

POLITECNICO DI TORINO

Corso di Laurea Magistrale in

Ingegneria Civile

Tesi di Laurea Magistrale

Utilizzo dei filtri di Kalman per la soluzione di problemi inversi in reti di condotte in pressione.

Relatori:

Prof.ssa Ilaria Butera

Prof. Jaime Gomez-Hernandez

Candidata:

Silvia Nicotra

Settembre 2018

INDICE

1 Introduzione	1
2 Filtro di Kalman	
2.1 Introduzione	
2.2 Un semplice esempio ricorsivo	
2.3 Equazioni del filtro di Kalman	5
3 Stato dell'arte dell'applicazione del filtro di Kalman in falde acquifere	7
3.1 Ensemble Kalman filter	
3.2 Trattazione matematica del filtro di Kalman Ensemble	9
4 Applicazione del filtro di Kalman	
4.1 Caso studio: Rete di Anytown	12
4.1.1 Rete Anytown discretizzata	16
4.2 Implementazione del filtro di Kalman Enseble	
4.2.1 Introduzione	
4.2.2 Come implementare l'EnKF	21
4.2.3 Metodologia esecutiva	
5 Risultati delle simulazioni	
5.1 Introduzione	
5.2 Caso studio 1: Rete di Anytown base - Tempo di simulazione 24 h	
5.2.1 Nodo 13	
5.2.2 Nodo 16	
5.3 Caso Studio 2: Rete di Anytown base - Tempo di simulazione 48 h	41
5.3.1 Nodo 14	41
5.4 Caso Studio 3: Rete di Anytown discretizzata - Tempo di simulazione 24 h	
5.4.1 Nodo 9	

57
57
61
66
68
69
69 70
63 69 70 72
63 69 70 72 80

INDICE FIGURE E TABELLE

Tabella 4-1. Coordinate nodi Anytown
Tabella 4-2. Valori di portata e quota dei singoli nodi di Anytown
Tabella 4-3. Lunghezza, diametro e coefficiente di scabrezza delle singole tubazioni, classificate dal nodo di inizio e fine della condotta
Tabella 4-4. Valori di portata e prevalenza della stazione di pompaggio15
Tabella 4-5. Opzioni inserite nel file di input del software EPANET per ciò che riguarda l'analisi diqualità dell'acqua16
Tabella 4-6. Carico piezometrico e nodo identificativo del pozzo16
Tabella 4-7. Caratteristiche geometriche dei due serbatoi 16
Tabella 4-8. Discretizzazione della tubazione congiungente i nodi 1 e 2. Dati riguardanti i nodi17
Tabella 4-9. Discretizzazione della tubazione congiungente i nodi 1 e 2. Dati riguardanti i "pipes"18
Tabella 4-10. Sezioni da modificare per effettuare l'analisi "quality" su EPANET19
Tabella 4-11. Passo di discretizzazione (ΔL) massimo e minimo
Tabella 4-12. Passi di discretizzazione (ΔL) per la coordinata x ed y, in tutti i links
Tabella 5-1. Tabella riassuntiva delle analisi condotte
Tabella 5-2. Tabella riassuntiva delle analisi effettuate per la rete di Anytown discretizzata
Tabella 5-3. Tabella riassuntiva delle analisi effettuate per la rete di Anytown base
Figura 3-1. Schema completo della sequenza logica e delle operazioni dell'EnKF11
Figura 4-1. Rete di Anytown e nomenclatura sui nodi
Figura 4-2. Materiale che si associa ai valori di scabrezza di Hazen-Williams15
Figura 4-3. Curva idraulica della stazione di pompaggio15
Figura 4-4. Rete di Anytown discretizzata con nomenclatura nei nodi originali19
Figura 4-5. Schema procedurale dell'implementazione dell'EnKF. [9]24
Figura 4-6. Schema di esecuzione dei vari scripts
Figura 4-7. Flow chart che descrive l'algoritmo di assimilazione dei dati eseguito29
Figura 5-1. La figura mette in evidenza la posizione del nodo ipotizzato sorgente

Figura 5-2. Media delle nuove coordinate ipotizzate ad ogni step temporale	31
Figura 5-3. Serie temporale della concentrazione di soluto nel nodo '13' e in tutti i nodi della rete	32
Figura 5-4. Sequenza di risultati post-EnKF	33
Figura 5-5. La figura mette in evidenza la posizione del nodo ipotizzato sorgente	36
Figura 5-6. Media delle nuove coordinate ipotizzate ad ogni step temporale	36
Figura 5-7. Serie temporale della concentrazione di soluto nel nodo '16' e in tutti i nodi coinvolti	37
Figura 5-8. Sequenza di risultati post-EnKF	38
Figura 5-9. La figura mette in evidenza la posizione del nodo ipotizzato sorgente	41
Figura 5-10. Media delle nuove coordinate ipotizzate ad ogni step temporale	41
Figura 5-11. Serie temporale della concentrazione di soluto nel nodo '14' e in tutti i nodi della rete	42
Figura 5-12. Sequenza di risultati post-EnKF	43
Figura 5-13. La figura mette in evidenza la posizione del nodo ipotizzato sorgente	45
Figura 5-14. Serie temporale della concentrazione di soluto nel nodo '9' e in tutti i nodi coinvolti	46
Figura 5-15. Sequenza di risultati post-EnKF	47
Figura 5-16. La figura mette in evidenza la posizione del nodo ipotizzato sorgente	51
Figura 5-17. Media delle nuove coordinate ipotizzate ad ogni step temporale	51
Figura 5-18. Serie temporale della concentrazione di soluto nel nodo '13' e in tutti i nodi della rete	52
Figura 5-19. Sequenza di risultati post-EnKF	53
Figura 5-19. Sequenza di risultati post-EnKF Figura 5-20. La figura mette in evidenza la posizione del nodo ipotizzato sorgente	53 57
 Figura 5-19. Sequenza di risultati post-EnKF Figura 5-20. La figura mette in evidenza la posizione del nodo ipotizzato sorgente Figura 5-21. Media delle nuove coordinate ipotizzate ad ogni step temporale 	53 57 57
 Figura 5-19. Sequenza di risultati post-EnKF Figura 5-20. La figura mette in evidenza la posizione del nodo ipotizzato sorgente Figura 5-21. Media delle nuove coordinate ipotizzate ad ogni step temporale Figura 5-22. Serie temporale della concentrazione di soluto nel nodo '3' e in tutti i nodi della rete 	53 57 57 58
 Figura 5-19. Sequenza di risultati post-EnKF Figura 5-20. La figura mette in evidenza la posizione del nodo ipotizzato sorgente Figura 5-21. Media delle nuove coordinate ipotizzate ad ogni step temporale Figura 5-22. Serie temporale della concentrazione di soluto nel nodo '3' e in tutti i nodi della rete Figura 5-23. Sequenza di risultati post-EnKF 	53 57 57 58 59
 Figura 5-19. Sequenza di risultati post-EnKF. Figura 5-20. La figura mette in evidenza la posizione del nodo ipotizzato sorgente. Figura 5-21. Media delle nuove coordinate ipotizzate ad ogni step temporale. Figura 5-22. Serie temporale della concentrazione di soluto nel nodo '3' e in tutti i nodi della rete. Figura 5-23. Sequenza di risultati post-EnKF. Figura 5-24. La figura mette in evidenza la posizione del nodo ipotizzato sorgente. 	53 57 57 58 59 61
 Figura 5-19. Sequenza di risultati post-EnKF. Figura 5-20. La figura mette in evidenza la posizione del nodo ipotizzato sorgente. Figura 5-21. Media delle nuove coordinate ipotizzate ad ogni step temporale. Figura 5-22. Serie temporale della concentrazione di soluto nel nodo '3' e in tutti i nodi della rete Figura 5-23. Sequenza di risultati post-EnKF. Figura 5-24. La figura mette in evidenza la posizione del nodo ipotizzato sorgente. Figura 5-25. Media delle nuove coordinate ipotizzate ad ogni step temporale. 	53 57 57 58 59 61 61
 Figura 5-19. Sequenza di risultati post-EnKF. Figura 5-20. La figura mette in evidenza la posizione del nodo ipotizzato sorgente. Figura 5-21. Media delle nuove coordinate ipotizzate ad ogni step temporale. Figura 5-22. Serie temporale della concentrazione di soluto nel nodo '3' e in tutti i nodi della rete Figura 5-23. Sequenza di risultati post-EnKF. Figura 5-24. La figura mette in evidenza la posizione del nodo ipotizzato sorgente. Figura 5-25. Media delle nuove coordinate ipotizzate ad ogni step temporale. Figura 5-26. Serie temporale della concentrazione di soluto nel nodo '14' e in tutti i nodi della rete 	53 57 57 58 59 61 61

1 Introduzione

Grazie a recenti studi [1], partendo da dati di concentrazione, si è aperta la possibilità di identificare la posizione della sorgente di un inquinante all'interno di una falda acquifera, attraverso l'impiego di una variante del filtro di Kalman. Lo specifico filtro oggetto di studio, è il filtro di Kalman d'insieme o Ensemble Kalman Filter (EnKF); in letteratura esso è stato testato preliminarmente in falde acquifere ideali mono e bi-dimensionali. Lo scopo di questo lavoro di tesi è quello di applicare il filtro di Kalman Ensemble su una rete di condotte, accoppiando il risolutore idraulico EPANET al fine di simulare i dati di concentrazione per implementare il filtro di Kalman d'insieme.

Determinare la posizione di una fonte inquinante all'interno di una rete acquedottistica, appartiene ad un'area della ricerca ancora in evoluzione che cerca di ricostruire l'evento a partire da dati di output, ossia da parametri disponibili, grazie alla simulazione idraulica o al monitoraggio. La concentrazione in un nodo o in una sezione della rete d'acquedotto è un parametro chiave che può prestarsi come dato misurato a posteriori e servire all'individuazione delle condizioni iniziali di un evento di contaminazione.

L'interesse a sviluppare questa metodologia nasce, infatti, dalla possibilità che può offrire per la risoluzione di problemi inversi come quello della caratterizzazione delle sorgenti inquinanti. La salvaguardia della risorsa idrica d'altronde è un argomento di rilevante importanza. L'acqua è una delle risorse più preziose per la vita umana e la collettività e va quanto più salvaguardata. Le acque utilizzate ogni giorno per uso potabile e domestico sono a rischio di contaminazione di vari tipi, che può comprometterne la qualità e nei casi più gravi impedirne l'utilizzo.

La caratterizzazione di una sorgente inquinante a partire da dati di concentrazione di soluto rilevati nel sistema, è chiaramente un problema molto complesso che offre moltissimi spunti e obiettivi e che apre la frontiera a tantissimi interrogativi. Inoltre, esso non risulta un problema "diretto" e quindi matematicamente "ben posto", bensì può dar vita a diverse soluzioni che da dati a posteriori, ottenuti tramite modelli idraulici, cerca di ricostruire le condizioni iniziali incognite.

L'algoritmo del filtro di Kalman Ensemble rappresenta un metodo computazionale innovativo che in questa applicazione include una corretta modellazione fisica del fenomeno, poiché gli si accoppia l'utilizzo di uno dei più celebri software di simulazione idraulica e di qualità dell'acqua, ossia EPANET 2.0.

La scia di contaminante può raggiungere qualsiasi punto della rete di condotte quando la concentrazione rilevata può essere già nulla alla fonte; oppure può introdursi senza che si abbia un'idea del luogo in cui è avvenuta l'immissione, infatti nel momento in cui viene individuata la sua presenza non si sa esattamente da dove ha avuto origine. Il quesito che ci si pone allora è quello di identificare, dalla serie temporale di concentrazioni osservate in uno o più punti della rete, il punto di rilascio della sostanza inquinante.

Nei decenni passati è stato proprio questo interrogativo a dar vita a molte ricerche e studi. Diversi approcci si basano sull'ottimizzazione di una funzione che misura le deviazioni tra le previsioni del modello e le osservazioni, considerando come parametri da identificare, la posizione originale e il tempo di rilascio. È stato proposto l'uso dell'Ensemble Kalman Filter (EnKF),[1] perché si è rivelato più efficiente rispetto ad altri approcci basati sull'ottimizzazione, senza la necessità di ricorrere a costosi algoritmi. Non tutti gli approcci sono basati sull'ottimizzazione; per esempio, Butera et al.[2], Cupola ed altri [3] hanno impiegato un metodo geostatistico bayesiano.

Questo lavoro di tesi si concentra inizialmente sulla presentazione del filtro di Kalman, con particolare riguardo verso l'Ensemble Kalman filter; se ne introduce la trattazione matematica e la storia dell'arte del suo impiego in campo idraulico, successivamente si focalizza l'attenzione sulla validità della sua applicazione nelle reti acquedottistiche presentando i risultati ottenuti dal caso studio della rete di Anytown; rete nota in letteratura e utilizzata ampiamente in ambito scientifico. Si mostra infine che, non solo si giunge ad una convergenza del risultato, fatto per nulla scontato trattandosi di un problema di tipo inverso, ma anche ad una sua vicinanza con i dati di input che hanno generato quelli a posteriori.

2 Filtro di Kalman

2.1 Introduzione

Il filtro di Kalman è una tecnica statistica molto potente conosciuta da circa 60 anni; ha allargato sempre più il suo campo di applicazione e trovato una grande mole di ambiti di utilizzo. Esso è in grado di predire l'evoluzione di un sistema dinamico garantendo l'individuazione dei parametri che lo definiscono. Le misure del sistema sono alla base della sua implementazione, usualmente variabili dinamiche solo parzialmente stimabili, affette da incertezza e ottenute per lo più grazie alla presenza di strumenti. I dati misurati si impiegano per la stima delle variabili indipendenti del sistema come funzione inversa, cercando di eliminare quanto più possibile il rumore, ossia gli errori di cui le misure possono essere affette; da ciò deriva il termine filtro per indicare questo tipo di approccio.

In innumerevoli campi dell'ingegneria e della scienza in generale, è assai ricorrente che la valutazione di una grandezza quanto più precisamente possibile, diventi un obiettivo a cui si ambisce; mediante l'impiego di modelli matematici e stime di misure è possibile avvicinarsi a tale meta. Facendo riferimento al filtro di Kalman, esso è stato identificato e interpretato come stimatore bayesiano ricorsivo, quindi come strumento attinente alla statistica classica, solo che, originariamente, la sua progettazione sorse con lo scopo di fornire una soluzione nell'ambito di problemi nell'elaborazione del segnale e nella teoria del controllo, quindi si limitava a un campo ristretto di applicazione; solo dopo 20 anni dalla sua definizione, è stato incorporato ufficialmente come metodo statistico tradizionale ed è stato quindi oggetto di svariate applicazioni in diversi campi.

2.2 Un semplice esempio ricorsivo

Per comprendere cosa si intende per stimatore ricorsivo, si riporta un semplice esempio [4]: si intende calcolare la media di alcune costanti random ricavate da una sequenza di misurazioni affette da rumore. Si suppone che la stima sia la media campione e che la si riesca a rifinire con ogni nuova misura appena questa è disponibile. Cioè, si pensa di elaborare i dati on-line. Si denoti la sequenza delle misure come z_1, z_2, \ldots, z_n , dove il pedice indica il tempo in cui la misurazione è stata effettuata. Un metodo per elaborare i dati potrebbe essere quello di memorizzare ogni misura nel momento in cui è disponibile e poi calcolare la media campione in accordo con il seguente algoritmo:

1. Prima misura z_1 : si memorizza z_1 e si stima la media come

$$\widehat{m}_1 = z_1$$

2. Seconda misura z_2 : si memorizza z_2 insieme a z_1 e si stima la media come

$$\widehat{m}_2 = \frac{z_1 + z_2}{2}$$

3. Terza misura z_3 : si memorizza z_3 insieme a z_1 e z_2 e si stima la media come

$$\hat{m}_2 = \frac{z_1 + z_2 + z_3}{3}$$

4. E così via.

Risulta chiaro che con l'avanzare del procedimento si giunge alla corretta sequenza della media; così come è altrettanto chiaro che la quantità di memoria necessaria per immagazzinare le misurazioni continuerebbe a crescere col tempo, insieme al numero delle operazioni aritmetiche occorrenti per creare la stima. Questo conduce a ovvi problemi nel caso in cui l'insieme totale di dati è molto vasto. Si considera una semplice variazione nella procedura computazionale, ossia si calcola ogni nuova stima come unione tra la vecchia stima e la nuova misura. Precisamente, si considera il seguente algoritmo:

1. Prima misura z_1 : Si calcola la stima come

$$\widehat{m}_1 = z_1$$

si memorizza \widehat{m}_1 e si scarta z_1 .

2. Seconda misura z_2 : Si calcola la stima come una somma mediata della precedente stima \hat{m}_1 e la misura corrente z_2 :

$$\widehat{m}_2 = \frac{1}{2}\widehat{m}_1 + \frac{1}{2}z_2$$

si memorizza \widehat{m}_2 e si scarta z_2 e \widehat{m}_1 .

3. Terza misura z_3 : Si calcola la stima come una somma mediata della precedente stima \hat{m}_2 e la misura corrente z_3 :

$$\widehat{m}_3 = \frac{2}{3}\widehat{m}_2 + \frac{1}{3}z_3$$

si memorizza \widehat{m}_3 e si scarta z_3 e \widehat{m}_2 .

4. E così via. Ovviamente all'n-esima fase di calcolo la somma pesata sarà

$$\widehat{m}_n = \left(\frac{n-1}{n}\right)\widehat{m}_{n-1} + \left(\frac{1}{n}\right)z_n$$

Chiaramente la procedura mostrata conduce alla medesima sequenza di stime rispetto alla prima, ma senza il bisogno di immagazzinare tutte le precedenti misure. Semplicemente si usa il risultato dello step precedente per ottenere la stima allo step attuale del processo.

In questo modo, il precedente sforzo computazionale è utilizzato come un buon vantaggio e non viene perso. Il secondo algoritmo può andare avanti all'infinito senza una crescita del problema legato alla memoria. Il secondo algoritmo è un semplice esempio di una modalità di funzionamento ricorsiva. L'elemento chiave di ogni procedura ricorsiva consiste nell'utilizzo dei risultati dello step precedente per aiutare a raggiungere il risultato atteso per lo step corrente. Questa è una delle caratteristiche del filtro di Kalman che lo distingue dagli altri approcci.

2.3 Equazioni del filtro di Kalman

In alcune applicazioni ingegneristiche [5] il filtro di Kalman è importante proprio per la stima aggiornata dei dati che offre. Il valore corrente di un generico vettore di stato è di primo interesse e il filtro di Kalman permette che esso venga aggiornato in tempo reale nel momento in cui la nuova osservazione è disponibile. L'enfasi è quella di fare previsioni di osservazioni future basate su un dato campione.

Tale tecnica può, quindi, essere riassunta come un insieme di equazioni in grado di stimare lo stato di un certo processo, con la possibilità di assimilare nuove informazioni così come si inseriscono nella realtà; queste giungono tipicamente nel momento in cui le variabili di stato vengono misurate. Incorpora nella migliore maniera possibile, tutte le informazioni più recentemente acquisite. Il valore dello stato viene perciò determinato partendo dalle entrate e dalle uscite effettuando una specie di dinamica inversa del sistema; vengono processate tutte le misure disponibili usando tutte le informazioni disponibili sul sistema, sul rumore del processo e della misura e qualsiasi altra informazione riguardo le condizioni iniziali delle variabili. [5] Si consideri il problema:

$$x_k = Ax_{k-1} + Bu_{k-1} + w_{k-1}$$
$$z_k = Hx_k + v_k$$

Si ha che x_{k-1} denota lo stato al tempo t_{k-1} , mentre x_k lo stato ad un tempo successivo t_k e z_k la misura effettuata; $A, B \in H$ sono matrici, rappresentanti il modello del sistema.

Si definisca x_k^f la stima a-priori del processo al tempo successivo, basata sulla conoscenza prima di questo punto, in termini matematici:

$$x_k^f = E(x_k|z^*)$$

Dove z^* indica l'informazione disponibile al tempo t_{k-1} .

Questa è l'ipotesi migliore prima di assimilare la misura z_k . Sia invece x_{k-1}^a la stima migliore del processo con l'informazione assimilata al tempo t_{k-1} , cioè:

$$x_{k-1}^{a} = E(x_{k-1}|z^{*})$$

La prima equazione è utilizzata per produrre la previsione al tempo t_k . Tenendo conto delle osservazioni z^* , si ha:

$$x_k^f = Ax_{k-1}^a + Bu_{k-1}$$

Le matrici di covarianza della previsione sono aggiornate in accordo con la relazione:

$$P_k^f = A P_{k-1}^a A^t + Q_{k-1}$$

dove

$$P_k^f = E\left[\left(x_k^f - x_k\right)\left(x_k^f - x_k\right)'|z^*\right]$$
$$P_{k-1}^a = E\left[\left(x_{k-1}^a - x_{k-1}\right)\left(x_{k-1}^a - x_{k-1}\right)'|z^*\right]$$

Una volta ottenuti i momenti della distribuzione precedente, siamo in grado di assimilare nuove informazioni. La fase di assimilazione/analisi viene eseguita come segue. La media a-posteriori è data da:

$$x_k^a = x_k^f + K_k \big(z_k - H x_k^f \big)$$

dove

$$K_k = P_k^f H' \left(H P_k^f H' + R_k \right)^{-1}$$

risulta essere la matrice di guadagno di Kalman. La matrice di covarianza dell'errore aposteriori è ottenuta utilizzando l'espressione:

$$P_k^a = (I - K_k H) P_k^f$$

Tutte queste equazioni rappresentano le equazioni di Kalman.

Riassumendo:

$$x_{k}^{f} = Ax_{k-1}^{a} + Bu_{k-1}$$

$$P_{k}^{f} = AP_{k-1}^{a}A^{t} + Q_{k-1}$$

$$x_{k}^{a} = x_{k}^{f} + K_{k}(z_{k} - Hx_{k}^{f})$$

$$K_{k} = P_{k}^{f}H'(HP_{k}^{f}H' + R_{k})^{-1}$$

$$P_{k}^{a} = (I - K_{k}H)P_{k}^{f}$$
Equation in the formula of the second secon

3 Stato dell'arte dell'applicazione del filtro di Kalman in falde acquifere

La tendenza di applicare [6] la teoria dei filtri nelle scienze ambientali ed idrologiche ha raggiunto il suo apice negli anni '70. Questo nuovo metodo matematico divenne presto una tendenza anche nello studio delle falde acquifere.

Abitualmente, sono i modelli matematici a descrivere le caratteristiche spazio-temporali del flusso di acqua sotterranea o, più frequentemente, modelli numerici fisico basati. L'interesse nell'applicare il filtro di Kalman a ciò che riguarda le falde, nacque proprio per la sua propensione ad essere risolutivo.

La teoria che impiega i filtri, può essere utilizzata per affrontare una varietà di problemi quali: stima e ricostruzione di uno stato; stima dei parametri (compreso lo studio dell'incertezza e della sua propagazione), combinato con la stima dei parametri di stato, degli input, e la stima della varianza-covarianza.

Gli studi precedenti hanno utilizzato la teoria dei filtri e della stima per questioni aventi a che fare con la valutazione dei parametri di stato. Successivamente ci si è concentrati invece maggiormente sull'impiego di tali filtri nel contesto dell'assimilazione di dati, cioè nella ricostruzione dei campi di flusso, o nell'identificazione del percorso di una scia di contaminante sotterranea partendo da osservazioni relativamente sparse.

Dal momento in cui Kalman descrisse per la prima volta la sua nuova tecnica (1960), essa venne subito applicata in molti sistemi e fenomeni; inizialmente nella determinazione di orbite, navigazione ed altre applicazioni spaziali. Fino a quel punto molti studi vennero condotti sia nel campo dell'industria di difesa/aerospaziale, ma anche nel settore civile industriale. Dopo 20 anni dalla sua scoperta, il filtro di Kalman fu applicato con successo per problemi previsionali in meteorologia, modelli di circolazione oceanica ed in geomeccanica per l'analisi e la valutazione della sicurezza delle strutture e fondazioni.

L'impiego della teoria dei filtri e della stima ricorsiva è stato esteso con successo ad un ampio range di problemi idrologici: modellazione del deflusso e della qualità dell'acqua, previsioni temporali a breve termine, problemi di previsione delle alluvioni, previsione delle precipitazioni, della temperatura di flusso, stima di componenti dell'evaporazione e del flusso idrico sotterraneo nel bilancio idrologico di un lago. Come si denota, le applicazioni del filtro sono svariate e molto differenti; questo fa comprendere come sia facilmente adattabile, di facile utilizzo e come la sua natura sia assolutamente generica.

L'innovazione rispetto agli altri filtri è che esso è ricorsivo e di natura "on-line", cioè i dati sono considerati in modo sequenziale un passo alla volta; ciò consente lo studio dei cambiamenti nella risposta del modello ad ogni passo nel tempo, ossia ogni qual volta il sistema viene aggiornato con la ricezione di nuove osservazioni. Può, inoltre, essere implementato anche in forma adattativa, consentendo, anche alla stima delle proprietà di covarianza di sistema e di errore di misurazione, di essere aggiornate ricorsivamente. L'algoritmo può essere prontamente esteso a molti sistemi non lineari, considerando il cosiddetto filtro esteso di Kalman.

Inizialmente, furono poche le applicazioni della teoria dei filtri alla modellazione del flusso idrico; questo fatto può essere attribuito principalmente a due ragioni: in primis lo scetticismo nell'impiegare questo tipo di procedura; in secundis problemi legati alla dimensionalità dei parametri descrittivi del flusso idrico.

La prima motivazione si diffuse perché presente l'erronea credenza che la teoria dei filtri fosse utile solo per problemi di stima dello stato in tempo reale; concetto che venne probabilmente sostenuto dalla maggior parte degli idrologi, in quanto in tale disciplina i casi di questo tipo non erano prevalentemente ricorrenti, di conseguenza prese spazio l'idea di non applicare, o applicare poco, la tecnica in questo campo. C'è da aggiungere che il settore in cui nacque il filtro di Kalman, ossia quello riguardante la teoria del controllo, è essenzialmente lontano dal campo della geofisica: essa riguarda soprattutto la comprensione e la descrizione della natura di un sistema, a differenza del controllo automatico che è caratterizzato dalla necessità di mantenere un sistema in un desiderato stato. È inevitabile che, come conseguenza dell'eterogeneità spaziale dei parametri, si abbia un'elevata dimensionalità delle misure spaziali e dello stato che descrivono il flusso delle falde acquifere, ciò si traduce come difficoltà computazionali nei risultati e nell'applicazione del filtro in diverse situazioni.

Per superare questo secondo problema, è stato introdotto da Evensen (1994) un filtro applicabile a problemi di tipo geofisico, che avesse la stessa facilità d'impiego del filtro di Kalman. Questo è il filtro di Kalman Ensemble (EnKF), dove per "Ensemble" si intende un insieme statistico. Anch'esso è un filtro ricorsivo adatto a problemi con un ampio numero di variabili, come la discretizzazione di equazioni differenziali parziali nei modelli geofisici, giustappunto. È stato concepito come una versione del filtro di Kalman dove la matrice di covarianza viene sostituita con una campione, ed è diventato un importante strumento predittivo che considera l'assunzione che tutte le distribuzioni di probabilità coinvolte siano Gaussiane.

3.1 Ensemble Kalman filter

[7] L'EnKF è usato in svariati ambiti, comprese le scienze atmosferiche e oceaniche, simulazioni di serbatoi di petrolio e modellazione idrologica. Un primo tentativo di estendere il filtro di Kalman a questi problemi è stato fatto con il filtro di Kalman Esteso (Extended Kalman Filter, EKF) che si basa sulla linearizzazione del modello non-lineare con l'adozione di un operatore tangente (Jacobiana $F:=\frac{\partial f}{\partial x}$). Il filtro di Kalman Esteso non è comunque applicabile a tantissimi modelli perché nel caso di una non linearità troppo severa, la sua applicazione risulta più fallimentare che di successo.

Il filtro di Kalman Ensemble permette di superare in larga misura due problemi. In primo luogo, nel filtro di Kalman, la matrice di covarianza di errore per lo stato del modello deve essere memorizzata e propagata nel tempo, rendendo il metodo computazionalmente inattuabile per i modelli con vettori di stato ad alta dimensionalità. In secondo luogo, quando la dinamica del modello è non lineare, il filtro di Kalman Esteso (EKF) utilizza un'equazione linearizzata per l'evoluzione della covarianza di errore, e questa linearizzazione può portare ad una illimitata instabilità lineare per l'evoluzione dell'errore.

A differenza del filtro Esteso di Kalman, l'EnKF rappresenta la matrice di covarianza dell'errore come un insieme stocastico di realizzazioni del modello. Un'approssimazione importante introdotta nell'EnKF è legata all'uso di un limitato numero di realizzazioni di insieme del modello.

3.2 Trattazione matematica del filtro di Kalman Ensemble

Concentrandosi sulla natura iterativa del filtro, il filtro di Kalman Ensemble [8], è progettato per modelli lineari; si considera un modello non lineare come:

$$x^t = f(x) + w \tag{1}$$

$$z = Hx^t + v \tag{2}$$

per una generica funzione f non lineare dello stato.

Come già introdotto precedentemente, Evensen, nel 1994, trattò modelli non lineari oceanici con questo approccio che risultò parecchio promettente. Dato il carattere non lineare del modello dinamico, i momenti dello stato reale x^t risultano difficili da determinare, ed è per questo che si ricorre alla simulazione.

L'idea è di iniziare con un set o insieme di stati del modello valutati attraverso l'equazione (1), così da costituire il gruppo a-priori da cui può essere estratta una statistica. Lo step che segue è quello di aggiornamento che viene ripetuto per tutti i membri del gruppo; consiste nella simulazione ad ogni step temporale t di un gruppo di osservazioni prendendo come riferimento le osservazioni reali. Ogni membro del gruppo a-priori viene quindi aggiornato così da rispecchiare le osservazioni simulate. Il processo si ripete fino a convergenza.

3.2.1 Algoritmo EnKF

Prima di procedere alla descrizione dell'algoritmo alla base del funzionamento del filtro di Kalman Ensemble, si riportano le notazioni utilizzate che derivano da quelle utilizzate da Evensen (2003).

- · $X \coloneqq [x_1, ..., x_N] \in \mathbb{R}^{n \times m}$ matrice dei membri del gruppo, ogni vettore di stato $x_i \in \mathbb{R}^n$;
- $\bar{X} := [1, ..., 1]'_N \in \mathbb{R}^{n \times 1}$ vettore medio del gruppo. Gli elementi di questi vettori sono ottenuti come media delle righe di [X];

- · $z \in \mathbb{R}^{n \times 1}$ vettore delle osservazioni;
- · $P_e := \frac{(X \bar{X}) (X \bar{X})'}{(N-1)} \in \mathbb{R}^{n \times n}$ matrice di covarianza;
- · $Z \coloneqq z + \Upsilon \in \mathbb{R}^{m \times N}$ matrice delle osservazioni perturbate;
- $\Upsilon := (\varepsilon_1, ..., \varepsilon_N) \in \mathbb{R}^{m \times m}$ vettore delle perturbazioni dove $\varepsilon_i \in N(0, \sum_i^e)$ dove l'operatore Σ è una matrice diagonale;

$$\cdot \quad R_e = \frac{\Upsilon \Upsilon'}{N-1}$$

Per ogni tempo si ha un'osservazione e i vettori di stato simultanei vengono simulati e avanzati nel tempo. Dato che la previsione non è disponibile esplicitamente, è necessario simularla. Le statistiche sono stimate dai gruppi $\overline{X} e P_e$. Più il numero dei gruppi cresce più le stime convergono verso la distribuzione a-priori, dopo la previsione. A seguire si presenta l'algoritmo:

- 1. **Inizializzazione:** si definisce un gruppo iniziale $X \sim N(\mu_0, \Sigma_0)$;
- 2. **Previsione:** proiettare avanti nel tempo il gruppo X usando l'equazione:

$$X^f = f(X) + W \tag{3}$$

dove la matrice di modello di errore $W = (w_i)$ è realizzata designando i numeri random $w_i \sim N(0, \sum_{i=1}^{W})$. Questa operazione si ripete fin tanto che non si giunge ad un'osservazione nel tempo.

3. Analisi: si generano osservazioni Z. Aggiorno X^f usando l'equazione:

$$X^{a} = X^{f} + P_{e}H'(HP_{e}H' + R_{e})^{-1}(Z - HX^{f}).$$
(4)

4. Si ritorna allo step della Previsione.

L'algoritmo si interrompe ad un tempo *t* definito dall'utente. Si riporta in Figura 3-1 uno schema esplicativo delle operazioni del filtro.

Figura 3-1. Schema completo della sequenza logica e delle operazioni dell'EnKF.

4 Applicazione del filtro di Kalman

L'applicazione del Filtro di Kalman Ensemble è stata eseguita sulla rete fittizia di Anytown USA (Walsky et al. 1987), utilizzando il software di simulazione idraulica e della qualità dell'acqua EPANET 2.0. Per la trattazione del software si rimanda all' Appendice.

La rete di Anytown è una rete campione appartenente alla letteratura scientifica, oggetto di vari studi da parte di ricercatori poichè rappresenta una buona base di partenza per le più svariate sperimentazioni, sia in ambito idraulico che non. È una rete di comodo uso per la sua modesta dimensione e per le sue caratteristiche quanto più simili alla realtà.

4.1 Caso studio: Rete di Anytown

La rete si compone di 19 nodi di cui 2 serbatoi e 1 pozzo, le condotte sono in totale 34. Il modello idraulico si presenta come schematizzato in Figura 4-1 evidenziando la nomenclatura assegnata ai nodi; si noti che i due serbatoi e il pozzo vengono infatti a riconoscersi anche per la diversa numerazione.

Figura 4-1. Rete di Anytown e nomenclatura sui nodi.

Dopo aver eseguito la conversione dal sistema anglosassone al sistema metrico internazionale, si allegano le tabelle relative ai dati necessari per riprodurre il modello idraulico.

COORDINATE DEI SINGOLI NODI					
Node ID	X-Coord	Y-Coord			
Noue ID	[m]	[m]			
1	2341.57	1027.53			
2	2326.75	1748.77			
3	2292.18	2223.01			
4	1882.15	2306.99			
8	1012.3	2041.11			
9	397.95	1478.58			
10	706.36	1093.68			
11	1128.26	881.5			
12	1477.07	1022.59			
13	1966.13	1348.63			
14	1971.07	1758.65			
15	1552.79	1975.74			
16	1224.64	1711.74			
17	916.07	1308.33			
18	1477.07	1353.57			
19	1625.27	1625.27			

Tabella 4-1. Coordinate nodi Anytown.

PORTATA EMUNTA DAI SINGOLI NODI						
Node ID	Elevation	Demand				
	[m]	[l/s]				
1	6.096	31.545				
2	15.240	12.618				
3	15.240	12.618				
4	15.240	13.000				
8	24.384	13.000				
9	36.576	13.000				
10	36.576	13.000				
11	36.576	13.000				
12	15.240	31.545				
13	15.240	31.545				
14	15.240	31.545				
15	15.240	31.545				
16	36.576	13.000				
17	36.576	50.000				
18	15.240	31.545				
19	15.240	13.000				

Tabella 4-2. Valori di portata e quota dei singoli nodi di Anytown.

Si mostrano, nella tabella sottostante, le caratteristiche geometriche della rete riportando nel dettaglio i nodi di inizio e fine condotta, lunghezza espressa in metri [m], diametro in millimetri [mm] e il coefficiente di scabrezza di Hazen-Williams.

CARATTERISTICHE GEOMETRICHE DELLE CONDOTTE					
Node ID	Start	End	Length	Diameter	Roughness coefficient
Noue ID	Node	Node	[m]	[<i>mm</i>]	[-]
1	1	2	3657.600	304.800	120
2	1	12	3657.600	304.800	70
3	1	13	3657.600	406.400	70
5	2	3	1828.800	254.000	120
6	2	4	2743.200	254.000	120
7	2	13	2743.200	304.800	70
8	2	14	1828.800	254.000	120
9	3	4	1828.800	254.000	120
11	4	8	3657.600	203.200	120
12	4	15	1828.800	254.000	120
17	8	9	3657.600	203.200	120
18	8	15	1828.800	254.000	120
19	8	16	1828.800	203.200	120
20	8	17	1828.800	203.200	120
21	9	10	1828.800	203.200	120
22	10	11	1828.800	203.200	120
23	10	17	1828.800	254.000	120
24	11	12	1828.800	203.200	120
26	12	17	1828.800	254.000	120
27	12	18	1828.800	203.200	70
28	13	14	1828.800	304.800	70
29	13	18	1828.800	304.800	70
30	13	19	1828.800	254.000	70
31	14	15	1828.800	304.800	70
32	14	19	1828.800	254.000	70
34	15	16	1828.800	254.000	70
35	15	19	1828.800	254.000	70
36	16	17	1828.800	203.200	120
37	16	18	1828.800	304.800	70
38	16	19	1828.800	254.000	70
39	17	18	1828.800	203.200	120
41	18	19	1828.800	254.000	70
10	41	14	31.000	305.000	120
13	42	17	31.000	305.000	120

 Tabella 4-3. Lunghezza, diametro e coefficiente di scabrezza delle singole tubazioni, classificate dal nodo di inizio e fine della condotta.

Il coefficiente di scabrezza di Hazen-Williams, per le tubazioni, ha valori che oscillano tra 70 e 120, ossia facenti riferimento a materiali quali ghisa e ferro zincato. Per completezza si riporta la tabella presente sullo stesso manuale di EPANET 2.0 per chiarificare come il programma interpreta il dato.

Material	Hazen-Williams C (unitless)
Cast Iron	130 - 140
Concrete or	120 - 140
Concrete Lined	
Galvanized Iron	120
Plastic	140 - 150
Steel	140 - 150
Vitrified Clay	110

Figura 4-2. Materiale che si associa ai valori di scabrezza di Hazen-Williams.

Si riporta, inoltre la curva di funzionamento della stazione di pompaggio: i dati di portata e prevalenza e la figura esplicativa della curva.

All'analisi idraulica è stata associata anche l'analisi della qualità dell'acqua, indispensabile per simulare la diffusione di contaminante all'interno della rete, e per ricavare i dati di concentrazione. Si riportano, in tabella, i dati inseriti nella sezione [QUALITY] e nella sezione [SOURCES] del file di input, il quale è un documento in formato .inp.

L'immissione di contaminante simulata è di tipo continuo nel tempo; si modella specificando il nodo di immissione nella sezione [QUALITY] e l'intensità nella sezione [SOURCES], selezionando che tipo di sorgente sia. Si è considerata una sorgente di tipo "mass", ossia si considera di aggiungere un flusso di massa fisso a quello risultante dall'afflusso al nodo: questo risulta essere il modo migliore per rappresentare l'iniezione diretta di un tracciante o disinfettante nella rete o, come in questo studio di tesi, per modellare un'intrusione di contaminante.

[QUAL	[SOURCES]				
Node	Initial Quality [mg/l]	Node Type		Strength [mg/min]	
x	0	х	MASS	10000	

 Tabella 4-5. Opzioni inserite nel file di input del software EPANET per ciò che riguarda l'analisi di qualità dell'acqua.

Si riportano per completezza anche i dati inseriti relativi al pozzo e ai serbatoi.

[RESERVOIRS]		
Node ID	Head [m]	
40	3.048	

 Tabella 4-6. Carico piezometrico e nodo identificativo del pozzo.

[TANKS]						
Nada D Elevation InitLevel MinLevel MaxLevel Diameter Mi					MinVol	
Node ID	[m]	[m]	[m]	[m]	[m]	[m³]
41	65.532	7	3.048	10.668	16	1609
42	65.532	7	3.048	10.668	16	1609

 Tabella 4-7. Caratteristiche geometriche dei due serbatoi.

4.1.1 Rete Anytown discretizzata

Svolgendo le analisi, ci si è resi conto che discretizzare la rete avrebbe potuto giovare per una migliore convergenza del risultato. Si è pensato, quindi, di modellare le condotte come un insieme discreto di punti aventi passo tale che ogni singola tubazione venisse divisa in 25 sezioni. L'operazione che è stata effettuata ha quindi comportato la congiunzione dei nodi esistenti nella rete base di Anytown con la creazione di 23 nodi: in questo modo, includendo i due nodi di inizio e fine condotta, si ha un numero costante di 25 nodi per ogni elemento della rete base di Anytown.

È stato necessario interpolare la quota, ma, trattandosi di nodi fittizi, si è invece mantenuto il valore di portata esistente solo nei nodi originali. Per chiarezza si riporta lo schema di discretizzazione di una sola condotta. Per la consultazione di tutte le 34 tubazioni si rimanda all'Allegato A.

Link 1-2					
	Step X-Coord	Step Y-Coord			
	[m]	[m]			
	0.6	28.8			
Node	X-Coord	Y-Coord	Node	Elevation	Demand
ID	[m]	[m]	ID	[m]	[I/s]
1	2341.57	1027.53	1	6.10	31.55
100	2340.98	1056.38	100	6.46	0.00
101	2340.38	1085.23	101	6.83	0.00
102	2339.79	1114.08	102	7.19	0.00
103	2339.20	1142.93	103	7.56	0.00
104	2338.61	1171.78	104	7.92	0.00
105	2338.01	1200.63	105	8.29	0.00
106	2337.42	1229.48	106	8.66	0.00
107	2336.83	1258.33	107	9.02	0.00
108	2336.23	1287.18	108	9.39	0.00
109	2335.64	1316.03	109	9.75	0.00
110	2335.05	1344.88	110	10.12	0.00
111	2334.46	1373.73	111	10.49	0.00
112	2333.86	1402.57	112	10.85	0.00
113	2333.27	1431.42	113	11.22	0.00
114	2332.68	1460.27	114	11.58	0.00
115	2332.09	1489.12	115	11.95	0.00
116	2331.49	1517.97	116	12.31	0.00
117	2330.90	1546.82	117	12.68	0.00
118	2330.31	1575.67	118	13.05	0.00
119	2329.71	1604.52	119	13.41	0.00
120	2329.12	1633.37	120	13.78	0.00
121	2328.53	1662.22	121	14.14	0.00
122	2327.94	1691.07	122	14.51	0.00
123	2327.34	1719.92	123	14.87	0.00
2	2326.75	1748.77	2	15.24	12.62

Tabella 4-8. Discretizzazione della tubazione congiungente i nodi 1 e 2. Dati riguardanti i nodi.

Gli step di discretizzazione delle coordinate $X \in Y$ sono stati ottenuti dividendo la lunghezza totale della condotta in 25 parti; per i valori della quota si è eseguita un'interpolazione lineare. La numerazione che si è associata ai nuovi nodi è crescente dal valore numerico iniziale di 100, per evitare qualsivoglia tipo di ambiguità rispetto alla nomenclatura già presente nella rete base di Anytown.

Nel nuovo file di input è stato necessario dedicarsi anche alla rielaborazione dei dati descriventi i "pipes"; in particolare si è assegnata la nuova lunghezza, ottenuta dividendo la lunghezza originale in venticinque parti, e si sono confermati diametro e scabrezza dei tubi iniziali. Per corrispondenza segue la tabella esplicativa relativa alla tubazione discretizzata avente inizio nel nodo originale 1 e fine nel nodo di origine 2. I dati completi sono presenti in Allegato A.

Link 1-2					
Pipe ID	Start Node ID	End Node ID	Length [m]	Diameter [mm]	Roughness [-]
1	1	100	146.30	304.80	120
2	100	101	146.30	304.80	120
3	101	102	146.30	304.80	120
4	102	103	146.30	304.80	120
5	103	104	146.30	304.80	120
6	104	105	146.30	304.80	120
7	105	106	146.30	304.80	120
8	106	107	146.30	304.80	120
9	107	108	146.30	304.80	120
10	108	109	146.30	304.80	120
11	109	110	146.30	304.80	120
12	110	111	146.30	304.80	120
13	111	112	146.30	304.80	120
14	112	113	146.30	304.80	120
15	113	114	146.30	304.80	120
16	114	115	146.30	304.80	120
17	115	116	146.30	304.80	120
18	116	117	146.30	304.80	120
19	117	118	146.30	304.80	120
20	118	119	146.30	304.80	120
21	119	120	146.30	304.80	120
22	120	121	146.30	304.80	120
23	121	122	146.30	304.80	120
24	122	123	146.30	304.80	120
25	123	2	146.30	304.80	120

Tabella 4-9. Discretizzazione della tubazione congiungente i nodi 1 e 2. Dati riguardanti i "pipes".

Anche in questo caso, le voci da modificare nel file di input per l'analisi di qualità dell'acqua sono: [QUALITY] e [SOURCES]; come mostrato in tabella.

[QUALITY]			[SOURCES]		
Node	Initial Quality [mg/l]	Node	Type	Strength [mg/min]	
х	0	х	MASS	10000	

Tabella 4-10. Sezioni da modificare per effettuare l'analisi "quality" su EPANET.

La rete discretizzata di Anytown appare, infine, come mostrato nella figura sottostante.

Figura 4-4. Rete di Anytown discretizzata con nomenclatura nei nodi originali.

Si riportano i passi adottati per dividere le diverse lunghezze dei "pipes" della rete, evidenziando la minima e la massima nella pagina seguente.

	ΔL	ΔL
Link	X-Coord	Y-Coord
	[m]	[m]
1-2	0.6	28.8
1-12	34.6	0.2
1-13	15.0	12.8
2-3	1.4	19-0
2-4	17.8	22.3
2-13	14.4	16.0
2-14	14.2	0.4
3-4	16.4	3.4
4-8	34.8	10.6
4-15	13.2	13.3
8-9	24.6	22.5
8-15	21.6	2.6
8-16	8.5	13.2
8-17	3.8	29.3
9-10	12.3	15.4
10-11	16.9	8.5
10-17	8.4	8.6
11-12	14.0	5.6
12-17	22.4	11.4
12-18	0.0	13.2
13-14	0.2	16.4
13-18	19.6	0.2
13-19	13.6	11.1
14-15	16.7	8.7
14-19	13.8	5.3
15-16	13.1	10.6
15-19	2.9	14.0
16-17	12.3	16.1
16-18	10.1	14.3
16-19	16.0	3.5
17-18	22.4	1.8
18-19	5.9	10.9

Link	ΔL _{MIN} X-Coord [m]	Link	ΔL _{MIN} Y-Coord [m]
12-18	0	1-12	0.2
Link	ΔL _{MAX} X-Coord [m]	Link	ΔL _{MAX} Y-Coord [m]
4-8	34.8	8-17	29.3

Tabella 4-11. Passo di discretizzazione (ΔL) massimo e minimo.

Tabella 4-12. Passi di discretizzazione (ΔL) per la coordinata x ed y, in tutti i links.

4.2 Implementazione del filtro di Kalman Ensemble

4.2.1 Introduzione

Per l'implementazione del filtro di Kalman si è fatto riferimento allo schema applicativo fornito dal professore Jaime Gomez-Hernandez[9] e lo si è adattato al caso studio di Anytown; ossia, soprattutto, all'utilizzo del software EPANET.

Dato che le analisi che il programma di simulazione idraulica avrebbe dovuto compiere sarebbero state in sequenza e numerose, punto saliente del lavoro di tesi è stato quello di trovare il modo di utilizzare i risultati, forniti dall'analisi idraulica e di qualità dell'acqua di EPANET, e rielaborarli all'interno dell'equazioni del filtro, implementato su Matlab, in maniera semplice e automatica. Per fare ciò è stato necessario accoppiare EPANET e Matlab sfruttando il Toolkit scaricabile gratuitamente tra le "apps" di quest'ultimo.

Il Toolkit EPANET-Matlab [10] è un open-source software, originariamente sviluppato da *KIOS Research Center for Intelligent Systems and Networks of the University of Cyprus* che opera in ambiente Matlab per fornire un'interfaccia di programmazione per l'ultima versione del software EPANET. Il Toolkit, quindi, funge da ottimo quadro di programmazione per la ricerca e lo sviluppo nel settore delle reti idriche. Al suo interno sono sviluppati comandi e funzioni in grado di modificare, visualizzare e tracciare i risultati prodotti dalle librerie di EPANET su Matlab.

4.2.2 Come implementare l'EnKF

In questo paragrafo si descrivono le equazioni del filtro di Kalman d'insieme applicate allo specifico caso studio. Siano X il vettore con n_{xyz} componenti che contengono i valori dei parametri di interesse, e Y il vettore, sempre con n_{xyz} elementi, che esprime lo stato del sistema. Quest'ultimo è correlato ai parametri di interesse tramite delle equazioni di stato risolte da un modello numerico, che fornisce la soluzione delle equazioni e definisce le condizioni iniziali e al contorno del sistema.

Nell'applicazione di questo lavoro di tesi, il vettore X è rappresentato dalla posizione della sorgente di contaminante quindi dalle coordinate x ed y della fonte inquinante; mentre quello Y è rappresentato dai risultati forniti da EPANET in termini di concentrazione di contaminante e nuove coordinate della sorgente.

$$X = (x; y)$$
$$Y = epanet(Q; x; y)$$

dove

- · Q concentrazione espressa in milligrammi per litro [mg/l];
- X ascissa espressa in metri [m];
- *Y* ordinata espressa in metri [m].

In realtà, i parametri di interesse e lo stato del sistema, vengono calcolati ad un determinato tempo t che dipenderà dallo stato dei parametri all'istante temporale precedente t-1.

Nell'EnKF si introduce un vettore di stato aumentato ϕ_t che include i parametri da determinare per aggiornarli all'istante temporale successivo. Esso avrà dimensione $2 \times n_{xyz}$ al tempo t, e sarà costituito sia dal vettore X che da quello Y. Questo vettore aumentato sarà quello aggiornato nel tempo e verrà indicato con l'apice f per palesare che si tratti di una previsione ("forecasted").

$$\phi_{t} = \begin{cases} X_{t}^{f} \\ Y_{t}^{f} \end{cases} = \begin{cases} X_{t-1} \\ epanet(X_{t-1}, Y_{t-1}) \end{cases}$$

Dall'espressione sopra riportata si deduce che l'ultima stima del vettore X al tempo t-l viene copiata al tempo t, mentre nel vettore Y la stima è proiettata dal tempo t-l al tempo t utilizzando il risolutore EPANET.

Il filtro di Kalman entra in gioco quando la previsione non coincide con i valori osservati. Al tempo t si dispone, infatti, di valori osservati che saranno indicati come n_{obs} . Questi, sono ottenuti dal programma di simulazione idraulica: ipotizzando di volta in volta una nuova sorgente di contaminante, il software rende disponibile la concentrazione ai nodi della rete, ossia le nostre osservazioni. I valori di concentrazione che si hanno al tempo t sono, quindi, quelli che possiamo considerare "reali". Nel caso studio preso in considerazione i nodi di osservazione coincidono con quelli della rete di Anytown, ma se così non fosse stato, si sarebbe dovuta inserire una matrice di osservazione H, al fine di correggere i valori previsti, interpolando i punti in cui si effettua o è a disposizione la misura, con i punti di osservazione.

La discrepanza tra i valori osservati e quelli previsti è utilizzata per aggiornare il vettore ϕ_t ad un nuovo stato che tenta di rispecchiare quanto più possibile i valori osservati. L'equazione di aggiornamento è la seguente:

$$\phi_t = \phi_t^f + G(\phi_{obs} - \phi_{o,t}^f)$$

con ϕ_{obs} vettore delle osservazioni e $\phi_{o,t}^{f}$ vettore delle osservazioni previste nel luogo di osservazione; entrambi i vettori hanno dimensione $n_{obs} \times 1$. *G* è una matrice di dimensione $n_{xyz} \times n_{obs}$ data dall'espressione:

$$G = C_{\phi Y_0} (C_{Y_0 Y_0})^{-1}$$

dove $C_{\phi Y_0}$ è la matrice di covarianza tra le coordinate e la concentrazione, ossia tra il vettore aumentato e quello che si registra nel luogo di osservazione (ossia la sorgente ipotizzata), ed ha dimensioni $n_{xyz} \times n_{obs}$. La matrice $C_{Y_0Y_0}$ è invece di auto-covarianza della concentrazione ed ha dimensione $n_{obs} \times n_{obs}$. Queste due matrici sono non-stazionarie e soprattutto dipendenti dal tempo di osservazione, perciò vengono calcolate e aggiornate ad ogni istante di aggiornamento delle stime. La chiave del filtro di Kalman di insieme consiste proprio nel calcolo di queste matrici che sono valutate da un gruppo di realizzazioni del sistema ipotizzato e non subisce restrizioni di linearità, a differenza che nel filtro di Kalman. Anziché lavorare con un singolo campo di parametri aumentato, è possibile lavorare con un insieme di n_r realizzazioni; il vettore aumentato sarà quindi del tipo:

$$\phi_{i,t}$$
 con $i = 1, \dots, n_r$

Per ogni step temporale il filtro di Kalman si compone, quindi, di due fasi:

Forecast step
$$\phi_t = \begin{cases} X_t^f \\ Y_t^f \end{cases} = \begin{cases} X_{t-1} \\ epanet(X_{t-1}, Y_{t-1}) \end{cases}$$

Update step $\phi_t = \phi_t^f + G(\phi_{obs} - \phi_{o,t}^f)$

Nell'applicazione, però, lo step di aggiornamento si limita al solo campo dei parametri da determinare; quindi in definitiva è solo il vettore X, ossia le coordinate incognite della sorgente, x ed y, al aggiornarsi.

Le espressioni utilizzate possono essere scritte pertanto come:

$$X_{t} = X_{t}^{f} + G(\phi_{obs} - \phi_{o,t}^{f})$$
$$G = C_{XY_{0}} (C_{Y_{0}Y_{0}})^{-1}$$

I coefficienti delle matrici di covarianza presenti in *G*, rispettivamente della matrice di crosscovarianza e di auto-covarianza, sono calcolati come segue:

$$c_{XY_0}, ij = \sum_{i=1}^{n_r} \frac{\left(X_{i,t}^f - \overline{X_{i,t}^f}\right) \left(Y_{j,t,o}^f - \overline{Y_{j,t,o}^f}\right)}{n_r}; \quad con \quad i = 1, ..., n_{xyz}$$

$$c_{Y_0Y_0}, ij = \sum_{i=1}^{n_r} \frac{\left(Y_{i,t,o}^f - \overline{Y_{i,t,o}^f}\right) \left(Y_{j,t,o}^f - \overline{Y_{j,t,o}^f}\right)}{n_r}; \qquad con \quad \begin{array}{l} i = 1, \dots, n_{xyz} \\ j = 1, \dots, n_{obs} \end{array}$$

Dove il simbolo soprasegnato indica il valore medio della stima al nodo i-esimo o j-esimo.

Infine, un aspetto preso in considerazione nell'implementazione del filtro, riguarda la trasformazione dei parametri di interesse in Gaussiani, ossia si è fatto in modo di generare una distribuzione random uniforme, dai valori delle coordinate x e y della rete di Anytown. Dalle coordinate delle possibili sorgenti, si è generata quindi una distribuzione random uniforme, indipendentemente per la coordinata x e per quella y. Questa operazione è stata compiuta per sfruttare al meglio le potenzialità dell'EnKF che risulta ottimale per l'identificazione dei parametri con distribuzione Gaussiana. [1]

Algorithm 1 The ensemble Kalman filter

1: INITIALIZE 2: for $t \leftarrow 1, n_t$ do Forecast(t) 3: Compute Covariance(t) 4: $Y_t^o \leftarrow \text{measurements}$ 5: Update(t) 6: $Y_{i,t} = g(X_{i,t}, Y_{i,0})$ \triangleright Rerun state model from time 0 7: 8: end for 9: procedure Initialize for $i \leftarrow 1, n_r$ do 10: Generate $X_{i,0}$ ▷ Use your favorite method 11: Set initial state $Y_{i,0}$ ▷ In principle, the same for all realizations 12:end for 13: ▷ End initialize 14: end procedure 15: procedure Forecast(t) \triangleright Forecast at time t from time t-1 $\begin{array}{c} \mathbf{for} \ i \leftarrow 1, n_r \ \mathbf{do} \\ X_{i,t}^f \leftarrow X_{i,t-1} \end{array}$ 16: 17: Copy last parameter estimate from last time step to the next one 18: $Y_{i,t}^f \leftarrow g(X_{i,t}, Y_{i,t-1})$ 19: ▷ Solve the state equation using your favorite numerical model 20: $Y_{i,t,o}^{f} \leftarrow$ extract the state values at observation locations 21:end for 22:23: end procedure ▷ End Forecast

Algorithm 2 The ensemble Kalman filter continues 24: procedure Compute Covariance(t) for $i \leftarrow 1, n_{xyz}$ do 25: $\overline{X_{i,t}^f} \leftarrow$ average parameter at i26:end for 27:for $i \leftarrow 1, n_{obs}$ do 28: $\overline{Y_{i,t,o}^{f}} \leftarrow$ average state at observation location *i* 29:end for 30: ▷ Compute covariance between observation locations and grid nodes 31: for $i \leftarrow 1, n_{xyz}$ do 32: for $j \leftarrow 1, n_{obs}$ do 33: $c_{XY_o,ij} \leftarrow \sum_{i=1}^{n_r} \frac{(X_{i,t}^f - \overline{X_{i,t}^f})(Y_{j,t,o}^f - \overline{Y_{j,t,o}^f})}{n_i}$ 34: end for 35: 36: end for 37: Compute covariance between observation locations 38: for $i \leftarrow 1, n_{xyz}$ do 39: for $j \leftarrow 1, n_{obs}$ do $c_{Y_oY_o,ij} \leftarrow \sum_{i=1}^{n_r} \frac{(Y_{i,t,o}^f - \overline{Y_{i,t,o}^f})(Y_{j,t,o}^f - \overline{Y_{j,t,o}^f})}{n_r}$ 40: end for 41: end for 42: 43: end procedure End compute covariances 44: procedure Update(t) $G' \leftarrow C_{XY_o}(C_{Y_oY_o} + R)^{-1}$ ▷ Compute Kalman gain 45: for $i \leftarrow 1, n_r$ do $X_{i,t} \leftarrow X_{i,t}^f + G'(Y_t^o - Y_{i,t,o}^f)$ 46: 47: end for 48: 49: end procedure ▷ End update Figura 4-5. Schema procedurale dell'implementazione dell'EnKF. [9]

4.2.3 Metodologia esecutiva

Per l'esecuzione della procedura si sono prodotti diversi scripts sul software Matlab. I passi eseguiti dal codice, ripercorrono l'algoritmo di implementazione del filtro di Kalman di insieme. In questo paragrafo si descrive come sono stati adattati tutti i singoli step esecutivi al caso studio di Anytown, puntualizzando le modifiche apportate al codice nei due differenti casi di studio:

- · Anytown base;
- · Anytown discretizzata.

All'interno dello script principale vengono richiamati tutti gli scripts secondari, i quali sono propedeutici all'esecuzione delle analisi EPANET in sequenza, all'assimilazione dei dati di concentrazione e quindi al raggiungimento del risultato. L'analisi di input, ossia quella che può considerarsi "reale", da cui si ricavano i primi valori osservati di concentrazione, viene effettuata variando sorgente manualmente nel file di input (formato .inp) di EPANET. Ci sarà quindi un diverso pacchetto di risultati e di analisi per ogni sorgente ipotizzata.

Un punto nevralgico della metodologia applicata, è rappresentato dal calcolo della distanza tra le nuove coordinate aggiornate dall'operazione del filtro, e le coordinate della rete: in questo modo è stato possibile inserire delle nuove sorgenti accettabili per il programma di simulazione idraulica, ossia si è fatto in modo di ricondursi ai nodi della rete più prossimi a quelli nuovi individuati mediante l'EnKF. Questo step assume una certa originalità e specificità per il caso di reti di condotte; ha infatti permesso l'applicabilità del filtro ad iterazioni successive e si è inserito senza alcuna difficoltà tra i classici steps previsti dal filtro di Kalman, ossia fase di predizione ("prediction") e fase di aggiornamento ("update").

Il loop che si genera all'interno dello script principale ad ogni istante di tempo e per ogni nuova possibile sorgente di contaminante, va dallo step di predizione al nuovo step del filtro. Si è inoltre separato il primo loop dai successivi, semplicemente perché si è preferito scindere l'analisi iniziale, con le coordinate originali, dalle successive analisi con le nuove sorgenti calcolate come le più prossime ai nodi principali.

Si riporta uno schema della sequenza di esecuzione dei vari scripts per i due differenti casi studio. Si rimanda all'Allegato B per la consultazione dettagliata dei codici.

Figura 4-6. Schema di esecuzione dei vari scripts.

La differenza tra le due applicazioni riguarda il file di input con le coordinate e le caratteristiche della rete; diversi, infatti, sono i dati inseriti nello script "analysis". In particolare il file enKfilter.m eseguirà le analisi sul file .inp (formato dei file EPANET) della rete di Anytown base, mentre il file enKfilter_discr.m aprirà il file .inp della rete discretizzata.

A livello computazionale, avere più nodi nella rete implica una differenza di tempo nell'esecuzione del programma in quanto l'analisi condotta da EPANET su Matlab richiede qualche secondo in più; a livello risolutivo, invece, si giunge ad una soluzione più soddisfacente adoperando la rete discretizzata.

La rete discretizzata affina il risultato perché si da la possibilità al programma di avanzare meglio nell'assimilazione dei dati e nell'analisi, poiché si intercettano nodi anche nello spazio tra due sorgenti originali, e questo rappresenta un vantaggio.

Ciò che verrà implementato è un ciclo ripetuto ad ogni step temporale in cui verranno assimilati nuovi dati. All'inizio dello step temporale t si ha la stima iniziale della posizione della sorgente di contaminante con i valori di concentrazione stimati; ad ogni iterazione si perverrà ad una stima via via più vicina alla fonte inquinante reale, basata sui dati di concentrazione osservati.

Si descrivono adesso nel dettaglio gli step esecutivi:

- 0. Il primo step consiste nel generare un insieme iniziale di potenziali posizioni della sorgente (il problema è bi-dimensionale, di conseguenza esse saranno costituite da due numeri: la coordinata x e quella y). Le coordinate di queste ipotetiche sorgenti sono generate inizialmente dal file di input EPANET e successivamente vengono rielaborate seguendo una distribuzione normale, separatamente per le due coordinate.
- 1. Trasformazione delle coordinate x ed y in variabili Gaussiane usando una trasformazione normal-score.

X1x=random('norm',mean(X1X),std(X1X),1,16); X1y=random('norm',mean(X1Y),std(X1Y),1,16);

2. Basandosi sulle concentrazioni stimate al tempo zero, o all'istante precedente t - 1, grazie all'analisi compiuta dal software EPANET, nel secondo step si proietta la concentrazione di soluto dal tempo zero alla fine dell'arco temporale analizzato. In questa specifica applicazione è stato considerato pari a 24 o 48*h*.

Dato che le concentrazioni sono fortemente dipendenti dalla posizione iniziale della sorgente, il risolutore idraulico, al variare della fonte di contaminazione, è stato eseguito ogni volta dal tempo zero. Questo è un punto nevralgico dell'applicazione per l'identificazione della posizione di una fonte di contaminante in quanto, a differenza che nella maggior parte dei casi applicativi dell'EnKF in cui viene aggiornato tutto lo stato del sistema; qui, invece, la concentrazione di soluto viene esclusa dalla fase di update. Questo è fatto per permettere un'analisi più realistica che tenga conto della variabilità dei valori di concentrazione con le coordinate x ed y di inizio contaminazione.

- 3. Si costruisce il vettore aumentato con le coordinate x ed y trasformate e la concentrazione aggiornata (quest'ultima calcolata per ogni sorgente ipotizzata). Questa fase è stata realizzata nella parte finale dello script "prediction.m", in cui vengono raccolte coordinate trasformate e concentrazioni osservate.
- 4. Si calcolano la matrice di auto-covarianza delle concentrazioni simulate nelle posizioni di osservazione, e la cross-covarianza tra le coordinate trasformate e le concentrazioni osservate.

5. Si aggiornano le coordinate della sorgente adoperando la procedura standard dell'EnKF:

```
% Filter
Gt = Cxyc * pinv(Ccc);
xa = [ X1x ; X1y ] + (Gt * Dt') ;
coordX = xa(1,:);
coordY= xa(2,:);
```

Si ricorda che G_t è la matrice di guadagno di Kalman e D_t è invece la differenza tra le concentrazioni nei punti di osservazione e quelle calcolate al tempo zero.

6. Per assimilare le misure al tempo successivo, si calcola la distanza dei nuovi nodi calcolati da quelli originali in modo tale da intercettare i nodi reali più vicini. Si ripete l'operazione dal punto 1.

Una rappresentazione schematica dei dati e dell'algoritmo di assimilazione descritto, è illustrato nella pagina a seguire.

Figura 4-7. Flow chart che descrive l'algoritmo di assimilazione dei dati eseguito.

5 Risultati delle simulazioni.

5.1 Introduzione

In questo elaborato di tesi si sono svolte diverse simulazioni per testare quanto fosse efficace la metodologia anche nel caso specifico di dati di input forniti dal programma EPANET e quindi nel caso di condotte in pressione.

In questo capitolo verranno riportati, attraverso grafici e tabelle, i risultati che hanno dato maggiore riscontro rispetto all'esito atteso. Le simulazioni effettuate sono state divise in 2 gruppi principali: quelle effettuate sulla rete di Anytown base, e quelle effettuate sulla rete di Anytown discretizzata; all'interno di questi due macro-gruppi se ne possono distinguere altri due, infatti sono state eseguite analisi idrauliche e di qualità dell'acqua con la durata di 24 e 48 ore. Per ogni macro-gruppo le simulazioni effettuate hanno ipotizzato tutti i nodi della rete come ipotetici nodi-sorgente: essendo 16 i nodi candidati ad essere ipotetici punti di misurazione reale di contaminante, in totale si sono effettuate 64 simulazioni.

Anytown base		Anytown discretizzata		
24h	48h	24h	48h	
Nodi 1-16	Nodi 1-16	Nodi 1-16	Nodi 1-16	

 Tabella 5-1.
 Tabella riassuntiva delle analisi condotte.

Nei paragrafi successivi si allegano i risultati migliori ottenuti per ogni singolo caso. Si riportano, inizialmente, i grafici dell'analisi di qualità dell'acqua compiuta dal software Epanet su Matlab; essi illustrano le serie temporali di concentrazione di soluto per il singolo nodo, ipotizzato sorgente, e per tutti i nodi della rete. Successivamente, in sequenza, si può osservare l'evoluzione temporale dell'assimilazione dei dati compiuta grazie all'implementazione del filtro di Kalman di insieme. Visivamente sarà possibile notare la convergenza del risultato e la sua vicinanza con la sorgente ipotizzata reale.

5.2 Caso Studio 1: Rete Anytown base – Tempo di simulazione 24 h

Il time step di assimilazione dei dati per l'EnKF è stato fissato ogni 1 h, intervallo temporale di 1 h anche per l'analisi idraulica, mentre per l'analisi di qualità dell'acqua si è considerato un tempo di analisi pari a 1 min.

I due casi migliori di previsione, riguardano l'ipotesi di nodo-sorgente '13' e 16'.
5.2.1 Nodo 13

Figura 5-1. La figura mette in evidenza la posizione del nodo ipotizzato sorgente.

Fare un'ipotesi, consente di inizializzare l'algoritmo e di avere una stima reale di concentrazioni osservate. Questa operazione viene effettuata manualmente, si modifica il file in formato .inp alla voce [QUALITY] e in quella [SOURCES].

Alla fine dell'assimilazione di tutti i dati di concentrazione, per ogni ora di simulazione, il risultato delle coordinate aggiornate medie, è mostrato nella figura sottostante.

Figura 5-2. Media delle nuove coordinate ipotizzate ad ogni step temporale.

È interessante soffermarsi anche sull'analisi di qualità dell'acqua svolta dal risolutore di modello EPANET, che è possibile consultare su Matlab producendone graficamente i risultati. Si illustra la curva di concentrazione di soluto per il nodo '13' e, a fianco, quello di tutti gli altri nodi contaminati.

Figura 5-3. Serie temporale della concentrazione di soluto nel nodo '13' e in tutti i nodi della rete.

Come si può osservare dal grafico, il valore di concentrazione più elevato è quello del nodo ipotizzato sorgente; l'immissione di contaminante è continua.

L'efficacia dell'applicazione del filtro di Kalman di insieme può essere apprezzata mostrando in sequenza le nuove coordinate, della posizione della sorgente, previste, ad ogni ciclo di assimilazione dei dati. L'assimilazione dei dati viene fatta ogni ora per 24 ore, ossia per tutta la durata di simulazione. Nelle pagine seguenti si riportano i risultati. Si osserverà che, benché vi sia una certa instabilità, i risultati convergono e si concentrano nella zona prossima alla soluzione corretta.

T5-T8

Figura 5-4. Sequenza di risultati post-EnKF.

T13-T16

Figura 5-4. Sequenza di risultati post-EnKF.

T21-T24

5.2.2 Nodo 16

Ipotizzando il nodo '16' come possibile fonte di contaminazione, si sono ottenuti dei risultati che vale la pena riportare.

Figura 5-5. La figura mette in evidenza la posizione del nodo ipotizzato sorgente.

Alla fine dell'applicazione dell'EnKF, la media delle coordinate risultanti ad ogni step temporale di assimilazione, si avvicina via via al nodo '16' come sperato. Ciò è mostrato nella figura subito sotto.

Figura 5-6. Media delle nuove coordinate ipotizzate ad ogni step temporale.

È importante soffermarsi sull'osservazione dell'analisi di qualità dell'acqua simulata dal programma EPANET. Ci si concentra sul singolo nodo '16' e successivamente sulla porzione di nodi coinvolti.

Figura 5-7. Serie temporale della concentrazione di soluto nel nodo '16' e in tutti i nodi coinvolti.

I valori di picco riguardano il nodo origine, e gli altri nodi risultano essere contaminati dalla seconda ora in poi.

L'efficacia dell'applicazione del filtro di Kalman Enseble può essere apprezzata mostrando in sequenza le nuove coordinate previste, della posizione della sorgente, ad ogni ciclo di assimilazione dei dati. L'assimilazione dei dati viene fatta ogni ora per 24 ore, ossia per tutta la durata di simulazione. Nelle pagine seguenti si riportano i risultati. Si osserverà che, benché vi sia una certa instabilità, i risultati convergono e si concentrano nella zona prossima alla soluzione corretta, specialmente negli ultimi step di assimilazione. Questo induce a pensare che il tempo di assimilazione non sia troppo breve.

T1-T4

T5-T8

Figura 5-8. Sequenza di risultati post-EnKF.

T9-T12

T13-T16

Figura 5-8. Sequenza di risultati post-EnKF.

T17-T20

T21-T24

Figura 5-8. Sequenza di risultati post-EnKF.

5.3 Caso Studio 2: Rete Anytown base – Tempo di simulazione 48 h

In questo caso studio, il time step di assimilazione dei dati per l'EnKF è stato fissato ogni 3 h. Aumentando il tempo di simulazione, si è pensato di dilatare anche il tempo di osservazione e quindi di assimilazione dei dati: sia per ragioni pratiche, ossia per abbreviare l'analisi da parte dell'algoritmo EnKF, ma anche perché sicuramente si apprezza più chiaramente una differenza nei risultati con uno step non minore delle 3h. Per l'analisi idraulica l'intervallo temporale resta di 1 h, così come resta di 1 min il tempo di analisi "quality".

Si riporta il risultato migliore, che si ottiene per l'ipotesi di nodo-sorgente '14'.

5.3.1 Nodo 14

Si mostra la posizione del nodo-sorgente '14', considerato luogo reale di contaminazione; nella modifica del file di input in formato .inp si modifica, sia il nodo nelle sezioni [QUALITY] e [SOURCES], ma anche la durata della simulazione nella sezione [TIMES].

Figura 5-9. La figura mette in evidenza la posizione del nodo ipotizzato sorgente.

Nella figura 5-10, si riportano i risultati medi dopo l'applicazione dell'EnKF, abbastanza prossimi al nodo di ipotesi.

Figura 5-10. Media delle nuove coordinate ipotizzate ad ogni step temporale.

Sulle 48 h i risultati di concentrazione calcolati, si osservano nelle figure seguenti. È stata isolata la serie temporale di qualità dell'acqua del nodo di interesse, ossia il nodo '14', e poi si osserva la stessa variazione temporale della concentrazione per gli altri nodi coinvolti.

Figura 5-11. Serie temporale della concentrazione di soluto nel nodo '14' e in tutti i nodi della rete.

L'efficacia dell'applicazione del filtro di Kalman Enseble può essere apprezzata mostrando in sequenza le nuove coordinate previste della posizione della sorgente, ad ogni ciclo di assimilazione dei dati. L'assimilazione dei dati viene fatta ogni 3 h per tutte le 48 ore, ossia per tutta la durata di simulazione. Nelle pagine seguenti si riportano i risultati. Si osserverà che, benché vi sia una certa instabilità, i risultati convergono, in maniera più evidente dopo la 23esima ora.

Figura 5-12. Sequenza di risultati post-EnKF.

Figura 5-12. Sequenza di risultati post-EnKF.

5.4 Caso Studio 3: Rete Anytown discretizzata – Tempo di simulazione 24 h

Il time step di assimilazione dei dati per l'EnKF è stato fissato ogni 1 h, intervallo temporale di 1 h anche per l'analisi idraulica, mentre per l'analisi di qualità dell'acqua si è considerato un tempo di analisi pari a 1 min.

Lavorare con la rete discretizzata consente di apprezzare molto di più l'efficacia del filtro, in quanto si ha la possibilità di scegliere coordinate anche dove precedentemente non era possibile poiché presenti solo i "pipes".

Un risultato molto soddisfacente si è ottenuto ipotizzando come nodo-sorgente il nodo '9'. Un altro risultato che si vuole riportare riguarda il nodo '13'.

5.4.1 Nodo 9

Il nodo '9' è un nodo di bordo, svolgendo le analisi sulla rete di Anytown base non sempre è stato possibile ottenere dei risultati apprezzabili per questi nodi, cosa che sembra essere più semplice con la rete discretizzata. Si mostra la posizione del nodo-sorgente '9', inserito manualmente nelle sezioni [QUALITY] e [SOURCES], nel file di input in formato .inp.

Figura 5-13. La figura mette in evidenza la posizione del nodo ipotizzato sorgente.

Di seguito si riportano i risultati della concentrazione di soluto ottenuti dall'analisi di qualità dell'acqua per il nodo-sorgente e per gli altri nodi contaminati.

Figura 5-14. Serie temporale della concentrazione di soluto nel nodo '9' e in tutti i nodi coinvolti.

Non si può fare a meno di notare che in questa analisi, risultano pochi i nodi coinvolti dalla contaminazione nelle 24 h; questo può essere attribuito al tempo di simulazione, oppure può dipendere dalla posizione del nodo nella rete. In ogni caso risulta ugualmente interessante testare quanto influisca la minore quantità di dati di inizializzazione del filtro sul risultato finale. Questo fatto potrebbe rappresentare un vantaggio in quanto la minore quantità di dati restringe probabilmente il range dei valori della soluzione ricercata dal filtro.

Nelle prossime figure verranno mostrati gli step temporali di assimilazione dei dati. Nonostante un'evidente instabilità nel calcolo della soluzione al "Time step 5", la risposta alla fine dell'assimilazione si avvicina fortemente al nodo '9'.

Figura 5-15. Sequenza di risultati post-EnKF.

Figura 5-15. Sequenza di risultati post-EnKF.

T13-T18

Figura 5-15. Sequenza di risultati post-EnKF.

Figura 5-15. Sequenza di risultati post-EnKF.

5.4.2 Nodo 13

Si vuole riportare l'analisi condotta con l'ipotesi di sorgente contaminante al nodo '13' per avere un confronto rispetto al caso precedente, in quanto in questo caso i dati di concentrazione iniziali sono numerosi. Si illustra di seguito la posizione del nodo-sorgente.

Figura 5-16. La figura mette in evidenza la posizione del nodo ipotizzato sorgente.

Come si può già osservare dai valori mediati delle coordinate aggiornate dal filtro ad ogni step di assimilazione dei dati, i risultati che si ottengono sono molto prossimi alla sorgente '13'.

Figura 5-17. Media delle nuove coordinate ipotizzate ad ogni step temporale.

Anche in questo caso si osservano i dati di concentrazione utilizzati per inizializzare l'EnKF: a sinistra per il singolo nodo '13' e a destra per tutti i nodi coinvolti.

Figura 5-18. Serie temporale della concentrazione di soluto nel nodo '13' e in tutti i nodi della rete.

Dalla serie temporale delle concentrazioni della rete, è subito chiaro che la quantità disponibile di dati, all'inizio dell'implementazione del filtro, è vasta. Nonostante questa differenza rispetto al caso precedente, la soluzione trovata dall'algoritmo risulta buona e per questo nelle pagine a seguire si riportano i risultati grafici dell'assimilazione dei dati e dell'analisi effettuata dal filtro.

T1-T6

Figura 5-19. Sequenza di risultati post-EnKF.

T7-T12

Figura 5-19. Sequenza di risultati post-EnKF.

T13-T18

Figura 5-19. Sequenza di risultati post-EnKF.

T19-T24

Figura 5-19. Sequenza di risultati post-EnKF.

5.5 Caso Studio 4: Rete Anytown discretizzata – Tempo di simulazione 48 h

Anche nel caso della rete di Anytown discretizzata si è pensato di cambiare il tempo della simulazione idraulica e di qualità. Da 24 h si è passati a 48 h e ad assimilare i dati ogni 3 h. L' intervallo temporale scelto per l'analisi idraulica è sempre quello di default, ossia 1 h, e pari a 1 min per l'analisi "quality".

Uno dei risultati più precisi si è ottenuto proprio in questa classe di analisi; ipotizzando il nodo '3' come sorgente, l'algoritmo è stato in grado di predire la giusta soluzione. Un altro nodo ben individuato è stato il '14'.

5.5.1 Nodo 3

La posizione del nodo '3' è di bordo come si può notare dalla figura.

Figura 5-20. La figura mette in evidenza la posizione del nodo ipotizzato sorgente.

Dopo aver registrato un'instabilità della soluzione al tempo di assimilazione T17, si raggiunge la convergenza nel nodo-sorgente reale. I risultati delle coordinate x ed y mediati sulle 48 h, ad intervalli di 3h, vengono illustrati nel grafico subito sotto.

Figura 5-21. Media delle nuove coordinate ipotizzate ad ogni step temporale.

Come si nota in figura 5-21, l'algoritmo dopo essersi allontanato dalla soluzione, riesce poi a recuperare le informazioni allo step successivo, e si stabilizza nella soluzione corretta. Risultato che verrà confermato visivamente nel report delle coordinate calcolate dal filtro ad ogni step temporale di assimilazione.

Per comprendere meglio i dati sfruttati inizialmente dal filtro, si illustra la concentrazione in funzione del tempo per il nodo-sorgente e per tutti gli altri nodi coinvolti.

Figura 5-22. Serie temporale della concentrazione di soluto nel nodo '3' e in tutti i nodi della rete.

I dati misurati di concentrazione risultano molti, in quanto la contaminazione avente origine dal nodo '3' raggiunge numerosi punti della rete durate l'arco temporale di simulazione che è pari a 48 h.

Si mostra, a seguire, che la soluzione esatta viene individuata al "Time step 20" e viene mantenuta costante per tutte le iterazioni successive. Per brevità, infatti, dopo lo step di assimilazione dei dati al T=20, si riportano le immagini dell'assimilazione ogni 6 h.

Figura 5-23. Sequenza di risultati post-EnKF.

Figura 5-23. Sequenza di risultati post-EnKF.

5.5.2 Nodo 14

L'ultimo risultato mostrato riguarda il nodo '14'. La soluzione di questa analisi risulta soddisfacentemente prossima al nodo reale. La posizione di questo nodo-sorgente è centrale come si illustra nel grafico.

Figura 5-24. La figura mette in evidenza la posizione del nodo ipotizzato sorgente.

Come si può già osservare dai valori mediati delle coordinate aggiornate dal filtro ad ogni step di assimilazione dei dati, i risultati che si ottengono sono molto prossimi alla sorgente '14'.

Figura 5-25. Media delle nuove coordinate ipotizzate ad ogni step temporale.

La concentrazione nel nodo '14' per le 48 h di simulazione è quella riportata nel grafico sotto. Si illustrano inoltre le concentrazioni negli altri nodi.

Figura 5-26. Serie temporale della concentrazione di soluto nel nodo '14' e in tutti i nodi della rete.

L'immissione di contaminante è continua e inizia al nodo 14. Molti nodi della rete vengono contaminati abbastanza presto, perciò i dati di inizio implementazione sono molto vari e numerosi.

Nelle pagine successive si illustra l'evoluzione della ricerca della soluzione attraverso l'EnKF, ogni 3 h si riporta la nuova soluzione proposta dal filtro per le coordinate della posizione della sorgente inquinante.

T1-T14

Figura 5-27. Sequenza di risultati post-EnKF.

T17-T32

Figura 5-27. Sequenza di risultati post-EnKF.

2500

2500

T35-T47

Figura 5-27. Sequenza di risultati post-EnKF.

5.6 Sintesi dei risultati

Effettuando le simulazioni, chiaramente ci si è resi conto che non sempre la previsione si avvicina alla soluzione reale; ci sono casi in cui il risultato non è quello desiderato.

Si riporta, infine, uno schema completo di tutte le simulazioni effettuate.

Analysis discretized Anytown						
Source Location		Set Time Simulation	Analysis Time Step	Quality Time Step	Hydraulic Time Step	Results
Matlab Name	Epanet Name	hours	hours	hours	hours	Yes=near/No=far
1	1	24	1	0.01	1	Yes
		48	3	0.01	1	No
2	2	24	1	0.01	1	No
		48	3	0.01	1	No
3	3	24	1	0.01	1	-
		48	3	0.01	1	Yes
4	4	24	1	0.01	1	No
		48	3	0.01	1	Yes
5	8	24	1	0.01	1	No
		48	3	0.01	1	No
6	9	24	1	0.01	1	Yes
		48	3	0.01	1	-
7	10	24	1	0.01	1	No
		48	3	0.01	1	No
8	11	24	1	0.01	1	Yes
		48	3	0.01	1	No
9	12	24	1	0.01	1	No
		48	3	0.01	1	No
10	13	24	1	0.01	1	Yes
		48	3	0.01	1	-
11	14	24	1	0.01	1	-
		48	3	0.01	1	Yes
12	15	24	1	0.01	1	No
		48	3	0.01	1	-
13	16	24	1	0.01	1	-
		48	3	0.01	1	No
14	17	24	1	0.01	1	-
		48	3	0.01	1	-
15	18	24	1	0.01	1	No
		48	3	0.01	1	No
16	19	24	1	0.01	1	-
		48	3	0.01	1	Yes

Tabella 5-2. Tabella riassuntiva delle analisi effettuate per la rete di Anytown discretizzata.
	Analysis Anytown							
Source Location Set Time Simulation Analysis Time Step Quality Time Step Hydraulic Time Step R						Results		
Matlab Name	Epanet Name	hours	hours	hours	hours	Yes=near/No=far		
1	1	24	1	0.01	1	No		
		48	3	0.01	1	No		
2	2	24	1	0.01	1	No		
		48	3	0.01	1	No		
3	3	24	1	0.01	1	No		
		48	3	0.01	1	Yes		
4	4	24	1	0.01	1	No		
		48	3	0.01	1	No		
5	8	24	1	0.01	1	No		
		48	3	0.01	1	No		
6	9	24	1	0.01	1	No		
		48	3	0.01	1	No		
7	10	24	1	0.01	1	No		
		48	3	0.01	1	No		
8	11	24	1	0.01	1	No		
		48	3	0.01	1	Yes		
9	12	24	1	0.01	1	No		
		48	3	0.01	1	Yes		
10	13	24	1	0.01	1	Yes		
		48	3	0.01	1	Yes		
11	14	24	1	0.01	1	No		
		48	3	0.01	1	Yes		
12	15	24	1	0.01	1	No		
		48	3	0.01	1	No		
13	16	24	1	0.01	1	No		
		48	3	0.01	1	Yes		
14	17	24	1	0.01	1	No		
		48	3	0.01	1	Yes		
15	18	24	1	0.01	1	Yes		
		48	3	0.01	1	No		
16	19	24	1	0.01	1	No		
		48	3	0.01	1	No		

Tabella 5-3. Tabella riassuntiva delle analisi effettuate per la rete di Anytown base.

6 Possibili studi futuri.

Risulta chiaro, dalla tabella riassuntiva delle analisi condotte, che questa versione preliminare dell'algoritmo e dell'applicazione è da migliorare. Bisogna lavorare al fine di ottenere una maggiore raffinatezza della soluzione.

I due elementi chiave dell'algoritmo, che determinano la qualità del risultato, sono:

- · il numero di realizzazioni considerate nell'Ensemble Kalman Filter;
- · la matrice di covarianza.

Per quanto riguarda il primo di questi punti, per l'applicazione del lavoro di tesi, si è impiegato un numero molto piccolo di realizzazioni ossia pari a 16, numero coincidente con i nodi della rete presa in esame. Questa scelta è stata necessaria per lavorare in maniera più semplice a livello computazionale, e per tenere meglio sotto controllo i risultati e le operazioni eseguite dall'algoritmo. In realtà questo numero può aumentare, in quanto, effettuando la trasformazione Gaussiana delle coordinate (o comunque delle variabili che si vogliono determinare) all'inizio dell'implementazione, non sarebbe stato un problema variarlo a piacimento. Potrebbero essere realizzate analisi successive con almeno 100 realizzazioni dei parametri da determinare; un numero valido, probabilmente, allo scopo di ottenere dei risultati migliori.

Il secondo punto saliente riguarda il calcolo della matrice di covarianza. Questo calcolo dipende anche dal numero di realizzazioni delle variabili incognite; aumentare il numero di realizzazioni avrebbe come conseguenza quella di infittire le informazioni disponibili e di rendere più preciso anche il calcolo della matrice di covarianza. Essa si comporterebbe in maniera migliore, ossia constaterebbe relazioni tra i nodi, con sé stessi e con gli altri, più veritiere.

Un aspetto, inoltre, di cui tenere conto, riguarda la possibilità di estendere la quantità delle variabili incognite. Potrebbe essere interessante spingere il metodo, anche nel campo delle reti in pressione così come è stato fatto per le falde acquifere, a calcolare altre variabili incognite oltre alla posizione della sorgente inquinante: potrebbe volersi determinare l'intensità iniziale senza ipotizzarla, oppure la durata dell'evento di contaminazione, etc....

7 Conclusioni.

Intercettare la posizione di una fonte di inquinante a posteriori dall'evento di contaminazione, è una questione critica che è stata oggetto di parecchi studi; i risultati ottenuti sulle falde acquifere con l'applicazione del filtro di Kalman, in particolare della sua variante"d'insieme", l'EnKF, hanno destato la curiosità di testarlo nelle reti di condotte in pressione.

Riepilogando, le analisi sono state effettuate sulla rete campione di Anytown base, ma anche infittendone i nodi; sono state eseguite accoppiando i risultati della simulazione idraulica e di qualità dell'acqua del software EPANET, alle potenzialità di Matlab, così da poter sfruttare le risorse di quest'ultimo e usare i risultati del software di simulazione idraulica di più comune uso. Il codice implementato non riesce sempre ad intercettare la soluzione corretta, ma in alcuni casi i risultati sono stati esatti o molto prossimi alla soluzione corretta. Ci sono dei margini di miglioramento su cui è possibile lavorare, in particolare si può perfezionare il calcolo della matrice di covarianza, la qualità e quantità di dati di input e il numero di realizzazioni dell'Ensemble Kalman filter, che in questo lavoro di tesi è stato esiguo. È stato inserito il calcolo della distanza tra le nuove coordinate computate dal filtro e le coordinate della rete impiegata (Anytown base o Anytown discretizzata), utile per questa specifica applicazione, al fine di iterare la procedura in una rete di condotte in pressione; condizione che si è inserita con facilità nel contesto dell'EnKF, senza influenzare negativamente il risultato.

Dallo studio di questo lavoro di tesi, si pensa che l'applicazione dell'Ensemble Kalman filter alle reti di condotte in pressione, possa essere promettente, poiché si sono ottenuti dei risultati buoni anche se non è ancora implementato in maniera del tutto efficace.

Bibliografia e sitografia

- [1] Teng Xu, J. Jaime Gómez-Hernández, *Identification of a contaminant point source in an aquifer using the ensemble Kalman filter*. Elsevier Editorial System(tm) for Advances in Water Resources, March 29, 2016.
- [2] Butera, I., Tanda, M.G., Zanini, A.. Simultaneous identification of the pollutant release history and the source location in groundwater by means of a geostatistical approach. Stochastic Environmental Research and Risk Assessment 2013;27(5):1269–1280.
- [3] Cupola, F., Tanda, M.G., Zanini, A.. Laboratory sandbox validation of pollutant source location methods. Stochastic Environmental Research and Risk Assessment 2015;29(1):169–182.
- [4] R. G. Brown and P. Y. C. Hwang, *Introduction to Random Signals and Applied Kalman Filtering*, 3rd ed., New York: John Wiley & Sons, Inc., 1997.
- [5] Andrew C. Harvey, *Forecasting, structural time series models and the kalman filter*, Cambridge University Press, 1989
- [6] U. Eigbe, M.B. Beck, H.S. Wheater, F. Hirano, Kalman filtering in groundwater flow modelling: problems and prospects, Stochastic Hydrology and Hydraulics 12 (1998) 15-32 © Springer-Verlag 1998
- [7] G. Evensen, The Ensemble Kalman Filter for Combined State and Parameter Estimation, Monte Carlo techniques for data assimilation in large systems, Ieee Control Systems Magazine, 2009 Jun, Vol.29(3), pp.83-104 [Rivista Peer Reviewed]
- [8] Ariel Almendral-Vazquez, Anne Randi Syversveen, The Ensemble Kalman Filter theory and applications in oil industry, © Norsk Regnesentral, Note no SAND/05/06, September 12, 2006
- [9] Jaime Gomez-Hernandez, How to implement the ensemble Kalman filter, March 4, 2013

[10] https://github.com/OpenWaterAnalytics/EPANET-Matlab-Toolkit/tree/master

Appendice

1. Il software EPANET 2.0

La verifica idraulica della rete di condotte in pressione e l'analisi di qualità dell'acqua, sono state effettuate mediante il software EPANET 2.0 (Rossman L.A., 2000), sviluppato dalla Water Supply and Water Resources Division dell'U.S. Environmental Protection Agency's National Risk Management Research Laboratory.

Una rete è composta da condotte, nodi (collegamenti tra condotte), pompe, valvole, serbatoi e sorgenti. EPANET calcola la portata transitante nelle condotte, la pressione in corrispondenza dei nodi, l'altezza d'acqua in ogni serbatoio e la concentrazione di sostanze chimiche attraverso la rete. Dispone di ottime doti di completezza di analisi, calcolo e presentazione dei risultati, inoltre è un software reperibile gratuitamente su internet. Esso è in grado di dare informazioni sulla portata in ogni tronco di condotta, sulla pressione in ogni nodo, sul livello raggiunto dall'acqua in ogni serbatoio e sulla concentrazione delle componenti chimiche nell'intera rete nel periodo di simulazione, con la discretizzazione temporale desiderata, tenendo conto anche delle eventuali reazioni chimiche lungo le pareti dei tubi o all'interno del flusso stesso dovuto al trasporto di massa.

Questo programma fornisce un pacchetto completo per l'analisi idraulica che permette di:

- trattare sistemi di qualsiasi dimensione;

- calcolare le perdite di carico usando le formule di Hazen-Williams, di Darcy-Weisbach o di Chezy-Manning;

- considerare le piccole perdite di carico dovute a curve, strozzature, punti singolari;
- considerare pompe a giri fissi o a velocità variabile;
- calcolare l'energia consumata dalle pompe e i costi;

- considerare vari tipi di valvole incluse quelle di ritegno, di chiusura, di regolazione della pressione e di controllo della portata;

- calcolare lo stoccaggio nei serbatoi aventi sezioni variegate;

- considerare molteplici categorie di richiesta idrica ai nodi, ciascuna con propria modalità di variazione nel tempo;

- prevedere in anticipo quali possono essere le conseguenze di eventi straordinari come il funzionamento di idranti antincendio, le forniture particolari d'acqua, l'incremento o la diminuzione dei consumi, il fuori servizio di alcune strutture necessarie per l'esecuzione di lavori o dovuto a guasti, l'effetto di una prevista estensione della rete.

Inoltre EPANET è in grado di effettuare analisi qualitative dell'acqua che permettono di:

- modellare l'età dell'acqua in tutta la rete;

- modellare il movimento e l'evoluzione di un composto reattivo man mano che esso aumenta (per esempio la disinfezione tramite prodotti) oppure diminuisce nel tempo (per esempio il cloro residuo), prevedendo l'aumento o la diminuzione delle reazioni fino a raggiungere il limite di concentrazione.

L'uso di EPANET è estremamente utile al fine, quindi, di studiare la gestione di una rete di distribuzione di acqua potabile. Il programma permette di: sfruttare file in ingresso che descrivono la rete idrica; di effettuare simulazioni; di osservare il comportamento del sistema ad intervalli temporali prefissati; e di riassumere i risultati su tabelle o grafici.

1.1 Modello idraulico

Gli elementi che compongono la rete nell'interfaccia di EPANET sono principalmente gli archi (LINKS) e nodi (NODES); i primi possono essere di tre tipi: tubi, pompe o valvole, e sono connessi tra loro tramite i nodi, anch'essi si diversificano e possono svolgere funzione di consumo (nodi di domanda), di immissione (nodi sorgente) o di conservazione (nodi di deposito) dell'acqua.

Si riporta, per completezza, il modello idraulico utilizzato dal programma per i singoli elementi della rete:

tubi (PIPES) : essi trasportano l'acqua da un nodo all'altro; la direzione di scorrimento del flusso va dall'estremità a carico maggiore a quello a minor carico; si esprime la perdita di carico dovuta all'attrito incontrato nel passaggio all'interno dei tubi tramite la relazione:

$$h_L = a \cdot q^b$$

dove:

 h_L è la perdita di carico in piedi,

q indica la portata in cfs,

a è un coefficiente di resistenza

b l'esponente della portata.

EPANET può utilizzare tre tipi di formule (cioè differenti coefficienti): la formula di Hazen-Williams, probabilmente la più popolare; quella di Darcy-Weisbach, più adatta a flussi in moto laminare e ad fluidi diversi dall'acqua; quella di Chezy-Manning, comunemente usata in canali aperti.

Si riporta la tabella, presente sul manuale utente di EPANET, che mostra il coefficiente di resistenza (A) e l'esponente della portata (B) relativi a ciascuna legge:

	Resistance Coefficient	Flow Exponent				
Formula	(A)	<i>(B)</i>				
Hazen-Williams	4.727 C ^{-1.852} d ^{-4.871} L	1.852				
Darcy-Weisbach	$0.0252 \ f(\epsilon,d,q)d^{-5}L$	2				
Chezy-Manning	4.66 n ² d ^{-5.33} L	2				
Notes: $C = H$	Hazen-Williams roughness coefficie	nt				
z = 3	Darcy-Weisbach roughness coefficie	ent (ft)				
f = fr	iction factor (dependent on ε, d, an	d q)				
n = N	Aanning roughness coefficient					
d = p	d = pipe diameter (ft)					
$\Gamma = t$	pipe length (ft)					
q = f	low rate (cfs)					

Si associa anche la tabella dei coefficienti di rugosità, validi nel caso si abbiano tubi nuovi:

Material	Hazen-Williams C (unitless)	Darcy-Weisbach ε (feet x 10 ⁻³)	Manning's n (unitless)
Cast Iron	130 - 140	0.85	0.012 - 0.015
Concrete or	120 - 140	1.0 - 10	0.012 - 0.017
Concrete Lined			
Galvanized Iron	120	0.5	0.015 - 0.017
Plastic	140 - 150	0.005	0.011 - 0.015
Steel	140 - 150	0.15	0.015 - 0.017
Vitrified Clay	110		0.013 - 0.015

Pompe (PUMPS): per pompa si deve intendere un componente atta ad innalzare la pressione dell'acqua; la "curva caratteristica" rappresenta la relazione che lega la portata elaborata dalla pompa al carico fornito al fluido. EPANET rappresenta queste curve tramite una funzione del tipo:

$$h_G = h_0 - a \cdot q^b$$

dove:

 h_G è il carico fornito dalla pompa al fluido,

 h_0 è il carico a portata nulla,

q indica la portata in cfs,

a è un coefficiente di resistenza,

b l'esponente della portata.

Fornendo al programma h_0 e altri due punti della curva caratteristica della pompa, questo è capace di stimare i valori di a e b. Nel caso in cui non sia nota la curva caratteristica, EPANET

permette di assumere che la pompa fornisca energia costante all'acqua; in questo caso l'equazione che rappresenta il comportamento della macchina è:

$$h_G = 8.81 \, Hp/q$$

dove:

Hp sono i cavalli a vapore della pompa,

q è la portata specifica.

Il programma assume che il fluido possa scorrere all'interno delle pompe in una sola direzione e che queste operino entro i limiti di portata e carico stabiliti dalle loro curve caratteristiche: nel caso in cui il sistema richieda che una pompa fornisca al fluido più del carico a pressione nulla, EPANET tenterà di chiuderla ed emetterà un messaggio di avviso. È comunque anche possibile far entrare in funzione le pompe (o bloccarle) ad orari prestabiliti o nel caso in cui vengano soddisfatte determinate condizioni (per esempio, quando il livello d'acqua nei serbatoi scende al di sotto di un valore fissato o quando la pressione ai nodi è maggiore o minore di valori consentiti).

Valvole (VALVES): oltre alle valvole di controllo situate all'interno dei tubi (che possono essere rappresentate come completamente aperte o chiuse), tramite EPANET è possibile rappresentare valvole che controllano la pressione o la portata in specifici punti della rete idrica: queste sono considerate come archi di lunghezza insignificante, dei quali devono essere specificati il nodo a monte e quello a valle.

Precisamente, è possibile rappresentare valvole che:

- riducono la pressione dell'estremità a valle (sono utilizzate per far rientrare il valore della pressione al di sotto dei livelli consentiti, nel caso vengano superati a monte; se, invece, la pressione a monte rispetta i livelli massimi, allora il flusso attraverso la valvola non subisce restrizioni; nel caso in cui la pressione nel nodo a valle sia maggiore di quella che si ha a monte, la valvola si chiude immediatamente per evitare che il flusso si inverta);
- mantengono un valore minimo di pressione nel nodo a monte quando la pressione del nodo a valle sia al di sotto di tale valore; anche in questo caso, se la pressione di valle è maggiore del valore fissato la valvola non entra in funzione mentre impedisce che il fluido inverta la sua direzione di scorrimento, chiudendosi, se la pressione a valle supera quella a monte;
- provocano una prestabilita perdita di pressione (valvole di laminazione);
- controllano la portata (limitano il flusso che scorre attraverso la valvola ad un quantitativo specifico; nel caso in cui questa portata non possa essere mantenuta senza aggiungere del carico addizionale alla valvola, viene emesso un messaggio di avviso);
- simulano una parziale chiusura regolando il coefficiente delle perdite di carico concentrate della valvola stessa (valvole a farfalla); la relazione tra il grado di chiusura e il corrispondente coefficiente di perdita di carico è generalmente disponibile presso il produttore.

Nodi (NODES): è necessario fornire per ciascuno di essi l'altezza sul livello del mare, affinché possa essere calcolato il contributo al valore della pressione dovuto all'altitudine; devono essere inoltre fornite al programma tutte le informazioni riguardanti il consumo o l'immissione di nuova acqua per ogni nodo che non sia un serbatoio. Sono classificati come nodi anche i

serbatoi (TANKS) e le cisterne (RESERVOIRES); in entrambi esiste una superficie di pelo libero, tuttavia nelle seconde il livello dell'acqua rimane costante). EPANET rappresenta la variazione nel livello dell'acqua di un serbatoio con la formula:

$$\Delta y = (q/A) \cdot \Delta t$$

dove:

 Δy rappresenta la variazione nel livello d'acqua in metri,

q è la portata che entra (+) o esce (-) dal serbatoio (cfs),

A indica l'area della sezione trasversale del serbatoio (ft^2),

 Δy rappresenta l'intervallo di tempo in secondi.

È inoltre necessario fornire al programma il valore minimo e massimo consentito per il livello d'acqua all'interno dei serbatoi. Notiamo infine che, per come sono stati descritti, i "reservoirs" rappresentano fonti esterne d'acqua, cioè sono laghi o fiumi, pertanto non deve essere associato loro alcun consumo o immissione d'acqua stessa.

Time patterns: EPANET considera che il consumo, la fornitura esterna e la composizione dell'acqua, rimangano costanti per un intervallo di tempo (detto hydraulic time-step) fissato per default ad un ora, ma modificabile, potendo tuttavia mutare da un intervallo all'altro proprio sfruttando l'opzione "time pattern".

1.1.1 Relazioni di simulazione

Le due simulazioni utilizzate su EPANET sono quella idraulica e quella relativa allo studio della qualità dell'acqua; se ne descrivono le relazioni matematiche alla base nel seguente paragrafo.

Simulazione idraulica

Per la simulazione idraulica le equazioni utilizzate sono quella del moto, che mette in relazione portata e perdita di carico, e l'equazione di continuità; queste equazioni vengono risolte simultaneamente dal software su tutti i tratti della rete, in particolare quella del moto verrà applicata alle condotte e quella di continuità in ogni singolo nodo.

Per il primo sistema di equazioni EPANET mette a disposizione tre diverse formulazioni: Hazen-Williams, Darcy-Weisbach e Chezy-Manning. Si inserisce il valore di scabrezza delle condotte; i valori da inserire sono anche consultabili nelle tabelle fornite dal software in funzione del materiale di progetto. Si riporta la formula di Hazen-Williams risolta dal software:

$$\Delta H = H_j - H_i = \frac{10.67 \cdot L}{D^{4.871}} \left(\frac{Q}{C}\right)^{1.852} + \sum \alpha \frac{|Q|Q}{2gA^2}$$

Con

- *i*, *j* nodi terminali della connessione;
- L lunghezza espressa in [m]; •
- *D* diametro interno [m]; .
- C coefficiente di scabrezza di Hazen-Williams, adimensionale;
- α coefficiente di perdita concentrata, adimensionale;
- Q portata veicolata attraverso la condotta espressa in $[m^3/s]$;
- $A = \frac{\pi D^2}{4}$ area della sezione piena, in [m²]; g accelerazione di gravità espressa in [m/s²]. •
- •

Le perdite concentrate sono associate a turbolenze in corrispondenza di curve, raccordi, contatori e valvole. Esse sono proporzionali alla portata, in quanto legate alla velocità dell'acqua nelle tubazioni o valvole come si evince chiaramente dalla formula:

$$\Delta H = \alpha \frac{|Q|Q}{2gA^2}$$

Il coefficiente di perdita concentrata α può essere valutato mediante tabelle.

Il secondo sistema di equazioni considera invece la continuità negli *n* nodi della rete:

$$\sum_{j} Q_{ij} - D_i = 0 \quad con \ i = 1 \dots n$$

Dove

 Q_{ij} è la portata in arrivo o in uscita al nodo *i* dai nodi *j* espressa in [m³/s];

 D_i è la portata prelevata al nodo *i*, in [m³/s].

Il metodo risolutivo impiegato dal software per risolvere simultaneamente ad ogni passo temporale le equazioni, può essere considerato come metodo ibrido dei nodi o delle maglie che prende il nome di metodo del gradiente.

L'equazione del moto per semplicità può essere espressa anche come:

$$\Delta H = rQ_{ij}^n + mQ_{ij}^2$$

Con

- ΔH perdita di carico tra i nodi *i* e *j*; •
- Q_{ii} portata transitante nella tubazione;
- *r* coefficiente di resistenza;
- *m* coefficiente di perdita concentrata.

Ad ogni iterazione si ottengono i carichi piezometrici ai nodi risolvendo il sistema di equazioni:

$$A \cdot H = F \quad (1)$$

con:

· A matrice Jacobiana [nxn] i cui elementi sono pari a:

$$\begin{cases} A_{ij} = \sum_{j} p_{ij} \text{ , } per \ i = j \\ A_{ij} = -p_{ij} \text{ , } per \ i \neq j \end{cases}$$

Dove nel caso di tubazioni:

$$p_{ij} = \frac{1}{\frac{\partial h}{\partial Q}} = \frac{1}{nr|Q_{ij}|^{n-1} + 2m|Q_{ij}|};$$

e nel caso di tubazioni con gruppi di pompaggio

$$p_{ij} = \frac{1}{\frac{\partial h}{\partial Q}} = \frac{1}{n\omega^2 r (Q_{ij}/\omega)^{n-1}}$$

- · H vettore delle incognite nodali [nx1] cioè il carico ai singoli nodi;
- · F: vettore dei termini noti [nx1] cioè un vettore contenente i valori di portata rimanente nei nodi non equilibrati. Nel dettaglio:

$$F_i = \left(\sum_j Q_{ij} - D_i\right) + \sum_j y_{ij} \sum_f p_{if} \cdot H_f$$

Dove il fattore correttivo y_{ij} della portata vale:

$$y_{ij} = p_{ij} (rQ_{ij}^n + mQ_{ij}^2) \frac{Q_{ij}}{|Q_{ij}|}$$

Dalla risoluzione dell'equazione (1) le nuove portate si ottengono attraverso la formula:

$$Q_{ij} = Q_{ij} - \left[y_{ij} - p_{ij}\left(H_i - H_j\right)\right]$$

Con questi nuovi valori di portata si passa alla successiva iterazione. Il programma continua le iterazioni fin tanto che venga raggiunta la tolleranza desiderata dello scarto tra la somma del valore assoluto della variazione di portata rapportata alla portata totale in ogni singolo tratto.

Simulazione della qualità dell'acqua

L'analisi della qualità dell'acqua svolta dal programma EPANET non può prescindere da una preliminare analisi idraulica. Il metodo risolutivo che simula la diffusione di un tracciante o un contaminante all'interno della rete è basato sull'applicazione del principio di conservazione della massa, tenendo anche in considerazione, eventualmente, come l'inquinante reagisca a contatto con il fluido o con il materiale delle condotte.

L'ipotesi di base assunta dal software è che la sostanza immessa in un nodo vada a mescolarsi perfettamente con l'acqua trasportata e che il contaminante, attraverso un moto di tipo convettivo, vada a diffondersi lungo l'asse della condotta. L'equazione alla base del metodo è la seguente:

$$\frac{\partial C_i}{\partial t} + U_i \frac{\partial C_i}{\partial x} = r(C_i)$$

dove:

- · C_i è la concentrazione nella i-esima tubazione;
- Ui velocità del fluido vettore;
- r velocità di reazione, indice della reazione del fluido inquinante.

Quando si congiungono più nodi si suppone che vi sia un mescolamento completo e istantaneo tra fluido e sostanza; segue che la concentrazione nel nodo dipende solo dalla concentrazione dei flussi che entrano nella giunzione, come si rende esplicito dalla seguente equazione:

$$C_{i|x=0} = \frac{\sum_{j \in l_k} Q_j C_{j|x=L_j} + Q_{k,ext} C_{k,ext}}{\sum_{j \in l_k} Q_j + Q_{k,ext}}$$

in cui:

- · C_{i|x=0} concentrazione uscente dal nodo, corrispondente alla concentrazione nel nodo k;
- · $Q_jC_{j|x=L_j}$ portata d'inquinante trasportata dalla j-esima tubazione entrante nel nodo;
- · $Q_{k,ext}C_{k,ext}$ portata d'inquinante immessa direttamente nel nodo.

A differenza di quanto utilizzato per la simulazione idraulica, per le analisi di qualità si usano tempi di discretizzazione che possano variare da qualche minuto fino all'ora.

Allegato A

Rete Anytown discretizzata

Si riportano le tabelle contenenti i dati inseriti nel file di input della rete di Anytown discretizzata. Per ogni link si mostrano ordinatamente i nodi inseriti tra quelli esistenti nella rete base con relativi dati, in una prima tabella; in quella subito sotto si leggono, invece, i dati dei pipes corrispondenti.

Link 1-2							
	Step X-Coord	Step Y-Coord					
	[m]	[m]					
	0.6	28.8					
Node	X-Coord	Y-Coord	Node	Elevation	Demand		
ID	[m]	[m]	ID	[m]	[I/s]		
1	2341.57	1027.53	1	6.10	31.55		
100	2340.98	1056.38	100	6.46	0.00		
101	2340.38	1085.23	101	6.83	0.00		
102	2339.79	1114.08	102	7.19	0.00		
103	2339.20	1142.93	103	7.56	0.00		
104	2338.61	1171.78	104	7.92	0.00		
105	2338.01	1200.63	105	8.29	0.00		
106	2337.42	1229.48	106	8.66	0.00		
107	2336.83	1258.33	107	9.02	0.00		
108	2336.23	1287.18	108	9.39	0.00		
109	2335.64	1316.03	109	9.75	0.00		
110	2335.05	1344.88	110	10.12	0.00		
111	2334.46	1373.73	111	10.49	0.00		
112	2333.86	1402.57	112	10.85	0.00		
113	2333.27	1431.42	113	11.22	0.00		
114	2332.68	1460.27	114	11.58	0.00		
115	2332.09	1489.12	115	11.95	0.00		
116	2331.49	1517.97	116	12.31	0.00		
117	2330.90	1546.82	117	12.68	0.00		
118	2330.31	1575.67	118	13.05	0.00		
119	2329.71	1604.52	119	13.41	0.00		
120	2329.12	1633.37	120	13.78	0.00		
121	2328.53	1662.22	121	14.14	0.00		
122	2327.94	1691.07	122	14.51	0.00		
123	2327.34	1719.92	123	14.87	0.00		
2	2326.75	1748.77	2	15.24	12.62		

	Link 1-2							
Pipe ID	Start <u>Node</u> ID	End Node ID	Length	Diameter [mm]	Roughness			
1	1	100	146.30	304.80	120			
2	100	101	146.30	304.80	120			
3	101	102	146.30	304.80	120			
4	102	103	146.30	304.80	120			
5	103	104	146.30	304.80	120			
6	104	105	146.30	304.80	120			
7	105	106	146.30	304.80	120			
8	106	107	146.30	304.80	120			
9	107	108	146.30	304.80	120			
10	108	109	146.30	304.80	120			
11	109	110	146.30	304.80	120			
12	110	111	146.30	304.80	120			
13	111	112	146.30	304.80	120			
14	112	113	146.30	304.80	120			
15	113	114	146.30	304.80	120			
16	114	115	146.30	304.80	120			
17	115	116	146.30	304.80	120			
18	116	117	146.30	304.80	120			
19	117	118	146.30	304.80	120			
20	118	119	146.30	304.80	120			
21	119	120	146.30	304.80	120			
22	120	121	146.30	304.80	120			
23	121	122	146.30	304.80	120			
24	122	123	146.30	304.80	120			
25	123	2	146.30	304.80	120			

Link 1-12							
	Step X-Coord	Step Y-Coord					
	[m]	[m]					
	34.6	0.2					
Node	X-Coord	Y-Coord	Node	Elevation	Demand		
ID	[m]	[m]	ID	[m]	[l/s]		
1	2341.57	1027.53	1	6.10	31.55		
124	2306.99	1027.33	124	6.46	0.00		
125	2272.41	1027.13	125	6.83	0.00		
126	2237.83	1026.94	126	7.19	0.00		
127	2203.25	1026.74	127	7.56	0.00		
128	2168.67	1026.54	128	7.92	0.00		
129	2134.09	1026.34	129	8.29	0.00		
130	2099.51	1026.15	130	8.66	0.00		
131	2064.93	1025.95	131	9.02	0.00		
132	2030.35	1025.75	132	9.39	0.00		
133	1995.77	1025.55	133	9.75	0.00		
134	1961.19	1025.36	134	10.12	0.00		
135	1926.61	1025.16	135	10.49	0.00		
136	1892.03	1024.96	136	10.85	0.00		
137	1857.45	1024.76	137	11.22	0.00		
138	1822.87	1024.57	138	11.58	0.00		
139	1788.29	1024.37	139	11.95	0.00		
140	1753.71	1024.17	140	12.31	0.00		
141	1719.13	1023.97	141	12.68	0.00		
142	1684.55	1023.78	142	13.05	0.00		
143	1649.97	1023.58	143	13.41	0.00		
144	1615.39	1023.38	144	13.78	0.00		
145	1580.81	1023.18	145	14.14	0.00		
146	1546.23	1022.99	146	14.51	0.00		
147	1511.65	1022.79	147	14.87	0.00		
12	1477.07	1022.59	12	15.24	31.55		

	Link 1-12							
Pipe ID	Start <u>Node</u> ID	End Node ID	Length	Diameter	Roughness			
26	1	124	146.30	304.80	70			
27	124	125	146.30	304.80	70			
28	125	126	146.30	304.80	70			
29	126	127	146.30	304.80	70			
30	127	128	146.30	304.80	70			
31	128	129	146.30	304.80	70			
32	129	130	146.30	304.80	70			
33	130	131	146.30	304.80	70			
34	131	132	146.30	304.80	70			
35	132	133	146.30	304.80	70			
36	133	134	146.30	304.80	70			
37	134	135	146.30	304.80	70			
38	135	136	146.30	304.80	70			
39	136	137	146.30	304.80	70			
40	137	138	146.30	304.80	70			
41	138	139	146.30	304.80	70			
42	139	140	146.30	304.80	70			
43	140	141	146.30	304.80	70			
44	141	142	146.30	304.80	70			
45	142	143	146.30	304.80	70			
46	143	144	146.30	304.80	70			
47	144	145	146.30	304.80	70			
48	145	146	146.30	304.80	70			
49	146	147	146.30	304.80	70			
50	147	12	146.30	304.80	70			

		Link 1-1	3		
	Step X-Coord	Step Y-Coord			
	[m]	[m]			
	15.0	12.8			
Node	X-Coord	Y-Coord	Node	Elevation	Demand
ID 4	[<i>m</i>]	[m]	UI A	[m]	[I/S]
1	2341.57	1027.53	1	6.10	31.55
148	2326.55	1040.37	148	6.46	0.00
149	2311.53	1053.22	149	6.83	0.00
150	2296.52	1066.06	150	7.19	0.00
151	2281.50	1078.91	151	7.56	0.00
152	2266.48	1091.75	152	7.92	0.00
153	2251.46	1104.59	153	8.29	0.00
154	2236.45	1117.44	154	8.66	0.00
155	2221.43	1130.28	155	9.02	0.00
156	2206.41	1143.13	156	9.39	0.00
157	2191.39	1155.97	157	9.75	0.00
158	2176.38	1168.81	158	10.12	0.00
159	2161.36	1181.66	159	10.49	0.00
160	2146.34	1194.50	160	10.85	0.00
161	2131.32	1207.35	161	11.22	0.00
162	2116.31	1220.19	162	11.58	0.00
163	2101.29	1233.03	163	11.95	0.00
164	2086.27	1245.88	164	12.31	0.00
165	2071.25	1258.72	165	12.68	0.00
166	2056.24	1271.57	166	13.05	0.00
167	2041.22	1284.41	167	13.41	0.00
168	2026.20	1297.25	168	13.78	0.00
169	2011.18	1310.10	169	14.14	0.00
170	1996.17	1322.94	170	14.51	0.00
171	1981.15	1335.79	171	14.87	0.00
13	1966.13	1348.63	13	15.24	31.55

Pipe ID	Start Node ID	End Node ID	Length	Diameter	Roughness				
			Įmj	[mm]	[-]				
51	1	148	146.30	406.40	70				
52	148	149	146.30	406.40	70				
53	149	150	146.30	406.40	70				
54	150	151	146.30	406.40	70				
55	151	152	146.30	406.40	70				
56	152	153	146.30	406.40	70				
57	153	154	146.30	406.40	70				
58	154	155	146.30	406.40	70				
59	155	156	146.30	406.40	70				
60	156	157	146.30	406.40	70				
61	157	158	146.30	406.40	70				
62	158	159	146.30	406.40	70				
63	159	160	146.30	406.40	70				
64	160	161	146.30	406.40	70				
65	161	162	146.30	406.40	70				
66	162	163	146.30	406.40	70				
67	163	164	146.30	406.40	70				
68	164	165	146.30	406.40	70				
69	165	166	146.30	406.40	70				
70	166	167	146.30	406.40	70				
71	167	168	146.30	406.40	70				
72	168	169	146.30	406.40	70				
73	169	170	146.30	406.40	70				
74	170	171	146.30	406.40	70				
75	171	13	146.30	406.40	70				

Link 2-3							
	Step X-Coord	Step Y-Coord					
	[m]	[m]					
	1.4	19.0					
Node	X-Coord	Y-Coord	Node	Elevation	Demand		
ID	[m]	[m]	ID	[m]	[l/s]		
2	2326.75	1748.77	2	15.24	12.62		
172	2325.37	1767.74	172	15.24	0.00		
173	2323.98	1786.71	173	15.24	0.00		
174	2322.60	1805.68	174	15.24	0.00		
175	2321.22	1824.65	175	15.24	0.00		
176	2319.84	1843.62	176	15.24	0.00		
177	2318.45	1862.59	177	15.24	0.00		
178	2317.07	1881.56	178	15.24	0.00		
179	2315.69	1900.53	179	15.24	0.00		
180	2314.30	1919.50	180	15.24	0.00		
181	2312.92	1938.47	181	15.24	0.00		
182	2311.54	1957.44	182	15.24	0.00		
183	2310.16	1976.41	183	15.24	0.00		
184	2308.77	1995.37	184	15.24	0.00		
185	2307.39	2014.34	185	15.24	0.00		
186	2306.01	2033.31	186	15.24	0.00		
187	2304.63	2052.28	187	15.24	0.00		
188	2303.24	2071.25	188	15.24	0.00		
189	2301.86	2090.22	189	15.24	0.00		
190	2300.48	2109.19	190	15.24	0.00		
191	2299.09	2128.16	191	15.24	0.00		
192	2297.71	2147.13	192	15.24	0.00		
193	2296.33	2166.10	193	15.24	0.00		
194	2294.95	2185.07	194	15.24	0.00		
195	2293.56	2204.04	195	15.24	0.00		
3	2292.18	2223.01	3	15.24	12.62		

Link 2-3							
Pipe ID	Start <u>Node</u> ID	End Node ID	Length [m]	Diameter [mm]	Roughness [-]		
76	2	172	73.15	254.00	120		
77	172	173	73.15	254.00	120		
78	173	174	73.15	254.00	120		
79	174	175	73.15	254.00	120		
80	175	176	73.15	254.00	120		
81	176	177	73.15	254.00	120		
82	177	178	73.15	254.00	120		
83	178	179	73.15	254.00	120		
84	179	180	73.15	254.00	120		
85	180	181	73.15	254.00	120		
86	181	182	73.15	254.00	120		
87	182	183	73.15	254.00	120		
88	183	184	73.15	254.00	120		
89	184	185	73.15	254.00	120		
90	185	186	73.15	254.00	120		
91	186	187	73.15	254.00	120		
92	187	188	73.15	254.00	120		
93	188	189	73.15	254.00	120		
94	189	190	73.15	254.00	120		
95	190	191	73.15	254.00	120		
96	191	192	73.15	254.00	120		
97	192	193	73.15	254.00	120		
98	193	194	73.15	254.00	120		
99	194	195	73.15	254.00	120		
100	195	3	73.15	254.00	120		

		Link 2-4	1		
	Step X-Coord	Step Y-Coord			
	[m]	[m]			
	17.8	22.3			
Node	X-Coord	Y-Coord	Node	Elevation	Demand
ID	[m]	[m]	ID	[m]	[I/s]
2	2326.75	1748.77	2	15.24	12.62
196	2308.97	1771.10	196	15.24	0.00
197	2291.18	1793.43	197	15.24	0.00
198	2273.40	1815.76	198	15.24	0.00
199	2255.61	1838.09	199	15.24	0.00
200	2237.83	1860.41	200	15.24	0.00
201	2220.05	1882.74	201	15.24	0.00
202	2202.26	1905.07	202	15.24	0.00
203	2184.48	1927.40	203	15.24	0.00
204	2166.69	1949.73	204	15.24	0.00
205	2148.91	1972.06	205	15.24	0.00
206	2131.13	1994.39	206	15.24	0.00
207	2113.34	2016.72	207	15.24	0.00
208	2095.56	2039.04	208	15.24	0.00
209	2077.77	2061.37	209	15.24	0.00
210	2059.99	2083.70	210	15.24	0.00
211	2042.21	2106.03	211	15.24	0.00
212	2024.42	2128.36	212	15.24	0.00
213	2006.64	2150.69	213	15.24	0.00
214	1988.85	2173.02	214	15.24	0.00
215	1971.07	2195.35	215	15.24	0.00
216	1953.29	2217.67	216	15.24	0.00
217	1935.50	2240.00	217	15.24	0.00
218	1917.72	2262.33	218	15.24	0.00
219	1899.93	2284.66	219	15.24	0.00
4	1882 15	2306.99	4	15 24	13.00

Link 2-4							
Pipe ID	Start Node ID	End Node ID	Length	Diameter	Roughness		
			[m]	[mm]	[-]		
101	2	196	109.73	254.00	120		
102	196	197	109.73	254.00	120		
103	197	198	109.73	254.00	120		
104	198	199	109.73	254.00	120		
105	199	200	109.73	254.00	120		
106	200	201	109.73	254.00	120		
107	201	202	109.73	254.00	120		
108	202	203	109.73	254.00	120		
109	203	204	109.73	254.00	120		
110	204	205	109.73	254.00	120		
111	205	206	109.73	254.00	120		
112	206	207	109.73	254.00	120		
113	207	208	109.73	254.00	120		
114	208	209	109.73	254.00	120		
115	209	210	109.73	254.00	120		
116	210	211	109.73	254.00	120		
117	211	212	109.73	254.00	120		
118	212	213	109.73	254.00	120		
119	213	214	109.73	254.00	120		
120	214	215	109.73	254.00	120		
121	215	216	109.73	254.00	120		
122	216	217	109.73	254.00	120		
123	217	218	109.73	254.00	120		
124	218	219	109.73	254.00	120		
125	219	4	109.73	254.00	120		

link 2-13						
	Step X-Coord	Step V-Coord	5			
	[m]					
	14.4	16.0				
Node	X-Coord	Y-Coord	Node	Elevation	Demand	
ID	[m]	[m]	ID	[m]	[l/s]	
2	2326.75	1748.77	2	15.24	12.62	
220	2312.33	1732.76	220	15.24	0.00	
221	2297.90	1716.76	221	15.24	0.00	
222	2283.48	1700.75	222	15.24	0.00	
223	2269.05	1684.75	223	15.24	0.00	
224	2254.63	1668.74	224	15.24	0.00	
225	2240.20	1652.74	225	15.24	0.00	
226	2225.78	1636.73	226	15.24	0.00	
227	2211.35	1620.73	227	15.24	0.00	
228	2196.93	1604.72	228	15.24	0.00	
229	2182.50	1588.71	229	15.24	0.00	
230	2168.08	1572.71	230	15.24	0.00	
231	2153.65	1556.70	231	15.24	0.00	
232	2139.23	1540.70	232	15.24	0.00	
233	2124.80	1524.69	233	15.24	0.00	
234	2110.38	1508.69	234	15.24	0.00	
235	2095.95	1492.68	235	15.24	0.00	
236	2081.53	1476.67	236	15.24	0.00	
237	2067.10	1460.67	237	15.24	0.00	
238	2052.68	1444.66	238	15.24	0.00	
239	2038.25	1428.66	239	15.24	0.00	
240	2023.83	1412.65	240	15.24	0.00	
241	2009.40	1396.65	241	15.24	0.00	
242	1994.98	1380.64	242	15.24	0.00	
243	1980.55	1364.64	243	15.24	0.00	
13	1966.13	1348.63	13	15.24	31.55	

Pipe ID	Start <u>Node</u> ID	End <u>Node</u> ID	Length [m]	Diameter	Roughness		
126	2	220	109.73	304.80	70		
127	220	221	109.73	304.80	70		
128	221	222	109.73	304.80	70		
129	222	223	109.73	304.80	70		
130	223	224	109.73	304.80	70		
131	224	225	109.73	304.80	70		
132	225	226	109.73	304.80	70		
133	226	227	109.73	304.80	70		
134	227	228	109.73	304.80	70		
135	228	229	109.73	304.80	70		
136	229	230	109.73	304.80	70		
137	230	231	109.73	304.80	70		
138	231	232	109.73	304.80	70		
139	232	233	109.73	304.80	70		
140	233	234	109.73	304.80	70		
141	234	235	109.73	304.80	70		
142	235	236	109.73	304.80	70		
143	236	237	109.73	304.80	70		
144	237	238	109.73	304.80	70		
145	238	239	109.73	304.80	70		
146	239	240	109.73	304.80	70		
147	240	241	109.73	304.80	70		
148	241	242	109.73	304.80	70		
149	242	243	109.73	304.80	70		
150	243	13	109.73	304.80	70		

Link 2-14							
	Step X-Coord	Step Y-Coord					
	[m]	[m]					
	14.2	0.4					
Node	X-Coord	Y-Coord	Node	Elevation	Demand		
ID	[m]	[m]	ID	[m]	[I/s]		
2	2326.75	1748.77	2	15.24	12.62		
244	2312.52	1749.17	244	15.24	0.00		
245	2298.30	1749.56	245	15.24	0.00		
246	2284.07	1749.96	246	15.24	0.00		
247	2269.84	1750.35	247	15.24	0.00		
248	2255.61	1750.75	248	15.24	0.00		
249	2241.39	1751.14	249	15.24	0.00		
250	2227.16	1751.54	250	15.24	0.00		
251	2212.93	1751.93	251	15.24	0.00		
252	2198.71	1752.33	252	15.24	0.00		
253	2184.48	1752.72	253	15.24	0.00		
254	2170.25	1753.12	254	15.24	0.00		
255	2156.02	1753.51	255	15.24	0.00		
256	2141.80	1753.91	256	15.24	0.00		
257	2127.57	1754.30	257	15.24	0.00		
258	2113.34	1754.70	258	15.24	0.00		
259	2099.11	1755.09	259	15.24	0.00		
260	2084.89	1755.49	260	15.24	0.00		
261	2070.66	1755.88	261	15.24	0.00		
262	2056.43	1756.28	262	15.24	0.00		
263	2042.21	1756.67	263	15.24	0.00		
264	2027.98	1757.07	264	15.24	0.00		
265	2013.75	1757.46	265	15.24	0.00		
266	1999.52	1757.86	266	15.24	0.00		
267	1985.30	1758.25	267	15.24	0.00		
14	1971.07	1758.65	14	15.24	31.55		

	Link 2-14								
Pipe ID	Start <u>Node</u> ID	End Node ID	Length	Diameter [mm]	Roughness				
151	2	244	73.15	254.00	120				
152	244	245	73.15	254.00	120				
153	245	246	73.15	254.00	120				
154	246	247	73.15	254.00	120				
155	247	248	73.15	254.00	120				
156	248	249	73.15	254.00	120				
157	249	250	73.15	254.00	120				
158	250	251	73.15	254.00	120				
159	251	252	73.15	254.00	120				
160	252	253	73.15	254.00	120				
161	253	254	73.15	254.00	120				
162	254	255	73.15	254.00	120				
163	255	256	73.15	254.00	120				
164	256	257	73.15	254.00	120				
165	257	258	73.15	254.00	120				
166	258	259	73.15	254.00	120				
167	259	260	73.15	254.00	120				
168	260	261	73.15	254.00	120				
169	261	262	73.15	254.00	120				
170	262	263	73.15	254.00	120				
171	263	264	73.15	254.00	120				
172	264	265	73.15	254.00	120				
173	265	266	73.15	254.00	120				
174	266	267	73.15	254.00	120				
175	267	14	73.15	254.00	120				

Link 3-4						
	Step X-Coord	Step Y-Coord				
	[m]	[m]				
	16.4	3.4				
Node	X-Coord	Y-Coord	Node	Elevation	Demand	
ID	[m]	[m]	ID	[m]	[l/s]	
3	2292.18	2223.01	3	15.24	12.62	
268	2275.78	2226.37	268	15.24	0.00	
269	2259.38	2229.73	269	15.24	0.00	
270	2242.98	2233.09	270	15.24	0.00	
271	2226.58	2236.45	271	15.24	0.00	
272	2210.17	2239.81	272	15.24	0.00	
273	2193.77	2243.17	273	15.24	0.00	
274	2177.37	2246.52	274	15.24	0.00	
275	2160.97	2249.88	275	15.24	0.00	
276	2144.57	2253.24	276	15.24	0.00	
277	2128.17	2256.60	277	15.24	0.00	
278	2111.77	2259.96	278	15.24	0.00	
279	2095.37	2263.32	279	15.24	0.00	
280	2078.96	2266.68	280	15.24	0.00	
281	2062.56	2270.04	281	15.24	0.00	
282	2046.16	2273.40	282	15.24	0.00	
283	2029.76	2276.76	283	15.24	0.00	
284	2013.36	2280.12	284	15.24	0.00	
285	1996.96	2283.48	285	15.24	0.00	
286	1980.56	2286.83	286	15.24	0.00	
287	1964.16	2290.19	287	15.24	0.00	
288	1947.75	2293.55	288	15.24	0.00	
289	1931.35	2296.91	289	15.24	0.00	
290	1914.95	2300.27	290	15.24	0.00	
291	1898.55	2303.63	291	15.24	0.00	
4	1882.15	2306.99	4	15.24	13.00	

Link 3-4								
Pipe ID	Start <u>Node</u> ID	End <u>Node</u> ID	Length	Diameter [mm]	Roughness			
176	3	268	73.15	254.00	120			
177	268	269	73.15	254.00	120			
178	269	270	73.15	254.00	120			
179	270	271	73.15	254.00	120			
180	271	272	73.15	254.00	120			
181	272	273	73.15	254.00	120			
182	273	274	73.15	254.00	120			
183	274	275	73.15	254.00	120			
184	275	276	73.15	254.00	120			
185	276	277	73.15	254.00	120			
186	277	278	73.15	254.00	120			
187	278	279	73.15	254.00	120			
188	279	280	73.15	254.00	120			
189	280	281	73.15	254.00	120			
190	281	282	73.15	254.00	120			
191	282	283	73.15	254.00	120			
192	283	284	73.15	254.00	120			
193	284	285	73.15	254.00	120			
194	285	286	73.15	254.00	120			
195	286	287	73.15	254.00	120			
196	287	288	73.15	254.00	120			
197	288	289	73.15	254.00	120			
198	289	290	73.15	254.00	120			
199	290	291	73.15	254.00	120			
200	291	4	73.15	254.00	120			

Link 4-8							
	Step X-Coord	Step Y-Coord					
	[m]	[m]					
	34.8	10.6					
Node	X-Coord	Y-Coord	Node	Elevation	Demand		
ID	[m]	[m]	ID	[m]	[l/s]		
4	1882.15	2306.99	4	15.24	13.00		
292	1847.36	2296.35	292	15.61	0.00		
293	1812.56	2285.72	293	15.97	0.00		
294	1777.77	2275.08	294	16.34	0.00		
295	1742.97	2264.45	295	16.70	0.00		
296	1708.18	2253.81	296	17.07	0.00		
297	1673.39	2243.18	297	17.43	0.00		
298	1638.59	2232.54	298	17.80	0.00		
299	1603.80	2221.91	299	18.17	0.00		
300	1569.00	2211.27	300	18.53	0.00		
301	1534.21	2200.64	301	18.90	0.00		
302	1499.42	2190.00	302	19.26	0.00		
303	1464.62	2179.37	303	19.63	0.00		
304	1429.83	2168.73	304	19.99	0.00		
305	1395.03	2158.10	305	20.36	0.00		
306	1360.24	2147.46	306	20.73	0.00		
307	1325.45	2136.83	307	21.09	0.00		
308	1290.65	2126.19	308	21.46	0.00		
309	1255.86	2115.56	309	21.82	0.00		
310	1221.06	2104.92	310	22.19	0.00		
311	1186.27	2094.29	311	22.56	0.00		
312	1151.48	2083.65	312	22.92	0.00		
313	1116.68	2073.02	313	23.29	0.00		
314	1081.89	2062.38	314	23.65	0.00		
315	1047.09	2051.75	315	24.02	0.00		
8	1012.3	2041.11	8	24.38	13.00		

Link 4-8								
Start Node ID	End Node ID	Length	<u> Diameter</u>	Roughness				
		[m]	[mm]	[-]				
4	292	146.30	203.20	120				
292	293	146.30	203.20	120				
293	294	146.30	203.20	120				
294	295	146.30	203.20	120				
295	296	146.30	203.20	120				
296	297	146.30	203.20	120				
297	298	146.30	203.20	120				
298	299	146.30	203.20	120				
299	300	146.30	203.20	120				
300	301	146.30	203.20	120				
301	302	146.30	203.20	120				
302	303	146.30	203.20	120				
303	304	146.30	203.20	120				
304	305	146.30	203.20	120				
305	306	146.30	203.20	120				
306	307	146.30	203.20	120				
307	308	146.30	203.20	120				
308	309	146.30	203.20	120				
309	310	146.30	203.20	120				
310	311	146.30	203.20	120				
311	312	146.30	203.20	120				
312	313	146.30	203.20	120				
313	314	146.30	203.20	120				
314	315	146.30	203.20	120				
315	8	146.30	203.20	120				
	Start Node ID 4 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314	Link 4-8 Start Node ID End Node ID 4 292 292 293 293 294 293 294 294 295 294 295 295 296 297 298 297 298 297 298 297 300 301 301 301 302 301 301 301 302 301 303 301 301 301 303 303 304 303 304 303 304 303 304 304 305 305 306 306 307 307 308 308 309 309 310 310 311 311 312 312 313 313	Link 4-8 Start Node ID End Node ID Length. [m] 4 292 146.30 293 293 146.30 294 295 146.30 294 295 146.30 294 295 146.30 294 295 146.30 295 296 146.30 296 297 146.30 297 298 146.30 297 298 146.30 297 298 146.30 299 300 146.30 301 302 146.30 301 302 146.30 302 303 146.30 303 304 146.30 304 305 146.30 305 306 146.30 305 306 146.30 306 307 146.30 307 308 146.30 308 309 146.30 30	Link 4-8Start Node IDEnd Node IDSeasth Imm]Diameter Imm]4292146.30203.20293294146.30203.20294295146.30203.20294295146.30203.20295296146.30203.20295296146.30203.20295297146.30203.20297298146.30203.20298299146.30203.20299300146.30203.20299300146.30203.20301302146.30203.20303304146.30203.20304305146.30203.20305306146.30203.20304305146.30203.20305306146.30203.20305306146.30203.20305306146.30203.20307308146.30203.20308309146.30203.20309310146.30203.20309310146.30203.20310311146.30203.20311312146.30203.20313314146.30203.20314315146.30203.203158146.30203.20				

Link 4-15							
	Step X-Coord	Step Y-Coord					
	[m]	[m]					
	13.2	13.3					
Node	X-Coord	Y-Coord	Node	Elevation	Demand		
ID	[<i>m</i>]	[<i>m</i>]	U A	[m]	[I/S]		
4	1882.15	2306.99	4	15.24	13.00		
316	1868.98	2293.74	316	15.24	0.00		
317	1855.80	2280.49	317	15.24	0.00		
318	1842.63	2267.24	318	15.24	0.00		
319	1829.45	2253.99	319	15.24	0.00		
320	1816.28	2240.74	320	15.24	0.00		
321	1803.10	2227.49	321	15.24	0.00		
322	1789.93	2214.24	322	15.24	0.00		
323	1776.75	2200.99	323	15.24	0.00		
324	1763.58	2187.74	324	15.24	0.00 0.00		
325	1750.41	2174.49	325	15.24			
326	1737.23	2161.24	326	15.24	0.00		
327	1724.06	2147.99	327	15.24	0.00		
328	1710.88	2134.74	328	15.24	0.00		
329	1697.71	2121.49	329	15.24	0.00		
330	1684.53	2108.24	330	15.24	0.00		
331	1671.36	2094.99	331	15.24	0.00		
332	1658.19	2081.74	332	15.24	0.00		
333	1645.01	2068.49	333	15.24	0.00		
334	1631.84	2055.24	334	15.24	0.00		
335	1618.66	2041.99	335	15.24	0.00		
336	1605.49	2028.74	336	15.24	0.00		
337	1592.31	2015.49	337	15.24	0.00		
338	1579.14	2002.24	338	15.24	0.00		
339	1565.96	1988.99	339	15.24	0.00		
15	1552.79	1975.74	15	15.24	31.55		

Pipe ID	Start Node ID	End Node ID	Length	Diameter	Roughness	
			[m]	[mm]	[-]	
226	4	316	73.15	254.00	120	
227	316	317	73.15	254.00	120	
228	317	318	73.15	254.00	120	
229	318	319	73.15	254.00	120	
230	319	320	73.15	254.00	120	
231	320	321	73.15	254.00	120	
232	321	322	73.15	254.00	120	
233	322	323	73.15	254.00	120	
234	323	324	73.15	254.00	120	
235	324	325	73.15	254.00	120	
236	325	326	73.15	254.00	120	
237	326	327	73.15	254.00	120	
238	327	328	73.15	254.00	120	
239	328	329	73.15	254.00	120	
240	329	330	73.15	254.00	120	
241	330	331	73.15	254.00	120	
242	331	332	73.15	254.00	120	
243	332	333	73.15	254.00	120	
244	333	334	73.15	254.00	120	
245	334	335	73.15	254.00	120	
246	335	336	73.15	254.00	120	
247	336	337	73.15	254.00	120	
248	337	338	73.15	254.00	120	
249	338	339	73.15	254.00	120	
250	339	15	73.15	254.00	120	

Link 8-9						
	Step X-Coord	Step Y-Coord				
	[m]	[m]				
	24.6	22.5				
Node	X- <u>Coord</u>	Y-Coord	Node	Elevation	Demand	
ID	[m]	[m]	ID	[m]	[l/s]	
8	1012.3	2041.11	8	24.38	13.00	
340	987.73	2018.61	340	24.87	0.00	
341	963.15	1996.11	341	25.36	0.00	
342	938.58	1973.61	342	25.85	0.00	
343	914.00	1951.11	343	26.33	0.00	
344	889.43	1928.60	344	26.82	0.00	
345	864.86	1906.10	345	27.31	0.00	
346	840.28	1883.60	346	27.80	0.00	
347	815.71	1861.10	347	28.29	0.00	
348	791.13	1838.60	348	28.77	0.00	
349	766.56	1816.10	349	29.26	0.00	
350	741.99	1793.60	350	29.75	0.00	
351	717.41	1771.10	351	30.24	0.00	
352	692.84	1748.59	352	30.72	0.00	
353	668.26	1726.09	353	31.21	0.00	
354	643.69	1703.59	354	31.70	0.00	
355	619.12	1681.09	355	32.19	0.00	
356	594.54	1658.59	356	32.67	0.00	
357	569.97	1636.09	357	33.16	0.00	
358	545.39	1613.59	358	33.65	0.00	
359	520.82	1591.09	359	34.14	0.00	
360	496.25	1568.58	360	34.63	0.00	
361	471.67	1546.08	361	35.11	0.00	
362	447.10	1523.58	362	35.60	0.00	
363	422.52	1501.08	363	36.09	0.00	
9	397.95	1478.58	9	36.58	13.00	

Link 8-9									
Pipe ID	Start <u>Node</u> ID	End Node ID		Diameter	Roughness				
251	8	340	146.30	203.20	120				
252	340	341	146.30	203.20	120				
253	341	342	146.30	203.20	120				
254	342	343	146.30	203.20	120				
255	343	344	146.30	203.20	120				
256	344	345	146.30	203.20	120				
257	345	346	146.30	203.20	120				
258	346	347	146.30	203.20	120				
259	347	348	146.30	203.20	120				
260	348	349	146.30	203.20	120				
261	349	350	146.30	203.20	120				
262	350	351	146.30	203.20	120				
263	351	352	146.30	203.20	120				
264	352	353	146.30	203.20	120				
265	353	354	146.30	203.20	120				
266	354	355	146.30	203.20	120				
267	355	356	146.30	203.20	120				
268	356	357	146.30	203.20	120				
269	357	358	146.30	203.20	120				
270	358	359	146.30	203.20	120				
271	359	360	146.30	203.20	120				
272	360	361	146.30	203.20	120				
273	361	362	146.30	203.20	120				
274	362	363	146.30	203.20	120				
275	363	9	146.30	203.20	120				

		Link 8-1	5		
	Step X-Coord	Step Y-Coord			
	[m]	[m]			
	21.6	2.6			
Node	X-Coord	Y-Coord	Node	Elevation	Demand
ID	[m]	[m]	ID	[m]	[l/s]
8	1012.3	2041.11	8	24.38	13.00
364	1033.92	2038.50	364	24.02	0.00
365	1055.54	2035.88	365	23.65	0.00
366	1077.16	2033.27	366	23.29	0.00
367	1098.78	2030.65	367	22.92	0.00
368	1120.40	2028.04	368	22.56	0.00
369	1142.02	2025.42	369	22.19	0.00
370	1163.64	2022.81	370	21.82	0.00
371	1185.26	2020.19	371	21.46	0.00
372	1206.88	2017.58	372	21.09	0.00
373	1228.50	2014.96	373	20.73	0.00
374	1250.12	2012.35	374	20.36	0.00
375	1271.74	2009.73	375	19.99	0.00
376	1293.35	2007.12	376	19.63	0.00
377	1314.97	2004.50	377	19.26	0.00
378	1336.59	2001.89	378	18.90	0.00
379	1358.21	1999.27	379	18.53	0.00
380	1379.83	1996.66	380	18.17	0.00
381	1401.45	1994.04	381	17.80	0.00
382	1423.07	1991.43	382	17.43	0.00
383	1444.69	1988.81	383	17.07	0.00
384	1466.31	1986.20	384	16.70	0.00
385	1487.93	1983.58	385	16.34	0.00
386	1509.55	1980.97	386	15.97	0.00
387	1531.17	1978.35	387	15.61	0.00
15	1552.79	1975.74	15	15.24	31.55

	Link 8-15								
Pipe ID	Start <u>Node</u> ID	End Node ID	Length	Diameter	Roughness				
276	8	364	73.15	254.00	120				
277	364	365	73.15	254.00	120				
278	365	366	73.15	254.00	120				
279	366	367	73.15	254.00	120				
280	367	368	73.15	254.00	120				
281	368	369	73.15	254.00	120				
282	369	370	73.15	254.00	120				
283	370	371	73.15	254.00	120				
284	371	372	73.15	254.00	120				
285	372	373	73.15	254.00	120				
286	373	374	73.15	254.00	120				
287	374	375	73.15	254.00	120				
288	375	376	73.15	254.00	120				
289	376	377	73.15	254.00	120				
290	377	378	73.15	254.00	120				
291	378	379	73.15	254.00	120				
292	379	380	73.15	254.00	120				
293	380	381	73.15	254.00	120				
294	381	382	73.15	254.00	120				
295	382	383	73.15	254.00	120				
296	383	384	73.15	254.00	120				
297	384	385	73.15	254.00	120				
298	385	386	73.15	254.00	120				
299	386	387	73.15	254.00	120				
300	387	15	73.15	254.00	120				

		Link 8-1	6		
	Step X-Coord	Step Y-Coord			
	[m]	[m]			
	8.5	13.2			
Node	X-Coord	Y-Coord	Node	Elevation	Demand
ID	[m]	[m]	ID	[m]	[l/s]
8	1012.3	2041.11	8	24.38	13.00
388	1020.79	2027.94	388	24.87	0.00
389	1029.29	2014.76	389	25.36	0.00
390	1037.78	2001.59	390	25.85	0.00
391	1046.27	1988.41	391	26.33	0.00
392	1054.77	1975.24	392	26.82	0.00
393	1063.26	1962.06	393	27.31	0.00
394	1071.76	1948.89	394	27.80	0.00
395	1080.25	1935.71	395	28.29	0.00
396	1088.74	1922.54	396	28.77	0.00
397	1097.24	1909.36	397	29.26	0.00
398	1105.73	1896.19	398	29.75	0.00
399	1114.22	1883.01	399	30.24	0.00
400	1122.72	1869.84	400	30.72	0.00
401	1131.21	1856.66	401	31.21	0.00
402	1139.70	1843.49	402	31.70	0.00
403	1148.20	1830.31	403	32.19	0.00
404	1156.69	1817.14	404	32.67	0.00
405	1165.18	1803.96	405	33.16	0.00
406	1173.68	1790.79	406	33.65	0.00
407	1182.17	1777.61	407	34.14	0.00
408	1190.67	1764.44	408	34.63	0.00
409	1199.16	1751.26	409	35.11	0.00
410	1207.65	1738.09	410	35.60	0.00
411	1216.15	1724.91	411	36.09	0.00
16	1224.64	1711.74	16	36.58	13.00

Link 8-16								
Start <u>Node</u> ID	End Node ID	Length	Diameter [mm]	Roughness				
8	388	73.15	203.20	120				
388	389	73.15	203.20	120				
389	390	73.15	203.20	120				
390	391	73.15	203.20	120				
391	392	73.15	203.20	120				
392	393	73.15	203.20	120				
393	394	73.15	203.20	120				
394	395	73.15	203.20	120				
395	396	73.15	203.20	120				
396	397	73.15	203.20	120				
397	398	73.15	203.20	120				
398	399	73.15	203.20	120				
399	400	73.15	203.20	120				
400	401	73.15	203.20	120				
401	402	73.15	203.20	120				
402	403	73.15	203.20	120				
403	404	73.15	203.20	120				
404	405	73.15	203.20	120				
405	406	73.15	203.20	120				
406	407	73.15	203.20	120				
407	408	73.15	203.20	120				
408	409	73.15	203.20	120				
409	410	73.15	203.20	120				
410	411	73.15	203.20	120				
411	16	73.15	203.20	120				
	Start Mode ID 8 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410	Link 8-16 Start Node ID End Node ID 8 388 388 389 388 389 389 390 389 391 391 392 392 393 393 394 394 395 395 396 395 396 395 396 396 397 397 398 398 399 400 401 400 401 401 402 403 404 402 403 403 404 405 406 406 407 406 407 408 409 409 410 410 411	Link 8-16 Start Node ID End Node ID Length [m] 8 388 73.15 388 389 73.15 388 389 73.15 389 390 73.15 389 390 73.15 390 391 73.15 391 392 73.15 392 393 73.15 392 393 73.15 393 394 73.15 393 394 73.15 394 395 73.15 395 396 73.15 395 396 73.15 396 397 73.15 397 398 73.15 398 399 73.15 398 399 73.15 399 400 73.15 399 400 73.15 400 401 73.15 401 402 73.15 403 404	Link 8-16 Link 8-16 Diameter [m] Start Node ID End Node ID [m] [m] 8 388 73.15 203.20 388 389 73.15 203.20 388 389 73.15 203.20 389 390 73.15 203.20 389 390 73.15 203.20 390 391 73.15 203.20 391 392 73.15 203.20 391 392 73.15 203.20 391 392 73.15 203.20 392 393 73.15 203.20 393 394 73.15 203.20 393 394 73.15 203.20 395 396 73.15 203.20 396 397 73.15 203.20 398 399 73.15 203.20 399 400 73.15 203.20 400 401 73.15 203.20 </td				

Link 8-17							
	Step X-Coord	Step Y-Coord					
	[m]	[m]					
	3.8	29.3					
Node	X-Coord	Y-Coord	Node	Elevation	Demand		
ID	[m]	[m]	ID	[m]	[l/s]		
8	1012.3	2041.11	8	24.38	13.00		
412	1008.45	2011.80	412	24.87	0.00		
413	1004.60	1982.49	413	25.36	0.00		
414	1000.75	1953.18	414	25.85	0.00		
415	996.90	1923.87	415	26.33	0.00		
416	993.05	1894.55	416	26.82	0.00		
417	989.20	1865.24	417	27.31	0.00		
418	985.36	1835.93	418	27.80	0.00		
419	981.51	1806.62	419	28.29	0.00		
420	977.66	1777.31	420	28.77	0.00		
421	973.81	1748.00	421	29.26	0.00		
422	969.96	1718.69	422	29.75	0.00		
423	966.11	1689.38	423	30.24	0.00		
424	962.26	1660.06	424	30.72	0.00		
425	958.41	1630.75	425	31.21	0.00		
426	954.56	1601.44	426	31.70	0.00		
427	950.71	1572.13	427	32.19	0.00		
428	946.86	1542.82	428	32.67	0.00		
429	943.01	1513.51	429	33.16	0.00		
430	939.17	1484.20	430	33.65	0.00		
431	935.32	1454.89	431	34.14	0.00		
432	931.47	1425.57	432	34.63	0.00		
433	927.62	1396.26	433	35.11	0.00		
434	923.77	1366.95	434	35.60	0.00		
435	919.92	1337.64	435	36.09	0.00		
17	916.07	1308 33	17	36 58	50.00		

ſ									
			Link 8-17						
	Pipe ID	Start Node ID	End Node ID	Length	Diameter	Roughness			
				[m]	[mm]	[-]			
	326	8	412	73.15	203.20	120			
	327	412	413	73.15	203.20	120			
	328	413	414	73.15	203.20	120			
	329	414	415	73.15	203.20	120			
	330	415	416	73.15	203.20	120			
	331	416	417	73.15	203.20	120			
	332	417	418	73.15	203.20	120			
	333	418	419	73.15	203.20	120			
	334	419	420	73.15	203.20	120			
	335	420	421	73.15	203.20	120			
	336	421	422	73.15	203.20	120			
	337	422	423	73.15	203.20	120			
	338	423	424	73.15	203.20	120			
	339	424	425	73.15	203.20	120			
	340	425	426	73.15	203.20	120			
	341	426	427	73.15	203.20	120			
	342	427	428	73.15	203.20	120			
	343	428	429	73.15	203.20	120			
	344	429	430	73.15	203.20	120			
	345	430	431	73.15	203.20	120			
	346	431	432	73.15	203.20	120			
	347	432	433	73.15	203.20	120			
ĺ	348	433	434	73.15	203.20	120			
	349	434	435	73.15	203.20	120			
ĺ	350	435	17	73.15	203.20	120			

Link 9-10							
	Step X-Coord	Step Y-Coord					
	[m]	[m]					
	12.3	15.4					
Node	X-Coord	Y-Coord	Node	Elevation	Demand		
ID	[m]	[m]	ID	[m]	[l/s]		
9	397.95	1478.58	9	36.58	13.00		
436	410.29	1463.18	436	36.58	0.00		
437	422.62	1447.79	437	36.58	0.00		
438	434.96	1432.39	438	36.58	0.00		
439	447.30	1417.00	439	36.58	0.00		
440	459.63	1401.60	440	36.58	0.00		
441	471.97	1386.20	441	36.58	0.00		
442	484.30	1370.81	442	36.58	0.00		
443	496.64	1355.41	443	36.58	0.00		
444	508.98	1340.02	444	36.58	0.00		
445	521.31	1324.62	445	36.58	0.00		
446	533.65	1309.22	446	36.58	0.00		
447	545.99	1293.83	447	36.58	0.00		
448	558.32	1278.43	448	36.58	0.00		
449	570.66	1263.04	449	36.58	0.00		
450	583.00	1247.64	450	36.58	0.00		
451	595.33	1232.24	451	36.58	0.00		
452	607.67	1216.85	452	36.58	0.00		
453	620.01	1201.45	453	36.58	0.00		
454	632.34	1186.06	454	36.58	0.00		
455	644.68	1170.66	455	36.58	0.00		
456	657.01	1155.26	456	36.58	0.00		
457	669.35	1139.87	457	36.58	0.00		
458	681.69	1124.47	458	36.58	0.00		
459	694.02	1109.08	459	36.58	0.00		
10	706.36	1093.68	10	36.58	13.00		

Link 9-10									
Pipe ID	Start <u>Node</u> ID	End Node ID	Length [m]	Diameter [mm]	Roughness [-]				
351	9	436	73.15	203.20	120				
352	436	437	73.15	203.20	120				
353	437	438	73.15	203.20	120				
354	438	439	73.15	203.20	120				
355	439	440	73.15	203.20	120				
356	440	441	73.15	203.20	120				
357	441	442	73.15	203.20	120				
358	442	443	73.15	203.20	120				
359	443	444	73.15	203.20	120				
360	444	445	73.15	203.20	120				
361	445	446	73.15	203.20	120				
362	446	447	73.15	203.20	120				
363	447	448	73.15	203.20	120				
364	448	449	73.15	203.20	120				
365	449	450	73.15	203.20	120				
366	450	451	73.15	203.20	120				
367	451	452	73.15	203.20	120				
368	452	453	73.15	203.20	120				
369	453	454	73.15	203.20	120				
370	454	455	73.15	203.20	120				
371	455	456	73.15	203.20	120				
372	456	457	73.15	203.20	120				
373	457	458	73.15	203.20	120				
374	458	459	73.15	203.20	120				
375	459	10	73.15	203.20	120				

Link 10-11							
	Step X-Coord	Step Y-Coord					
	[m]	[m]					
	16.9	8.5					
Node	X- <u>Coord</u>	Y-Coord	Node	Elevation	Demand		
ID	[m]	[m]	ID	[m]	[l/s]		
10	706.36	1093.68	10	36.58	13.00		
460	723.24	1085.19	460	36.58	0.00		
461	740.11	1076.71	461	36.58	0.00		
462	756.99	1068.22	462	36.58	0.00		
463	773.86	1059.73	463	36.58	0.00		
464	790.74	1051.24	464	36.58	0.00		
465	807.62	1042.76	465	36.58	0.00		
466	824.49	1034.27	466	36.58	0.00		
467	841.37	1025.78	467	36.58	0.00		
468	858.24	1017.30	468	36.58	0.00		
469	875.12	1008.81	469	36.58	0.00		
470	892.00	1000.32	470	36.58	0.00		
471	908.87	991.83	471	36.58	0.00		
472	925.75	983.35	472	36.58	0.00		
473	942.62	974.86	473	36.58	0.00		
474	959.50	966.37	474	36.58	0.00		
475	976.38	957.88	475	36.58	0.00		
476	993.25	949.40	476	36.58	0.00		
477	1010.13	940.91	477	36.58	0.00		
478	1027.00	932.42	478	36.58	0.00		
479	1043.88	923.94	479	36.58	0.00		
480	1060.76	915.45	480	36.58	0.00		
481	1077.63	906.96	481	36.58	0.00		
482	1094.51	898.47	482	36.58	0.00		
483	1111.38	889.99	483	36.58	0.00		
11	1128.26	881.50	11	36.58	13.00		

Link 10-11								
Pipe ID	Start Node ID	End Node ID		Diameter	Roughness			
376	10	460	73.15	203.20	120			
377	460	461	73.15	203.20	120			
378	461	462	73.15	203.20	120			
379	462	463	73.15	203.20	120			
380	463	464	73.15	203.20	120			
381	464	465	73.15	203.20	120			
382	465	466	73.15	203.20	120			
383	466	467	73.15	203.20	120			
384	467	468	73.15	203.20	120			
385	468	469	73.15	203.20	120			
386	469	470	73.15	203.20	120			
387	470	471	73.15	203.20	120			
388	471	472	73.15	203.20	120			
389	472	473	73.15	203.20	120			
390	473	474	73.15	203.20	120			
391	474	475	73.15	203.20	120			
392	475	476	73.15	203.20	120			
393	476	477	73.15	203.20	120			
394	477	478	73.15	203.20	120			
395	478	479	73.15	203.20	120			
396	479	480	73.15	203.20	120			
397	480	481	73.15	203.20	120			
398	481	482	73.15	203.20	120			
399	482	483	73.15	203.20	120			
400	483	11	73.15	203.20	120			

Link 10-17						
	Step X-Coord	Step Y-Coord				
	[m]	[m]				
	8.4	8.6				
Node	X-Coord	Y-Coord	Node	Elevation	Demand	
ID	[m]	[m]	ID	[m]	[l/s]	
10	706.36	1093.68	10	36.58	13.00	
484	714.75	1102.27	484	36.58	0.00	
485	723.14	1110.85	485	36.58	0.00	
486	731.53	1119.44	486	36.58	0.00	
487	739.91	1128.02	487	36.58	0.00	
488	748.30	1136.61	488	36.58	0.00	
489	756.69	1145.20	489	36.58	0.00	
490	765.08	1153.78	490	36.58	0.00	
491	773.47	1162.37	491	36.58	0.00	
492	781.86	1170.95	492	36.58	0.00	
493	790.24	1179.54	493	36.58	0.00	
494	798.63	1188.13	494	36.58	0.00	
495	807.02	1196.71	495	36.58	0.00	
496	815.41	1205.30	496	36.58	0.00	
497	823.80	1213.88	497	36.58	0.00	
498	832.19	1222.47	498	36.58	0.00	
499	840.57	1231.06	499	36.58	0.00	
500	848.96	1239.64	500	36.58	0.00	
501	857.35	1248.23	501	36.58	0.00	
502	865.74	1256.81	502	36.58	0.00	
503	874.13	1265.40	503	36.58	0.00	
504	882.52	1273.99	504	36.58	0.00	
505	890.90	1282.57	505	36.58	0.00	
506	899.29	1291.16	506	36.58	0.00	
507	907.68	1299.74	507	36.58	0.00	
17	916.07	1308.33	17	36.58	50.00	

Link 10-17									
Pipe ID	Start <u>Node</u> ID	End Node ID	Length [m]	Diameter [mm]	Roughness [-]				
401	10	484	73.15	254.00	120				
402	484	485	73.15	254.00	120				
403	485	486	73.15	254.00	120				
404	486	487	73.15	254.00	120				
405	487	488	73.15	254.00	120				
406	488	489	73.15	254.00	120				
407	489	490	73.15	254.00	120				
408	490	491	73.15	254.00	120				
409	491	492	73.15	254.00	120				
410	492	493	73.15	254.00	120				
411	493	494	73.15	254.00	120				
412	494	495	73.15 254.00	254.00	120				
413	495	496	73.15	254.00	120				
414	496	497	73.15	254.00	120				
415	497	498	73.15	254.00	120				
416	498	499	73.15	254.00	120				
417	499	500	73.15	254.00	120				
418	500	501	73.15	254.00	120				
419	501	502	73.15	254.00	120				
420	502	503	73.15	254.00	120				
421	503	504	73.15	254.00	120				
422	504	505	73.15	254.00	120				
423	505	506	73.15	254.00	120				
424	506	507	73.15	254.00	120				
425	507	17	73.15	254.00	120				

Link 11-12						
	Step X-Coord	Step Y-Coord				
	[m]	[m]				
	14.0	5.6				
Node	X-Coord	Y- <u>Coord</u>	Node	Elevation	Demand	
10	[m]	[<i>m</i>]	10	[m]	[I/S]	
11	1128.26	881.5	11	36.58	13.00	
508	1142.21	887.14	508	35.72	0.00	
509	1156.16	892.79	509	34.87	0.00	
510	11/0.12	898.43	510	34.02	0.00	
511	1184.07	904.07	511	33.16	0.00	
512	1198.02	909.72	512	32.31	0.00	
513	1211.97	915.36	513	31.46	0.00	
514	1225.93	921.01	514	30.60	0.00	
515	1239.88	926.65	515	29.75	0.00	
516	1253.83	932.29	516	28.90	0.00	
517	1267.78	937.94	517	28.04	0.00	
518	1281.74	943.58	518	27.19	0.00	
519	1295.69	949.22	519	26.33	0.00	
520	1309.64	954.87	520	25.48	0.00	
521	1323.59	960.51	521	24.63	0.00	
522	1337.55	966.15	522	23.77	0.00	
523	1351.50	971.80	523	22.92	0.00	
524	1365.45	977.44	524	22.07	0.00	
525	1379.40	983.08	525	21.21	0.00	
526	1393.36	988.73	526	20.36	0.00	
527	1407.31	994.37	527	19.51	0.00	
528	1421.26	1000.02	528	18.65	0.00	
529	1435.21	1005.66	529	17.80	0.00	
530	1449.17	1011.30	530	16.95	0.00	
531	1463.12	1016.95	531	16.09	0.00	
12	1477.07	1022.59	12	15.24	31.55	

	Link 11-12							
Pipe ID Start Node ID		End Node ID	Length	Diameter [mm]	Roughness			
426	11	508	73.15	203.20	120			
427	508	509	73.15	203.20	120			
428	509	510	73.15	203.20	120			
429	510	511	73.15	203.20	120			
430	511	512	73.15	203.20	120			
431	512	513	73.15	203.20	120			
432	513	514	73.15	203.20	120			
433	514	515	73.15	203.20	120			
434	515	516	73.15	203.20	120			
435	516	517	73.15	203.20	120			
436	517	518	73.15	203.20	120			
437	518	519	73.15	203.20	120			
438	519	520	73.15	203.20	120			
439	520	521	73.15	203.20	120			
440	521	522	73.15	203.20	120			
441	522	523	73.15	203.20	120			
442	523	524	73.15	203.20	120			
443	524	525	73.15	203.20	120			
444	525	526	73.15	203.20	120			
445	526	527	73.15	203.20	120			
446	527	528	73.15	203.20	120			
447	528	529	73.15	203.20	120			
448	529	530	73.15	203.20	120			
449	530	531	73.15	203.20	120			
450	531	12	73.15	203.20	120			

Link 12-17						
	Step X-Coord	Step Y-Coord				
	[m]	[m]				
	22.4	11.4				
Node	X-Coord	Y-Coord	Node	Elevation	Demand	
ID	[m]	[m]	ID	[m]	[l/s]	
12	1477.07	1022.59	12	15.24	31.55	
532	1454.63	1034.02	532	16.09	0.00	
533	1432.19	1045.45	533	16.95	0.00	
534	1409.75	1056.88	534	17.80	0.00	
535	1387.31	1068.31	535	18.65	0.00	
536	1364.87	1079.74	536	19.51	0.00	
537	1342.43	1091.17	537	20.36	0.00	
538	1319.99	1102.60	538	21.21	0.00	
539	1297.55	1114.03	539	22.07	0.00	
540	1275.11	1125.46	540	22.92	0.00	
541	1252.67	1136.89	541	23.77	0.00	
542	1230.23	1148.32	542	24.63	0.00	
543	1207.79	1159.75	543	25.48	0.00	
544	1185.35	1171.17	544	26.33	0.00	
545	1162.91	1182.60	545	27.19	0.00	
546	1140.47	1194.03	546	28.04	0.00	
547	1118.03	1205.46	547	28.90	0.00	
548	1095.59	1216.89	548	29.75	0.00	
549	1073.15	1228.32	549	30.60	0.00	
550	1050.71	1239.75	550	31.46	0.00	
551	1028.27	1251.18	551	32.31	0.00	
552	1005.83	1262.61	552	33.16	0.00	
553	983.39	1274.04	553	34.02	0.00	
554	960.95	1285.47	554	34.87	0.00	
555	938.51	1296.90	555	35.72	0.00	
17	916.07	1308.33	17	36.58	50.00	

Link 12-17								
Pipe ID	Start <u>Node</u> ID	End Node ID	Length [m]	Diameter [mm]	Roughness [-]			
451	12	532	73.15	254.00	120			
452	532	533	73.15	254.00	120			
453	533	534	73.15	254.00	120			
454	534	535	73.15	254.00	120			
455	535	536	73.15	254.00	120			
456	536	537	73.15	254.00	120			
457	537	538	73.15	254.00	120			
458	538	539	73.15	254.00	120			
459	539	540	73.15	254.00	120			
460	540	541	73.15	254.00	120			
461	541	542	73.15	254.00	120			
462	542	543	73.15	254.00	120			
463	543	544	73.15	254.00	120			
464	544	545	73.15	254.00	120			
465	545	546	73.15	254.00	120			
466	546	547	73.15	254.00	120			
467	547	548	73.15	254.00	120			
468	548	549	73.15	254.00	120			
469	549	550	73.15	254.00	120			
470	550	551	73.15	254.00	120			
471	551	552	73.15	254.00	120			
472	552	553	73.15	254.00	120			
473	553	554	73.15	254.00	120			
474	554	555	73.15	254.00	120			
475	555	17	73.15	254.00	120			

Link 12-18						
	Step X-Coord	Step Y-Coord				
	[m]	[m]				
	0.0	13.2				
Node	X-Coord	Y-Coord	Node	Elevation	Demand	
ID	[m]	[m]	ID	[m]	[l/s]	
12	1477.07	1022.59	12	15.24	31.55	
556	1477.07	1035.83	556	15.24	0.00	
557	1477.07	1049.07	557	15.24	0.00	
558	1477.07	1062.31	558	15.24	0.00	
559	1477.07	1075.55	559	15.24	0.00	
560	1477.07	1088.79	560	15.24	0.00	
561	1477.07	1102.03	561	15.24	0.00	
562	1477.07	1115.26	562	15.24	0.00	
563	1477.07	1128.50	563	15.24	0.00	
564	1477.07	1141.74	564	15.24	0.00	
565	1477.07	1154.98	565	15.24	0.00	
566	1477.07	1168.22	566	15.24	0.00	
567	1477.07	1181.46	567	15.24	0.00	
568	1477.07	1194.70	568	15.24	0.00	
569	1477.07	1207.94	569	15.24	0.00	
570	1477.07	1221.18	570	15.24	0.00	
571	1477.07	1234.42	571	15.24	0.00	
572	1477.07	1247.66	572	15.24	0.00	
573	1477.07	1260.90	573	15.24	0.00	
574	1477.07	1274.13	574	15.24	0.00	
575	1477.07	1287.37	575	15.24	0.00	
576	1477.07	1300.61	576	15.24	0.00	
577	1477.07	1313.85	577	15.24	0.00	
578	1477.07	1327.09	578	15.24	0.00	
579	1477.07	1340.33	579	15.24	0.00	
18	1477.07	1353.57	18	15.24	31.55	

Link 12-18								
Pipe ID	Start Node ID	End Node ID	Length	<u>Diameter</u>	Roughness			
			[m]	[mm]	[-]			
476	12	556	73.15	203.20	70			
477	556	557	73.15	203.20	70			
478	557	558	73.15	203.20	70			
479	558	559	73.15	203.20	70			
480	559	560	73.15	203.20	70			
481	560	561	73.15	203.20	70			
482	561	562	73.15	203.20	70			
483	562	563	73.15	203.20	70			
484	563	564	73.15	203.20	70			
485	564	565	73.15	203.20	70			
486	565	566	73.15	203.20	70			
487	566	567	73.15	203.20	70			
488	567	568	73.15	203.20	70			
489	568	569	73.15	203.20	70			
490	569	570	73.15	203.20	70			
491	570	571	73.15	203.20	70			
492	571	572	73.15	203.20	70			
493	572	573	73.15	203.20	70			
494	573	574	73.15	203.20	70			
495	574	575	73.15	203.20	70			
496	575	576	73.15	203.20	70			
497	576	577	73.15	203.20	70			
498	577	578	73.15	203.20	70			
499	578	579	73.15	203.20	70			
500	579	18	73.15	203.20	70			

	Step X-Coord	Step Y-Coord					
	[m]	[m]					
	0.2	16.4					
Node	X-Coord	Y-Coord	Node	Elevation	Demand		
ID	[m]	[m]	ID	[m]	[l/s]		
13	1966.13	1348.63	13	15.24	31.55		
580	1966.33	1365.03	580	15.24	0.00		
581	1966.53	1381.43	581	15.24	0.00		
582	1966.72	1397.83	582	15.24	0.00		
583	1966.92	1414.23	583	15.24	0.00		
584	1967.12	1430.63	584	15.24	0.00		
585	1967.32	1447.03	585	15.24	0.00		
586	1967.51	1463.44	586	15.24	0.00		
587	1967.71	1479.84	587	15.24	0.00		
588	1967.91	1496.24	588	15.24	0.00		
589	1968.11	1512.64	589	15.24	0.00		
590	1968.30	1529.04	590	15.24	0.00		
591	1968.50	1545.44	591	15.24	0.00		
592	1968.70	1561.84	592	15.24	0.00		
593	1968.90	1578.24	593	15.24	0.00		
594	1969.09	1594.64	594	15.24	0.00		
595	1969.29	1611.04	595	15.24	0.00		
596	1969.49	1627.44	596	15.24	0.00		
597	1969.69	1643.84	597	15.24	0.00		
598	1969.88	1660.25	598	15.24	0.00		
599	1970.08	1676.65	599	15.24	0.00		
600	1970.28	1693.05	600	15.24	0.00		
601	1970.48	1709.45	601	15.24	0.00		
602	1970.67	1725.85	602	15.24	0.00		
603	1970.87	1742.25	603	15.24	0.00		
14	1971.07	1758.65	14	15.24	31.55		

link 12 14								
		Lawath	Discussion	Davaharan				
Pipe ID	Start Node ID	End Node ID	Length	Viameter	Roughness			
504	12	500	22.45	204.00	[-]			
501	13	580	/3.15	304.80	70			
502	580	581	73.15	304.80	70			
503	581	582	73.15	304.80	70			
504	582	583	73.15	304.80	70			
505	583	584	73.15	304.80	70			
506	584	585	73.15	304.80	70			
507	585	586	73.15	304.80	70			
508	586	587	73.15	304.80	70			
509	587	588	73.15	304.80	70			
510	588	589	73.15	304.80	70			
511	589	590	73.15	304.80	70			
512	590	591	73.15	304.80	70			
513	591	592	73.15	304.80	70			
514	592	593	73.15	304.80	70			
515	593	594	73.15	304.80	70			
516	594	595	73.15	304.80	70			
517	595	596	73.15	304.80	70			
518	596	597	73.15	304.80	70			
519	597	598	73.15	304.80	70			
520	598	599	73.15	304.80	70			
521	599	600	73.15	304.80	70			
522	600	601	73.15	304.80	70			
523	601	602	73.15	304.80	70			
524	602	603	73.15	304.80	70			
525	603	14	73.15	304.80	70			

Link 13-18						
	Step X-Coord	Step Y-Coord				
	[m]	[m]				
	19.6	0.2				
Node	X-Coord	Y-Coord	Node	Elevation	Demand	
ID	[m]	[m]	ID	[m]	[I/s]	
13	1966.13	1348.63	13	15.24	31.55	
604	1946.57	1348.83	604	15.24	0.00	
605	1927.01	1349.03	605	15.24	0.00	
606	1907.44	1349.22	606	15.24	0.00	
607	1887.88	1349.42	607	15.24	0.00	
608	1868.32	1349.62	608	15.24	0.00	
609	1848.76	1349.82	609	15.24	0.00	
610	1829.19	1350.01	610	15.24	0.00	
611	1809.63	1350.21	611	15.24	0.00	
612	1790.07	1350.41	612	15.24	0.00	
613	1770.51	1350.61	613	15.24	0.00	
614	1750.94	1350.80	614	15.24	0.00	
615	1731.38	1351.00	615	15.24	0.00	
616	1711.82	1351.20	616	15.24	0.00	
617	1692.26	1351.40	617	15.24	0.00	
618	1672.69	1351.59	618	15.24	0.00	
619	1653.13	1351.79	619	15.24	0.00	
620	1633.57	1351.99	620	15.24	0.00	
621	1614.01	1352.19	621	15.24	0.00	
622	1594.44	1352.38	622	15.24	0.00	
623	1574.88	1352.58	623	15.24	0.00	
624	1555.32	1352.78	624	15.24	0.00	
625	1535.76	1352.98	625	15.24	0.00	
626	1516.19	1353.17	626	15.24	0.00	
627	1496.63	1353.37	627	15.24	0.00	
18	1477.07	1353.57	18	15.24	31.55	

Pipe ID	Start <u>Node</u> ID	End <u>Node</u> ID	Length	Diameter	Roughness
526	13	604	73.15	304.80	70
527	604	605	73.15	304.80	70
528	605	606	73.15	304.80	70
529	606	607	73.15	304.80	70
530	607	608	73.15	304.80	70
531	608	609	73.15	304.80	70
532	609	610	73.15	304.80	70
533	610	611	73.15	304.80	70
534	611	612	73.15	304.80	70
535	612	613	73.15	304.80	70
536	613	614	73.15	304.80	70
537	614	615	73.15	304.80	70
538	615	616	73.15	304.80	70
539	616	617	73.15	304.80	70
540	617	618	618 73.15 304.	304.80	70
541	618	619	73.15	304.80	70
542	619	620	73.15	304.80	70
543	620	621	73.15	304.80	70
544	621	622	73.15	304.80	70
545	622	623	73.15	304.80	70
546	623	624	73.15	304.80	70
547	624	625	73.15	304.80	70
548	625	626	73.15	304.80	70
549	626	627	73.15	304.80	70
550	627	18	73.15	304.80	70

Link 13-19						
	Step X-Coord	Step Y-Coord				
	[m]	[m]				
	13.6	11.1				
Node	X-Coord	Y-Coord	Node	Elevation	Demand	
ID	[m]	[m]	ID	[m]	[l/s]	
13	1966.13	1348.63	13	15.24	31.55	
628	1952.50	1359.70	628	15.24	0.00	
629	1938.86	1370.76	629	15.24	0.00	
630	1925.23	1381.83	630	15.24	0.00	
631	1911.59	1392.89	631	15.24	0.00	
632	1897.96	1403.96	632	15.24	0.00	
633	1884.32	1415.02	633	15.24	0.00	
634	1870.69	1426.09	634	15.24	0.00	
635	1857.05	1437.15	635	15.24	0.00	
636	1843.42	1448.22	636	15.24	0.00	
637	1829.79	1459.29	637	15.24	0.00	
638	1816.15	1470.35	638	15.24	0.00	
639	1802.52	1481.42	639	15.24	0.00	
640	1788.88	1492.48	640	15.24	0.00	
641	1775.25	1503.55	641	15.24	0.00	
642	1761.61	1514.61	642	15.24	0.00	
643	1747.98	1525.68	643	15.24	0.00	
644	1734.35	1536.75	644	15.24	0.00	
645	1720.71	1547.81	645	15.24	0.00	
646	1707.08	1558.88	646	15.24	0.00	
647	1693.44	1569.94	647	15.24	0.00	
648	1679.81	1581.01	648	15.24	0.00	
649	1666.17	1592.07	649	15.24	0.00	
650	1652.54	1603.14	650	15.24	0.00	
651	1638.90	1614.20	651	15.24	0.00	
19	1625.27	1625.27	19	15.24	13.00	

Link 13-19					
Pipe ID	Start <u>Node</u> ID	End <u>Node</u> ID	Length	Diameter	Roughness
551	12	629	72 15	254.00	70
551	628	620	73.13	254.00	70
552	628	629	73.15	254.00	70
555	629	630	73.15	254.00	70
554	630	031	73.15	254.00	70
555	631	632	/3.15	254.00	70
556	632	633	73.15	254.00	70
557	633	634	73.15	254.00	70
558	634	635	73.15	254.00	70
559	635	636	73.15	254.00	70
560	636	637	73.15	254.00	70
561	637	638	73.15	254.00	70
562	638	639	73.15	254.00	70
563	639	640	73.15	254.00	70
564	640	641	73.15	254.00	70
565	641	642	73.15	254.00	70
566	642	643	73.15	254.00	70
567	643	644	73.15	254.00	70
568	644	645	73.15	254.00	70
569	645	646	73.15	254.00	70
570	646	647	73.15	254.00	70
571	647	648	73.15	254.00	70
572	648	649	73.15	254.00	70
573	649	650	73.15	254.00	70
574	650	651	73.15	254.00	70
575	651	19	73.15	254.00	70
		Link 14-	15		
------	--------------	--------------	------	-----------	--------
	Step X-Coord	Step Y-Coord			
	[m]	[m]			
	16.7	8.7			
Node	X-Coord	Y-Coord	Node	Elevation	Demand
ID	[m]	[m]	ID	[m]	[l/s]
14	1971.07	1758.65	14	15.24	31.55
652	1954.34	1767.33	652	15.24	0.00
653	1937.61	1776.02	653	15.24	0.00
654	1920.88	1784.70	654	15.24	0.00
655	1904.15	1793.38	655	15.24	0.00
656	1887.41	1802.07	656	15.24	0.00
657	1870.68	1810.75	657	15.24	0.00
658	1853.95	1819.44	658	15.24	0.00
659	1837.22	1828.12	659	15.24	0.00
660	1820.49	1836.80	660	15.24	0.00
661	1803.76	1845.49	661	15.24	0.00
662	1787.03	1854.17	662	15.24	0.00
663	1770.30	1862.85	663	15.24	0.00
664	1753.56	1871.54	664	15.24	0.00
665	1736.83	1880.22	665	15.24	0.00
666	1720.10	1888.90	666	15.24	0.00
667	1703.37	1897.59	667	15.24	0.00
668	1686.64	1906.27	668	15.24	0.00
669	1669.91	1914.95	669	15.24	0.00
670	1653.18	1923.64	670	15.24	0.00
671	1636.45	1932.32	671	15.24	0.00
672	1619.71	1941.01	672	15.24	0.00
673	1602.98	1949.69	673	15.24	0.00
674	1586.25	1958.37	674	15.24	0.00
675	1569.52	1967.06	675	15.24	0.00
15	1552.79	1975.74	15	15.24	31.55

Link 14-15							
Pipe ID	Start <u>Node</u> ID	End <u>Node</u> ID	Length	Diameter	Roughness		
576	14	652	73.15	304.80	70		
577	652	653	73.15	304.80	70		
578	653	654	73.15	304.80	70		
579	654	655	73.15	304.80	70		
580	655	656	73.15	304.80	70		
581	656	657	73.15	304.80	70		
582	657	658	73.15	304.80	70		
583	658	659	73.15	304.80	70		
584	659	660	73.15	304.80	70		
585	660	661	73.15	304.80	70		
586	661	662	73.15	304.80	70		
587	662	663	73.15	304.80	70		
588	663	664	73.15	304.80	70		
589	664	665	73.15	304.80	70		
590	665	666	73.15	304.80	70		
591	666	667	73.15	304.80	70		
592	667	668	73.15	304.80	70		
593	668	669	73.15	304.80	70		
594	669	670	73.15	304.80	70		
595	670	671	73.15	304.80	70		
596	671	672	73.15	304.80	70		
597	672	673	73.15	304.80	70		
598	673	674	73.15	304.80	70		
599	674	675	73.15	304.80	70		
600	675	15	73.15	304.80	70		

	11-1-44.40							
		Link 14-	19	1	1			
	Step X-Coord	Step Y-Coord						
	[m]	[m]						
	13.8	5.3		-				
Node	X-Coord	Y-Coord	Node	Elevation	Demand			
14	[<i>m</i>]	[m]	14	[<i>m</i>]	[I/S]			
14	19/1.0/	1/58.05	14	15.24	31.55			
6/6	1957.24	1/53.31	6/6	15.24	0.00			
6//	1943.41	1/4/.98	6//	15.24	0.00			
678	1929.57	1742.64	678	15.24	0.00			
679	1915.74	1737.31	679	15.24	0.00			
680	1901.91	1731.97	680	15.24	0.00			
681	1888.08	1726.64	681	15.24	0.00			
682	1874.25	1721.30	682	15.24	0.00			
683	1860.41	1715.97	683	15.24	0.00			
684	1846.58	1710.63	684	15.24	0.00			
685	1832.75	1705.30	685	15.24	0.00			
686	1818.92	1699.96	686	15.24	0.00			
687	1805.09	1694.63	687	15.24	0.00			
688	1791.25	1689.29	688	15.24	0.00			
689	1777.42	1683.96	689	15.24	0.00			
690	1763.59	1678.62	690	15.24	0.00			
691	1749.76	1673.29	691	15.24	0.00			
692	1735.93	1667.95	692	15.24	0.00			
693	1722.09	1662.62	693	15.24	0.00			
694	1708.26	1657.28	694	15.24	0.00			
695	1694.43	1651.95	695	15.24	0.00			
696	1680.60	1646.61	696	15.24	0.00			
697	1666.77	1641.28	697	15.24	0.00			
698	1652.93	1635.94	698	15.24	0.00			
699	1639.10	1630.61	699	15.24	0.00			
19	1625.27	1625.27	19	15.24	13.00			

	Link 14-19							
Pine ID	Start Node ID	End Node ID	Length	<u>Diameter</u>	Roughness			
преть	Start Mode ID	End Mode ID	[m]	[mm]	[-]			
601	14	676	73.15	254.00	70			
602	676	677	73.15	254.00	70			
603	677	678	73.15	254.00	70			
604	678	679	73.15	254.00	70			
605	679	680	73.15	254.00	70			
606	680	681	73.15	254.00	70			
607	681	682	73.15	254.00	70			
608	682	683	73.15	254.00	70			
609	683	684	73.15	254.00	70			
610	684	685	73.15	254.00	70			
611	685	686	73.15	254.00	70			
612	686	687	73.15	254.00	70			
613	687	688	73.15	254.00	70			
614	688	689	73.15	254.00	70			
615	689	690	73.15	254.00	70			
616	690	691	73.15	254.00	70			
617	691	692	73.15	254.00	70			
618	692	693	73.15	254.00	70			
619	693	694	73.15	254.00	70			
620	694	695	73.15	254.00	70			
621	695	696	73.15	254.00	70			
622	696	697	73.15	254.00	70			
623	697	698	73.15	254.00	70			
624	698	699	73.15	254.00	70			
625	699	19	73.15	254.00	70			

Link 15-16							
	Step X-Coord	Step Y-Coord					
	[m]	[m]					
	13.1	10.6					
Node	X-Coord	Y-Coord	Node	Elevation	Demand		
ID	[m]	[m]	ID	[m]	[I/s]		
15	1552.79	1975.74	15	15.24	31.55		
700	1539.66	1965.18	700	16.09	0.00		
701	1526.54	1954.62	701	16.95	0.00		
702	1513.41	1944.06	702	17.80	0.00		
703	1500.29	1933.50	703	18.65	0.00		
704	1487.16	1922.94	704	19.51	0.00		
705	1474.03	1912.38	705	20.36	0.00		
706	1460.91	1901.82	706	21.21	0.00		
707	1447.78	1891.26	707	22.07	0.00		
708	1434.66	1880.70	708	22.92	0.00		
709	1421.53	1870.14	709	23.77	0.00		
710	1408.40	1859.58	710	24.63	0.00		
711	1395.28	1849.02	711	25.48	0.00		
712	1382.15	1838.46	712	26.33	0.00		
713	1369.03	1827.90	713	27.19	0.00		
714	1355.90	1817.34	714	28.04	0.00		
715	1342.77	1806.78	715	28.90	0.00		
716	1329.65	1796.22	716	29.75	0.00		
717	1316.52	1785.66	717	30.60	0.00		
718	1303.40	1775.10	718	31.46	0.00		
719	1290.27	1764.54	719	32.31	0.00		
720	1277.14	1753.98	720	33.16	0.00		
721	1264.02	1743.42	721	34.02	0.00		
722	1250.89	1732.86	722	34.87	0.00		
723	1237.77	1722.30	723	35.72	0.00		
16	1224.64	1711.74	16	36.58	13.00		

Link 15-16							
Pipe ID	Start Node ID	End Node ID	Length	Diameter	Roughness		
			[m]	[mm]	[-]		
626	15	700	73.15	254.00	70		
627	700	701	73.15	254.00	70		
628	701	702	73.15	254.00	70		
629	702	703	73.15	254.00	70		
630	703	704	73.15	254.00	70		
631	704	705	73.15	254.00	70		
632	705	706	73.15	254.00	70		
633	706	707	73.15	254.00	70		
634	707	708	73.15	254.00	70		
635	708	709	73.15	254.00	70		
636	709	710	73.15	254.00	70		
637	710	711	73.15	254.00	70		
638	711	712	73.15	254.00	70		
639	712	713	73.15	254.00	70		
640	713	714	73.15	254.00	70		
641	714	715	73.15	254.00	70		
642	715	716	73.15	254.00	70		
643	716	717	73.15	254.00	70		
644	717	718	73.15	254.00	70		
645	718	719	73.15	254.00	70		
646	719	720	73.15	254.00	70		
647	720	721	73.15	254.00	70		
648	721	722	73.15	254.00	70		
649	722	723	73.15	254.00	70		
650	723	16	73.15	254.00	70		

		Link 15-	19				
	Step X-Coord	Step Y-Coord					
	[m]	[m]					
	2.9	14.0					
Node	X-Coord	Y-Coord	Node	Elevation	Demand		
ID	[m]	[m]	ID	[m]	[I/s]		
15	1552.79	1975.74	15	15.24	31.55		
724	1555.69	1961.72	724	15.24	0.00		
725	1558.59	1947.70	725	15.24	0.00		
726	1561.49	1933.68	726	15.24	0.00		
727	1564.39	1919.66	727	15.24	0.00		
728	1567.29	1905.65	728	15.24	0.00		
729	1570.19	1891.63	729	15.24	0.00		
730	1573.08	1877.61	730	15.24	0.00		
731	1575.98	1863.59	731	15.24	0.00		
732	1578.88	1849.57	732	15.24	0.00		
733	1581.78	1835.55	733	15.24	0.00		
734	1584.68	1821.53	734	15.24	0.00		
735	1587.58	1807.51	735	15.24	0.00		
736	1590.48	1793.50	736	15.24	0.00		
737	1593.38	1779.48	737	15.24	0.00		
738	1596.28	1765.46	738	15.24	0.00		
739	1599.18	1751.44	739	15.24	0.00		
740	1602.08	1737.42	740	15.24	0.00		
741	1604.98	1723.40	741	15.24	0.00		
742	1607.87	1709.38	742	15.24	0.00		
743	1610.77	1695.36	743	15.24	0.00		
744	1613.67	1681.35	744	15.24	0.00		
745	1616.57	1667.33	745	15.24	0.00		
746	1619.47	1653.31	746	15.24	0.00		
747	1622.37	1639.29	747	15.24	0.00		
19	1625.27	1625.27	19	15.24	13.00		

Link 15-19							
Pipe ID	Start <u>Node</u> ID	End Node ID	Length	Diameter	Roughness		
651	15	724	73.15	254.00	70		
652	724	725	73.15	254.00	70		
653	725	726	73.15	254.00	70		
654	726	727	73.15	254.00	70		
655	727	728	73.15	254.00	70		
656	728	729	73.15	254.00	70		
657	729	730	73.15	254.00	70		
658	730	731	73.15	254.00	70		
659	731	732	73.15	254.00	70		
660	732	733	73.15	254.00	70		
661	733	734	73.15	254.00	70		
662	734	735	73.15	254.00	70		
663	735	736	73.15	254.00	70		
664	736	737	73.15	254.00	70		
665	737	738	73.15	254.00	70		
666	738	739	73.15	254.00	70		
667	739	740	73.15	254.00	70		
668	740	741	73.15	254.00	70		
669	741	742	73.15	254.00	70		
670	742	743	73.15	254.00	70		
671	743	744	73.15	254.00	70		
672	744	745	73.15	254.00	70		
673	745	746	73.15	254.00	70		
674	746	747	73.15	254.00	70		
675	747	19	73.15	254.00	70		

	Link 16-17							
	Step X-Coord	Step Y-Coord						
	[m]	[m]						
	12.3	16.1						
Node	X-Coord	Y-Coord	Node	Elevation	Demand			
ID	[m]	[m]	ID	[m]	[I/s]			
16	1224.64	1711.74	16	36.58	13.00			
748	1212.30	1695.60	748	36.58	0.00			
749	1199.95	1679.47	749	36.58	0.00			
750	1187.61	1663.33	750	36.58	0.00			
751	1175.27	1647.19	751	36.58	0.00			
752	1162.93	1631.06	752	36.58	0.00			
753	1150.58	1614.92	753	36.58	0.00			
754	1138.24	1598.79	754	36.58	0.00			
755	1125.90	1582.65	755	36.58	0.00			
756	1113.55	1566.51	756	36.58	0.00			
757	1101.21	1550.38	757	36.58	0.00			
758	1088.87	1534.24	758	36.58	0.00			
759	1076.53	1518.10	759	36.58	0.00			
760	1064.18	1501.97	760	36.58	0.00			
761	1051.84	1485.83	761	36.58	0.00			
762	1039.50	1469.69	762	36.58	0.00			
763	1027.16	1453.56	763	36.58	0.00			
764	1014.81	1437.42	764	36.58	0.00			
765	1002.47	1421.28	765	36.58	0.00			
766	990.13	1405.15	766	36.58	0.00			
767	977.78	1389.01	767	36.58	0.00			
768	965.44	1372.88	768	36.58	0.00			
769	953.10	1356.74	769	36.58	0.00			
770	940.76	1340.60	770	36.58	0.00			
771	928.41	1324.47	771	36.58	0.00			
17	916.07	1308.33	17	36.58	50.00			

Link 16-17								
Pipe ID	Start Node ID	End Node ID		Diameter	Roughness			
676	16	748	73.15	203.20	120			
677	748	749	73.15	203.20	120			
678	749	750	73.15	203.20	120			
679	750	751	73.15	203.20	120			
680	751	752	73.15	203.20	120			
681	752	753	73.15	203.20	120			
682	753	754	73.15	203.20	120			
683	754	755	73.15	203.20	120			
684	755	756	73.15	203.20	120			
685	756	757	73.15	203.20	120			
686	757	758	73.15	203.20	120			
687	758	759	73.15	203.20	120			
688	759	760	73.15	203.20	120			
689	760	761	73.15	203.20	120			
690	761	762	73.15	203.20	120			
691	762	763	73.15	203.20	120			
692	763	764	73.15	203.20	120			
693	764	765	73.15	203.20	120			
694	765	766	73.15	203.20	120			
695	766	767	73.15	203.20	120			
696	767	768	73.15	203.20	120			
697	768	769	73.15	203.20	120			
698	769	770	73.15	203.20	120			
699	770	771	73.15	203.20	120			
700	771	17	73.15	203.20	120			

Link 16-18							
	Step X-Coord	Step Y-Coord					
	[m]	[m]					
	10.1	14.3					
Node	X-Coord	Y-Coord	Node	Elevation	Demand		
ID	[m]	[m]	ID	[m]	[I/s]		
16	1224.64	1711.74	16	36.58	13.00		
772	1234.74	1697.41	772	35.72	0.00		
773	1244.83	1683.09	773	34.87	0.00		
774	1254.93	1668.76	774	34.02	0.00		
775	1265.03	1654.43	775	33.16	0.00		
776	1275.13	1640.11	776	32.31	0.00		
777	1285.22	1625.78	777	31.46	0.00		
778	1295.32	1611.45	778	30.60	0.00		
779	1305.42	1597.13	779	29.75	0.00		
780	1315.51	1582.80	780	28.90	0.00		
781	1325.61	1568.47	781	28.04	0.00		
782	1335.71	1554.15	782	27.19	0.00		
783	1345.81	1539.82	783	26.33	0.00		
784	1355.90	1525.49	784	25.48	0.00		
785	1366.00	1511.16	785	24.63	0.00		
786	1376.10	1496.84	786	23.77	0.00		
787	1386.20	1482.51	787	22.92	0.00		
788	1396.29	1468.18	788	22.07	0.00		
789	1406.39	1453.86	789	21.21	0.00		
790	1416.49	1439.53	790	20.36	0.00		
791	1426.58	1425.20	791	19.51	0.00		
792	1436.68	1410.88	792	18.65	0.00		
793	1446.78	1396.55	793	17.80	0.00		
794	1456.88	1382.22	794	16.95	0.00		
795	1466.97	1367.90	795	16.09	0.00		
18	1477.07	1353.57	18	15.24	31.55		

Roughness [-]								
70								
70								
70								
70								
70								
70								
70								
70								
70								
70								
70								
70								
70								
70								
70								
70								
70								
70								
70								
70								
70								
70								
70								
70								
70								

Link 16-19						
	Step X-Coord	Step Y-Coord				
	[m]	[m]				
	16.0	3.5				
Node	X-Coord	Y-Coord	Node	Elevation	Demand	
ID	[m]	[m]	ID	[m]	[I/s]	
16	1224.64	1/11./4	16	36.58	13.00	
/96	1240.67	1/08.28	/96	35./2	0.00	
797	1256.69	1704.82	797	34.87	0.00	
798	1272.72	1701.36	798	34.02	0.00	
799	1288.74	1697.90	799	33.16	0.00	
800	1304.77	1694.45	800	32.31	0.00	
801	1320.79	1690.99	801	31.46	0.00	
802	1336.82	1687.53	802	30.60	0.00	
803	1352.84	1684.07	803	29.75	0.00	
804	1368.87	1680.61	804	28.90	0.00	
805	1384.89	1677.15	805	28.04	0.00	
806	1400.92	1673.69	806	27.19	0.00	
807	1416.94	1670.23	807	26.33	0.00	
808	1432.97	1666.78	808	25.48	0.00	
809	1448.99	1663.32	809	24.63	0.00	
810	1465.02	1659.86	810	23.77	0.00	
811	1481.04	1656.40	811	22.92	0.00	
812	1497.07	1652.94	812	22.07	0.00	
813	1513.09	1649.48	813	21.21	0.00	
814	1529.12	1646.02	814	20.36	0.00	
815	1545.14	1642.56	815	19.51	0.00	
816	1561.17	1639.11	816	18.65	0.00	
817	1577.19	1635.65	817	17.80	0.00	
818	1593.22	1632.19	818	16.95	0.00	
819	1609.24	1628.73	819	16.09	0.00	
19	1625.27	1625.27	19	15.24	13.00	

Link 16-19							
Pipe ID	Start <u>Node</u> ID	End Node ID		Diameter	Roughness		
726	16	796	73.15	254.00	70		
727	796	797	73.15	254.00	70		
728	797	798	73.15	254.00	70		
729	798	799	73.15	254.00	70		
730	799	800	73.15	254.00	70		
731	800	801	73.15	254.00	70		
732	801	802	73.15	254.00	70		
733	802	803	73.15	254.00	70		
734	803	804	73.15	254.00	70		
735	804	805	73.15	254.00	70		
736	805	806	73.15	254.00	70		
737	806	807	73.15	254.00	70		
738	807	808	73.15	254.00	70		
739	808	809	73.15	254.00	70		
740	809	810	73.15	254.00	70		
741	810	811	73.15	254.00	70		
742	811	812	73.15	254.00	70		
743	812	813	73.15	254.00	70		
744	813	814	73.15	254.00	70		
745	814	815	73.15	254.00	70		
746	815	816	73.15	254.00	70		
747	816	817	73.15	254.00	70		
748	817	818	73.15	254.00	70		
749	818	819	73.15	254.00	70		
750	819	19	73.15	254.00	70		

Link 17-18						
	Step X-Coord	Step Y-Coord				
	[m]	[m]				
	22.4	1.8				
Node	X-Coord	Y-Coord	Node	Elevation	Demand	
ID	[m]	[m]	ID	[m]	[I/s]	
17	916.07	1308.33	17	36.58	50.00	
820	938.51	1310.14	820	35.72	0.00	
821	960.95	1311.95	821	34.87	0.00	
822	983.39	1313.76	822	34.02	0.00	
823	1005.83	1315.57	823	33.16	0.00	
824	1028.27	1317.38	824	32.31	0.00	
825	1050.71	1319.19	825	31.46	0.00	
826	1073.15	1321.00	826	30.60	0.00	
827	1095.59	1322.81	827	29.75	0.00	
828	1118.03	1324.62	828	28.90	0.00	
829	1140.47	1326.43	829	28.04	0.00	
830	1162.91	1328.24	830	27.19	0.00	
831	1185.35	1330.05	831	26.33	0.00	
832	1207.79	1331.85	832	25.48	0.00	
833	1230.23	1333.66	833	24.63	0.00	
834	1252.67	1335.47	834	23.77	0.00	
835	1275.11	1337.28	835	22.92	0.00	
836	1297.55	1339.09	836	22.07	0.00	
837	1319.99	1340.90	837	21.21	0.00	
838	1342.43	1342.71	838	20.36	0.00	
839	1364.87	1344.52	839	19.51	0.00	
840	1387.31	1346.33	840	18.65	0.00	
841	1409.75	1348.14	841	17.80	0.00	
842	1432.19	1349.95	842	16.95	0.00	
843	1454.63	1351.76	843	16.09	0.00	
18	1477.07	1353.57	18	15.24	31.55	

Link 17.19							
Pipe ID	Start Node ID	End Node ID	Length	<u>Diameter</u>	Roughness		
751	17	820	72.15	254.00	120		
/51	17	820	73.15	254.00	120		
752	820	821	73.15	203.20	120		
753	821	822	73.15	203.20	120		
754	822	823	73.15	203.20	120		
755	823	824	73.15	203.20	120		
756	824	825	73.15	203.20	120		
757	825	826	73.15	203.20	120		
758	826	827	73.15	203.20	120		
759	827	828	73.15	203.20	120		
760	828	829	73.15	203.20	120		
761	829	830	73.15	203.20	120		
762	830	831	73.15	203.20	120		
763	831	832	73.15	203.20	120		
764	832	833	73.15	203.20	120		
765	833	834	73.15	203.20	120		
766	834	835	73.15	203.20	120		
767	835	836	73.15	203.20	120		
768	836	837	73.15	203.20	120		
769	837	838	73.15	203.20	120		
770	838	839	73.15	203.20	120		
771	839	840	73.15	203.20	120		
772	840	841	73.15	203.20	120		
773	841	842	73.15	203.20	120		
774	842	843	73.15	203.20	120		
775	843	18	73.15	203.20	120		

Link 18-19							
	Step X-Coord	Step Y-Coord					
	[m]	[m]					
	5.9	10.9					
Node	X-Coord	Y-Coord	Node	Elevation	Demand		
ID	[m]	[m]	ID	[m]	[l/s]		
18	1477.07	1353.57	18	15.24	31.55		
844	1483.00	1364.44	844	15.24	0.00		
845	1488.93	1375.31	845	15.24	0.00		
846	1494.85	1386.17	846	15.24	0.00		
847	1500.78	1397.04	847	15.24	0.00		
848	1506.71	1407.91	848	15.24	0.00		
849	1512.64	1418.78	849	15.24	0.00		
850	1518.57	1429.65	850	15.24	0.00		
851	1524.49	1440.51	851	15.24	0.00		
852	1530.42	1451.38	852	15.24	0.00		
853	1536.35	1462.25	853	15.24	0.00		
854	1542.28	1473.12	854	15.24	0.00		
855	1548.21	1483.99	855	15.24	0.00		
856	1554.13	1494.85	856	15.24	0.00		
857	1560.06	1505.72	857	15.24	0.00		
858	1565.99	1516.59	858	15.24	0.00		
859	1571.92	1527.46	859	15.24	0.00		
860	1577.85	1538.33	860	15.24	0.00		
861	1583.77	1549.19	861	15.24	0.00		
862	1589.70	1560.06	862	15.24	0.00		
863	1595.63	1570.93	863	15.24	0.00		
864	1601.56	1581.80	864	15.24	0.00		
865	1607.49	1592.67	865	15.24	0.00		
866	1613.41	1603.53	866	15.24	0.00		
867	1619.34	1614.40	867	15.24	0.00		
19	1625.27	1625.27	19	15.24	13.00		

Link 18-19								
Pipe ID	Start <u>Node</u> ID	End <u>Node</u> ID	Length [m]	Diameter [mm]	Roughness [-]			
776	18	844	73.15	254.00	70			
777	844	845	73.15	254.00	70			
778	845	846	73.15	254.00	70			
779	846	847	73.15	254.00	70			
780	847	848	73.15	254.00	70			
781	848	849	73.15	254.00	70			
782	849	850	73.15	254.00	70			
783	850	851	73.15	254.00	70			
784	851	852	73.15	254.00	70			
785	852	853	73.15	254.00	70			
786	853	854	73.15	254.00	70			
787	854	855	73.15	254.00	70			
788	855	856	73.15	254.00	70			
789	856	857	73.15	254.00	70			
790	857	858	73.15	254.00	70			
791	858	859	73.15	254.00	70			
792	859	860	73.15	254.00	70			
793	860	861	73.15	254.00	70			
794	861	862	73.15	254.00	70			
795	862	863	73.15	254.00	70			
796	863	864	73.15	254.00	70			
797	864	865	73.15	254.00	70			
798	865	866	73.15	254.00	70			
799	866	867	73.15	254.00	70			
800	867	19	73.15	254.00	70			

Allegato B

Algoritmo e scripts Anytown base/Anytown discretizzata

SCRIPT PRINCIPALE: enKfilter.m/enKfilter_discr.m (esegue tutti gli altri script)

```
analysis
sxmean = zeros(1,24);
symean = zeros(1,24);
X1 = zeros(2, 16);
Gt = zeros (2, 16);
Ccc = zeros(16, 16);
Cxc = zeros(1, 16);
Cyc = zeros(1, 16);
Cxyc = zeros(2,16);
for t=1
    t
for k=1:16
    prediction
   X1(:,k)=x1;
    z1 = Qp(:,1:16);
    z(:,k) = mean(z1);
    Z=z';
   X1(:,k) = x1;
    Dt(k,:) =delta ;
    X1X = X1(1,:);
    X1Y = X1(2,:);
end
    X1x=random('norm',mean(X1X),std(X1X),1,16);
    X1y=random('norm',mean(X1Y),std(X1Y),1,16);
    for i = 1:16
        for n = 1:16
            for nn = 1:16
            % Compute covariances
            Cxc(1,i) = ((X1x(i)-mean(X1x)) *(Z(nn,i)-mean(Z(:,nn))))/16;
            Cyc(1,i) = ((X1y(i)-mean(X1y)) *(Z(nn,i)-mean(Z(:,nn))))/16;
            Cxyc = [ Cxc ; Cyc ];
            Ccc(n,nn) = ((Z(n,i)-mean(Z(:,n)))*(Z(nn,i)-mean(Z(:,nn))))/16;
            end
        end
    end
```

```
% Filter
    Gt = Cxyc * pinv(Ccc);
    xa = [X1x ; X1y ] + (Gt * Dt') ;
    coordx = xa(1,:);
    coordY= xa(2,:);
    distance
    newnodes(t,:)= new_nodes;
    coordx(t) = xa(1,:)*ones(16,1)/16;
    coordy(t)= xa(2,:)*ones(16,1)/16;
    var_x = (xa(1,:)-(coordx*ones(1,16))).^2/15;
    var_y = (xa(2,:)-(coordy*ones(1,16))).^2/15;
    f1=figure
    orient landscape
    plot(xa(1,:),xa(2,:),
'LineStyle', 'none', 'Marker', 'square', 'MarkerFaceColor', 'r', 'MarkerEdgeColor', 'b');
    title(['Source locations at time step - ',num2str(t)]);
    hold on
    plot (X,Y, 'LineStyle','none','Marker','o','MarkerEdgeColor','b','MarkerFaceColor','b');
    xlabel('x-coord [m]');
    ylabel('Y-coord [m]');
    legend('Anytown discretized nodes','EnKF source location estimates','Location','best');
    legend('boxoff');
    saveas(f1, sprintf ('FIG%d.png',t));
for tt=t+1:3:48
    tt
   for kk=1:16
    new_filtering_step_
   X1_(:,kk)=x1_;
    z1_ = Qp_(:,1:16);
    z_(:,kk) = mean(z1_);
   Z_=z_';
   X1_(:,kk) = x1_;
   Dt_(kk,:) =delta_ ;
   X1X_ = X1_(1,:);
   X1Y_ = X1_(2,:);
   end
   X1x_=random('norm',mean(X1X_),std(X1X_),1,16);
   X1y_=random('norm',mean(X1Y_),std(X1Y_),1,16);
    for i = 1:16
        for n = 1:16
            for nn = 1:16
            % Compute covariances
            Cxc_(1,i) = ((X1x_(i)-mean(X1x_)) *(Z_(nn,i)-mean(Z_(:,nn))))/16;
            Cyc_(1,i) = ((X1y_(i)-mean(X1y_)) *(Z_(nn,i)-mean(Z_(:,nn))))/16;
            Cxyc_ = [ Cxc_ ; Cyc_ ];
            Ccc_(n,nn) = ((Z_(n,i)-mean(Z_(:,n)))*(Z_(nn,i)-mean(Z_(:,nn))))/16;
            end
        end
    end
```

```
% Filter
    Gt_ = Cxyc_ * pinv(Ccc_);
    xa_ = [ X1x_ ; X1y_ ] + (Gt_ * Dt_') ;
    distance2
    newnodes_(tt,:)= new_nodes_;
    coordx_(tt) = xa_(1,:)*ones(16,1)/16;
    coordy_(tt)= xa_(2,:)*ones(16,1)/16;
    var_x(:,tt) = (xa_(1,:)-(mean(xa_(1,:))*ones(1,16))).^{2/15};
    var_y_ (:,tt)= (xa_(2,:)-(mean(xa_(2,:))*ones(1,16))).^2/15;
    coordx_(1)=coordx;
    coordy_(1)=coordy;
    var_x_(:,1)=var_x;
    var_y_(:,1)=var_y;
    f2=figure
    orient landscape
    plot(coordx_, coordy_,
'LineStyle', 'none', 'Marker', 'square', 'MarkerFaceColor', 'r', 'MarkerEdgeColor', 'b');
    title(['Source locations at time step - ',num2str(tt)]);
    hold on
    plot (X,Y, 'LineStyle','none','Marker','o','MarkerEdgeColor','b','MarkerFaceColor','b');
    xlabel('x-coord [m]');
    ylabel('Y-coord [m]');
    legend('Anytown discretized nodes','EnKF source location estimates','Location','best');
    legend('boxoff');
    saveas(f2, sprintf ('FIG%d.png',tt));
    end
end
figure
orient landscape
plot(coordx_, coordy_,
'LineStyle', 'none', 'Marker', 'square', 'MarkerFaceColor', 'r', 'MarkerEdgeColor', 'b');
title('New Coordinates mean');
print (['Mean time step',num2str(tt)],'-dpng');
hold on
plot (X,Y, 'LineStyle', 'none', 'Marker', 'o', 'MarkerEdgeColor', 'b', 'MarkerFaceColor', 'b');
xlabel('x-coord [m]');
ylabel('Y-coord [m]');
legend('Anytown discretized nodes','EnKF source location estimates','Location','best');
legend('boxoff');
print (['Rete t',num2str(nodeindex)],'-dpng');
fileexcel
```

```
Published with MATLAB® R2016b
```

SCRIPTS SECONDARI

```
SCRIPT 1: analysis.m/analysis_discr.m
```

d.loadEPANETFile(d.BinTempfile);

```
d=epanet('AnyT_QA_continua.inp')
                                          \% \leftarrow Change source node in the input file
/d=epanet('AnyT_QA_continua.inp')
%AnyTown plot
d.plot;
XY=d.getNodeCoordinates;
xy=[XY{1, 1} XY{1, 2}];
/Xdiscr=xy(1:784,1)';
/Ydiscr=xy(1:784,2)';
X=xy(1:16,1)';
Y=xy(1:16,2)';
%Set time simulation
hours =24;
                                          \% \leftarrow Change time simulation here
d.setTimeSimulationDuration(hours*3600);
Results = d.getComputedTimeSeries;
Hydraulics = d.getComputedHydraulicTimeSeries;
Quality = d.getComputedQualityTimeSeries;
%Step by step Hydraulic Analysis
d.openHydraulicAnalysis;
d.initializeHydraulicAnalysis;
tstep=1;P=[];T_H=[];D=[];H=[];F=[];
while (tstep>0)
    t=d.runHydraulicAnalysis;
    P=[P; d.getNodePressure];
    D=[D; d.getNodeActualDemand];
    H=[H; d.getNodeHydaulicHead];
    F=[F; d.getLinkFlows];
    T_H=[T_H; t];
    tstep=d.nextHydraulicAnalysisStep;
end
d.closeHydraulicAnalysis
%Step by step Quality Analysis
d.openQualityAnalysis
d.initializeQualityAnalysis
tleft=1; P=[];T_Q=[];Q=[];
while (tleft>0)
    t=d.runQualityAnalysis;
    Q=[Q; d.getNodeActualQuality];
    T_Q=[T_Q; t];
    tleft = d.stepQualityAnalysisTimeLeft;
end
d.closeQualityAnalysis;
%Plot Results
value=d.getNodeNameID;
for i = 1:length(value)
    nodes(i) = str2num(cell2mat(value(i)));
end
nodeindex=find(nodes==3);
                                         % \leftarrow Change node here
```

```
% Solve hydraulics
d.solveCompleteHydraulics
d.saveHydraulicsOutputReportingFile
% Solve quality
d.solveCompleteQuality
d.setReportFormatReset
d.setReport('FILE TestReport5.txt');
d.setTimeStatisticsType('NONE')
d.setReport('LINKS ALL')
d.setReport('NODES ALL')
d.writeReport
```

Figure Matlab

Published with MATLAB® R2016b

SCRIPT 2: prediction.m/prediction discr.m

```
e=epanet('AnyT_Prediction.inp'); /e=epanet('AnyT_Prediction_discr.inp')
e.saveInputFile('Initial.inp');
%Analisi
hours = 48;
d.setTimeSimulationDuration(hours*3600);
HTS=e.getComputedHydraulicTimeSeries;
QTS=e.getComputedQualityTimeSeries;
%Estraggo Concentrazioni che inizialmente sono pari a zero in tutti i nodi
QP=QTS.NodeQuality;
%Prendo le osservazioni della concentrazione allo step precedente (quello in cui conosco la
sorgente): avrò la matrice C1
idx = sort(randperm(size(Q,2),16));
C1 = Q(:,idx)'; %19x24 poichè sono i 16 nodi osservati per 24 ore (24 valori di
concentrazione)
%devo fare un ciclo for per assegnare i valori di concentrazione iniziale per fare
%l'analisi nell'operazione del filtro
%1x16 Tutti i nodi sono candidati ad essere nodi-sorgente
source = sort(randperm(size(X,2),16));
%Assegno il tipo di sorgente ai miei 16 ipotetici nodi sorgente: tipo di
%source 'MASS'.
for j=source
    e.setNodeSourceType(j,'MASS');
end
inputsource = e.getNodeSourceType;
sources=X(source);
%Ipotizzo ad uno ad uno i 16 nodi della rete come ipotetici nodi sorgente e gli assegno
%l'intensità della concentrazione iniziale pari a 10000.
inputvalues = e.getNodeSourceQuality;
f=[k:1:16];
for x=1:numel(f)
    s=f(x)
    values=e.getNodeSourceQuality;
    values(s) = 10000;
    break
end
e.setNodeSourceQuality(values);
%Salvo il nuovo file di input
e.saveInputFile('Prediction.inp');
p=epanet('Prediction.inp');
%Faccio l'analisi della nuova rete
HTS1=p.getComputedHydraulicTimeSeries;
QTS1=p.getComputedQualityTimeSeries;
```

```
%Step by step Quality Analysis
p.openQualityAnalysis
p.initializeQualityAnalysis
t_left=1; Pp=[];T_Qp=[];Qp=[];
while (t_left>0)
    tp=p.runQualityAnalysis;
    Qp=[Qp; p.getNodeActualQuality];
    T_Qp=[T_Qp; tp];
    t_left = p.stepQualityAnalysisTimeLeft;
end
p.closeQualityAnalysis;
%Estraggo la matrice delle concentrazioni iniziali C, e quella delle
%concentrazioni osservate Cs e calcolo da differenza
C = Q(t, 1:16);
Cs = Qp(t, 1:16);
delta = (C - Cs);
%Scrivo il vettore x1 delle coordinate-sorgente ipotizzate
xf=X(s);
yf=Y(s);
x1=[ xf ; yf ];
```

SCRIPT 3 (uguale per entrambe le reti): distance.m/distance_discr.m

```
coordX = xa(1,:);
coordY= xa(2,:);
for ii=1:numel(coordX)
    for jj=1:numel(X)
        dist(ii,jj)=sqrt((coordX(ii)-X(jj))^2+(coordY(ii)-Y(jj))^2);
    end
end
[M,I]=min(dist,[],2);
new_nodes=I';
```

SCRIPT 4 (uguale per entrambe le reti): distance2.m/distance2discr.m

```
oordX_ = xa_(1,:);
coordY_= xa_(2,:);
for ii_=1:numel(coordX_)
    for jj_=1:numel(X)
        dist_(ii_,jj_)=sqrt((coordX_(ii_)-X(jj_))^2+(coordY_(ii_)-Y(jj_))^2);
    end
end
[MM,II]=min(dist_,[],2);
new_nodes_=II';
```

Published with MATLAB® R2016b

```
ee=epanet('AnyT_Prediction.inp');
/d=epanet('AnyT_Prediction_discr.inp')
ee.saveInputFile('Initial.inp');
%Analisi
hours = 24;
                                             % ← Si può cambiare QUI il tempo di simulazione
d.setTimeSimulationDuration(hours*3600);
HTS_=ee.getComputedHydraulicTimeSeries;
QTS_=ee.getComputedQualityTimeSeries;
%Estraggo Concentrazioni che inizialmente sono pari a zero in tutti i nodi
QP_=QTS_.NodeQuality;
idx_ = sort(randperm(size(Q,2),16));
C1_ = Q(:,idx_)';
source_ = sort(randperm(size(X,2),16));
%Assegno il tipo di sorgente ai miei 16 ipotetici nodi sorgente: tipo di
%source 'MASS'.
for j_=source_
    ee.setNodeSourceType(j_, 'MASS');
end
inputsource_ = ee.getNodeSourceType;
sources_=X(source_);
inputvalues_ = ee.getNodeSourceQuality;
%Cambio nodo sorgente iterativamente, assegnandogli ad ogni ciclo l'intensità dell'iniezione
continua di contaminante.
new = newnodes;
    for xx=[kk:1:numel(new)]
    sx=new(xx)
    values_=ee.getNodeSourceQuality;
    values_(sx)= 10000;
                         % ← Si può cambiare QUI l'intensità della concentrazione di input
    break
    end
ee.setNodeSourceQuality(values_);
%Salvo il nuovo file di input
ee.saveInputFile('Prediction2.inp');
pp=epanet('Prediction2.inp');
%Faccio l'analisi della nuova rete
HTS1_=pp.getComputedHydraulicTimeSeries;
QTS1_=pp.getComputedQualityTimeSeries;
%Step by step Quality Analysis
pp.openQualityAnalysis
pp.initializeQualityAnalysis
t_left_=1; Pp_=[];T_Qp_=[];Qp_=[];
while (t_left_>0)
    tp=pp.runQualityAnalysis;
    Qp_=[Qp_; pp.getNodeActualQuality];
    T_Qp_=[T_Qp_; tp];
    t_left_ = pp.stepQualityAnalysisTimeLeft;
end
pp.closeQualityAnalysis;
```

```
% Estraggo i dati utili per l'operazione del filtro
C_=Q(tt,1:16);
Cs_ = Qp_(tt,1:16);
xf_=X(sx);
yf_=Y(sx);
x1_=[ xf_ ; yf_ ];
delta_ = ( C_ - Cs_);
```

Published with MATLAB® R2016b