) are often not sufficient to adequatly identify an action. For this reason,

random dilation is included in the temporal dimension of the 3D convolutional filters.

Such solution exponentially increases the receptive field of the network and captures more

contextual information. This choice is inspired by other research on fields characterized

by temporal evolution, such as text-to-speech [25] and machine-translation [17].

During the forward step of convolution dilation, also referred to as convolution with

”holes”, we slide its filters on non-contiguous regions of the input activation map, with a

gap in the kernels with size equal to the dilation factor d, as shown in figure 4.6. More

precisely, using the same notations than eq. 3.2, 3D temporal dilated convolution is

computed as

vxyzij = φ

(
bij +

Fi−1−1∑
m=0

Hi−1∑
p=0

Wi−1∑
q=0

Di−1∑
r=0

wpqrijmv
(x+p)(y+q)(z+d×r)
(i−1)m

)
(4.10)

where the temporal dilation computes the output value in z, by applying the filters on
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Figure 4.6: Visualization of dilated convolutional layer each with various dilation rate
(d = 1, 2, 4, 8). Taken from [25].

positions (z + d× r) of the input feature map, ∀r.

During training, we choose to apply dilation on every 3× 3× 3 convolutional layer of

I3D, with a dilation factor d ∈ {1, 2} selected randomly1. During evaluation, the same

layers compute an activation map for both d = 1 and d = 2, which are then averaged in

one output feature map.

1When d = 1 no dilation is applied.
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Chapter 5

Application in Human-Computer

Interaction

With the diffusion of computers, the number and the type of users interacting with them

start growing considerably. In the early stage of computers, technicians were almost

the only users, while nowaday personal computers are part of the daily life of many

people. This was possible thanks to the advancement of human-computer interaction,

which focuses on the interfaces between people and computers. Following a chronological

order, the usability of current computers was mostly affected by monitors and keyboards,

the mouse together with a Graphical User Interface (GUI), the touch screen and the more

recent voice-control, which allows a vocal interaction with the machine.

In this section we apply the previously mentioned neural networks in the direction

of a novel human-computer interaction. We leverage on the great results obtained from

video-based CNNs to build a hand gesture recognition system, the first step for a new

interaction through cameras. In particular, our intention is to build the most accurate

model that correctly classifies a small and simple set of hand gestures, which can be

assigned to a specific action (i.e. sliding a text file with simple movement of the hand in

front of the camera). The work of this thesis may serve as a preliminary work for such

human-computer video interaction.

41
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20BN-JESTER-DATASET classes
Name Number of videos

Doing other things 12416
Drumming Fingers 5444

No gesture 5344
Pulling Hand In 5379

Pulling Two Fingers In 5315
Pushing Hand Away 5434

Pushing Two Fingers Away 5358
Rolling Hand Backward 5031
Rolling Hand Forward 5165

Shaking Hand 5314
Sliding Two Fingers Down 5410
Sliding Two Fingers Left 5345

Sliding Two Fingers Right 5244
Sliding Two Fingers Up 5262

Stop Sign 5413
Swiping Down 5303
Swiping Left 5160

Swiping Right 5066
Swiping Up 5240

Thumb Down 5460
Thumb Up 5457

Turning Hand Clockwise 3980
Turning Hand Counterclockwise 4181

Zooming In With Full Hand 5307
Zooming In With Two Fingers 5355
Zooming Out With Full Hand 5330

Zooming Out With Two Fingers 5379

Table 5.1: Labels and corresponding number of videos of the Jester dataset.

5.1 Hand Gesture Recognition

To develop this application, the key components are the I3D network, with Kinetics pre-

trained weights, and its modified versions demonstrated in earlier chapters. Moreover,

we choose to fine-tune I3D on the Jester hand gesture dataset [37], which is composed

by a training set (118562 videos), a validation set (14787 videos) and a test set (14743

videos w/o labels). Jester is composed by 27 classes, listed in table 5.1 with the respective

number of videos.

The datasets are saved in the TFRecord file format, the binary storage format from

TensorFlow. This can improve significantly the import pipeline, since binary data occupy

less space on the disk, take less time to copy and can be read more efficiently from the disk.
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From each video we save 40 frames1, which we resize with an aspect ratio height×width

equal to 100× 140.

5.1.1 Data Augmentation

The size of a dataset plays an important role for the neural networks in learning generic

features. During training, when the size of the dataset is too small and no data aug-

mentation is applied, a model tends to overfit, which means that it fits the training set

well, while it poorly adapts to new datasets. An easy and effective way to overcome this

problem is to apply small alterations on the training set; in this way the model is trained

on a more diversified amount of data. During training, we use different types of data

augmentation. However, the decision whether to apply these transformations or not is

taken randomly.

At first, we employ per-frame rotation, which is implemented by randomly rotating

the frames t of a video, each with a different angle θ(t) ∈ (−15, 15)◦. In this way we sim-

ulate camera movement. The rotation is done by spinning the image around its center,

mapping each pixel position (x(t), y(t)) into (x′(t), y′(t)) with the following transforma-

tion2

x′
y′

 =

cos θ − sin θ

sin θ cos θ

x
y

 . (5.1)

Afterwards, we adopt random cropping, which consists in cropping a random region

S × S from the original or rotated frame H × W , with S ≤ min{H,W}. We choose

randomly the location of the cropped region, differently for each frame, again to mimic

camera motion.

We then rescale the pixels’ values of the cropped regions in the range p(x, y, t)i ∈

[−1, 1], for each channel i = R,G,B and every frame t.

Whereupon, we randomly apply color jittering uniformly on the whole video, which

consists in a random combination of the following 4 types of color variation:

• random brightness : adjusts the brightness of the frames by a random factor b, for

1Eventually, when a video has less than 40 frames, we replicate the first frames sequentially. This
appears as a slowed down version of the original video.

2We suppose that the image is 2D, for each pixel of an RGB image (x, y)i the transformation is
analogous, with i = R,G,B.
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each channel i = R,G,B:

p′(x, y, t)i = p(x, y, t)i + b, ∀x, y, t; (5.2)

• random saturation: converts an RGB image into HSV (Hue Saturation Value),

multiplies the saturation channel by a random saturation factor s and transforms

the HSV back to the RGB format. For each voxel location (x,y,t), the convertion

to HSV is computed as

pH =



0◦, if ∆ = 0

60◦ ·
(
pG−pB

∆
mod 6

)
, if Cmax = pR

60◦ ·
(
pB−pR

∆
+ 4
)
, if Cmax = pG

60◦ ·
(
pR−pG

∆
+ 2
)
, if Cmax = pB

pS =

0, if Cmax = 0

∆
Cmax

, if Cmax 6= 0

pV = Cmax,

given Cmax(x, y, t) = max
i
{p(x, y, t)i}, Cmin(x, y, t) = min

i
{p(x, y, t)i} and ∆ =

Cmax − Cmin. The saturation transformation is computed for each pixel as

p′(x, y, t)S = p(x, y, t)S · s, ∀x, y, t; (5.3)

• random hue: analogously to the provious variation, it multiplies the hue channel by

a random factor h:

p′(x, y, t)H = p(x, y, t)H · h, ∀x, y, t; (5.4)

• random contrast : adjusts the contrast, independently for each channel i = R,G,B,

by a random factor c:
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p′(x, y, t)i = c · (p(x, y, t)i −Mi) +Mi, ∀x, y, t, (5.5)

where Mi is the mean value for each channel.

Image jittering is very helpful to build robust features, because it teaches the model

to equally classify the same instances under different lights and color variations.

Finally, we apply horizontal image flipping, identically to the whole set of frames

of a video. We need to pay particular attention when the flipping is applied on videos

representing an unidirectional action, i.e. Swiping Left. When this occurs, the label of

the video needs to be inverted, in our case from left to right and vice versa.

5.1.2 Training I3D

Sequential Training We fine-tune the I3D model on Jester dataset using a GeForce

GTX 1080 GPU, which computes both the training and the evaluation processes in a

sequential fashion. We exploit the pre-trained weights on the Kinetics dataset as a valu-

able inizialization, except for the logits block, whose weights are randomly initialized. The

logits block is composed by the average pooling layer, with size 2 × 4 × 4, and the final

1 × 1 × 1 convolutional layer, whose depth corresponds to the number of classes of the

dataset.

We train the networks using stochastic gradient descent (SGD) with momentum. This

method computes the current updates vt+1 with a sum between the updates of the previous

iteration vt, weighted by the momentum parameter µ = 0.9, and the partial derivatives

∇E, weighted by the learning rate α. The whole backward step is performed as follow

vt+1 = µ · vt + α · ∇E,

Wt+1 = Wt − vt+1.
(5.6)

The loss function E used to train our model is defined as softmax cross entropy,

which more precisely computes the cross entropy between the true probability distribution

p and the estimated probability distribution q:

E(p, q) = −
K∑
k=1

pk log(qk), (5.7)
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with K as the total number of classes. qk is computed with the softmax function on the

output vector of the network z ∈ RK :

qk =
ezk

K∑
j=1

ezj
, (5.8)

and p is a one-hot vector, with probability mass concentrated on the correct class l:

pk =

0, if k 6= l

1, if k = l

. (5.9)

Finally, we can rewrite the loss of a given input xi, with ground-truth l, as

E(xi) = − log

 ez(xi)l

K∑
j=1

ez(xi)j

 = −z(xi)l + log

(
K∑
j=1

ez(xi)j

)
. (5.10)

Due to a memory constraint we set the batch size equal to 16. For the first 140k steps

we use a learning rates α = 1 × 10−3, until step 160k α = 1 × 10−4 and until step 170k

α = 1× 10−5, for a total of 23 epochs.

With this settings we are able to reach a top 1 accuracy equal to 92.48% on Jester

validation dataset and the top 5 accuracy3 is higher than 99%. Since it leaves no room

for improvement for the following models, we choose to only adopt the top 1 accuracy as

benchmark.

Distributed Training Given the large size of the input videos, it would be appropriate

to train the network in a distributed fashion, on 2 or more GPUs. In particular, we tested

for few steps a parallel configuration on 2 GPUs, where 3 workers compute the gradients

of the parameters on the same batch, each using half of a GPU. The gradients are then

sent to the parameter saver, working on CPUs, whose task is to update the parameters

with an optimization algorithm. Half of a GPU is left to compute the evaluation on the

validation set, in order to monitor the evolution of the accuracy during training. In this

way, we better exploit the whole GPUs capacity and we speed up the training/evaluating

procedure. We visualize such configuration in figure 5.1.

3Top 5 accuracy measures the percentage of samples with ground-truth contained in the 5 highest
probability predictions of the model.
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Figure 5.1: Distributed synchronous training and evaluation on 2 GPUs. Repartition on
2 GPUs of 3 training workers and 1 evaluation to compute the accuracy of the validation
set every time a new checkpoint is saved.

The parameters update is computed with a synchronous approach4: at each iteration,

the gradients, computed in parallel by all the workers, are averaged by the parameter

saver before the updates. Again, we train the networks using stochastic gradient descent

with momentum.

The whole Synchronous Distributed SGD+Momentum algorithm is summarized

as pseudo code in algorithm 1, with Nw as number of workers and a maximum of T

iterations.

We do not further investigate on this approach for time constraints. However, it would

be interesting in future research to analyze if distributed training obtains competitive

results to sequantial training.

4This is implemented using TensorFlow pre-built classes SyncReplicasOptimizer and MonitoredSes-
sion.
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Algorithm 1 Synchronous Distributed SGD+Momentum

while t < T do
select a batch of input labels and videos (li, xi)
for each worker j do

compute the gradient of the loss: ∇Ej(li, F (xi,Wt))
end for
sum the gradients of all workers: ∆Wt =

∑Nw

j=1∇Ej
compute SGD+Momentum update: vt+1 = µ · vt + α · ∆Wt

Nw

apply update: Wt+1 = Wt − vt+1

t = t+ 1
end while

5.1.3 Training NL-I3D

We train the NL-I3D network on the Jester dataset, initializing the parameters with the

I3D weights pre-trained on the same dataset5, except for the weights of the non-local

blocks, which are zero initialized. In this way we do not modify the initial behaviour of

the network.

The training step is performed in a sequential fashion, again with the batch size equal

to 16; we schedule the learning rate with an initial value α = 1 × 10−3 and we reduce it

by a factor of 10−1 after 140k steps and after 160k steps, for a total of 170k iterations

(23 epochs). With this setting plus the addition of the two non-local blocks we slightly

improve the I3D model, achieving a top 1 accuracy equal to 92.79%. This improvement is

given by the increment of number of learnable parameters and by the structure of the non-

local blocks, that captures long-range dependencies of non-adjacent pixels and frames, as

we previously described. The number of parameters of NL-I3D is approximately 14.2M,

an increment of almost 2M parameters compared to I3D, mostly situated in the second

non-local block, the nearest to the output of the network.

5.1.4 Training G-I3D

We train G-I3D with the same configurations of NL-I3D, to have a more valid comparison

of the two solutions.

The top 1 accuracy reached by this model is 92.85%, which slightly improves the

NL-I3D. More notable is the fact that this network introduces only an extra 205824 of

learnable parameters, for a total of 12.5M. For this reason we consider the spatiotemporal

5We use the I3D weights after 40k iterations of training on the Jester dataset, which reach an accuracy
around 86%.
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feature gating more suitable for the improvement of the I3D architecture. This result could

be induced by the architecture in use, given that the gated solution was also optimized

on a network with Inception-v1 backbone, while the non-local block was built on top of

a ResNet 3D architecture. As counterproof, we should test these two solutions also on

a ResNet 3D network. We leave this research as an open topic and we do not further

investigate in this thesis.

5.1.5 Training Dilate-I3D

This version of I3D introduces random temporal dilation on the 3 × 3 × 3 convolutional

layers, as previously described. This enlarges the temporal receptive field of the layers, in

this way the model is able to capture long range temporal features from the early layers.

More specifically, we call Full-Dilate-I3D the I3D model with temporal dilation applied

on every 3× 3× 3 convolutional layer during evaluation.

We adopt again the same training configurations as NL-I3D and G-I3D, with equivalent

batch size and learning rate schedule. With this settings the Full-Dilate-I3D model reaches

an accuracy equal to 91.8% on the validation set, inferior to the standard I3D model.

We analyze which part of the architecture benefits the most from temporal dilation.

To investigate this we evaluate such model applying dilation only on a partial set of

the convolutional layers, at different level of abstraction. At first, we only dilate the N

closest convolutional layers and inception modules to the input, and we reference to this

model as Top-N-Dilate-I3D. Afterwards, we evaluate the model applying dilation only

on the bottom layers before the output, which we call Bottom-N-Dilate-I3D. Finally,

we consider the limit case with N = 0 where no dilation is applied during evaluation; this

version is referenced as No-Dilate-I3D.

From table 5.2, we notice that the best result is not obtained when dilation is applied

on the whole architecture, but only on the top layers. In particular, the highest accuracy

is achieved by the Top-5-Dilate-I3D. This peculiar behaviour could be explained by the

fact that early layers in the original I3D architecture have small temporal receptive fields,

hence they can benefits more from dilation compared to deeper layers, whose receptive

fields already cover the entire length of the full input videos.

As a final consideration, Dilate-I3D does not enlarge the number of learnable param-

eters; however, during evaluation, it computes twice each convolutional operation with
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Top-N-Dilate-I3D Bottom-N-Dilate-I3D
N accuracy N accuracy
1 91.72 1 91.50
2 91.74 2 91.53
3 91.74 3 91.61
4 91.88 4 91.63
5 92.01 5 91.53
6 91.97 6 91.76
7 91.99 7 91.77
8 91.78 8 91.65
9 91.82 9 91.62

Full-Dilate-I3D No-Dilate-I3D
N accuracy N accuracy
10 91.80 0 91.56

Table 5.2: Top 1 accuracies of the D-I3D architecture applying dilation on different sets
of the convolutional layers.

dilation. Because of these reasons, the speed of the training process does not decrease,

while during evaluation the number of operations increases with the growth of N .

5.1.6 Modified-I3D

We conclude our research implementing our best network architecture, the Modified-

I3D, which simply combines the G-I3D with the Top-5-D-I3D. More precisely the Modified-

I3D places the spatiotemporal feature gating at the same positions of G-I3D and employs

random dilation in the first 3 × 3 × 3 convolutional layer and the initial four inception

modules.

We start training the Modified-I3D from the final checkpoint of D-I3D computed on

the Jester dataset and we set the same batch size and learning rate schedule as before,

for a total of 170k steps. From figure 5.2, we observe that the training benefits from the

reduction of the learning rate, given that in both cases the curve shows an improvement

of accuracy. As we expected, the Modified-I3D reaches the highest top 1 accuracy with

93.36% of correct predictions on the validation set. This result, compared to the G-I3D

top 1 accuracy, shows that using temporal dilation on a proper set of convolutional layers

increases the model accuracy.

The Modified-I3D is the only architecture evaluated on the Jester test set, achiving a

top 1 accuracy of 93.41%.

Finally, we want to test if random dilation improves the model predictions, as a sort



51 CHAPTER 5. APPLICATION IN HUMAN-COMPUTER INTERACTION

Figure 5.2: Top 1 accuracy of the Modified-I3D model computed on the Jester validation
set at different training steps.

of data augmentation. We investigate this by evaluating the Modified-I3D without the

use of temporal dilation on the Jester validation set and we obtain an accuracy equal to

93.32%, higher than each other network. This result shows that temporal dilation can

help the networks to capture more generic temporal independent features, e.g. it helps the

network to predict with higher confidence the same action performed at different speed.

To further analyze this study, it would be appropriate to employ higher dilation factors

during training. However, we leave this as an open topic for future research.

In figure 5.3 is shown the accuracy for each class obtained from the different networks

of this research. From such histogram we notice that, for each architecture, the classes

Turning Hand Clockwise and Turning Hand Counterclockwise always obtain the lowest

accuracy, while for the remaining classes the networks often reach an accuracy higher than

90%. This could be caused by the imbalance in the Jester dataset, considering that both

classes have around 1000 videos less compared to the rest. This should be verified by

training the models on a balanced subset of the Jester dataset, i.e. reducing the number

of video clips to 4000 for each class. We leave this as an open topic for future research.

The Modified-I3D architecture does not always have the highest per class accuracy,

however it is the one reaching the highest accuracy for Turning Hand Clockwise and

Turning Hand Counterclockwise, 69.61% and 76.44% respectively, and the only one having

top 1 accuracy higher than 90% for each other class.
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Figure 5.3: Per class top 1 accuracy reached by the different models.
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Model Top1 accuracy
I3D 92.48%

NL-I3D 92.79%
G-I3D 92.85%
D-I3D 91.80%

Top5-D-I3D 92.01%
Modified-I3D 93.36%

Modified-I3D (no dilation) 93.32%

Table 5.3: Top 1 accuracy of the different architectures investigated.

5.2 Real Time

We now describe the chosen structure of the real time application. This is divided in

the following steps: first it captures the video stream with a mobile device, such as

phones, laptops or fixed cameras; then the video is sent to a GeForce GTX 1080 GPU,

which computes the video preprocessing, the gesture recognition algorithm and the video

postprocessing; finally, the live video stream and the predicted class are displayed in real

time.

If we want the most accurate gesture recognition system, it is evident from the previous

section that the Modified-I3D is the best solution. Alternatively, we could choose the

Modified-I3D with no dilation for a speed improvement.

The width of each frame is resized to 120 pixels and it is kept the same aspect ratio of

the original frame. Afterwards, we crop the central 100 × 100 portion of the image. We

then save the 40 most recent preprocessed frames into a video clip, which corresponds to

1.3sec of the video stream, in order to keep the same number of frames adopted during

the training and evaluation procedures. The video clip is repeatedly updated every time

a new frame is captured. However, we design the application to compute a prediction

every 20 frames (0.65sec), hence every time the video clips replaces the 50% of its frames.

This configuration allows us to have nearly continuous predictions, since we estimate that

each gesture is performed in around 1sec, and without drawbacks in computations. This

workflow process around 30fps.

Moreover, we consider a prediction as valid only when the probabilty of the outputed

label is higher than 50%, in order to build a more robust sytem. This solution avoids

to have predictions with high uncertainty, which typically characterizes the video clips

containing frames of two separate gestures performed one immediately after the other.
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Figure 5.4: Examples of the real time interface while performing three different gestures
correctly classified.

We show in figure 5.4 the visual interface of this real time application, where the white

box represents the central cropped area, the green text shows the label predicted with

high confindence and the blue text shows the probability and the class name of every

predictions, even when the probability is lower than 50%.

5.3 Visualization

In this section we want to show which input regions mostly affect the prediction of a

network. Various techniques have been developed to interpret and visualize what a neural

network ”sees” when it recognizes an object in an image, e.g. what are the features that

a network recognizes to discriminate a cat from a dog. Among them we choose to adapt

the Gradient-weighted Class Activation Mapping (Grad-CAM) [29] approach to videos, in

order to obtain a class-discriminative heat-map describing which area of the input video

activates a specific layer. Of particular interest are the final layers, which severly affect

the prediction of the output label.

Using similar notation of [29], we compute the class-discriminative localization map

of a class c, LcGrad−CAM ∈ RU×V×T , where U and V are the spatial dimensions and

T the temporal dimension of the feature maps in consideration, Ak ∈ RU×V×T . More

precisely, LcGrad−CAM is computed as a weighted combination of the K activation maps of

the selected layer, followed by a ReLU:

LcGrad−CAM = ReLU

(
K∑
k=1

αckA
k

)
. (5.11)

The weights αck represent how much the different activation maps Ak influence yc, which

is the score of the output layer for the target class c before the softmax function. The
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weights are obtained by computing the gradient of yc with respect to the feature map in

the following way

αck =
1

Z

U∑
u=1

V∑
v=1

T∑
t=1

∂yc

∂Akuvt
. (5.12)

In our case, we compute the normalization factor as

Z =

√√√√ 1

UV T

U∑
u=1

V∑
v=1

T∑
t=1

(
∂yc

∂Akuvt

)2

+ p (5.13)

where p = 1× 10−4 is necessary to avoid zero gradients.

Once LcGrad−CAM is computed, in order to have a more clear visualization, we resize it

to match the dimensions of the input video, in our case with height × width × frames

equal to 100× 100× 40. We apply this technique to the output of every 3D convolutional

layer or inception module of the Modified-I3D architecture and we visualize in figure 5.5

the resulting heatmaps. It shows that the early 3D convolutional layers activate mostly on

small details of the video frames, i.e. eyes, nose, mouth, hair and more. This is motivated

by the fact that the output activation maps of early layers have large spatial and temporal

dimensions, so the localization map is more detailed. Moreover, the receptive field of these

layers is small, hence they do not have a global understanding of the video, but they focus

on small patterns. By going deeper in the architecture we notice how the layers activate

when the hand movement is spotted, with the exception of the final inception module,

which activates on a larger slice of the input video. This behaviour is noticed also on

other examples and it is justified by the very small dimensions of the output activation

map of the final layer, in our case 4× 4× 5.

Not every localization map has an easy interpretation of why each layer focuses its

attention on a specific area. We observe that, for most of the examined samples, the

inception modules 6, 7 and 8 are those which more clearly focus on the hands’ movements.

We observe that these layers activate mostly on those frames where the specific action

takes place, showing that the model is robust. We show in figure 5.6 other good examples

of localization maps computed on these inception modules.
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(a) Original frames.

(b) 7× 7× 7 conv. 3D layer.

(c) 1× 1× 1 conv. 3D layer.

(d) 3× 3× 3 conv. 3D layer.

(e) Inception module 1.

(f) Inception module 2.

(g) Inception module 3.
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(h) Inception module 4.

(i) Inception module 5.

(j) Inception module 6.

(k) Inception module 7.

(l) Inception module 8.

(m) Inception module 9.

Figure 5.5: Grad-CAM visualizations for different layers of the Modified-I3D architecture.
Note that red regions corresponds to high scores for the class Drumming Fingers.
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(a) Zooming Out With Full Hand.

(b) Pushing Two Fingers Away.

(c) Shaking Hand.

(d) Sliding Two Fingers Right.

(e) ISliding Two Fingers Left.

(f) Stop Sign.

(g) Swiping Down.

(h) Swiping Up.

(i) Thumb Down.

Figure 5.6: Samples of activation heat-maps computed with Grad-CAM on some video
clips. We notice how the Modified-I3D activates where the gestures take place.
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Conclusion

The work of this thesis lays the foundations for future research in video action recognition

and more generally in video understanding. The results of this thesis can help researchers

to build novel 3D-CNNs exploiting non-local blocks, spatiotemporal feature gates or tem-

poral dilation, in order to enlarge the capacity of the models to capture spatio-temporal

features. We observe that both the non-local blocks and the spatiotemporal feature gates

contribute to increase the model accuracy, while temporal dilation seems to perform better

when it is located in the early convolutional layers.

In this work we build our best solution from the I3D architecture introducing a combi-

nation of spatiotemporal feature gates and temporal dilation, that we name Modified-I3D.

However, we demonstrate that a given deep neural network can benefit from these tech-

niques with a small increment of parameters, but we do not further investigate if a better

configuration exists.

Finally, the hand gesture recognition system was built to test the efficiency of the

Modified-I3D architecture in real-time, showing great results. This is the first and most

challenging step for the implementation of a gesture-based human-computer interface,

which we believe it will be soon integrated in future generations of computers.

6.1 Future Research

As previously mentioned, the next step of this research consists in finding the best con-

figuration for the Modified-I3D. In particular, by testing the spatiotemporal feature gates

in other locations and adopting dilation with higher dilation factors.

59
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Furthermore, we would like to expand this research on new topics. For instance,

implementing a sign language recognition system, in order to facilitate the comunication

between deaf and non-deaf people. The goal is again to build a hand gesture classifier,

where the classes depend on the sign languages. For example, the American Sign Language

(ASL) is composed by 6000 hand gestures for common words, plus the fingerspelling of

loan words and proper names. In this case it is necessary to have a proper ASL dataset

with a good amount of labeled data. Afterwards, we can fine-tune our models for the new

task, following the steps of this research.
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