
Master’s Degree in Biomedical Engineering

Master’s Degree Thesis

Automated Tracking System for
Identification of Tagged Mice for

Automatic Social Behavior Analysis

Advisor
Danilo Demarchi
Co-Advisor
Ralph Etienne-Cummings

Candidate
Fabio Marcuccio

September 2018

The study presented in this dissertation was entirely carried out at the Computa-
tional Sensory-Motor Systems Laboratory of the Electrical and Computer Engineer-
ing Department at Johns Hopkins University Whiting School of Engineering, Balti-
more, Maryland, USA, under the supervision of professor Ralph Etienne-Cummings,
chairman of the department. The project was commissioned by the Pathology Depart-
ment, division of Neuropathology, of Johns Hopkins University School of Medicine,
headed by prof. Alena V. Savonenko, who kindly set up all the necessary to make
the experiments feasible. All recordings, tests and experiments were conducted in her
laboratory, under her attentive supervision.

iii

I’ve roamed and rambled, and I followed my footsteps
to the sparkling sands of her diamond deserts;

and all around me, a voice was sounding:
this land was made for you and me.

Woody Guthrie

v

Acknowledgements

First and foremost, I would like to thank my professor and advisor, Danilo Demarchi.
Without him, nothing of this experience would have ever been possible. His kindness
and disposition in sharing his international contacts with the students are essential
resources for Politecnico di Torino to extend its international network. Thank you
for having had faith in me, and for having introduced me to the American scientific
research world, that seemed so far and unattainable only up to a year ago.

In addition, I want to thank my American advisor and chairman of the Electri-
cal and Computer Engineering Department at Johns Hopkins University, professor
Ralph Etienne-Cummings. Being in Ralph’s lab has been the most educational ex-
perience of my life. Doing research can be a frustrating and discouraging job, and
finding someone who always believes in your person and your skills is not an easy
deal. I had the chance to meet not only a boss, but a real leader who shares his
knowledge to make his students grow up. That is the best a student can ask, and
the best I could ask for.

I want to thank Alena V. Savonenko, professor of pathology at Johns Hopkins
University School of Medicine, associated investigator at the Alzheimer’s Disease
Research Center at Johns Hopkins. She represented an important source of inspira-
tion. Thank you, Alena, for hosting me in your lab, and for all the new ideas you
provided, cheering me up during the hard times.

I would like to thank all the ECE Department staff at Johns Hopkins University.
A special thanks to Nicole, Melissa, Cora, Makea, Eileen, Debbie and Dana. I’m
missing so much your welcome every morning to the department and coming across
you for the coffee break in the lounge. Thank you for making me feel at home.

I want to thank Amy and Mark Foster for providing me a desk in their lab. Being
in a photonics lab has been extremely interesting and stimulating for my research.

I want to thank my family, for all the strength and support she gave me every
single day of this five-year-long travel. Thank you, mum, for your sincere love
and compassion, for making me sensitive to all the beauty surrounding me. You
taught me the loveliness of traveling through the pages of a book, the life enclosed
in every single flower petal, the importance of being together. I carry you inside my
heart, as the most important treasure to protect. Thank you, dad, for your great
understanding, for being the best advisor of my life. Thanks to you, I know that
there is no better satisfaction than working for passion, that working on staying
together is better than getting upset to be alone, that the way you love your land
is the way she loves you. Thank you, brothers, for having raised me following your
passions. There is no better teaching than the love you put in every thing you do.
Feeling you close to me means simply feeling safe. Thanks to you all, growing up
with you made me realize that life is made of little things wherein happiness resides,
the same happiness you give me, as a gift, every single day of my life. I love you all.

vii

I want to thank my extended family, my grandparents, uncles, cousins, sister-in-
law and her family. I want to thank my wee nieces, of whom the youngest was born
during my stay in the USA. Thank you, Rebecca and Adele, for having brought a
new shiny light into my family.

A warm greeting to my uncle, Antimo. Thank you, uncle, for being my jack of
all trades. Thanks to you, now, I know that there is always a solution.

I want to spare a special thought to my grandad, who passed away few months
ago, and to my uncle, Lino, who has been waiting for longtime my graduation day
and who is not able, now, to celebrate it with all of us. Thank you, uncle, for having
had faith in me. Your goodness and likableness will be part of me, every step I will
take. You will be celebrating with us anyway, wherever you will be.

In the United States, I want to thank all the crew at CSMSL I had the pleasure
of working with. In particular, thank you, Adam, John, Bayo, Takeshi, Adam C.,
Tao, Patrick, Mich, Duncan for all the good time spent together. On Wednesday
mornings, I still feel my mind longing for having lunch at Masala Kitchen.

I want to thank all the folks in Fosters’ photonics lab. In particular, a big thanks
to Milad, Bryan, Jasper, Alexander, Neil, Hongcheng, Michael, Kangmei for having
welcomed me more as a friend than a colleague. I will never forget our laughs at
happy hours, our beers, and all the great time spent together. Thank you, for having
shared with me all your wise knowledge, the most precious gift you could have given.

I want to thank all my friends in doctor Bell’s lab. Thank you, Alycen, for all
the times you said "abbraccio", I can still hear your voice saying that. Thank you so
much, Michelle, for all our never-ending walks through the streets of Hampden, for
driving me back and forth to New Jersey, and for all our night talks on your front
porch. I will never forget the small house at 3313 Chestnut Avenue with the two
pink flamingos in the front yard, and all the rock’ n roll we danced at the Cat’s Eye
Pub on Friday nights. I’m waiting for all of you here, in Italy, to have fun again.

Special thanks go to Milad, Alanna and their families. Thank you, guys, for
having being so kind with me. I felt as being part of your family. You gave me the
best thanksgiving day of my life as a gift I will carry with me. Thanks, Salar, for
having crossed the ocean to be present at my graduation day.

I want to thank Christopher, the greatest bartender in the world. Thank you,
Chris, for all your stories that lightened up my darkest nights. That counter came
across love, laughs and friendship. I see your smile all the way from here.

I want to thank all my erasmus friends, for having been my companions in one
of the most exciting experience of my life. In particular, all the crew of "los pollos
hermanos", Gytis, Louis, Elie, Daria, Margherita, Robin, Marta, Marie, Louna,
Kyra, Julie, Jedrzej, Henrik, Francesco, Filippo, Christopher, Clara and Serafina
for all the great time we had in Budapest. I want to thank Alberto, Veronica,
Alberto M. and Enrico, for being my brothers during my time in Hungary. I’m still
longing for going back to our nights at Kobuci.

viii

I want to thank Elena, my travel companion, for being a sister during my stay in
the US. Thank you, Elena, for all our adventures, for all the miles driven together,
and for having followed me through the paradoxes of a land so hard to understand,
but so beautiful and fascinating at the same time. You belong to the best memories
of my life. My heart is full of gratefulness because of what you did for me.

I want to thank my longtime friends Leonardo, Meryeme and Nico. Thank you,
Leo, for being my blood brother along all these years, for all the road trips, the
laughs and the adventures we lived together. Thank you for always taking the best
of me. There is a long road through all the beauty of this world still waiting for us,
and I’m ready to go down every single mile of it, with you as my partner.
Thank you, Mery, for our never-ending friendship. Your love and understanding
have been the mainstay of my personal growth.
Thank you, Nico, for being the shoulder I could always rely on.

I want to thank my childhood friend, Marilde, for all the love she has been giving
me for all these years. Thank you, Mari, for the delicacy with which you preserve
our friendship.

I want to thank my dear friend Sara. Thank you Sara, for the deep emotion you
transmit me all the times we meet. Your eyes shine, and my heart gets joyful.

I want to thank my neighbor and childhood friend, Cesare, for all the wisdom
shared with me. Thank you, Cesi, I can still hear the engines of our lego cars coming
from your basement.

I want to thank my sweetest friend, Flaminia. Thank you, Fla, for sharing
beauty. The delicate way you take care of this world encourages me to apply myself
to be the change we want to see. I want to thank Matteo and Monica too, for being
so lovely with me. I’m sure, one day, we will get our way to the ecovillage.

I want to thank Alessandra, for all the love and strength she provided me in the
first years of university. Thank you, Ale, for having had faith in me.

And last but not least, I want to thank all my old friends, university fellows,
high school mates, and everyone who contributed, even with a tiny piece, to make
me become the person I am now. Big thanks to Mariana, my lovely friend from
Argentina. Special thanks to Simone, Stefano, Elisa, Mary, Martina C., Samantha,
Alessio, Martina R., Sara F., my longtime partners. Sincere thanks to Ashkan,
Vittorio, Luca, Greta, Chiara, Rossana, Alessia, Andrea, Turo, Albi bici, Stefania,
Federica M., Federica G., Matteo, Davide, Hassan, and all the beautiful people I
met at University. I hope I didn’t forget anyone, and please, forgive me if I did.

Thanks to all of you. Nothing would have ever been possible without your support.
There is no more reassuring emotion than feeling you beside.
I love you all.

See you on the road,

Fabio

ix

Contents

1 Introduction 1

2 Background 5
2.1 State of the Art . 6

2.1.1 ANY-maze . 6
2.1.2 EthoVision XT . 7
2.1.3 idTracker . 9
2.1.4 RFID-based systems . 13
2.1.5 Shape-matching-based systems 17

2.2 Social Behaviors and their Classification 20
2.3 Landmark Points . 23
2.4 Main Issues Facing Multiple Mice Tracking 24
2.5 Aim of the Study . 25

3 Experimental Setup 29
3.1 Camera . 29
3.2 Home Cage Setup . 32
3.3 Lighting Conditions . 33
3.4 Metal Tags . 34

4 Methods 35
4.1 Frame Acquisition . 38
4.2 Background Estimation and Subtraction 39
4.3 Static Objects Removal . 40
4.4 Segmentation . 43
4.5 Merging Detector . 47
4.6 Geometric Information Extraction . 49

4.6.1 No Merging in Current Frame 50
4.6.2 Merging in Current Frame . 50

4.7 Tracking Algorithm . 54
4.7.1 NM-Tracker . 55
4.7.2 IDSC-Tracker . 57

xi

4.8 Identity Detection and Preservation 69

5 Results 75
5.1 Tracker . 75
5.2 Identity Detector . 77
5.3 Validation of the Whole System . 81

6 Future Work 83
6.1 Database of Videos . 83
6.2 Centroid Tracking During Merging 84
6.3 Post-Processing Correction . 86
6.4 The Challenge of the Dictionary of Shapes 86

7 Conclusions 91

A Ellipse-Drawing Algorithm 95

B Pseudocode 99
B.1 Pre-processing . 99
B.2 Frame-by-Frame Processing . 100

xii

Chapter 1

Introduction

Next Generation Sequencing (genotyping) has evolved significantly in the last decade,
with an unprecedented increase in sequencing speed, decrease in sequencing cost,
and overwhelming influence on all branches of health-related science. This progress
has led to the development of thousands of genetic models of human diseases, and
even more will be developed in the near future featuring more advanced variations
of cell-type specificity. In this contest, contemporary bioscience has become Big
Data science and it requires a development of computational algorithms and new
statistical methods to be handled. In fact, passing from collecting big data sets to
extracting knowledge from them is not trivial without adequate tools.

Established research institutions such as Johns Hopkins Medical Institute often
conduct large scale behavioral studies on animal specimen, such as mice. As the
sample sizes grow, the amount of labor to conduct becomes a limiting factor in the
experiment. Classical behavioral testing of disease models is a time-consuming and
laborious process that is vulnerable to the effects of human handling, lack of stan-
dardization and low reproducibility. State-of-the-art systems still require humans
to detect, categorize and classify social behaviors and interactions. Methods that
depend so much on humans can’t be standardized and reproduced. This condition
can not be suitable for a behavioral phenotyping system that aims to achieve some
standards that can be reproduced in the same way all over the world. In addition, a
non-standardized system brings about huge waste in terms of animal lives. The US
government estimated that the number of animals employed in research in 2016 was
over 820000 [1]. It is important to specify that this number includes only species
covered by the Animal Welfare Act, excluding mice, rats, rabbits and any other
kind of rodent that is protected under other kind of regulations. These regulations
do not include an obligation in giving the precise number of rodents employed in
research each year. Considering EU data, the 93% of animals employed in research
do not include animals covered by the US Animal Welfare Act. This means that, if
the same data were applied concerning the US, the amount of rodents employed in
research would be around 12 millions [1]. This is just a rough estimate that does not

1

1 – Introduction

consider many other factors, but it already gives an idea of numbers. This massive
use of animals is partially due to the lack of standardization of current behavioral
phenotyping systems.

The extensive use of mice in disease modeling brings a need to build a com-
putational system able to analyze and classify their social behaviors during drug
testing. Social behaviors and interactions are very important for analyzing the ef-
fect of drugs injected in mice. The current state of the art algorithms being applied
towards studying animal behavior is heavily underdeveloped. Recent studies are
only able to follow the behavior of a single mouse, truly missing the implications of
studying social behaviors. Unfortunately, this is not enough to get a good charac-
terization of drugs avoiding human handling.

This study attempts to automate the actual analysis of mice behavior using
implementations of modern computer vision techniques to process in real time videos
recorded by a camera set on the lid of the cage wherein mice move. A real-time
application is required because biological laboratories host thousands of cages placed
one on the other; this means that thousands of videos would be recorded at the same
time in an hypothetic non-real-time system, and storing all this information would
require excessive storage capacity. In addition, the huge amount of cages and their
relative position put a constraint in terms of available space and cost. That is why
hardware must be small enough to fit the available space, and cheap enough to be
reproduced for all cages. Biological laboratories are generally very dark, especially
in night hours. Darkness of the working environment is another constraint we had
to consider. In fact, light influences mice social behaviors and constitutes another
issue that must be solved.

Even though the final aim of this project is the classification and analysis of mice
social behaviors, the first obstacle we must overcome is the identification and iden-
tity preservation of mice moving within their home cage. State-of-the-art systems
generally solve this problem considering one mouse or, at most, two mice moving
within their environment. With one mouse only, the solution of the problem is triv-
ial; with two mice, if the algorithm is able to identify the inversion of identities due
to an error, it is also able to solve it swapping again the identities. In fact, with
two mice, the problem is easy because if identities are swapped, the right ones are
obviously the opposite ones. If the two-mice-tracking algorithm is not able to realize
that an error is occurring and identities are lost, they can be re-established in a post
processing correction, as shown by Stav Braun in her thesis [4]. When we consider
three mice moving, things get way more complicated. According to Neuropathology
Department of Johns Hopkins School of Medicine, behavioral studies should be done
on cages wherein three or four mice move to obtain a good drug characterization.
Starting from this statement, our study was focused on tracking and recognition of
three mice moving within their home cage. The extension of the study to four mice
doesn’t represent a big issue as it will be explained in the following chapters.

2

1 – Introduction

Our experimental setup consists basically in a camera placed on the lid of the
home cage from where videos are recorded. The camera is remotely controlled using
Raspberry Pi technology. Four near-infrared LEDs are placed close to the cage to
light up the environment and spherical metal tags are bound to mice ears to allow
identification. Tracking and identification algorithms have been implemented in
MATLAB 2017b using openCV libraries. The first step for social behaviors analysis
consists in building a robust tracking algorithm able to track specific landmark points
on mice contour. It has been studied that the best landmark points to categorize
the most frequent and meaningful social behaviors are head and tail [8]. According
to this, our study considers head and tail as main landmark points.

The main issue affecting the tracking system in this kind of environment is oc-
clusion (or merging of segmented blobs) and it takes place at the step of moving
objects segmentation. Occlusion happens when two (or more than two) mice are so
close between each other to create a unique and indistinguishable big blob instead
of two (or more) different ones. During occlusion, tracking landmark points is a big
challenge because mice borders are totally undefined, identities are lost and all ge-
ometrical parameters are not consistent. According to Neuropathology department
of Johns Hopkins School of Medicine, defining social behaviors during occlusion is
not strictly important because interactions can be defined by relative positions of
landmark points in frames before and immediately after occlusion occur. Strictly
important is keeping the identities of mice frame by frame and restoring them in
case occlusion happened. That’s why we define two different trackers:

• No-Merging Tracker (NM Tracker) is run when merging doesn’t occur and
it is based on simple geometrical calculations of distances;

• Inner-Distance-Shape-Context Tracker (IDSC Tracker) is run in frames im-
mediately after merging occurred and it is based on Inner Distance Shape
Context, a shape descriptor defined by Ling and Jacobs at the Center for Au-
tomation Research and Computer Science Department, University of Maryland
[11].

From here on out, when we say "Tracker" we refer to the whole tracker, while it will
be specified in case we refer specifically to one of the two. The tracker was tested on
videos wherein three mice move within their home cage and show the user an ellipse
drawn around each mouse, head and tail position and centroid position. In addition,
during merging, it still shows ellipses around mice and tries to keep track of centroid
position and to define mice borders using clustering methods. Even though we said
that we are not interested in tracking landmark points in frames where merging
occurs, keeping track of centroid position and ellipses parameters would be a useful
resource for better understanding social behaviors. Results show that in a good
percentage of frames we managed to well separate mice during merging but there is
a big number of frames where we didn’t. This weak result makes the algorithm not

3

1 – Introduction

strong enough to be applicable in real systems. Anyway, if we could figure out a way
to define what are the frames and relative mice positions that allow the algorithm
to work well, we could apply it only when we know that it works. In particular, as it
will be clearer at the end of this dissertation, since time is the biggest constraint we
must consider, knowing centroids position during merging would allow us to employ
an easier identification algorithm instead of using an heavier (but more accurate)
one, speeding up the whole system.

Tests made on our tracking algorithm led to excellent results and made us think
of applying the tracker not only to trace head and tail, but also left and right ear.
Knowing ears position in frames after merging occurred would lead us to re-establish
identities after they are lost because of occlusion. In fact, thanks to the available
position of ears, metal tags segmentation would be extremely less difficult, as it is
described in the following chapters. We extend the features of IDSC Tracker to
accomplish these functionalities and the results we got in terms of identity detection
are excellent. We applied the tracker to videos where only one mouse moves within
his home cage and we managed to well segment the metal tag in almost every frame.
The price we pay for this good detection is a high computational demand that makes
the algorithm not suitable for real-time systems. Nevertheless, the high accuracy
and precision achieved make the algorithm exploitable for an off-line analysis of mice
shapes, laying the groundwork for a real-time application.

4

Chapter 2

Background

The surprisingly big expansion of genomics was made possible thanks to the au-
tomation of DNA sequencing, outcome of a collaboration between different kinds of
specialists, from biologists to engineers. However, while genetics and genomics were
expanding, it can not be said that our ability to functionally characterize brain of
experimental animals has increased equally [18]. In fact, the incapability of han-
dling this huge amount of data brought a necessity to increase the throughput in
terms of development of new computational algorithms and statistical methods. In
such a context as promising as disorienting, where thousands of new genetic models
have been developed, contemporary bioscience has turned into Big Data Science and
no other improvements will be made without adequate developments in computer
science, as anticipated in chapter 1. All genetic models require to be studied on
laboratory animals and an interpretation key must be found in order to analyze and
getting oriented among all the data collected. This interpretation key can be in-
vestigated among animals social behaviors because, as Andreas Schaefer and Adam
Claridge-Chang says in their article, "the meaning of a brain is the behavior that it
produces" [18]. Since all behavioral studies and classification are nowadays manually
executed by operators, it is clear that this field must increase the automation of be-
havioral assays. In fact, an automated tracking system for social behavior analysis
would extremely improve behavioral test results, greatly decreasing manpower and
costs. In addition, the lack of standardization due to human handling would be
definitely overcome, allowing an operator-independent system that could be repro-
duced everywhere in the same way. Furthermore, the total number of animals used
in the experiment would be broadly reduced because every animal could be used
much more efficiently [20].

In conclusion, social behaviors are an extremely efficient target for automatiza-
tion, as their classification requires expert-eye scoring from videos that turns into
huge time and cost demand. Such a low-throughput system can not be suitable to
cope with the improvements made in terms of neural models and to handle the huge
amount of data deriving from them. This chapter will deal with the background of

5

2 – Background

this scene: first, a state-of-the-art overview will be made in order to get oriented
among all the systems and devices currently available; then, main social behaviors
will be described and the necessity of tracking specific landmark points on mice
contours will be explained; in the end, main problems involving the automation of
such a complex tracking system will be described and it will be clear why our study
focuses so much on mice identification more than behaviors classification. In fact,
identity detection and preservation is a key point in social behavior analysis with-
out which no kind of behaviors classifier would be feasible, as already described in
chapter 1.

2.1 State of the Art

As has already been said, a project that aims to automatically define social behaviors
must firstly deal with mice identity tracking and then with social behaviors clas-
sification. Keeping track automatically of identity of multiple mice moving within
their home cage is not a trivial issue. Today’s typical approaches are generally
based on hypothesis that animals are always visible, they never overlap and they
don’t move too quickly [15]. Other approaches use machine learning techniques
and trained networks to identify mice and keep track of their identities. Although
heuristcs and machine learning techniques could be useful tools for animals iden-
tification, they are often too complicated, making algorithms high demanding in
terms of computational power. The most common nowadays systems employed in
biological laboratories and the most recent studies are introduced below.

2.1.1 ANY-maze

ANY-maze is the most common system employed in nowadays biological laborato-
ries. ANY-maze is today’s most advanced video tracking system. It always tracks
the center of the body but it can also be set to track head and tail. It can give
you information about the area of the body and tracking can be done in every kind
of environment in the homecage of the mouse (from here the name ANY-maze).
The positive properties of this tracking system are the high reliability of the track-
ing, that can be done even in poor environmental conditions, and the quality of
the tracking. In fact, head and tail positions can be tracked frame by frame with
excellent results. In addition, the system can efficiently work with a wide range of
equipment commonly used in behavioral tests. User-interface employed for initial
setup is easy to use, allowing everybody to immediate get confidence with the soft-
ware. ANY-maze is therefore a very efficient tracking system that can be purchased
at a modest price.

The big limitation imposed by ANY-maze is the impossibility to execute a mul-
tiple tracking. In fact, the system is only able to keep track of one mouse or, at

6

2 – Background

most, of two mice with different color of the coat. This limitation is due to the
incapability of the system to identify mice and maintain their identities, with the
immediate consequence not to be able to perform a multiple tracking and, then,
social behaviors classification. Here again, the importance of identity preservation
is underlined as it represents the essential step for social behaviors analysis.

Another big obstacle the software poses for the automation of social behaviors
analysis is the large operator-dependency required to start the tracking. In fact,
the user is required to select the area wherein tracking must be run, the number of
animals moving within the cage, the color of the coat and many other parameters
(e.g. head position). The positive side is that after these short pre-tracking steps, the
algorithm works efficiently; the negative one is that even the shortest not automated
pre-tracking phase requires an operator to be done, and this is something we can
not afford when implementing an automated tracker is the final aim.

Since ANY-maze is the most common tracking software for animals used by
biological laboratories all over the world, it is clear that state-of-the-art systems are
very far from allowing social behaviors classification, since they are not able to track
multiple animals simultaneously.

2.1.2 EthoVision XT

EthoVision XT is a cutting-edge video tracking system for animal activity record-
ings. It is able to track body center, nose and tale for rats and mice, and it can
measure the mobility of their body. It’s a high-reliable system and it works even
in poor lighting conditions. User is required to define some experiment settings,
such as the number of arenas in which animals will be tracked (it is possible to
select more than one arena), the points to be tracked (center mass, head, tail), the
tracking source (video file or live image), and many others. Then, he has to define
the detection method, choosing whether or not to use a scan window, adjust the
contour settings, adjust sample rate and pixel smoothing of the video, and define
the minimum and maximum size of the animals [22] [20].

To assure the best result in terms of object detection in any kind of experimental
set-up, the system offers three different object detection methods: gray scaling, static
subtraction and dynamic subtraction. Gray scaling works with a global thresholding
filter. In fact, it takes all connecting points above or below a threshold defined
in a initial step as a possible object. It is clear that this method, being based on
global thresholding, requires an image where pixels belonging to object are in high
contrast with background pixels. It works good if, for instance, mice pixels are white
while background ones are black or vice-versa. It can not work when contrast is not
sufficient to define a specific threshold [22] [21].

Static subtraction works with two different images: a first image of the back-
ground without animal and a second image including the animal. The rest of the

7

2 – Background

algorithm consists in a subtraction between the two images and in the consequent
extraction of foreground (moving objects).

Dynamic subtraction works almost as Static subtraction detector with the dif-
ference that reference image is updated every frame. This detection method allows
animals to be consistently traced even when background is changed because of ex-
ternal factors. In fact, changes of environmental conditions such as lighting, can
affect background, obstructing tracking. Dynamic subtraction detector avoids this
kind of situation.

Morphological operations such as erosion and dilation are used to adjust mice
contours after segmentation. In fact, noisy background pixels can interfere with
mice segmentation, influencing its final result. Erosion and dilation are combined in
order to remove protruding pixels and accidental indentations, making the animal
contour smoother.

The user is also required to set a minimum and maximum size for objects to
be segmented. This function is used to prevent objects other than animals to be
tracked.

The interesting advanced function introduced by EthoVision consists in the pos-
sibility to extract important parameters relative to nose, tail and center mass. Pa-
rameters are listed below [22].

• Movement: spatial movement of nose, body center and tail. A speed threshold
is required to define what is to be considered as movement and what is not.

• Distance moved: distance traveled by nose, tail or center mass between two
different frames.

• Velocity: distance traveled by nose, tail or center mass per unit time.

• Direction: direction of movement of nose, tail or center mass between two
different frames;

• Turn angle: change in moving direction of nose, tail or center mass.

• Angular velocity: change in moving direction of nose, tail or center mass per
unit time;

• In zone: zone wherein the mouse is standing in the current frame.

• Elongation: elongation percentage of animal’s body. The function outputs the
elongation state that can be stretched, normal or contracted.

• Mobility: Percentage of change in the animal’s size between two subsequent
frames. The function outputs the mobility state that can be immobile, mobile
or strongly mobile.

8

2 – Background

All the parameters that can be extracted frame by frame are used to define ten
different behaviors such as grooming, sniffing, walking, resting, rearing. A particular
cage called "PhenoTyper" is used to define animal’s social behavior.

EthoVision XT is therefore an extremely performing system in terms of singly-
housed mice phenotyping and it reached human level performance. In opposition,
it is not able to classify mice behaviors when more than one mouse is housed in
the cage [4]. This lack doesn’t allow social behaviors identification but single be-
havioral phenotyping only. In addition, human handling is required to set up the
systems, making the algorithm highly operator-dependent. This characteristic is
not affordable when an automated tracking system is aimed, as we already said for
ANY-maze. That’s why this a high-performance tracking system is still not enough
for the automation of social behaviors analysis.

2.1.3 idTracker

idTracker is a video tracking software that keeps the correct identity of each indi-
vidual for the whole video. This new technology is very promising because it tries
to overcome the limit of tracking a single individual imposed by other systems cur-
rently available. The way idTracker works can be divided in two different steps: in a
first step, the algorithm collects a series of images for each animal when animals tra-
jectories are not crossing, and a fingerprint is extracted for each animal; in a second
step, idTracker takes the image of a single animal to be identified and extract its
fingerprint that is then automatically compared to fingerprints of all other animals
until the best matching is found and identification is done. The system requires the
user to provide three parameters: number of animals, segmentation threshold and
minimum size [16].

The way idTracker works deserves a little more attention because it represents
one of the first good results obtained in terms of multiple animals tracking and
identification. First and foremost, each frame must be segmented to separate ani-
mals from background. Then, a set of individual animal images must be collected
in order to build the set of reference images that will be used to extract a finger-
print for each animal. To accomplish this, the algorithm collects a set of images
called "fragments" belonging to single animals in frames where all individuals are
well separated and segmentation outputs as many blobs as animals. Since fragments
are generally too short to collect enough reference images because animals trajecto-
ries generally cross very often, the algorithm extracts fragments at different times,
only when all animals are separated. Then, another probability-based algorithm is
used to accurately define what are the different fragments that belong to the same
individual. In fragments where trajectories cross but the animals overlap is not ex-
cessive, erosion is executed in order to separate individuals. [17]. Once all reference
images are collected, the algorithm takes each blob of each fragment and transforms

9

2 – Background

it to obtain its intensity and contrast map. Actually, not all blobs are transformed
into their corresponding maps, but only blobs of the same individual whose postures
are different. Intensity and contrast maps represent animals’ fingerprint. Finally,
for each frame of the video, the algorithm segments every animal and transforms
the corresponding blob into its maps of intensity and contrast. Then, intensity and
contrast maps of the current animal are compared with the maps of reference ani-
mals and the best matching is found. Identity is then assigned on the base of best
matching. All steps are listed below.

1. Segmentation: sets of contiguous pixels composing the foreground are seg-
mented and background is extracted. Artifacts due to fluctuations of illumi-
nation are eliminated dividing the intensity of each pixels by the average of
intensities of all pixels for each frame. Segmentation algorithm works selecting
pixels whose normalized intensity is below or above a intensity threshold and
larger than a size threshold. Both thresholds are given by the user in a initial
step according to the kind of animal to be tracked.

2. Fragments extraction: this step finds the parts of the video wherein one
individual is moving without crossing any other one. A fragment is a set of
blobs of subsequent frames that correspond to the same individual with high
probability. The algorithm establishes that two different blobs belong to the
same fragment if they overlap with each other and do not overlap with any
other blob of the two frames. If this condition is not satisfied, another fragment
is initialized [17].

3. Transformation of images: segmented images of each fragment, suitable
for animal identification, are transformed into their intensity and contrast
maps as follow:

(a) for each image of an animal, intensities of every pair of pixels are taken
and the distance between them is calculated. The set of points in the 3D
space (im, in, d) corresponds to the color correlogram of the image.

(b) the set of points in the 3D space (im, in, d) is then transformed into a
2D space using the sum of each pair of intensity values instead of their
single ones. Each point of the 2D space is then characterized by the sum
of intensities of two points of the image and the distance between them
(im + in, d). In this way, 2D-intensity map is extracted.

(c) the same process is executed characterizing each point with the absolute
value of the difference between intensity values of every couple of points
in the image (|im − in|, d). In this way, 2D-contrast map is extracted.

These maps correspond to animal fingerprint and are invariant to translation
and rotation. This feature makes them suitable for a direct comparison with

10

2 – Background

other maps.

4. Comparison of images: image comparisons are executed by differences be-
tween maps. According to this, maps are subtracted element-by-element, and
the mean of absolute values of differences is taken. In this way, the difference
between two images consists of two different numbers:

Intensity Distance: number obtained calculating the mean difference be-
tween the intensity maps of the two images.

Contrast Distance: number obtained calculating the mean difference be-
tween the contrast maps of the two images.

The result of the comparison can be summarized by a number called Summed
Distance that is the sum of intensity and contrast distance. The smaller is the
summed distance, the higher is the similarity between the two images [17].

5. Identification: identification is a consequent step of image comparison. In
fact, intensity distance between the image figuring the animal to be identified
and all reference images is calculated. Then, the reference image showing the
lowest intensity distance is selected and the corresponding animal identity is
assigned to the investigated one. Then, the process is repeated using contrast
distance. If both the comparisons give the same result, the identity is assigned
to the corresponding animal. If the result is different, the identity is taken as
ambiguous [17].

6. Fragment identification: given the fact that single image identification can
make some mistakes due to high similarity between individuals, information
about the same individual moving without crossing any other one are collected.
In this way it is possible to avoid the errors due to maps comparisons. In fact,
if animal trajectory is not crossing with any other one, a sudden change in
individual identity can not take place. Though, if maps comparison mistakenly
assign a different identity to an individual whose trajectory doesn’t cross any
other one, the error is immediately solved by a short analysis of the whole
fragment [16].

A clear summary of single steps composing the algorithm is shown in figure 2.1
The algorithm has been tested by the developers with eight zebrafish moving within
their home aquarium. Results they obtained are surprising, since they managed
to keep animal identities even when occlusion events take place. An illustration of
different results is shown in figure 2.2.

Even though idTracker looks a great new method for multiple animal tracking,
there are some issues that make it not applicable on a large scale. In fact, although
it is a free distribution software and it can be downloaded by the official website, it

11

2 – Background

Figure 2.1: Illustration of algorithm working steps. (a) Fragments of trajectories of eight
zebrafish. Gray portion of the graphics corresponds to period where all animals are well
separated and trajectories do not cross. (b) Set of reference images collected for each
individual. (c) Illustration of one single zebrafish. (d) Image in (c) after segmentation.
Two random points on the blob and distance between them are shown. (e) Intensity map
of segmented animal showing how many points are at a given distance and have a certain
sum of intensities. (f) Contrast map of segmented animal. (g) Illustration of identification
of a single individual. Single individual map (at the bottom) is compared with all reference
maps. Numbers show the minimum intensity distance between the investigated individual
map and all intensity maps of every other individual. The minimum is taken and identity is
assigned to the investigated individual. (h) Trajectories of two zebrafish moving after two
subsequent crossing. Different colors refer to different identities. (i) Same as (h), but here
colors show identification of whole fragments of trajectories. Whole fragment identification
corrects the error introduced by map comparisons.

is not easy to run with videos different from the reference ones. In addition, it is
very slow to upload the video and to build the set of reference images used for mice
identification. In fact, transforming each reference image in its intensity map is a
high-computational operation that doesn’t allow the system to work in real time.
Moreover, information about trajectories, that are kept frame by frame in order
to correct identities mistakenly detected by maps comparison, make the algorithm
"memory based" with the consequence not to be able to recognize individuals in
real time. Nevertheless, the study proposed by Alfonso Pérez-Escudero et al. [16] is
a great achievement reached in the past years in terms of multiple animals tracking
that was very inspiring for following studies, ours included.

12

2 – Background

Figure 2.2: Illustration of application of idTracker. (a-e) Different frames of videos with
animal trajectories traced by idTracker. (f) Frame taken by a video where zebrafish move
with an object occluding part of the setup. Identities are correctly restored by idTracker.
(g) Three frames taken from a portion of video where a hand waves under the camera. A
frame with the hand waving is shown (center) and trajectories are correctly kept before
(left) and after (right) the occlusion. (h) Frames of two different videos recorded in different
days (day 1 and day 9). The same color refers to the same individual in different days.

2.1.4 RFID-based systems

Radio frequency identification (RFID) is a technology that uses electromagnetic
fields to automatically identify and track tags attached to objects [26]. In gen-
eral, an RFID-based system consists of three main components: one or more RFID
transponders, one or more RFID readers and a data-processing unit. RFID traspon-
ders (tags) can be active, passive or bactery-assisted passive:

• Active tags have on-board battery and periodically transmit ID signal to
RFID readers;

13

2 – Background

��

�����

����

��		
���
���	������

�������

����

���	��

	�
���
����������

���

Figure 2.3: RFID technology with passive tag, overview. The RFID reader is powered by
the data-processing unit and powers the passive tag sending energy through an antenna.
The coiled antenna on the tag receives the energy and powers the chip (IC). The chip
sends back radio-frequency wave through the antenna that is then read by the reader and
processed by the data-processing unit.

• Battery-assisted passive tags have a small on-board battery that is acti-
vated only when an RFID reader is in proximity. They are smaller than active
tags because of the smaller size of the battery;

• Passive tags do not contain a battery and the power is supplied by the reader.
They consist in a coiled antenna and an integrated circuit. Coupling happens
when radio waves coming from the reader are encountered by the tag. In fact,
the antenna, contained in the tag, takes the energy from the reader and send it
to the integrated circuit, powering it. The chip then generates a signal back to
the radio-frequency system. This kind of phenomenon is called backscattering
and signal that is sent back and interpreted by the reader is called backscatter.
Passive tags can be classified according to the frequency bandwidth used that
can be low, high or ultra-high.

Working principles and main blocks of a generic RFID system with passive transpon-
der can be observed in figure 2.3.

RFID technology can be found in a huge amount of application. It is generally

14

2 – Background

used to track objects and to manage inventory. RFID is the basis of a lot of tech-
nologies we use in our daily life such as contactless payment with credit cards, toll
collection, machine readable travel documents, car door lock, item level tagging in
retail stores, etc [26]. RFID is also the technology used on chip implanted in pets
for following their movements or for storing information regarding the owner, the
race, date of birth, etc. In such a huge field of application, RFID technology was
exploited also to create new tracking systems for multiple animals. One of the best
high-performance ones is described below.

Luca Catarinucci et al. developed a passive, near-field, ultra-high-frequency
RFID system for tracking the activity of laboratory animals, and they applied it to
mice [5]. The tracking system designed by Luca Catarinucci et al. consists of near-
field reader antennas working in ultra-high-frequency bandwidth, more precisely
between 860 and 960 MHz. Reader antennas are made by segmented loops and
they are placed below the experimental arena. A single reader is able to localize the
animal in a squared cell of side 12 cm. In order to reduce artifact due to far field
influence, each single antenna generates a magnetic field that is confined as much
as possible in the relative cell. Antennas are connected to the reader through a
multiplexer able to connect up to 32 channels. Though, 32 is the maximum number
of antennas that can be used. Antennas are not powered at the same time but
alternatively. The switching time between two antennas is within 200µs. In this
way, even in the worst case when all antennas are used at once, the latency between
two signal detection will be around 6.4ms, that is a period of time much shorter
than the one required by a mouse to cross a single cell. Software consists in a
data acquisition module and a web application. The former is used to acquire raw
data coming from the antenna while the latter for data processing and analysis.
Processing algorithm is not very articulated and this is a positive feature of RFID
technology. In fact, when a single antenna is reading a tag implanted in a mouse,
position is saved with no errors. The only problem occurs when more than one
antenna detects the same tag because of artifacts or because the mouse is moving
between two different cells. To correct this error, the algorithm uses RSSI (Received
Signal Strength Indicator) to detect which reader is closer to the tag. Cell that
presents a stronger signal detected by the reader is assigned as mouse’s position.
Once all data are processed by the algorithm, mouse’s path is reconstructed. The
system was tested on a arena with 12 antennas. As consequence, the whole area of
the arena was divided in 12 cells. Results are shown in figure 2.4. Web application
allows the user to find out a set of physical and statistical parameters that can be
very useful for behavior analysis: the average time spent by each mouse on each
cell, the time spent in isolation or locomotion, the time spent by different mice in
aggregation on the same cell and many others. In addition, a space-time graph that
gives information concerning single mouse movement can be calculated. In this way,
overlapping different graphs relative to different mice, it is easier to identify period

15

2 – Background

Figure 2.4: RFID system tested on arena with 12 antennas with one mouse moving. Picture
was taken from Luca Catarinucci et al. paper [5]. (a) Real mouse path across the arena.
(b) Reconstructed path based on raw data. Dark cells refer to ones rightly included in
mouse’s path. Light-shaded cells refers to ones mistakenly included in mouse’s path. (c)
Reconstructed path after data processing. Dark cells correspond to ones rightly included
in mouse path.

of times where mice were aggregating on the same cell, or many other behaviors.
A validation test was carried in order to define the time spent by a mouse explor-

ing a new object positioned inside the cage. Results were compared with the ones
given by a manual scorer. Results showed significant differences between the time
recorded by the manual scorer and the one obtained with RFID tracking system [5].
In fact, the RFID algorithm is only able to identify when the mouse is moving closely
to the object but it is not able to detect whether the mouse is actually investigating
the new object or is just moving around it. This is a skill owned by the manual
operator, instead.

Even though RFID technology looks an interesting tool that can be applied in
multiple animal tracking system, there is a series of negative characteristics that
must be considered:

• RFID passive tags must be implanted in mice. Implantation is a surgical
operation that requires a professional operator to be done. In addition, the
period of time where each mouse is isolated because of the recovery after the
operation could negatively affect mouse behavior. Even the implanted tag
itself could be responsible of a changing in mouse behavior. Since tags must
be implanted in every mouse, this kind of tracking system requires human
handling, time, and costs due to surgical operations.

• Tracking systems that exploit RFID technology can not be very accurate in
terms of object position detected. In fact, RFID tags are generally employed
in application where high precision is not required. In a 71x44x33 cm cage, as
the one we used at Johns Hopkins University School of Medicine, even a single
centimeter can be important to analyze social behaviors (an evidence of this
problem can be found in the significant error between RFID system and the
manual scorer encountered in the previous experiment [5]). This issue finds

16

2 – Background

its roots in the nature of RFID. In fact, radio frequency tags give information
about their position only in presence of the RFID reader. That’s why a pixel-
resolution tracking system (as the one obtain with computer vision techniques)
could be developed only if we could reduce dimensions of receiver antennas to
the dimension of a single pixel, that is clearly unfeasible. RFID technology is
then very useful to track animals in application in which knowing the exact
position of individuals is not relevant and a big uncertainty can be accepted.
This is not the case of animals tracking for behavioral phenotyping.

• RFID hardware requires antennas and RFID readers, components that can
be very bulky in terms of space. In fact, the available space for setting the
hardware is very tiny in biological laboratories, as introduced in chapter 1.
This limitation generally can not be satisfied by a RFID technology that is
generally pretty hulking.

• The use of radio frequencies could influence mice behavior and distress animals,
even though there is no evidence of this statement. Several studies are still on
going to scientifically demonstrate that radio frequency waves do not disturb
animals and do not have any influence in their behaviors.

In the light of experimental results, RFID techniques are very useful in applica-
tion where high precision is not required, but present a series of not trivial issues
that make these systems not very suitable for animal behavioral phenotyping. Nev-
ertheless, RFID tracking system studies are still on going. In fact, the development
of that kind of technology would be very promising in terms of ease of software
employed for tracking and in terms of costs. In fact, systems like these do not use
any kind of acquisition device such as camera, whose data require strong algorithms
to be processed.

2.1.5 Shape-matching-based systems

The kind of environment in which a tracking system is supposed to work in biological
laboratories suggests the use of vision-based algorithms. In fact, the placement of
a camera on the lid of animals cages represents not a big issue, and videos can
be easily recorded. In the last decades, new shape-matching-based methods were
born to identify specific kind of shapes among many others. It is not a surprise
that these kind of methods were developed only so recently; in fact, the last decade
outcomes were impressive in terms of new computer vision techniques development
and throughput. These improvements made the implementation of such kind of
methods feasible.

The idea which these systems are based on is that a lot of information allowing
humans to recognize animals and their parts are encoded in their shape and its com-
ponents (contour, area, etc.). Remco Veltkamp and Michiel Hagedoorn says that

17

2 – Background

"matching deals with transforming a pattern, and measuring the resemblance with
another pattern using some dissimilarity measure" [24]. According to this, a general
shape matching algorithm must be composed at least of a geometrical transforma-
tion that turns a pattern into something more countable and standardized, and a
dissimilarity measure that makes the output of the transformation comparable by
simple arithmetic differences. In this way, a hard problem as comparing two different
shapes to make association and find out which shape is more similar to the investi-
gated one would be turned into an easy difference between numbers. According to
this idea, new methods have been developed. Among these, shape context descrip-
tor is one of the most relevant in terms of performance. It was introduced for the
first time by Belongie, and it was extended by Jacob with the inner-distance shape
context [2] [11]. These shape descriptors have been employed in several applications
such as letters recognition, human silhouette tracing, inner structure of leaves iden-
tification and many others. Among all these, the most interesting one, according to
the aim of our study, was developed by Stav Braun for tracking multiple mice [4].

In few words, shape context is a shape descriptor developed to measuring simi-
larity between shapes for object recognition. Shape context gives description of the
environment around each point belonging to a shape contour. The shape context
at a reference point on a shape contour captures the distribution of the remaining
points on the contour relative to it by measuring the euclidean distance between
a single point and the remaining ones. In this way, each point is described by its
surrounding environment [2]. This is based on the hypothesis that a shape sub-
jected to movement can turn or translate moving its contours but the environment
around each point will remain pretty much the same. Once each point is described
by the shape descriptor, a point-to-point matching between two different shapes can
be executed, and a measure of similarity can be extracted. Jacob extended this
idea introducing inner distance and using it instead of euclidean one. This improve-
ment was fundamental to make the descriptor sensitive to complex and articulated
shapes [11]. These methods will be accurately described in next chapters, since
they represent the core of our study. Braun exploited these descriptors to create a
point-to-point matching of mice shapes for their tracking, managing to follow head
and tail position frame by frame. In addition, he proposed a solution for solving
the problem of occlusion, the artifact that occurs when mice are so close to be seg-
mented under one unique blob. Results obtained were very interesting and laid the
groundwork for our study. The reason why Braun’s work can not be employed in
multiple mice tracking is basically due to the huge computational demand required
by shape matching algorithms applied frame by frame. In fact Braun detects head
and tail position in each frame using every time inner distance shape context. The
result is excellent in terms of accuracy but weak in terms of temporal resolution.
Our aim is building a system that can be used in real-time application, as introduced
in chapter 1, and this kind of algorithm can not satisfy our need.

18

2 – Background

In addition, only two mice were taken in account in Braun’s study . With two
mice, solving the problem of identity preservation is not a big issue because the
algorithm could be implemented to be able to realize when identities are swapped.
In this case, if the algorithm launches an error, identities are swapped again and
are in this way re-established. In addition, a post processing algorithm can be used
to correct frames where identification was wrong. With three mice things get way
more complicated, and Braun’s algorithm must be revisited [4].

Problems relative to Braun’s study in tracking multiple mice are resumed below.

• Shape descriptors are applied frame by frame for head and tail tracking. This
makes the algorithm extremely slow and exclude any kind of possible real-time
application.

• Tracking is tested only on two mice moving within their home cage. Identity
preservation and consequent behavioral phenotyping become more difficult in
case of tracking more than two mice. According to this, new methods must
be developed to keep mice identity over time.

• Identity preservation during occlusions works on mice moving between two
consequent frames. Mice at current frame are labeled as m1 and m2 while
mice at previous frame as p1 and p2. Then, the algorithm works as follow: if

area(m1 ∩ p1) + area(m2 ∩ p2) > area(m2 ∩ p1) + area(m1 ∩ p2) (2.1)

then mouse m1 corresponds to mouse p1 at the previous frame and mouse m2

corresponds to p2 and vice versa if the result of the inequality is the opposite.

This method works well only if points belonging to each mouse are known a
priori. Braun’s study uses shape context descriptor to find out which points
belong to each mouse contour as described in section 3.6.3 and 3.6.4 of his the-
sis [4]. To do that, a set of reference shapes is required to start the matching.
Working principle is shown in figure 2.5. Even though the algorithm seems to
work very well in contours separation, the extension to multiple mice can not
be easily implemented. In fact, with more than two mice, the set of reference
shapes would be drastically enlarged (because there are more possible configu-
rations of interactions) with the consequent increase in terms of computational
time, a limitation that real-time systems can not afford.

• Occlusion events are treated creating a database of all possible shapes that
two mice can assume interacting. Then, when occlusion occurs, point-to-point
shape matching is run between the big segmented blob containing the two
investigated mice and the reference shapes representing two mice interacting
in all possible configurations. The best matching is taken and behavior is
assigned according to the database. This method has many limitations such

19

2 – Background

Figure 2.5: Algorithm working principle during occlusion. Left, mice at current frame are
represented. Center, mice at previous frame are represented. Right, area overlap is shown.
It is clear that mouse m1 corresponds to mouse p2 and m2 to p1.

as an extreme standardization of mice behaviors and a difficult extension to
multiple mice tracking.

Even though Braun’s algorithm presents some limits in terms of multiple mice
tracking (with more than two mice) and consequent expansion to behavioral pheno-
typing, we considered his system an innovative technique that can be improved to
accomplish our needs. For this reason, roots of our studies reside in her work.

2.2 Social Behaviors and their Classification
Social behaviors have been matter of study since the first experiments on animals
were carried out. Despite already underlined in the introduction of this chapter, I
think that it is important to keep in mind that social behaviors represent the concrete
expression of brain functioning. That is why I believe significant to highlight again
a quote by Schaefer and Claridge-Chang which enhances the importance of social
behaviors as matter of study [18]:

The meaning of a brain is the behavior that it produces.

According to this thought, our study was entirely directed to social behaviors clas-
sification with a focus on one of the first problematics encountered: mice tracking.

Many studies have been done to find out what are the influences of diseases on
animal social behaviors, and results collected during the years are extremely signif-
icant. Just to cite some of the recent studies, a strong correlation has been found
between autism and changes in mice behavior. In fact, individuals subjected to
autism disorder showed a significant increase in self-grooming behavior [14]. An-
other big achievement was given by the analysis of grooming behavior and its utility
in studying animals stress, anxiety and depression. In fact, it was discovered that

20

2 – Background

behavioral analysis of mouse self- and hetero-grooming is a rich source of information
for classifying many important mental disorders. In addition, it was demonstrated
that mice affected by anxiety and depression show a relevant increase in some spe-
cific behaviors such as hypo-activity, aggression and self-aggression [19]. Another
important goal was achieved by the department of neuropathology at Johns Hopkins
University School of Medicine in studying the influence of environmental enrichment
on cognitive deficits in a mouse model of Alzheimer’s disease. In their work they
found a strong correlation between environmental enrichment and significant im-
provements of cognitive performance in mice affected by Alzheiemer’s disease. In
particular, they found out that mice who experienced an environment provided with
nesting material, novel objects, exercise wheels and hiding tubes, showed a signifi-
cant increase in social interactions with a improvement in terms of ability to learn
and memorize. In addition, male mice enhanced their aggressive behaviors with
others, increasing fights and clashes [10].

All these are good examples that underline again the importance of social be-
haviors classification. According to the Department of Neuropathology at Johns
Hopkins University School of Medicine and to recent studies, there are six main
social interactions and three individual behaviors that must be classified [8]. Social
interactions are:

1. Nose-to-body (body sniffing): the nose of the investigated mouse touches
the body of the other or points towards it at a distance that must be less than
0.5cm.

2. Nose-to-nose (head sniffing): the nose of the investigated mouse points
the nose of the other at a distance that must be less than 0.5cm.

3. Nose-to-genitals (anogenital sniffing): the nose of the investigated mouse
points the genitals of the other at a distance that must be less than 0.5cm.

4. Crawling: the investigated mouse crawls over or under the other one.

5. Following: the investigated mouse walks on the same direction of the other
one at a distance that must be less than 10cm.

6. Stand together: the investigated mouse is not moving and it is standing in
close contact or at a distance of less than 3cm from the other mouse. Heads
of mice are pointing in different directions.

Individual behaviors are:

1. Walk alone: the investigated mouse moves within his home cage without
interacting in any way with the other mouse.

21

2 – Background

2. Stand alone: the investigated mouse doesn’t move and stands at a minimum
distance of 10cm from the other ones.

3. Self-grooming: the investigated mouse licks its paws and moves his body
very fast. From a top view, the body looks shorter and assumes a kind of
circular shape. In addition, his centroid oscillates very fast around the same
point with very short fluctuations.

An illustration of all social and non-social behaviors is showed in figure 2.6.

Figure 2.6: Illustration of principal social and non-social behaviors. The first two columns
refer to social behaviors, the last column refers to individual behaviors. Red mouse is the
investigated one. Arrows indicates direction of movement. Black full circles indicate ab-
sence of movement. Self-grooming behavior is identified by a black circle in correspondence
of center mass with several tips indicating undefined directions of fast movements.

All these assumptions were found in literature and were enriched by the col-
laboration between the Electrical and Computer Engineering Department and the
Neuropathology Department of Johns Hopkins University [23] [8].

22

2 – Background

2.3 Landmark Points

According to the department of Neuropathology at Johns Hopkins University School
of Medicine, behaviors showed in figure 2.6 are fundamental for social interaction
analysis. As a matter of fact, those behaviors are the same that are considered in
nowadays laboratories during manual analysis.

Given the fact that a tracking algorithm must be initialized to track specific
points, these lasts definition was matter of discussion in the first steps of our study.
It was finally decided that head and tail represent the most relevant and useful
points to identify social behaviors. We refer to head and tail as landmark points,
and they are defined as follows:

head: the point positioned on the portion of mouse contour inherent to its head, in
the center of the curve that links the ears and traces head edge.

tail: the point positioned on the portion of mouse contour inherent to its back, in
correspondence of the point where tail begins.

A stylized illustration of head and tail as landmark points is shown in figure 2.7.
Since the algorithm used to find out the exact position of head and tail is pretty
heavy (see chapter 4), it is possible to approximate landmark point locations with
the endpoints of the major axis of the ellipse that best fits pixels belonging to the
mouse. In fact, head and tail are, for the most of the time, very close to major axis
endpoints, as visible in figure 2.7. This part will be comprehensively explained in
chapter 4.

Actually, our tracker was not implemented only to track head and tail positions,
but also left and right ear. Even though the identification algorithm will be compre-
hensively described in following chapters, it is here introduced to understand why
left and right ears are important points for our system. In fact, to solve the problem
of mice identification, we decided to bind spherical metal tags to mice ears. In this
way, we were able to identify up to four mice at the same time: left ear tag, right
ear tag, both ears tags, no tags. The identification algorithm exploits advanced
computer vision techniques to segment tags and to find their positions. Once tag
locations are found, mice are identified as consequence. Therefore, in the identifica-
tion algorithm, when we talk about landmark points we refer to four points: head,
tail, left and right ear. We define:

left ear : the point positioned on the portion of mouse contour inherent to its left
ear, in the center of the curve that traces ear edge.

right ear : the point positioned on the portion of mouse contour inherent to its
right ear, in the center of the curve that traces ear edge.

23

2 – Background

Ears are generally brighter than the rest of the body, therefore, intensity of pixels
relative to ears will be higher than surrounding pixels and they won’t be segmented
with the body. This is traduced with a curve indentation of mouse contour in
proximity of the ears. This phenomenon is showed in figure 2.7.

(a) Head (red) and tail (green) (b) Left ear (cyan) and right ear (yellow)

Figure 2.7: Illustration of landmark points on stylized segmented mouse shape. Ellipse
that best fits pixels inherent to mouse is shown in (a). Indentation phenomenon due to
the different intensity of pixels relative to ears is shown in (b)

2.4 Main Issues Facing Multiple Mice Tracking
The first obstacle encountered in the implementation of a multiple mice tracker is
occlusion, as already introduced in chapter 1. In fact, when mice move within their
home cage, they can interact, crawl on each other, touch each other’s body, etc.
These interaction are not significant apparently, but they become a big problem
in phase of segmentation. In fact, a digital algorithm doesn’t make any difference
between pixels belonging to different mice, and it segments them all together. The
result is a segmentation in which a big unique blob appears as segmented object.
That blob contains pixels relative to more than one mouse, and separating pixels
belonging to different mice, to get as many blobs as the number of mice interacting, is
not trivial. Since merging will be a recursive topic of this dissertation, it is important
to give a definition of it. We define "merging" the phenomenon that takes place
when two (or more) mice are so close between each other to be indistinguishable by
common algorithms that segment them as they were a single object. Merging can
be of two main different kinds:

• Partial when distinguishing an approximate shape of interacting mice is still
possible. In this case, a human could still be able to point head and tail
locations;

• Complex when segmented blob is so undefined and shapeless that distin-
guishing different mice interacting is not possible.

24

2 – Background

Partial and complex merging are well illustrated in figure 2.8. The consequences
of this recurrent phenomenon affect the performance of tracking. A trained eye
would still be able to assign mice identities even in case of merging. The same
can not be said for a digital algorithm. In fact, when merging happens, landmark
points are completely lost and identities are not available anymore. These issues
drastically compromise the correct functioning of the tracker. In addition, since
merging happens very often in a small environment such as the home cage, an
algorithm that is not able to face the consequences of this phenomenon would never
find a real application in biological laboratories. That is the main reason why all
state-of-the-art algorithms have never been employed for multiple mice tracking, and
that is also the reason why our work was entirely focused in facing this problem.
According to this, we propose an algorithm that is able to identify landmark points
frame by frame, when merging does not occur, and to restore mice identities in case
merging takes place.

2.5 Aim of the Study
Our study aims to implement a tracking system for multiple mice using modern
computer vision techniques to process videos recorded by a camera placed on the
lid of the cage wherein mice move. Such kind of system would lay the groundwork
for automatic social behavior classification, since the main problem affecting the
latter is multiple mice tracking, with consequent mice identity preservation. Pre-
vious paragraphs showed the most common state-of-the-art systems employed in
nowadays biological laboratories and highlighted merits and defects of each one of
them. It was then remarked the importance of the automation of social behaviors
classification, since it is a time- and money-consuming activity that is affected by
lack of reproducibility and standardization. Our system was implemented to face
the following conditions:

1. Video recorded by a camera set on the lid of the cage:
cages are small and recording a video that covers all their area (walls included)
is not trivial. A camera with a wide field of view is required.

2. Poor lighting conditions:
biological laboratories are generally very dark, night and day. Mice are noctur-
nal animals and bright environments drastically affect their social behaviors.
We propose a solution with NIR LEDs placed close to the cage.

3. Tiny space for hardware placement:
in standard biological laboratories, cages are positioned vertically one on the
other, leaving a very tiny space for the data-processing unit. Hardware must
be small, with all the limitations concerning it.

25

2 – Background

4. Precise landmark points tracking:

head and tail must be tracked frame by frame for the whole duration of the
video, for a future behavior classification. Left and right ears must be tracked
only when required for metal tags identification, or rather, when merging oc-
curs and identities must be restored.

5. Identity detection and preservation:

mice identity must be preserved frame by frame for the whole duration of
the video. Identity is lost during merging events, and it is then restored, by
tags identification, when mice separate. This means that metal tags must be
surgically bound to mice ears before tracking.

6. Real-time application:

the algorithm must work in real time. Laboratories host thousands of cages
and storing data for all of them is not affordable. Videos must be processed in
real time. In this way, no data will be stored and results will be immediately
available.

7. No human intervention:

the system must be completely automatic. Human intervention is only re-
quested for binding metal tags to mice ears. But this is beyond the algorithm.

All the listed issues affecting multiple mice tracking were taken in consideration in
the implementation of our algorithm. A detailed solution proposal will be described
in the following chapters of this dissertation.

So, to sum up, we propose an automated tracking system for identification of
tagged mice for a future automatic social behavior analysis. In particular, the system
proposed attempts to track head and tail positions frame by frame, when merging
does not occur, and left and right ear in case merging occurred, with consequent
need for identities to be restored. In this last case, identities are detected through
metal tag segmentation and recognition. In frames where merging occurs, the al-
gorithm attempts to follow mice centroid position and separate points belonging to
different mice interacting, and this is all it does. As a matter of fact, according to
the Neuropathology Department of Johns Hopkins University School of Medicine,
behavioral phenotyping during merging is not important, or rather, it does not rep-
resent the main feature. In fact, hypothesizing that merging phenomena happen
quickly, social interactions can still be classified by the relative position of landmark
points immediately before and after occlusion.

26

2 – Background

(a) Frame: before merging (b) Mask: before merging

(c) Frame: during merging (d) Mask: during merging

(e) Frame: after merging (f) Mask: after merging

(g) Frame: complex merging (h) Mask: complex merging

Figure 2.8: Illustration of partial and complex merging on frames taken from a video. (a)
and (b) show the instant immediately before merging occurs on the averaged frame and
its mask. (c) and (d) show the instant while merging occurs. In particular, (d) shows the
partial merging of the two blobs belonging to different mice. (e) and (f) show the instant
immediately after merging occurred on the averaged frame and its mask. (g) and (h) show
a case of complex merging: in this case, segmented blob is completely shapeless and mice
borders are not even perceivable.

27

Chapter 3

Experimental Setup

Before dealing with the development of the algorithm, it is necessary to analyze
the experimental setup by treating its individual parts. In fact, many limits listed
in the previous chapter concern not only problems related to software, but also
to hardware. The tiny space available for placing the data-processing unit, the
short distance between moving mice and the camera, the poor lighting conditions
of biological laboratories and mice sensitivity to visible spectrum are all important
factors that must be considered in hardware design. All the choices made in terms of
hardware are described and motivated in this chapter, and a brief description of every
component of the system is provided. Experimental setup with all its individual
parts is illustrated in a stylized form in figure 3.1 and in the real application in
figure 3.4.

3.1 Camera

The first problem we came across in the realization of our system was the choice of
the camera. At the beginning, we tried to figure out which was the best technology
to use between thermal and NIR cameras. In fact, mice are living creatures and, as
all of them, they show a higher temperature in comparison with the surroundings.
Thermal videos allowed us to get excellent results in terms of segmentation but
videos were recorded with the open cage, without the lid. In fact, the plastic of the
cage constituted an obstacle for thermal radiation because it was not transparent to
it. Finding a material transparent to thermal radiation that could be employed in
all cages was not an easy deal. In addition, thermal cameras are very expensive and
finding good tags for mice identification was not easy. That’s why our attention was
focused on NIR cameras. These lasts are less expensive, do not present any problem
of obstruction due to the lid of the cage, allow a good segmentation and make simple
metal tags visible. The only difficulty is finding a camera with a wide near-infrared
sensitivity spectrum. Merits and defects of both technologies are listed below.

29

3 – Experimental Setup

Figure 3.1: Stylized illustration of the experimental setup. (a) is the base of the cage of
size 28x17.5x13cm. (b) represents the support under which the camera is placed and on
which the Raspberry Pi is positioned. (c) shows the camera module of size 24x24x9mm;
power cables of the camera are omitted. (d) is the Raspberry Pi usb power cable. (e) is
a illustration of the Raspberry Pi, where pins relative to the camera module are indicated
by (f). (g) is one of the four LEDs positioned on the lid of the cage. LED’s wavelength is
850nm. (g) is the metal tag. For the experiments, right tag, left tag and no tag to identify
three different mice were used.

• Thermal: excellent segmentation, expensive cameras, occlusion due to the
lid of the cage, complicated research of good thermal tags;

• NIR: good segmentation, cheap cameras, no occlusion due to the lid of the
cage, easy metal tags are visible, difficulty in finding a camera with a wide
near-infrared sensitivity spectrum.

In addition, as anticipated in the introduction of this chapter, the short distance
between the moving mice and the camera module (as visible in figure 3.2) represents
a strong constraint in the choice of this last. In fact, standard cage dimensions are
generally 28.5x17.5x13cm and the camera must cover the whole area, walls included
(because we want to track mice which try to climb walls). Since the camera is placed
on the lid of the cage, in a centered position that is about 3cm above the top of the

30

3 – Experimental Setup

walls, the field of view of the camera must be necessarily above 156◦. In particular:
if b = 3cm and c = 28.5/2 = 14.25cm, then

α = arctan
c

b
' 1.36rad = 78◦.

Since we are interested in 2α,

2α = 156◦ −→ FOV = 2α ≥ 156◦.

Since there is no camera with FOV = 156◦ in the market, we employed a camera
with FOV = 160◦. In particular we chose the SainSmart NO IR wide angle camera
module compatible with raspberry Pi model A and model B. The absence of IR
filter is important because the camera must be sensitive to NIR waves. The short
mathematical demonstration of the minimum field of view required for the camera
is clearer observing figure 3.2, while figure 3.3 proves that a field of view of 160◦

is enough to cover the whole area of the cage. The camera features with OV5647
sensor that has a native resolution of 5MP for still images and supports 1080p at
30fps, 720p at 60fps and 640x480p at 60/90fps video recording. In addition, the
important feature of this camera is its sensitivity spectrum. In fact, it shows a high
sensitivity for long wavelength such as the ones belonging to near-infrared range.
This feature is extremely relevant for mice tracking during nocturnal hours. The
video acquired by the camera is transmitted frame by frame to the raspberry Pi
that elaborates it.

Figure 3.2: Support image to viewing angle problem. The black module indicates the
camera. Since b = 3cm (the additional length due to the lid set on the walls of the cage)
and c = 14.25cm, the minimum viewing angle 2α that allows to cover the whole area is
156◦. According to this, a camera with FOV = 160◦ was employed.

31

3 – Experimental Setup

Figure 3.3: Picture of the cage showing the problem relative to the field of view of the
camera. The white paper shows that a FOV of 160° is required to cover the whole area of the
cage, walls included. The black marker line shows the hidden area in case of employment
of a traditional camera.

3.2 Home Cage Setup

All biological laboratories host a big number of cages wherein animals move. There
are generally some standards that must be followed. The size of the cage we used
for our experiments is 28.5x17.5x13cm and the lid adds about 3cm of height. The
camera is placed in the center of the lid under a plastic rectangular support. The
camera is so positioned 16cm from the floor of the cage and 3cm from the top of
the walls. Over the support that holds the camera, the raspberry Pi, our data-
processing unit, is placed. On the lid of the cage, beside the rectangular support,
four 850nm LEDs are placed, two for each side of the support. The whole cage, with
its individual parts, was put inside a paper box in order to simulate the darkness of
biological laboratories. A good stylization of the home cage setup can be observed
in figure 3.1 while the real cage, with all the individual parts properly positioned, is
shown in figure 3.4.

32

3 – Experimental Setup

Figure 3.4: Illustration of home cage setup. The picture was taken during an experiment
carried out at Johns Hopkins University School of Medicine. On the lid of the cage it is
possible to notice the support with the camera module and the raspberry Pi. The whole
cage is placed inside a paper box to reproduce the darkness of biological laboratories.

3.3 Lighting Conditions

Lighting condition is an extremely important factor that must be taken in consid-
eration in the realization of a tracker for multiple mice aimed to behavioral pheno-
typing. In fact, light has a big influence in mice behaviors and does not represent
a negligible aspect of the experimental setup. Mice are nocturnal animals and this
natural feature must be respected in a biological laboratory. In nocturnal hours,
tracking becomes very difficult without proper lighting conditions. To solve this
issue, near-infrared LEDs are employed. It was comprehensively demonstrated in
the past that mice are not sensitive to infrared-radiation, but they can be partially
to the near-infrared. 850nm wavelength was chosen as a good compromise. In fact,
this wavelength is far enough from the visible spectrum, in order not to influence
mice behaviors, but it is not too long to be out-of-range for the camera spectrum
sensitivity. In addition, 850nm wavelength illumination shows a good reflection on
metal tags bound to mice ears. Four LEDs working at this wavelength were em-
ployed and placed on the lid, as showed in figure 3.1. This placement allows the light
to be spread homogeneously all over the surface of the cage, minimizing unwanted
reflection and dark areas.

33

3 – Experimental Setup

3.4 Metal Tags
In nowadays biological laboratories, mice have always been tagged with labels or
metal tags attached or bound to their ears, in order to recognize them. Though,
surgical operations for binding tags to mice ears are executed on a daily basis.
According to the Department of Neuropathology at Johns Hopkins University School
of Medicine, where these are routine operations, light metal tags bound to ears do
not have any influence on mice behaviors. This factor is extremely relevant for our
study, and according to that, we decided to employ metal tags to be recognized
by our computer-vision algorithm. Tags must be visible under NIR radiation to be
recognizable, and must be high-reflective to show a significant difference in terms
of pixel intensity in comparison with surrounding pixels. We carried out many
experiments in order to figure out what were the tags that showed the best reflection
of NIR radiation sent by the LEDs. We tried many different shapes and size, and the
biggest reflection was reached by spherical metal tags of 6mm diameter. Despite
the good results collected with these tags, their dimensions were too big for this
application. In fact, mice are very small animals and the ear surface is very limited,
making the ear not able to bear big weights. With 6mm-diameter metal tags, the
ear was dilated and showed a clear declivity at the bottom. Such big tags could
influence mouse behavior and do not fit our needs. According to that, we had to
choose a compromise between high visibility and low weight. The best result was
obtained by employing spherical metal tags of 4mm diameter. With this tag, the
ear looked in a good shape, not deformed, with no influence on mouse behavior.
In addition, mice did not look to be annoyed by the presence of the tag, because
they did not attempt to scratch it or to take it away. According to these results,
4mm-spherical-metal tags were employed.

Mouse Kind of Tag Tag Position

1 Spherical-aluminum tag (4mm diameter) Left Ear
2 Spherical-aluminum tag (4mm diameter) Right Ear
3 No Tag No Tag
4 Spherical-aluminum tag (4mm diameter) Both Ears

Table 3.1: Metal tags configuration on different mice.

34

Chapter 4

Methods

The previous chapters were extremely important to contextualize what is the core
of our study. First, an introduction to the state of the art and to social behavior
classification was fundamental to understand and to get oriented in such a wide field
as behavioral phenotyping. Then, main problems and difficulties affecting multiple
mice tracking have been comprehensively discussed in order to make clear the reason
behind all the choices made in terms of hardware and software. Concerning the
hardware, a detailed description of the whole system and of its individual parts was
carried out, and a motivation was given for each one of the decisions taken, driven by
the necessity to face specific problematics introduced by the working environment.
All we dealt with until now lays the groundwork for software description, matter of
this chapter.

Software description can result a bit confusing, since several are the parts it
is composed in, and each one of these parts requires some guidelines to be well
understood. This is the reason why this chapter is divided in different sections, and
each of one of these sections will deal a specific algorithm. A short preview will
introduce all the sections, and a brief description will be made in order to always
keep the reader focus on the current line. Since the algorithm was implemented for
video processing, it is described applied on a single frame but it is obvious that it is
repeated cyclically until the end of the video.

First and foremost, frame acquisition by the camera and an initial processing are
described. Then, an estimation of the background and its utility is presented, and
an algorithm implemented to remove static objects in the background is explained.
The following step, moving objects segmentation (i.e. mice), is accurately described
as it represents the fundamental step for tracking. In fact, the better segmentation
result is, the higher is the performance of the final algorithm. Then, the merging
detector is presented and the core of the algorithm, the tracker, is comprehensively
described in all its parts. In conclusion, tags identification methods are accurately
discussed and identity detection is illustrated. All the sections of this chapter are
listed below:

35

4 – Methods

1. Frame Acquisition: frame is acquired by the camera and a short pre-
processing is run to prepare it for the following steps.

2. Background Estimation and Subtraction: background (i.e. cage) is es-
timated by an average of multiple frames and it is subtracted to the current
frame in order to extract the foreground.

3. Static Objects Removal: static objects, such as feeders, are automatically
identified and removed in order not to interfere with segmentation and to
compromise the performance of the system.

4. Merging Detector: the main issue facing multiple mice tracing, merging,
must be detected in order to address the algorithm to the proper following
processing steps. In fact, from here on out, the algorithm follows two different
branches according to the positive or negative feedback given by the merging
detector.

5. Segmentation: mice (moving objects) are segmented using a threshold fil-
tering approach. The result of this step strictly influences the performance of
the algorithm.

6. Geometric Information Extraction: geometric information, such as pa-
rameters of ellipses drawn around mice, is extracted. A clustering method will
be used in case of merging, while a blob analyzer will be employed in case of
no merging.

7. Tracking Algorithm: the core of the algorithm is described. Tracking is
executed in two different ways according to the feedback of merging detector.
In case merging does not occur, NM Tracker is employed, while a more complex
algorithm, IDSC Tracker, is adopted in case of merging, as introduced in
chapter 1. Then, ears position detection will be introduced.

8. Identity Detection and Preservation: once tracking is executed, identity
is detected or kept depending on the feedback of merging detector. In case of
merging, tags (so identities) are detected, while they are preserved in case of
no merging. Identity preservation is based on centroid distances.

All the different parts are logically illustrated in the flowchart in figure 4.1.

36

4 – Methods

START

Frame Acquisitin

Backgriund
Subtractin

Statc Objects
Remival

Merging
Detectir

Geimetric
Infirmatin
Extractin

NM-Tracker

Fb = 1?

Fb = 1

Geimetric
Infirmatin
Extractin

IDSC-Tracker

Identtty Preservatin:
Centroid Analysis

Identtty Detectin:
Metal Tags

Fb = 0 Fb = 0

Last
Frame?

END

YN

YN

Y N

Segmentatin

Geimetric
Infirmatin

Extractin: clustering

Figure 4.1: Overview of the algorithm: from the original frame to tags identification.

37

4 – Methods

4.1 Frame Acquisition

Frame acquisition represents the first step of the algorithm. Even though the envi-
ronment can be considered a static object in our study, it shows some fluctuations
that are not visible by the human but influence the process of image capture. The
result is a difference in terms of pixel intensity that is noticed between different
frames. To solve this issue, the image is normalized in the following way. As already
said in the introduction of this chapter, it is important to always keep in mind that
the algorithm is explained applied to one frame only but it must be thought as
applied to the whole video with a cycle ending with the end of the video. First, the
frame is captured in RGB color model and must be converted into grayscale model
before image processing. Then, the normalization is made dividing every pixel of
the image by the mean of the intensities of all pixels of the image as follows:

if I is the frame of dimensions mxn, given I(x, y) a generic pixel of image I
positioned in (x, y) and Ī the mean of the intensities of all pixels of image I obtained
as

Ī =

∑m
x=1

∑n
y=1 I(x, y)

m · n
then, every pixel of the image is divided as follows,

Iav(x, y) =
I(x, y)

Ī
. (4.1)

The process of normalization is also called histogram stretching because it tries
to stretch the distribution of pixel intensities to the normal distribution. In this
way, fluctuations are weakened and different frames can be compared more con-
sistently. These operations belong to the part of image processing methods called
image enhancement. Results of image normalization can be observed in figure 4.2

(a) Original grayscale frame (b) Normalized frame

Figure 4.2: Illustration of the result of normalization. The original frame is normalized by
the average of the intensity of all pixels.

38

4 – Methods

Before continuing with the real processing algorithm, it is important to carry out
some other operations of image enhancement. The most important one to improve
the result of segmentation is contrast adjustment. To perform this operation, an
important value called luminance must be extracted. Luminance is a photometric
measure of the luminous intensity per unit area of light traveling in a specific direc-
tion [25]. In digital image processing, luminance is just the average of the intensities
of all pixels (Ī) that we have already calculated. In contrast adjustment, luminance
represents an important parameter. In fact, intensity of pixels with intensity value
above the luminance is increased of a given percentage of the intensity distance from
the pixel intensity and the luminance, while intensity of pixels under the luminance
is decreased of the same percentage. In this way, pixels with intensity value similar
to the luminance are not modified, while brighter and darker pixels are modified
in a measure that depends on their intensity distance from the luminance. In our
study, the contrast of each frame is improved of the 70%. All the operations of
image enhancement carried out before the real processing were extremely important
to make the frame ready to be correctly analyzed.

4.2 Background Estimation and Subtraction

Another necessary step that must be done before proceeding with the tracking is the
subtraction of the static environment from the current frame. In fact, background
subtraction would allow to ignore in the processing all the objects belonging to the
cage that are useless for tracking (e.g. feeders, sawdust, etc). In addition, even
though background can be considered as static in our study, it may undergo a series
of modifications due to changes in lighting or to the addition of new static objects to
the cage. These modifications can affect segmentation, one of the most important
step of the algorithm.

The first thing that comes to the mind when we deal with background subtraction
is obviously the trivial solution. In fact, a simple picture of the cage without the
mice can be taken and the picture could be subtracted frame by frame with no
other calculations. This represents with no doubts the best solution in terms of
computational time, but it may be affected by semi-dynamic modifications that
can influence the background. In fact, this method would require to change the
background picture every time that a small modification is applied to the cage. For
example, if a feeder is added to the cage and background picture is not changed,
the subtraction would output a result not suitable for segmentation. In fact, no
subtraction would be executed on the new feeder since it doesn’t exist in the picture
representing the background.

According to this, we implemented an algorithm that automatically identify the
background, subtracting it frame by frame for foreground extraction. The first
seconds of the video are used to achieve the complete background estimation. This

39

4 – Methods

feature doesn’t compromise a possible real-time application of the algorithm because
after the few seconds required for a correct performance, the algorithm turns into
a simple digital subtraction executed frame by frame. It is only important to allow
a few seconds at the beginning of the video to let it run. In our study, we utilized
always the same cages in the same configurations and we didn’t need to repeat the
background extraction because we worked under the hypothesis that background
can be considered static. The extension to a semi-dynamic background can be
easily achieved by running the same algorithm each time that a change is made to
the cage. Obviously, for each time the algorithm is called, a few seconds must be
allowed to make the algorithm perform well.

Background estimation is carried out under the hypothesis that mice represent
moving objects and the cage a static background. According to this, an averaging of
a series of frame is performed in order to filter all the moving objects (i.e. mice). It is
clear that the more is the number of averaged frames, the better is the performance
of the algorithm, but the longer is the time required for it. A good compromise
has been found using few hundreds of frames. In this way we managed to obtain
a good estimation of the background that is showed in figure 4.3. The algorithm
performs the average summing all frames pixel-by-pixel and dividing them by the
total number of frames used for it. If Ii(x, y) is a generic frame and n is the total
number of frames that take part to the averaging, then

background =

∑n
i=1 Ii(x, y)

n
. (4.2)

The result of the averaging is shown in figure 4.3 and it is compared with a real
picture of the cage taken in the laboratory of Neuropathology Department at Johns
Hopkins University School of Medicine.

4.3 Static Objects Removal

Once background has been estimated and removed from the current frame, fore-
ground is extracted. Since mice are moving, they can interact with static objects
that are part of the background. For instance, the most problematic action that
mice do is climbing the feeder and standing there for many seconds, trying to climb
the wall of the cage. Mice are represented by black pixels, the same as feeders. The
difference is that the former belong to the foreground (moving objects), the latter
are part of the background (static objects). Therefore, when a mouse is standing
on a feeder, background subtraction algorithm doesn’t see the mouse, subtracting it
with the feeder. The result is a bad segmentation, since only the part of the mouse
that is not on the feeder is segmented. The algorithm we implemented attempts to
solve this problem and it is divided in the following steps:

40

4 – Methods

(a) Real picture of the cage (b) Background estimated by averaging

Figure 4.3: Background estimation compared with the original picture of the cage. Darker
areas are visible on estimated background. Those areas represent the position assumed
by mice for the most of the time. Therefore, those areas are "less filtered" than others,
appearing darker.

1. The complement of the normalized frame is obtained. From here on out, mice
are whiter and blackground pixels are darker as shown in figure 4.4 (a) (b).

2. The background image is binarized using global thresholding. The threshold
chosen for the filter is 0.3. The result is a good segmentation of the feeder
(that is darker than the rest).

3. Morphological operations are executed on the feeder in order to segment it in
its integrity. The image is then converted into its complement in order to get
a mask where the feeder is represented by white pixels and the rest by black
ones. Results are shown in figure 4.4 (c).

4. The feeder mask is then converted into a threshold matrix (T), where to pixels
belonging to the feeder was assigned a threshold of 0.99, and a threshold of
0.90 was assigned to pixels belonging to the rest. Threshold matrix T is shown
in figure 4.4 (d) and will be used for segmentation in section 4.4.

5. Background is subtracted by the current frame with the exception of the pixels
belonging to the feeder, that are not subtracted. The result is a image where
mice are whiter than the background and where there are black pixels instead
of pixels belonging to the feeder. Result is shown in figure 4.4 (e).

6. Black pixels belonging to the feeder on the image obtained at the previous step
are then replaced by pixels belonging to the feeder on the current normalized
frame. In this way, we obtain pixels belonging to the mouse standing on the
feeder whiter than the feeder, as visible in figure 4.4 (f).

41

4 – Methods

(a) Normalized frame (b) Complement of normalized frame

(c) Static object mask (d) Threshold matrix.

(e) Subtraction between normalized frame and
background without feeder

(f) Image ready for segmentation

Figure 4.4: Illustration of different steps of static object removal. Estimated background
showed in figure 4.3 is subtracted to the normalized frame with the exception of pixels
belonging to feeder (e). Those pixels are then replaced by pixels belonging to the feeder in
the complement of the normalized frame, obtaining an image ready to be segmented (f).
In (d) is showed the threshold matrix where whiter pixels are 0.99 and darker are 0.90.

Once the image ready to segment is found, a dynamic thresholding filtering is
executed in order to segment only white pixels belonging to mice. Threshold matrix
T is used to accomplish filtering. Result is shown in figure 4.5, where it is compared

42

4 – Methods

with the result obtained by a global thresholding filtering without using the static-
object-removal algorithm. From a quick gaze to the image it is immediately clear
that our algorithm shows a better segmentation.

(a) Global thresholding result (b) Static object removal result

(c) Global thresholding result: ellipses (d) Static object removal result: ellipses

Figure 4.5: Comparison between results obtained with a standard global thresholding
filtering (a) and the ones obtained with static object removal algorithm (b). Results are
shown also in terms of segmentation and ellipses around mice. Ellipse drawn in (d) fits
better pixels relative to mouse placed on the feeder than the ellipse in (c).

4.4 Segmentation

All the processing steps comprehensively discussed in previous sections and chapters,
from hardware setup to the image pre-processing, are preparatory to the matter of
this chapter: segmentation. In fact, segmentation represents one of the most im-
portant steps (if not the most) in tracking algorithms, because its output influences
the performance of the whole system. Obtaining a good segmentation is extremely
important to well detect landmark points, to discriminate among different mice and
to avoid that points belonging to artifacts, or different objects, interfere with the

43

4 – Methods

moving animals we are interested in. There are a lot of artifacts that could affect
segmentation in this kind of systems. In fact, moving objects are affected by lighting
changes, reflection on the walls, occlusion due to static objects in the cage, occlusion
given by interaction of different mice, and by a series of other phenomena that can
not always be predicted. That’s why preparing a good hardware setup and doing
an initial pre-processing to the frame acquired by the camera is strictly important
to prevent these unpleasant phenomena.

Once everything is ready and we have the image ready to be segmented available,
segmentation is carried out considering a locally adaptive threshold, specified as a
matrix of luminance values. Actually, a global thresholding would be sufficient for
mice segmentation but we have to consider the problem relative to static objects
removal explained in the previous section. In fact, the locally adaptive threshold
matrix, employed in segmentation, is the matrix T already found after feeder iden-
tification and showed in figure 4.4 (d). Experimental observations demonstrated
that a good threshold suitable for mice segmentation in this kind of environment
and after pre-processing operations is 0.9. Although this threshold could seem very
high, suggesting a lack of sensitivity of the sensor, it allowed us to create a system
with results that are a good compromise between specificity and sensitivity. In fact,
a threshold of 0.9 is high enough to be specific for the objects we are interested in
(other objects present a luminance that is generally way lower), and low enough to
be very sensitive for mice segmentation (the luminance of pixels belonging to mice
generally does not go below the threshold). The result obtained is excellent. Mice
are well segmented for the whole video and artifacts do not generally interfere with
them. Sometimes, it can happen that other objects that show similar value of pix-
els intensity, such as mice reflection on the cage walls, are segmented, constituting
objects apart from mice. Digital systems are not smart and can not distinguish be-
tween what is a mouse and what is not, considering everything they segment as mice.
Fortunately, we can add some rules in order to avoid these kind of phenomena. The
rule that helps us in this case is a size rule. Indeed, mice are genetically identical,
and their size can change only with the postures they assume. In addition, there
is generally no other objects than mice that present their size. This means that
a minimum size can be added for their segmentation. According to experimental
observation results, a good threshold suitable for avoiding segmentation of objects
that are smaller than mice is 2000pixels. Obviously, this threshold is suitable for
our application with the settings we chose in a preliminary phase. If resolution of
the camera is changed, or another camera is employed for recordings, the minimum
size threshold must be changed accordingly.

Once mice are segmented, it is important to carry out some morphological oper-
ations that allow us to improve the result of segmentation. Indeed, mice generally
show some shades increasing from the centroid to the borders. Sometimes, intensity
of these shades falls below the segmentation threshold with the consequence not to

44

4 – Methods

be included in the segmented shape. The result is imprecise and must be corrected
to restore the original shape of mice. According to this, a series of morphological
operations are performed as follows:

1. Segmented structures that are connected to the image border and do not
represent mice are suppressed.

2. Image opening is performed to remove objects that are smaller than the struc-
tural element used, preserving the background. The structural element em-
ployed is a disk with a radius of 3pixels.

3. Image dilation is performed to enlarge mice pixels. This allows us to improve
mice shape and to remove accidental indentations. The structural element
employed in this operation is a disk with a radius of 5pixels.

4. A diagonalization is carried out to eliminate 8-connectivity of the background.
For example, the matrix 0 1 0

1 0 0
0 0 0


becomes 0 1 0

1 1 0
0 0 0


This operation is useful to avoid some problems that can occur in mice contour
tracing [12].

5. A majority morphological operation is carried out to homogenize the environ-
ment around each pixel. In fact, this operation sets a pixel to 1 if five or more
pixels in its 3-by-3 neighborhood are 1s; otherwise, it sets the pixel to 0 [12].

6. The final segmented mask is obtained. Mice are now represented by white
pixels on black background in a binary image.

Results of segmentation and the improvements made by morphological operations
are shown in figure 4.6. Once morphological operations are performed, the seg-
mented mask is ready to be analyzed by the tracker. Nevertheless, another impor-
tant step must be carried out to address the algorithm to the following processing.

45

4 – Methods

(a) Foreground pre-processed for segmentation (b) Segmentantion obtained with matrix T 4.4
(d)

(c) Segmented frame (b) after opening (d) Image (c) after dilation

(e) Zoom on one mouse before diagonalization
and majority

(f) Zoom on one mouse after diagonalization and
majority

Figure 4.6: Different steps of segmentation process: from pre-processed frame to final
segmentation. In figure (e) and (f) it is possible to see the result of diagonalization on
the right ear of the mouse. In figures (a), (b), (c), (d) it is possible to notice that some
pixels relative to the feeder are segmented on the right part of the image. Those pixels do
not represent a big issue because they are not included, since the area they represent is
below the threshold.

46

4 – Methods

4.5 Merging Detector
At this point, since we have an image that has just been segmented, it is important
to understand whether merging, the main issue affecting multiple mice tracking
discussed in chapter 2, is happening or not in the current frame. The reason why
it is important is immediately understandable observing the flowchart illustrated in
figure 4.1. In fact, it is possible to notice that the flow of the algorithm is split
in different branches according to the feedback given by the merging detector. In
particular, if merging is occurring in the current frame, the algorithm is limited
to trying to separate segmented pixels into the relative number of mice who are
merging; otherwise, the algorithm works differently depending on what happened
in the previous frame. In fact, if no merging occurred in the previous frame, the
tracking problem and identity preservation can be solved easily as explained in
following sections; if merging occurred in the previous frames, identities are lost
and landmark points too. That’s why a stronger algorithm is required for tracking,
and identity are re-established by metal tags detection. Therefore, merging detector
represents the hinge point of our study. In fact, although its implementation doesn’t
constitute any particular problem, it deserves a section of this chapter because of
its importance.

Merging detector works counting the number of blobs segmented by the segmen-
tation algorithm. Hypothesizing that nmice is the number of mice moving within the
home cage, and nblobs is the number of blobs detected by the segmentation algorithm,
then:

• if nblobs > nmice −→ error: segmented blobs are more than number of mice;

• if nblobs = nmice −→ merging is not occurring: number of segmented blobs
equal to number of mice;

• if nblobs < nmice −→ merging is occurring and the number of mice taking part
to merging depends on the number of mice in the cage. In general, if nblobs = a,
where a is an integer number 1 ≤ a ≤ nmice, then the number of mice that are
merging (nmerg) is given by nmerg = nmice + 1 − a. For example, if one blob
is segmented and three mice are moving, it means that three mice are taking
part to merging. In fact, if a = 1 and nmice = 3, then nmerg = 3 + 1 − 1 = 3.
Knowing how many mice are taking part to merging is important to divide
the big blob segmented into the right number of smaller blobs. For example,
if three mice are merging, we have to obtain three small blobs from the big
one. Therefore, this is a parameter we must know.

Different examples of merging are shown in figure 4.7. Merging detector has been
tested on several videos acquired with the experimental setup described in chapter 3
with excellent results. The only noticed errors happened when noise artifacts or mice

47

4 – Methods

specific postures make the segmented blobs so small to be under the size threshold.
For instance, if mice are separated but one blob is too small, the algorithm sees two
blobs instead of three, and merging detector reports a merging event even if it is
not happening.

(a) Normalized frame: no merging (b) Segmented mask: no merging

(c) Normalized frame: two mice merging (d) Segmented mask: two mice merging

(e) Normalized frame: three mice merging (f) Segmented mask: three mice merging

Figure 4.7: Illustration of different episodes of merging. From frames where no merging
occur to frames where merging with three mice occurs.

48

4 – Methods

4.6 Geometric Information Extraction
Once segmentation has been performed and mice are represented by white blobs on
black background in a binary image, it is necessary to extract geometric information
to detect some important parameters for tracking. This is the first step of the
processing whose algorithm depends on the feedback of merging detector, as shown
in the flowchart in figure 4.1. Indeed, from here on out, every section will be divided
in two other subsections. Concerning geometric information extraction, two are the
cases we have to deal with:

1. No merging occurring in current frame;

2. Merging occurring in current frame.

In fact, in the first case, the algorithm extracts all the important parameters
using MATLAB Blob Analysis block, while k-means clustering is executed to trying
to separate mice in the second case.

Before starting to analyze the algorithm, it is important to define what are the
geometric parameters we are interested in and why. The aim of our study is mice
tracking and identity preservation. According to this, fundamental parameters that
can describe each mouse from a digital point of view are the following ones:

• Ellipse around the mouse;

• Centroid position;

• Area of the mouse;

• Perimeter of the mouse;

• Ellipse major axis;

• Ellipse minor axis;

• Ellipse orientation;

• Eccentricity.

The reason behind the choice of these geometrical parameters has its roots in
digital-shape description. Indeed, digital algorithms ,not involving machine learning
techniques, do not recognize shapes. In fact, they are just able to elaborate simple
information way more rapidly than humans, but they can not reproduce human
eye. Therefore, we have to employ basic geometric technique in order to obtain
a good description of mice shape. In this way, animals shapes, described by their
geometrical parameters, become comparable. Comparability of shapes is of crucial
importance in these kind of algorithms.

49

4 – Methods

4.6.1 No Merging in Current Frame

In case no merging is occurring in the current frame, the problem of ellipse drawing
and geometric parameter extraction can be easily solved. In fact, MATLAB R2017b
computer vision toolbox makes available a very powerful block called Blob Analysis.
Blob Analysis is used to compute statistics on labeled regions in binary images [13].
If merging is not happening, three different blobs representing three different mice
are segmented by the segmentation algorithm. This means that it is possible to use
the segmented binary mask as input of Blob Analysis block. The blob analyzer was
initialized with the opening of the ports relative to the geometrical parameters we
are interested in. According to this, ports relative to centroid, area, perimeter, major
axis, minor axis, orientation and eccentricity were set to 1, allowing the system to
output the related parameters. Centroid position is given in (row, col) coordinates.
Area, perimeter, major axis and minor axis are given in pixel, while orientation
is given in radians. Eccentricity is an important parameter that has no unit of
measurement, since it comes from a fraction that involves major and minor axis.
Given an ellipse with general function

x2

a2
+
y2

b2
= 1

eccentricity (ecc) is defined as follows:

ecc =

√
1− b2

a2
(4.3)

and gives an idea of the ellipticity of the ellipse. In fact, an eccentricity of 0 refers
to an ellipse with major and minor axis with the same length, or rather, a circum-
ference; an eccentricity of 1 refers to an ellipse that degenerates into a segment
corresponding to its major axis. Blob Analysis block automatically outputs all the
described parameters and draw an ellipse around each mouse. A maximum of three
blobs was given according to the number of mice we are studying. This setting
makes the algorithm exclude eventually segmented objects that come from artifacts.
Results are shown in figure 4.8

4.6.2 Merging in Current Frame

In case of merging occurring in the current frame, blob analysis block doesn’t help us
anymore. In fact, MATLAB blob analyzer is not able to identify different mice under
the same blob, and another solution must be found. Since our study does not include
tracking while mice are merging, as already said in chapter 1, we do not aim to a
perfect separation algorithm. In fact, our study attempts only to maintain some
basic geometrical parameters, such as centroid position, while mice are merging.

50

4 – Methods

Figure 4.8: Ellipse drawing in case of no merging occurring in current frame. Red cross
represents head while green cross represents tail.

According to this, several methods have been employed, from watershed to Gaussian
Mixture Models, but no solution has been found to get a good result without big
expenses in terms of computational power and time. That is why, supported by the
Neuropathology department at Johns Hopkins University School of Medicine, we
decided not to deeply analyze mice during merging, but to limit the algorithm to
mice separation and detection of their centroid position. This would allow us to keep
track of mice identity even during merging, when this last is not too complex for
the analysis. First and foremost, it is extremely important to define how many mice
are taking part to the merging. Fortunately, our merging detector was implemented
to give us this fundamental information. In fact, if three blobs are merging, points
belonging to three different mice must be found; but if only two mice are merging,
the big blob must be divided only in two mice, since the last one is already segmented
apart, and must not be included in clustering. Therefore, knowing how many ellipses
we have to find in the same blob is extremely important for the performance of the
algorithm.

Once the number of "sub-blobs", with which we have to divide the big blob,
is known, the algorithm tries to understand what are the pixels belonging to the
different mice using an unsupervised k-means clustering method. K-means algo-
rithm is a simple clustering procedure that attempts to minimize the intra-cluster
variability and to maximize the inter-cluster distance in an iterative cycle. Intra-
cluster variability is the sum of all distances between each element belonging to a
cluster and the cluster centroid. Inter-cluster distance is the distance between two
cluster centroids. Centroid is generally considered as the mean value of all elements
belonging to a cluster. The different steps of the algorithm, in case of merging and
not, are presented in the following points:

51

4 – Methods

1. Merging detector reports that merging is happening in the current frame and
outputs the number of mice taking part to merging, that represents the number
of clusters in which we have to divide the merging blob.

2. The unsupervised k-means clustering is initialized with the centroids of mice
obtained in the previous frame. This initialization is feasible with the realistic
hypothesis that mice can not move much between two consequent frames.
According to this, the same centroid relative to the same mouse in the previous
frame must be closer than the others in the current frame.

3. K-means starts working calculating the new centroids of each cluster.

4. K-means reassigns each element to the cluster with the nearest centroid ac-
cording to some distance measures.

5. If the assignment of points to each cluster is not changed, the algorithm stops,
clusters are found and new centroids are saved. Otherwise, it goes back to
step 3, calculating new centroids and reassigning each element to the cluster
with the nearest centroid.

Once the merging blob is divided in the respective number of clusters, the al-
gorithm that draws the ellipse around each mouse is run. Since ellipse drawing is
not so relevant for tracking, it is not described in this chapter. However, knowing
its geometric principles could be very interesting for a good analysis of the results.
According to this, a short description of the ellipse tracing technique can be found in
appendix A. The method used for finding out the best ellipse fitting the single blobs
is the one introduced by Radim Halir and Jan Flusser in "Numerically Stable Direct
Least Squares Fitting of Ellipses", an extension of Fitzgibbon’s study [9] [7]. Even
though ellipse-drawing algorithm is not explained here, it is important to justify the
weird result obtained with this method. In fact, it is easily found that ellipses drew
with this method look smaller than the ones in case of no merging. This feature
is due to the way ellipses are calculated. In particular, the solution is biased to
smaller ellipses. This is due to the algebraic distance employed to calculate them,
which "prefers" points lying inside the ellipse than the ones more external [9]. A
block diagram of the algorithm, in case of merging and not, can be found in figure
4.9. K-means and ellipse-drawing results are shown in figure 4.10. In particular,
figure 4.10 shows one of the main problem affecting k-means clustering. When mice
get close between each other by their side, it is possible that k-means clustering
fails. In fact, while mice "slide" side by side, there will be a point in which points
belonging to the cluster relative to a mouse becomes closer to the centroid of the
other mouse. That point produces an error that can not be solved. If we are trying
to preserve mice identity observing centroid position, as it will be explained in the
following sections, we fail because there’s a point where identities are swapped. This
represents the biggest limit of this kind of separation algorithm.

52

4 – Methods

Figure 4.9: Logical illustration of different steps of geometric parameter extraction. The
stop condition for k-means cycle is that points assigned to each clusters are the same
between consequent iterations.

(a) Ellipse drawing during merging (b) Ellipse drawing when merging starts

(c) Ellipse drawing when merging continues (d) Ellipse drawing when merging ends

Figure 4.10: Different frames showing ellipse-drawing results. (b) (c) (d) show a typi-
cal problem occurring when merging happens from mice sides: ellipses and identities are
swapped. In fact, the yellow ellipse in (b) slides to the adjacent mouse in (d).

53

4 – Methods

4.7 Tracking Algorithm
Now that a generic overview of the algorithm has been given (figure 4.1), and the
main steps of the algorithm consisting in segmentation, merging detection and geo-
metric parameter extraction, have been discussed, it is finally time to describe the
tracking algorithm and to go deeply into the very heart of our study. As already
discussed in the previous chapters, the tracking algorithm, as the last steps de-
scribed, works differently according to the feedback given by the merging detector.
Nevertheless, while geometric information extraction depends on what happens in
the current frame only, the tracking algorithm looks at the feedback given by the
merging detector not only in the current frame, but in the previous one too. In
fact, our algorithm doesn’t aim to track landmark points during merging, but when
merging doesn’t occur. So, looking at the current frame, the tracking algorithm is
not required in case of merging. Otherwise, in case of no merging in current frame,
the tracking algorithm must know whether merging occurred or not in the previous
one. In fact, in the case it occurred, identity and landmark points position are not
available anymore, while they are known in case merging did not occur. The block
diagram in figure 4.11 shows a very general overview of the tracking algorithm. In
particular, it assumes that merging is not occurring in current frame and shows how
the two different trackers (NM-tracker and IDSC-Tracker) are called according to
what happened in the previous frame.

Figure 4.11: Block diagram showing a very general overview of tracking algorithm. It
is assumed that merging is not occurring in current frame. The right kind of tracker is
selected according to the output of merging detector in the previous frame. If merging
occurred, IDSC-Tracker is run. Otherwise, NM-Tracker is employed.

So, assuming that merging is not happening in the current frame, the tracking
algorithm works differently depending on whether merging at the previous frame
occurred or not. The tracker we implemented consists basically in two different
algorithms. In frames where mice are well separated and merging did not occur
previously, the tracking is based on basic calculations of euclidean distances; there-
fore, the algorithm results easy and can run real-time. This tracker is called No-
Merging-Tracker and it is abbreviated as NM-Tracker. When merging occurred,

54

4 – Methods

and more than one mouse was segmented under the same blob, we lose informa-
tion about landmark points position, and another stronger algorithm is required to
detect them again. Inner Distance Shape Context implemented by Jacob et al. is
the shape descriptor we used to build our Inner-Distance-Shape-Context-Tracker,
abbreviated as IDSC-Tracker [11]. The two trackers will be discussed separately,
and their working principles will be comprehensively explained.

4.7.1 NM-Tracker

Assuming that all mice are well separated in the current frame (no merging is occur-
ring), and so they were in the previous one (no merging occurred), then NM-Tracker
is run. If no merging occurred, it means that head and tail locations are available
from the previous frame. Assuming that a mouse can not move much from one frame
to the following one, calculating Euclidean distance between head and tail points
in the previous frame and major axis endpoints in the current frame, obtained by
geometric information extraction, is the fastest and easiest way to get the new head
and tail positions. The endpoint in the current frame that results closer to head po-
sition in the previous frame will be labeled as "head", while the other will be labeled
as "tail". The block diagram in figure 4.12 shows a logic overview of the tracker,
while figure 4.13 represents an illustration of the main NM-Tracker working princi-
ple based on Euclidean distances. The same method can be applied to centroids to
keep mice identity frame by frame when merging does not occur. The centroid of
the same mouse can not move much between two subsequent frames; according to
this, mouse identity can be kept by taking the shortest distance between centroids
in the current frame and each centroid in the previous frame. This method will be
explained more in detail in next section.

This algorithm allowed us to get good results in real time with very low com-
putational power request, since the only calculations executed are simple Euclidean
distances. This feature is extremely important because our aim is implementing
a system that can be employed in real-time applications. According to this, NM-
Tracker is a very light system that can be easily applied to all frames where merging
is not occurring, that represent the majority of frames. The implementation of this
tracker aimed to solve the problem of Braun’s algorithm. In fact, in his work, only
one tracker, based on Jacob’s Inner Distance Shape Context, is used for all aims.
Since Jacob’s algorithm is very heavy, as it will be comprehensible in next subsec-
tion, Braun’s algorithm is too heavy for real-time processing [braun:article] [11].
NM-Tracker is a good way to easily track head and tail in the majority of frames,
that is when merging doesn’t take place, with an extremely light computational
demand. The strict constraint is that NM-Tracker is applicable only when merging
doesn’t occur.

55

4 – Methods

Figure 4.12: Block diagram showing the logical steps of NM Tracker algorithm.

Figure 4.13: NM Tracker working principle: black ellipse represents mouse position in the
current frame while red ellipse represents it in the previous frame, when head and tail
positions are known. The algorithm calculates Euclidean distances D1 and D2 between
old head position and new ellipse endpoints, and take the shortest one to assign new head
location. In the illustration, the shortest distance is represented by D1 and the relative
endpoint is labeled as head, while the other as tail.

56

4 – Methods

4.7.2 IDSC-Tracker

While NM-Tracker doesn’t show any particular difficulty in its functioning and im-
plementation, IDSC-Tracker is a more delicate system that deserves a more accurate
explanation to well understand how does it work, and what are the working prin-
ciples it is based on. In fact, assuming that mice are well separated in the current
frame and merging occurred in the previous one, head and tail positions are not
available anymore, and a stronger algorithm than NM-Tracker is required to find
head and tail locations. The new tracker we implemented is called Inner-Distance-
Shape-Context Tracker and it is based on shape context matching to find out the
best correspondence between a reference shape of a mouse, and the current shape of
the investigated mouse. Specifically, we used an extension of Shape Context called
Inner Distance Shape Context, where our tracker takes the name from. The reason
why we used this extension is that Inner Distance Shape Context is more suitable
for articulated shapes such as mice [11]. Shape Context descriptor was introduced
for the first time by Belongie et al. in their study "Shape Matching and Object
Recognition Using Shape Contexts" [2]. In their approach, an object is treated as
a point set, and the shape of that object can be described essentially by a subset
of its points. In other words, a shape is represented by a set of points sampled
from the internal or external contours on the object. This means that it is assumed
that a shape of an object can be described by a subset of points extracted from
its external (or internal) contour. To extract the external contour of our mice, we
employed the contour tracing technique described by Fu Chang et al. in their article
[6]. This algorithm is the commonest method used for contour extraction, and it is
the same employed in MATLAB. According to this, we found not useful to describe
the algorithm in this thesis, since a lot of literature is already available for a compre-
hensive understanding. Much more interesting for our application is deepening the
shape matching algorithm introduced by Belongie et al. and successively extended
by Jacob et al. [2] [11]. The two following subsections will describe these last two
methods, while the last one will discuss our application.

Belongie’s Shape Context

Taking in consideration two different mouse shapes, assuming that their external
contour has been extracted and assuming that a mouse shape can be described by a
subset of points selected from its contour, we aim to find for each point pi on the first
shape, the best matching point qj on the second shape. Finding the best matching
point can not be done by a comparison of the only intensity of the pixels relative
to those points. This kind of approach would take to random results, since pixel
intensity is a parameter that is too weak to be used alone, hence not suitable for
matching. That is why a better algorithm is required. The novel descriptor called
Shape Context attempts to solve this problem creating a map for each point on the

57

4 – Methods

two contours. This map represents the shape descriptor of the single point and it is
then employed for matching.

Considering n points p1, p2, p3, ..., pn on a shape’s contour and looking at the
relative Euclidean distance and orientation distribution for each point pi to the
n − 1 remaining points of the contour, we obtain a rich descriptor of the point pi.
In other words, for each point pi on the edge of the single shape, a histogram hi of
the relative coordinates of the remaining n− 1 points is computed as follows:

hi(k) = #[pj : j /= i, pj − pi ∈ bin(k)] (4.4)

where the function # must be read as "the number of points" falling in the same bin
k. The histogram hi defines the Shape Context of the point pi. Before calculating
the shape contexts of each point on the contour that belongs to the 2D image space
(x, y), points belonging to the contour are transferred to a new logarithmic-polar
space. The log-polar space makes the descriptor more sensitive to the positions of
nearby points than to the farther ones. Since a good point descriptor must focus
on its close environment, the log-polar space is more suitable for this aim. In fact,
a point on the contour that is closer to the investigated one must count more than
a point located farther. Figure 4.15 shows a log-polar space centered on a generic
point on a generic complex shape contour. The process is repeated for all sample
points until all shape contexts are calculated.

Once the shape context histogram is built for each point pi on the first shape,
and for each point qj on the second shape, a cost function Cij = C(pi, pj) is defined
as follows:

Cij ≡ C(pi, pj) =
1

2

K∑
k=1

[hi(k)− hj(k)]2

hi(k) + hj(k)
(4.5)

where hi(k) and hj(k) denote the K-bin normalized histogram at pi on the first
shape and at pj on the second one, respectively [2]. The cost function can also
include an additional term called appearance similarity (AS) at points pi and pj.
This term depends on the application and can be modified according to robustness
requirements. Appearance Similarity can be very useful when two shapes deriving
from gray-scale images are compared. In that case, for instance, the appearance
similarity term could consist in a normalized correlation scores between small gray-
scale patches centered at pi and pj [2]. Once the cost function Cij is calculated
for each pair of points on the two shapes, weighted bipartite matching is used to
minimize the total cost of matching defined as follows

H(π) =
∑
i

C(pi, qπ(i)) (4.6)

The total cost of matching H(π) is constrained so that it is forced to be one-to-one.
According to this, π refers to a permutation. Figure 4.14 shows all the different
steps of shape matching using shape contexts.

58

4 – Methods

Figure 4.14: Illustration of different steps of shape matching using shape contexts. (a) and
(b) show two different shapes of letter "A". c shows the log-polar space built around each
point. d shows the shape context at the point enclosed in the circle in (a) and at the point
enclosed in the rhombus in (b), respectively. Shapes Contexts look similar because points
lie in a similar position in the two shapes. In the histograms, x axis denotes the orientation
while y axis denotes log distance bins. (f) shows Shape Context at the point enclosed in
the triangle in (b). Its shape context looks very different from the others, because different
is its position. (g) shows point-to-point matching between the two shapes, according to
the minimization of the cost function.

Matching methods are generally required to be invariant under scaling and trans-
lation, and they must be robust under small geometrical distortions. Shape Context
matching satisfies all these requirements:

• Invariance to translation is intrinsic in Shape Context definition. In fact, all
measurements are executed with respect to points on the object, and a log-
polar space is built centered on the single investigated point. Complete scale
invariance is achieved normalizing all radial distances by the mean distance
between the point pairs in the shape.

• Invariance to rotation is demonstrated considering the shape context calcu-
lated on a relative frame, treating the tangent vector at each point as the

59

4 – Methods

(a) log-polar space centered in generic point p

(b) related shape context at point p

Figure 4.15: Illustration of a log-polar space centered around a generic sample point be-
longing to shape contour with related shape context (b). Numbers in (b) refers to the
amount of points falling in the same bin. The same process is repeated for all sample
points on the contour, until all shape contexts are calculated.

positive x− axis. The complete demonstration is available in Belongie’s arti-
cle [2].

• Robustness to small geometrical distortion is intrinsic in shape context defini-
tion, but it can be improved excluding the estimated outliers from the shape
context computation.

Once the best matching is found, a parameter called Shape Similarity is extracted
combining results given by Shape Context (SC), Appearance Similarity (AS) and
Thin-Plate spline geometric estimation [3]. Thin-Plate spline (TPS) is a geometrical
method that aims to describe the deformation of a generic surface constrained to a
set of points. The origin of the name must be found in the physical analogy involving

60

4 – Methods

the bending of a thin sheet of metal. In fact, when we constrain a sheet of metal to
a specific set of points, it adapts its surface to the points, achieving the condition
of minimum bending energy. Bending Energy (BE) is the important parameter
that the transformation outputs. Since our algorithm is based on an extension
of this method, and TPS is well known geometric transformation easily found in
literature, we decided not to deepen it, leaving the explanation of the method to
the curiosity of the reader who can find it in Bookstein’s article [3]. Once Shape
Context best matching is found, appearance similarity is calculated and bending
energy is extracted by Thin-Plate Spline geometrical estimation, Shape Similarity
between the two investigated shapes is assigned:

ShapeSimilarity = aSC + AS + bBE (4.7)

where a and b are coefficients whose value is 1.6 and 0.3, respectively [11]. In this
way, Shape Context descriptor is exploited for shape matching.

The main reason why Belongie’s Shape Context can not be employed in multiple
mice tracking can be found in the intrinsic functioning of the algorithm. In fact, in
traditional shape contexts, points are described by the other surrounding points in
terms of Euclidean distance. But Euclidean distance represents just the length of the
shortest path connecting two different points, and it doesn’t take in consideration
eventual articulations, complex shapes, internal holes, etc. This represents a big
issue in mice tracking, since mice are moving animals with a complex articulated
shape that can not be described in terms of Euclidean distance between pairs of
contour points. Let’s take in consideration the illustration showed in figure 4.16. In
this case, while Euclidean distance works well in describing point relative distance in
(a), it is not even remotely good in describing their relative position in an articulated
shape such as (b) or (c). An other parameter, here introduced as inner distance,
must be defined to consider articulations.

Jacob’s Inner Distance Shape Context

Since the inability of Euclidean distance to consider shape articulations has been
already discussed, we just have to introduce the inner distance, a new parameter
invented by Jacob et al. and employed in their shape matching [11]. The Inner dis-
tance is defined as the length of the shortest path connecting two points within the
shape. The feature of distance of being "within the shape" is of crucial importance
for considering articulations in more complex shapes. The Inner distance is much
more suitable to build a shape descriptor for articulated objects than Euclidean
distance. Figure 4.16 shows two shapes where the ability of Inner Distance to con-
sider articulations is illustrated. The Inner distance is very similar to the geodesic
distance on surfaces. In fact, the geodesic distance is defined as the length of the
shortest path connecting two points on the surface. Geodesic surface is invariant

61

4 – Methods

Figure 4.16: Illustration of inability of Euclidean distance to consider articulations. The
continuous line refers to Euclidean distance while dashed line to Inner Distance. (a) shows
a simple shape where Euclidean distance coincides with Inner Distance and it is enough
to describe the relative positions of two points. (b) and (c) show two articulated shapes
as if they were taken in two different frames, where Euclidean distance doesn’t work well
to identify points relative position, and Inner Distance must employed. It is shown that
Inner Distance correctly considers articulations.

to surface bending. This invariance is similar to the articulation invariance that
inner distance aims. When 2D shapes are considered, their surface is represented
by their contour. As consequence, the geodesic distance between two points on the
contour is the distance between them along the contour itself. Hence, considering
2D shapes, geodesic distance and inner distance lose their similarity, since inner
distance is represented by the distance between two points within the shape. The
easiest way to compute the inner distance consists in two different steps:

1. A specific number of sample points is defined on the shape contour. Then, a
graph is built with the sample points. For each pair of sample points p1 and
p2, if the segment connecting them falls entirely in the shape, a line between
them is added to the graph with a weight equivalent to the Euclidean distance
||p1 − p2||. In case the segment falls outside the shape, it is discarded and not
added to the graph.

2. A shortest path algorithm is applied to the graph in order to detect, between
every pair of points p1 and p2, what is the shortest set of consequent segments
allowing to connect the two points. The shortest path is defined as inner
distance.

An illustration of the graph built with the sample points is shown in figure 4.17.
From inner-distance extraction algorithm, it is clear that there are two important
features that are intrinsic in inner distance:

1. It is sensitive to holes and internal contours belonging to the shape, without
considering sample points on internal borders, such as hole contours. In fact,

62

4 – Methods

Figure 4.17: Illustration of inner distance calculation algorithm. The first step consists in
building a graph with the sample points. Only segments falling entirely within the shape
are considered. (a) shows a generic complex shape. (b) shows the segments connecting a
single point to all other sampled points on the contour. Edges that are not traced didn’t fall
within the shape boundaries. The result (c) is a big graph with edges weighted according
to the Euclidean distance of segments connecting relative pair of points.

since the segment is traced only if it falls entirely within the object, holes are
taken in consideration.

2. It is insensitive to articulation and part structures. In fact, any articulated
shape can be divided in smaller rigid part structures connected by junctions.
According to this, the shortest path connecting sample points can be divided
into segments within each single part.

These features are extremely important when complex shapes, such as mice, are
considered. A comprehensive demonstration of inner-distance insensitivity to ar-
ticulated shapes is available in Jacob’s article [11]. Once inner distance is defined,
we just have to introduce the Inner-Distance Shape Context. Inner-Distance Shape
Context follows nearly the same steps as Shape Context implemented by Belongie
et al., with the difference that histograms of each point on shape contours are ob-
taining mapping inner distance and inner angle. While the former has already been
discussed, the latter must still be defined. Given a shape and its boundary, for each
sample point p on the boundary and its shortest path Γ(p, q, O) to another point q,
we define inner angle the angle between the contour tangent at p and the direction
of Γ(p, q, O) at p. This angle is insensitive to articulation and it is used for the
orientation bins in the shape context. Once shape contexts of all sample points on
the shape contour are extracted using inner distance and inner angle, the following
steps are the same than the ones explained for Belongie’s shape context. A matching
cost function, following χ2 statistics, is created to find out what is the best matching
between each point on the contour of a shape and each point on the contour of an-
other one. Then, a total matching cost is defined and it is minimized using dynamic
programming (DP). A penalty τ is considered when a point pi is left unmatched.
Here is a big difference with Belongie’s approach. In fact, dynamic programming,
with the cost functions defined in equations 4.5 and 4.6, is used instead of a linear

63

4 – Methods

combination of shape context distance, appearance similarity and bending energy.
Then, shape similarity is found combining results given by the Inner-Distance Shape
Context and Dynamic programming.

ShapeSimilarity = IDSC +DP (4.8)

It was demonstrated that IDSC+DP framework, besides giving excellent results in
terms of shape description, is simpler than SC +AS +BE described for Belongie’s
Shape Context [11]. Results in terms of quality of IDSC as shape descriptor are
shown in figure 4.18.

Figure 4.18: Inner-Distance Shape Context applied to scissors. The figure was obtained
using the MATLAB code provided by H. Lind and David W. Jacobs [11]. On the left,
zoom of the graph built with sample points for inner-distance calculation is shown. In
the center, four points are considered on both scissors shape. On the right, IDSC of all
four points for each shape are shown. It is immediately clear that points located in the
same position in different shapes show the most similar shape context. For instance, shape
context at point 25 on the first shape is similar only to shape context at point 25 on the
second shape. The same is for all the other three points.

IDSC-Tracker

Now that all the algorithms at the base of our tracking system have been comprehen-
sively explained, our tracker, that is run in case of necessity of restoring landmark
points and identities, can be described. We applied inner-distance shape matching
method to mice to obtain a point-to-point matching of their contours. We started

64

4 – Methods

using a reference shape of a mouse and using IDSC to match each point of the con-
tour of the reference shape to the correspondent point on the contour of the shape
we are interested in. The point-to-point matching through IDSC can be used to
track any point belonging to the contour of a mouse we are investigating. This fits
exactly our need, since we are interested in finding two landmark points for tracking
(head and tail) and two for identity detection (left and right ear). An illustration
of IDSC applied to mice is shown in figure 4.19 and the point-to-point matching
between a reference shape and a generic mouse shape is visible in figure 4.20.

Figure 4.19: IDSC shown for four marked points on two different shapes. The figure was
obtained using the MATLAB code provided by H. Lind and David W. Jacobs [11]. A first
fast comparison shows that IDSC histograms relative to the same point on two different
shapes are very similar while the ones relative to different points show evident differences.

Results achieved in terms of point matching were very promising for our aim.
Hence, we decided to employ this technique to implement our IDSC-Tracker. Nev-
ertheless, there are two main big problems we had to face:

1. The computational time requested by the algorithm is extremely high. In fact,
according to Jacob, a complete matching process between two different shapes
where 100 sample points were taken by each shape contour takes about 0.31s on
a regular Pentium IV 2.8G [11]. With nowadays machines, the computational
time can be considerably reduced. However, as explained in previous chapter,
we aim to implement an algorithm that can be run on a simple machine such
as a raspberry pi. That is why we can not afford such a high computational
demand.

65

4 – Methods

Figure 4.20: Point-to-point matching shown between generic mouse contour (on the right)
and the reference contour (on the left). The figure was obtained using the MATLAB
code provided by H. Lind and David W. Jacobs [11]. Matching shows IDSC invariance to
rotation and translation. Matching cost and number of matched points are shown.

2. Using one reference shape only is definitely not enough to well track all points
in all the possible shapes mice can assume. In fact, mice move very fast and
their segmentation can assume shapes that do not show a geometry similar to
the reference one, badly influencing the performance of the algorithm. That
is why one reference shape is not enough to well identify landmark points on
every possible shape assumable by a mouse.

Solving these problematics is not trivial. In addition, even though they do not
seem to be related, the first one is strictly dependent on the second one. In fact,
with one reference shape only, we obtain the best results in terms of speed of the
algorithm. If we increase the number of reference shapes, we automatically increase
the number of shapes that must be matched with the one belonging to the investi-
gated mouse. Hence, the more is the number of reference shapes, the better is the
result, but the higher is the computational demand. While the issue relative to the
high computational demand can not be definitely solved, we can still find a good
solution for the number of reference shapes employed for matching.

To face this problem we took 300 hundred different shapes and we decided to
run a principal component analysis (PCA) to detect what are the parameters that
allow us to better describe different shapes relative to different postures assumed by
mice in their movement. Then, all 300 hundred shapes were plotted in a 2D plan
with 2 principal components and a k-means clustering with no centroid initialization
was run to detect 5 shapes that we take as reference. Reference shapes extraction
through PCA went through the following steps:

66

4 – Methods

1. 300 hundred shapes were taken. Each shape is described by the following
set of parameters: average speed, speed orientation, area, major axis, minor
axis, eccentricity, ellipse orientation. Average speed and speed orientation are
calculated on the distance run between two subsequent frames: the current
and the previous one.

2. All data were weighted according to their variance.

3. PCA was executed on the data set, and 2 principal components resulted enough
to explain more the 60% of the total variance of the data set. With 3 princi-
pal components, about the 70% of the variance was explained. We chose to
describe the dataset with 2 principal components since the difference was not
consistent.

4. K-means clustering with no centroid initialization was executed on the matrix
of the scores. Five clusters have been identified and the five shapes identified
by the five centroids were taken as reference shapes.

Results in terms of score matrix and clustering are shown in figure 4.21. The five
reference shapes extracted by clustering of PCA results are illustrated in figure 4.22.

(a) Score matrix on two principal components (b) Score matrix after clustering

Figure 4.21: Score matrix before and after clustering. (a) shows the score matrix on
the first two principal components that explain more than 60% of dataset total variance.
(b) shows the five clusters obtained by k-means clustering of the score matrix. The five
centroids are the five shapes taken as reference.

Results obtained by PCA made us understand that using five reference shapes
instead of one only could be a good way to execute the point-to-point matching,

67

4 – Methods

(a) Reference shapes: grayscale

(b) Reference shapes: binary mask

Figure 4.22: Illustration of the five reference shapes extracted by the dataset through PCA.

with any kind of shape, in the correct way. In fact, adopting this technique, results
in terms of landmark points tracking and identity detection increased significantly.
All these positive results made us choose to adopt five reference shapes instead of
one, with consequent increase in terms of computational demand. Nevertheless,
since the matching algorithm requires a long computational time even in the easiest
case where only one reference shape is used, we believed that increasing the time
of processing would not cause any additional problem. In fact, the algorithm could
never work real time in both cases. That is why we chose to be more consistent and
accurate instead of being faster. At the end of the dissertation, it will be explained
why we chose to continue using an algorithm that can not work real time, even
when a real-time application is our aim. In fact, we will see that this algorithm
could be employed in an off-line environment to build a big "dictionary of shapes"
where all shapes are described by simple geometrical and physical parameters. This
big dictionary could then be used for shape matching in a fast-real-time application,
since matching would consist only in comparisons based on easy algebraic operations.

The algorithm, as it is now, executes the matching between the mouse shape we
are interested in finding landmark points, and the five reference shapes. Then, the
best matching (the one showing minimum cost) is taken, and landmark points are
detected. The positive features of IDSC-Tracker are listed below:

1. Accurate head, tail, left and right ears location detected every time it is called.

2. Robustness given by the five reference shapes employed for matching. The
algorithm detects landmark points even in weak noisy conditions or when
mice postures are not well defined.

3. Invariance to translation and rotation. This is extremely important to al-
low matching between any kind of shape with any other, no matter of their
reciprocal geometry. This feature will be exploited in the identity detection
algorithm.

68

4 – Methods

4.8 Identity Detection and Preservation

The tracking algorithm described in the previous section partially fulfill our purpose.
In fact, our tracker allows to keep track of landmark points when merging doesn’t
occur, and to restore them after merging occurred, when point location information
is lost. Nevertheless, there are still two important features that must characterize
our system in order to be suitable for automatic social behavior analysis:

1. Ability to keep track of mice identity frame by frame;

2. Eligibility for real-time applications.

The first condition is achieved by extending the IDSC-Tracker to track more land-
mark points, topic of discussion of this section. The second one, instead, represents
not a trivial problem that can not be solved keeping the algorithm as it is. Never-
theless, a manner to exploit the algorithm for an offline shape characterization will
be discussed as future work in the following chapters.

Observing the flowchart in figure 4.1, it is immediately clear that identity detec-
tion and preservation algorithm works differently according to the output of merging
detector. As already discussed for the tracker, the output of merging detector is not
considered in the current frame only, but in the previous too. In fact, if merging
did not occur in both frames, the easy Identity Preservation Algorithm can be used
to keep mice identities; otherwise, if merging is not occurring in the current frame,
but it did occur in the previous one, it means that identities are lost and a more
complicated Identity Detection Algorithm must be run to restore them. A partial
flowchart showing a logical overview of the algorithm can be observed in figure 4.23.

Figure 4.23: General overview of the identity detection and preservation algorithm. The
flowchart implies that merging is not occurring in the current frame.

Exactly how it was already done for previous steps, Identity Preservation and
Identity Detection will be treated separately.

69

4 – Methods

Identity Preservation

In case merging is not occurring in the current frame and it did not happen in
the previous one, mice identities can be easily tracked with a small extension of
NM-Tracker. In fact, assuming that a mouse can move not too far between two sub-
sequent frames, identities can be kept only measuring reciprocal centroid distances.
Assuming that three mice are moving withing the cage, given the centroid Ci(x, y)
of the investigated mouse in the current frame, and given the centroid locations
C1(x, y), C2(x, y), C3(x, y) of the three mice in the previous frame, whose identities
are known, we compute the following Euclidean distances:

Dij(Ci, Cj) =
√

(xi − xj)2 + (yi − yj)2, ∀j /= i (4.9)

We obtain Di1(Ci, C1), Di2(Ci, C2) and Di3(Ci, C3) which represent the Euclidean
distances from centroid Ci in the current frame, to centroids C1, C2 and C3 in the
previous one. The identity of the investigated mouse is assigned taking the minimum
distance. An illustration of the process is shown in figure 4.24

Figure 4.24: Illustration of Identity Preservation Algorithm. Green mice refer to the
previous frame while one mouse only (the red one) is shown in the current frame. Distances
between investigated mouse (red) and mice in previous frame (green), whose identities are
known, are calculated. The minimum distance is taken and identity is assigned. In the
example, investigated mouse i corresponds to mouse 3 in the previous frame. Identity is
assigned. The same is repeated for the other mice in the current frame.

Since mice move separately for the most of the time, this algorithm is the most
called by the system. According to this, it must be as light as possible not to influ-
ence too much the time of processing. Fortunately, this method exploits Euclidean

70

4 – Methods

distances to assign new mice identities in current frame. Hence, since the mathe-
matics is quite easy, the computational demand is very low and the algorithm can
work in real-time.

Identity Detection

In case merging is not occurring in the current frame, but it did occur in the previous
one, identities are lost and must be restored. Unfortunately, Identity Preservation
Algorithm is not useful in this situation, since identities are not available from the
previous frame. Therefore, a stronger algorithm is required to face this issue. In
chapter 3 the experimental setup was described, and metal tags were introduced as
objects employed in identity detection. In fact, spherical metal tags with a diameter
of 4mm were bound to mice ears. To detect three mice, we realized a system
following the metal tags configuration shown in table 3.1. Since we used three mice
only, we didn’t need the "both tags" configuration of the fourth mouse.

Identity Detection Algorithm was feasible thanks to an extension of IDSC-Tracker.
In particular, the tracker was asked to output more landmark points. According to
this, not only head and tail are tracked, but also left and right ear. Why we need
left and right ear for tag segmentation will soon be clear. In fact, the first idea that
comes to the mind when dealing with tag segmentation is executing a global thresh-
olding filtering to segment tag on the whole area of the mouse. Unfortunately, even
executing the best pre-processing before segmentation, it would not be possible to
segment only metal tags, since other noisy pixels belonging to mouse contour would
not be filtered. According to this, tag research should be executed within a small
area surrounding the tag itself. Here comes the utility of knowing left and right ear
position. As a matter of fact, left and right ear would allow us to create a small
neighborhood around each ear, and to execute segmentation only in that specific
area. In this way, all possible artifacts on mouse shape would be excluded from the
segmentation, and only metal tags would be segmented. An important feature of
IDSC-Tracker that has been exploited for metal tags detection was already noted
down in the previous section, but it is here underlined again, since it represents
the most important feature that allowed us to obtain a fast tag segmentation. This
feature consists in tracker’s invariance to rotation. In fact, this invariance makes the
tracker able to identify left and right ear without executing any additional geometric
operation. Since this feature makes us know which is the left and which the right
ear, we don’t have to do anything else but segmenting the tag, and identity will
be immediately assigned. This characteristic makes the algorithm very fast, since it
exploits the tracker for its aim. Fortunately, IDSC-Tracker is required exactly in the
same situations as the Identity Detection Algorithm. In fact, when merging occurred
in the previous frame and landmark points must be detected again, identities must
be restored too. This detail is very important since IDSC-Tracker is not required in

71

4 – Methods

any additional situation if not when already needed for landmark points. Accord-
ing to the flowchart shown in figure 4.23, Identity Detection Algorithm is run only
in frames where mice are moving separately and merging occurred in the previous
frame, proceeding as follows:

1. Left and right ear locations are tracked by IDSC-Tracker ;

2. A Small neighborhood (21x21) is generated around each ear;

3. Variance filtering is carried out in both neighborhoods to highlight pixels be-
longing to tags;

4. Global thresholding is applied in both neighborhoods to segment eventual tags;

5. The neighborhood that shows the largest number of segmented pixels is taken
as metal tag;

6. Identity is assigned according to where the tag was found (or not found in case
of mouse with no tags).

Tag area and threshold for tag segmentation were estimated experimentally. Ob-
viously, the number of segmented pixels must be similar to the number of pixels
composing tag area. In case no tag is found at point 4, a bigger neighborhood
(41x41) is generated around each mouse and research is executed again. In fact, if
no tag is found, it is possible that the identity of the investigated mouse corresponds
to the one with no tags, but it could be also an error of segmentation. As a matter
of fact, artifacts occurring in mouse segmentation could be imperfect and the ear
position not precise. If ear position is not precise, the neighborhood could be too
small to include the tag, that is consequently not found by segmentation. A bigger
neighborhood is tried to understand whether the tag is effectively not present or
it is present, but the neighborhood is too small to include it. A flowchart of the
algorithm is shown in figure 4.25 while figure 4.26 shows the performance of variance
filtering, highlighting the neighborhoods around ears to illustrate how the algorithm
works.

Once identities are assigned in the current frame, our algorithm comes to a con-
clusion, since no additional steps are performed. According to what we already said
in chapter 1, our study was focused on tracking and identity detection because no
automatic behavior analysis is achievable without a robust and consistent algorithm
that is able to keep landmark points and mice identities during time. In this chap-
ter we described only the methods used for the implementation of the algorithm.
Next chapter will discuss the results obtained, and a final one will conclude our dis-
sertation discussing the future work to achieve automatic social behavior analysis.

72

4 – Methods

Figure 4.25: Identity Detection Algorithm overview. The square with dashed line refers
to the previous steps of the algorithm. In case no tag is found, sizes of neighborhoods are
increased to 41x41 for a second trial. If no tag is found again, "no tag" identity is assigned.

(a) Before variance filtering (b) After variance filtering

Figure 4.26: Illustration of the working principle of Identity Detection Algorithm. Cyan
crosses indicate the left ear while yellow crosses the right one. Colored squared boxes
indicate the neighborhood wherein research is carried out. Variance filter performs very
well in highlighting pixels inherent to the tag (b). Metal tag is segmented around left ear
and identity is assigned.

73

Chapter 5

Results

The evaluation of performance and confidence of our system was carried out on
two different kinds of videos, depending on which part of the algorithm was tested.
In particular, one video where three mice move within their home cage was used
to evaluate the tracking algorithm, and videos where only one mouse moves were
employed for the evaluation of the identity detection algorithm, that is applied frame
by frame. The whole system (tracker + identity detector) on three mice was not
directly tested in videos recording three mice moving, but its testing will constitute
the first step of the future work. According to this, this chapter deals with results
collected by the two main parts our algorithm is composed of: the tracker and the
identity detector. The final section shows a result of the whole system (tracker +
identity detector) applied on a video where three mice move. The result is just a
preview of the future work that must be performed to get a real validation.

5.1 Tracker

Our tracking algorithm, composed of NM-Tracker and IDSC-Tracker, was tested
on a 20-minutes-long video where three mice are moving within their home cage.
A simple test on one video could seem a bit weak for the validation of a tracker.
Nevertheless, since mice are forced to move within the cage, and since the variability
of their movements is not so large, one video should easily cover the whole amount
of postures mice can assume during their movement. According to this, and given
a short time available we had to validate the system, we did not believe that other
tests should have been carried out for a first performance validation of the algorithm.

The tracking algorithm showed very good results in terms of head and tail de-
tected frame by frame, when merging does not occur. In fact, the validation executed
showed only the 6.3% of frames with wrong points detection on a 20-minutes-long
video. This result could still be improved through a post processing correction.
As a matter of fact, the wrong head and tail labeling consists in the inversion of

75

5 – Results

the points. In particular, if a wrong tracking happened, it means that head was
labeled as tail, and tail as head. This means that the error could be corrected
by swapping again the point labels. According to this, a post processing correc-
tion could be performed to correct some among the wrong labels assigned during
tracking. For example, if a mouse has head and tail labeled in the same way for a
certain number of frames, and if then points are swapped for a single frame, and
immediately inverted again, it means that an error occurred. This error is easy to
detect, since a mouse can not move so much to invert head and tail in two subse-
quent frames. A high-performance error detector could be implemented to realize
that an error is occurring and to finally solve it. This is just an anticipation that
will be described more comprehensively in the future work section of next chapter.
NM-Tracker showed no particular problems in geometrically tracking points frame
by frame, and IDSC-Tracker well identified landmark points after merging, at the
expenses of a higher computational time. Figure 5.1 shows a frame where landmark
points were correctly tracked and labeled by our tracker. In fact, each mouse shows
its ellipse with a red cross indicating head, and a green one representing tail. This
result was obtained in the 93.7% of frames where merging does not occur, and can
still be improved in a future work.

Figure 5.1: Illustration of tracking algorithm results. Head and Tail are represented by a
red and a green cross, respectively.

When merging occurs, the algorithm attempts to separate points belonging to
different mice, and to keep their basic geometrical parameters such as ellipse and
centroid. In fact, keeping track of the centroid could be of big interest in trying to
keep mice identities without using the Identity Detection Algorithm, as it will be
explained in the future work section in chapter 6. Results of k-means clustering and

76

5 – Results

ellipse-drawing algorithm showed a good performance in separating points belonging
to different mice, when these lasts get close between each other not along their sides.
In fact, when they move close along their flanks, the clustering error described in
chapter 4.6.2 and visible in figure 4.10, happens, and ellipses are swapped between
mice. In almost every other situation, unsupervised clustering was able to correctly
separate the merging blob, avoiding the employment of Identity Detection Algorithm
(and so of IDSC-Tracker) to restore identities, saving a lot of computational time.
Results in terms of good and bad ellipse separation are shown in figure 5.2.

(a) Good clusters separation (b) Bad clusters separation

Figure 5.2: Illustration of ellipse separation algorithm during merging. (a) shows a frame
where mice position allows to get a good separation of points belonging to different mice.
Ellipses are correctly drawn, and centroids are detected. (b) shows a frame where mice get
close along their flanks, not allowing a good clustering. The result is the loss of centroids
position, and a bad ellipse tracing.

5.2 Identity Detector

Our identity detector, composed of the Identity Preservation Algorithm and the
Identity Detection Algorithm was tested on twenty different videos where only one
mouse was put into the cage. Specifically, in ten videos a left-ear-tag mouse was
recorded, while a right-ear-tag one was recorded for the other ten. All videos are
1-minute-long, for a total of 20-minute-recording. Actually, Identity Preservation
Algorithm was tested on the same video the tracker was validated on, since three
mice were required for it. The twenty videos were used to test the Identity Detection
Algorithm, since it represents the most delicate algorithm, hence the most important
to be validated.

Identity Preservation Algorithm didn’t show any particular problem in keeping
track of mice identities when merging does not occur in the current frame, and it
did not occur in the previous one. The main errors are due to artifacts affecting

77

5 – Results

segmentation and to the relative position that mice assume in certain frames. There
are some frames where mice get close between each other in a way that makes the
current centroid of a mouse be closer to the old centroid of the other mouse, causing
a swapping of identities. Nevertheless, these errors are not very common since they
take place in a very tiny percentage of frames, not constituting a big obstacle for
tracking.

Identity Detection Algorithm was run on the twenty videos and statistics was
performed. The algorithm was applied frame by frame, hence all landmark points
and identities were tracked all the time by IDSC-Tracker. The algorithm showed
excellent results in terms of identity detection. In fact, averaged results showed that
left-ear-tag mouse identity was correctly detected in more than 80% of frames, while
right-ear-tag mouse identity was properly labeled in more than 90% of frames. In
addition, the wrong tag identification rate was very low in both cases. This is an
excellent result, since avoiding the assignment of the wrong label is extremely impor-
tant; a mouse with unknown identity is preferable to a mouse with a wrong identity
to prevent the wrong identity from being kept for further frames. Unfortunately,
this excellent result is opposed to the high computational demand required by the
detector. In fact, IDSC-Tracker takes 0.28s to execute a matching between the five
reference shapes and the investigated one, on a i7 processor running at 3GHz, mean-
ing that about 0.9s is the time required by the algorithm to find out the identities
of three mice (times calculation were carried out considering the whole algorithm,
pre-processing included). This time demand is huge and can not be afforded by our
algorithm that aims to a real-time application. Nevertheless, an off-line application
of our detector, that lays the groundwork for a real-time application, is described in
the future work section of next chapter. Figure 5.3 shows two frames where identities
were correctly detected by our system, and two frames where they were not detected
and wrongly detected, respectively. The unknown detection is due to IDSC-Tracker,
which assigned the right ear position to a point laying too far from the real ear. This
wrong assignment influenced the performance of the detector, that was not able to
find the tag within the right-ear neighborhood. The wrong identity detected in 5.3
(d) is due again to a malfunction of IDSC-Tracker. In fact, despite head and tail
are well identified, left and right ear are detected in a totally wrong position, close
to the tail. This is certainly due to a problem relative to reference shapes. Despite
the five shapes we took as reference come from a good pca selection, they are not
enough to cover the whole amount of possible postures a mouse can assume. Using
two components we were able to explain something less than the 70% of variance
of the dataset used. The selection of 5 shapes from that dataset reduces a lot the
variance explained, making the algorithm subjected to possible errors in phase of
landmark points detection. The Identity Detection Algorithm was run on the twenty
videos and statistics was obtained. In both cases, the algorithm was able to well
identify the mouse in the major parts of frames. Results are averaged on ten videos

78

5 – Results

(a) Left-ear tag correctly identified (b) Right-ear tag correctly identified

(c) Right-ear tag not identified (d) Left-ear tag wrongly identified

Figure 5.3: Performance of the Identity Detection Algorithm. (a) shows a frame where
a left-ear-tag mouse was correctly identified, while (b) shows the good result obtained
with the right-ear-tag mouse. (c) shows a missed identity detection due to the wrong
tracking executed by IDSC-Tracker. Right-ear lies too far from the real ear position; the
consequence is a research neighborhood too far to include the metal tag, which therefore
is not found. (d) illustrates a frame where identity is wrongly detected, due to an error
in landmark points tracking (all points are in the wrong position, as if the mouse was
positioned in the opposite way). In fact, the mouse is labeled as right-ear-tag, but the tag
is on its left ear.

for each mouse, and are illustrated in table 5.1 in terms of average and standard
deviation. Figure 5.4 shows the bar chart and the pie chart of averaged results ob-
tained from the twenty recordings. Specifically, ten with left-ear-tag mouse, and ten
with right-ear-tag one. The average shows that the 80% of correctly labeled frames
was reached in both cases and the wrong tag identification rate was very low, as
already said. In addition, standard deviation doesn’t show a big variance in the
results, demonstrating a certain robustness of the algorithm.

79

5 – Results

(a) Left-ear-tag mouse

Tag avg (frames) std (frames)

Left 1308 (81%) 93 (7%)
Right 28 (2%) 6 (21%)
Unknown 274 (17%) 91 (33%)

(b) Right-ear-tag mouse

Tag avg (frames) std (frames)

Left 13 (1%) 5 (38%)
Right 1512 (94%) 53 (3%)
Unknown 85 (5%) 53 (62%)

Table 5.1: Averaged results collected by ten videos for left- and-right-ear-tag mouse. The
total number of frame for each video was 1610. avg percentages are relative to the total
number of frames of the video. std percentages represent the intervals of confidence of the
relative avg values.

(a) Left-ear-tag mouse: bar chart (b) Left-ear-tag mouse: pie chart

(c) Right-ear-tag mouse: bar chart (d) Right-ear-tag mouse: pie chart

Figure 5.4: Statistics relative to Identity Detection Algorithm results. (a) and (b) show
the bar chart and the pie chart of the averaged results obtained processing the ten videos
in which the left-ear-tag mouse was recorded. (c) and (d) are relative to the averaged
results obtained with the ten videos showing the right-ear-tag mouse.

80

5 – Results

5.3 Validation of the Whole System
The whole system was validated on a video where three mice were recorded. In the
complete system, the algorithm of identity detection is run only after the occurrence
of merging, when identities are lost. Results showed that the algorithm was able to
identify and correctly label mice identities in the majority of cases. In particular,
identities were correctly labeled in more than the 50% of frames, allowing a correct
detection with a rate of about one frame every two. This means that we were able to
detect the correct identities in two frames (at most) after merging occurred. Since
the camera recorded videos at 30fps, if our system could work in real time, it would
be able to identify mice in 67ms at most. Unfortunately, IDSC-Tracker takes 0.9s
to detect landmark points on three mice, lengthening the processing time to 1.8s,
since two frames are required for the identification. Here again is underlined the
impossibility of our system, as it is now, to be employed in a real-time application.
Anyway, an example of the good results collected are visible in figure 5.5, where
a frame immediately after merging is illustrated with labels indicating the right
identities of mice.

Figure 5.5: Illustration of a frame showing a situation immediately after merging. The
algorithm was able to correctly identify mice. Mice identities are visible in the red labels.

81

Chapter 6

Future Work

The project we aim to is a big challenge which a huge amount of biological labo-
ratories are taking part to. Even though our study is very promising in terms of
collected results, the final achievement of automatic social behavior analysis is still
very far away from where we are now. Nevertheless, every big construction is built
brick by brick, and we are glad for having taken part to one of this series of steps
that lays the basis for the future work that will have to be carried out. According to
this, we believed important to give some information about the future steps required
for a good employment of the algorithm that was comprehensively described in this
dissertation. In this chapter, we provide a short description about the next steps
we propose us to go through in our future work. In particular, we start describing
small extensions that should be performed on our algorithm to obtain better results
and to get a robust validation that would allow our system to be compared with
other similar state-of-the-art systems to evaluate outcome differences.

6.1 Database of Videos

The first important step that must be performed is the recording of a specific set
of videos that will be used as reference dataset for all application of any kind of
algorithm. Only in this way a good validation of the system can be performed,
and a cross evaluation of the performance of different algorithms can be executed.
Until we don’t create a database of videos that could become a standard in tracking
algorithm validation, we won’t be able to validate our system and to characterize it
in terms of sensitivity and specificity. That is why this part of the future work is
the most urgent, since a system with no strong validation can not be of any interest
for any kind of application.

We propose us to build a database containing the following videos:

• Ten one-minute-long videos in which one single left-ear-tag mouse is recorded;

83

6 – Future Work

• Ten one-minute-long videos in which one single right-ear-tag mouse is recorded;

• Ten one-minute-long videos in which one single no-tag mouse is recorded;

• One 20-minute-long videos in which three tagged mice are recorded;

Videos must be recorded with the camera placed in the center of the lid of the
cage as illustrated in figure 3.1, at 30fps. In general, the whole experimental setup
described in chapter 3 must be respected as it is. Videos can be recorded using dif-
ferent cameras to evaluate differences given by the acquisition system. Anyway, for
each camera, the entire set of videos must be recorded. In addition, it is important
that cameras do not have an IR filter, since IR radiation is the one we employ to
lighting the environment. In case a camera shows an IR filter, it must be removed.
In fact, IR filters are designed to reflect or to block IR radiation while passing visible
light. Since our environment is mainly lighted up by IR radiation, we can not afford
a recording with IR filter.

Another important requirement that videos must respect consists in the move-
ment of mice. In particular, recorded mice must move during the acquisition for the
most of the time, and do not have to show a static behavior. Only in this way we
will be able to characterize our algorithm, since both static and dynamic conditions
will take part to validation.

Once the whole database of videos will be created, it can be shared with the
scientific community in order to make it available to anyone interested in comparing
the performances of different algorithms. In other words, the database could become
a standard in multiple mice tracking validation.

6.2 Centroid Tracking During Merging
Our algorithm does not attempt to evaluate social interactions during merging, as
already repeated several times in the dissertation. Hence, landmark points tracking
is not required in frames where merging occur. Nevertheless, keeping track of posi-
tions of centroids, belonging to different mice during merging, would be an excellent
way to avoid the employment of the heavy IDSC-Tracker and Identity Detection
Algorithm to restore landmark points and identities. In fact, if we were able to keep
centroids frame by frame during merging, the easier Identity Preservation Algorithm
would be largely enough to keep identities. As a matter of fact, when more mice
move so close to get a single segmented blob, if centroids are still available, the
identity of a single mouse can be kept measuring distances between its centroid in
the current frame and the three centroids in the previous one. Then, the minimum
distance is taken and identity is assigned. Figure 6.1 shows an illustration of this
method, very similar to the one showed in figure 4.24 for the Identity Preservation
Algorithm. Identity preservation in case of good centroids detection is illustrated

84

6 – Future Work

in two different situations: when merging is finishing and when merging continues
between subsequent "frames". Since this method would be feasible only if positions

(a) Merging ends between subsequent frames

(b) Merging continues between subsequent frames

Figure 6.1: Illustration of Identity Preservation Algorithm during merging. Investigated
mouse (red) belongs to the current frame, while other mice (green) belong to the previous
one. If centroids position are detected and available during merging, keeping mice identities
would be fast and easy, since the simple Identity Preservation Algorithm would be enough.
In fact, in both cases, the distance Di3 represents the shortest one. According to this,
identity 3 is assigned to the investigated mouse i.

of centroids were well detected during merging, a better algorithm than the simple
k-means clustering must be implemented. Kalman filter can be exploited for this
aim. A Kalman filter is an optimal estimator that infers parameters of interest from
indirect, inaccurate and uncertain observations. It’s a recursive method, so new
measurements can be processed at the same time they arrive. It’s an "optimal"
estimator because it attempts to minimize the mean square error of the estimated
parameters, reaching an "optimum". Kalman filter "learns" and minimize the error
during time in real time. This characteristic could be employed in our algorithm to
estimate mice centroids positions, especially during merging. In this way, we could

85

6 – Future Work

get information about centroids in any kind of situation, and the Identity Preser-
vation Algorithm would be employed in the largest amount of frames instead of the
demanding Identity Detection Algorithm, allowing a real-time processing.

6.3 Post-Processing Correction

According to what anticipated in section 5.1, a post-processing error correction could
be executed to increase the performance of the tracker in terms of head and tail
detection. To achieve this, a high-performance error detector must be implemented.
Since all our study was carried out under the hypothesis that a mouse can not move
much between two subsequent frames, the implementation of an error detector does
not represent a big deal. Let’s suppose that head and tail labels were correctly
assigned for a certain non-small number n of subsequent frames. Then, let’s say
that an error occurred in one frame and, after that, labels were correctly assigned
again for another non-small number q of frames. If an error occurred between the n
and the q frames, it means that head and tail labels were swapped, ending up with
a head labeled as tail, and a tail labeled as head. Since a mouse is not able to move
much between two subsequent frames, and since labels were correctly assigned for a
large number n+ q of frames with just one occurrence of mislabeling, it means that
an error occurred. This error could be solved in a post processing phase, swapping
again the labels of head and tail. Therefore, despite the unknown causes of the
error, we could be able to solve it restoring the correct labels. Figure 6.2 shows a
graph where the trend of x and y coordinates of head and tail points is illustrated.
It is easy to detect an error in points labeling since there is an unexpected crossing
between the coordinates of the two points, result of an error in landmark points
detection. According to this, a post-processing error correction technique could be
developed to avoid a good part of head and tail wrong detections.

6.4 The Challenge of the Dictionary of Shapes

Despite the good outcomes obtained with our system, we must recognize that some
changes should be carried out to reduce its computational demand. In fact, as al-
ready highlighted in the previous chapter, the system, as it is now, is not suitable for
a real-time application. Since biological laboratories are very big, hosting thousands
and thousands of cages, we can not afford a simultaneous recording of all videos with
consequent storage before processing. This would require huge systems of memory
and it would considerably slow down the whole process. As a matter of fact, every
single recorded video should be sent to a central memory. Since organizing a lab
in order to send all videos by cable connections is not an easy deal, wi-fi transfer
would be used, drastically lengthening the process. This is something that nowadays

86

6 – Future Work

Figure 6.2: Graph illustrating the trend of x and y coordinates of landmark points. Head
and tail are correctly labeled from frame 100 to 117 and from frame 119 onwards. It is
immediately clear that an error occurred in frame 118. In fact, x and y coordinate of head
and tail results swapped. The phenomenon is visible by a crossing of lines inherent to
points coordinates.

laboratories do not want. Hence, improvements to our system should be performed.
Even though a series of measures could be taken to speed up our algorithm, they
would probably not be enough to reach a real-time processing. In fact, the only
adjustable parameters are related to the algorithm of shape matching through Inner
Distance Shape Context, but even reducing them to the minimal processing time, it
would still be not enough to reach a real-time implementation. According to this, we
could think to reduce the number of sampled points from shapes contours, in order
to decrease the number of points for matching, or we could use just one reference
shape, decreasing of 1

5
the processing time, but we would obtain a considerably worse

result with no significant improvements in terms of computational time. Hence, we
did not consider to make big changes to the algorithm, but to find another applica-
tion that could be of help for our final aim. We found this application in an off-line
processing.

The strength of our algorithm consists in its ability to precisely detect landmark
points, frame by frame. This ability could be extended also to any matching point we
are interested in, even the whole set of sampled points for mice contour. Basically,

87

6 – Future Work

the whole point-to-point matching could be used for an off-line application, since
time is not an important constraint. This means that all this extremely significant
information about shapes could be used with a set of other geometrical parameters
extracted by the algorithm to characterize a big set of shapes containing all possible
postures mice can assume. With "shape characterization" we mean finding out a
parameter, that we call energy, that could operates as a specific fingerprint of a
specific shape. This parameter would be extracted as linear combination of a big
set of other parameters extracted from the shape by our algorithm. For instance,
this set of parameters could include: head, tail and ears position, shape size, ellipse
parameters, shape asymmetry (to evaluate relative position between head and tail),
shape similarity with reference shapes, etc. All this process of shape characteri-
zation would be executed off-line on standard videos recorded to obtain a number
of segmented shapes that would be able to cover the majority of possible postures
assumable by mice. Since the process would run not real-time and time would not
be a big issue, we don’t really care about the number of shapes but only about the
results. Once all shapes would be characterized by their energy, a big dictionary
of shapes could be created. In this hypothetic dictionary, each shape would be de-
scribed by its one and one only energy value. If this dictionary of shapes was created,
the shape matching would consist in a simple algebraic comparison between shapes
energies. In fact, hypothesizing that we want to find landmark points in a current
shape segmented by our algorithm, we should just extract the energy of the investi-
gated shape, and calculating the difference between the energy of the shape we are
interested in and all the energies on the dictionary of shapes. The best matching
would consist in the shape with the energy that brought to the minimum difference.
Once the best matching would be found, landmark points assignment would happen
very fast. Resuming, an hypothetic algorithm to build this challenging dictionary
of shapes could consist in the following steps:

1. Record a set of videos where mice move in a way to collect a number n of
shapes s1, s2, ..., sn that could cover approximately all possible postures;

2. For each shape si, calculate its energy parameter ei as combination of a set of
geometrical parameters extracted by the algorithm;

3. Eliminate all shapes with similar energy. Each shape must be described by
one and one only energy;

4. Build the dictionary of shapes.

The previous steps are meant to be performed in an off-line environment on videos
recorded in a previous phase. Once the dictionary of shapes would be created, the
shape matching, meant to happen in a real-time processing, would consist in the
following steps:

88

6 – Future Work

1. Given the current frame, take the segmented shape on which landmark points
must be detected;

2. Find the energy of the investigated shape;

3. Calculate the difference between the energy of the investigated shape and
all energies of the dictionary of shapes. The best matching is the one that
minimizes the difference;

4. Export landmark points from reference shape (in the dictionary) to the similar
investigated shape (in the current frame);

5. Continue with tag identification algorithm.

The hypothetic shape matching is illustrated in figure 6.3. Basically, we propose a
system where the heavy algorithm composing IDSC-Tracker would be used only in
an off-line environment to build the dictionary of shapes. This dictionary of shapes
can be as big as we want, since computational time is not a big issue in a non-
real-time system. Then, the algorithm could be lightened up, since shape matching
would happen executing an easy set of algebraic operations for different shapes
energy comparison. Obviously, this is just a rough anticipation of an hypothetic
future work that we propose us to carry out. Even though this approach can seem
very promising, there is a couple of non-trivial obstacles that must be overcome.
First, a good algebraic definition of energy must be found. Second, the exportation
of landmark points from the reference shape on the hypothetic dictionary, to the
investigated shape, must be defined and implemented. These two tasks are not easy
to perform, since energy must defined uniquely for each shape and landmark points
must be transferred with high precision to the investigated shape for a correct tag
identification.

Nevertheless, we believe that our algorithm deserves to be employed in a future
work to reach a real-time application, since its excellent results make it the best
state-of-the-art system for multiple mice tracking. Once all the future work con-
cerning this part of the project will be performed, new studies on social behavior
analysis will start, and new forward steps will be done for the final goal of automatic
social behavior classification.

89

6 – Future Work

.

.

.

Shape 1

Shape 2

Shape 3

Shape 4

.

.

.

Shape n

Energy

e1

e2

e3

en

e4

.

.

.

Reference

Energy

ei

Investigated

Shape 2 Shape i

Landmark point exportation

𝑒𝑖 − 𝑒1

𝑒𝑖 − 𝑒2

𝑒𝑖 − 𝑒3

𝑒𝑖 − 𝑒4

𝑒𝑖 − 𝑒𝑛

Shape n

Figure 6.3: Illustration of the hypothetic dictionary of shapes. On the left, shapes with
landmark points and relative energy are shown. Red, green, cyan and yellow landmark
points refer to head, tail, left and right ear, respectively. On the right, the current in-
vestigated shape is shown with its relative energy. Differences between investigated shape
energy and all other energies are executed. At the bottom, the shape showing the minimum
difference is taken, and landmark points are transferred from the shape on the dictionary
to the investigated one.

90

Chapter 7

Conclusions

Established research institutions, such as Johns Hopkins University School of Medicine,
conduct large scale behavioral studies on specimen such as mice. As the sample size
grow, the amount of human labor to conduct becomes a strong limit in the exper-
iment, yielding to a cost-inefficient and time-consuming process, with all the prob-
lems relative to lack of standardization and low reproducibility, intrinsic in systems
handled by human. Experiments revealed head and tail to be crucial points for auto-
matic behavior analysis, and on these points our attention has been focused. State-
of-the-art systems generally exploit methods which range from RFID-based tech-
nologies to machine-learning algorithms to recognize different mice moving within
the same home cage. Unfortunately, despite the good results achieved in terms of
landmark points tracking, these systems do not allow to track more than two mice
at the same time, avoiding the possibility to classify social behaviors in a multiple
mice environment for drug and illnesses characterization. The incapability of these
systems to track more than two mice is mainly due to their inability to face the
main issue affecting multiple object tracking: merging of segmented blobs. Merging
is defined as the phenomenon that happens when more mice move so close between
each other to be segmented as one big blob instead of more blobs well separated.
When merging occurs, landmark point positions and mice identities are lost and
must be restored. Many attempts have been performed to overcome this issue, with
very poor results.

Shape matching was introduced for the first time by Belongie et al. with the
shape context descriptor, and then extended and applied by Jacob et al. for different
pattern recognition and human silhouette tracing [2] [11]. Jacob introduced a new
parameter called inner distance as the shortest path connecting two points within
the shape they belong to. This parameter was exploited for shape context descrip-
tor to extend it to articulated shape matching. Braun applied the method for mice
matching, obtaining excellent results in terms of landmark point tracking and sepa-
ration of merged blobs [4]. Unfortunately, even in this case, tracking is executed on
two mice only and the extension to three mice is not so trivial. In fact, the algorithm

91

7 – Conclusions

implies that a big database of shapes representing two mice interacting is created.
Then, social interaction is classified executing the Inner-Distance-Shape-Context be-
tween the reference shapes (whose social interaction they represent is known) and
the investigated merged one. Finally, the new interaction is identified and labeled.
This method executes several times the point-to-point matching through IDSC, a
method that was comprehensively described in this dissertation. This makes the al-
gorithm extremely demanding, excluding any kind of real-time application. Hence,
we could not afford its employment but it was extremely useful as starting point for
the development of our system.

Our study aims to develop an automated tracking system for identification of
tagged mice for automatic social behavior analysis using advanced computer vision
techniques. Even though social behavior classification is our aim, we had to face
some important issues affecting multiple mice tracking. According to what was said
about merging, our study was mainly focused in solving the loss of landmark points
and mice identities when merging occurs. According to the Neuropathology depart-
ment of Johns Hopkins University School of Medicine, social behavior identification
is not required during merging, representing a secondary problem. More important
is landmark points tracking in frames immediately before and after merging and
mice identity preservation. Having accurate results in these terms would allow us to
well identify social interactions (exploiting landmark points), always knowing which
mouse is who (by identity detection).

Following this important information, we started to develop our system, whose
steps are resumed in the flowchart shown in figure 4.1. In essence, a pre-processing
phase with background estimation and subtraction, with consequent foreground ex-
traction, is executed. Then, an algorithm that identifies and removes static objects
which could interfere with mice segmentation is performed. Finally, the important
merging detector, implemented to understand whether merging is happening or not,
is run. According to the output of merging detector, geometric information is differ-
ently extracted. After that, the core of the algorithm, consisting in landmark point
tracking and identity detection, is run only in frames where merging is not occur-
ring, according to the output given by the merging detector in the previous frame.
In fact, if merging did not occur, NM-Tracker is run to detect landmark points, and
the Identity Preservation Algorithm is employed to keep mice identity, following
centroids position; if merging occurred, the heavier IDSC-Tracker is used to detect
landmark points again, and the Identity Detection Algorithm is run to identify and
segment metal tags, bound around mice ears, to restore their identities. In this last
case, the algorithm is much more computational demanding since point-to-point
shape matching techniques are employed for landmark points detection. Metal tags
segmentation is carried out detecting not only head and tail, but left and right ear
too. Then, a neighborhood is generated around each ear, and tag research is run.
Finally, tag position is assigned exploiting the properties of invariance to rotation

92

7 – Conclusions

and translation of the Inner-Distance-Shape-Context algorithm.
The tracking algorithm showed very good results in terms of landmark point

positions, detected frame by frame. A validation showed that head and tail position
was wrongly detected only in the 6.3% of frames in a 20-minutes-long video where
three mice move. This result is even improvable implementing a post-processing cor-
rection introduced as future work in section 6.3. The identity detection algorithm
was validated on twenty different one-minute-long videos where one mouse moves.
In ten of them, a left-ear-tag mouse was recorded, while a right-ear-tag mouse was
employed in the recording of the other ten. Even in this case, results are very promis-
ing, since the right identity was detected in more than the 81% of frames composing
the twenty videos. The price we pay for this good result is a high computational
time demanding algorithm that makes it not suitable for real-time applications on
common instrumentation. Nevertheless, the high accurate results obtained made us
believe that our system could be implemented in an off-line phase of the processing
that will represent the base of the real-time application. Future work will exploit
this system for an off-line analysis and characterization of all possible shapes that
mice can assume while moving within their home cage. The idea is to characterize
each shape with a series of parameters that can be extracted frame by frame, thanks
to the always available location of head, tail and ears, given by our algorithm. Once
each shape will be characterized with these parameters, a sort of energy could be
obtained by a combination of all the other geometrical parameters that can be ex-
tracted. Then, each shape will be entirely described by its energy that will be its
univocal fingerprint, and a big dictionary of shapes, functioning as reference shape
dataset, could be built. If we will manage to get this result, the process of finding
ears (so identity) will turn into a simple arithmetic comparison between parameters,
then to a fast-real-time identity detection that will lay the groundwork for social
behaviors classification.

93

Appendix A

Ellipse-Drawing Algorithm

The ellipse-drawing algorithm introduced in 4.6.2 was described for the first time
by Fitzgibbon et al. and later improved by Halir and Flusser [7] [9]. The algorithm
is based on the idea that an ellipse represents a special case of a general conic that
can be described by an implicit polynomial:

F (x, y) = ax2 + bxy + cy2 + dx+ ey + f = 0

with the ellipse specific constraint

b2 − 4ac < 0 (A.1)

where a,b,c,d,e,f are the coefficients of the ellipse and (x,y) the coordinates of
points. Since the long implicit form of the polynomial is uncomfortable to handle,
introducing the vectors

a = [a, b, c, d, e, f]T

x = [x2, xy, y2, x, y, 1]

we can rewrite it in a vector form

Fa(x) = a · x = 0 (A.2)

One of the most common methods for conic fitting consists in minimizing the sum
of squared algebraic distances of the points (xi, yi) belonging to the conic represented
by coefficients a):

min
a

N∑
i=1

F (xi, yi)
2 = min

a

N∑
i=1

(Fa(xi))
2 = min

a

N∑
i=1

(xi · a)2 (A.3)

The parameter vector a must be constrained in order to avoid the trivial solution
where a is a null vector, and to make the conic representable by any multiple of a

95

A – Ellipse-Drawing Algorithm

solution a. Since we want to find an ellipse, and not a generic conic, we must consider
the ellipse constraint A.1. So, we want to limit the vector a so that the conic
it represents is forced to be an ellipse. According to Fitzgibbon, the constrained
problem given by A.1 is hard to solve. Since we have the freedom to scale conic
parameters (a) because any coefficient we put as multiplier of a doesn’t change the
conic, we can turn the inequality constraint A.1 into an equality constraint:

4ac− b2 = 1 (A.4)

At this point, the problem can be formulated as:

min
a
||Da||2 (A.5)

with the constraint condition

aTCa = 1 (A.6)

where:

D =


x21 x1y

2
1 y21 x1 y1 1

...
...

...
...

...
...

x2i xiy
2
i y2i xi yi 1

...
...

...
...

...
...

x2N xNy
2
N y2N xN yN 1

 (A.7)

is the design matrix and represents minimization A.3, and

C =



0 0 2 0 0 0
0 −1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(A.8)

is the constraint matrix representing equation A.1.
Introducing the Lagrange multiplier λ and differentiating, we obtain:

2DTDa− 2λCa = 0 (A.9)

always with the constraint
aTCa = 1

The same equation can be written introducing the scatter matrix S:

Sa = λCa (A.10)

96

A – Ellipse-Drawing Algorithm

with the constraint
aTCa = 1

where the scatter matrix

S = DTD =



Sx4 Sx3y Sx2y2 Sx3 Sx2y Sx2
Sx3y Sx2y2 Sxy3 Sx2y Sxy2 Sxy
Sx2y2 Sxy3 Sy4 Sxy2 Sy3 Sy2
Sx3 Sx2y Sxy2 Sx2 Sxy Sx
Sx2y Sxy2 Sy3 Sxy Sy2 Sy
Sx2 Sxy Sy2 Sx Sy S1


(A.11)

where the operator S indicates the sum

Sxayb =
N∑
i=1

xai y
b
i (A.12)

At this point, equation A.10 is solved using generalized eigenvectors. Six real
solutions (λj, aj) exist, but since

||Da||2 = aTDTDa = aTSa = λaTCa = λ (A.13)

we just want the eigenvector ak corresponding to the minimal eigenvalue λk. The
solution of the problem represents the ellipse that best fit the studied set of points
[7].

Since the solution of the equation is considerably demanding in terms of compu-
tational time, the original approach was improved by Halir and Flusser [9]. In their
study, Halir and Flusser noticed that matrices S and C have a structure that can
be simplified as follow:

D = (D1|D2) (A.14)

where

D1 =


x21 x1y1 y21
...

...
...

x2i xiy
2
i y2i

...
...

...
x2N xNy

2
N y2N

 (A.15)

and

D1 =


x1 y1 1
...

...
...

xi yi 1
...

...
...

xN yN 1

 (A.16)

97

A – Ellipse-Drawing Algorithm

The scatter matrix S can also be simplified as follow:

S =

(
S1 S2

ST2 S3

)
(A.17)

where
S1 = DT

1D1 S2 = DT
1D2 S3 = DT

2D2

In the same way, constraint matrix C is simplified as follow:

C =

(
C1 0
0 0

)
(A.18)

where

C1 =

0 0 2
0 −1 0
2 0 0


In the end, vector of coefficients a is split as follow:

a =

(
a1
a2

)
(A.19)

where a1 =

ab
c

 and a2 =

de
f


According to these simplifications, the equation A.10 can be rewritten as follow:(

S1 S2

ST2 S3

)
·
(
a1
a2

)
= λ ·

(
C1 0
0 0

)
·
(
a1
a2

)
(A.20)

All the simplifications carried out, with additional algebraic solution steps, takes to
the definition of the reduced scatter matrix M of size 3x3

M = C−
1 1(S1 − S2S−

3 1ST2) (A.21)

that allows us to rewrite the problem expressed by A.10 as the set of following
equations: merging flag in current frame

Ma1 = λa1 (A.22)

aT1C1a1 = 1 (A.23)

a2 = −S−
3 1ST2 a1 (A.24)

a =
(
a1a2

)
(A.25)

The problem expressed in terms of the last four equations described can be solved
considering the minimization problem already discussed, where eigenvector a that
yields a minimal value λ represents the vector of coefficients of the ellipse that best
fits the data points.

98

Appendix B

Pseudocode

This appendix aims to make the reader acquainted with the code described step by
step in this dissertation. Since the algorithm is quite long and nested, we believed
that dividing it in different parts, according to the phase each part belongs to (pre-
processing, processing, post-processing), would have made it easier to read and
follow. That is why this appendix is divided in different subsections. Nevertheless,
since the post-processing methods were just outlined as a possible future work, we
believed not useful inserting a section inherent to them.

B.1 Pre-processing
Video Reader and Variable Definition:
1: videoReader Initialization
2: load reference shapes . reference shapes found through PCA
3: video selection executed by the user
4: counters initialization ii = 0
5: initialization of Blob Analysis Block: output are set to be major axis, minor

axis, centroid, area, orientation, eccentricity.
6: minimum blob area representing mice set to 2000pixels

Background Estimation:
1: while video is not finished do
2: ii = ii+ 1
3: calculate normalized frame
4: store normalized frame in the layer ii of the matrix frames
5: end while
6: sum all frames of matrix frames
7: find background by averaging: background← SumOfFrames

ii

return background

99

B – Pseudocode

Static Object Identification:
1: binarize background (global threshold set to 0.3)
2: fill connected components
3: for every pixel of the binarized background do
4: if pixel background(i, j) belongs to static object then
5: T (i, j)← 0.99
6: else
7: T (i, j)← 0.80
8: end if
9: end for

return threshold matrix T

B.2 Frame-by-Frame Processing

while video /= isDone do
take the current frame

3: subtract background
segment foreground
perform morphological operations

6: mask ← segmentedForeground
if nblobs ∈ mask > 3 then

while nblobs ∈ mask > 3 do
9: delete blob with smallest area

nblobs = nblobs − 1
end while

12: end if
find centroids
if merging in current frame then

15: isMerged=1 . merging flag in current frame
find number of blobs that must be divided
initialize k-means with oldCentroids

18: [clusters, centroids] = kmeans(micepoints)
newCentroids← centroids
mouse1← points ∈ cluster1

21: mouse2← points ∈ cluster2
mouse3← points ∈ cluster3
for each mouse mi do

24: find best fitting ellipse for points ∈ clusteri
plot ellipse

end for

100

B – Pseudocode

27: else if No merging in current frame then
for each mouse mi do

run Blob Analysis block
30: extract major axis, minor axis, orientation, centroid, eccentricity

plot ellipse around mouse mi

end for
33: if isMergedOld=0 (no merging in previous frame) then

run NM-Tracker . No-Merging Tracker
assign head and tail landmark points

36: run the centroid-based Identity Preservation Algorithm
assign mice identities

else if isMergedOld=1 (merging in previous frame) then
39: run IDSC-Tracker . Inner-Distance-Shape-Context Tracker

assign head, tail, left and right ear
run the Identity Detection Algorithm

42: assign mice identities (left-ear tag, right-ear tag, no tag)
end if

end if
45: oldCentroids← newCentroids

isMergedOld← isMerged . merging flag in previous frame
return mice identities
return landmark points
return geometrical parameters

end while

101

Bibliography

[1] United States Department of Agriculture (USDA), ed. Annual Report Animal
Usage by Fiscal Year. 2016. url: https://speakingofresearch.files.
wordpress . com / 2008 / 03 / usda - annual - report - animal - usage - in -
research-2016.pdf.

[2] Serge Belongie, Jitendra Malik, and Jan Puzicha. “Shape Matching and Object
Recognition Using Shape Context”. In: IEEE Transaction on Pattern Analysis
and Machine Intelligence (2002).

[3] Fred L. Bookstein. “Principal Warps: Thin-Plate Splines and the Decomposi-
tion of Deformations”. In: IEEE Transaction on Pattern Analysis and Machine
Intelligence (1989).

[4] Stav Braun. “Tracking Multiple Mice”. Master’s Degree Thesis. Boston, MA,
USA: Massachussets Institute of Technology, chap. 3.7.

[5] Luca Catarinucci, Riccardo Colella, Luca Mainetti, et al. “An animal tracking
system for behavior analysis using radio frequency identification”. In: Nature
America (2014).

[6] Fu Chang, Chun-Jen Chen, and Chi-Jen Lu. “A linear-time component-labeling
algorithm using contour tracing technique”. In: Computer Vision and Image
Understanding (2003).

[7] Andrew W. Fitzgibbon, Maurizio Pilu, and Robert B. Fisher. “Direct Least
Squares Fitting of Ellipses”. In: Proceedings of 13th International Conference
on Pattern Recognition (1996).

[8] Luca Giancardo, Diego Sona, Huiping Huang, et al. “Automatic Visual Track-
ing and Social Behaviour Analysis with Multiple Mice”. In: PLOS ONE (2013).

[9] Radim Halíř and Jan Flusser. “Numerically Stable Direct Least Squares Fit-
ting of Ellipses”. In: Proceedings of 13th International Conference on Pattern
Recognition (1999).

[10] Joanna L. Jankowsky, Tatiana Melnikova, Daniel J.Fadale, et al. “Environmen-
tal Enrichment Mitigates Cognitive Deficits in a Mouse Model of Alzheimer’s
Disease”. In: The Journal of Neuroscience (2005).

103

BIBLIOGRAPHY

[11] Haibin Ling and David W. Jacobs. “Shape Classification Using the Inner-
Distance”. In: IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (2007).

[12] MathWorks. Matlab documentation. Online, visited on 12th of August 2018.
url: https://www.mathworks.com/help/images/ref/bwmorph.html.

[13] MathWorks. Matlab documentation. Online, visited on 13th of August 2018.
url: https://www.mathworks.com/help/vision/ref/blobanalysis.html.

[14] Jacqueline N. Crawley. “Mouse Behavioral Assays Relevant to the Sympotms
of Autism”. In: Brain Pathology (2007).

[15] Shay Ohayon, Ofer Avni, Adam L. Taylor, et al. “Automated Multi-day Track-
ing of Marked Mice for the Analyis of Social Behavior”. In: Journal of Neuro-
science Methods (2013).

[16] Alfonso Pérez-Escudero, Juliàn Vicente-Page, Robert C. Hinz, et al. “idTracker:
tracking individuals in a group by automatic identification of unmarked ani-
mals”. In: Nature America (2014).

[17] Alfonso Pérez-Escudero, Juliàn Vicente-Page, Robert C. Hinz, et al. idTracker:
tracking individuals in a group by automatic identification of unmarked ani-
mals Supporting Text. 2014.

[18] Andreas T. Schaefer and Adam Claridge-Chang. “The Surveillance State of
Behavioral Automation”. In: Current Opinion in Neurobiology (2012).

[19] Amanda N. Smolinksy, Carisa L. Bergner, et al. Mood and Anxiety Related
Phenotypes in Mice. Chapter 2. Springer, 2009.

[20] A.J. Spink, R.A.J. Tegelenbosch, et al. “The EthoVision video tracking system-
A tool for behavioral phenotyping of transgenic mice”. In: Physiology & Be-
havior (2001).

[21] Noldus Information Technology, ed. EthoVision XT. url: https://www.
noldus.com/animal-behavior-research/products/ethovision-xt.

[22] Noldus Information Technology, ed. EthoVision XT technical specification.
2013.

[23] Jakob Unger, Mike Mansour, Marcin Kopaczka, et al. “An Unsupervised Learn-
ing Approach for Tracking Mice in an Enclosed Area”. In: BMC Bioinformatics
(2017).

[24] Remco C. Veltkamp and Michiel Hagedoorn. State-of-the-Art in Shape Match-
ing. 1999.

[25] Wikipedia. Luminance. Online, visited on 11th of August 2018. url: https:
//en.wikipedia.org/wiki/Luminance.

104

BIBLIOGRAPHY

[26] Wikipedia. Radio-frequency identification. Online, visited on 31st of July 2018.
url: https://en.wikipedia.org/wiki/Radio-frequency_identification.

105

		Politecnico di Torino
	2018-09-12T06:24:15+0000
	Politecnico di Torino
	Danilo Demarchi
	S

