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Abstract

The problem of footbridge vibrations due to pedestrian motion is largely

studied nowadays. This intensive attention is due to the construction of in-

creasingly daring structures which has led to build very slender footbridges.

Mathematical frameworks that aim to simulate this phenomenon should in-

clude suitable models to describe the crowd system, the structure system and

the dynamic force exerted by the crowd on the structure.

In this thesis a comparison is made between results provided by approach-

ing the problem from two different points of view, respectively a microscopic

and a macroscopic one, in a one-dimensional domain. Regarding the micro-

scopic scale, a first-order crowd model is used accompanied by a force model

which uses the positions and velocities of pedestrians for evaluating the dy-

namic load exerted on the structure. In the macroscopic scale, a first-order

crowd model is used, which is directly derived from the microscopic one by

means of an upscaling procedure that relies on notions of kinetic theory.

The scale passage allows us to get a macroscopic crowd model that is a

generalization of the microscopic one, and they can be considered as equiv-

alent; also the macroscopic crowd model is accompanied by a force model

which evaluates the dynamic load exerted on the structure, once that the

pedestrian velocity and density are given. In both frameworks, the foot-

bridge is modelled as a single degree of freedom system which is used for

computing the vertical acceleration of the structure. Finally, the response

in both frameworks is studied when the number of pedestrians N on the

footbridge varies.

Since the two types of models are equivalent, their dynamics are similar

for large times when N → ∞; in this work, it is demonstrated that this

hypothesis is met with good approximation also for finite N and, in particu-

lar, proper estimates of N are derived. Moreover, results concerning vertical
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accelerations are discussed.
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2.3.2 Dogbè’s model . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Force models . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Structure models . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Description of the modelling framework 45

3.1 The microscopic crowd model . . . . . . . . . . . . . . . . . . 45

3.2 The mesoscopic crowd model . . . . . . . . . . . . . . . . . . . 49

3.2.1 Weak form of a Boltzmann-type equation . . . . . . . . 49

3.2.2 Statistical moments . . . . . . . . . . . . . . . . . . . . 54

v



vi CONTENTS

3.2.3 Fokker-Planck equation . . . . . . . . . . . . . . . . . . 56

3.3 The macroscopic crowd model . . . . . . . . . . . . . . . . . . 61

3.4 Equivalence of crowd models . . . . . . . . . . . . . . . . . . . 65

3.4.1 Wasserstein metric . . . . . . . . . . . . . . . . . . . . 66

3.5 The structure model . . . . . . . . . . . . . . . . . . . . . . . 72

3.6 The force model . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.6.1 The microscopic force model . . . . . . . . . . . . . . . 73

3.6.2 The macroscopic force model . . . . . . . . . . . . . . 74

3.6.3 Equivalence of force models . . . . . . . . . . . . . . . 75

4 Numerical results 79

4.1 Macroscopic model results . . . . . . . . . . . . . . . . . . . . 79

4.1.1 Burger’s equation . . . . . . . . . . . . . . . . . . . . . 80

4.1.2 Crowd model . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.3 Force model . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1.4 Structure model . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Microscopic model results . . . . . . . . . . . . . . . . . . . . 93

4.2.1 Crowd model . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.2 Force model . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2.3 Structure model . . . . . . . . . . . . . . . . . . . . . . 99

4.3 Comparing results . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Conclusions and future works 113

5.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Suggestions for future research . . . . . . . . . . . . . . . . . . 117

A Finite Volume Method 119

A.0.1 Two-dimensional case . . . . . . . . . . . . . . . . . . . 121

A.0.2 One-dimensional case . . . . . . . . . . . . . . . . . . . 123

A.0.2.1 Example: . . . . . . . . . . . . . . . . . . . . 124

Bibliography 129



List of Figures

1.1 Footbridges affected by excessive vibration problems. . . . . . . . . . . 2

1.2 Comparison of main lateral and vertical natural frequency of different

types of footbridges, respectively in graph (a) and (b); the data are pro-

vided in [98,101]. . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Comparison among the three modelling approaches. . . . . . . . . . . 5

2.1 Pedestrian size and relative notations. . . . . . . . . . . . . . . . . . 11

2.2 Path for reaching the target destination rKi in a domain with obstacles. . 13

2.3 Repulsion forces between two interacting pedestrians. . . . . . . . . . 13

2.4 Sensory region of the i-th pedestrian; R is the length, θ is the angle

representing the breadth, j and k are two other pedestrians within the

sensory region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Repulsion forces due to domain boundaries acting on the i-th pedestrian. 15

2.6 Crowd dynamics on a two-dimensional domain. . . . . . . . . . . . . 16

2.7 Possible choices for expressing the velocity as dependent from the pedes-

trian density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 Velocity-density relations in literature [83–93]: linear laws are shown in

(a) while non-linear ones are shown in (b). . . . . . . . . . . . . . . . 23

2.9 Mass conservation due to incoming and outgoing flux of pedestrians

across domain boundaries. . . . . . . . . . . . . . . . . . . . . . . 24

2.10 Example of admissible flow. . . . . . . . . . . . . . . . . . . . . . . 25

2.11 Examples of localizations strategies on a one-dimensional domain; the

black lines represent the density while the red points/lines represent the

perceived density within the sensory region Rs of the i-th pedestrian. . . 28

2.12 Walking force time history generated by a single pedestrian walking at

1.39 m/s and 1.81 Hz pacing rate [115]. . . . . . . . . . . . . . . . . 37

2.13 Moving force model in graph (a); moving mass model in graph (b). . . . 38

vii



viii LIST OF FIGURES

2.14 Single degree of freedom pedestrian model in graph (a); inverted-pendulum

pedestrian model in graph (b). . . . . . . . . . . . . . . . . . . . . 39

2.15 Modulus and phase of the dynamic amplification factor for a single degree

of freedom system for different values of ξ. . . . . . . . . . . . . . . . 43

3.1 Schematic description of the modelling framework. . . . . . . . . . . . 46

3.2 Example of a suitable interaction kernel. . . . . . . . . . . . . . . . 48

3.3 Pedestrian in position xj(t) is within the sensory region Rs(xi) of pedes-

trian in position xi(t); R is the length of the sensory region. . . . . . . 50

3.4 In (a) the total mass M of the system is constant while the mass m of

each pedestrian becomes infinitesimal as N increases. In (b) the mass m

of each pedestrian is constant while M grows when N increases. . . . . 64

3.5 h(x) and s(x) are two normal probability distributions with σ = 0.2,

µh = 1 and µs = 3 in (a), and with σ = 0.2, µh = 1.5 and µs = 2.5 in (b). 67

3.6 Graphical representation of how the Wasserstein metric operate. . . . . 69

4.1 Discontinuity evolution with initial condition ρL = 0.6, ρR = 0.2 in (a)

and ρL = 0.2, ρR = 0.6 in (b). In both graphs the solution is plotted at

time t = 0.5 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Comparison between the exact and approximate solutions of Burger’s

equation. In both graphs the solution is plotted at time t = 0.5 s. . . . . 82

4.3 Time evolution of the pedestrian density. . . . . . . . . . . . . . . . 86

4.4 Time evolution of the pedestrian velocity. . . . . . . . . . . . . . . . 87

4.5 Time evolution of the pedestrian pacing frequency. . . . . . . . . . . . 88

4.6 Dynamic load exerted by pedestrians on the footbridge. . . . . . . . . 90

4.7 Vertical acceleration of the footbridge due to pedestrian motion. . . . . 92

4.8 Total mass of the system. . . . . . . . . . . . . . . . . . . . . . . . 93

4.9 N = 100 pedestrians walking along a footbridge with length L = 100 m

and width B = 2 m. Due to the assumption of one-dimensional domain,

pedestrians can walk only along a straight line. . . . . . . . . . . . . 94

4.10 In graph (a) the pedestrian positions are distributed according to a uni-

form distribution; in graph (b) they follow a Beta distribution. In both

cases the total number of pedestrians is N = 100. . . . . . . . . . . . 95

4.11 Time evolution of the pedestrian positions. In blue and red is represented

a generic couple of pedestrian i and j; the total number of pedestrians is

N = 125. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



LIST OF FIGURES ix

4.12 Velocities and pacing frequencies of a generic couple of pedestrians i and

j marked respectively in blue and red in Fig.(4.11); the total number of

agents on the footbridge is N = 125 and the desired velocity is vd = 1.41

m/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.13 Velocities and pacing frequencies of a generic couple of pedestrians; the

total number of agents on the footbridge is N = 70 and the desired

velocity is vd = 1.41 m/s. . . . . . . . . . . . . . . . . . . . . . . . 98

4.14 Dynamic load exerted by N = 125 pedestrians on the footbridge; the

force is obtained with the assumption of M = 1. . . . . . . . . . . . . 99

4.15 Vertical acceleration of the footbridge due to pedestrian motion under

the assumption of M = 1; the system is exerted by the force F (t) and

the total number of pedestrian is N = 125. . . . . . . . . . . . . . . 100

4.16 Vertical accelerations generated by N = 125 pedestrians, and relative

force and force spectrum; in (a) the desired velocity is set to vd = 1.05 m/s

while in (b) is set to vd = 1.50 m/s. N.a. is the acronym of normalized

amplitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.17 In blue are reported the maximum values in modulus of force and vertical

acceleration provided by the microscopic force and structural models dur-

ing a time simulation of 1000 s; In red are reported the maximum values

in modulus of force and vertical acceleration provided by the macroscopic

force and structural models during a time simulation of 1000 s. A loga-

rithmic scale on the y-axis is used in graph (b). . . . . . . . . . . . . 103

4.18 In histogram (a) it is reported ρmicro(t, x) in blue and ρmacro(x) in red;

the time evolution of the Wasserstein metric is shown in (b); the pedes-

trian positions on the footbridge are shown in (c). All graph are obtained

with N = 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.19 In histogram (a) it is reported ρmicro(t, x) in blue and ρmacro(x) in red;

the time evolution of the Wasserstein metric is shown in (b); the pedes-

trian positions on the footbridge are shown in (c). All graph are obtained

with N = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.20 Time evolution of the Wasserstein metric as N varies. . . . . . . . . . 108

4.21 In histogram (a) it is reported ρmicro(t, x) in blue and ρmacro(x) in red;

the time evolution of the Wasserstein metric is shown in (b); the pedes-

trian positions on the footbridge are shown in (c). All graph are obtained

with N = 550. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



x LIST OF FIGURES

4.22 Wasserstein metric computed at time t0(N) for increasing values of N . . 111

A.1 Spatial discretization of a two-dimensional domain. . . . . . . . . . . 121

A.2 Spatial discretization of a one-dimensional domain. . . . . . . . . . . . 123

A.3 Solutions of initial-value problem (A.12) plotted at time t = 4.5 s and

obtained with different numerical fluxes; the exact solution in red is given

by (A.14). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



List of Tables

4.1 Parameter values used in numerical simulations. . . . . . . . . . . . . 85

4.2 Dynamic properties of the structure model. . . . . . . . . . . . . . . 91

4.3 Defined comfort classes and related vertical acceleration values [79]. . . . 102

4.4 Values of mean velocity v(N) in m/s, crossing time T (N) in seconds,

reference time t0(N) in seconds and Wasserstein metric W1(N) as N varies.110

xi





Chapter 1

Introduction

In the last twenty years, excessive footbridge vibrations induced by walk-

ing pedestrians have become one of the leading research topic in structural

dynamics.

This relatively young research topic has grown very fast after that some

footbridges have been closed due to excessive vibrations. It is well known the

case of the Millennium Bridge in London, which was closed immediately after

the opening day; the bridge is shown in Fig.(1.1a) and a deep analysis and

discussion about the manifested problem is made by P. Dallard et al. in [98].

The same phenomenon has occurred on the Solferino Bridge in Paris; also

this footbridge, which is shown in Fig.(1.1b), was affected by excessive lateral

vibrations when a huge number of pedestrians walked on it; the reasons

which triggered this behaviour are amply explained in [99]. Many other

cases which did not lead to a complete closure of the footbridge but still

required structural interventions are known, such as the T-Bridge in Tokyo

in Fig.(1.1c), the Alexandra Bridge in Ottawa or the Queens Park Bridge in

Chester; analysis and information about them can be found in [100].

Experimental data reported in [114] confirm that the pacing vertical fre-

quency is usually in the range 1.7 − 2.1 Hz, depending on the pedestrian

velocity, while the pacing lateral frequency is half the vertical one. Conse-

quently, recent footbridge design guidelines, e.g. [79, 110], identify vertical

vibration modes in the range 1.7− 2.1 Hz and lateral vibration modes in the

range 0.5 − 1.1 Hz as the ones characterized by the maximum risk of reso-

nance. Values of the vertical and lateral natural frequency for different types

for footbridges are reported in Fig.(1.2). Therefore, as discussed in [101], a

1



2 1. Introduction

(a) Millennium Bridge, London (b) Solferino Bridge, Paris

(c) T-Bridge, Tokyo

Figure 1.1: Footbridges affected by excessive vibration problems.

footbridge can have the vertical natural frequency and/or the lateral natural

frequency within the respectively range above-mentioned, depending on the

type and length, and as a consequence it can be affected by excessive vertical

and/or lateral vibrations when pedestrians walk on it. In this thesis we will

treat only the phenomenon of excessive vertical vibrations.

In recent years, a considerable number of articles has been published

and remarkable advances have been made in the experimental characteriza-

tion and mathematical modelling of footbridge vertical vibrations induced

by pedestrian walking. Despite these advances, there is still a lack of reliable

methods and adequate design guidelines relevant to serviceability of light and

slender footbridges that may vibrate when occupied by pedestrians.

In order to evaluate the effect of multiple pedestrians walking on a lively
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structure, we have to consider the following three models:

• Crowd model: it is important to describe how pedestrians move on the

footbridge; indeed, each pedestrian has its own strategy, which may be

perturbed by interactions with other walkers or with the environment.

In order to evaluate the generated vibrations, we should be able to

predict the pedestrians distribution along the footbridge over time.

• Force model: we should be able to evaluate the force exerted on the

footbridge due to pedestrian walking; this dynamic load strongly de-

pends on the pedestrian velocities, which are given by the crowd model.

• Structure model: we have to introduce a model able to evaluate the

vertical acceleration of the footbridge, and consequently the vertical

vibrations, when it is excited by a dynamic load described by the force

model.

(a) (b)

Figure 1.2: Comparison of main lateral and vertical natural frequency of different types

of footbridges, respectively in graph (a) and (b); the data are provided in [98,101].

In the following, we will discuss more in details the above-mentioned

models.

The collective dynamics of crowd systems depend strongly on the be-

haviour of the individuals which constitute them; indeed pedestrians have

different strategies and different goals and, depending on the situations, they
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interact in different ways. For these reasons a crowd is classified as a com-

plex system, that is a system composed by several individuals which evolves

through self-organization. A first attempt to model pedestrian motion could

be by treating pedestrians as particles; but, unlike particles, human beings

react to internal influences or preferences. Indeed pedestrians are defined as

intelligent agents who react to what they perceive around them.

The modelling of crowd dynamics can be tackled at three different scales

of observation:

• Microscopic scale: this is the most precise scale, which allows one to

track the position and the velocity of each pedestrian, and to define

his/her strategy. Moreover, this approach accounts explicitly for the

inter-subject variability of pedestrians, so that particular features for

each agent can be considered. A typical example of model which uses

this approach is the social force model by Helbing and co-authors [4,

102,103].

• Macroscopic scale: models that use this approach aim to describe the

global dynamics of the system without direct reference to the behaviour

of individuals; consequently, we do not have information about position

and velocity of each single pedestrian, but instead the system is usually

described in term of pedestrian density. These models are based on

the analogy between a flow of pedestrians and a continuous flow of a

fluid; thus crowd movements are described by equations similar to those

found in fluid mechanics. Examples of macroscopic crowd models are

given in [36,38,41,43,45,48,84,104].

• Mesoscopic scale: this is an intermediate scale, also defined as kinetic

scale. A statistical representation is used, in which the state of the

whole system is described by a suitable probability distribution over the

microscopic state of the interacting elements. Indeed, by analogy with

the kinetic theory of rarefied gas, it is assumed that pedestrians change

their microscopic state after each interaction; only pairwise interactions

are considered. Thanks to this approach, we can study how a single

pedestrian interacts with others nearby, and consequently how their

statistical distribution evolves in time. Examples of mesoscopic crowd

models are given in [28,74,76–78,105].
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Figure 1.3: Comparison among the three modelling approaches.

As shown in Fig.(1.3), by passing from a microscopic to a mesoscopic

scale and finally to a macroscopic one, we lose precision in the description

of the crowd, although the modelling becomes less and less costly from the

numerical point of view; on the contrary, the observation area increases,

which means that we describe the crowd firstly by looking at how one single

pedestrian behaves, then by looking at how groups of walkers interact and

finally by looking at the whole crowd as a continuous fluid. Therefore, it

is usually advisable to use a macroscopic crowd model when we are dealing

with a huge number of pedestrians, while a microscopic crowd model is more

suitable for problems that deals with a restricted number of pedestrians.

Concerning the footbridge vibration problem, strong arguments in favour

of one modelling approach instead of another still cannot be found; indeed

in literature the analysis is carried out both with macroscopic crowd models

used in [51,52,54,57] and microscopic crowd models used in [2,55,56]. Up to

now, no mesoscopic crowd models have been applied for modelling footbridge

vibration problem, but instead they are used to realize the scaling passage

from microscopic to macroscopic models.

As previously said, also the choice of the force model is fundamental

in modelling footbridge vibration problems; indeed, according to how the
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dynamic load due to pedestrian walking is evaluated, results can strongly

differ.

Starting from the excessive lateral vibration problem shown in the Mil-

lennium Bridge in 2000, a lot of work has been made in order to understand

how pedestrian walking induces lateral oscillation in the structures; different

models and deep analysis of the problem can be found in [43, 54, 55, 106].

On the other hand, only little is known about the way in which pedestrians

interact with structures in the vertical direction. By the way, few attempts

to model this phenomenon have been done in the past and nowadays there

are several models which tackle it.

The simplest model is the moving force one, in which each pedestrian

is described as a concentrated load that travels at a certain velocity on the

structure. Even if this model does not take into account pedestrian-structure

interactions, it is by far the most used due to its simplicity. More realistic

models are the ones which try to include pedestrian-structure interactions,

because it is proved that pedestrians change the dynamic properties of the

structure on which they are walking. Examples of these models are the

moving mass one, developed by Biggs [112], or the spring-mass-damper one,

introduced by Caprani et al. [108,111] and further adopted in [56,109]. Other

models have been proposed in literature, and the description of some of them

can be found in [111].

Finally, a structure model is needed in order to evaluate the vertical

acceleration of the footbridge. Two different types of models are used in

literature; the bridge can be modelled using either a formulation in modal

coordinates or Finite Element (FE) methods [111]. Since experimental data

often confirm that there is only a single mode which dominates the footbridge

response, a single degree of freedom system is usually adopted to model the

structure.

This thesis is organized as follows: the useful notions for fully under-

standing our work are introduced in chapter 2; moreover, a literature review

is made, which gives an idea of the evolution over the years of each field that

composes this research topic. In chapter 3 the modelling framework used in

this work is presented in detail. The microscopic crowd model is introduced

and a scale passage is made in order to derive the evolution equation valid

at the macroscopic scale; moreover, also the force and structure models are
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discussed. Finally, an analytical comparison between the microscopic and

macroscopic frameworks is made. Numerical results are reported and dis-

cussed in chapter 4; the data provided by the crowd, force and structure

models at the microscopic and macroscopic levels are compared when the

number of pedestrians N varies and it is proved that the systems on the two

scales have the same dynamics. Moreover, by using the microscopic crowd

model an estimate of the number of pedestrians from which a macroscopic

approximation is valid is obtained. Finally, in chapter 5 the main results are

summarized and future research perspective are proposed.





Chapter 2

Literature review

The purpose of this chapter is to give an overview of the literature inherent

to problems treated in this thesis, and to provide the necessary theory for

understanding it. In particular, in sections 2.1, 2.2 and 2.3 examples are

given of crowd models based on microscopic, macroscopic and mesoscopic

scales. This helps to get a better idea of the main differences among the

three scales, and provides an overview of the current achievements reached

in this field. Moreover, in section 2.4 some force models are reported, which

allow us to understand how walking pedestrians on footbridges are modelled.

Finally, in section 2.5 we will examine the structure model adopted in this

work.

2.1 Microscopic crowd models

The dynamics of a crowd can be modelled at different levels. If the interest

is in a detailed comprehension of the characteristics of each individual, then

a description based on a microscopic scale must be chosen. Indeed this

allows one to track each pedestrian, and to keep a detailed focus over all the

simulated crowd.

In literature a certain number of articles regarding crowd dynamics mod-

els based on a microscopic description is available. Among these ones, a

great part are inherent to crowd force models. The social force model

was introduced by Helbing and Molnàr [4], and was further developed in

many ways, for instance by adding waiting pedestrians [6], signalized cross-

9



10 2. Literature review

walks [5] or information transmission mechanisms [7]. The magnetic force

model, where it is assumed that pedestrians behave as magnets, were in-

troduced by Okazaki [8–10], Okazaki and Matsushita [11] and Okazaki and

Yamamoto [12]. The centrifugal force model, which is more recent, differs

from the social force model mainly in the definition of the repulsive force, and

was introduced by Yu et al. [13]. Other microscopic crowd models are the

cellular automata models, in which the concept of repulsion force does not

exist but instead each pedestrian is represented by a cell of a spatial grid, and

the way to move is decided on the basis of the state of the surrounding cells.

These types of models were introduced by Kirchner and Schadschneider [14],

Blue and Adler [15–17] and Burstedde et al. [18].

In the next paragraphs we will discuss the main features of some of the

above-mentioned models. We will denote by ri(t) and vi(t) respectively the

position and velocity of the i-th pedestrian; in general ri : [0,∞) → Rd and

vi : [0,∞) → R2, where d is the dimension of the domain. Since pedestrian

motion normally takes place on two-dimensional domains, in the following

we will set d = 2.

2.1.1 First-order models

A first-order differential model is described by 2N scalar ordinary differential

equations

ṙi(t) = vi(t, r1, . . . , rN), i = 1, . . . , N (2.1)

accompanied by the initial conditions r0,i. In this framework it is possible

to predict only the time evolution of the pedestrian position ri(t), which

depends on the velocity; indeed there are no other equations that express

the time derivative of the velocity in function of external forces.

An example of first-order model is the Maury and Venel’s one, introduced

by the authors in [20]. In the following only the main concepts are reported.

In this model pedestrians are identified as rigid disks, all with common radius

value s and center ri(t). For the sake of simplicity, in the following the time

dependence will be omitted. It is reasonable to assume that a pedestrian

cannot walk over other pedestrians, therefore the set of feasible configurations

is given by

R =
{
r ∈ R2N : Di,j(r) ≥ 0, ∀i, j, i 6= j

}
, ∀t > 0
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Figure 2.1: Pedestrian size and relative notations.

where r = (r1, . . . , rN) ∈ R2N is the position vector and Di,j(r) = |ri−rj|−2s

is the distance between a couple of pedestrians i and j. If we assume that

pedestrians do not have all the same size, then Di,j(r) = |ri − rj| − si − sj.
In this model pedestrians are treated as points with volume, like represented

in Fig.(2.1).

This is a first-order model, therefore it is not possible to refer at the pedes-

trian acceleration; for this reason it is assumed that a pedestrian-independent

desired velocity field vd is given. Hence, once the specific position ri of the

i-th pedestrian is computed, we can evaluate his/her velocity vi, which is

given by the projection of vd(ri) on a space of admissible velocity. This pro-

jection is made for taking into account the fact that if the velocity vd(ri) is

assigned directly, it may happen that pedestrians collide.

The cone of admissible velocities C(r) on which vd(ri) is projected is

given by

C(r) =
{
z ∈ R2N : Di,j(r) = 0 ⇒ zi · ei,j(r) + zj · ej,i(r) ≥ 0, ∀i < j

}
where

ei,j(r) =
ri − rj
|ri − rj|

and is properly defined so that whenever two pedestrians i and j enter in

contact, their velocities vi and vj will make their mutual distance Di,j(r)

immediately increase, and so collisions are avoided. Hence, Eq.(2.1) becomes

ṙ = PC(r)vd(r) (2.2)

where PC(r) is the projection operator on set C(r). Eq.(2.2) describes the

dynamics of all N pedestrians.
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2.1.2 Second-order models

A second-order differential model is described by 4N scalar ordinary differen-

tial equations, where N is the number of pedestrians. There are 2N equations

regarding the evolution of the position r(t) ∈ R2 of each pedestrian and 2N

equations for the velocity v(t) ∈ R2. The model can be written as ṙi(t) = vi(t)

v̇i(t) = Fi(t, r1, . . . , rN ,v1, . . . ,vN)
(2.3)

where i = 1, . . . , N . The initial conditions r(0) = r0,i and v(0) = v0,i provide

an initial configuration of the crowd and starting from this point the system

will simulate a possible evolution. The total force Fi exerted on the i-th

pedestrian can be expressed in many ways; in the following we will analyse

some of them.

2.1.2.1 Social force model

The social force model introduced by Helbing and Molnàr in [4] is charac-

terized by a particular choice of total force. In the following we will give a

detailed description of each force term which composes Fi.

1. Desired velocity:

Each pedestrian has a specified target to reach. We will denote by rK,i the

target destination of the i-pedestrian, which can be for instance the exit

of a room. As represented in Fig.(2.2), the domain in which pedestrians

walk can have obstacles, therefore he/she is forced to set intermediate target

destinations r1,i, r2,i in order to arrive at the final destination rK,i. Note that

in general the target destinations rk,i with k = 1, . . . , K are time independent,

because it is reasonable to assume that each pedestrian knows his/her goals

before moving.

It is useful to define a unit vector

ei(t) =
rk,i − ri(t)∣∣rk,i − ri(t)

∣∣ , k = 1, 2, . . . , K (2.4)

which expresses the direction along which a pedestrian would move if inter-

actions did not take place. It is easy to see that (2.4) is a unit vector, indeed

|ei(t)| = 1,∀t.
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Figure 2.2: Path for reaching the target destination rKi in a domain with obstacles.

In order to allow a pedestrian to effectively go toward a target destination,

the following force is introduced

Fdes
i =

1

τi

(
vd,iei(t)− vi(t)

)
which tends to direct the i-th pedestrian toward the direction ei(t) with

velocity vd,i. With vd,i we denote the modulus of the vector vd,iei(t) and it

represents the desired velocity. If the i-the pedestrian has a velocity such

that vi(t) = vd,iei(t), then Fdes
i = 0. On the other hand if vi(t) 6= vd,iei(t),

then Fdes
i 6= 0 and a deceleration or acceleration process starts, which leads

to approach the velocity vd,i within a certain relaxation time τi.

Figure 2.3: Repulsion forces between two interacting pedestrians.
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2. Interactions among pedestrians:

A crowd is composed by a huge number of pedestrians, and it is legitimate

to think that there are interactions among them; in particular, between two

pedestrians in positions ri and rj, a repulsion force acts, as shown in Fig.(2.3).

This force can be mathematically formulated as

f inti,j = −∇ri,jVi,j, i 6= j

where Vi,j is the repulsive potential, which is a monotonically decreasing

function of ri,j, and −∇ri,j is the gradient computed with respect to ri,j, so

that

∇ri,jVi,j =
(
∇Vi,j · ri,j

) ri,j
|ri,j|

=
∂Vi,j
∂ri,j

ri,j
|ri,j|

.

Figure 2.4: Sensory region of the i-th pedestrian; R is the length, θ is the angle repre-

senting the breadth, j and k are two other pedestrians within the sensory region.

The quantity ri,j represents the reciprocal distance between the i-th and

j-th pedestrian. Obviously, this case is inherent to a couple of interacting

pedestrians, but the i-th pedestrian does not necessarily interact only with

the j-th. Indeed in principle he/she can interact with all the N pedestrians
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present in the domain; therefore the total interaction force is given by

Fint
i =

∑
i 6=j

f inti,j

= −
∑
i 6=j

∇ri,jVi,j.

Surely a pedestrian does not interact with other members that are far

from him/her, instead it is normal to assume that he/she feels increasingly

uncomfortable the closer he/she gets to another person. Thus, the magnitude

of the interaction force Fint
i depends only on the number of members which

are close to the i-th pedestrian, basically inside his/her sensory region. An

example of sensory region is shown in Fig.(2.4); the dimension of this region

depends on the applications, but in general is assumed to be long from 2 to 10

meters. In more complex cases, the dimension can depend on the pedestrian

density value.

Figure 2.5: Repulsion forces due to domain boundaries acting on the i-th pedestrian.

3. Interactions with domain boundaries:

Crowd dynamics are strongly influenced by the shape of the walking area, and

in particular by the boundaries and obstacles present within it. Pedestrians

have constraints, indeed they cannot go out of the considered domain, and

they cannot walk on obstacles. Therefore, as shown in Fig.(2.5), it is assumed

that on the i-th pedestrian in position ri close to obstacles/boundaries a force
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FB
i is exerted; this force is given by

FB
i =

L∑
l=1

fBl
i

= −
L∑
l=1

∇ri,Bl
Ui,Bl

where Ui,Bl
is again a repulsive and monotonically decreasing potential and

is a function of ri,Bl
, which is the distance between the pedestrian posi-

tion and the boundary Bl. Finally, L represents the total number of obsta-

cles/boundaries with which the i-th pedestrian interacts.

Fig.(2.6) shows the numerical result of a simulation on a two-dimensional

domain. Pedestrians are walking from left to right and they enter the domain

with a uniform distribution along the cross section; due to boundary repul-

sions, it is possible to see that near the exit they tend to walk far enough

from the lateral side.

Figure 2.6: Crowd dynamics on a two-dimensional domain.

4. Attractions among pedestrians:

Not always pedestrians feel uncomfortable when near to others, but instead

they can be attracted. This phenomenon is manifested in case of group of

friends, tourist guides or families. These attractive effects can be modelled

by a force

FA
i = −

∑
i 6=j

∇ri,jWi,j

where the index j represents the members by which the i-th pedestrian is

attracted, while Wi,j is an attractive monotonic increasing potential function

of the distance ri,j.



2.1 Microscopic crowd models 17

All these factors influence the decisions of each pedestrian at any moments

and for this reason they are included in a unique term, the total force Fi,

that now can be expressed as

Fi = Fdes
i + Fint

i + FB
i + FA

i (2.5)

and is the so-called social force.

In case of we consider non-interacting pedestrians on an unbounded do-

main, the model (2.3) becomes
ṙi(t) = vi(t)

v̇i(t) =
1

τi

[
vd,iei(t)− vi(t)

]
.

Let us suppose that the domain is without obstacles, then the i-th pedestrian

is able to go directly toward the final target destination rKi , hence

ei(t) =
rKi − ri(t)∣∣rKi − ri(t)

∣∣ (2.6)

with desired velocity

vd,i = α
∣∣rKi − ri(t)

∣∣, α > 0. (2.7)

Relation (2.7) states that the nearer the i-th pedestrian is to his/her target

destination, the slower he/she would like to walk. Consequently Eq.(2.6)

becomes 
ṙi(t) = vi(t)

v̇i(t) =
1

τi

[
α
(
rKi − ri

)
−vi

]
.

(2.8)

We would like to prove that

ri(t)→ rKi , t→∞

which means that the i-th pedestrian reaches the target destination. In order

to do this, we write (2.8) as

r̈i(t) +
1

τi
ṙi(t) =

α

τi

(
rKi − ri

)
and so

d2

dr2

[
rKi − ri

]
+

1

τi

d

dr

[
rKi − ri

]
+
α

τi

[
rKi − ri

]
= 0. (2.9)
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Let u(t) = rKi − ri(t), then Eq.(2.9) becomes

τiü(t) + u̇(t) + αu(t) = 0.

It is reasonable to assume that the reaction time τi is small enough, so

u̇(t) + αu(t) = 0

which has as a solution

u(t) = u(0)e−αt

therefore

u(t)→ 0, t→∞ =⇒ ri(t)→ rKi , t→∞

and this proves that the i-th pedestrian reaches his/her target destination.

In the following, more details are added. Indeed, it is physically reason-

able to assume that a pedestrian cannot walk over a certain velocity. This

means that the model need the introduction of a speed limitation, so that∣∣ṙi(t)∣∣≤ vmaxi , ∀t (2.10)

in order to have only pedestrians walking at velocities smaller in modulus

than vmaxi ; usually vmaxi = 2.5 m/s. In order to satisfy constraint (2.10), we

have to assume that

ṙi(t) = vi(t)g

(
vmaxi

|vi(t)|

)
where g is a function given by

g

(
vmaxi

|vi(t)
|
)

=


vmaxi

|vi(t)|
if

vmaxi

|vi(t)|
≤ 1

1. if
vmaxi

|vi(t)|
> 1

In this way if
vmaxi

|vi(t)|
< 1 =⇒ |vi(t)| > vmaxi

then

g

(
vmaxi

|vi(t)|

)
=

vmaxi

|vi(t)|
=⇒ |ṙi(t)| = vmaxi

so that the inequality (2.10) is satisfied.
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Till this point the model is fully deterministic, but in such context which

involves also decisional aspect of pedestrians, it is expected that a stochastic

behaviour takes place. Hence, we have to add at the dynamics of the model

a new term Θi, which is a fluctuation term that takes into account random

variations of the pedestrian behaviours.

In the end, the social force model (2.3) introduced by Helbing in [4]

becomes
ṙi(t) = vi(t)

v̇i(t) =
1

τi

(
vd,iei(t)− vi(t)

)
−
∑
i 6=j

∇ri,jVi,j −∇ri,BUi,B −
∑
i 6=j

∇ri,jWi,j + Θi

accompanied by suitable initial conditions r0,i and v0,i.

2.1.2.2 Other force models

The expression of the total force given in (2.5) is only one among the endless

possibilities. For instance, Okazaki [8–10], Okazaki and Matsushita [11] and

Okazaki and Yamamoto [12] introduced the idea to consider pedestrians as

magnets or electrically charged particles; as a consequence they move in a

certain domain by following the Coulomb’s law

Fi =
∑
i 6=j

cqiqj
ri(t)− rj(t)∣∣ri(t)− rj(t)

∣∣3 (2.11)

which is the unique force exerted on themselves. In Eq.(2.11) c is a repulsion

constant, qi is the charge of pedestrian i, while qj is the charge of the point

with which he/she interacts, located in rj(t). The idea is that all pedes-

trians are positive point sources so that they are repulsed from each other.

Moreover, the perimeter of the domain and the obstacles within it are pos-

itive point sources too, in order to avoid that pedestrians cross it. On the

other hand targets or group of friends are negative point sources, so that

pedestrians are attracted.

Another type of force model is the centrifugal force model, which differs

from the social force model mainly for the definition of the interacting force

Fint
i , or the model reported in [19], which differ from the social force model

for the definition of the boundary force FB
i .
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2.2 Macroscopic crowd models

In many contexts the need arises to simulate crowds composed by high num-

bers of pedestrians, and track each of them would be numerically impossible.

This is the reason why it is necessary to introduce a macroscopic scale. The

main assumption is the validity of the continuum hypothesis, so that the

number of agents is large enough to be described by locally averaged quan-

tities, which normally are the pedestrian density ρ(t, x) and the pedestrian

velocity v(t, x), both dependent variables of space and time. Therefore, a

macroscopic level modelling is concerned with group behaviour and deals

with a crowd as a whole; detailed interactions are overlooked.

Macroscopic crowd models were initially born as extensions of traffic

flow models, like the Lighthill-Whitham-Richards model described in [31,32],

further developed by Payne [33] and Whitham [34], or as extensions of

Boltzmann-like gas kinetic model, like the model presented by Helbing in [35].

Moreover, in [35] a fluid dynamic description for the collective movement of

pedestrians is given.

One of the purposes of macroscopic crowd models is to correctly reproduce

fundamental diagrams obtained by experimental data, which are diagrams

that show the dependence of the pedestrian velocity on the pedestrian den-

sity. Many numerical results concerning fundamental diagrams can be found

in papers by Coscia and Canavesio [38] and by Bellomo and Dogbé [39, 40],

while some experiments are carried out and explained in papers published by

Helbing et al. [41], Seyfried et al. [42], Venuti and Bruno [43] and by Daamen

and Hoogendoorn [44].

In these last years many other models have been published. It is remark-

able the pioneering work of Colombo et al. [36] in 2005, who introduced a

macroscopic model able to simulate also the dynamics of a panicking crowd.

Another model was introduced by Coscia and Canavesio [38] in 2008, which

is able to include pedestrian strategies. Maury et al. [45] introduced a macro-

scopic version of their microscopic model described in [20] and they compared

the results obtained at the different scales in [46].

Finally, even more recent are the nonlocal models, which take into account

the natural anisotropic behaviour of pedestrians. Examples can be found in

papers published by Cristiani et al. [47] and by Bruno et al [48], where
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there are also applications to real word problems like pedestrian traffic along

footbridges.

In the next paragraphs we will describe the main concepts and results of

the more relevant models mentioned above.

2.2.1 Fundamental diagram

The main quantities studied by each macroscopic crowd model are the den-

sity, the velocity and the flow of pedestrians, which are also the quanti-

ties used in assessing the performance of pedestrian facilities. The relations

among these variables constitute the fundamental diagrams relative to pedes-

trian traffic. Each real word problem has different shape of fundamental

diagrams, because obviously the flow of pedestrians in a corridor of a shop-

ping center is very different from the flow of pedestrians at the entrance of a

stadium.

Figure 2.7: Possible choices for expressing the velocity as dependent from the pedestrian

density.

The pedestrian flow can be defined as

F [ρ] = ρv[ρ] (2.12)
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where ρ = ρ(t, x) is the pedestrian density at time t in point x and v[ρ] is the

pedestrian velocity, which depends on the density. Square brackets denote

functional dependence. Relation (2.12) is mainly studied in one-dimensional

problems; since it is more realistic to assume that a vehicle can move only

along one direction, this relation is widely studied in traffic flow problems.

In case of we are dealing with pedestrians, it is usually assumed that they

can walk on a two-dimensional domain, and consequently the fundamental

diagram is given only by the relationship between the speed v and the density

ρ.

In the following some possible choices for the function v = v[ρ] used

in [50, 51] are reported . The subscript vi[ρ], i = 1, 2, 3, 4, 5 has the unique

function to make the laws recognizable in Fig.(2.7). The plotted relations

are
v1[ρ] = 1− ρ

v2[ρ] = 1− exp

(
−α1− ρ

ρ

)

v3[ρ] =


1 if ρ ≤ ρc
1− ρ
1− ρc

if ρ > ρc

v4[ρ] =


1 if ρ ≤ ρc

exp

(
−αρ− ρc

1− ρ

)
if ρ > ρc

v5[ρ] =


1 if ρ ≤ ρc

1 +
exp

(
−β(ρ− ρc)/(1− ρc)

)
1− exp

(
−β
) if ρ > ρc

(2.13)

where both the density and the speed are normalized, so that v, ρ ∈ [0, 1].

Regarding the parameters, α ∈ [0, 2.5] and is set to be α = 1.5, while β ∈
[0, 10] and is set to be β = 5; ρc, defined also as critical density, represents the

value over which the velocity starts to be affected by the pedestrian density,

and it usually assumes the value of ρc = 0.17.

Other examples of velocity-density laws are reported in Fig.(2.8); in these

cases both the quantities are not normalized. In particular, Fig.(2.8a) shows

many linear relationships between velocity and density present in literature

of the form v = vd − kρ, where vd represents the desired velocity, while k is

a non-negative parameter. On the other hand, Fig.(2.8b) shows non-linear
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(a) (b)

Figure 2.8: Velocity-density relations in literature [83–93]: linear laws are shown in (a)

while non-linear ones are shown in (b).

laws or multi-regime models.

It is worth to point out that all the laws above-mentioned are correct,

even if in general the non-linear multi-regime models are more accurate than

the linear laws, because they better fit the observation data.

2.2.2 First-order models

In a first-order model the dynamics of the crowd are described by the initial/-

boundary-value problem
∂

∂t
ρ(t, x) +∇ · F [ρ](t, x) = 0 in Ω× (0, T ]

ρ(t, x) = g(t, x) in ∂Ω× (0, T ]

ρ(0, x) = ρ0(x) in Ω

(2.14)

where ρ(t, x) is the pedestrian density, F [ρ](t, x) is the flux of pedestrian in

the point x at time t, ρ0(x) is the initial condition, g is the boundary condi-

tion, T > 0 is a certain final time and Ω ∈ Rd, d = 1, 2, 3 is the domain. This

equation is a conservation law, which states that variations of density ρ are

due to incoming or outgoing flux of pedestrians across the domain bound-

aries. Indeed, in a two-dimensional framework, Eq.(2.14) can be derived from

Fig.(2.9).

As discussed in section 2.2.1, the flux F [ρ] is given by the relation

F [ρ] = ρv[ρ].
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Figure 2.9: Mass conservation due to incoming and outgoing flux of pedestrians across

domain boundaries.

Therefore, all first-order models are governed by the conservation law (2.14),

but their performances can strongly change according to the way of express-

ing v[ρ]. In the following we will see some interpretations.

2.2.2.1 Colombo and Rosini’s model

The main purpose of this model is to include the possibility to simulate

some special features of the pedestrian behaviour in panic conditions. The

complete version is reported by the authors in [36] ; in the following we will

give only the main concepts, in order to understand the dynamics.

The model is based on the assumptions that the total mass of the system is

conserved and the velocity v depends only on ρ. The analysis is carried out in

a one-dimensional domain, but further extensions can be found in [63]. This

model mostly differ from others in the choice of a non-standard relationship

v[ρ]. Indeed, it is introduced a ρmax which is the maximum density in normal

conditions, but also a ρ∗max, which is the maximum density allowed in special

conditions, with ρmac < ρ∗max. Therefore, in normal circumstances, ρ ∈
[0, ρmax], but in exceptional situations such as panic, then ρ ∈ [ρmax, ρ

∗
max].

More precisely, the flow F [q] must satisfy the following properties:

1. F : [0, ρ∗max] 7→ [0,∞[, with F ∈ C0
(
[0, ρ∗max]

)
∩C2

(
[0, ρ∗max] {ρmax}

)
.



2.2 Macroscopic crowd models 25

2. F [ρ] = 0 ⇐⇒ ρ ∈ {0, ρmax, ρ∗max}

3. F ′ is bounded on [0, ρ∗max]. Moreover F ′ is null at a single point ρM in

[0, ρmax] and at a single point ρ∗M in [ρmax, ρ
∗
max].

4. F has at most one inflection point ρP in [0, ρmax] and at most another

one ρ∗P in [ρmax, ρ
∗
max].

An example of admissible flow is reported in Fig.(2.10), where the notations

used are also shown. It is worth mentioning that the assumption F [ρmax] = 0

can be relaxed with the hypothesis that F [ρmax] must be small enough; also

the presence of other inflection points can be managed. Since is physically

reasonable to avoid discontinuity in F [ρ], the boundedness of F ′ is required.

Possible solutions of Eq.(2.14) with such a choice of F [ρ] are discussed in [36].

Figure 2.10: Example of admissible flow.

2.2.2.2 Coscia and Canavesio’s Model

This model, which is amply discussed in [38], is conceived such that the pedes-

trian velocity v has dependence not only from the density ρ, but also from

the density gradient ∇ρ. Indeed when the pedestrian density approaches

high values, pedestrians feel the danger and try moving toward the target

in a way that depends not only on the local density but also on its spatial

gradient in the direction of the target. Therefore, the governing equation

used is always the one reported in (2.14) with Ω ∈ R2, but v = v[ρ,∇ρ]ν(x),
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where ν is a unit vector expressing the direction along which the density

gradient is evaluated.

Possible choices of velocity v given in [38] are

v[ρ,∇ρ] = (1− ρ)− ε∇ρ
v[ρ,∇ρ] = (1− ρ)− εk[ρ]∇ρ

where ε is a parameter, and k[ρ] must satisfy k[0] = 0

k[1] = 0.

This model has been used in two real world applications regarding the exit

from a closed domain and the passage over the Jamarat bridge; in both

cases it is shown that the presence of obstacles in the domain may lead to

catastrophic events.

2.2.2.3 Maury et al.’s model

The main purpose of this model is to handle the flow of pedestrians in emer-

gency evacuation situations. It was introduced by the author in [20] and

only the main concepts are reported in the following. The model is set in a

two-dimensional environment and is the macroscopic version of the Maury

and Venel’s model described in paragraph 2.1.1. The idea is that the veloc-

ity vd(x) is given, and represents the velocity that pedestrians in position x

would like to have. Due to the presence of constraints and other members

within the domain, this speed cannot be always realized and consequently

the actual velocity of each pedestrian is chosen to be the projection of vd(x)

onto C(ρ), which is a set of admissible velocities. Therefore, the relationship

which links the velocity to the density is given by

v[ρ] = PC(ρ)vd(x)

where P is the projection operator in the L2 sense and the set C(ρ) is the cone

of admissible velocities. All speeds that belong to this set do not increase ρ

in regions where the values are already high; in this model, the maximum

value of density allowed is ρmax = 1.
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The set C(ρ) is given by

C(ρ) =

{
z ∈

(
L2(Ω)

)2
,

∫
Ω

z · ∇φ ≤ 0 ∀q ∈ H1
ρ

}
where

H1
ρ =

{
φ ∈ H1(Ω), φ ≥ 0 a.e. in Ω, φ = 0 a.e. in {ρ < 1}

}
so that v[ρ] cannot have any components directed from a point where ρ < 1

to a point where ρ = 1. In [46] this model is tested in cases of crowd dynamics

along a convergent corridor.

2.2.2.4 Non-local models

It is physically reasonable assume that pedestrians make decisions in order

to the local conditions, specifically by considering the distribution of neigh-

bours. Non-local models have been introduced for taking into account this

behaviour, and examples can be found in papers published by Cristiani et

al. [47] and by Bruno et al [48].

The relationship v = v[ρ] still holds but in this framework the velocity

depends on values of the density ρ around x and not only in x. Obviously,

there are many ways in which this relationship can be written, and in the

following some will be presented.

One of these ways for taking into account non-local dynamics on a two-

dimensional domain consist in expressing the velocity v as function of ρp and

not ρ, where ρp = ρp(t,x) is the perceived density that a pedestrian located

in x feels within his/her sensory region. The perceived density comes from

an intelligent evaluation process which implies some weighting of the true

density ρ. The sensory region Rs will have the same shape of the one shown in

Fig.(2.4), with length R; ed(t) and ei(t) represent respectively the desired and

interaction direction. In the following we will discuss four different strategies

for defining the perceived density ρp(t,x) = ρ(t,xp):

(a) Pedestrians evaluate the perceived density at the intersection between

the far boundary of the sensory region and the desired direction, so

that

xp = x +Red(x). (2.15)
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(a) (b)

(c) (d)

Figure 2.11: Examples of localizations strategies on a one-dimensional domain; the black

lines represent the density while the red points/lines represent the perceived density within

the sensory region Rs of the i-th pedestrian.

This strategy is used for pedestrians which are very determined to reach

a target destination, and therefore they do not take care of surround-

ing regions, but they just look as far as possible toward the desired

direction.

(b) Pedestrians attention is drawn by the point in the sensory region where

the maximum value of ρ is attained, so

xp = argmax
y∈Rs

ρ(t,y).

This strategy is able to simulate pedestrian anxiety for high crowd

density; if adopted on a single agent, this will certainly try to reach

his/her target by avoiding all regions with high density.

(c) Pedestrians evaluate the perceived density as a weighted average of the
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true density in x and xp, so

ρp(t,x) =
(
1− g(Rp)

)
ρ(t,x) + g(Rp)ρ(t,xp)

where

Rp = |xp − x|, g(Rp) = − 8

10R
Rp + 1

while xp is still given by (2.15). In this strategy, pedestrians are still

mainly concerned with the highest crowd density, but they are able to

recognise if this regions are far or near to themselves.

(d) Pedestrians evaluate xp as the centre of mass of the whole crowd dis-

tributed in Rs, weighted by a function G which takes into accounts the

fact that an agent gives more importance at groups of people in front

of him/her instead of people at the lateral boundaries of the sensory

region. Therefore the perceived density results as

ρp(t,x) =

∫
Rs
ρ(t,y)G(α(y− x))dy∫
Rs
G(α(y− x))dy

.

This strategy is able to introduce in the model dynamics in which

there are curious pedestrians, that occur for instance during shopping

activity.

In Fig.(2.11) is shown a graphical version of the four strategies above

mentioned, adapted in a one-dimensional context. The huge differences in

the perceived density among the various strategies is evident, evaluated by

starting from an equal density distribution. More analytical and numerical

results can be found in [57].

2.2.3 Second-order models

In a second-order model the dynamics of the crowd is described by a system

of partial differential equation for ρ and v of the form

∂

∂t
ρ(t, x) +∇ · F [ρ](t, x) = 0 in Ω× (0, T ]

∂

∂t
v(t, x) + (v(t, x) · ∇)v(t, x) = a[ρ, v](t, x) in Ω× (0, T ]

ρ(t, x) = g(t, x) in ∂Ω× (0, T ]

ρ(0, x) = ρ0(x) in Ω

(2.16)
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where v = (vx, vy), x = (x1, x2) and

(v · ∇)v =

(
vx
∂vx
∂x

+ vy
∂vx
∂y

, vx
∂vy
∂x

+ vy
∂vy
∂y

)
if Ω ⊆ R2. The quantities in system (2.16) are the same one discussed for the

first-order models, but in addiction we have a second equation. On the right-

hand side of this equation there is a function denoted by a = a[ρ, v], which

represents the pedestrian acceleration (denoted by a in two-dimensional con-

text). While the first equation in (2.16) states the conservation of mass, the

second equation accounts for the conservation of momentum.

Models can be classified according to the way in which the acceleration

is modelled. An example is given in the model introduced by Bellomo and

Dogbè [39,40] in which are studied two different choices of acceleration func-

tions; as a consequence, there are two classes of models:

1. Models where the pedestrians move along straight lines toward the

target destination.

2. Models where pedestrians are still moving toward the target destina-

tion, but are also attracted by paths with small density gradients.

In the first class of models, pedestrians always try to minimize their travel

time in order to reach a given objective by walking along the direction νd,

while adjusting their velocity according to the local density. The acceleration

function consists of two terms: the first one models the will to keep walking

at the desired velocity in direction ν, while the second term represents the

action of the density gradient along νd. The resulting expression of the

acceleration function is

a[ρ,v] = α
(
ve[ρ]νd − v

)
−k

2[ρ]

ρ
∇νd

ρ (2.17)

where α is a parameter, ve[ρ] = 1 − ρ but other expressions are admissible

and k2[ρ] is a scalar function; five possible different choices of relationship

k2[ρ] are reported in [40].

In the second class of models, pedestrians always try to reach as fast as

possible their objectives, but meanwhile they also try to avoid regions with

high density values. Pedestrians do not have a global vision of the situation,
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therefore their perception of the density is only within their sensory regions.

In this case the acceleration function is given by

a[ρ,v] = α
(
ve[ρ]ν − v

)
−k

2[ρ]

ρ
∇νρ

where ν is the direction toward which pedestrians are walking.

In [40] are discussed further extensions of these models, including presence

of obstacles and panic conditions.

2.3 Mesoscopic crowd models

In systems composed of huge number of living agents it is possible to identify

universal interaction rules which allow the construction of a mathematical

model based on notions that belong to the kinetic theory of rarefied gases.

This is the main idea on which mesoscopic models are founded. Conse-

quently, pedestrians are seen as gas particles that change their states due to

interactions. Models may differ in the choice of variables which characterize

the state (also called microstate) of each pedestrian. For deriving a model

with such point of view, it is needed to keep a parallelism with the kinetic

theory of rarefied gases, and as a consequence a statistical representation of

the crowd is assumed.

The way of modelling the crowd through a mesoscopic scale is still a

young research field, but it is growing very fast. Even if he did not applied

this theory to pedestrian traffic, the father of the discipline is Ludwig Boltz-

mann, who introduced for the first time a kinetic theory of rarefied gases

in [75]. The first attempt to describe crowd dynamics from a kinetic point of

view is due to Henderson [76], who carried out the entire analysis by doing

analogies between pedestrians and gas particles. Further developments were

introduced by Dogbè in [28]; the particularity of his model is that the mi-

crostate assigned at each pedestrian is described by the position, the velocity

and a variable which express the strategy/target, also called activity variable.

Other variations are given in [77, 78]. Only recently a few real applications

of these models are rising; for instance in [74] a mesoscopic model is used for

simulating pedestrian mobility in the context of public events.

In the next paragraphs we will describe the main concepts common to all

models, and we will discuss more in detail the most popular ones.
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2.3.1 Common features

The microstate of each pedestrian is usually defined by the pair position-

velocity (x,v) ∈ R2×R2 understood as independent variables. Consequently,

the distribution function f is written as f = f(t,x,v) and is such that the

infinitesimal average of pedestrians located in the space volume dx centered

in x with velocity belonging in the volume dv centered in v, at time t, is

given by f(t,x,v)dxdv. Hence, if we define Ωx ⊆ R2 and Ωv ⊆ R2 which are

respectively the space and velocity domains, the quantity

N(t) =

∫
Ωx

∫
Ωv

f(t,x,v)dxdv

provides the total number of pedestrians inside a domain Ω ⊆ R2 at a certain

time t.

The main purpose of each kinetic model is to describe the time evolution

of the distribution function f , in order to have information about how the

crowd is distributed within the region of interest. The kinetic equation which

describe this evolution is

∂f

∂t
+ v · ∇xf +∇v ·

(
S[f ]f

)
= J [f ] (2.18)

where ∇x denote the gradient with respect to x and ∇v· denote the diver-

gence with respect to v. Moreover, the term

Df

Dt
=
∂f

∂t
+ v · ∇xf

represents the convective derivative, which states that the distribution func-

tion f is transported in the space of microscopic states by the pedestrian

velocity v . Regarding the third term at the left-hand side and the first at

the right-hand side of Eq.(2.18), they model the acceleration acting on pedes-

trians due to either external actions or mutual microscopic interactions.

Let’s imagine to have a generic pedestrian defined as test pedestrian with

microstate (x,v) and sensory region Rs(x). It is legitimate to assume that

the test pedestrian interacts with other surrounding agents within his/her

sensory region. The operator S describes a mean field acceleration exerted

on a test pedestrian and is expressed as

S[f ](t,x,v) =

∫ ∫
Rs(x)×R2

θ(x,y,v,w)f(t,y,w)dydw (2.19)
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where the function θ defines the type of interaction between the test and the

field pedestrian, with microstate (y,w).

Moreover, pedestrians can gain or loose the test state (x,v) because of

interactions. The operator J takes into accounts this process, and evaluates

the number of pedestrians who change state. In a general form J is written

as

J [f ](t,x,v) = G[f, f ](t,x,v)− f(t,x,v)L[f ](t,x,v) (2.20)

where G is the bilinear gain operator which counts the number of pedestrians

that acquire state (x,v) while L is the linear loss operator which counts the

number of pedestrians that loose state (x,v).

One of the advantages of these models relies on the fact that when the dis-

tribution function f is known, it is also possible to derive macroscopic quan-

tities. Indeed, by computing the statistical moments of f with respect to the

variable v, we obtain

ρ(t,x) =

∫
Ωv

f(t,x,v)dv

F(t,x) =

∫
Ωv

vf(t,x,v)dv

which represent respectively the pedestrian density and the pedestrian flow.

Moreover, if we define v(t,x) as mean velocity given by

v(t,x) =
F(t,x)

ρ(t,x)

it is also possible to derive the variance of velocity v, which is

σ(t,x) =
1

ρ(t,x)

∫
Ωv

(
v− v(t,x)

)2
f(t,x,v)dv.

The various models in literature differ mainly in the choice of three fac-

tors:

• the definition of the microstate

• the form of the gain and loss operator G and L

• the form of the interaction function θ

In the next paragraph we will provide an example.
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2.3.2 Dogbè’s model

In this paragraph we will derive the mean field acceleration operator S and

the interaction operator J introduced by Dogbè in [28].

Firstly, it is worth to mention that in this model the collective behavior

of the system is identified by the probability distribution function which is

expressed as

f : R+ × Ωx × Ωv × Ωu → R+ : f = f(t,x,v, u)

with Ωx ⊆ R2, Ωv ⊆ R2 and Ωu ⊆ R. This means that the microstate of each

pedestrian is defined by his/her position x, velocity v and strategy u, also

called activity variable. The analysis is carried out in two different contexts,

in the following analysed.

Long-range interactions

We are assuming that individuals develop their strategies not only by taking

into account nearby pedestrians, but also those far away; moreover, only pair

interactions are considered. The governing equation is

∂f

∂t
+ v · ∇xf +∇v

(
(S[ρ] + S[f ])f

)
+∇u

(
S[f ]f

)
= 0 (2.21)

where S models the macroscopic acceleration while S models the microscopic

acceleration.

The macroscopic accelerations among pedestrians are taken into account

by introducing an intensity φ which points along the direction ν, that is

the direction of the velocity v. In this way we are able to describe the

average acceleration with which the crowd changes speed. Moreover, it is

assumed that the behaviour among pedestrians is influenced both by density

and speed, so

S[ρ,v, v] = φ[ρ,∇xρ,v]ν

where v(t,x) = v(t,x)ν(x). For instance, if we assume that the behaviour

of pedestrians is influenced only by the density, a possible expression of the

operator S[ρ] is

S[ρ] = α
(
ve[ρ]ν − v

)
−k

2[ρ]

ρ
∇νρ (2.22)
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which assumes the same form and meaning of (2.17). Possible choices for

expressing k2[ρ] can be found in [61].

The microscopic accelerations are taken into account by the operator S,

which is expressed as in (2.19) (with an abuse of notation). The proposed

pairwise interaction term θ, which defines operator S[f ], is

θ(x,y,v,w) = −β1

(
dc − |y− x|
|y− x|

)
e−β2(dc−|y−x|)2 y− x

|y− x|
(2.23)

with β1, β2 non-negative coefficients. So, the pairwise mean field microscopic

interaction is attractive if |y − x| > dc, repulsive if |y − x| < dc, where dc
is a critical threshold distance between the couple of interacting pedestrians.

The exponential function is introduced in (2.23) for considering the fact that

the interaction intensity decays with the distance.

These considerations completely define Eq.(2.21), which can be used for

studying the evolution of the distribution function f .

Localized interactions

We are assuming that individuals take into account only interactions among

others that occur at finite distances. So, the basic difference between local-

ized interactions and long-range interactions is only in the evaluation of the

distance limit at which interactions do not produce any effect; it is like to

introduce a sensory region for each member, that we will denote as Rs.

In this case, the governing equation is

∂f

∂t
+ v · ∇xf +∇v

(
S[ρ]f

)
= J [f ] (2.24)

which is able to predict the time evolution of f while neglecting long-range

interactions. The operator S[ρ] is given by (2.22); the operator J [f ] models

the interactions among pedestrians and in the following we will define it.

In this framework, interactions between a candidate pedestrian in position

x and field pedestrians take place only within the sensory region Rs(x).

Therefore we need to introduce a function which is able to weight the intensity

of this interactions by looking at the distance between the interacting agents.

For this reason we define a weight function ω : R2 → R+ such that∫
Ωx

ω(x,y)dy = 1.



36 2. Literature review

Moreover, it is also introduced a function η = η(x,y,v,w) which defines

the rate of encounters per unit time in the unit volume for individuals with

microscopic state (x,v) and (y,w).

Finally, it is defined an interaction-transition function A which denotes

the probability density that a candidate pedestrian with state (x,v∗) will fall

into state (x,v) due to interaction with a pedestrian with velocity w.

As a consequence, the gain and loss operator are defined by

G[f, f ](t,x,v) =

∫ ∫ ∫
Rs(x)×R2×R2

η(x,y,v∗,w)A(v∗ → v|v∗,w)ω(x,y)

× f(t,x,v∗)f(t,y,w)dydv∗dw

L[f ](t,x,v) =

∫ ∫
Rs(x)×R2

η(x,y,v,w)ω(x,y)f(t,y,w)dydw

(2.25)

and by substituting (2.25) into (2.20), we get the expression of the operator

J [f ]. Hence, each term of Eq.(2.24) is defined, and the time evolution of f

can be predicted.

2.4 Force models

The choice of the force model is fundamental in modelling footbridge vibra-

tion problems indeed, according to how the dynamic load due to pedestrian

walking is evaluated, results can strongly differ.

Dynamic forces induced by humans walking change in time and space,

being random in nature and varying considerably not only between different

pedestrians but also for a single individual who cannot repeat two identical

steps. An example of walking force generated by a pedestrian walking at 1.39

m/s is reported in Fig.(2.12). The total force is quasi-periodic, indeed little

variations occur over time because a single individual is not able to repeat

two identical steps and consequently also the pacing period Ti can slightly

change, so that Ti 6= Ti+1; the red line allows a better understanding of times

in which a pedestrian generates forces higher than its body weight from times

in which the opposite occurs. As previously stated, this force is generated

by only a single pedestrian; surely other individuals with different mass and

height would generate different values of force. A reliable and realistic force

model should be able to take into account these facts.



2.4 Force models 37

Figure 2.12: Walking force time history generated by a single pedestrian walking at 1.39

m/s and 1.81 Hz pacing rate [115].

Force models are mainly divided into two categories: time-domain and

frequency-domain force models. Moreover, a time-domain model can be de-

terministic or probabilistic: the deterministic models make the assumption

that all pedestrians apply the same dynamic load while walking, therefore

random variation are not taken into account; on the other hand, the proba-

bilistic models consider all people as individuals with distinctive parameters,

therefore each pedestrian apply different load on the structure while walking.

In this thesis we will use a deterministic time-domain force model, con-

sequently in the following we will study more in details the different types of

this class of models.

The simplest model is the moving force one, in which each pedestrian

is described as a concentrated load that travels at a certain velocity on the

structure, as shown in graph (a) of Fig.(2.13). Moreover, this model is a

deterministic one, therefore each individual generates identical and perfectly

repeatable footfalls with period T. The vertical force generated by each pedes-

trian can be represented as a sum of Fourier harmonic components

Fp(t) = G+
n∑
i=1

Gαi sin
(
2πfpt− θi

)
where G = mpg is the pedestrian static weight, mp is the pedestrian mass, g

is the acceleration due to gravity, i is the order number of the harmonic, n

is the total number of contributing harmonic, αi is the Fourier coefficient of

the i-th harmonic also known as dynamic load factor, fp is the pacing rate

and θi is the phase shift of the i-the harmonic.
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The dynamic load factor, which is the ratio of the force amplitude to the

weight of a person, has been studied over the years and nowadays is con-

firmed that it strongly depends on the pacing frequency; several methods for

evaluating it are incorporated in contemporary design guidelines on vibra-

tion performance of civil engineering structures when subjected to pedestrian

movement [116]. Even if the moving force model does not take into account

pedestrian-structure interactions and is deterministic, it is by far the most

used due to its simplicity.

(a) (b)

Figure 2.13: Moving force model in graph (a); moving mass model in graph (b).

A more realistic model is the moving mass one, developed by Biggs

[112] and successfully adopted for studying footbridge vibration problems

by O’Sullivan et al. [113]. In this case each pedestrian is seen as a moving

mass which lays on the structure and moves along it, as shown in graph (b)

of Fig.(2.13); thus, inertial forces are introduced and pedestrian-structure

interactions are taken into account. However, the moving mass model as-

sumes equal deflection of the centre of mass of the pedestrian and the bridge

surface, therefore it would be even more realistic to model each pedestrian as

a single degree of freedom system which moves along the footbridge span, as

shown in graph (a) of Fig.(2.14). This model was introduced by Caprani et

al. [108, 111] and it was further adopted in [56, 109]. Nowadays, this way to

model pedestrian-structure interactions is finding popularity; the challenge

consists in identify and calibrate the model parameters, such as the stiffness

or the damping of the SDOF system which models the human body. Further,

pedestrians can be described also by a simple inverted pendulum which os-

cillates in the vertical plane while moving along the footbridge, as shown in
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graph (b) of Fig.(2.14). This idea was introduced by Bocian et al. [107]; they

have shown that on the basis of the value of the ratio between the bridge

vibration frequency and the pedestrian pacing frequency, a pedestrian acts

as a positive or negative damper to the vertical dynamic response. Indeed, it

is known that a crowd which crosses a footbridge adds mass to the structure

and changes its damping coefficient.

(a) (b)

Figure 2.14: Single degree of freedom pedestrian model in graph (a); inverted-pendulum

pedestrian model in graph (b).

2.5 Structure models

A structure model is needed in order to evaluate the vertical acceleration

of the footbridge. As previously stated, there are basically two types of

models used in literature, in which the structure is described either using

a formulation in modal coordinates, that is, as a single degree of freedom

system, or by using the Finite Element (FE) method [111].

In the following we will use the first type of model, so the footbridge is

described by a single degree of freedom system excited with harmonic forces.

Hence, it is useful to recall some basic concepts regarding the dynamics of

these systems. More information inherent to possible extensions and further

developments of the topic can be found in [68,71,72,95,96].

A structure can be modelled as a three-dimensional damped dynamical

system. The equation of motion can be derived by a direct equilibration of
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all the forces acting on the structure, so

FI(t,x) + FD(t,x) + FE(t,x) = F(t,x) (2.26)

where x = {x, y, z} and t ≥ 0 are the space and time variables. In rela-

tion (2.26) the quantity FI(t,x) represents the inertial force, FD(t,x) is the

damping force, FE(t,x) is the elastic force and F(t,x) is the external force

caused by pedestrian motion.

The inertial force is given by the product of the mass and the acceleration,

therefore

FI(t,x) = m(x)d̈(t,x) (2.27)

where d(t,x) is the structural displacement while m(x) is the footbridge’s

mass. If we work under the assumption of viscous damping, the damping

force can be expressed as proportional to the velocity, hence

FD(t,x) = C
[
ḋ(t,x)

]
where C is the damping operator. Moreover, the elastic force is usually

expressed as proportional to the displacement, therefore

FE(t,x) = L
[
d(t,x)

]
where L is the stiffness operator.

It is often assumed that the equation of motion is linear, consequently

the damping and stiffness operators are assumed linear too, so

C
[
ḋ(t,x)

]
= c(x)ḋ(t,x)

L
[
d(t,x)

]
= k(x)d(t,x)

(2.28)

where c(x) and k(x) are respectively the damping and the stiffness of the

structure. On the basis of this assumption, the equation of motion can be

solved while approximating the solution by the following truncating expres-

sion

d(t,x) ≈
n∑
j=1

φj(x)yj(t) (2.29)

where φj(x) is the eigenvector of the j-th mode of vibration while yj(t) is

the corresponding principal coordinate; n represents a suitable number of

structural modes.
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A footbridge is often characterized by a reduced width to length ratio,

therefore the equation of motion (2.26) is usually expressed in one space

dimension; consequently, the footbridge is modelled as a line-like structure,

for instance as a simply supported beam, and the space variable x ∈ Ω ⊂ R.

Under this assumption, if we substitute relations (2.27), (2.28) and (2.29)

into (2.26) we obtain

m(x)
n∑
j=1

φj(x)ÿj(t) + c(x)
n∑
j=1

φj(x)ẏj(t) + k(x)
n∑
j=1

φj(x)yj(t) = F (t, x).

(2.30)

Moreover, it is usually assumed that only one mode mainly contributes to

the structural response in footbridge vibration problems; thus, the response

can be estimated with sufficient accuracy using a single degree of freedom

modal equation. Consequently, n = 1 and Eq.(2.30) becomes

m(x)φ(x)ÿ(t) + c(x)φ(x)ẏ(t) + k(x)φ(x)y(t) = F (t, x). (2.31)

where φ(x) = φ1(x) is our mode of interest.

If we multiply both side of Eq.(2.31) by φ(x) and we integrate over the

space variable, we obtain

Mÿ(t) + Cẏ(t) +Ky(t) = F (t) (2.32)

where

M =

∫ L

0

m(x)φ2(x)dx

C =

∫ L

0

c(x)φ2(x)dx

K =

∫ L

0

k(x)φ2(x)dx

F (t) =

∫ L

0

F (x, t)φ(x)dx

are respectively the modal mass, damping, stiffness and force while L is the

length of the footbridge. Eq.(2.32) must be accompanied by suitable initial

conditions, such as y(0) = y0

ẏ(0) = ẏ0
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with y0, ẏ0 ∈ R.

Eq.(2.32) provides the time evolution of the modal displacement y(t) and

we would like to understand how y(t) evolves once that the transitional phase

ends. The following analysis is carried out under the assumption that the

modal force F (t) is harmonic, hence

F (t) = F0e
iωt

= F0

(
cosωt+ i sinωt

)
where i is the imaginary unit and F0 ∈ C is the force amplitude. Conse-

quently the solution will assume the form y(t) = Y0e
iωt, with Y0 ∈ C. The

amplitude of the solution Y0 is an unknown quantity, and the purpose is to

derive it. Once that Y0 is known, then:

• if F (t) = F0 cosωt, the solution will be y(t) = Re
[
Y0e

iωt]

• if F (t) = F0 sinωt, the solution will be y(t) = Im
[
Y0e

iωt]

Since we are assuming a solution type y(t) = Y0e
iωt, then

ẏ(t) = iωY0e
iωt

ÿ(t) = −ω2Y0e
iωt

(2.33)

and by substituting relations (2.33) in Eq.(2.32) and while dividing both side

by 1/M , we obtain (
K

M
− ω2 + iω

C

M

)
Y0 = F0. (2.34)

The natural frequency ωn of our mode of interest and the modal damping C

can be expressed as

ωn =

√
K

M
, C = 2ξMω

where ξ is the damping coefficient of our mode of interest. Consequently,

Eq.(2.34) becomes (
ω2
n − ω2 + i2ξωωn

)
Y0 =

F0

M(
1− r2 + i2ξr

)
Y0 =

F0

K
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(a) (b)

Figure 2.15: Modulus and phase of the dynamic amplification factor for a single degree

of freedom system for different values of ξ.

where r = ω/ωn is the frequency ratio and yst = F0/K is the modal static

displacement. We can define Q(r) = Y0/yst, so that

Q(r) =
1

1− r2 + i2ξr
(2.35)

which is a complex quantity. Q(r) is called dynamic amplification factor,

and it is the factor by which displacement responses are amplified. Since

Q(r) ∈ C we can write Q(r) = |Q(r)|eiϕ. The modulus |Q(r)| and the phase

ϕ can be obtained from Eq.(2.35), and are given by

|Q(r)| = 1√
(1− r2)2 + (2ξr)2

tanϕ = − 2ξr

1− r2
.

In Fig.(2.15) the modulus of Q(r) and its phase ϕ are plotted. It is

possible to notice that when r = 1, so when we excite the system with a

frequency ω equal to its natural frequency ωn, the phenomenon of resonance

for out mode of interest takes place. Indeed if ξ = 0, in r = 1 the modulus of

Q has a vertical asymptote, which means that Y0/yst →∞, or in other words

that the system collapses. As ξ increases, the maximum value assumed by

|Q(r)| decreases and moves toward left, as visible in graph (a).

It would be interesting to evaluate which is the frequency that would gen-

erate a resonance phenomenon if used for exciting the system. For deriving
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it, it is enough to evaluate the value of r in correspondence to the point in

which |Q(r)| has a maximum, which is

d

dr

(
(1− r2)2 + (2ξr)2

)
= 0 =⇒ r =

√
1− 2ξ2

so

ωres = ωn
√

1− 2ξ2

that is the so-called resonance frequency.

Once that the dynamic amplification factor Q(r) is known, we can easily

derive Y0, and so Eq.(2.32) is solved. In case F (t) has a simple expression the

solution can be obtained analytically, otherwise the equation must be solved

by using a numerical method, as shown in chapter 4.



Chapter 3

Description of the modelling

framework

In this chapter a detailed description of the modelling framework will be

given. The flow chart in Fig.(3.1) outlines the way in which topics are pre-

sented. It involves two different physical systems, the pedestrians and the

structure one, linked through a force model. The description will be made

from two distinct points of view, the microscopic and the macroscopic one;

it will be shown also the scale passage between the two representations. The

structure considered is a footbridge. All models and simulations will be pre-

sented in a one-dimensional domain.

In section 3.1 the microscopic crowd model will be introduced; then in

section 3.2, by using a statistical representation of the crowd, the mesoscopic

crowd model is derived. This allow to pass at a macroscopic description,

described in section 3.3. In section 3.4 it will be shown that the macroscopic

model is actually a generalization of the microscopic one, and so we will de-

note them as equivalent. In section 3.5 the structure model will be analysed;

finally, in section 3.6 the microscopic and macroscopic force models will be

described in details.

3.1 The microscopic crowd model

A microscopic crowd model is interested in the behaviour, actions and deci-

sions of each pedestrian as well as interactions among them. Consequently it

45
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Figure 3.1: Schematic description of the modelling framework.

is based on the assumption that every single agent can be tracked individu-

ally. Among all microscopic crowd models shown in chapter 2, the one used

in the following is a first-order model expressed as

dxi
dt

= vd,i −
1

N

N∑
j=1
j 6=i

K(xi, xj) (3.1)

where N is the total number of pedestrians on the footbridge, xi is the

position of the i-th pedestrian, vd,i is the desired velocity of the i-th pedestrian

and K represents the interaction kernel. Since we assume that the desired

velocity is common for each pedestrian, in the following the index i will be

omitted from vd,i.

Model (3.1) is able to capture the main features of pedestrians walking

on footbridges. Indeed, each pedestrian enters the bridge at a preferred

speed, which is vd; this velocity would be unchanged in the absence of other

pedestrians or obstacles. Since interactions usually take place, the desired

velocity is modified and the interaction kernel K plays the role to do it.

The desired velocity is supposed to be a positive constant, hence vd > 0;

consequently, the dynamics of the system depend on the choice of K. In
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order to guarantee that model (3.1) is well posed, the following assumptions

on the interaction kernel are made:

1. Compactness of the support and frontal orientation of the sensory re-

gion. This means that the i-th pedestrian in position xi interacts only

with others in front of him/her, within a limited region. This limited

space is the so-called sensory region, defined as

Rs(xi) = [xi, xi +R]

with R > 0.

2. Boundedness and regularity in (xi, xi + R). The interaction intensity

is proportional to the mutual distance between interacting pedestrians,

and varies smoothly with it; a finite maximum value must be provided.

Thus

K ∈ C2(xi, xi +R), K,K ′′ ∈ L∞(xi, xi +R), for i = 1, . . . , N.

(3.2)

Assumptions (3.2) guarantee that repulsion forces have physical value,

so that pedestrians tend to gradually move far from others.

3. Monotonicity in (xi, xi +R), so

K(ξ) > 0, K ′(ξ) < 0, for ξ ∈ (xi, xi +R), for i = 1, . . . , N

and

K(xi) = K(xi +R) = 0, K(x+
i ) = lim

ξ→0+
K(ξ) > 0, for i = 1, . . . , N.

Thus pedestrian interactions decay within the sensory region as the

mutual distance increases and they do not self-interact.

A possible choice of the interaction kernel K which satisfies all properties

above mentioned is

K(xi, xj) = η(R− |xi − xj|)1[xi,xi+R](xj − xi) (3.3)

where R is the length of the sensory region and η is the repulsion coefficient.

Hence, the microscopic crowd model used in the following is

dxi
dt

= vd,i −
1

N

N∑
j=1
j 6=i

η(R− |xi − xj|)1[xi,xi+R](xj − xi). (3.4)
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As shown in Fig.(3.2), interactions take place only within the sensory region.

Moreover, the argument of the indicator function in Eq.(3.3) specifies that

the i-th pedestrian interacts only with the j-th pedestrian in position xj > xi,

so that the first property is satisfied. Furthermore, the factor 1/N is added

in Eq.(3.4) because we are considering a mean interaction. Since the domain

is one-dimensional, it is not necessary to introduce a wall-repulsive term.

Figure 3.2: Example of a suitable interaction kernel.

The repulsion coefficient η is assumed to take the same value for all pedes-

trians. It would be preferable to choose η in order to satisfy the constraint

|vi| ≤ vmax, where vmax represents the maximum velocity at which pedestri-

ans can walk. By using inequality |x− y| ≤ |x|+ |y|, we have

|vi| =
∣∣vd − 1

N

N∑
j=1
j 6=i

η(R− |xi − xj|)1[xi,xi+R](xj − xi)
∣∣

≤ |vd|+
η

N

N∑
j=1
j 6=i

∣∣R− |xi − xj|∣∣1[xi,xi+R](xj − xi)

≤ |vd|+
η

N

N∑
j=1
j 6=i

R

= |vd|+ ηR

so

η ≤ vmax − |vd|
R

= η∗ (3.5)
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Hence, if η ∈ (0, η∗) then |vi| ≤ vmax. We will show in chapter 4 that

inequality (3.5) is sufficient but not necessary. Indeed, if it is set a finite

value of η such that η > η∗, the velocity still remains limited, but the system

will reach a steady state in faster time.

In the next section the passage at the mesoscopic scale will be shown,

starting from the model presented above.

3.2 The mesoscopic crowd model

A mesoscopic crowd model does not track the movement of each pedestrian,

but instead studies how an agent interacts with others nearby. A statistical

representation of the crowd is used, therefore the time evolution of the whole

system is provided by a suitable probability distribution function. Moreover,

since we use a statistical point of view, we are automatically assuming that

the number of pedestrians N is huge enough, theoretically N →∞.

Like in section 2.3, it is assumed that after each interaction pedestrians

change their state. In this model the microscopic state of each pedestrian is

given only by the position x ∈ R, which is seen as an independent variable.

Thus, the distribution function f is written as f = f(t, x). Since we are in

a one-dimensional domain, the quantity f(t, x)dx at time t represents the

infinitesimal average number of pedestrians located between x − 1
2
dx and

x+ 1
2
dx. Moreover, the desired velocity is assumed constant in the following,

hence vd(x) = vd.

In the following we will see how derive an equation which governs the

time evolution of the distribution function.

3.2.1 Weak form of a Boltzmann-type equation

We would like to determine how the pedestrian state x changes due to col-

lisions among other members. Once that this process is defined, it will be

easy to derive a time evolution equation for the distribution function f(t, x).

In this framework, only pairwise interaction are considered. Therefore, it

is like if we extract two generic pedestrians in positions xi and xj from the

crowd, and we assume that only them exist. Hence, in order to study how

their microscopic state evolves, we need to define how they interact. For this
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generic couple, Eq.(3.4) can be written as


dxi
dt

= vd − η(R− |xi − xj|)1[xi,xi+R](xj − xi)

dxj
dt

= vd

(3.6)

with the assumption that xj > xi. In Eq.(3.4) the sum is made over all

pedestrians beside the i-th one of which we are studying the behaviour, be-

cause self-interactions are not considered. Since we are currently treating

only a generic couple of pedestrians, the i-th pedestrian interacts only with

the j-th one, consequently we set N = 1 in (3.6).

Then we compute a time discretization of the binary interaction (3.6) by

using an explicit Euler scheme, and we obtain

{
xi(t+ ∆t) = xi(t) + ∆t

[
vd − η

(
R− |xi(t)− xj(t)|

)]
1[xi,xi+R](xj(t)− xi(t))

xj(t+ ∆t) = xj(t) + ∆tvd
(3.7)

where ∆t is the time step. The interaction assumes this form because the

i-th pedestrian has the j-th pedestrian within his/her sensory region, while

the latter is undisturbed, since the i-th pedestrian is behind him/her. The

configuration is well represented in Fig.(3.3). Interactions of type (3.7) are

defined as asymmetric binary interactions.

Figure 3.3: Pedestrian in position xj(t) is within the sensory region Rs(xi) of pedestrian

in position xi(t); R is the length of the sensory region.

Since we are considering a generic pair of pedestrians, indices can be

omitted. While identifying xi = x and xj = y, the binary interaction (3.7)
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can be written as{
x(t+ ∆t) = x(t) + ∆t

[
vd − η

(
R− |x(t)− y(t)|

)]
1[x,x+R](y(t)− x(t))

y(t+ ∆t) = y(t) + ∆tvd.
(3.8)

This rule defines the time variation of the states x(t) and y(t) due to interac-

tions. Then we assume that in a short time interval ∆t, a pair of pedestrians

interacts with probability proportional to ∆t. This mechanism can be de-

scribed by the introduction of a random variable Λ such that

Λ ∼ Bernoulli(∆t)

with ∆t < 1. Consequently

P (Λ = 0) = 1−∆t

P (Λ = 1) = ∆t

where

• Λ = 0 means that there are no interactions in the time interval ∆t;

• Λ = 1 means that there are interactions in the time interval ∆t.

Thus, we can write relations (3.8) asx(t+ ∆t) = x(t) + ΛK(x(t), y(t))

y(t+ ∆t) = y(t) + ΛH(y(t), x(t))
(3.9)

with

K(x(t), y(t)) = vd − η
(
R− |x(t)− y(t)|

)
1[x,x+R](y(t)− x(t))

= vd −K(x(t), t(t))

H(y(t), x(t)) = vd.

(3.10)

In (3.10) it is obvious that K(x(t), y(t)) 6= H(y(t), x(t)), which confirm the

asymmetry of the binary interactions.

Now we introduce a test function ϕ such that ϕ = ϕ(x) ∈ R; the quantity

ϕ(·) is also called observable quantity. The natural use of a probability den-

sity relies on the computation of averages. Indeed, once that the probability
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density f(t, x) is given, we can compute the average value of any function

ϕ(x). We define averages as

〈ϕ(x)〉 =

∫
R
ϕ(x)f(t, x)dx. (3.11)

Then we apply the function ϕ at relations (3.9) and we obtainϕ(x(t+ ∆t)) = ϕ(x(t) + ΛKx(t), y(t)))

ϕ(y(t+ ∆t)) = ϕ(y(t) + ΛH(y(t), x(t)))
(3.12)

and while adding up term by term we have

〈ϕ(x(t+ ∆t)) + ϕ(y(t+ ∆t))〉 =〈ϕ(x(t) + ΛK(x(t), y(t))) + ϕ(y(t)+

+ ΛH(y(t), x(t)))〉.

Finally, by computing the mean value with respect to Λ, we obtain

〈ϕ(x(t+ ∆t)) + ϕ(y(t+ ∆t))〉 =〈ϕ(x(t+ ∆t)) + ϕ(y(t+ ∆t))〉∆t+
+ 〈ϕ(x(t)) + ϕ(y(t))〉(1−∆t)

that can be written as

〈ϕ(x(t+ ∆t)) + ϕ(y(t+ ∆t))〉 − 〈ϕ(x(t)) + ϕ(y(t))〉
∆t

=
[
〈ϕ(x(t) +K(x(t), y(t)))+

+ ϕ(y(t) +H(y(t), x(t)))〉 − 〈ϕ(x(t)) + ϕ(y(t))〉
]
.

Consequently, if we consider ∆t→ 0+ we obtain the differential equation

d

dt

[
〈ϕ(x(t))+ϕ(y(t))〉

]
=
[
〈ϕ(x′(t))+ϕ(y′(t))〉−〈ϕ(x(t))+ϕ(y(t))〉

]
(3.13)

where x′(t) := x(t) + K(x(t), y(t))

y′(t) := y(t) + H(y(t), x(t))
(3.14)

which are the post-interaction states of the interacting pedestrian couple. For

the sake of simplicity, the time dependence will be omitted in the following.

The average definition (3.11) holds also for x′, indeed

〈ϕ(x′)〉 =

∫
R
ϕ(x′)f(t, x′)dx



3.2 The mesoscopic crowd model 53

where f is the so-called kinetic distribution function; in the following we will

also prove that ∫
R
f(t, x)dx = 1, ∀t ≥ 0

f(t, x) ≥ 0, ∀x,∀t
(3.15)

which ensure that f is a probability density function.

In relations (3.14) it is evident that the post-interaction state x′ is function

of both the pre-interaction states x and y. For avoiding the insertion of

another unknown quantity, we use the Boltzmann’s ansatz which states that

f(t, x′) = f(t, x)f(t, y)

like if the two states would be independent during the interactions. Under

this assumption, we can write

〈ϕ(x′)〉 =

∫
R
ϕ(x′)f(t, x′)dx =

∫
R

∫
R
ϕ(x′)f(t, x)f(t, y)dxdy (3.16)

and also

〈ϕ(x)〉 =

∫
R
ϕ(x)f(t, x)dx =

∫
R
ϕ(x)f(t, x)dx

∫
R
f(t, y)dy

=

∫
R

∫
R
ϕ(x)f(t, x)f(t, y)dxdy.

(3.17)

Definitions (3.16) and (3.17) are valid also for state y′. Therefore, by substi-

tuting (3.11), (3.16) and (3.17) in Eq.(3.13) we obtain

d

dt

[∫
R
ϕ(x)f(t, x)dx+

∫
R
ϕ(y)f(t, y)dy

]
=

∫
R

∫
R

[
ϕ(x′) + ϕ(y′)

]
f(t, x)f(t, y)dxdy+

−
∫

R

∫
R

[
ϕ(x) + ϕ(y)

]
f(t, x)f(t, y)dxdy.

(3.18)

Since the integration variable is dummy∫
R
ϕ(x)f(t, x)dx+

∫
R
ϕ(y)f(t, y)dy = 2

∫
R
ϕ(x)f(t, x)dx

Eq.(3.18) becomes

d

dt

[∫
R
ϕ(x)f(t, x)dx

]
=

1

2

∫
R

∫
R

[
ϕ(x′)+ϕ(y′)−ϕ(x)−ϕ(y)

]
f(t, x)f(t, y)dxdy

(3.19)



54 3. Description of the modelling framework

which is the weak form of a Boltzmann-type equation, valid for the asymmet-

rical binary interactions (3.9). It defines the time evolution of the distribu-

tion function f and consequently the statistical evolution of the pedestrian

positions.

3.2.2 Statistical moments

We can use Eq.(3.19) for computing the time evolution of the statistical

moments of f ; this also allows us also to formally prove that f is a probability

density function. The statistical moments of f will be studied one by one in

the following:

1. ϕ(x) = 1:

In this case
ϕ(x′)− ϕ(x) = 0

ϕ(y′)− ϕ(y) = 0

hence, from Eq.(3.19)

d

dt

[∫
R
f(t, x)dx

]
= 0 ⇒

∫
R
f(t, x)dx = const.

We can conclude that the zero moment is conserved, thus the pedestrian

number conservation is ensured. Moreover, if we choose f(0, x) such

that ∫
R
f(0, x)dx = 1

then ∫
R
f(t, x)dx = 1, ∀t

which proves the first property of (3.15).

2. ϕ(x) = x:

In this case we are going to study the evolution of the mean state of

the system. We define

Z(t) =

∫
R
xf(t, x)dx

and Eq.(3.19) results as

dZ(t)

dt
=

1

2

∫
R

∫
R

[
x′ + y′ − x− y

]
f(t, x)f(t, y)dxdy (3.20)
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but x′ − x = K(x, y) and y′ − y = H(y, x); hence, by substituting

relations (3.10) in Eq.(3.20) we obtain

dZ(t)

dt
=

∫ ∞
0

∫ x+R

x

[
2vd(x)− η(R− |x− y|)

]
f(t, x)f(t, y)dxdy

which clearly shows that the first moment is in general not conserved.

3. ϕ(x) = x2:

In this case we are going to study the evolution of the second order

moment. We define

Σ(t) =

∫
R
x2f(t, x)dx

so Eq.(3.19) becomes

dΣ(t)

dt
=

1

2

∫
R

∫
R

[
(x′)2 + (y′)2 − x2 − y2

]
f(t, x)f(t, y)dxdy

=
1

2

∫
R

∫
R
(x′)2f(t, x)f(t, y)dxdy − 1

2

∫
R
x2f(t, x)dx

∫
R
f(t, y)dy+

+
1

2

∫
R

∫
R
(y′)2f(t, x)f(t, y)dxdy − 1

2

∫
R
y2f(t, y)dy

∫
R
f(t, x)dx

=
1

2

∫
R

∫
R
(x′)2f(t, x)f(t, y)dxdy − 1

2
Σ(t)+

+
1

2

∫
R

∫
R
(y′)2f(t, x)f(t, y)dxdy − 1

2
Σ(t)

that can be written as

dΣ(t)

dt
+ Σ(t) =

1

2

∫
R

∫
R

[
(x′)2 + (y′)2

]
f(t, x)f(t, y)dxdy. (3.21)

By solving Eq.(3.21) we obtain

Σ(t) = e−tΣ(0) +
1

2

∫ t

0

e−(t−s)
∫

R

∫
R

[
(x′)2 + (y′)2

]
f(s, x)f(s, y)dxdyds

which states that the evolution of the second order moment is not

conserved. Finally, by combining the results obtained from the first

and second order moments, it is possible to derive the time evolution

of the variance of the state x, which is

V ar(x) =

∫
R
x2f(t, x)dx−

[∫
R
xf(t, x)

]2

= Σ(t)− Z(t)2.
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4. ϕ(x) = xp, p > 2, p ∈ N:

In case we are interested in the evolution of higher order moments of

f , we have to study how

d

dt

[∫
R
xpf(t, x)dx

]
evolves, but this is out of the purpose of the thesis.

3.2.3 Fokker-Planck equation

The derivation of the Fokker-Planck equation is needed in order to compute

the passage at the macroscopic scale; this is what we are going to discuss in

this section.

The previous analysis shows that in general it is difficult to study in detail

the asymptotic behaviour of the distribution function f(t, x) just by consider-

ing the evolution of its statistical moments. Another way would be to study

directly the asymptotic behaviour of Eq.(3.19) by computing the limit for

t→∞, but if we use this method we would have several technical difficulties

and it is not guaranteed that relevant results can be derived. Therefore, in

order to gain more detailed insights into the asymptotic distribution we have

to use a suitable scaling technique. This will lead us to compute the quasi-

invariant interaction limit, which allows the derivation of the Fokker-Planck

equation.

The Boltzmann equation obtained in the previous sections is based on a

time scale relative to a single binary interaction. While studying the asymp-

totic behaviour of the system, we have to consider the regime of weak but

frequent interactions. Thus, the idea is to scale all terms inherent at the

state variations in a way that{
x′ = x+ εK(x, y)

y′ = y + εH(y, x)

where ε is a small positive number. The smaller ε is, the less interactions

change the post-interaction states; consequently the smaller ε is, the larger

the time scale will be. Indeed, we need to scale the time as τ := ε
2
t. In this

way we pass from the characteristic t-scale of single microscopic interactions

to a larger time scale defined by the variable τ . Moreover, we define g(τ, x) :=
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f(2τ/ε, x); hence, while doing the limit for ε → 0+, which is called quasi-

invariant interaction limit, we will study the asymptotic behaviour of the

distribution function f(t, x).

As a consequence of the scaling, the weak form of the Boltzmann equation

results

d

dτ

[∫
R
ϕ(x)g(τ, x)dx

]
=

1

ε

∫
R

∫
R

[
ϕ(x′)+ϕ(y′)−ϕ(x)−ϕ(y)

]
g(τ, x)g(τ, y)dxdy

(3.22)

and {
x′ − x = εK(x, y)

y′ − y = εH(y, x)

ε→0+−−−→

x′ − x→ 0+

y′ − y → 0+.

Since x′ − x and y′ − y are infinitesimal quantities, if the function ϕ is suffi-

ciently regular then also

{
ϕ(x′)− ϕ(x)→ 0+

ϕ(y′)− ϕ(y)→ 0+.

Hence, we require that ϕ ∈ C∞(R) and ϕ(x) → 0 when |x| → ∞, so that

ϕ ∈ C∞c (R) = D(R). Under these hypothesis we can compute a third-order

Taylor expansion of ϕ around x

ϕ(x′)− ϕ(x) = ϕ′(x)(x′ − x) +
1

2
ϕ′′(x)(x′ − x)2 +

1

6
ϕ′′′(x)(x′ − x)3

ϕ(y′)− ϕ(y) = ϕ′(y)(y′ − y) +
1

2
ϕ′′(y)(y′ − y)2 +

1

6
ϕ′′′(y)(y′ − y)3

(3.23)

with

x ∈
(
min(x, x′),max(x, x′)

)
y ∈

(
min(y, y′),max(y, y′)

)
where ϕ′(x) and ϕ′(y) denote the space derivatives.
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Now we substitute (3.23) in Eq.(3.22), and we obtain

d

dτ

[∫
R
ϕ(x)g(τ, x)dx

]
=

1

ε

∫
R

∫
R
ϕ′(x)(x′ − x)g(τ, x)g(τ, y)dxdy︸ ︷︷ ︸

I

+

+
1

ε

∫
R

∫
R
ϕ′(y)(y′ − y)g(τ, x)g(τ, y)dxdy︸ ︷︷ ︸

II

+

+
1

2ε

∫
R

∫
R
ϕ′′(x)(x′ − x)2g(τ, x)g(τ, y)dxdy︸ ︷︷ ︸

III

+

+
1

2ε

∫
R

∫
R
ϕ′′(y)(y′ − y)2g(τ, x)g(τ, y)dxdy︸ ︷︷ ︸

IV

+

+
1

6ε

∫
R

∫
R
ϕ′′′(x)(x′ − x)3g(τ, x)g(τ, y)dxdy︸ ︷︷ ︸

V

+

+
1

6ε

∫
R

∫
R
ϕ′′′(y)(y′ − y)3g(τ, x)g(τ, y)dxdy︸ ︷︷ ︸

VI

(3.24)

where

I =
1

ε

∫
R

∫
R
ϕ′(x)εK(x, y)g(τ, x)g(τ, y)dxdy

=

∫
R

∫
R
ϕ′(x)K(x, y)g(τ, x)g(τ, y)dxdy

II =
1

ε

∫
R

∫
R
ϕ′(y)εH(y, x)g(τ, x)g(τ, y)dxdy

=

∫
R

∫
R
ϕ′(y)H(y, x)g(τ, x)g(τ, y)dxdy

III =
1

2ε

∫
R

∫
R
ϕ′′(x)ε2K(x, y)2g(τ, x)g(τ, y)dxdy

=
ε

2

∫
R

∫
R
ϕ′′(x)K(x, y)2g(τ, x)g(τ, y)dxdy

IV =
1

2ε

∫
R

∫
R
ϕ′′(y)ε2H(y, x)2g(τ, x)g(τ, y)dxdy

=
ε

2

∫
R

∫
R
ϕ′′(y)H(y, x)2g(τ, x)g(τ, y)dxdy
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V =
1

6ε

∫
R

∫
R
ϕ′′′(x)ε3K(x, y)3g(τ, x)g(τ, y)dxdy

=
ε2

6

∫
R

∫
R
ϕ′′′(x)K(x, y)3g(τ, x)g(τ, y)dxdy

VI =
1

6ε

∫
R

∫
R
ϕ′′′(y)ε3H(y, x)3g(τ, x)g(τ, y)dxdy

=
ε2

6

∫
R

∫
R
ϕ′′′(y)H(y, x)3g(τ, x)g(τ, y)dxdy.

If we substitute these results in Eq.(3.24), we obtain

d

dτ

[∫
R
ϕ(x)g(τ, x)dx

]
=

∫
R
ϕ′(x)

[∫
R
K(x, y)g(τ, y)dy

]
g(τ, x)dx+

+

∫
R
ϕ′(y)

[∫
R
H(y, x)g(τ, y)dy

]
g(τ, x)dx+R(ε)

where

R(ε) =
ε

2

∫
R

∫
R
ϕ′′(x)K(x, y)2g(τ, x)g(τ, y)dxdy+

+
ε

2

∫
R

∫
R
ϕ′′(y)H(y, x)2g(τ, x)g(τ, y)dxdy+

+
ε2

6

∫
R

∫
R
ϕ′′′(x)K(x, y)3g(τ, x)g(τ, y)dxdy+

+
ε2

6

∫
R

∫
R
ϕ′′′(y)H(y, x)3g(τ, x)g(τ, y)dxdy.

When we compute the quasi-invariant interaction limit, it is easy to notice

that R(ε)→ 0; so, Eq.(3.24) becomes

d

dτ

[∫
R
ϕ(x)g(τ, x)dx

]
=

∫
R
ϕ′(x)

[∫
R
K(x, y)g(τ, y)dy

]
g(τ, x)dx+

+

∫
R
ϕ′(y)

[∫
R
H(y, x)g(τ, y)dy

]
g(τ, x)dx.

(3.25)

It is worth mentioning that it is possible to relax the hypothesis on the test

function ϕ. Indeed, it is necessary to require only that ϕ ∈ C3(R), with

ϕ, ϕ′ → 0 when |x| → ∞.

The next step consists in deriving the strong form of Eq.(3.25). Thus, we
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compute an integration by parts on Eq.(3.25), and we obtain∫
R
ϕ(x)

∂

∂t
g(τ, x)dx = ϕ(x)

[∫
R
K(x, y)g(τ, y)dy

]
g(τ, x)

∣∣∣∣∞
−∞

+

− ϕ(x)

∫
R

∂

∂x

[
g(τ, x)

∫
R
K(x, y)g(τ, y)dy

]
dx+

+ ϕ(y)

[∫
R
H(y, x)g(τ, y)dy

]
g(τ, x)

∣∣∣∣∞
−∞

+

− ϕ(y)

∫
R

∂

∂y

[
g(τ, x)

∫
R
H(y, x)g(τ, y)dy

]
dx

(3.26)

but due to the hypothesis on ϕ, Eq.(3.26) becomes∫
R
ϕ(x)

∂

∂t
g(τ, x)dx =− ϕ(x)

∫
R

∂

∂x

[
g(τ, x)

∫
R
K(x, y)g(τ, y)dy

]
dx+

− ϕ(y)

∫
R

∂

∂y

[
g(τ, x)

∫
R
H(y, x)g(τ, y)dy

]
dx.︸ ︷︷ ︸

I

(3.27)

Moreover

I = −ϕ(y)

∫
R

∂

∂y

[
g(τ, x)

∫
R
H(y, x)g(τ, y)dy

]
dx

= −ϕ(y)

∫
R

∂

∂y

[
g(τ, x)

∫
R
vdg(τ, y)dy

]
dx

= −ϕ(y)vd

∫
R
g(τ, x)dx

∂

∂y

[∫
R
g(τ, y)dy

]
= 0

hence Eq.(3.27) becomes∫
R
ϕ(x)

[
∂

∂τ
g(τ, x) +

∂

∂x

[
g(τ, x)

∫
R
K(x, y)g(τ, y)dy

]
dx

]
= 0. (3.28)

Since Eq.(3.28) holds ∀ϕ, we get

∂

∂τ
g(τ, x) +

∂

∂x

[
g(τ, x)

∫
R
K(x, y)g(τ, y)dy

]
= 0 (3.29)

which is the so-called Fokker-Planck equation. Eq.(3.29) holds for large time,

thus it allows us to derive the asymptotic distribution of pedestrian positions
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over the footbridge. It is noteworthy that Eq.(3.29) is a differential equa-

tion and not an integro-differential equation like the Boltzmann one; con-

sequently it is more manageable. It is also noticeable that the interaction

function K(x, y) is still in the equation, confirming that the dependence on

the dynamics at the microscopic scale remains also under the assumption of

large time.

The term

g(τ, x)

∫
R
K(x, y)g(τ, y)dy

takes the name of mean-field interaction term. Therefore, for large time we

do not speak anymore of binary interactions, but instead we have a kind

of mean interaction among the pedestrian with state x and all others with

which he/she interacts.

If we define

P[g, g](τ, x) = − ∂

∂x

[
g(τ, x)

∫
R
K(x, y)g(τ, y)dy

]
as the Fokker-Planck operator, we can write Eq.(3.29) in an operatorial form

∂τg(τ, x) = P[g, g](τ, x). (3.30)

Also in this context, the main advantage of Eq.(3.30) respect to Eq.(3.19)

relies in an easier numerical implementation, but on the other hand we need

to add more hypothesis on the solution, like the differentiability.

In the next section we will introduce the macroscopic model and we will

study in more detail Eq.(3.29).

3.3 The macroscopic crowd model

In the microscopic model used, the state of each pedestrian is described by

only one variable, which is the pedestrian position. Thus, the macroscopic

model is governed by the Fokker-Planck equation (3.29) and therefore there

is no necessity to compute the so-called hydrodynamic limit. Indeed, since

we use a first-order microscopic model, we expect that also the macroscopic

model is a first-order one; hence, it must be composed by only one equation

which states the mass conservation, without any additional law regarding the

momentum conservation.
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For the sake of simplicity, in the following we will denote the time again

with t and not τ ; therefore we write the Fokker-Planck equation derived in

the previous section as

∂

∂t
g(t, x) +

∂

∂x

[
g(t, x)

∫
R
K(x, y)g(t, y)dy

]
= 0 (3.31)

where

v[g](t, x) =

∫
R
K(x, y)g(t, y)dy

F [g](t, x) = g(t, x)v[g](t, x)

represent respectively the pedestrian velocity field and the pedestrian flow.

Hence, Eq.(3.31) can be written as

∂

∂t
g(t, x) +

∂

∂x
F [g](t, x) = 0

which is a transport equation of the quantity g, with v[g] as a velocity field.

We would like to identify the distribution function g(t, x) with the pedes-

trian density ρ(t, x), so that g(t, x) = ρ(t, x). By definition, the density of a

certain quantity is its mass per unit volume (per unit length in this work),

so ∫
R
ρ(t, x)dx = M(t)

where M(t) is the total mass of the system. In this context ρ(t, x) is the

pedestrian density per unit length, and due to the fact that the property of

mass conservation holds, we have

dM(t)

dt
= 0 ⇒ M(t) = M = const

so ∫
R
ρ(t, x)dx = M

thus, the pedestrian density becomes a probability density distribution only

if we assume that the total mass of the system is M = 1. In this case ρ(t, x)

has the same meaning of g(t, x), and so g(t, x) = ρ(t, x).
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By recalling Eq.(3.10), the mean-field interaction term can be written as

∫
R
K(x, y)ρ(t, y)dy =

∫
R

[
vd − η

(
R− |x− y|

)
1[x,x+R](y − x)

]
ρ(t, y)dy

= vd

∫
R
ρ(t, y)dy −

∫ x+R

x

η
(
R− |x− y|

)
ρ(t, y)dy

= vd −
∫

R
K(x, y)ρ(t, y)dy

where

K(x, y) = η
(
R− |x− y|

)
1[x,x+R](y − x)

is the interaction kernel. Hence, the macroscopic crowd model becomes


∂

∂t
ρ(t, x) +

∂

∂x

[
ρ(t, x)

[
vd −

∫
R
K(x, y)ρ(t, y)dy

]]
= 0 in Ω× (0, T ]

ρ(t, 0) = ρ(t, L) in ∂Ω× (0, T ]

ρ(0, x) = ρ0(x) in Ω
(3.32)

where Ω = [0, L] is the domain, L > 0 is the length of the footbridge, T > 0

is a certain final time and ρ0(x) is the initial condition. At the boundaries we

set periodic conditions, so that a pedestrian who goes out of the footbridge

enters immediately again; basically we are assuming that the density in x = 0

and in x = L takes the same value. Firstly, this choice satisfies the mass

conservation, and secondly, it allows us to study the pedestrian motion after

a transition phase. In chapter 4 it will be shown how to discretize Eq.(3.32),

in order to solve it numerically.

Obviously, Eq.(3.32) is valid only if M = 1, so if ρ(t, x) is a probability

density function. Otherwise, the equation which describes the motion on a

macroscopic scale is different and it will be derived in the following. We

define

ρ∗(t, x) := Mρ(t, x) (3.33)

so that ∫
Ω

ρ∗(t, x)dx = M

∫
Ω

ρ(t, x)dx = M.



64 3. Description of the modelling framework

Figure 3.4: In (a) the total mass M of the system is constant while the mass m of each

pedestrian becomes infinitesimal as N increases. In (b) the mass m of each pedestrian is

constant while M grows when N increases.

By using definition (3.33), Eq.(3.32) becomes

1

M

∂

∂t
ρ∗(t, x) +

∂

∂x

[
ρ∗(t, x)

M
v

[
ρ∗

M

]
(t, x)

]
=0

∂

∂t
ρ∗(t, x) +

∂

∂x

[
ρ∗(t, x)v

[
ρ∗

M

]
(t, x)

]
=0

where

v

[
ρ∗

M

]
(t, x) =

∫
R
K(x, y)

ρ∗(t, x)

M
dy

=
1

M

∫
R
K(x, y)ρ∗(t, x)dy

=
1

M
v
[
ρ∗
]
(t, x).

Thus, when M 6= 1 and consequently ρ(t, x) is not a probability density

function, the macroscopic model results as
∂

∂t
ρ∗(t, x) +

1

M

∂

∂x

[
ρ∗(t, x)

[
vd −

∫
R
K(x, y)ρ∗(t, y)dy

]]
= 0 in Ω× (0, T ]

ρ∗(t, 0) = ρ∗(t, L) in ∂Ω× (0, T ]

ρ∗(0, x) = ρ∗0(x) in Ω

(3.34)

which is equal to (3.32) in case of M = 1.

The main difference between models (3.32) and (3.34) is well represented

in Fig.(3.4). Let’s define the total mass of the system M , the number of

pedestrians N and the mass of each single pedestrian m; consequently M =
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mN . In model (3.32) we are assuming M = 1, which implies that the

mass of each pedestrian becomes infinitesimal as N grows; this situation is

represented in graph (a). In model (3.34) we are assuming that pedestrians

have a certain mass m = 1, hence M = N ; this situation is represented in

graph (b).

In the following, we will always refer to model (3.32), since it is preferable

to work under hypothesis that ρ(t, x) is a probability density function.

3.4 Equivalence of crowd models

We state that there is equivalence between crowd models if the macroscopic

crowd model is a generalization of the microscopic one, and if their terms

have the same physical meaning. The chosen microscopic crowd model and

the derived macroscopic one are respectively

d

dt
xi(t) = vd −

1

N

N∑
j=1
j 6=i

η(R− |xi(t)− xj(t)|)1[xi,xi+R](xj(t)− xi(t))

∂

∂t
ρ(t, x) = − ∂

∂x

[
ρ(t, x)

[
vd −

∫ x+R

x

η
(
R− |x− y|

)
ρ(t, y)dy

]]
and we can immediately see the similarity. Indeed, in both cases there is a

time derivative and a term which expresses the will of pedestrians to walk

at a desired velocity vd. Moreover, also the interaction term takes a similar

form. In fact, if we assume that ρ(t, x) is a discrete distribution given by a

sum of Dirac delta functions

ρ(t, x) =
1

N

N∑
i=1

δ(x− xi)

and we substitute it in the mean-field interaction term, we obtain∫ x+R

x

η
(
R− |x− y|

)
ρ(t, y)dy =

∫ x+R

x

η
(
R− |x− y|

) 1

N

N∑
i=1

δ(y − xi)dy

=
1

N

N∑
i=1

η

∫ x+R

x

(
R− |x− y|

)
δ(y − xi)dy

=
1

N

N∑
j=1
j 6=i

η(R− |xi − xj|)1[xi,xi+R](xj − xi)
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which is the interaction term of the microscopic crowd model. A further

confirmation of the congruence between these two models is given by the

following fact: in the macroscopic context the velocity v[ρ](t, x) is given only

when the density ρ(t, x) is known; in the microscopic context the velocities

vi(t), i = 1, . . . , N are given only when the pedestrian positions xi(t), i =

1, . . . , N are known. Therefore, the pedestrian density at the macroscopic

scale plays the role of an equivalent pedestrian position descriptor.

Thanks to these considerations, we can state that the two models describe

the same dynamics and consequently they may be considered as equivalent

models. Indeed, we can mathematically define the microscopic and macro-

scopic crowd models above discussed as equivalent only when the solution of

the microscopic model converges for N → ∞ to the solution of the macro-

scopic one in W1 sense, where W1 represents the Wasserstein metric.

In chapter 4 both models will be solved numerically, by looking for an

equivalence in the solutions provided. Moreover, also the Wasserstein metric,

which is introduced in the next paragraph, will be numerically evaluated.

3.4.1 Wasserstein metric

In the previous section we discussed about a possible equivalence between

the microscopic and macroscopic crowd models, but we do not prove it yet.

Indeed, we would expect that if we use the microscopic model with large N ,

its solution will have the same trend of the macroscopic one. But the hy-

pothesis of large N is not physically correct in a footbridge vertical vibrations

problem. Thus, we would like to derive a number N∗ of pedestrians such that

the distance between the discrete and continuous solution is under a certain

tolerance ε > 0. We will now analyse how to evaluate such a distance.

We suppose to have two probability density functions h(t, x) and s(t, x),

so ∫
Ω

h(t, x)dx =

∫
Ω

s(t, x)dx = 1, ∀t

h(t, x), s(t, x) ≥ 0 ∀x ∈ Ω, ∀t

represented in graph (a) of Fig.(3.5); Ω ⊆ R is the domain over which

h(t, x) and s(t, x) are distributed. For the sake of simplicity, we will con-

sider time independent probability density functions, thus h(t, x) = h(x)



3.4 Equivalence of crowd models 67

(a) (b)

Figure 3.5: h(x) and s(x) are two normal probability distributions with σ = 0.2, µh = 1

and µs = 3 in (a), and with σ = 0.2, µh = 1.5 and µs = 2.5 in (b).

and s(t, x) = s(x); by the way, the following calculus hold also for time

dependent probability density functions.

We would like to evaluate the distance between this two distributions.

For instance, we can select the L1(Ω) norm, so that

‖h(x)− s(x)‖L1(Ω) =

∫
Ω

∣∣h(x)− s(x)
∣∣dx

but it has a problem. Indeed, if we have two probability density functions as

h(x) and s(x), which are sharp peaked functions, then

‖h(x)− s(x)‖L1(Ω) ' 2

because the supports mostly do not intersect. In graph (b) of Fig.(3.5) the

distributions h(x) and s(x) are represented again, but now their supports are

nearer. Since h(x) and s(x) are very sharp peaked functions, their supports

continue to be only weakly intersected and therefore ‖h(x)− s(x)‖L1(Ω) ' 2.

Hence, the L1 norm is not able to catch the difference between configuration

(a) and (b) in Fig.(3.5) and consequently we cannot use it in a transport-

governed problem.

Instead, we have to introduce a new concept of distance able to capture

the difference between the two configurations previously showed. For this

reason we introduce the Wasserstein metric, amply explained in [3]. It is

worth mentioning that this is a metric and not a norm. This metric is



68 3. Description of the modelling framework

defined as

Wp(h, s) =

(
inf

π∈Π(h,s)

∫
Ω

∫
Ω

|x− y|pdπ(x, y)

) 1
p

(3.35)

where p ≥ 1, x, y ∈ Ω and Π(h, s) denotes the collection of all measures

on the product space Ω × Ω, with marginals h(x) and s(y) on the first and

second factors respectively. Therefore, π ∈ Π(h, s) is a generic probability

measure on Ω × Ω with h(x) as marginal in x and with s(y) as marginal in

y, so

h(x) =

∫
Ω

π(x, y)dy

s(y) =

∫
Ω

π(x, y)dx.

Of course it does not exist only one probability measure π which satisfies the

properties above mentioned; among all measures π ∈ Π, it will be selected

one that minimizes the quantity (3.35).

In Fig.(3.6) the product space Ω × Ω is shown, and we assume to take

a generic point (x, y) in it. Since π ∈ Π, the marginal on x is h(x), while

the marginal on y is s(y). Then we fix an infinitesimal mass h(x)dx, where

dx is an infinitesimal interval with center x. We would like to transport this

infinitesimal mass in the interval dy centred in y, and attributing it to the

distribution d(y). But this transport has a cost: the more x is distant from y,

the higher the cost is. Therefore, the cost is strictly related to the distance.

Basically, the distance between the distributions h(x) and s(y) corresponds

to the minimum cost that it is necessary to pay for transferring the mass

from h(x) to s(y). This is how the Wasserstein metric works.

Thus, intuitively the Wasserstein metric Wp(h, s) will assume higher value

in case (a) of Fig.(3.5) than in case (b), because when h(x) is nearer to s(y),

it costs less to make a mass transfer. Hence, this metric is able to capture

the difference between configurations (a) and (b), and for this reason we will

adopt it.

Now we have to understand how to compute it. It is possible to proof

that this metric is a minimum more than an infimum. Therefore, if we choose

p = 1, we have

W1(h, s) = min
π∈Π(h,s)

∫
Ω

∫
Ω

|x− y|dπ(x, y). (3.36)
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Figure 3.6: Graphical representation of how the Wasserstein metric operate.

In general, an exact value of W1(h, s) can be obtained from (3.36) only if we

use notions of linear programming. In case of we are working on a metric

space X = R, it is proved in [94] that the Wasserstein metric can be expressed

as

W1(h, s) =

∫ ∞
−∞

∣∣H(x)− S(x)
∣∣dx (3.37)

where H(x) and S(x) are the distribution functions of the probability den-

sity distribution h(x) and s(x), respectively. Hence, we can use Eq.(3.37)

for measuring the distance between the two probability density distribution

above-mentioned.

In the following, we will derive the expression of W1(h, s) by assuming

that h(x) is distributed accordingly to a uniform, and s(x) is a sum of Dirac

delta functions, so

h(x) =
1

L
1[0,L](x)

s(x) =
1

N

N∑
i=1

δ(x− xi).
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First of all, we have to derive the distribution functions, which are given by

H(x) =

∫ x

−∞
h(y)dy, S(x) =

∫ x

−∞
s(y)dy

therefore

H(x) =

∫ x

−∞

1

L
1[0,L](y)dy

=


0 if x ≤ 0
x

L
if 0 < x ≤ L

1 if x > L

=
x

L
1[0,L](x) + 1[L,∞](x)

(3.38)

and

S(x) =

∫ x

−∞

1

N

N∑
i=1

δ(y − xi)dy

=
1

N

N∑
i=1

∫ x

−∞
δ(y − xi)

=
1

N

N∑
i=1

1[xi,∞](x).

(3.39)

By substituting relations (3.38) and (3.39) into Eq.(3.37), we obtain

W1(h, s) =

∫ ∞
−∞

∣∣∣∣xL1[0,L](x) + 1[L,∞](x)− 1

N

N∑
i=1

1[xi,∞](x)

∣∣∣∣dx (3.40)

but

1[L,∞](x)− 1

N

N∑
i=1

1[xi,∞](x) =
1

N

N∑
i=1

(
1[L,∞](x)− 1[xi,∞](x)

)

= − 1

N

N∑
i=1

1[xi,L](x)

(3.41)

hence, by replacing (3.41) into Eq.(3.40), we get

W1(h, s) =

∫ L

0

∣∣∣∣xL − 1

N

N∑
i=1

1[xi,L](x)

∣∣∣∣dx (3.42)
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but

N∑
i=1

1[xi,L](x) =



0 if 0 ≤ x < x1

1 if x1 ≤ x < x2

2 if x2 ≤ x < x3

...

N if xN ≤ x < L

=

i if xi ≤ x < xi+1

0 otherwise

consequently Eq.(3.42) becomes

W1(h, s) =

∫ x1

0

∣∣∣∣xL
∣∣∣∣dx+

N−1∑
i=1

∫ xi+1

xi

∣∣∣∣xL − i

N

∣∣∣∣dx+

∫ L

xN

∣∣∣∣xL − 1

∣∣∣∣dx
=
x2

2L

∣∣∣∣x1
0

+
N−1∑
i=1

∫ xi+1

xi

∣∣∣∣xL − i

N

∣∣∣∣dx+ x− x2

2L

∣∣∣∣L
xN

=
L

2
+
x2

1

2L
− xN +

x2
N

2L
+

N−1∑
i=1

∫ xi+1

xi

∣∣∣∣xL − i

N

∣∣∣∣dx.
(3.43)

In order to derive an analytical expression of the Wasserstein metric, we still

have to compute the integral on the right-hand side of Eq.(3.43), which is

given by

∫ xi+1

xi

∣∣∣∣xL − i

N

∣∣∣∣dx =



∫ xi+1

xi

(
x

L
− i

N

)
dx if

xi
L
≥ i

N∫ iL
N

xi

(
i

N
− x

L

)
dx+

∫ xi+1

iL
N

(
x

L
− i

N

)
dx if

xi
L
<

i

N
≤ xi+1

L∫ xi+1

xi

(
i

N
− x

L

)
dx if

i

N
>
xi+1

L

=



x2
i+1 − x2

i

2L
+

i

N
(xi − xi+1) if xi ≥

iL

N

i2L

N2
− i

N
(xi + xi+1) +

x2
i + x2

i+1

2L
if xi <

iL

N
≤ xi+1

i

N
(xi+1 − xi) +

x2
i − x2

i+1

2L
if
iL

N
> xi+1

(3.44)

and by substituting (3.44) into Eq.(3.43) we obtain an analytical formula for

computing W1(h, s).
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Eq.(3.43) allows us to evaluate the distance between the probability den-

sity functions h(x) and s(x). This result will be useful in chapter 4; indeed

we will use it for evaluating the distance between the macroscopic and mi-

croscopic crowd model solutions.

Finally, let us suppose that pedestrians are evenly distributed in such a

way

xi =
iL

N
, ∀i

then Eq.(3.43) becomes

W1(h, s) =

∫ L
N

0

∣∣∣∣xL
∣∣∣∣dx+

N−1∑
i=1

∫ (i+1)L
N

iL
N

∣∣∣∣xL − i

N

∣∣∣∣dx+

∫ L

L

∣∣∣∣xL − 1

∣∣∣∣dx
=

L

2N2
+

N−1∑
i=1

[
(i+ 1)2L

2N2
− i(i+ 1)L

N2
− i2L

2N
+
i2L

N2

]

=
L

2N2
+

N−1∑
i=1

[
L

2N2
+
iL

N2
− iL

N2

]
=

L

2N2
+
L(N − 1)

2N2

=
L

2N

hence

W1(h, s)→ 0, N →∞.

Indeed, since the macroscopic model relies on the assumption that N →∞,

we expect that for large value of N the microscopic crowd model solutions

here denoted by s(x) tends to the macroscopic one denoted by h(x); conse-

quently, their distance tends to zero

3.5 The structure model

For the reasons explained in section 2.5, the footbridge structure can be

modelled with sufficient accuracy using a single degree of freedom modal

equation for the mode of interest; consequently a second-order differential

equation

mÿ(t) + cẏ(t) + ky(t) = F (t) (3.45)
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governs the system. In Eq.(3.45), m, k and c are respectively the modal

mass, stiffness and damping of the footbridge, while y(t) is the displacement

response at the antinode, the overdot indicating differentiation with respect

to time. Moreover, the modal force F (t) takes into account only the pedes-

trian motion over the footbridge and it is computed with a model presented

in the next paragraph. In chapter 4, Eq.(3.45) will be solved numerically.

The structure model is common over each scale. Hence, the vertical

acceleration of the structure will be derived with the use of the same structure

model, both for the microscopic and macroscopic scale.

3.6 The force model

In this section we will show how to evaluate the force exerted on the foot-

bridge by walking pedestrians. Firstly, the force models on the microscopic

and macroscopic scale will be deeply analysed; secondly, we will proof ana-

lytically that the macroscopic force model is a generalized form of the mi-

croscopic one.

3.6.1 The microscopic force model

For the scopes of this study, human-structure interaction is neglected. There-

fore, pedestrian action is described by a moving force model. Among the

several force models proposed in the literature, the same one used in [2] is

adopted ad described in the following. For the sake of simplicity, time de-

pendence are omitted. The force exerted by the i-th pedestrian is modelled

as a single sine function, and is given by

Fmicro,i(t) = αimigsin(2πfit) (3.46)

where the dynamic load factor αi is expressed as a function of the pacing

frequency fi

αi = −0.2649f 3
i + 1.3206f 3

i − 1.7597fi + 0.7613 (3.47)

and the pacing frequency fi is expressed as a function of the pedestrian

velocity vi
fi = 0.35v3

i − 1.59v2
i + 2.93vi (3.48)
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Both relations (3.47) and (3.48) are given by data collected in experiments.

Moreover, in Eq.(3.46) g is the acceleration due to gravity and mi is the mass

of the i-th pedestrian. Hence, the force exerted at time t is given by

Fmicro(t) =
1

N

N∑
i=1

Fmicro,i(t)

=
1

N

N∑
i=1

αimigsin(2πfit)φ(xi)

(3.49)

where

φ(xi) = sin

(
πxi
L

)
is the first mode of the footbridge. So, Fmicro(t) is a medium force weighted

over the first mode; therefore, pedestrians located in the middle span of the

bridge excite more the structure than pedestrians located at the entrance

or at the exit. Since the position xi and the velocity vi of each pedestrian

are given by the microscopic crowd model, we are able to derive the force

Fmicro(t) at each time step.

In the macroscopic crowd model we are assuming that M = 1; in order

to be able to compare the results, also in the microscopic model we have to

assume that the mass of each pedestrian becomes infinitesimal as N grows.

Thus, the mass of each pedestrian is given by mi/N , and for this reason

the factor 1/N is added in (3.49). Therefore, we will not obtain vertical

acceleration value with physical meaning. In case of we are interested in

the total force exerted on the footbridge by pedestrians with mass mi, it is

enough to compute F̃micro(t) = NFmicro(t).

3.6.2 The macroscopic force model

The macroscopic force model is derived from the microscopic one; therefore,

the force exerted by pedestrians at time t is defined as

Fmacro(t) =

∫
Ω

h(t, x)φ(x)ρ(t, x)dx (3.50)

where φ(x) is the first mode of the system and ρ(t, x) is the pedestrian

density distribution given by the solution of the macroscopic crowd model.
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The function h(t, x) is given by

h(t, x) = α(t, x)gsin
(
2πf(t, x)t

)
where

α(t, x) = −0.2649f(t, x)3 + 1.3206f(t, x)2 − 1.7597f(t, x) + 0.7613

f(t, x) = 0.35v[ρ]3 − 1.59v[ρ]2 + 2.93v[ρ]

so that everything is only function of the velocity field v[ρ](t, x),which is

known once that the macroscopic crowd model is solved.

The study is carried out with the assumption that ρ(t, x) is a probability

density function, hence the mass of each pedestrian becomes infinitesimal as

N grows. Consequently, also in this case we will not obtain vertical accel-

eration value with physical meaning. In the next paragraph we will analyse

how to obtain values possibly comparable with experimental data present in

literature.

3.6.3 Equivalence of force models

We state that there is equivalence between force models if the macroscopic

force model is a generalization of the microscopic one and if the solution of

the latter converges to the solution of the former for large N . In the following

we will proof analytically and in chapter 4 numerically that the two models

previously described are effectively equivalent.

In general ρ(t, x) can be whatever distribution, but if it becomes a discrete

one, then the macroscopic force model should assume the same form of the

microscopic one. Indeed, if we express ρ(t, x) as a sum of Dirac delta functions

ρ(t, x) =
1

N

N∑
i=1

δ(x− xi)mi
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and we substitute it in the macroscopic force model (3.50), we obtain

Fmacro(t) =

∫
Ω

h(t, x)φ(x)
1

N

N∑
i=1

δ(x− xi)midx

=
1

N

N∑
i=1

mig

∫
Ω

α(t, x)sin
(
2πf(t, x)t

)
φ(x)δ(x− xi)dx

=
1

N

N∑
i=1

α(xi)migsin
(
2πf(xi)t

)
φ(xi)

=
1

N

N∑
i=1

αimigsin
(
2πfit

)
φ(xi)

= Fmicro(t)

hence Fmacro(t) = Fmicro(t). Thus, we can state that the macroscopic force

model is a generalization of the microscopic one, and therefore they may be

equivalent. Of course, in order to mathematically prove the equivalence, we

have to see if the solution provided by the microscopic force model converges

to the one provided by the macroscopic model for large N . This analysis will

be carried out in a numerical way in chapter 4.

Previously, we pointed out that the decision to perform the studies un-

der the assumption that ρ(t, x) is a probability density function affects the

vertical acceleration results. In both cases, if we want to obtain values com-

parable with data in literature, we have to operate in the following manner.

We denote

F̃micro(t) =
N∑
i=1

αimigsin(2πfit)φ(xi)

so that
mÿ(t) + cẏ(t) + ky(t) = Fmicro(t)

mÿ(t) + cẏ(t) + ky(t) =
1

N
F̃micro(t)

m
(
Nÿ(t)

)
+c
(
Nẏ(t)

)
+k
(
Ny(t)

)
= F̃micro(t)

and by defining z(t) = Ny(t), we obtain

mz̈(t) + cż(t) + kz(t) = F̃micro(t). (3.51)

Obviously, Eq.(3.51) holds also for Fmacro(t). So, if we would like to obtain

vertical acceleration values possibly comparable with data in literature, we
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have to display z(t). As shown in Eq.(3.51), it is enough to multiply the

vertical acceleration y(t) for the number of pedestrians N on the footbridge.





Chapter 4

Numerical results

In this chapter the numerical approach used for implementing all models

studied in chapter 3 will be analysed. Moreover, numerical results are dis-

cussed.

In particular, in section 4.1 the method used for discretizing the macro-

scopic crowd model will be presented; the given solution and the results

regarding the footbridge vertical acceleration will be discussed. In section

4.2 we will do a similar analysis concerning the microscopic scale. Finally, in

section 4.3 the results will be compared.

4.1 Macroscopic model results

In chapter 3 we derived the macroscopic crowd model, that for simplicity is

here reported


∂

∂t
ρ(t, x) +

∂

∂x

[
ρ(t, x)

[
vd −

∫
R
K(x, y)ρ(t, y)dy

]]
= 0 in Ω× (0, T ]

ρ(t, 0) = ρ(t, L) in ∂Ω× (0, T ]

ρ(0, x) = ρ0(x). in Ω
(4.1)

79
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In this section we will provide a numerical solution of Eq.(4.1). This equation

can be also written as
∂

∂t
ρ(t, x) +

∂

∂x
F [ρ](t, x) = 0 in Ω× (0, T ]

ρ(t, 0) = ρ(t, L) in ∂Ω× (0, T ]

ρ(0, x) = ρ0(x) in Ω

(4.2)

where F [ρ] = ρv[ρ]. It is evident that Eq.(4.2) is a conservation law, therefore

the numeric implementation will be done with a finite volume method. As

discussed in chapter 2, the choice of the numerical flux strongly affects the

efficiency of this method. By using an example in which the exact solution is

known, in the next paragraph we will compare different choices of numerical

flux, and we will select a suitable one for our purposes.

4.1.1 Burger’s equation

In order to choose the most suitable numerical scheme for solving partial

differential equation (4.1), some choice of numerical fluxes are tested on a

non-linear hyperbolic model equation

∂

∂t
ρ(t, x) +

∂

∂x
F [ρ](t, x) = 0 (4.3)

with F [ρ] = 1
2
ρ2. Eq.(4.3) is the so-called Burger’s equation. Regarding the

initial conditions, we will use a Heaviside function

ρ(x, 0) =

ρL if x < 0.2

ρR. if x > 0.2
(4.4)

The analytical solution of Eq.(4.3) with initial condition (4.4) is known in

two cases: ρL > ρR and ρL < ρR. In the first case, the discontinuity evolves

as a shock wave, while in the second case we have an expansion fan. Both

configurations are represented in Fig.(4.1), where every straight line is a

characteristic line. More analytical details can be found in [97].

The one-dimensional domain Ω = [0, L], with L = 1, is discretized

in space with intervals of length ∆x = 1/320; regarding the time step,

∆t = 1/1000 is used. Fig.(4.2) shows a comparison between the exact and

approximate solutions at time t = 0.5 s, obtained with different numerical

schemes. The compared ones are the following:



4.1 Macroscopic model results 81

• First-order Upwind scheme

ρn+1
j = ρnj − λ

[
1

2

(
ρnj
)2−1

2

(
ρnj−1

)2
]

• Lax-Friedrichs scheme

ρn+1
j =

1

2

[
ρnj+1 + ρnj−1

]
−λ

2

[
1

2

(
ρnj+1

)2−1

2

(
ρnj−1

)2
]

• Lax-Wendroff scheme

ρn+1
j = ρnj −

λ

2

[
1

2

(
ρnj+1

)2−1

2

(
ρnj−1

)2
]
+

+
λ2

2

[
1

2

(
ρnj + ρnj+1

)(1

2

(
ρnj+1

)2−1

2

(
ρnj
)2
)

+

− 1

2

(
ρnj + ρnj−1

)(1

2

(
ρnj
)2−1

2

(
ρnj−1

)2
)]

(a) (b)

Figure 4.1: Discontinuity evolution with initial condition ρL = 0.6, ρR = 0.2 in (a) and

ρL = 0.2, ρR = 0.6 in (b). In both graphs the solution is plotted at time t = 0.5 s.
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• MacCormack scheme

ρn+1
j = ρnj −

λ

4

[(
ρnj+1

)2−
(
ρnj
)2
]
−λ

4

(
ρnj
)2

+

− λ3

16

[(
ρnj+1

)4
+
(
ρnj
)4−2

(
ρnj+1

)2(
ρnj
)2
]
+
λ2

4
ρnj

[(
unj+1

)2−
(
unj
)2
]
+

+
λ

4

(
ρnj−1

)2
+
λ3

16

[(
ρnj
)4

+
(
ρnj−1

)4−2
(
ρnj
)2(

ρnj−1

)2
]
+

− λ2

4
ρnj−1

[(
unj
)2−

(
unj−1

)2
]

where λ = ∆t/∆x and ρnj is the cell average value in cell xj =
[
xj−1/2, xj+1/2

]
at time tn = n∆t.

As expected, first-order schemes show the well-known diffusive effect while

second-order schemes show unphysical oscillations, especially upstream of the

discontinuity. In particular, the Lax-Wendroff and the MacCormack scheme

do not even satisfy the maximum principle, which means that if ρ(0, x) ∈
[ρmin, ρmax] for all x ∈ Ω, then the numeric solution ρ(t, x) 6∈ [ρmin, ρmax].

Therefore, we will not use these schemes. Moreover, the use of an Upwind

scheme requires to know which are the downwind and upwind points for each

cell; in Eq.(4.1) this is a difficult task, hence we will not use this scheme.

In conclusion, the numerical scheme adopted for discretizing Eq.(4.1) is

the Lax-Friedrichs one, even if it is more diffusive than an Upwind scheme.

(a) (b)

Figure 4.2: Comparison between the exact and approximate solutions of Burger’s equa-

tion. In both graphs the solution is plotted at time t = 0.5 s.
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4.1.2 Crowd model

Once that the numerical scheme has been selected, we use it in order to solve

numerically Eq.(4.1). In this context, the Lax-Friedrichs scheme can be also

written as

ρn+1
j =

1

2

[
ρnj+1 + ρnj−1

]
−λ

2

[
F
[
ρnj+1

]
−F
[
ρnj−1

]]
(4.5)

hence, we need to evaluate the flux F in each cell average value. The pedes-

trian flow is given by

F [ρ](t, x) = ρ(t, x)v[ρ](t, x)

= ρ(t, x)

∫
Ω

K(x, y)ρ(t, y)dy

= ρ(t, x)

[∫
Ω

vdρ(t, y)dy −
∫

R
K(x, y)ρ(t, y)dy

]
.

(4.6)

For using scheme (4.5), we have to derive the discrete form of flux (4.6). Let

xj = j∆x and tn = n∆t, we have

F [ρ](tn, xj) = ρ(tn, xj)

[∫
Ω
vdρ(tn, y)dy −

∫ xj+R

xj

K(xj , y)ρ(tn, y)dy

]
= ρ(tn, xj)

[
vd

∑
i s.t.

0≤yi≤L

ρ(tn, xj)∆x

︸ ︷︷ ︸
=1

−
∑
i s.t.

|yi−xj |≤R

K(xj , yi)ρ(tn, yi)∆x

]

= ρ(tn, xj)

[
vd −

∑
i s.t.

|yi−xj |≤R

η
(
R− |xj − yi|

)
ρ(tn, xj)∆x

]
.

Since ρ(tn, xj) = ρnj , then

F [ρ](tn, xj) = F [ρnj ]

= ρnj

[
vd −

∑
i s.t.

|yi−xj |≤R

η
(
R− |xj − yi|

)
ρnj ∆x

]
(4.7)
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and by substituting (4.7) in (4.5), we obtain

ρn+1
j =

1

2

[
ρnj+1 + ρnj−1

]
−λ

2

[
ρnj+1

[
vd −

∑
i s.t.

|yi−xj |≤R

η
(
R− |xj − yi|

)
ρnj+1∆x

]
+

− ρnj−1

[
vd −

∑
i s.t.

|yi−xj |≤R

η
(
R− |xj − yi|

)
ρnj−1∆x

]]
.

(4.8)

All quantities on the right-hand side of scheme (4.8) are known, therefore we

can derive ρn+1
j and advance in time.

As previously mentioned, we use periodic boundary conditions, so that

the mass conservation is fulfilled. Regarding the initial condition, we assume

that ρ(0, x) is Beta-distributed over domain Ω = [0, L], so

ρ(0, x) =
xα−1(L− x)β−1

B(α, β)Lα+β−1
in Ω

where we set in particular α = β = 2 and

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
=

∫∞
0
xα−1e−xdx

∫∞
0
xβ−1e−xdx∫∞

0
xα+β−1e−xdx

.

In the mesoscopic model the state of each pedestrian is defined only by

his/her position, therefore also in the macroscopic model the unique manner

for distinguishing two pedestrians is by looking at their positions; thus, all

quantities besides the position must be common for all members.

The desired velocity is assumed to be distributed as vd ∼ N(vm, vstd);

moreover, we remind that it is assumed that during the whole walking a

pedestrian does not change his/her preferred speed, hence vd = const. The

values of the other parameters are reported in Table (4.1); vm and vstd are

taken from experimental data, while L and R are inherent to our case study.

In section 3.1 we stated that the value of the repulsion coefficient η is chosen

such that the inequality

η ≤ vmax − vd
R

= η∗ (4.9)

is satisfied, for taking into account the fact that a pedestrian cannot walk

faster than a maximum velocity vmax.
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By the way, we have also stated that inequality (4.9) is sufficient but

not necessary. Indeed, for other choices of η such that η > η∗ the velocity

v[ρ](t, x) does not overcome the maximum value allowed and the dynamics

of the model are unchanged; the unique difference is that the pedestrian

density ρ(t, x) requires less time before to reach a steady constant value.

The repulsion coefficient value used is reported in Table (4.1); with this

choice, repulsion forces assume values with physical meaning and a steady

state configuration is reached in reasonable time.

Parameter L[m] R[m] η[s-1] vm [ms-1] vstd [ms-1]

Value 100 2 20 1.34 0.24

Table 4.1: Parameter values used in numerical simulations.

The total number of cells used is J = 5000, therefore each cell has a length

of ∆x =
[
xj−1/2, xj+1/2

]
= 0.02, while the time step is ∆t = 0.002.

The time evolution of the solution of the macroscopic crowd model is

shown in Fig.(4.3). At the initial time, pedestrians in the second half of the

footbridge have in front of them a lower pedestrian density with respect to the

ones behind, thus they tend to walk faster. On the other hand, pedestrians

in the first half of the footbridge have in front of them a higher pedestrian

density with respect to the ones behind and so they tend to walk slower.

Since periodic boundary conditions are used, pedestrians in the second half

of the footbridge suddenly re-enter into it as time passes; therefore, we keep

on having pedestrians that tend to walk faster than others, and as a result,

a sort of discontinuity in the pedestrian density is formed, which is clearly

visible in Fig.(4.3a). This sort of wave spreads over the domain, and it is

relaxed over time, as Fig.(4.3d) shows. These dynamics are dictated by the

repulsion forces among pedestrians, who constantly try to position themselves

at a certain distance from neighbours. When this mechanism takes place, the

result is that the pedestrian density ρ(t, x) becomes uniformly distributed

over domain Ω, as shown in Fig.(4.3f).

Moreover, in Fig.(4.4) the time evolution of the velocity field is shown.

The trend is specular to the one of the density; indeed in regions of high

pedestrian density, the velocity is lower while in regions of low pedestrian

density, the velocity is higher. Consequently, a sort of discontinuity visible

in Fig.(4.4a) is formed again , which is then relaxed over time, as shown in
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(a) t = 0 s (b) t = 60 s

(c) t = 160 s (d) t = 240 s

(e) t = 360 s (f) t = 1000 s

Figure 4.3: Time evolution of the pedestrian density.
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(a) t = 0 s (b) t = 60 s

(c) t = 160 s (d) t = 240 s

(e) t = 360 s (f) t = 1000 s

Figure 4.4: Time evolution of the pedestrian velocity.
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(a) t = 0 s (b) t = 60 s

(c) t = 160 s (d) t = 240 s

(e) t = 360 s (f) t = 1000 s

Figure 4.5: Time evolution of the pedestrian pacing frequency.
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Fig.(4.4d). Since the density tends to assume a constant value over the foot-

bridge for large time, the velocity tends to become uniform too, as displayed

in Fig.(4.4f).

Finally, in Fig.(4.5) we show the time evolution of the pacing frequency.

When pedestrians walk faster, they tend to complete more steps per second,

hence the pacing frequency increases; on the other hand, when pedestrians

walk more slowly, the opposite occurs. This explains why the velocity and

the pacing frequency have similar trend.

All graphs above discussed have been derived with desired velocity vd =

1.41 m/s; in case of other values are chosen, the time evolution of ρ(t, x),

v[ρ](t, x) and f(t, x) would not change. The unique difference would be that

the sort of discontinuity would propagate at a different speed.

In the next paragraph we will analyse the numerical results regarding the

dynamic load due to pedestrian motion on the footbridge and the vertical

acceleration of the structure.

4.1.3 Force model

For deriving the vertical acceleration of the footbridge due to pedestrian

motion, firstly we need to obtain the dynamic load Fmacro(t). The pedestrian

density is given by the solution shown in Fig.(4.3), therefore we can apply

the model described in section 3.6.2, and evaluate

Fmacro(t) =

∫
Ω

h(t, x)φ(x)ρ(t, x)dx

as

Fmacro(t) =
J∑
j=1

α(xj)gsin
(
2πf(xj)t

)
sin

(
πxj
L

)
ρj(t)∆x

for each time step. The solution obtained is shown in Fig.(4.6); since the

pedestrian density assumes different values along the footbridge as displayed

in Fig.(4.3), the force is not constant. Moreover, the values obtained do not

have physical meaning because we are working under the assumption that

M = 1, but they are useful for making a comparison with the microscopic

model results.
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Figure 4.6: Dynamic load exerted by pedestrians on the footbridge.

4.1.4 Structure model

Once that the dynamic load F (t) is given, it is possible to evaluate the

vertical acceleration ÿ(t). The chosen parameters are reported in Table (4.2).

Therefore

k = mω2
n = 7.887× 106 N

m

c = 2mωnξ = 6.280× 103 Ns

m

ωn = 2πfn = 12.56
rad

s

fres = fn
√

1− 2ξ2 ' fn.

As shown in Fig.(4.5), the pacing frequency tends to assume values in between

1.7 Hz and 2.1 Hz; thus, only footbridges with natural frequency that belongs

to this frequency interval are subjected to high values of vertical acceleration.

This justifies the choice to assume fn = 2 Hz.

Due to the fact that we are working under the assumption of M = 1, the

pedestrian mass becomes infinitesimal as N grows; consequently, the total

mass is given only by the one of the footbridge. In cases where pedestrians

have real mass, it is advisable to add it at the one of the footbridge, because

the results can strongly change.
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Parameter m[Kg] fn[Hz] ξ[-]

Value 5× 104 2 5× 10−3

Table 4.2: Dynamic properties of the structure model.

Then, the vertical acceleration is given by
mÿ(t) + cẏ(t) + ky(t) = F (t)

y(0) = 0

ẏ(0) = 0

(4.10)

Eq.(4.10) is solved with the use of a Beta-Newmark method. Before to show

the numerical results, it is explained how this method works.

The subscript n indicates that the quantity is evaluated at time tn = n∆t.

Since y0 and ẏ0 are given by the initial conditions, it is possible to derive ÿ0

as

ÿ0 =
F0 − ky0 − cẏ0

m
and this provides a starting point for the algorithm. F0 denotes the quantity

Fmacro(0). Then, at a generic time tn we have

ÿ(t) = a(t) = an +
t− tn
δt

(
an+1 − an

)
(4.11)

and by integrating Eq.(4.11) we obtain

ẏ(t) = v(t) = vn +
(
t− tn

)
an +

(
t− tn

)2

2∆t

(
an+1 − an

)
y(t) = yn +

(
t− tn

)
vn +

(
t− tn

)2

2
an +

(
t− tn

)3

6∆t

(
an+1 − an

)
.

(4.12)

It is possible to generalize relations (4.12) as

vn+1 = vn + ∆t
[
(1− γ)an + γan+1

]
yn+1 = yn + ∆tvn +

∆t2

2

[
(1− 2β)an + 2βan+1

] (4.13)

where β and γ are two parameters. In both relations (4.13) the unique

unknown quantity is an+1. The governing equation at time tn+1 is

man+1 + cvn+1 + kyn+1 = Fn+1 (4.14)
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so, by substituting relations (4.13) in (4.14) we obtain

an+1 =
1

m+ ∆tcγ + ∆t2kβ

[
− cvn + ∆tc(γ − 1)− kyn −∆tkvn+

+
∆t2

2
k(2β − 1)an + Fn+1

]
.

(4.15)

All quantities on the right-hand side of (4.15) are known, therefore we can

derive an+1; consequently, from relations (4.13) we obtain vn+1 and xn+1, so

we can advance in time. The final output will be a(t) = ÿ(t) given for all

time t ≥ 0. This method is unconditionally stable only if

1

2
≤ γ ≤ 2β

thus the numerical simulations will be carried out with γ = 1
2

and β = 1
4
.

Figure 4.7: Vertical acceleration of the footbridge due to pedestrian motion.

The vertical acceleration of the structure derived with the use of this

method is shown in Fig.(4.7). During the first 200 s of simulation, the val-

ues of vertical acceleration are smaller in comparison with others given for

larger time. This trend can be explained by looking at Fig.(4.5), where it is

displayed the time evolution of the pedestrian pacing frequency. Indeed, in

graphs (a), (b) and (c) the pacing frequency is far from the natural frequency

of the footbridge, especially in the middle span, consequently the structure
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oscillates less. On the other hand, for larger time the pacing frequency as-

sumes almost a constant value which is nearer to the natural frequency of

the footbridge and therefore its oscillations are more pronounced.

Finally, since we used a finite volume method for discretizing a conser-

vation mass equation, we expect that the algorithm preserves the mass as

well during the entire simulation time. In Fig.(4.8) is shown that M = 1 ∀t,
hence the algorithm works correctly, and the results obtained are reliable.

Figure 4.8: Total mass of the system.

4.2 Microscopic model results

In chapter 3 we have discussed the microscopic model chosen in this work,

which is here reported for simplicity

dxi
dt

= vd −
1

N

N∑
j=1
j 6=i

η(R− |xi − xj|)1[xi,xi+R](xj − xi) (4.16)

accompanied by periodic boundary conditions and initial conditions xi(0) =

x0,i, for i = 1, . . . , N . In this section we will provide all numerical results

inherent to the simulation of model (4.16). In particular, in paragraph 4.2.1

the attention is given to the crowd model, in paragraph 4.2.2 results inherent
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to the force model are shown and finally in 4.2.3 the vertical acceleration of

the structure is analysed.

Figure 4.9: N = 100 pedestrians walking along a footbridge with length L = 100 m and

width B = 2 m. Due to the assumption of one-dimensional domain, pedestrians can walk

only along a straight line.

4.2.1 Crowd model

Since we are dealing with an ordinary differential equation, time integration

can be simply done by using an explicit Euler scheme, so

xi(t+ ∆t) = xi(t) + ∆tvi(t) for i = 1, . . . , N

where ∆t is the time step with which the time discretization is made. In this

way we can predict the position of each pedestrian at time t + ∆t, once the

positions and the velocities at time t are known. In the following we will use

∆t = 0.005.

As in the macroscopic model, all simulations are carried out in a one-

dimensional domain. Such an assumption can be considered natural, due

to the fact that we are interested only in crowd motion over a footbridge.

Indeed, footbridges tend to be long but with a reduced width, therefore pedes-

trians tend to walk in columns. In Fig.(4.9) an instant time of a simulation

over a footbridge with length L = 100 m and width B = 2 m is reported;

since the domain has only one dimension, pedestrians can move only along

a straight line.

Regarding the initial conditions, it is assumed that at time t = 0 s all

pedestrians are already on the footbridge, with positions distributed accord-

ing to a Beta distribution. An example is given in Fig.(4.10), where in graph

(a) the positions of the 100 pedestrians are sampled by a uniform distribution,

while in graph (b) they are sampled by a Beta distribution with parameters

α = β = 2. For instance, the first configuration takes into account a nor-

mal flow condition on the footbridge; the second one is able to simulate the
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(a)

(b)

Figure 4.10: In graph (a) the pedestrian positions are distributed according to a uniform

distribution; in graph (b) they follow a Beta distribution. In both cases the total number

of pedestrians is N = 100.

evolution of a crowded region in the middle span of the footbridge, caused

e.g. by the presence of an event. For keeping valid the assumption of mass

conservation, periodic boundary conditions are assigned; thus, pedestrians

who go out of the footbridge, immediately re-enter.

The parameter values are assigned like in the macroscopic crowd model,

consequently they are reported in Table (4.1). Since the simulations will be

carried out mostly with high values of N , the length of the sensory region is

set again to R = 2 m. Indeed, in crowded areas, it is reasonable to assume

that pedestrians are influenced only by others nearby.

In Fig.(4.11) the time evolution of the pedestrian positions over a foot-

bridge with length L = 100 m is shown. In order to understand better the

behaviour of the crowd, two generic pedestrians are marked with different

colours, blue and red, while all others are black. The total number of pedes-

trians on the footbridge is N = 125. The desired velocity, equal for each

agent, is set to vd = 1.41 m/s. The initial condition is reported in graph (a);

the pedestrian positions are Beta distributed. As time passes, pedestrians

tend to keep a certain distance among each others, due to repulsion forces

acting within the sensory region. Consequently, in graphs (b),(c) and (d) it is

possible to see how they tend to occupy the entire available surface. During

this phase, always due to repulsion forces, the distance between the i-th and

j-th pedestrian varies too. Finally, pedestrian positions tend to be evenly

distributed over the footbridge for large time, and this is visible in graph (f).
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(a) t = 0 s

(b) t = 100 s

(c) t = 200 s

(d) t = 300 s

(e) t = 400 s

(f) t = 1000 s

Figure 4.11: Time evolution of the pedestrian positions. In blue and red is represented

a generic couple of pedestrian i and j; the total number of pedestrians is N = 125.
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(a) (b)

Figure 4.12: Velocities and pacing frequencies of a generic couple of pedestrians i and

j marked respectively in blue and red in Fig.(4.11); the total number of agents on the

footbridge is N = 125 and the desired velocity is vd = 1.41 m/s.

Therefore we can conclude that from positions distributed as a Beta, after

1000 s we obtain positions which are evenly distributed, and this is consistent

with results given by the macroscopic model. Of course, we expect such a

dynamics for whatever initial condition.

Moreover, in Fig.(4.12) the velocities and the pacing frequencies of the

marked couple of pedestrians i and j are reported. Since the pacing frequency

depends only on the velocity, there is a huge similarity in the trend of graphs

(a) and (b); indeed, when the velocity increases, the number of steps per sec-

ond increases too, and vice versa. For both pedestrians the desired velocity

is never reached during the simulation; in fact, due to interactions among

others within the sensory region, the velocity is lower. Moreover, both quan-

tities oscillate more during the first 500 s of simulation than during the last

500 s; indeed, the system tends to a steady configuration for large time, con-

sequently we expect that also the velocity and the pacing frequency reach a

steady value, and for this reason the amplitude of the oscillations decreases

over time.

Obviously, the total number of pedestrians affects the changes in veloc-

ity and pacing frequency. For instance in Fig.(4.13) the above-mentioned

quantities are reported for N = 70, and it is clearly visible that a generic

agent is able to hold a velocity much nearer to the desired one, and also the

amplitude of the oscillations is reduced in comparison with Fig.(4.12).
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(a) (b)

Figure 4.13: Velocities and pacing frequencies of a generic couple of pedestrians; the

total number of agents on the footbridge is N = 70 and the desired velocity is vd = 1.41

m/s.

4.2.2 Force model

In order to derive the vertical acceleration of the footbridge, firstly we need to

evaluate the dynamic load Fmicro(t). The model we use is the one presented

in section 3.6.1, so

Fmicro(t) =
1

N

N∑
i=1

αimigsin(2πfit)φ(xi). (4.17)

where it is assumed that mi = mp for i = 1, . . . , N with mp = const, so that

all pedestrians weight the same. In literature, the value of mp is usually a

sample of a normal distribution with mean value mmean = 75 kg and standard

deviation mstd = 15 kg. In this work, we assume mp = 75 kg.

Since the pedestrian positions and velocities are known by the crowd

model, it is possible to compute the exerted force on the structure. The

results obtained by implementing Eq.(4.17) are reported in Fig.(4.14). These

values are obtained with the hypothesis that pedestrians have infinitesimal

mass as N grows; hence they are small in comparison to what we expect in

reality, but they are useful for making analogies with the macroscopic model.

Results shown in Fig.(4.14) are carried out with desired velocity vd = 1.41

m/s and they are averaged over 5 simulations. Moreover, since the system

reaches a steady configuration in a short time for N = 125, the amplitude of
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Figure 4.14: Dynamic load exerted by N = 125 pedestrians on the footbridge; the force

is obtained with the assumption of M = 1.

the oscillations remains almost constant during the entire simulation.

4.2.3 Structure model

Once that the dynamic load Fmicro(t) is given, it is finally possible to evaluate

the vertical acceleration of the structure. Therefore, we need to derive ÿ(t)

from 
mÿ(t) + cẏ(t) + ky(t) = Fmicro(t)

y(0) = 0

ẏ(0) = 0.

(4.18)

Eq.(4.18) is solved again by using a Beta-Newmark method with parameters

γ = 1/2 and β = 1/4, as shown in section (4.1.3). The footbridge is mod-

elled like in the macroscopic model, consequently the chosen parameters are

reported in Table (4.2). Again, the pedestrian masses are not added to the

footbridge one during the simulations.

The results obtained when the structure is excited by the force Fmicro(t)

given in Eq.(4.17) are shown in Fig.(4.15); these are the results obtained

by doing an average over 5 simulation. Obviously, the values obtained are

smaller than what we expect in reality, indeed the vertical acceleration is

almost imperceptible, but they will be useful for making a comparison with
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Figure 4.15: Vertical acceleration of the footbridge due to pedestrian motion under the

assumption of M = 1; the system is exerted by the force F (t) and the total number of

pedestrian is N = 125.

the macroscopic model. Moreover, since the system reaches a steady configu-

ration in a short time for N = 125, the amplitude of the oscillations remains

almost constant during the entire simulations.

A deeper insight into the vertical acceleration is given by the results

shown in Fig.(4.16). In both cases (a) and (b) the structure has been excited

by the force F̃micro(t); hence, we obtain the vertical acceleration z̈(t). The

unique parameter that differ is the desired velocity of pedestrians, set to

vd = 1.05 m/s in (a) and to vd = 1.50 m/s in (b). Therefore, we can state

that the vertical acceleration of the footbridge induced by a crossing flow of

pedestrians in leisure time is well simulated by the configuration (a), while

graph (b) simulates pedestrian motion during a rush hour.

Each vertical acceleration graph is accompanied by the graph of the force

which excites the structure and its frequency spectrum, that reveals which

are the main frequencies in the force signal.

In case (a) almost all the energy of the force signal is concentrated in

f = 1.72 Hz while a small amount is in lower frequencies; f corresponds

to the pacing frequency of pedestrians. Hence, we are far from a resonance

phenomenon because the natural frequency of the footbridge is fn = 2 Hz

and consequently the vertical acceleration is limited. The pedestrian comfort
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(a)

(b)

Figure 4.16: Vertical accelerations generated by N = 125 pedestrians, and relative force

and force spectrum; in (a) the desired velocity is set to vd = 1.05 m/s while in (b) is set

to vd = 1.50 m/s. N.a. is the acronym of normalized amplitude.
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Comfort

level
Degree of comfort Vertical acceleration

CL 1 maximum < 0.50m/s2

CL 2 medium 0.50− 1.00m/s2

CL 3 minimum 1.00− 2.50m/s2

CL 4 unacceptable discomfort > 2.50m/s2

Table 4.3: Defined comfort classes and related vertical acceleration values [79].

classes and related values of vertical acceleration of the structure are reported

in Table (4.3), and they are provided by the ”European design guide for

footbridge vibration” [79]; in this configuration we would be always in a

comfort level CL1, which is the maximum one. Consequently, pedestrians

can easily cross the footbridge, with a slight feeling of disturbance or even

with any discomfort.

In case (b) things are different. First of all, the energy of the force signal

is entirely concentrated in f = 2 Hz; consequently, a resonance phenomenon

is triggered. Indeed, by referring again to Table (4.3), we would be in a

comfort level CL4, since the acceleration is often over 2.5 m/s2.

The main purpose of Fig.(4.16) is to show how the pedestrian behaviour

can determine the stability or instability of a footbridge; indeed, by pass-

ing from leisure activities to rush hour periods the comfort of the structure

strongly changes and the engineers must consider this phenomenon. Ob-

viously this is only an example, because the results change when, for in-

stance, another number of pedestrians is used or different footbridge lengths

or weights are considered. Moreover, it should be kept in mind that, in this

study, human-structure interaction has been neglected and that, if consid-

ered, lower accelerations are expected.

4.3 Comparing results

We will compare the results given by the microscopic and macroscopic mod-

els in this section. The macroscopic scale lays on the assumption that the

number of pedestrians on the footbridge must be large enough, let us say

N →∞, in order to consider the flow of pedestrians as continuous; we would
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like to obtain an estimate of the number of pedestrians from which a macro-

scopic approximation is valid. We have seen in section 4.1 and 4.2 that the

models on the two scales have the same dynamics, hence an estimate of N

can be obtained by increasing step by step the number of pedestrians in the

microscopic model, and select a certain number N∗ such that the microscopic

solution assumes the same behaviour of the macroscopic one, at least in some

asymptotic regime. In this manner we have a deeper understanding about

the meaning of treating the crowd as a fluid in footbridge problems.

A first comparison between the two scales is done by looking at the re-

sults provided by the force models and at the values of vertical accelerations

previously discussed.

The values of major interest in structural responses are the maximum

reached during the whole time history; indeed the structure must be able

to bear such a load. In section 4.1 we have reported the values of force

which excite the structure and the corresponding vertical accelerations; we

remind that the values obtained do not have physical meaning, because we

are working under the assumption that pedestrians have infinitesimal mass.

(a) (b)

Figure 4.17: In blue are reported the maximum values in modulus of force and verti-

cal acceleration provided by the microscopic force and structural models during a time

simulation of 1000 s; In red are reported the maximum values in modulus of force and

vertical acceleration provided by the macroscopic force and structural models during a

time simulation of 1000 s. A logarithmic scale on the y-axis is used in graph (b).

In order to compare the results, we evaluate the maximum amplitude of

force and vertical acceleration provided by the microscopic force and struc-
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ture models when N varies with the one provided by the respective macro-

scopic models. The results obtained are summarized in Fig.(4.17). Both the

force and the vertical acceleration values given by the microscopic models

tend to the one given by the macroscopic models when N increases. More-

over, Fig.(4.17) proves that the microscopic force and structure models be-

come equivalent to the macroscopic ones for large values of N ; indeed for

N = 550 the maximum values reached during 1000 s of simulation are al-

most similar. Contrarily to what expected, when the number of pedestrians

increases the structure is excited by lower forces and its vertical accelerations

become lower too; this is again a consequence of the fact that we consider

pedestrians with infinitesimal mass as N grows.

A second comparison can be made by looking at the results provided

by the crowd models. The time evolution of the pedestrian density in the

macroscopic framework is reported in Fig.(4.3); while starting from a Beta

distribution, ρ(t, x) tends to a uniform one for large time. The same be-

haviour is shown by the microscopic crowd model in Fig.(4.11). Just by

looking at the two figures above-mentioned we can easily conclude that the

two models have the same dynamics, but it is hard to state how far the

two solutions are; moreover, the macroscopic crowd model always presents

this time evolution, while the microscopic one can change it when N varies.

Therefore, we would like to measure the distance between the two solutions

for increasing values of N and consequently we would like to find a number

of pedestrians N∗ such that the microscopic crowd model provides a solution

that can be considered as equivalent to the macroscopic one. In conclusion,

we will be able to state that a macroscopic approximation is valid if there

are at least N∗ pedestrians over the footbridge, instead of generically say

N →∞.

In the following we denote by ρmacro(t, x) the continuous pedestrian den-

sity given by the macroscopic crowd model and by ρmicro(t, x) the discrete

pedestrian density given by the microscopic crowd model. We have proved

that ρmacro(t, x) becomes uniformly distributed for large time; since we are

interested in the asymptotic behavior of the systems, we assume that

ρmacro(x) =
1

L
1[0,L](x).
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Instead, ρmicro(t, x) is a sum of Dirac delta functions, hence

ρmicro(t, x) =
1

N

N∑
i=1

δ(x− xi(t)).

(a) N = 50, t = 500 s (b) N = 50

(c) N = 50, t = 500 s

Figure 4.18: In histogram (a) it is reported ρmicro(t, x) in blue and ρmacro(x) in red;

the time evolution of the Wasserstein metric is shown in (b); the pedestrian positions on

the footbridge are shown in (c). All graph are obtained with N = 50.

In order to derive an estimate of N such that the models on the two scales

are equivalent, we need to compare the distance between the two density

probability functions ρmacro(x) and ρmicro(t, x) for large time. For evaluating

this distance, we use two methods:

• a histogram which gives information about the spatial distribution of

pedestrian positions on the footbridge; in each interval Ik is evaluated

the quantity nk/N , which is the fraction of pedestrians in Ik at a certain

time tn. All intervals are 1 meter long, hence |Ik| = 1, ∀k;

• the Wasserstein metric, which allows us to compute the distance be-

tween a continuous and a discrete density probability functions, by
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using relation (3.43) shown in paragraph 3.4.1. Moreover, we have

proved that

W1

(
ρmacro(x), ρmicro(t, x)

)
=

1

2N

when pedestrians are evenly distributed. Thus, we expect that the

Wasserstein metric tends to 1
2N

for large time. Furthermore, we fix a

threshold of 10h with h = 1, so that only when

W1

(
ρmacro, ρmicro

)
≤ 10−h

we will be able to conclude that the discrete pedestrian density ρmicro(t, x)

assumes the same form of the continuous pedestrian density ρmacro(x),

and so that the two models are equivalent.

(a) N = 100, t = 500 s (b) N = 100

(c) N = 100, t = 500 s

Figure 4.19: In histogram (a) it is reported ρmicro(t, x) in blue and ρmacro(x) in red;

the time evolution of the Wasserstein metric is shown in (b); the pedestrian positions on

the footbridge are shown in (c). All graph are obtained with N = 100.

The model parameter values used in the microscopic crowd model for

carrying out the following results are the ones used in section 4.2, with vd =

1.41 m/s. Of course, N varies.
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The results obtained with N = 50 are reported in Fig.(4.18). Pedestrians

tend to keep their sensory region empty, hence we do not have two agents

nearer than 2 m; moreover, sinceN is low, a lot of pedestrians are able to walk

at their desired velocity and they are not influenced by others. This behaviour

explains the pattern of histogram in Fig.(4.18a); the red line represents the

value assumed for large time by the continuous pedestrian density. Moreover,

the time evolution of the Wasserstein metric is reported in Fig.(4.18b); after

a transitional phase, it tends to 1
2N

= 1, meaning that pedestrians are evenly

distributed, as confirmed in Fig.(4.18c).

The results obtained with N = 100 are shown in Fig.(4.19). Pedestrians

try to occupy all the available space in order to let as empty as possible their

sensory regions; consequently, each agent is located at 1 m from his/her

predecessor for large time. Histogram (4.19a) confirms that pedestrians are

evenly distributed, which is also visible in Fig.(4.19c). Moreover, the time

evolution of the Wasserstein metric is reported in Fig.(4.19b); as expected,

after a transitional phase it tends to 1
2N

= 0.5.

The time evolution of the Wasserstein metric for increasing values of N is

reported in Fig.(4.20). Each graph shows a transitional phase, which becomes

longer as N increases; indeed, when the number of pedestrians is large, the

system requires more time for reaching a steady configuration. By the way,

in all cases the Wasserstein metric tends to 1
2N

for large time, which means

that an evenly distribution of pedestrians on the footbridge is always reached

independently by the value of N . Moreover, Fig.(4.20) shows also that

W1

(
ρmacro, ρmicro

)
→ 0, N →∞

for large time.

Finally, the results inherent to N = 550 are shown in Fig.(4.21). Due

to the large number of pedestrians on the footbridge, the walkers cannot let

empty their sensory regions; by the way, they try to stay as far as possible

from other members and consequently an evenly distribution is reached again

for large time. Indeed, histogram (4.21a) shows that there is always the same

number of pedestrians every 2 m - not every 1 m because it would not be

possible to have 5.5 pedestrians in each interval. Also the time evolution of

the Wasserstein metric in Fig.(4.21b) confirms that an evenly distribution is

reached for large time; due to the high number of pedestrians, the transitional
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(a) N = 150 (b) N = 200

(c) N = 250 (d) N = 300

(e) N = 350 (f) N = 400

Figure 4.20: Time evolution of the Wasserstein metric as N varies.
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phase is longer. The pedestrian positions over the footbridge are reported in

Fig.(4.21c); in this case it is almost impossible to recognize single pedestrians,

indeed the walking crowd seems more a continuous fluid than a discrete

quantity, contrarily to what shown for N = 50 and N = 100.

As previously said, we are able to conclude that the discrete pedestrian

density ρmicro(t, x) assumes the same form of the continuous pedestrian den-

sity ρmacro(x), and so that the two models are equivalent, only when

W1

(
ρmacro, ρmicro

)
≤ 10−h (4.19)

with h = 1. Since ρmicro is time dependent, the Wasserstein metric too,

therefore we have to decide at which time evaluate it. Obviously, we expect

that inequality (4.19) would be satisfied only for large time and for a certain

number of pedestrians N > N∗, which will be derived in the following.

(a) N = 550, t = 2000 s (b) N = 550

(c) N = 550, t = 2000 s

Figure 4.21: In histogram (a) it is reported ρmicro(t, x) in blue and ρmacro(x) in red;

the time evolution of the Wasserstein metric is shown in (b); the pedestrian positions on

the footbridge are shown in (c). All graph are obtained with N = 550.

Firstly, we need to compute the mean pedestrian velocity v(N); in order

to obtain v(N), the mean velocity of all pedestrians on the footbridge is
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N v(N) T (N) t0(N) W1(N)

50 1.397 71.581 1073.715 1

100 1.201 83.263 1248.945 0.5

150 1.134 88.183 1322.745 0.333

200 1.102 90.744 1361.16 0.25

250 1.079 92.678 1390.17 0.2

300 1.066 93.808 1407.12 0.166

350 1.061 94.251 1413.765 0.142

400 1.052 95.057 1425.855 0.125

450 1.035 96.618 1449.27 0.111

500 1.013 98.716 1480.74 0.1

550 0.978 102.249 1533.735 0.09

Table 4.4: Values of mean velocity v(N) in m/s, crossing time T (N) in seconds, reference

time t0(N) in seconds and Wasserstein metric W1(N) as N varies.

evaluated for each time step, and consequently the mean value over all time

steps is computed. We denote by T (N) the time needed for crossing the

footbridge with velocity v(N), hence

T (N) =
L

v(N)
.

As previously stated, we are only interested in the asymptotic behaviour

of the system, therefore we fix a time t0(N) = 15T (N) and we compute

W1

(
ρmacro(x), ρmicro(t0(N), x)

)
. The results are shown in Table (4.4); for the

sake of simplicity, we denoted by

W1(N) := W1

(
ρmacro(x), ρmicro(t0(N), x)

)
.

We remind that all values reported in Table (4.4) are obtained with desired

velocity vd = 1.41 m/s.

The mean velocity v(N) decreases as N increases; indeed, when N in-

creases the repulsion forces increase too, therefore pedestrians walk slower.

Even for high values of N the velocity v(N) does not tend to zero, because

all pedestrians have the same desired velocity; thus, once that an evenly dis-

tribution is reached, pedestrians walk at a constant speed, and queue are

not formed. Since v(N) decreases when N increases, the crossing time T (N)
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increases; this means that for increasing values of N a pedestrian needs more

time for crossing the footbridge. Finally, the value assumed by the Wasser-

stein metric at time t0(N) is reported; in all cases, pedestrians are evenly

distributed at time t0(N), hence

W1(N) =
1

2N
.

For the sake of simplicity, the results inherent to the Wasserstein met-

ric when N varies are summarized in Fig.(4.22). As expected, the distance

between the discrete and continuous pedestrian densities decreases as N in-

creases. Indeed, it is more appropriate a discrete description of the crowd in

Fig.(4.18c) than in Fig.(4.21c), therefore ρmicro differs from ρmacro for N = 50,

and consequently W1(50) = 1; on the contrary, it is more appropriate a con-

tinuous description of the crowd in Fig.(4.21c) than in Fig.(4.18c), therefore

ρmicro is similar to ρmacro for N = 550, and consequently W1(550) = 9×10−2.

Moreover, Fig.(4.22) shows that W1(N) assumes values under the thresh-

old only for N > N∗ with N∗ = 500; hence

if N > N∗ =⇒ W1(N) = W1

(
ρmacro(x), ρmicro(t0(N), x)

)
< 10−1.

Figure 4.22: Wasserstein metric computed at time t0(N) for increasing values of N .

In chapter 3 we have shown that the passage from a microscopic to a

macroscopic scale is basically founded on the assumption that N → ∞; in
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this section we have proved that is enough to take N > N∗, with N∗ = 500.

This means that if we decide to use a macroscopic framework for analysing

the vertical acceleration of a footbridge with length L = 100 m, it is auto-

matically assumed that on the structure there are at least 500 pedestrians.

Therefore, it is like to assume that there are 5 pedestrians in each meter, and

such a condition is rarely verified in real contexts. By the way, we have used a

one-dimensional domain because normally footbridges have a reduced width

to length ratio; if we consider that, normally, the footbridge width is in the

range 2− 5 m, then we are able to state that the macroscopic approximation

is valid when there are at least from 1 to 2.5 pedestrians in each m2. These

crowd density values, at least in the range 1 − 1.5 ped/m2, have been often

recorded on real footbridges.

In any cases, by using a macroscopic approximation we are assuming that

the footbridge is occupied by a number of pedestrians that is seldom reached

in service. This is one of the main reasons which explains why in literature

almost all models dealing with footbridge vibration problems are based on a

microscopic scale, despite the fact that a model based on a macroscopic scale

has a reduced computational time.



Chapter 5

Conclusions and future works

This study presented a mathematical framework able to simulate vibrations

in footbridges that are prone to excessive vertical vibrations due to multiple

pedestrians walking. The framework is composed by a cascade of models

which are necessary to describe this phenomenon. Firstly, a crowd model

was needed for taking into account the pedestrian behaviour, so it describes

their way to interact with other members and with the environment, their

strategies and their goals. Secondly, a force model was introduced, which uses

the pedestrian velocities given by the crowd model for evaluating the dynamic

load exerted on the footbridge. Finally, a structure model was proposed,

which uses the dynamic load provided by the force model for computing the

vertical acceleration of the footbridge. All the analysis has been carried out

by keeping a constant parallelism between two different scales, respectively

a microscopic and a macroscopic one. Moreover, all results were carried out

under the assumption that the pedestrian mass scales with the number of

pedestrians N , so that the total mass of the system remains constant and

unitary over time.

5.1 Summary of results

The modelling framework used in our work can be subdivided in three con-

secutive steps.

113
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1. Definition of crowd models:

The following microscopic crowd model

dxi
dt

= vd,i −
1

N

N∑
j=1
j 6=i

K(xi, xj) (5.1)

accompanied by suitable initial conditions xi(0) = x0,i was selected in order

to describe the evolution of pedestrian positions and walking velocities in

time and space. Model (5.1) is a first-order one; it takes into account the

pedestrian desire to walk at a preferred speed vd, but due to interaction with

other agents, this desired velocity is modified by the interaction kernel K.

The interactions take place only within the sensory region of each pedestrian,

hence the interaction kernel used is

K(xi, xj) = η(R− |xi − xj|)1[xi,xi+R](xj − xi).

Then a scale passage was made; therefore, a statistical representation of

the crowd was used which automatically implies the assumption of N →∞,

and analogies with the kinetic theory of rarefied gases allowed us to derive a

weak form of a Boltzmann-type equation, which is

d

dt

[∫
R
ϕ(x)f(t, x)dx

]
=

1

2

∫
R

∫
R

[
ϕ(x′)+ϕ(y′)−ϕ(x)−ϕ(y)

]
f(t, x)f(t, y)dxdy

(5.2)

valid for asymmetric binary interactions. Finally, Eq.(5.2) was studied in

the asymptotic regime, and the quasi-invariant interaction limit allowed us

to derive the Fokker-Planck equation.

Since we worked with a first-order crowd model, we did not have to com-

pute the hydrodynamic limit. Indeed, after that the distribution function

f(t, x) was identified with the pedestrian density ρ(t, x), we had immediately

derived the macroscopic model from the Fokker-Planck equation, which is
∂

∂t
ρ(t, x) +

∂

∂x

[
ρ(t, x)

[
vd −

∫
R
K(x, y)ρ(t, y)dy

]]
= 0 in Ω× (0, T ]

ρ(t, 0) = ρ(t, L) in ∂Ω× (0, T ]

ρ(0, x) = ρ0(x). in Ω
(5.3)
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This procedure allowed us to obtain a macroscopic model directly from the

microscopic one; indeed, model (5.3) contains the same interaction kernel of

model (5.1).

Models (5.1) and (5.3) provide respectively the time evolution of the

discrete and continuous pedestrian density on the footbridge, which are used

by the force model for evaluating the dynamic load exerted on the structure.

Moreover, it was analytically proved that the macroscopic crowd model is a

generalization of the microscopic one.

2. Definition of force models:

Pedestrian action was described by a moving force model. In the microscopic

force model, the force exerted by the i-th pedestrian was modelled by a single

sine function and was expressed as

Fmicro(t) =
1

N

N∑
i=1

αimigsin(2πfit)φ(xi) (5.4)

while in the macroscopic framework the following relation was used

Fmacro(t) =

∫
Ω

h(t, x)φ(x)ρ(t, x)dx. (5.5)

It is evident that the discrete and continuous pedestrian density must be

known for using relations (5.4) and (5.5). Moreover, it was analytically

proved that the macroscopic force model is a generalization of the micro-

scopic one.

3. Definition of the structure model:

Since it is usually assumed that only one mode mainly contributes to the

structural response in footbridge vibration problems, a dynamic system with

a single degree of freedom was used; hence equation

mÿ(t) + cẏ(t) + ky(t) = F (t) (5.6)

is used for computing the vertical acceleration. The structure model is com-

mon over each scale; depending on the use of Fmicro(t) or Fmacro(t) in Eq.(5.6)

we obtained respectively ÿmicro(t) or ÿmacro(t).
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Consecutively, all models above-mentioned were solved numerically. Model

(5.1) was implemented by using an explicit Euler scheme while we use a finite

volume method with a Lax-Friedrichs numerical flux for model (5.3). The

spatial grid used in the finite volume method was also used for computing

the integral through a rectangle quadrature rule in force models (5.4) and

(5.5). Instead, Eq.(5.6) was implemented with the usage of a Beta-Newmark

method.

Moreover, numerical results were discussed. The time evolution of the

continuous pedestrian density provided by model (5.3) was shown; indepen-

dently by the initial conditions, ρ(t, x) always became uniformly distributed

over the footbridge. The discrete pedestrian density provided by model (5.1)

showed a similar behaviour. In both cases, also the time evolution of the

pedestrian velocity and pacing frequency was analysed, and it was shown in

the microscopic framework that pedestrians walk slower when N increases.

Also results concerning the forces applied by pedestrians on the structure

and the induced vertical accelerations were discussed; in particular, it was

shown that on the basis of the pedestrian activity - leisure time or rush hour

- the footbridge vertical vibrations strongly change, and different levels of

comfort were reached.

Finally, a comparison was made between results provided by models on

the two scales. Since the values of major interest in structural responses are

the maximum reached during the whole time history, we decided to compare

them. We proved that the values provided by the microscopic force and

structural models tend to the values provided by the respective macroscopic

models when N increases; indeed a macroscopic approximation is valid in

the limit N → ∞, hence we expected that by increasing the number of

pedestrians in the microscopic models, the results would tend to be equal, and

models equivalent. Also the crowd models were compared by the usage of the

Wasserstein metric and histograms; in particular, the distance between the

discrete and continuous pedestrian density on the footbridge was computed

for increasing values of N . With this technique we found out an estimate N∗

which ensures the validity of a macroscopic approximation of the crowd.
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5.2 Suggestions for future research

There are several perspectives for future research that would extend and

possibly would improve our current work.

All the analysis was carried out on a one-dimensional domain; it could

be possible to study footbridge vibration problems by working on a two-

dimensional domain. Surely, more difficulties will occur in the crowd model

definition, since boundary repulsion forces should be introduced, and also the

scale passage will be more challenging; for instance, all integrals will be made

over the two space dimensions instead of only one, and also the expression of

the binary interaction will be more elaborated, since we will have to define

how pedestrians interact in direction x and y. Moreover, if a two-dimensional

domain is used, obstacles on the footbridge deck could be added, in order to

analyse the impact that they have on footbridge vibrations.

Both at the microscopic and macroscopic scales, we have used a first-

order differential crowd model. A possible development consists in using

second-order differential crowd model. Overall, the crowd model will be

more detailed than the one used, because we will have an additional equa-

tion which will directly describe the time evolution of pedestrian velocities.

On the other hand, the scale passage will become difficult from a mathemat-

ical point of view, since we will have to work with a distribution function

f(t, x, v) instead of f(t, x). Moreover, since in the mesoscopic model two

pedestrians i and j are distinguishable only by their positions xi and xj,

we were obligated to assume that in the microscopic model all pedestrians

had the same characteristic, such as mass and desired velocity, and therefore

the inter-subject variability was neglected. As a further improvement of our

work, it could be possible to include the inter-subject variability and try to

understand if results would change; of course, mathematical difficulties will

arise in the scale passage.

As previously stated, all results obtained and compared in this work were

carried out under the assumption that the total mass of the system is time

independent and unitary, hence pedestrians have infinitesimal mass as N

increases. The same analysis could be done by using massive pedestrian, in

order to evaluate if the obtained estimate N∗ would change or not.

Pedestrian action was described by a moving force model; by the way,
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other choices could be done. For instance, pedestrian-structure interactions

could be modelled by coupling a single degree of freedom system describing

the structure with N single degree of freedom systems describing a crowd

of N pedestrians. This choice would probably provide more accurate force

and vertical acceleration values than the one provided by our model but on

the other hand the calibration of the force model will be difficult due to

parameter uncertainties.

Regarding the structure, we modelled the footbridge with a dynamic sys-

tem with one degree of freedom; of course other choices can be done, and for

instance a finite element method could be used.

Basically, the sub-models describing crowd dynamics, walking forces due

to pedestrian motion and vertical accelerations can be updated as soon as

better models will be published or new relevant experimental data will be

available for calibration and verification.

Finally, in this work an estimate of number of pedestrian N∗ for which a

macroscopic approximation is valid was derived for a fixed footbridge length,

in particular L = 100 m. Obviously, the same procedure used for deriving

N∗ can be done when L varies, and it would be interesting to understand if

exist a formula which expresses N∗ as function of L.



Appendix A

Finite Volume Method

The finite volume method is a technique for representing and evaluating

partial differential equations in the form of algebraic equations. Extensive

introductions of this method can be found in [64–67] accompanied by an

amply variety of applications to real world problems. In the following we

will give only the main concepts of this technique.

A conservation law is an initial/boundary-value problem of type
∂u

∂t
+∇ · F(u) = 0 in Ω× (0, T ]

u(t,x) = g(t,x) in ∂Ω× (0, T ]

u(0,x) = u0(x) in Ω

(A.1)

where u = u(t,x) is an unknown scalar quantity defined for t ≥ 0 in a domain

Ω ⊆ Rd and it is equal to a given function g(t,x) on the boundaries domain

Γ = ∂Ω; moreover, T > 0 is a certain final time, u0(x) is the initial condition,

F(u) = F(u, t,x) is a function with image in Rd called flow of u, while

∇ · F(u) =
∂F1(u)

∂x1

+ · · ·+ ∂Fd(u)

∂xd

is the divergence of the vector field x 7→ F(u(t,x), t,x) made only on the spa-

tial variables. For the sake of simplicity, even if F has functional dependence

from u, round bracket are used.

First of all we show why an equation of type (A.1) is called conservation

law. For doing this, we fix a region Σ ⊂ Ω with boundary ∂Σ sufficiently

regular so that in Σ it holds the divergence theorem. Then, by integrating

119
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Eq.(A.1) on Σ and while applying the divergence theorem, we obtain

0 =

∫
Σ

(
∂u

∂t
+∇ · F(u)

)
dx

=
d

dt

∫
Σ

udx +

∫
Σ

∇ · F(u)dx

=
d

dt

∫
Σ

udx +

∫
∂Σ

F(u) · n dγ

where n is a unit vector normal to the surface ∂Σ and pointing outward.

The second integral on the right-hand side represents the flow of u across the

boundary of domain Σ. Then by integrating over a time interval
[
t1, t2

]
, we

have ∫ t2

t1

[
d

dt

∫
Σ

udx +

∫
∂Σ

F(u) · ndγ
]
dt = 0

and by using the fundamental theorem of calculus, we get∫
Σ

u(t2,x)dx =

∫
Σ

u(t1,x)dx−
∫ t2

t1

∫
∂Σ

F(u) · n dγdt (A.2)

which immediately allows to understand why equations of type (A.1) are

called conservation law. Indeed, if the flow of u across ∂Σ is null, then∫ t2

t1

∫
∂Σ

F(u) · n dγdt = 0 (A.3)

and therefore ∫
Σ

u(t2,x)dx =

∫
Σ

u(t1,x)dx

which means that the quantity
∫

Σ
u(t,x)dx is conserved within the time

interval
[
t1, t2

]
. On the other hand, if the quantity in (A.3) is not null,

the variation of
∫

Σ
u(t,x)dx in

[
t1, t2

]
is equal to the balance between the

incoming and outgoing flow across ∂Σ.

Eq.(A.2) is the starting point of each finite volume method. Therefore,

the idea is to decompose the spatial domain Ω in finite volumes, also called

cells; then, in each cell it is imposed the conservation law (A.1), written in

the integral form. In the following we will see how this method works in a

two-dimensional and one-dimensional domain.
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A.0.1 Two-dimensional case

We imagine to have a domain Σ ⊂ Ω with Ω ⊆ R2 and to decompose such

domain in cells Σj with finite measure
∣∣Σj

∣∣, which intersect only at their

boundaries ∂Σj. The discretization in time is made with a certain time step

∆t ≥ 0, with tn = n∆t, n ∈ N.

Figure A.1: Spatial discretization of a two-dimensional domain.

The first step consists in writing Eq.(A.2) for a generic cell Σj in the time

interval
[
tn, tn+1

]
∫

Σj

u(tn+1,x)dx =

∫
Σj

u(tn,x)dx−
∫ tn+1

tn

∫
∂Σj

F(u) · nj dγdt. (A.4)

As shown in Fig.(A.1) we can define ∂Σj,l = ∂Σj ∩ ∂Σl which is the common

boundary between cells Σj and Σl, and write (A.4) as∫
Σj

u(tn+1,x)dx =

∫
Σj

u(tn,x)dx−
∑

|∂Σj,l>0|

∫ tn+1

tn

∫
∂Σj,l

F(u) · nj dγdt.

The second step consists in introduce the cell average values of the exact

solution and the average fluxes on cell boundaries

Un
j =

1∣∣Σj

∣∣ ∫
Σj

u(tn,x)dx

F n
j,l =

1

∆t

∫ tn+1

tn

1∣∣∂Σj,l

∣∣ ∫
∂Σj,l

F(u) · nj dγdt
(A.5)

and by substituting relations (A.5) in Eq.(A.4) we obtain∣∣Σj

∣∣Un+1
j =

∣∣Σj

∣∣Un
j −∆t

∑
|∂Σj,l>0|

∣∣∂Σj,l

∣∣F n
j,l.
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If we divide by
∣∣Σj

∣∣ and we define

λj,l = ∆t

∣∣∂Σj,l

∣∣∣∣Σj

∣∣
we finally obtain the relation

Un+1
j = Un

j −
∑

|∂Σj,l>0|

λj,lF
n
j,l. (A.6)

Eq.(A.6) is the discrete form of Eq.(A.4); indeed, if the flow across cells Σj

and Σl is null, then Un+1
j = Un

j ; this means that the quantity U in cell Σj

is conserved within the time interval
[
tn, tn+1

]
. Thus, Eq.(A.6) suggests to

define a numerical scheme in which the cell average values are update at each

time step in order to the numerical flux values, easily obtained from the cell

average values of the surrounding cells.

Till this point we have not introduced approximations, indeed Eq.(A.6)

provides an exact solution. But for being able to implement equations as

Eq.(A.1), approximations must be introduced. Therefore, we define a discrete

cell average value unj ' Un
j , which is an approximation of the exact one; so,

unj represents the discrete cell average value of cell Σj at time tn. Moreover,

we introduce the so-called numerical flux fnj,l = f(unj , u
n
l ) ' F n

j,l, which is an

approximation of the average flux between two consecutive cells Σj and Σl,

defined by using their discrete cell average values unj and unl .

Thanks to these considerations, we are able to write the numerical scheme

of whatever finite volume method that operates on a two-dimensional do-

main, and is given by

un+1
j = unj −

∑
|∂Σj,l>0|

λj,lf
n
j,l. (A.7)

Once that the discretization is made and the time step ∆t is chosen, the

unique unknown quantity of the numerical scheme (A.7) is the numerical

flux fnj,l. Hence, the unique difference among all finite volume methods relies

on the choice of fnj,l. It is worth to point out that it does not exist a numerical

flux which gives optimal results for all problems, but instead each application

has its own optimal choice. Since the solution obtained depends mainly on

the way in which the flux among cells is evaluated, it is recommended to make

this choice carefully, possibly applying the scheme adopted on a benchmark

model.
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A.0.2 One-dimensional case

In this context the domain to discretize is Ω ⊆ R. We introduce a spatial

discretization with intervals of length ∆x, as shown in Fig.(A.2). Since ∆x

is constant, all cell centers are equispaced, so xj = j∆x, j ∈ Z. Each cell

is defined as Σj =
[
xj−1/2, xj+1/2

]
, where xj represent the cell center and

xj+1/2 =
(
j + 1

2

)
∆x is the boundary. As before, we divide the final time T

in N time steps each long ∆t > 0, so that T = N∆t, and tn = n∆t, n ∈ N.

Figure A.2: Spatial discretization of a one-dimensional domain.

Consequently, Eq.(A.2) can be written as∫ xj+1/2

xj−1/2

u(tn+1, x)dx =

∫ xj+1/2

xj−1/2

u(tn, x)dx+

−
(∫ tn+1

tn
F
(
u(t, xj+1/2)

)
dt−

∫ tn+1

tn
F
(
u(t, xj−1/2)

)
dt

)
(A.8)

and by substituting in Eq.(A.8) the cell average values of the exact solution

Un
j =

1

∆x

∫ xj+1/2

xj−1/2

u(tn, x)dx

and the average fluxes of u across the cell boundaries

F n
j+1/2 =

1

∆t

∫ tn+1

tn
F
(
u(t, xj+1/2)

)
dt

we get

∆xUn+1
j = ∆xUn

j −
(
∆tF n

j+1/2 − F n
j−1/2

)
.

If we divide by ∆x and we define

λj =
∆t

∆x
> 0

we obtain the relation

Un+1
j = Un

j − λj
(
F n
j+1/2 − F n

j−1/2

)
. (A.9)
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Each finite volume method defined on a one-dimensional domain is based on

relation (A.9), where the unknown quantities are the discrete cell average

values unj , which are approximations of the exact cell average values Un
j .

Starting by the discrete cell average values, an approximation of the solution

u(tn, x) is reconstructed. Moreover, as in the two-dimensional case, also the

quantity F n
j+1/2 must be approximated by a numerical flux fnj+1/2, which is

defined by taking in consideration only the two cells with common interface

xj+1/2, so that

fnj+1/2 = f
(
unj , u

n
j+1

)
.

Once that the expression of the numerical flux is chosen, relation (A.9) can

be written as

un+1
j = unj − λj

(
fnj+1/2 − fnj−1/2

)
. (A.10)

This scheme is common for all finite volume methods and is used for ad-

vancing in time. Since this will be the scheme adopted in the following, we

will provide a trivial example for showing how it operates, and what means

choose a numerical flux.

A.0.2.1 Example:

Let us consider the conservation law
∂u

∂t
+

∂

∂x
F (u) = 0 in Ω× (0, T ]

u(0, x) = u0(x) in Ω
(A.11)

where Ω = [0, 2] ⊂ R, a is a zero constant and F (u) = au is the flow of u.

Hence, Eq.(A.11) can be written also as
∂u

∂t
+ a

∂u

∂x
= 0 in Ω× (0, T ]

u(0, x) = u0(x). in Ω
(A.12)

This initial-value problem is able to reproduce the propagation of a signal

along the x-axis, which spreads with constant velocity |a|; in particular the

propagation is toward the right direction if a > 0 or toward the left if a < 0.

Initial-value problem (A.12) admits an analytical solution. Indeed, if we

fix arbitrarily a time t > 0 and a point x, the characteristic line which passes

by (t, x) has equation

x(t) = x+ a(t− t). (A.13)
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Relation (A.13) crosses the x-axis in the point x(0) = x− at; therefore

u(t, x) = u(t, x(t)) = u(0, x(0)) = u(0, x− at) = u0(x− at).

Since the point (t, x) is arbitrary, we can conclude that the solution of the

initial-value problem (A.12) is given by

u(x, t) = u0(x− at), x ∈ R, t ≥ 0. (A.14)

On the other hand, since (A.12) is a conservation law on a one-dimensional

domain, it can be solved also numerically by using the numerical scheme

(A.10). Therefore, we have to choose a suitable numerical flux. The most

popular ones are the following:

• Lax-Friedrichs scheme:

The numerical flux f(u, v) is given by

fLF (u, v) =
a

2
(u+ v) +

1

2λ
(u− v)

which gives a numerical scheme that can be written as

un+1
j − unj

∆t
+ a

unj+1 − unj−1

2∆x
−∆x

1

2λ

unj+1 − 2unj + unj−1

∆x2
= 0.

Thus, this method corresponds to a finite-difference discretization in

xj at time tn of the modified equation

∂u

∂t
+ a

∂u

∂x
−∆x

1

2λ

∂2u

∂x2
= 0 (A.15)

which has an additional diffusion term proportional to ∆x 1
2λ

also de-

noted as numerical diffusion.

• Upwind scheme:

The numerical flux f(u, v) is given by

fU(u, v) =

au if a > 0

av if a < 0

which gives a numerical scheme that can be written as

un+1
j − unj

∆t
+ a

unj+1 − unj−1

2∆x
−∆x

|a|
2

unj+1 − 2unj + unj−1

∆x2
= 0.
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(a) (b)

(c)

Figure A.3: Solutions of initial-value problem (A.12) plotted at time t = 4.5 s and

obtained with different numerical fluxes; the exact solution in red is given by (A.14).

Hence, this method corresponds again to a finite-difference discretiza-

tion in xj at time tn of the modified equation (A.15). The unique

difference is that now the numerical diffusion is proportional to ∆x |a|
2

.

• Lax-Wendroff scheme:

The numerical flux f(u, v) is given by

fLW (u, v) =
a

2
(u+ v) +

1

2
λa2(u− v)

which gives a numerical scheme that can be written as

un+1
j − unj

∆t
+ a

unj+1u
n
j−1

2∆x
−∆x

λa2

2

unj+1 − 2unj + unj−1

∆x2
= 0.
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Thus, this method corresponds to a finite-difference discretization in xj
at time tn of the modified equation (A.15), and introduces a numerical

diffusion proportional to ∆xλa
2

2
.

The behaviour of the solution provided by the numerical schemes above

described is shown in Fig.(A.3). The initial condition is a function that

assumes value 1 in the interval [0.25, 0.5], 0 otherwise. For all cases, a = 1/4

while the length of each cell is ∆x = 1/128. In order to ensure the stability

of the system, the time step ∆t is chosen such that

∆t = Cour
∆x

a
.

In this way the CFL condition is satisfied. The Courant number used in

Fig.(A.3) is Cour = 0.85. It is noticeable how the choice of the numeri-

cal flux strongly affect the performances of the method. In particular, the

numerical diffusion of the Lax-Friedrichs and Upwind scheme is evident in

Fig.(A.3a) and Fig.(A.3b), more accentuated in the first one; the dispersion

of the Lax-Wendroff scheme is visible in Fig.(A.3c). Moreover, the Lax-

Wendroff scheme does not even respect the maximum principle, indeed the

approximated solution assumes values above 1 and under 0.
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Zürich: ETH, 1993.

[86] J.J. Fruin, Pedestrian planning and design, Elevator World Inc., 1971.

[87] H.K. Lam, J.F. Morrall, H. Ho, Pedestrian flow characteristics in Hong

Kong, Transportation Research Record; 1487:56–62, 1995.

[88] S.J Older, Movement of pedestrians on footways in shopping streets,

Traffic Engineering and Control; 10:160–3, 1968.

[89] J. Pauls, Calculating evacuation times for tall buildings, Fire Safety

Journal; 12:213–36, 1987.

[90] M.R. Virkler, S. Elayadath, Pedestrian speed-flow-density relationships,

Transportation Research Record;1438:51–8, 1994.

[91] A. Polus, J. Schofer, A. Ushpiz, Pedestrian flow and level of service,

Journal of Transport Engineering; 109:46–56, 1983.

[92] A.K. Sarkar, K. Janardhan, A study on pedestrian flow characteristics,

In: Proceedings 76th transportation research board annual meeting,

Washington; 1997.

[93] Y. Tanariboon, S. Hwa, C. Chor, Pedestrian characteristics study in

Singapore, ASCE Journal of Transportation Engineering; 112:229–35,

1986.



BIBLIOGRAPHY 137

[94] S.S. Vallender, Calculation of the Wasserstein distance between prob-

ability distributions on the line, Theory Probab. Appl., 18(4), (1974)

784–786.

[95] V. Venuti, L. Bruno, Crowd-structure interaction in lively footbridges

under synchronous lateral excitation: a literature review, Physics of Life

Reviews 6 (2009) 176–206.

[96] R. Clough, J. Penzien, Dynamics of structures, New York: McGraw-Hill;

1987.

[97] M. Landajuela, Burgers equation, BCAM Internship, 2011.

[98] P. Dallard, T. Fitzpatrick, A. Flint, A. Low, R.R. Smith, M. Willford, M.

Roche, London Millennium Bridge: pedestrian-induced lateral vibration,

Journal of Bridge Millennium, Volume 6 Issue 6, 2001.

[99] C. Cremona, Dynamic investigations of the Solferino footbridge, 3rd

International Operational Modal Analysis Conference, 2009.

[100] E.T. Ingólfsson, C.T. Georgakis, J. Jönsson, Pedestrian-induced lateral

vibrations of footbridges: A literature review, Engineering Structures 45

(2012) 21–52.

[101] C.S. Oliveira, V.T. Camacho, Data-base with in-situ vibration frequen-

cies of bridges in Portugal, J Civil Struct Health Monit 6:851–862, 2016.

[102] D. Helbing, A mathematical model for the behaviour of pedestrians,

Behav. Sci. 36 (1991) 298–310.

[103] D. Helbing, L. Buzna, A. Johansson, T. Werner, Self-organized pedes-

trian crowd dynamics: experiments, simulations and design solutions,

Transportation Sci. 39 (2005) 1–24.

[104] R.L. Hughes, The flow of human crowds, Annu. Rev. Fluid Mech. 35

(2003) 169–183.

[105] A. Festa, A. Tosin, M.T. Wolfram, Kinetic description of collision

avoidance in pedestrian crowds by sidestepping, Kinetic and Related

Models, American Institute of Mathematical Sciences Volume 11, Num-

ber 3, June 2018.



138 BIBLIOGRAPHY

[106] S.I. Nakamura, T. Kawasaki, Lateral vibration of footbridges by syn-

chronous walking, Journal of Constructional Steel Research 62 (2006)

1148–1160.

[107] M. Bocian, J.H.G. Macdonald, J.F. Burn, Biomechanically inspired

modeling of pedestrian-induced vertical self-excited forces, American So-

ciety of Civil Engineers, 2013.

[108] C. Caprani, J. Keogh, P. Archbold, P. Fanning, Characteristic verti-

cal response of a footbridge due to crowd loading, Proceedings of the

8th International Conference on Structural Dynamics EURODYN 2011,

Leuven, Belgium, 2011.
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