
POLITECNICO DI TORINO

Master Degree in Mathematical Engineering

Master Thesis

Machine Learning for crash event detection from black-box data

Relatore:

Prof. Giacomo Como

Candidato:

Domenica Chiara Verbaro

Accademic year 2017-2018

Contents

1 Introduction 5

1.1 Purpose of this work . 7

2 Data set description 9

2.1 Black boxes . 9

2.2 Features analysis . 10

2.3 Preliminary analysis . 12

3 Methodology 17

3.1 Exploratory analysis . 17

3.2 Unsupervised learning . 19

3.2.1 Cluster analysis . 19

3.2.2 Manifold learning . 23

3.3 Supervised learning . 25

3.3.1 Algorithms used . 27

3.3.2 Neural networks . 32

3.3.3 Tuning parameters . 33

3.3.4 How to choose the best model 34

3.4 Analysis tools . 35

4 Exploratory analysis and unsupervised learning results 37

4.1 Exploratory analysis . 38

4.2 Unsupervised learning . 40

4.2.1 Cluster analysis . 41

4.2.2 Manifold learning . 45

4.3 Summary of the results . 46

1

5 Supervised learning results 47

5.1 Main results . 47

5.2 Outliers detection and supervised learning 54

5.3 Manifold learning and supervised 55

5.4 Comparison between models using new data 56

5.5 Summary of the results . 57

6 Conclusions 59

Abstract

This thesis focuses on the statistical analysis of data collected by black boxes

in order to detect car crash events. These boxes are installed on private

vehicles and are equipped with GPS, accelerometer, and gyroscope. First,

unsupervised machine learning and clustering algorithms will be applied to

analyse the data and explore possible underlying structure. Then supervised

statistical learning techniques will be applied to develop a classifier that is

able to predict whether a crash has occurred or not. Finally we will try to

train and test the best models found in the second phase to data divided

into cluster, in order to see if we can improve our prevision.

3

Chapter 1

Introduction

Nowadays, huge amounts of data are collected and analyzed by industrial,

commercial, and services companies. These data serve for different purposes

such as organizing marketing strategies, minimizing costs, predicting high

demand of goods, financial fluctuations , etc. For these reasons, large re-

sources are invested in the gathering, storage, and analysis of big data, using

machine learning techniques.

Machine learning algorithms use mathematical methods to perform data

analysis. Some of these machine learning algorithms, called supervised meth-

ods, can be used in order to predict a quantity, while there are some other

unsupervised techniques that can split our data into clusters. In the for-

mer case, we consider both the attributes that identify the characteristics

of samples, both the information relative to the quantity that we want to

predict. These algorithms find a decision rule or a decision function that

links each observation to a value for target variable. In the latter situation,

we do not take into account any label, but we just want to find out some hid-

den pattern. Moreover we could also combine different types of algorithms,

improving the statistical learning models obtained.

This work deals with the application of machine learning techniques to a

data-set generated by measurements recorded by the black-boxes installed on

cars and motorbikes by the insurance company UnipolSai. In this situation,

data analysis is performed in order to classify the signals into two categories:

false alarms and real crashes.

5

6 CHAPTER 1. INTRODUCTION

UnipolSai is an Italian insurance company, world leader in car insurance

telematics. Indeed it has over 2.5 billions of customers who decided to in-

stall black boxes. UnipolSai invested in Alfaevolution technology, a company

whose goal is to provide services for car, house, health and well-being. As

stated in its website, the purpose of Alfaevolution technology is to guarantee

to the customers of UnipolSai, services for security and the simplification of

the procedure after a crash. In the next paragraphs, we will describe how

the black boxes installed by Alfaevolution technology work.

A Black box is an electronic device that collects information about the

use and the position of the vehicle on which it is installed. In case of acci-

dent, the elaboration and the analysis of the black box data allows one to

rebuild objectively the dynamic of an event. The main advantages of the

black boxes, from the customers’ perspective, are that the GPS allows a

continuous localization of the vehicle and guarantees 24hours assistance in

case of accident. Moreover people who decide to install these devices can

obtain some sales on the cost of the insurance.

On the other hand, the main problem of the black boxes offers is how to

identify if the signal provided refers to a real crash or a false alarm. The op-

eration center of the company collects the data during different time intervals

for each component: GNSS module records data from about 30 seconds/1

minute before and after the crash , while the acceleromter sends data 6/8

seconds before and after the events. All these signals are preprocessed and

merged together, generating one single sample for each accident. After that,

Alfaevoultion technology operators derive some key performance indicators(

KPIs), using the data provided by accelerometer and GNSS module.

At the moment, the algorithm used by the company operators to pre-

dict whether an alarm identifies a crash is based on the comparison and the

measurement of some physical quantities, while in this work we will focus

on the derivation of an new algorithm using machine learning techniques.

For instance a crash is defined as an event during which the value of accel-

eration/deceleration remains higher than twice the gravity acceleration(g)

for a certain interval of time. On the other hand a mini-crash occurs when

acceleration values are between once or twice the gravity acceleration for a

certain time lag, during this period is possible to register some acceleration

1.1. PURPOSE OF THIS WORK 7

greater than 2g, but the interval during which high acceleration is detected

is too small to classify the event as a crash.

1.1 Purpose of this work

In this work we will implement a model able to classify alarms into real

crashes or false accidents, using data provided by Alfaevolution technology.

We will deal not with the original data generated by the devices installed

on the vehicles, but only with some of the KPIs calculating by Alfaevoultion

operators. The main goals of this work are:

1. Analyze attributes distributions;

2. Identify relationships between features;

3. Try to reduce the dimensionality of the data set;

4. Look for noticeable patterns that characterize false and real crashes;

5. Fit a supervised classifier that predict the highest number of correct

labels for each sample;

6. Try to reduce the number of misclassified false alarms, in order to limit

costs.

After a brief description of the data set(see Chapter 2), we will try to under-

stand more in depth the distribution of the KPIs, calculating the correlation

between them and trying to detect the outliers present among the data, us-

ing isolation forests. Then we will do an unsupervised study of the samples,

applying two different strategies: cluster analysis and manifold learning.

The former consists in dividing observations into groups, in order to iden-

tify some similarities among the data and it will be used to check if the

samples referring to false crashes and real accidents can be easily divided.

On the other hand, the latter strategy will be applied in order to reduce

the number of features composing our data set, projecting the samples in

a lower-dimensional space. Finally we will use different supervised learning

algorithms to fit a model that classifies alarms with a higher precision than

the one of Alfaevolution classifier.

Chapter 2

Data set description

In this chapter, we will briefly describe the black boxes mechanism, and

then we will start to explore the data set provided in order to understand

distributions and characteristics of the samples.

2.1 Black boxes

As explained in the Introduction, black boxes are devices used in order to

record data about the state of the vehicle on which they are installed. The

space occupied by a black box is very small, in fact it is more or less as big

as a smartphone. Modern models can be used as anti-theft alarms, but they

have to be installed by a professional in a non visible part of the car, such

as the engine compartment, while other basic models can be auto-installed

directly by the customers on the battery of the cars. Some of these recent

devices offer more services to the customers, that can be used everyday, even

while using the car. In Figure 2.1 it is reported one of the black boxes

installed. The main components of the black boxes are:

• a GSM module, that sends information to the operation center;

• a GPS component, that ensures the geolocalization of the vehicle;

• one or more accelerometers, that measure the forces acting on the

vehicle;

• a microporcessor with physical memory, that elaborates the data.

9

10 CHAPTER 2. DATA SET DESCRIPTION

Figure 2.1: An example of black box

Looking at the data emitted by a black box, it is possible to understand

the actual accident dynamics, from seconds before the impact, to some time

after the crash, even if there are no witnesses. The black boxes are always

active and it can be questioned by the operation center when the client

requires it(as in case of a theft), both directly by the owner of the car using

a smartphone application. Moreover, as soon as these devices detect a crash

or a mini-crash(such as impact with a stationary object) it sends a signal

to the operation center, that gurantees a live time assistance to the driver.

2.2 Features analysis

We start our work by analyzing the observations collected during February

2018. For each alarm the following information are given:

1. kpi_1 : key performance indicators(from kpi_1_1 to kpi_1_21) re-

ferring to the accelerometer; they are all continuous variables

2. check_2 : dummy variables(from check_2_1 to check_2_6) referring

to the accelerometer

3. check_3 : as for check_2 they are KPIs(from check_3_1 to check_2_?)

referring to the accelerometer, they are all binary features

4. kpi_4 : KPIs(from kpi_4_1 to kpi_4_8) referring to the car position;

5. history_5 : five KPIs relative to historical data of the black boxes, they

are both continuous, both discrete variables

2.2. FEATURES ANALYSIS 11

6. check_6 : dummy features referring to the context and the quality of

the data sent by the black box

7. feedback_assistenza: this variable tells us if the signal corresponds to

a real accident or if it is just a false crash, in fact it can assume only

5 different values:

• 0: if the observation is a false crash and the driver did not receive

any call or message

• 1: if the feedback is missing, so we do not know whether it is a

real or a false alarm

• 2: when the driver received a call, but he did not have an accident

• 3: if the driver has been called by the assurance and he really

needed assistance

• 4: when the driver received a call and he needed a tow truck

8. chiamata_autonoma: this KPIs is 1 when a driver had an accident

and needed assistance, but he did not receive any call

9. identifier of the black box KPIs which describes a black box, indicating

its hardware and the type of installation

10. identifier of the accident : some attributes that identify an event :

a id_evento: code of the accident,

b tipo_evento: indicate if in the event is involved a car or a motor-

bike,

c istante_evento: date and hour of the accident

11. identifier of the black box : some attributes that identify a box :

a id_blackbox : code of the box,

b tipo_installazione: categorical variable, which indicates how the

black box is installed

c classe_hardware: categorical variable, which shows the hardware

of the black box.

12 CHAPTER 2. DATA SET DESCRIPTION

Since our goal is to predict if the signal received is a false alarm or real

crash, we need a criterion in order to split our data into these two groups.

We use a criterion based on the value of the attributes chiamata_autonoma

and feedback_assistenza: if chiamata_autonoma = 1 the observation refers

to a accident while, obviously, chiamata_autonoma = 0 the signal refers

to a false allarm. On the other hand, when the latter is equal to 3 or 4

the observation is classified as an accident, while when its value is 0 or 2

the signal is considered as a false crash. Finally we discard the data with

feedback_assistenza = 1 because we do not have any information about the

customers’ feedback.

Starting our analysis we find out that in our data set there are 4 attributes

presenting missing values: kpi_1_13 (227 values missing), kpi_1_14 (37

values missing), kpi_1_15 (602828 values missing), kpi_4_6 (411695 val-

ues missing) and so we decide not to do take into account the last two

attributes since the number instances for which this value is not available is

considerable.

2.3 Preliminary analysis

From the insurance company that provided us the data, we know that there

could be some alarms with a wrong timestamp or that there could be some

corrupted black boxes that send continuously false crash signals. So we

decide to check if the two phenomena are correlated with the black boxes

class hardware or type of installation. To analyze the former scenario, since

we have only the alarms from February we extract the samples presenting

surely a wrong timestamp: the ones antecedent the midnight 1st of February

and the ones after the 23:59 28th of the same month. On the other hand,

to check the second situation we count for each black box how many alarms

were sent by it and we find out some corrupted black boxes that send more

than one hundred signals per month. We finally check out if wrong signals

are related to black boxes properties, but there are no correlation between

these variables, so we decide not to do take further action on this samples.

After dividing our features based on the type of KPIs, we start analyzing

their distributions just calculating some quantity as means, standard devia-

2.3. PRELIMINARY ANALYSIS 13

tion, quantiles, etc for the continuous attributes, and we report these values

in the following tables(Tables 2.1, 2.2, 2.6).

kpi_4_1 kpi_4_2 kpi_4_3 kpi_4_4 kpi_4_5 kpi_4_6 kpi_4_7 kpi_4_8

mean 13.32 13.20 -1.87 0.00 37.91 57.07 6045.80 4081.19

std 23.62 23.62 23.21 0.87 42.25 183.63 51905.94 51673.64

min 0.0 0.0 -2987.68 -12.14 0.0 -1.0 0.0 0.0

25% 0.0 0.0 -0.10 0.0 8.0 -1.0 782.34 331.84

50% 0.0 0.0 -1.85e-05 0.0 14.0 0.0 1876.58 745.34

75% 21.2 20.21 0.0 0.0 69.0 14.42 4335.01 1871.03

max 173.84 192.0 65.99 22.01 333.0 8607.02 3966266.43 3961302.75

Table 2.1: Description kpi_4

history_5_1 history_5_2 history_5_3 history_5_4 history_5_5 history_5_6

mean 0.02 1074.76 1055.20 161.46 2.94 3.88

std 0.18 2660.89 2642.48 843.23 3.61 4.17

min 0.0 0.0 0.0 0.0 0.0 0.0

25% 0.0 0.0 0.0 0.0 0.0 0.0

50% 0.0 61.0 55.0 5.0 1.24 3.45

75% 0.0 881.0 844.0 73.0 5.037 6.30

max 6.0 18962.0 18961.0 11573.0 22.84 36.46

Table 2.2: Description history_5

From these tables, we can notice that KPIs can assume very different

values even looking among indicators derived by the same components. For

instances, kpi_4_3 goes from -2987.68 to 65.99, while kpi_4_7 assumes

values from 0 to 3.96e+6. For that reasons rescaling our data will be very

important before starts our analyzes, in fact most part of machine learning

algorithms are scale sensitive. Moreover, looking at the large differences be-

tween the third quartile values and the maximum, or between the minimum

and the first quartile, we suppose that our data set could present outliers,

that could affect our estimations. On the other hand, for the discrete or

dummy variables, we simply write down the frequency of each class for each

attribute.

From Table 2.3 we can notice that, as supposed, there are few samples

with variable chiamata_autonoma equal to 1, which correspond to a serious

14 CHAPTER 2. DATA SET DESCRIPTION

chiamata_autonoma tipo_evento feedback_assistenza

class 0 99.93% 98.80% 98.80%

class 1 0.07% 1.20% 1.20%

Table 2.3: Description dummy variables

check_2_1 check_2_2 check_2_3 check_2_4 check_3_1 check_3_2

class 0 99.48% 78.02% 90.94% 71.03% 99.95% 93.32%

class 1 0.52% 21.98% 9.06% 28.07% 0.05% 6.68%

check_6_1 check_6_2 check_6_3 check_6_4 check_6_5 check_6_6

class 0 1.08% 0.67% 0% 0.03% 1.73% 0%

class 1 98.92% 99.33% 100% 99.97% 98.27% 100%

Table 2.4: Description dummy variables

feedback_assistenza classe_hardware tipo_installazione

class 0 97.51% 7.42% 0.67%

class 1 0.35% 5.22% 0.3%

class 2 1.27% 3.93% 12.53%

class 3 0.67% 2.52% 38.65%

class 4 0.20% 0.42% 0.0005%

class 5 - 49.60% 1.63%

class 6 - 5.42% 0.005%

class 7 - 11.79% 45.94%

class 8 - 1.59% 0.51%

class 9 - 12.10% 0.04%

Table 2.5: Description dummy variables

accident did not recognized. Furthermore, we understand that the most

part of the observations correspond to a false crash. Looking at Table 2.4,

we choose to drop check_2_1 and check_3_1, because they are equal to

zero in the most part of the samples. Moreover we decide not to use the

dummy variable describing the context and the quality of data(check_6),

because they assume all the value 1 in at least the 99% of observations.

2.3. PRELIMINARY ANALYSIS 15
kp

i_
1_

1
kp

i_
1_

2
kp

i_
1_

3
kp

i_
1_

4
kp

i_
1_

5
kp

i_
1_

6
kp

i_
1_

7
kp

i_
1_

8
kp

i_
1_

9
kp

i_
1_

10

m
ea

n
3.

69
18

.6
9

8.
02

1.
50

1.
54

1.
70

0.
13

1.
85

74
6.

10
0.

19

st
d

4.
40

10
2.

01
27

.3
9

7.
99

8.
03

8.
57

0.
26

4.
72

81
5.

43
0.

32

m
in

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

25
%

1.
10

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

98
.0

0.
0

50
%

1.
98

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

58
0.

5
0.

0

75
%

4.
31

4.
70

5.
0

0.
13

0.
13

0.
25

0.
08

1.
0

11
62

.0
0.

36

m
ax

46
.1

8
23

78
.2

0
49

2.
0

20
4.

29
44

8.
80

44
1.

67
1.

0
13

3.
0

48
49

.0
0.

99

kp
i_

1_
11

kp
i_

1_
12

kp
i_

1_
13

kp
i_

1_
14

kp
i_

1_
15

kp
i_

1_
16

kp
i_

1_
17

kp
i_

1_
18

kp
i_

1_
19

kp
i_

1_
20

m
ea

n
0.

18
0.

14
1.

32
1.

46
13

3.
84

65
4.

39
1.

85
17

.1
7

21
.4

1
2.

41
e+

16

st
d

0.
31

0.
28

7.
38

7.
86

21
9.

03
18

4.
73

4.
03

25
.4

3
28

.2
0

3.
92

e+
17

m
in

0.
0

0.
0

-1
.0

-1
.0

-1
.0

0.
0

0.
0

0.
0

0.
0

0.
0

25
%

0.
0

0.
0

0.
0

0.
0

-1
.0

59
2.

0
0.

0
1.

44
2.

02
8.

98

50
%

0.
0

0.
0

0.
0

0.
0

-1
.0

59
2.

0
0.

0
4.

23
6.

15
24

.5
0

75
%

0.
35

0.
0

0.
12

0.
12

31
7.

0
80

4.
0

1.
93

19
.9

1
32

.8
7

18
9.

48

m
ax

0.
99

0.
99

20
3.

97
44

8.
96

54
42

.0
61

22
.0

44
.6

4
90

.0
90

.0
2.

40
e+

19

T
ab

le
2.
6:

D
es
cr
ip
ti
on

kp
i_

1

Chapter 3

Methodology

In this chapter we will explain all the steps that we follow in order to create

a statistical learning model able to predict the nature of a signal. After fur-

ther analysis on our data, we will start applying some unsupervised learning

techniques, then we will create two training sets and we will use some su-

pervised methods to fit different models. Finally, we will define the criterion

that we will use tho choose the best classifier among all, we will test models,

and find the most accurate one.

3.1 Exploratory analysis

First of all, since many machine learning estimators require the standard-

ization of the data set to have good performances, we choose to normalize

the continuous variables, using the implemented function available on Scikit-

learn package RobustScaler. This scaler instead of removing the mean and

scale the variance to unit, considers the Interquartile Range(IQR) in order

to reduce the influence of the outliers. The IQR is the range between the

1st quartile (25th quantile) and the 3rd quartile (75th quantile). Thanks

to Robustscaler function, better results respect to the usually normalization

are obtained.

Furthermore we check if the features in our data set are significantly

correlated, calculating for each couple of variable the Pearson’s correlation

coefficient. It is obtained by dividing the covariance of the two variables by

17

18 CHAPTER 3. METHODOLOGY

the product of their standard deviations. The correlation coefficient ρX,Y
between two random variables X and Y with expected values µX and µY

and standard deviations σX and σX is defined as

ρX,Y = corr(X,Y) = cov(X,Y)
σXσY

= E[(X−µX)(Y−µY)]
σXσY

where E is the expected value operator, cov means covariance, and corr is the

notation used for the correlation coefficient. The correlation coefficient can

assume values between -1 and 1; it is +1 in the case of a perfect direct linear

relationship, while it is −1 in the case of a perfect inverse linear relationship.

The closer the correlation is to zero the more uncorrelated are the variables.

After that we analyze the distribution of all the continuous KPIs, starting

from some basic plots as the one represented in Figure 3.1. The plots of

the left columns are made using all the observations, while the plots of the

right columns take into account only the observations with a feedback by the

driver. The plots of the first row represent the distribution of the samples, the

second row contains boxplots and finally the third row shows again boxplots,

but this time dropping the outliers.

Figure 3.1: Distribution analysis of kpi_4_1

3.2. UNSUPERVISED LEARNING 19

In order to detect outliers more precisely, we would like to fit a mul-

tivariate distribution of the KPIs referring to accelerometer, position and

historical information of the black boxes. First of all we try to fit the dis-

tribution of continuous KPIs one by one to check if the results obtained for

univariate estimation are accurate, before proceeding with the multivariate

one. The procedure that we follow is very easy: first we fit some possible

distributions, such as normal, exponential, lognormal, etc. using the fit func-

tion of the package Scipy and then we find which is the best one through the

Kolmogorov-Smirnov test, already implemented in the package Scipy. After

that, in order to compare the distribution found with the real one, some

random samples are drawn and then compared through a histogram to the

original data.

We decide not to use multivariate estimation to detect outliers and we

choose another technique : the isolation forests. The idea on which isolation

forests are based is that, when we train a random forest on a data set, the

number of splittings required to isolate a sample in a tree can be seen as

a measure of the abnormality of an observation, the lower is this value the

higher is the probability of facing an outlier.

3.2 Unsupervised learning

3.2.1 Cluster analysis

The goal of clustering is to identify groups in data, in order to compress

or to segment data; for example a company that employs K sales persons

wants to split the customer database into K parts each comprising customers

as similar as possible. Sometimes the number of clusters K is fixed before

looking at the data , while often K is unknown and so we would like to find

the best value of K to understand at best our data. The main problem is

that increasing K will typically decrease within-cluster sum of squaresW (C),

where

(3.1) W (C) =

K∑
k=1

∑
C(i)=k

‖xi − ck‖2

20 CHAPTER 3. METHODOLOGY

and ck = N−1k
∑

C(i)=k xi, so we can not use the minimization of this value

to find the best number of clusters. The most common method to choose K

is based on the following heuristic: if the data truly consist of K∗ clusters

and we use clustering algorithms with increasing values of K < K∗, we

expect W (C) to decrease substantially when true clusters will be identified,

however for K > K∗ we expect the decrease in W (C) to be small. Then an

’Elbow approach’ is used, we make a plot of WK(C) for increasing values of

K = 1, 2, ... and try to locate a ’kink’ in the curve.

This procedure works poorly when the correct number of cluster is K∗ =

1 and it is not always clear which K is the best one. Tibshirani et al. (

2001) introduced the gap statistic which is based on the same heuristic as

the elbow method, but gives better results especially for K∗ = 1. The gap

statistic is based on a randomization idea: compare the curve of logWK(C)

obtained from the data {xi}ni=1 to the curve obtained from data uniformly

distributed (no clustering); in formula Gap statistic:

G(K) = E(logW indep
K)− logWK

where the expectation is under the random distribution. The expectation

is evaluated by (Monte Carlo) simulation: for b = 1, ..., B, generate n

uniformly distributed points over a rectangle containing the {xi}ni=1 and

compute the corresponding curve logW (b)
K . Then

E(logW indep
K) ≈ 1

B

∑
b logW

(b)
K

defining K∗ as the value of K where the gap between the two curves is

largest.

K-means

First of all, we decide to use k-means algorithms in order to divide our data,

because we know that we want only two clusters and, most of all, it is one of

the least expensive in term of computational cost. Assume that we want to

divide our original data in K clusters, where K is fixed, and small compared

to n, the number of observations, K-means algorithms estimates a function,

called encoder, C : 1, ..., n→ 1, ...,K which maps each xi to a cluster index

k ∈ 1, ...,K. The goal of K-means is to find C to minimize the within-cluster

3.2. UNSUPERVISED LEARNING 21

sum of squares(Equation 3.1). In general, it is impossible to optimizeW (C)

over all possible partitions, so we have to use an iterative algorithm to find

a local minimum of W (C). The steps of K-means algorithm are

1. Given a cluster assignment C, calculate the cluster means c1, ..., cK .

2. Given c1, ..., cK , update C such that each xi is assigned to the cluster

k corresponding to the closest center, i.e.,

C(i) = argmink=1,...,K‖xi − ck‖2.

The optimal solution of K-means is

C∗ = argminCW (C) = argminC
∑

k

∑
C(i)=k ‖xi − ck‖2 =

argminC,m1,...,mK

∑
k

∑
C(i)=k ‖xi −mk‖2.

Clearly K-means algorithm converges to different local minima, depending on

which initial values are chosen as cluster centers, so we have to run K-means

algorithm several times with different initial values, and keep the encoder

corresponding to the smallest W (C). Since the KPIs composing our data

set represent completely different aspects of the event that we are analyzing,

we decide to apply k-means to different subset of indicators. Therefore three

groups of variables are created, one using accelerometer KPIs, another one

using positions information and, finally, one considering only the historical

attribute indicators.

In order to control the validity of our clusters we compare for each division

calculated the value of the adjusted rand index score. This score compare

the labels assigned by the cluster algorithm and the real target values of

the observations, it can assume values in the interval [−1, 1] , where 0 in-

dicates that no one of the labels has been predicted correctly, while if the

adjusted rand index score is equal to 1 that means that the division created

by the cluster is equivalent to the original one. Moreover the adjusted rand

index score is not influenced by permutation of the predicted labels. For

example, supposing we have a data set with 4 samples where target variable

assume values [0, 1, 0, 1] and the predicted labels are [0, 1, 0, 1] in one case

and [1, 0, 1, 0] in another one, in both the situations ARI will be equal to

22 CHAPTER 3. METHODOLOGY

one, since there is perfect correspondence between the real division of the

data and the predicted one.

Moreover, in order to plot the results of k-means, we project our data

into a 3-D space using principal component analysis(PCA). To summarize,

the pipeline used in this phase is:

• normalize our data using RobustScaler

• apply k-means algorithm, fixing the number of clusters equal to 2

• project our data using PCA

• calculate adjusted rand index

• plot results and original labels

DBSCAN

In order to mitigate the effects of the outliers, we decide to use DBSCAN al-

gorithm. DBSCAN could be useful to detect and eliminate extreme samples,

but on the other hand, we can not decide a priori the number of clusters and

it is computationally more expensive than k-means. The DBSCAN algo-

rithm finds clusters separeting areas of high density by areas of low density;

so clusters can be any shape, while using k-means the groups found are con-

vex shaped. The main idea of DBSCAN is that a cluster is composed by a

set of core samples, each close to each other (measured by some distance)

and a set of non-core samples that are close to a core sample. An observation

is called a core sample when there are at least min_samples other samples

within a distance of eps, if this happens the sample is in an area of high

density. A cluster has a set of non-core samples too, which are observations

that are neighbors of a core sample in the cluster but are not themselves core

samples. A cluster can be built by recursively taking a core sample, finding

all of its neighbors that are core samples, finding all of their neighbors that

are core samples, and so on. Any observation that is neither a core sample

neither a neighbor of a core sample is considered an outlier by the algorithm,

since it is not contained in any cluster. As explained before, DBSCAN has

two parameters that need to be tuned: the number of neighbours for each

3.2. UNSUPERVISED LEARNING 23

center node, and a distance eps. In order to choose the best values for the

parameters above, we try different numbers and we choose the couple that

maximize the value of ARI.

3.2.2 Manifold learning

In data analysis one of the main problems in preprocessing data before ap-

plying any supervised or unsupervised algorithm is the features extraction.

In fact the presence of correlation in our data set could lead to less precision

or less predictive power in the model found. Analyzing an high-dimensional

feature space could slow down a lot the algorithm used. That is why in

the phase of preprocessing, dimensionality reduction is required. The most

common method is principal component analysis(PCA). Thanks to linear

transformation, PCA projects a data set onto a lower-dimensional space. It

is usually used for visualize our samples, in order to recognize some partic-

ular pattern, not visible through human eye in high-dimensional data set.

One of the main drawbacks of PCA is that usually it can not identify non

linear relation in our data. Therefore in this work we decide to use another

technique called manifold learning, that allows us to project our data on a

lower-dimensional space, using non-linear transformation.

We try three nonprobabilistic methods to perform manifold learning:

multidimensional scaling(MDS), locally linearly embedding(LLE) and iso-

metric feature mapping(isomap). All these algorithm are based on the

definition of a similarity matrix between the samples and, then, the obser-

vations are projected into a space with a lower defined dimension, trying to

preserve the original similarities between points.

Multidimensional scaling

Multidensional scaling (MDS) algorithm starts from defining a distance

matrix that contains the pairwise distance between any possible couple of

sample. After that the goal of MDS is to find a low-dimensional projection

of the data, calculating and using the eigenvector of the distance matrix,

that preserve, as closely as possible the distances between data points. The

distance between point can be calculating both using the Euclidian norm,

24 CHAPTER 3. METHODOLOGY

both using some similarity or dissimilarity measures, giving origin to non-

metric MDS.

Locally linear embedding

Locally linear embedding, or LLE needs the definition of a neighbourhood

for each sample x, so choosing a number n, the n nearest points will be

considered neighbours of x. After that, the local geometrical properties of

the neighbourhood are defined, computing for each sample a set of coeffi-

cients with particular property. In particular, they have to be invariant to

linear transformation such as rotation, scaling and translation. Then data

points are mapped from the original feature space to a lower dimensional

one, keeping the coefficients calculated at the previous step constant. Since

the projection of the samples from a one-dimensional space to another one is

done using linear transformation and the weights are defined to be invariant

to those, the local geometry and the coefficient calculated will be preserved

in the new data set, too.

Isometric feature mapping

In isometric feature mapping, or isomap, we use the same technique of MDS,

but this time we define the distances matrix using the geodesic distance. So,

as for LLE, we have to define a neighborhood that can be established select-

ing the K nearest neighbours or including all the points whose distance from

the sample in analysis is less then a hyperparameter ε. The algorithm then

draws a graph where each sample is connected by an edge with its neigh-

bours and assign to the edge a weight equal to the distance of its vertices.

Then as explained in ’Pattern Recognition and Machine Learning’(Bishop

[6]) "the geodesic distance between any pair of points is approximated by the

sum of the arc lengths along the shortest path connecting them". Finally,

the algorithm applied the same procedure of metric MDS to the distances

matrix, finding the projection onto a new low-dimensional space.

3.3. SUPERVISED LEARNING 25

Tuning hyperparameters

Each of these algorithms has some hyperparameters that need to be tuned.

In order to do so, we calculate the projections assigning various values to the

hyperparameters and then we compare the stress indicator for MDS and the

reconstruction error for LLE and isomap. The values that have to be tuned

for each method are:

• MDS: n_components, number of dimensions in which to immerse the

dissimilarities and metric, that indicates whether to perform metric

MDS; or nonmetric MDS.

• LLE: n_neighbors , number of neighbors to consider for each point

and n_components, number of coordinates for the manifold

• isomap: n_neighbors , number of neighbors to consider for each point

and n_components, number of coordinates for the manifold

3.3 Supervised learning

In this section we will describe how we derived classification algorithms to

decide whether a signal identifies a real accident or a false crash. Most

classifiers perform badly when used with unbalanced data set, like the one

we are analyzing. This is because most models minimize the misclassification

error which is a symmetric loss. Hence such models will focus more on the

prediction accuracy of the most common class and will often give poor results

for the other classes. We try two different approaches to solve problems

caused by the the fact that our data set is unbalanced: the first is using

a smaller but balanced training set, the second one is to consider a larger

dat set, but assigning to each observation a different weight, based on which

class it belongs.

Therefore we create two different training sets: the former contains few

observations(∼ 19000) which are almost equally distributed between false

alarms and real crashes, while the latter contains more signals(∼ 550000)

but where the number of real and false crashes is not balanced. All the other

observations are used for testing our models, so in the first test set about

26 CHAPTER 3. METHODOLOGY

900000 observations are contained, while in the second set there are only

about 450000 observations.

In the previous section we explain that, we try to do features selection using

some multidimensional scaling techniques, but in practice without obtaining

relevant results. So, in order to verify if all the KPIs available are significant

for our previsions we decide to split the our data set into smaller ones. Table

3.1 shows which KPIs compose each subset used on our analysis.

Data set KPIs

kpi_1 accelerometer KPIs

kpi_4 position KPIs

kpi accelerometer and position KPIs

acce accelerometer KPIs and check

kpi_1c accelerometer KPIs, identifier of the accident and of the black box

kpi_4c position KPIs, identifier of the accident and of the black box

kpic accelerometer and position KPIs, identifier of

the accident and of the black boxes kpic and the check accelerometer

kpih black boxes historical data and accelerometer and position KPI

allh same KPIs of kpih plus accelerometer check

allhc all KPIs avaiable

allhc all KPIs avaiable plus three dummy variables that indicate

the time slot of the day when the accident occurs

Table 3.1: Subset of KPIs used for each data set

Data set Training set 1 Test set 1 Training set 2 Test set 2

Observations 550689 373481 17449 906721

False alarms 544122 371271 10882 904511

Crash 6567 2210 6567 2210

Table 3.2: Training and test sets used

3.3. SUPERVISED LEARNING 27

3.3.1 Algorithms used

This section summarizes the mathematical derivations, advantages, and dis-

advantages of each algorithm used in the supervised phase.

Decision tree classifier

Decision trees stratify the feature space recursively into simple regions. Even

if trees are simple and easy to interpret, they are usually not very good at

prediction, nevertheless modern methods based on trees (random forests,

boosted trees) perform better. A decision tree can be represented as a graph,

where each split is called node, terminal node is called a leaf and interior

nodes lead to branches. In order to divide the feature space into M non-

overlapping regions R1, ..., RM a top-down, greedy approach known as re-

cursive binary splitting is used: begin at the top of the tree with a unique

region and divide the feature space into two regions, and then divide these

subregions into two, etc. . . The prediction ŷ+ for a new x+ falling into

some region Rm is given by

• Classification: the majority class into RM ;

• Regression: the average of the yi for which the corresponding xi ∈ RM .

Trees are models of the form:

(3.2) T (x) =

M∑
m=1

cmI(x ∈ Rm)

The cm ∈ R are estimated from the observations (xi, yi) with xi ∈ Rm.
Now we analyze how to grow the tree and how to choose the splits. We first

look at the case of regression with the squared error loss. We use a greedy

approach based on binary splits to estimate f: starting at the top, for each

coordinate j ∈ 1, ..., p we look for the best binary split defining

R1(j, s) = x ∈ Rp : xj ≤ s and R2(j, s) = x ∈ Rp : xj > s.

The values of j ∈ 1, ..., p and s ∈ R are found by solving:

minj,s

{
minc1

∑
i:xi∈Ri(j,s)

(yi − c1)2 +minc2
∑

i:xi∈Ri(j,s)
(yi − c2)2

}

28 CHAPTER 3. METHODOLOGY

Note that
∑

i:xi∈Ri(j,s)
(yi− c1)2 is minimized for ĉ1 = ave {yi : xi ∈ Ri(j, s)}

and similarly for the second sum after finding the first split, the procedure

is repeated in each branch.

In order to grow a classification tree we need an appropriate splitting criteria;

for regression the squared-error node impurity measure is used, while for

classification different loss functions can be used. Considering a region Rm
with Nm observations we define the portion of a class k as

1
Nm

∑
i:xi∈Rm

I(yi = k)

Some of the impurity measures most used are:

• misclassification error : 1
Nm

∑
i:xi∈Rm

I(yi 6= k) = 1− pmk

• Gini index :
∑

k 6=k′ pmkpmk′ =
∑K

k=1 pmk(1− pmk)

• Cross-entropy (or deviance): −
∑K

k=1 pmklog(pmk)

In the case of two classes, the misclassification error is 1−max(p, 1− p), the
Gini index is 2p(1− p) , and the cross-entropy is −plogp− (1− p)log(1− p)
. The misclassification impurity is non-differentiable, so it is not good for

optimization while the Gini index and the cross-entropy will favor pure nodes

with pmk ≈ 0 or pmk ≈ 1. In our analysis we use the Gini index.

As explained before, decision-tree learners can be affected by overfitting,

so in order to avoid this problem, the minimum number of samples required

at a leaf node or the maximum depth of the tree should be tuned. Moreover

decision trees can be unstable because small variations in the data can gen-

erate a completely different tree and the model created could be biased trees

if some classes dominate. For this reason is better to weight the samples

before train a decision tree.

The main disadvantages of the decision trees could be mitigated by train-

ing multiple trees in an ensemble learner. The goal of ensemble methods is to

combine the predictions of several base estimators built with a given learn-

ing algorithm in order to improve robustness over a single estimator. Two

families of ensemble methods are usually distinguished:

• averaging methods, such as random forests.

3.3. SUPERVISED LEARNING 29

• boosting methods.

The main idea on which averaging methods are based is to build several

trees independently and then to average their predictions. On average, the

combined model has more predictive power and it is less influenced by the

presence of outliers, since the variance of the model is reduced by averaging.

In next sections, the ensemble methods used in this work are explained.

Random forest classifier

Random forest is an ensemble method based on averaging tree, where the

trees in the forest are constrained in order to decrease their correlation.

The algorithm consists in bootstrap the data B times, then when growing

each tree on the bootstrap samples, for each split select m of the possible

p variables to be used for the split where this subset of variables changes

for each split. If we want to predict the variable ŷ+ for a new x+ in case of

regression we use the average the predictions from the B trees, while in case of

classification we select the majority vote from the B trees. When one variable

is much more important than the others then all bagged trees will select this

variable for the first split, making these trees similar, hence correlated, in

order to avoid this we select a random subset of m variables for each split.

In practice the value m =
√
p for classification and m = p/3 for regression

works well in practice. Even if we loss the interpretability of the single tree,

random forests have great predictive performance and need very few tuning

parameter. It can be shown that on average each bootstrap sample contains

approximately 63% of the data (because of the sampling with replacement).

This means, for each tree in the forest, approximately 37% of the data are

not used for the fit, so we can use these data to estimate the prediction error

from this tree, and for each observation (xi, yi) we can consider all trees not

containing this observation and estimate a prediction error. Doing this for

all observations and for all trees in the forest finding the out-of-bag (OOB)

error estimate, which is equivalent to the cross-validation error. Moreover

there are different measures of variables importance in random forests:

• mean decrease variable importance

30 CHAPTER 3. METHODOLOGY

• permutation variable importance

The former could be biased, so it is better to use the latter: to calculate

the importance of the jth variable, Xj we consider an error estimate from

the OOB, and we permute its values (randomly) for the OOB observations

and then measure the increase in prediction error; the more the error will

increase the more important is the variable.

Boosting classifiers

The main idea of boosting is slow learning: combine weak learners to slowly

learn a regression function or a classifier. A weak learner is a model that

performs only slightly better than random guessing, as small trees, leading

to so-called gradient tree boosting. There are many different boosting al-

gorithms depending on the choice of the weak learners used and the way

they are combined. The idea of combining weak learners to improve their

performance appeared in the 90s in computational learning theory literature

(Schapire and Freund). First boosting algorithm was AdaBoost (Freund &

Schapire, 1996), while XGBoost (Chen & Guestrin, 2016) makes boosting

one of the most efficient predictive model. We now analyze in details the

algorithm used in this work.

ADABoost classifier We consider the AdaBoost.M1 algorithm (Fried-

man et al., 2000). Suppose we want to find a classifier using training data

{(xi, yi)}ni=1 , yi ∈ {−1,+1}. The steps of AdaBoost.M1 (ESL, algorithm

10.1):

1. Initialize the weights wi = 1/n, i = 1, ..., n.

2. For m = 1, ...,M

(a) Fit a weak classifier Gm(x) to the training data using weights wi.

(b) Compute

errm =
∑n

i=1 wiI{yi 6=Gm(xi)}∑n
i=1 wi

(c) Compute αm = log(1− errm)/errm

(d) Set wi ← wi × exp [αmI {yi 6= Gm(xi)}] , i = 1, ..., n

3.3. SUPERVISED LEARNING 31

3. Output G(x) = sign
{∑M

m=1 αmGm(x)
}

Note that the final decision is based on a linear combination of the weak

learners Gm and that each classifier Gm(x) returns a prediction of ±1. If

we want to classify weighted data we have to use a loss function which is a

weighted sum of the form
∑n

i=1wiL(yi, ŷi) The error for each classifier will

be between 0 and 0.5, while the term αm is 0 when errm = 0.5 and tends to

+ inf when errm → 0.5. Larger αm means that the sign of G will be very

influenced by the corresponding Gm.

Gradient Boosting classifier Friedman et al. (2000) proposed gradient

boosting machine (GBM), which uses the following functional gradient de-

scent algorithm to estimate f∗: starts with the null function f(0)(x) = 0,

and for t = 1, ..., T defines

f(t+ 1) = f(t) + γG(t+ 1),

where the function G(t+ 1) is a weak learner fitted to the sample

{(xi, ŷi)}ni=1 where ŷi = −
∂errf
∂fi

(f (t))

At each iteration of the algorithm we use a weak learner G to approximate

the gradient of the function errf , in particular Gradient tree boosting uses

small trees for G: the size M of the trees is fixed.

At each iteration t we fit a regression tree G(t + 1)(x) = T (x; θ) to the

sample

{(xi, ŷi)}ni=1 where ŷi = −
∂errf
∂fi

(f (t))

The vector θ contains the tree parameters: the regions R1, ..., RM and their

corresponding predicted values c1, ..., cM . To estimate the “best” θ a two-step

approach :

1. The structure of the tree, i.e., the regions R1, ..., RM are found by

fitting a regression tree of size M to {(xi, ŷi)}ni=1

2. Given the regions R1, ..., RM , the values of c1, ..., cM are found by min-

imizing, for each m = 1, ...,M ,

32 CHAPTER 3. METHODOLOGY

∑n
i=1 I(xi ∈ Rm)L(yi, f (t) + cm)

The final estimate f̂ = f (T) is an additive model in the adaptive basis func-

tions G, i.e., f̂ is a linear combination of the weak learners G(T):

f̂ =
∑T

t=1 γG
(T)(x)

At each iteration t, GBM fits a small tree to the current residuals, and then

add this tree to the current model with a small weight γ, we use small trees to

avoid fitting models that are too complex and we multiply tree by the value

γin order to learn slowly. The number of iterations T and the shrinkage

parameter γ impact the test error of boosting: when γ is large the gradient

descent algorithm can converge faster to the minimum, while when T is large

boosting will be able to decrease the training error more. T and γ affect the

performance of boosting jointly: for smaller γ we need larger T to obtain

similar error, however it was found on examples that the best practice is

to take γ small and T large, in fact boosting will overfit for very large T ,

but if γ is small overfitting will only appear for very large T . Another way

to regularize boosting is to use a subset of the features similarly to random

forests, finding OOB error and variable importance, too.

3.3.2 Neural networks

Finally we decide to consider models trained using Multi-layer Perceptron.

MLP is a supervised learning algorithm that learns a function f(·) : Rm →
Ro by training on a data set, where m is the number of dimensions for input

and o is the number of dimensions for output, so it can be used for regres-

sion problems or classification models, too. The advantages of Multi-layer

Perceptron are the capability to learn non-linear models and the capabil-

ity to learn models in real-time, keeping the model always updated to new

scenarios. Otherwise MLP with hidden layers have a non-convex loss func-

tion where there exists more than one local minimum. Therefore different

random weight initializations can lead to different validation accuracy.

3.3. SUPERVISED LEARNING 33

3.3.3 Tuning parameters

The hyper-parameters of a model are parameters that are not directly learnt

within estimators, such as the number of estimators in a random forest or

the maximum depth of a tree.

When evaluating different settings for estimators, there is still the possi-

bility to find a model that presents overfitting, because the hyperparameters

can be tuned until the estimator performs optimally. This way, knowledge

about the test set can lead to a classifier that predicts correctly the target

value only in particular situations. To solve this problem, we can consider

another subset of observations, creating the so called validation set: we fit

our model on the training set, we check its performance on the validation

set, and when the results are satisfying, we do our final evaluation on the

test set. However, by partitioning the available data into three sets, we

drastically reduce the number of samples which can be used for learning the

model, and the final results can depend on a particular random choice for

the pair of (train, validation) sets.

To avoid this problem usually is used a cross-validation(CV) approach.

A test set should still be taken into account out for final evaluation, but, in

case of CV, we do not need anymore the validation one. In the k-fold CV, the

training set is split into k smaller sets. For each partition a model is fitted

using the remaining k− 1 folds as training data, then the resulting model is

validated on the remaining part of the data, calculating a certain score for the

classifier. The final performance measure of our model is the average of all the

scores calculating at the previous step. This approach is more expensive then

dividing our original data set in train test and validation set, but allows us

to include more samples in the training set and to find a model more robust.

In this work we use the Sklearn function GridSearchCV in order to tune the

hyperparameter of the classifier and, at the same time, to do cross-validation.

We define a grid of possible values for the hyperparameter and the function

GridSearchCV fits a model using CV for each possible combination of the

parameters. For our models we tune the following hyperparameters:

• Decision Tree

– max_depth: maximum depth of the tree

34 CHAPTER 3. METHODOLOGY

– max_features: maximum number of features used

– min_sample_leaf : minimum number of observations for leaf

• Random forest

– same parameters of decision tree

– n_estimators: number of estimators composing the forest

• AdaBoost classifier

– n_estimators: number of estimators composing the classifier

– learning_rate: contribute of each classifier in the final model

• Gradient Boost classifier

– n_estimators: number of estimators composing the classifier

– learning_rate: contribute of each classifier in the final model

– max_depth: maximum depth of each tree

• Neural networks

– hidden_layer_sizes: number of neurons in each hidden layers

– α: L2 penalty (regularization term) parameter

During the validation phase, GridSearchCV needs a performance indicator

to decide which combination of hyperparameters defines the best model. In

our work we use the Fβ , which is deeper described in the following section.

3.3.4 How to choose the best model

One of the request of the insurance company was to find different classi-

fiers depending on the maximum number of signals that they could receive.

Therefore we have to choose a performance indicator that could be easily

adapted to new demands. We decide to use the Fβ score calculated as:

Fβ =
(
1 + β2

) precision · recall
β2 · precision+ recall

where

precision =
number of crashes correctly classified

total number of accidents

3.4. ANALYSIS TOOLS 35

recall =
number of crashes correctly classified

number of observations classified as an accident

The main advantage of this indicator is that, just changing the value of β

we can give more importance on precision or on recall. The parameter β can

assume values in (0,+∞); when β = 1 the Fβ considers at the same way

precision and recall, on the other hand when β → 0 Fβ gives more importance

to precision and, finally, if β → +∞ the indicator takes into account only

the recall value. Looking only at precision means try to classify correctly

the highest number possible of accidents, while paying more attention on the

recall means try to predict the target value of more observations as possible

in the right way.

3.4 Analysis tools

The analysis have been performed using the programming language Python1

in the JupyterNotebook2 interactive environment. Python allows a dynamic

and efficient programming and relies on several packages and libraries that

implements a wide number of functions in different fields. The following

packages have been used throughout the code:

a Matplotlib3 plotting library, used for most of the graphs and figures

b NumPy4 package providing both data structures and functions for ba-

sic scientific computing

c Pandas5high-performance data structures and data analysis tools for

large databases

d Scikit-learn6 package providing tools for data mining, data analysis

and machine learning

1https://www.python.org
2http://jupyter.org
3http://matplotlib.org
4http://www.numpy.org
5http://pandas.pydata.org
6http://scikit-learn.org

https://www.python.org
http://jupyter.org
http://matplotlib.org
http://www.numpy.org
http://pandas.pydata.org
http://scikit-learn.org

36 CHAPTER 3. METHODOLOGY

e SciPy7 library of functions for scientific computing and statistical anal-

ysis

f Seborn8 plotting library use for some of the graphics in this work.

Computational resources provided by hpc@polito, which is a project of

Academic Computing within the Department of Control and Computer

Engineering at the Politecnico di Torino ()

7https://www.python.org
8https://seaborn.pydata.org/

http://www.hpc.polito.it
https://www.python.org
https://seaborn.pydata.org/

Chapter 4

Exploratory analysis and

unsupervised learning results

In this chapter and in the following one, the results obtained using method

and algorithms explained in Chapter 3 are collected and illustrated. In

particular in this chapter we will focus on the results of exploratory analysis

and unsupervised phase.

We start calculating the correlation between any couple of KPIs, looking

for particular linear relations. Moreover we use some plots in order to have

an idea of how the attributes of the data set are distributed, trying to under-

stand if they present outliers or if they assume different values when referring

to false alarms or real crashes. After that, we try to fit the distribution of

continuous variables, in order to check if it would be meaningful to look for

a multivariate distribution, considering all the KPIs. If we do not succeed

in fitting distributions, we will use isolation forest in order to detect the

possible outliers present among the data. Furthermore, we apply different

unsupervised techniques, in order to divide samples referring to false alarms

from sample representing real crashes, using different clustering algorithms

and applying them to different KPIs subsets. Finally, we use isomaps in

order to reduce the number of features composing our data set and trying

to decrease the high correlations present between the original attributes.

37

38CHAPTER 4. EXPLORATORY ANALYSIS AND UNSUPERVISED LEARNING RESULTS

4.1 Exploratory analysis

As explained before, first of all we calculate the correlation between all the

continuous KPIs present in our data set, dividing them by type. As shown

Figure 4.1: Correlation matrix kpi_1

in Figure 4.1, there are some groups of KPIs that have a very strong positive

correlation as kpi_1_10 and kpi_1_11, or kpi_1_5, kpi_1_6, kpi_1_13

and kpi_1_14. Some of them, as the couple (kpi_1_5, kpi_1_14) show

a correlation greater then 0.97. On the other hand, other KPIs referring to

the accelerometer show smaller or negative correlation and kpi_1_20 is the

only one which is not correlated to any other indicator(for kpi_1_20 all the

correlation coefficients belong to the interval (−0.1, 0.04)). We now analyze

the correlation coefficient for the other two subset of features, position and

historical indicators. In Figure 4.2 we notice that there are only two couples

of KPIs which are strongly correlated, kpi_4_1 and kpi_4_2 (ρ = 0.84),

kpi_4_7 and kpi_4_8 (ρ = 0.54), while all the other pairs show small or null

correlations. Finally in Figure 4.3, we notice that all the historical indicator

, but history_5_1 and history_5_4, are more or less correlated; the couple

with the highest correlation coefficient is history_5_2 and history_5_3 with

4.1. EXPLORATORY ANALYSIS 39

Figure 4.2: Correlation matrix kpi_4

Figure 4.3: Correlation matrix history_5

a ρ equal to 0.99. After studying the correlations present in our data set, we

try to understand more in depth the distribution of the features composing

it. First of all we simply plot our data using histograms and box-plots,

40CHAPTER 4. EXPLORATORY ANALYSIS AND UNSUPERVISED LEARNING RESULTS

trying to visualize our samples and their characteristics. From these plots, we

understand that the data set in analysis presents lot of outliers and that there

are some attributes(like kpi_1_17 shown in Figure 4.4) which have different

distributions if the samples refer to a false alarm or to a real crash. Since

Figure 4.4: Distribution analysis of kpi_1_17

the presence of the outliers may affect the performance of the supervised

methods, we identify and drop them. As explained in the previous chapter,

we try to find the distribution of each KPI, but, as shown in Figure 4.5 the

resulting distribution does not reflect the real one for the most part of KPIs,

since they do not follow a conventional probability distribution. In Chapter

5 we will see how we use outlier detection in order to try to improve the

predictive performance of the supervised classifiers.

4.2 Unsupervised learning

After understanding deeper the characteristics of the features composing

our data set, we decide to apply some algorithms of unsupervised learning

on it. In fact clustering could show us if the false alarms and the real crash

4.2. UNSUPERVISED LEARNING 41

Figure 4.5: kpi_1_2 distribution and the simulated one

signals can be easily divided, or if there is some recognizable patterns within

clusters.

On the other hand, as denoted in the previous chapter, there are a lot

of strong correlated variables and that our data set has a large number of

attributes. The former property could affect the predictive power of some

classifiers, derived in the supervised analysis, while the latter cause an in-

creasing of algorithms computational cost. Therefore, in order to solve the

possible problems evidenced above, some manifold learning techniques will

be applied to our set of attributes. In the following sections and the result

of cluster analysis and manifold learning will be explained.

4.2.1 Cluster analysis

First of all, we report the results of the applications of K-means pipeline

implemented in the previous chapter. In the images below(4.6,4.7,4.8) there

are the results respectively of the pipeline applied to kpi_1, kpi_4, his-

tory_5. Moreover from images we can notice that there is not a strong

correspondence between real labels and predicted ones for any of the data

set used, as evidenced by the value of the ARI, too. Another issue displayed

by the Figure 4.7 is the presence of outliers that affect our estimations. As

explained in the previous chapter, DBSCAN is computationally expensive,

so we run this algorithm using only a subset of samples, containing about

42CHAPTER 4. EXPLORATORY ANALYSIS AND UNSUPERVISED LEARNING RESULTS

(a) K-means clusters using kpi_1 ARI=-0.0019

(b) Real label

Figure 4.6: K-means applied to kpi_1

(a) K-means clusters using kpi_4 ARI=-1.34e-5

(b) Real label

Figure 4.7: K-means applied to kpi_4

18000 observations. In Figures 4.9, 4.10, and 4.11 are reported the clusters

obtained through DBSCAN for KPIs of accelerometer, position and histori-

cal data. Most part of the observations have been marked as outliers, about

12000 when using kpi_1, 11000 with kpi_4 and 5000 from the applied on

history_5 KPIs. Furthermore we can notice that no one of the divisions

4.2. UNSUPERVISED LEARNING 43

(a) K-means clusters using history_5 ARI=-0.016

(b) Real label

Figure 4.8: K-means applied to history_5

(a) DBSCAN clusters using kpi_1 ARI=-0.005

(b) Real label

Figure 4.9: DBSCAN applied to kpi_1

predict exactly two clusters, nevertheless the value of ARI is better than

the one calculated using k-means. In order to improve performances of the

algorithms used above, we try to find the best number of groups compar-

ing the value of inertia for each different classification. Inertia is equal to

the sum of squared distances of samples to their closest cluster center, and,

44CHAPTER 4. EXPLORATORY ANALYSIS AND UNSUPERVISED LEARNING RESULTS

(a) DBSCAN clusters using kpi_4 ARI=0.029

(b) Real label

Figure 4.10: DBSCAN applied to kpi_4

(a) DBSCAN clusters using history_5 ARI=0.168

(b) Real label

Figure 4.11: DBSCAN applied to history_5

as explained in the previous chapter, it usually decreases as the number of

groups increases. So we have to plot the inertia for each value tested and

see where the curve presents a ’kink’, as represented in Figure 4.12(a). Since

this procedure is not precise and could be misleading, we decide to use the

GAPS method, but this method does not give good results, too. In fact,

4.2. UNSUPERVISED LEARNING 45

(a) Example of inertia for number of

cluster

(b) Example of inertia for number of

cluster

the GAPS values go on increasing as the number of clusters increases(see

Figure 4.12(b)). Considering that we do not obtain valid result from our

cluster analysis we decide to do not investigate more on it and we pass to

the part of manifold learning.

4.2.2 Manifold learning

As introduced in the previous chapter, the main issue of these methods is

that they are computationally expensive. In fact, even if we select only a

small part of our initial data set, we do not obtain any valid results for

MDS and LLE. On the other hand, we manage to solve memory problem

for isomap applying it to a subset of about 18000 observations. As it has

be done for the cluster analysis, we project three subset of our features

separately: accelerometer KPIs, positional KPIs and historical indicators.

We reduce the dimensionality of the attributes set from 31 dimensions to

25 dimensions. In Figure 4.12 we report an example of the reconstruction

errors, calculating to choose which hyperparameters we have to use to find

the projections most similar to the original samples. Continuous, dotted

and dashed lines represent the reconstruction errors when the number of

neighbours is set respectively to 3,5, and 10. We can notice that the error

decreases as the number of points in the neighborhood increases. However

we have to consider that the computational cost increases, too. Finally in

Chapter 4, during the supervised phase, we will train a classifier both on

original data both on the projected one, since manifold learning algorithms

should "clean" from noise our data set and so could give a more accurate

46CHAPTER 4. EXPLORATORY ANALYSIS AND UNSUPERVISED LEARNING RESULTS

Figure 4.12: Reconstruction errors for kpi_4 varying the number of neigh-

bours

model in the supervised part.

4.3 Summary of the results

In this chapter, we saw that our data set contains a lot of outliers and that

fitting attributes distributions did not give valid results, that is why we used

isolation forests. Another issue shown by this chapter is that clustering

did not work on our data set, because false crashes and real alarms are

not linearly separable. Moreover, we found out that the high number of

samples composing our data set is a problem when we would like to apply

algorithms expensive as regarding the computational cost, such as DBSCAN

or multidimensional scaling.

Chapter 5

Supervised learning results

In this chapter we will present the results obtained training the classifiers

presented before. After that, we will compare the precision of the statistical

learning models fitted using original data with the ones found using original

samples plus attributes derived by outliers detection, and with the ones ob-

tained using manifold learning projections. Finally we will test our classifiers

on a completely new data set, simulating the process that there will be in

the Alfaevolution operation center.

5.1 Main results

For each model we calculate the percentage of false alarms and real crashes

classified correctly and we collect our data in tables as the one shown in

Table 5.1. In these tables we have six different columns, which represent:

• β: value of β used to train the model

• Perc. false crash: percentage of false alarms misclassified

• Perc. crash: percentage of real crashes misclassified

• Algorithm: classifier used to train the model

• Data: subset of kpis in the training set(see Table 3.1)

• Avg : average between columns 2 and 3

47

48 CHAPTER 5. SUPERVISED LEARNING RESULTS

• False Avg : weighted average between columns 2 and 3, calculated as

0.90 · Perc.falsecrash+ 0.1 · Perc.crash

We calculate average because we want to find out which model classifies

correctly the highest percentage of signals. On the other hand, since each

call made by the insurance company in order to check if the driver needs

assistance has a cost, we look for classifiers that have the highest precision for

the false alarm class. We cannot order the models just using the percentage

of false crashes classified correctly because there are some algorithms that,

when are applied on the unbalanced data set, assign to each sample the label

’false crash’. This implies that these classifiers predict correctly all the false

alarms, but they do not correctly classify any crashes. Hence, we decide not

to consider them as valid models. Before analyzing the results obtained, we

have to say that since gradient boosting and random forest algorithms are

computationally expensive and have more hyperparameters to tune than the

other models, we did not get valid results for these classifiers when applied

on the unbalanced training set. As reported in Table 5.1, the first and the

β Perc. false Perc Data Algorithm Train Avg False
crash crash Avg

10 1.45% 2.31% allh abcw 1 1.88% 1.54%

10 1.45% 2.31% allho abcw 1 1.88% 1.54%

0.75 1.33% 2.48% allho gbc 2 1.91% 1.45%

1 1.29% 2.53% allho abcw 1 1.92% 1.42%

0.5 1.29% 2.53% allho abcw 1 1.92% 1.42%

Table 5.1: Best classifiers train on average

second best model use the adaboost classifier trained on the unbalanced data

with β = 10, while the third best model is gradient boosting classifier, fitted

on the other data set, using same KPIs, but with β = 0.75. On the other

hand, the model which classifies the highest percentage of false alarms is the

weighted decision tree, train on set 1, using allh data set and with β = 2(

Table 5.2). Finally, the classifier with the lowest percentage of misclassified

incident is the random forest trained on the balanced data set, with β = 1,

5.1. MAIN RESULTS 49

using the KPIs subset allhc(Table 5.3).

β Perc. false Perc Data Algorithm Train Avg False
crash crash Avg

2 0.63% 6.10% kpih dtcw 1 3.30% 1.17%

2 0.67% 5.33% kpic dtcw 1 3.25% 1.20%

2 0.63% 6.74% allho dtcw 1 3.53% 1.21%

2 0.67% 7.01% allhc dtcw 1 3.39% 1.22%

5 0.69% 2.89% kpic dtcw 1 3.40% 1.23%

Table 5.2: Best classifiers comparing percentage false crash

β Perc. false Perc Data Algorithm Train Avg False
crash crash Avg

1e+15 16.14% 1.38% kpi_1 abc 1 8.75% 14.66%

1e+15 16.14% 1.38% kpi_1c abc 1 8.75% 14.66%

1e+15 16.14% 1.38% kpi abc 1 8.75% 14.66%

1 15.98% 1.58% kpi_1 abc 1 8.78% 14.54%

5 15.98% 1.58% kpi_1 abc 1 8.78% 14.54%

Table 5.3: Best classifiers comparing percentage crash

In Figure 5.1 we report graphically the results shown in the Tables 5.1,

5.2, 5.3:

• the blue crosses indicate the performances of the algorithms train on

balanced data set;

• the black plus represent the percentage of misclassified alarms using

the unbalanced data set;

• the cyan diamond shows the best model on average;

• the green star evidences the algorithm that classifies correctly the high-

est percentage of false crashes;

50 CHAPTER 5. SUPERVISED LEARNING RESULTS

(a) Best 150 classifiers on average (b) Best 150 classifiers comparing me-

dia_false

(c) Best 150 classifiers comparing percent-

age crash

Figure 5.1

• the red triangle indicates the algorithm that classifies correctly the

highest percentage of crashes;

Commenting these results, we could say that the classifiers trained on the

unbalanced data set seem to have better predictive performance than the

ones fitted on the balanced data set, when the samples are weighted. Never-

theless, we have to consider that the test set of the balanced data set contains

twice of false alarms than the set used for testing performance of the unbal-

anced data set, and so this could be the cause of the lower accuracy of the

models found using the second data set.

We decide to check which are the models trained on the balanced data set,

in order to see if random forest and gradient boosting applied on the samples

of adaboost give better results. As shown in Table 5.4 , we can notice that

5.1. MAIN RESULTS 51

β Perc. false Perc Data Algorithm Train Avg False
crash crash Avg

0.75 1.33% 2.48% allh gbc 2 1.91% 1.44%

10 1.33% 2.48% allho gbc 2 1.91% 1.44%

5 1.32% 2.57% allh gbc 2 1.95% 1.45%

1 1.33% 2.57% allho gbc 2 1.95% 1.45%

5 1.34% 2.57% allho gbc 2 1.96% 1.46%

Table 5.4: Best classifiers train on balanced data set

GBC1 and RFC2 have more predictive power than ABC3, so we suppose

that if we could run GBC and RFC on the first data set, we would have

better results than the ones reported in Table 5.1. In the previous chapter,

we explain that all the algorithms used, but neural networks, calculate how

much a variable is ’important’ in the fitted model. For this reason, we

plot the features importances for the best classifiers described above(Tables

5.1, 5.4) in order to compare them. From Figure 5.2 and Figure 5.3, we

Figure 5.2: Feature importance of the best model trained on unbalanced set

1Gradient boosting classifier
2Random forest classifier
3Adaboost classifier

52 CHAPTER 5. SUPERVISED LEARNING RESULTS

Figure 5.3: Feature importance of the best model trained on balanced set

can notice that ABC uses less features respect to GBC, that gives more

or less importance to almost all the variables available. Nevertheless, the

key performance indicators that influence the most both the classifiers are

the same: kpi_1_17 is the most important one, followed by kpi_1_10 and

kpi_1_20, kpi_4_1 and kpi_4_4. Moreover these plots show that the

KPIs most used are the one referring to the accelerometer and that while

ABC gives importance to historical data as the positional ones, while GBC

consider less the KPIs history_5.

Next step is to control if the observations misclassified depend on the

subset of KPIs used. Comparing the samples classified in the wrong way,

using the same algorithms and changing only KPIs contained in the training

set, we can notice that even if the models trained just considering the po-

sitional KPIs have worse predictive performance, they can predict correctly

the target variable of some observations that are misclassifed by all the other

data sets; this situation is evident especially when we take into account false

alarms. Probably that is because when we consider all the KPIs, indicators

referring to the accelerometer allow us to predict correctly the target vari-

able of the most part of the samples, so they are given more importance, but

doing this, models loose some information given by the positional kpis.

5.1. MAIN RESULTS 53

Finally, we notice that there are some accidents that are never predicted

as real crashes. In order to analyze these samples, we plot the distribution

of the most important KPIs both considering all the accidents, both taking

into account only the one which are always misclassified. Figures 5.4 and 5.5

show that kpi_1_17 and kpi_1_12, which are two of the most important

variables in all the trained model, assume smaller values for the most part

of the samples whose target variable is never predicted in the right way.

Probably this is problem is due to some faults of the black boxes.

Figure 5.4: Distribution of kpi_1_17 for crashes and misclassified incidents

Figure 5.5: Distribution of kpi_1_12 for crashes and misclassified incidents

54 CHAPTER 5. SUPERVISED LEARNING RESULTS

5.2 Outliers detection and supervised learning

As explained in Chapter 2, a pecularity of our data set is that it presents a lot

of outliers, that could be identified using isolation forests. In this section we

use the information about outliers to see whether we could improve predictive

power of the models presented in the previous section. First of all, we apply

isolation forests to our training sets for some kpis subsets(accelerometer

kpis, positional indicators and historical data) and for each group we add to

our data set a new dummy variable, that assumes value 1 when the sample

is considered an outlier by the classification forest trained on that subset.

After that, we fit the best model described in the previous chapter on the new

data set containing dummy variables ’outliers_kpi_1’,’outliers_kpi_4’ and

’outliers_history_5’. Even if new variable seems to have an impact on the

Figure 5.6: Feature importance differences between GBC trained on allh

data and allh data plus outliers attributes

fitted models, as shown for example in Figure 5.6, the overall performances of

the new classifiers are slightly worse than the ones of the original classifiers.

5.3. MANIFOLD LEARNING AND SUPERVISED 55

5.3 Manifold learning and supervised

Now we will compare the best classifiers described in Table 5.1 to the ones

obtained applying our algorithms on the projections found using isomap in

chapter 3. In Figure 5.7 we report the results obtained:

Figure 5.7: Predictive performance of algorithms using original data(black)

and isomap projections(blue)

• the blue points indicate the performances of the algorithms that use

isomap projections;

• the black dots represent the percentage of misclassified alarms; using

the original data;

• the cyan diamond shows the best model on average;

• the green star evidences the algorithm that classifies correctly the high-

est percentage of false crashes;

• the red triangle indicates the algorithm that classifies correctly the

highest percentage of crashes;

As shown in Figure 5.7, the original models have an higher predictive power,

even if we supposed that isomap projection would give better results. Prob-

ably this is due to the fact that the algorithms that we choose to train our

models are robust to outliers and collinearity. The only pros of manifold

learning is that, reducing the dimensionality of our data set, we reduce the

computational cost,too.

56 CHAPTER 5. SUPERVISED LEARNING RESULTS

5.4 Comparison between models using new data

After finding the best models as explained in the previous sections, we test

our algorithms on a completely new data set, that contains the black boxes

alarms, registered during May and June. In Tables 5.5 and 5.6 we report

the results of tests using all the pipeline implented on the new data set.

β Perc. false Perc Data Algorithm Train Avg False
crash crash Avg

10 1.94% 2.83% allho mpl 2 2.38% 2.03%

1e+15 1.30% 3.48% kpih gbcw 2 2.39% 1.52%

2 1.58% 3.34% allho abcw 2 2.46% 1.75%

1 1.58% 3.34% allho abcw 2 2.46% 1.75%

0.75 1.58% 3.34% allho abcw 2 2.46% 1.75%

Table 5.5: Best classifiers for new test set on average

β Perc. false Perc Data Algorithm Train Avg False
crash crash Avg

0.75 0.85% 4.49% allho gbc 2 2.67% 1.22%

0.50 0.85% 4.56% allho gbc 2 2.71% 1.22%

2 0.86% 4.61% allho gbc 2 2.74% 1.24%

1 0.86% 4.68% allh gbc 2 2.77% 1.24%

5 0.86% 4.60% allho gbc 2 2.73% 1.24%

Table 5.6: Best classifiers for new test set comparing media_false

We can notice that the models trained on the unbalanced data set perform

worse than the model trained on the balanced set, when both are tested on

the same test set. Moreover gradient boosting classifier is again the best

model looking at media_false. Probably this is due to the fact that gradient

boosting usually have a higher predictive power than all the other algorithms

used, and that perform analysis on a balanced data set, even if it contains

less samples, usually gives better results.

5.5. SUMMARY OF THE RESULTS 57

5.5 Summary of the results

In this chapter, we found out that in our problem we obtain statistical learn-

ing model more precise if we take into account our original samples, and

not the projected ones calculated using isomap. Moreover we saw that the

performances obtained are not affected by the presence of outliers among

data. Finally we noticed that using gradient boosting classifier only on the

balanced and smaller data set gives better results than using simpler al-

gorithms on a bigger and unbalanced data set. We suppose that training

gradient boosting classifier on the unbalanced data could fit a statistical

learning model more precise than the one found in this work, but we did not

have enough computational power to prove it.

Chapter 6

Conclusions

In this final chapter we will summarize what we did in this work and we

will describe some of the possible future developments. After a brief intro-

duction about machine learning and about the problem that we treated, we

described the data set used to perform our analysis and how they are de-

rived by Alfaevolution. Furthermore, we introduced the algorithms and the

methodology used to: have a deeper knowledge of our data set, looking for

linear correlation between features and investigate attributes distribution;

perform data preprocessig and find noticeble differences between real and

false crashes; fit a statistical learning model in order to predict if a signal

refers to a false alarms or not. Finally we shown in details the results found

applying all the algorithms introduced before.

The main issue to determine which model is actually the best is that

we do not know the different prices of missing a false alarm or missing the

prediction of a real crash. In fact, considering a model that classifies correctly

all the accidents but that misclassified a lot of false crash, it could be not the

optimal one, because calling too many clients is too expensive. On the other

hand, a classifier too restrictive that does not predict correctly the most part

of the accidents and that has very good precision as regarding false alarms

is cheaper, but too many customers will be disappointed from the services,

damaging the image of the insurance company. That is why, we were told

by Alfaevolution, that they would like to keep the number of calls made

during a month under the threshold of 25000; considering this constraint,

59

60 CHAPTER 6. CONCLUSIONS

the best models on average are reported in Table 6.1. From this table we

β Perc. false Perc Data Algorithm Train Avg False
crash crash Avg

1e+15 1.30% 3.48% kpih gbcw 2 2.39% 1.52%

10 1.25% 3.70% allh gbcw 2 2.47% 1.49%

1e+15 1.21% 3.75% allh gbcw 2 2.48% 1.47%

1e+15 1.24% 3.81% allho gbcw 2 2.52% 1.50%

10 1.22% 3.84% allho gbcw 2 2.53% 1.48%

Table 6.1: Best classifiers for new test set constraining the number of calls

can understand that the model that gives the best precision, constraining the

number of calls is Gradient boosting classifier, as noticed when we classify

algorithms looking at media_false instead of media, even if in this case the

samples are weighted. One of the possible further developments of this work

could be rearranged all the steps developed here into an optmization model

in order to find the classifier with highest precision and a number of call

lower than a certain fixed threshold.

As explained in the previous chapter, analyzing the errors of each clas-

sifier, we notice that even if the models using only kpi_4 have the lowest

overall precision, they are able to recognize some false crashes misclassified

from all the other models. Therefore, we suppose that in order to decrease

the number of calls that have to be done we can use a simply but effective

strategy. First of all we fit the best model using the subset of features that

ensures the highest predictions rate and another model taking into account

only positional KPIs. After that we predict samples labels using the former

model, then we consider only the sample classified as accident and, finally,

we predict another time labels using the latter algorithm. Using this pro-

cedure, we recognize less real crashes, but we classify correctly thousands

of false alarms, too. Finally, we believe that creating and using a new bal-

anced training set, where the number of samples referring to real accidents

is higher, we will generate model with a higher predictive power.

Bibliography

[1] Freund, Y. & Schapire, R. E. (1996) Experiments with a New Boosting Al-

gorithm. In Proceedings of the Thirteenth International Conference on In-

ternational Conference on Machine Learning, ICML’96, pp. 148–156. San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc. ISBN 1-55860-

419-7.

[2] Friedman, J., Hastie, T. & Tibshirani, R. (2000)Additive logistic regres-

sion: a statistical view of boosting (With discussion and a rejoinder by the

authors). Annals of Statistics 28, 337–407. doi:10.1214/aos/1016218223.

[3] Tibshirani, R., Walther, G. & Hastie, T. (2001) Estimating the number of

clusters in a data set via the gap statistic. Journal of the Royal Statistical

Society: Series B (Statistical Methodology) 63, 411–423. doi:10.1111/1467-

9868.00293.

[4] Chen, T. & Guestrin, C. (2016) Xgboost: A scalable tree boosting system.

In Proceedings of the 22Nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’16, pp. 785–794. New York,

NY, USA: ACM. ISBN 978-1-4503-4232-2. doi:10.1145/2939672.2939785

[5] Hastie, T. J., Tibshirani, R. J. & Friedman, J. H. (2009) The Elements of

Statistical Learning: Data Mining, Inference, and Prediction. New York,

USA: Springer, second edition. ISBN 9780387848587

[6] Bishop, Christopher M.,(2006) Pattern Recognition and Machine Learn-

ing (Information Science and Statistics). Berlin, Heidelberg: Springer-

Verlag. ISBN 0387310738

61

62 BIBLIOGRAPHY

[7] Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12,

pp. 2825-2830, 2011.

	Introduction
	Purpose of this work

	Data set description
	Black boxes
	Features analysis
	Preliminary analysis

	Methodology
	Exploratory analysis
	Unsupervised learning
	Cluster analysis
	Manifold learning

	Supervised learning
	Algorithms used
	Neural networks
	Tuning parameters
	How to choose the best model

	Analysis tools

	Exploratory analysis and unsupervised learning results
	Exploratory analysis
	Unsupervised learning
	Cluster analysis
	Manifold learning

	Summary of the results

	Supervised learning results
	Main results
	Outliers detection and supervised learning
	Manifold learning and supervised
	Comparison between models using new data
	Summary of the results

	Conclusions

		Politecnico di Torino
	2018-10-08T16:49:09+0000
	Politecnico di Torino
	Giacomo Como
	S

