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Abstract

In a perspective of evidence-based medicine, data from measurement systems,
processed by data mining techniques, can provide quantitative measures that
can make the available clinical information more objective and be an impor-
tant aid for clinical decision making. This is the leitmotif of this project.

In this Master Thesis work the focus is on motor symptoms of Parkin-
son's disease, in particular on bradykinesia (slowness of movement). The
motivation is found in the need to have quantitative methods for the motor
assessment of patients, in order to be able to monitor the daily �uctuations
of the motor symptoms (alternate of phase ON and phase OFF). In fact, the
most used clinical evaluation scale, the MDS-UPDRS, in which the clinician
is asked to assign a score between 0 and 4 according to the severity of the
considered symptom, does not meet requirements of objectivity and repeata-
bility. Furthermore, the fact that this kind of evaluation is performed only
within follow-up sessions make impossible for the neurologist to observe the
variations of the pharmacological/surgical treatment that occurs in Parkin-
son's disease patients.

The main techniques for the assessment of motor functions in Parkinson's
disease, based on inertial sensors located in wearable devices, were analysed
in literature. The purpose of this study is to investigate the use of a common
smartphone to collect data during the execution of a motor task and the best
machine learning method for the quatitative assessment of bradykinesia.

Ninety-three Parkinson's disease patients and ten healthy people parte-
cipated in this study. The data used in the project was gathered from a
smartphone positioned on the thigh while the patient conducted a prescribed
movement activity: the Leg Agility (task 3.8 in the MDS-UPDRS). Some ma-
chine learning models were trained and tested for the supervised classi�cation
based on the UPDRS scale. A set of 16 features were extracted from the data
and both multiclass classi�cation and binary classi�cation were performed.
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Introduction

According to the Italian Parkinson's Association, more than 300 000 people
are living with Parkinson's disease in Italy [1]. Parkinson's desease patients
present highly variable motor symptoms including bradykinesia (slowness of
movements), postural instability, tremor and freezing of gait. The variability
of symptoms needs a correctly adjusted medication. This is hard to achieve
since the current state of the art for assessing PD symptoms in clinical rou-
tine is by using clinical rating scales based on observations and judgments of
clinicians and medical history. In other words, there are no way of measur-
ing the severity of motor symptoms other than listening to and observing the
patient. This leads to the undesirable situation of a physician's assessment
depending mainly on the display of symptoms within a very short time frame.
This especially becomes a problem for long-term patients since the e�ect of
the medication wears o� after several years of usage. Additionally, similar
symptoms may be rated di�erently depending on the physician's training and
experience.
Consequently, a need for objective evaluation of patient symptoms outside of
the short meeting between the patient and the physician is present. There-
fore, the development of technical aids for short- and long-term objective
symptom evaluation in both the clinical and the home environment is nec-
essary in order to improve the treatment of each patient. Recently, several
research groups have successfully quanti�ed symptoms using accelerometers
and gyroscopes ([2, 3, 4, 5, 6, 7]).

This thesis is a part of a larger project trying to develop easier and more
objective tools for Parkinson's disease symptoms evaluation and monitoring.
The main focus of this thesis work is to �nd the most suitable model struc-
ture for the quanti�cation of bradykinesia in Parkinson's patients. It involves
using machine learning techniques to quantify the data collected from smart-
phone sensors and train di�erent classi�cation algorithms to evaluate their
performance with respect to diagnosing Parkinson's bradykinesia of lower
limbs based on the Uni�ed Parkinson's Disease Rating Scale (UPDRS).
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Related work

Sensor-based PD motor symptoms analysis and quanti�cation have got a lot
of attention in the research �eld. Several research groups used data min-
ing techniques and arti�cial intelligence systems to recognize the severity of
motor symptoms using the data derived from wearable sensors.

Bonato et al [2] presented a preliminary evidence that the accelerometer
and surface electromiogra�c signals recorded from PD patients during some
motor tasks bring with them some features that can be used to correctly
identify motor �uctuations. They show that data mining not only is able
to classify these disorders for a correct patient assessment, but it has the
potential of increasing our understanding of Parkinson's Disease disorders.

Patel et al [8] presented the results of a pilot study that aimed at assessing
the feasibility of using accelerometer data to estimate the severity of tremor,
bradikynesia and dyskinesia in parkinsonian patients. The expert clinicians
were asked to score some standardized UPDRS motor tasks of twelve patients
by analysing the video recordings of the movements and a comparison to
the classi�cation algorithm results was performed. They achieve average
estimation error values of 3.4% for tremor, 2.2% for bradykinesia, and 3.2%
for dyskinesia.

Heldman et al [9] developed and evaluated an algorithm for quantifying
gait, freezing of gait and lower limb bradikynesia in PD patient using a heel-
worn motion sensor unit. The aim of their study was to integrate the model
into a home-based system for monitoring motor symptoms.

Kim et al [10] investigated and developed quantitative measures of lower
limb bradykinesia.

Parisi et al [11] proposed an accurate description of the features for the
characterization of the following motor tasks: Leg Agility, Sit-to-Stand and
Gait. They commented the correlation between the kinematic variables and
the UPDRS scoring.
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Thesis outline

The thesis is organized in the following format:

Chapter 1 presents a general overview on Parkinson's disease, from
its pathophysiology to its management with a focus on the symptom of
bradykinesia.

Chapter 2 illustrates the working principles of the smartphone sensors
used in this work.

Chapter 3 summarizes the available data from Parkinson's disease and
control population, as well as the methods that were used during the
acquisition sessions and the data analysis.

Chapter 4 shows the results obatained from the analysis and the
classi�cation processes.

Chapter 5 and 6 provide the discussion of the results, future directions
and concluding remarks of the thesis.
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Chapter 1

Parkinson's Disease

1.1 History and Epidemiology

Parkinson's disease (PD) is an idiopathic disease of the nervous system char-
acterized by both motor and non-motor system manifestations. It is one
of the most common chronic progressive neurodegenerative disorders, sec-
ond only to Alzheimer's disease [12]. Although the physical symptoms and
rudimentary medical descriptions date back thousands of years (e.g. by the
medical researcher Galen of Pergamon in A.D. 175), one of the earliest clin-
ical descriptions identifying PD as a neurologic syndrome is found in the
1800's when James Parkinson, a London surgeon, systematically described
six individuals with symptoms of the disease that bears his name. In partic-
ular, in his "An Essay on the Shaking Palsy", published in 1817, for the �rst
time he described the disease as:

Involuntary tremulous motion, with lessened muscular power,
in parts not in action and even when supported; with a propen-
sity to bend the trunk forwards, and to pass from a walking to a
running pace: the senses and intellects being uninjured. [13]

However, it seems to have attracted little attention at the time. About
six decades passed before the great French neurologist Jean-Martin Charcot
spoke of the maladie de Parkinson.

According to the global declaration for PD, about 6.3 million people suf-
fer from PD worldwide. The prevalence of PD is about 0.3% of the whole
population in industrialized countries, rising up to 1% over the age of 65 and
to 4% over 80 [14].
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CHAPTER 1. PARKINSON'S DISEASE

Figure 1.1: Levels of dopamine in a PD neuron (right) and normal levels (left).
From [16].

1.2 Pathophysiology and Risk Factors

Although tremendous advances have been made in this �eld, PD is still
considered largely idiopathic (i.e. of unknown cause). Physiologically, the
symptoms associated with Parkinson's disease are the result of the loss
of a number of neurotransmitters, most notably dopamine. Dopamine,
like other neurotransmitters, transmits chemical messages from one nerve
cell to another across the synapse, a space between the presynaptic cell
and the postsynaptic receptor. Dopamine is secreted into the synapse
from membrane storage vesicles in the presynaptic membrane. It crosses
the synapse and binds to the postsynaptic membrane, where it activates
dopamine receptors. Unused dopamine remaining in the synapse is absorbed
back into the presynaptic cell; once back in the presynaptic cell, the excess
dopamine is repackaged into storage vesicles and released once more into
the synapse.

Although dopamine cell loss cannot be measured directly, measurements
in neurologically normal people and in nonhuman primates reveal a slow
progressive loss of dopamine with age. In Parkinson's disease the loss occurs
at a much greater rate and both biochemical measures and imaging studies
suggest that there is a signi�cant decrease in dopamine by the time motor
symptoms appear. Parkinson's disease can be described as an accelerated
version of the cell death seen with normal aging. [15]
Figure 1.1 shows the di�erence between low dopamine levels in a neuron
a�ected by PD and normal levels.

Degeneration of dopamine neurons is particularly evident in the area of
the brainstem called Substantia Nigra (Fig. 1.2). As a result, dopamine avail-
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CHAPTER 1. PARKINSON'S DISEASE

Figure 1.2: Location of Substantia Nigra in the human brain [17]

ability decreases and the symptoms progressively develop, becoming more
severe over time. Aggregation of a protein that normally exists in the cells,
called alpha-synuclein, is found in PD, forming round structures within the
cell known as Lewy bodies. The factors and exact mechanisms that lead to the
aggregation of alpha-synuclein and to the death of the dopaminergic neurons
in PD are still not fully understood.

Most movement disorders specialists believe that PD results from a com-
plex interplay between genetic predisposition and environmental factors.
When the symptoms present at a younger age (below age 40), Parkinson's
disease is often familial, caused primarily by genetic mutations.

1.3 Symptoms and Causes

Parkinson's disease symptoms and signs may vary from person to person. In
the early stages signs may be mild and may go unnoticed for years. They
can be divided into motor and non-motor, depending on whether they are
related to body movement abnormalities or not. Onset of motor symptoms
is asymmetric with usually an arm a�ected �rst. Signs and symptoms then
spread to the other limb on that side and later a�ect the opposite side. The
four cardinal motor symptoms are:

• Bradykynesia: a general slowing of movement, sometimes coupled
with an inability to initiate it. Bradykinesia causes di�culties in
performing sequential and repeated movements and, in the advanced
stages, it is subject to rapid �uctuations from ease of movement to in-
ability to move. To make an assessment, the doctor asks PD patients to
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CHAPTER 1. PARKINSON'S DISEASE

perform rapid, repetitive hand movements, such as tapping the index
�nger on the thumb and supination-pronation, or lower limb move-
ments, such as raising and stomping the foot on the ground. Bradyki-
nesia is present in all cases of Parkinson's;

• Tremor: an involuntary, rhythmical movement (at a frequency of ap-
proximately 4�6 Hz) that a�ects a part of the body. It is caused by
the rapid and alternating contraction and relaxation of muscles. It is a
resting tremor, which becomes more obvious and severe when the per-
son is resting and improves with intentional movement [18]. It tends
to be present in the hands, arms, legs, jaw and face. Tremor in the
hand is typically of the "pill rolling" type, where the thumb and fore-
�ngers seem to rotate about the some point. Even if tremor is the
most known motor symptom in Parkinson's disease, it is thought that
approximately 70% of people with the condition have a tremor at the
time of diagnosis;

• Rigidity: an abnormal sti�ness in a limb or part of the body. Rigidity
can prevent muscles from stretching and relaxing as they should. As
a consequence, rigidity may be experienced as di�culty turning when
walking, turning in bed and getting out of a chair or bed, as reduced
arm swing when walking, di�culty with everyday activities such as
dressing and writing, or as reduced facial expression or a mask-like
face;

• Postural instability: an impaired balance and coordination or di�-
culty standing or walking. It also manifests as a stooped and droopy
posture, as well as halts and freezes while walking [18]. People with
advanced Parkinson's tend to walk with short, rapid steps (a behaviour
called "festination"). This is one of the most disabling symptoms be-
cause of the increased chance of falls. To assess a patient's balance a
trained movement disorder specialist gives a moderately forceful back-
wards tug on the patient and monitors how the patient recovers.

Resting tremor, bradykinesia and rigidity are relatively early signs often
apparent in the �rst-a�ected extremity at the time of diagnosis. Postural
instability or imbalance is a late symptom typically emerging several years
into the disease [19].

Individuals with more progressive Parkinson's disease develop a distinc-
tive shu�ing walk with a diminished or absent arm swing. It may become
di�cult to start walking and to make turns. Individuals may freeze in mid-
stride (Freezing of Gait) and appear to fall forward while walking.
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CHAPTER 1. PARKINSON'S DISEASE

A variety of non-motor symptoms have been described in the setting of
Parkinson's disease:

Olfactory impairment is one of the most prevalent non-motor symptoms
as it is present in more than 90% of patients with PD, often appearing
at the very early stage of the disease [20]. Olfactory dysfunction is
supposed to be associated to a more central de�cit rather than a damage
of the peripheral olfactory system [21].

Orthostatic hypotension is the most widely recognized aspect of cardio-
vascular dysfunction in PD. It may be present in almost 60% of patients,
although only a minority of these patients may be symptomatic [22].

Constipation is another frequent non-motor sign in Parkinson's disease
that can precede motor sympoms by more than 20 years [23] . About
70% - 80% PD patients su�er from it and it is reported that constipa-
tion is correlated with the severity and duration of the disease [24].

Sleep disturbances are very common in the setting of PD and their preva-
lence may reach close to 90%. One of the most frequent of them is the
REM Sleep Behavior Disorder (RBD), in which an increased violent
dream content leads to many violent and injurious movements, a�ect-
ing also the caregivers' quality of life [25].

Other important non-motor symptoms include depression, urinary fre-
quency, sexual dysfunction, sweating, hypersalivation, dysphagia, speech
problems, hallucinations and fatigue [26].

1.4 A focus on bradykinesia

The term bradykinesia was �rst used by James Parkinson to describe a gen-
eral slowness of movements. Although it is the most characteristic clinical
feature in Parkinson's disease patients, it can be seen in many other disorders,
including depression, Huntington's disease and dystonia [27].

Bradykinesia includes di�culties with planning and executing movements
and with performing sequential and rapid tasks. The initial manifestation
can be noticed in performing activities of daily living with slow movements
and larger reaction times.

Bradykinesia is a term often used interchangeably with akinesia and hy-
pokinesia. According to Merritt's Neurology [28], bradykinesia refers to a
loss of automatic movement and di�cult initiating it, hypokinesia is related
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CHAPTER 1. PARKINSON'S DISEASE

to a reduction in amplitude and di�culty with repetitive movements and
akinesia is the loss of ability to move the muscles voluntary (its typical sign
is freezing).

Bradykinesia has many facets as it a�ect many body parts. Parkinson's
disease patients' face loses spontaneous espression (hypomimia). The arms
are characterized by loss of gesturing, the voice has a monotonous tone
with a lack of in�ection (aprosody) and the speech becomes very soft
(hypophonia) and unclear (dysarthria). The dominant hand shows often a
slow and small handwriting (micrographia).

Although secondary factors can contribute to bradykinesia (rigidity,
tremor, muscle weakness), the primary de�cit is caused by insu�cient muscle
force recruitmemt when initiating a movement [27].

Bradykinesia is the cardinal PD feature that correlates best with the
degree of dopamine insu�ciency [12], but it is supposed to be dependent on
the emotional state of the patient. For example, excited patients may be
able to make quick movements (such as suddenly run if the word "�re" is
screamed). This behaviour is known as kinesia paradoxica and it suggests
the integrity of the motor programmes in patients with PD but the di�culty
in accessing them without an external trigger. It is well known that this
de�cit is ameliorated when external cues, such as a marching music or a loud
noise, are given to guide the movement [12].

1.5 Functional neuroimaging

Since some patients, in particular in the very early stages of the disease, are
hard to diagnose due to unclear clinical signs or unconvincing response to
pharmacological treatment, a more accurate way to diagnose Parkinson's dis-
ease is a nuclear imaging technique. Assessment of the integrity of dopamin-
ergic areas can be made using radio-labelled ligands, detected with SPECT
(Single Photon Emission Computed Tomography) or PET (Positron Emis-
sion Tomography).

SPECT imaging using 123I-Io�upane (Brand name: DaTSCAN) is the
most sensitive imaging technique and has proved useful in di�erentiating
parkinsonism due to nigrostriatal degeneration and nondegenerative causes
[29]. This technique is able to discriminate patients with neurodegenera-
tive Parkinsonian Syndrome from healthy subjects or patients with tremor
disorders (such as Essential tremor) by detecting presynaptic dopaminer-
gic de�cits. This type of imaging uses 123I to bind to the DAT (dopamine
transporter) and then the amount of transporter present is visualized. These
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transporters normally function to reuptake dopamine from the synaptic cleft
and they are reduced 50-70% in patients with Parkinson's disease [30]. Nor-
mal scans are characterized by symmetric and intense "comma"-shaped re-
gions, due to DAT binding in the caudate nucleus and putamen on both
hemispheres (Fig 1.3 - left image). Abnormal scans, on the other hand, show
distortions or asymmetry of this shape (Fig 1.3 - right image).

Figure 1.3: 123I SPECT images of a healthy control (left) and a patient with
Parkinson's disease (right). PD patient shows bilateral but asym-
metric loss of putamen DAT binding. [31]

1.6 Pharmacological treatment

The goal of medical management of Parkinson's disease is to control signs and
symptoms while minimizing side a�ects. In fact there are not neuroprotective
therapies and, except in very early disease, medications will not entirely
eliminate signs and sympoms [32]. As the disease progresses, symptoms
increase despite best medical management [19].

The primary medication used to treat Parkinson's disease is levodopa.
Dopamine itself is not e�ective as a medication because it cannot cross the
blood-brain barrier, but levodopa is a dopamine precursor that can do so. Its
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development in the late 1960s represents one of the most important break-
throughs in the history of medicine. Levodopa is administered with car-
bidopa, which prevents levodopa from being converted into dopamine prema-
turely in the bloodstream, allowing more of it to get to the brain. Therefore,
a smaller dose of levodopa is needed to treat symptoms. The well-known
combined carbidopa/levodopa name brand formulation is called Sinemet R©.
However, there are many di�erent preparations of carbidopa/levodopa, in-
cluding long-acting forms, a combined long and short-acting capsule called
Rytary R©, a formulation that dissolves in the mouth without water, called
Parcopa R©, and a combined formulation that includes the COMT inhibitor
entacapone, called Stalevo R©.

Levodopa in pill form is absorbed in the blood from the small intes-
tine and travels through the blood to the brain, where it is converted
into dopamine. Carbidopa-levodopa immediate/extended release combina-
tion capsules (RytaryTM) maintain levodopa concentrations longer than the
immediate-release or other available oral levodopa formulations. Following
an initial peak at about one hour, plasma levodopa concentrations are main-
tained for about four to �ve hours before declining [33].

Carbidopa/levodopa is also available via a dopamine intestinal infusion
pump (DuopaTM, approved by FDA in 2015). This solution is for patients
with more advanced Parkinson's who still respond to carbidopa-levodopa, but
who have a lot of �uctuations in their response. The small, portable infusion
pump provides over 16 continuous hours of carbidopa and levodopa and de-
livers them directly into the small intestine. One of the major drawbacks to
the pump approach is the need for a percutaneous gastrojejunostomy (i.e. a
surgical procedure in which an anastomosis is created between the stomach
and the proximal loop of the jejunum) [34]. The decision about when to
start carbidopa/levodopa is di�erent for every person with PD and requires
consideration of potential bene�ts, risks and the availability of alternatives.

The combination of carbidopa and levodopa is the most e�ective agent
available for the treatment of motor symptoms and prolongs the capacity
to perform instrumental activities of daily living. However, its early use is
associated with earlier development of dyskinesias (uncontrolled choreic or
dystonic movements).

Other types of medications available to treat the symptoms of Parkinson's
disease include:

Dopamine agonists. They mimic dopamine e�ects in the brain directly
stimulating dopamine receptors and without changing into dopamine.
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They last longer than levodopa and may be used to smooth the "on"
and "o�" e�ects. They include pramipexole (Mirapexin R©), ropinirole
(Requip R©), rotigotine (Neupro R©, given as a patch) and apomorphine.
Side e�ects of dopamine agonists include hallucinations, orthostatic hy-
potension, sleepiness and impulse control disorders (pathological gam-
bling, compulsive shopping and eating, hyper-sexuality).

MAO B inhibitors. These medications inhibit the brain enzyme
monoamine oxidase B (MAO B), which is an enzyme that me-
tabolizes brain dopamine. They include selegiline (Jumex R©),
rasagiline (Azilect R©) and sa�namide (Xadago R©).

COMT inhibitors. entacapone (Comtan R©) is the primary medication for
this class. Inhibitors of catechol-O-methyltransferase are commonly
used as an adjunct to levodopa therapy for the amelioration of wearing-
o� symptoms [35].

Amantadine . It is a glutamate antagonist drug that can be prescribed to
treat dyskinesias [36].

1.7 Surgical treatment

Surgical therapies are usually reserved for PD patients who are experiencing
decreased e�ects of medical dopamine therapy over time. Speci�cally,
continued motor �uctuations and dyskinesias may indicate candidacy.
Motor �uctuations are manifested as alterations between good control "on"
periods and PD symptomatic "o�" periods.

Deep brain stimulation (DBS) is currently the mainstay surgical proce-
dure for the treatment of advanced PD. This technique involves the surgical
implantation of two leads with four contacts into the brain (accurately target-
ing speci�c structures within the basal ganglia like the subthalamic nucleus
(STN), globus thalamus (GP) or ventral intermediate nucleus). The leads
are connected by an extension wire that runs down the neck under the skin
to a medical device (Implantable Pulse Generator, IPG) placed below the
collarbone. The electrical impulses sent to these speci�c parts of the brain
help improve the functioning of the motor pathways modifying �rings of neu-
rons in the targer site. This procedure does not involve destruction of brain
tissue, is reversible and can be adjusted as the disease progresses as well as
bilateral procedures can be performed. The IPGs can be programmed for
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monopolar stimulation (i.e. only one electrode is turned on) or bipolar (i.e.
two to four electrodes are working). The pulse width, amplitude and cur-
rent frequency can be adjusted by the expert neurologist using a hand held
computer programmer placed on the skin over the stimulator.

As not all patients are candidates for surgical treatment, a careful patient
assessment and selection by a movement disorders specialist is paramount
[37]. Factors that predict a good response to surgery for advanced Parkinson's
disease include good response to levodopa, few comorbidities, absence of
cognitive impairment, and absence of (or well-controlled) depression [38].

1.8 The Uni�ed Parkinson's Disease Rating

Scale (UPDRS)

In the clinical �eld, the evaluation of the motor and non-motor impairments
in PD is limited to the use of scales and questionnaires. The Uni�ed Parkin-
son's Disease Rating Scale (UPDRS) has been the most widely used clinical
rating scale for Parkinson's disease and the reference measure for regulatory
agencies since its development in the 1980s [39]. In 2001, the Movement
Disorder Society (MDS) sponsored a critique of the UPDRS and the sum-
mary conclusions recommended the development of a new version, termed the
MDS-sponsored UPDRS revision (MDS-UPDRS). It retained the strengths
of the original scale, but resolved identi�ed problems and especially incorpo-
rated a number of clinically pertinent PD-related problems poorly captured
in the original version. It consists of 42 items in four subscales:

• Section I: Non-motor experiences of daily living;

• Section II: Motor experiences of daily living;

• Section III: Motor examination for both sides and di�erent body
parts;

• Section IV: Motor complications (including dyskinesias and �uctua-
tions).

The �rst half of Section I concerns a number of behaviors that are as-
sessed by the investigator with all pertinent information from patients and
caregivers. The second half of Section I and all the Section II are designed
to be amenable to questionnaire format and therefore can be completed by
the patient with or without the aid of the caregiver, but independently of the
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investigator. In any case, these two sections can be reviewed by the investi-
gator to ensure completeness and clarity, and also any perceived ambiguities
can be explained. Section III retains the objective assessments of parkin-
sonism and all tasks have speci�c instructions to give or demonstrate to the
patient. This section is completed by the examiner. Finally, for Section IV
the investigator is required to conduct the interview.
Each question is anchored with �ve responses that are linked to commonly
accepted clinical terms:

0 : Normal;

1 : Slight (i.e. symptoms/signs with su�ciently low frequency or intensity
that cause no impact on function);

2 : Mild (i.e. symptoms/signs of frequency or intensity su�cient to cause
a modest impact on function);

3 : Moderate (i.e. symptoms/signs su�ciently frequent or intense to im-
pact considerably, but not prevent, function);

4 : Severe (i.e. symptoms/signs that prevent function).

1.9 Lower limbs motor evaluation: Leg Agility

Task

A task speci�cally requested by the UDPRS scale for motor evaluation of
lower limbs is the Leg Agility task (LA). It consists of raising and stomping
the foot on the ground 10 times as high and as fast as possible, starting from
a sitting posture. Each leg is tested separately. According to the guidelines
of the Movement Disorder Society this task must be evaluated observing the
following parameters: speed, amplitude, slowing, hesitations and interrup-
tions.
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Chapter 2

Smartphone inertial sensors

Introduction

Advancements in technology have always had major impacts in medicine.
The smartphone is one of the most ubiquitous and dynamic trends in com-
munication and it is one of the fastest growing sectors in the technology
industry. Its role in medicine and education appears promising and exciting
[40].

Several examples of the use of smartphones for patient monitoring are
present in literature. By using the smartphone's GPS, one can track
Alzheimer disease patients' movements and provide them medicine and food
timing noti�cations [41]. The smartphone has also been used in rehabili-
tation after a coronary event or angioplasty for exercise sessions [42] or to
interpret gait and balance of patients with movements disorders using ac-
celerometer sensors [43]. Smartphone's sensors (accelerometer, gyroscope
and magnetometer) have also been used as fall detection and prevention so-
lutions [44], as well as Freezing-of-Gait monitor systems in patients a�ected
by Parkinson's disease [45].

Micro-Electro-Mechanical Systems (MEMS) are mechanical and electro-
mechanical elements developed in the recent 50 years through microfabrica-
tion techniques. Since their �rst applictions in the '50s, MEMS technologies
have progressively established a wide range of small, high performance and
inexpensive sensors. They are able to sense and respond to many variables
such as pressure, �ow, position, motion, strain [46].

Telehealth, telemonitoring and mobile health (mHealth) sensor tech-
nologies enable remote monitoring and management of patients a�ected by
chronic diseases, both at home and in outdoor environments. In healthcare
facilities, sensors focus on medical screening such as point-of-care parameters
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measurement device. Novel sensors for human biomedical signal acquisition,
together with wireless connectivity and low power solutions, are generating
new opportunities for wearable devices, which enable and guarantee continu-
ous monitoring together with users' freedom of movement [47]. In the clinical
�eld sensor technologies can represent a key element to assist decision-making
process [46].

This chapter provides an overview of MEMS accelerometers and gyro-
scopes technology and describes their working principle.

2.1 MEMS Accelerometer

An accelerometer measures proper acceleration, which is the acceleration it
experiences relative to free fall. Proper acceleration is not the same as coor-
dinate acceleration, being the rate of change of velocity, i.e. the acceleration
in a �xed coordinate system. [48]
For example, an accelerometer at rest will measure an acceleration due to
Earth's gravity, (by de�nition: g = 9.81m/s2). By contrast, accelerometers
in free fall will measure zero.

Modern accelerometers are small Micro Electro-Mechanical Systems
(MEMS). They can be seen as the simplest MEMS devices possible, con-
sisting of little more than a proof mass suspended on a �xed frame by a
spring. The mass de�ects from its neutral position under the in�uence of
external accelerations, generated by the motion of the sensor or by gravity.
Most commonly, the de�ection of the proof mass is measured using the ca-
pacitance di�erence between a set of �xed sensing plates and a set of beams
attached to the proof mass. Figure 2.1a shows a sketch of a MEMS ac-
celerometer. The modern-day smartphone is equipped with low-power three-
axis linear accelerometer which measures acceleration in Linear, Transversal
and Vertical directions (x-, y- and z-axis), as shown in Figure 2.1b.
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(a) (b)

Figure 2.1: Sketch of a MEMS accelerometer (a) and sensor axis orientation (b).

2.2 MEMS Gyroscope

Gyroscope is a device that measures angular rotation by means of Coriolis
acceleration, which is a result of Newton's law of motion applied to rotating
frames. The Coriolis e�ect can be explained as follows, starting from Figure
2.2. On a rotating platform, a mass is subject to a linear vibratory motion.
An observer in the same rotating frame rotates as the platform rotates and
sees the mass as making an curvilinear movement instead of a linear one. This
is due to the Coriolis force that causes a secondary vibration perpendicular to
the primary vibration. However, for an observer outside the rotating frame,
the mass is really making a single axis vibration. For this reason, Coriolis
force is a �ctitious or inertial force acting on a moving object in a rotating
frame.
The vector formula for the magnitude and direction of the Coriolis force is
derived through vector analysis and is:

Fc = −2mω × v (2.1)

where m is the mass, ω is the angular velocity vector with direction along
the axis of rotation, v is the linear velocity of the mass with respect to the
rotating system and × is the cross product operator.
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Figure 2.2: Apparent path de�ection due to Coriolis e�ect.

Figure 2.3: Smartphone rotation axes.
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2.3 Sensor Log App

In this thesis work accelerometer and gyroscope data have been collected
with an app called Sensor Log (Google Commerce, Ltd.) and exported in
CSV format. This is only one of the various apps than can be used to acquire
signals. Sensor Log has a very user-friendly interface, in which the user can
add an "activity" botton with all the sensors are expected to be useful. In
this work, the "Leg Agility" (right leg and left leg) bottons are added. Fig 2.4
shows the app interface (a) and the list of sensors (b) chosen for this work's
purpose. The user has to click on the botton to start the acquisition and
click again to end it. Then the signals are stored and appear like a database
list in the "history" section of the app.

(a) (b)

Figure 2.4: Sensor Log app interface (a) and list of selected sensors (b).
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Methods

This chapter describes the methods that have been used for analyzing the
measured signals. Several PD related features have been extracted from the
signals of both patients and healthy controls. All computations and signal
processing were performed by using the MATLAB software and programming
language (The MathWorks, Inc.).

3.1 Available data from PD population

A total number of ninety-three patients (mean age: 69, range: 43-87; mean
age at diagnosis: 60.1, range: 29-81) were recruited in the study. Data have
been collected between April and July 2018 in the outpatient clinic of the
Parkinson's disease and movement disorders Centre at Molinette Hospital
(Turin) and in the o�ces of the Associazione Amici Parkinsoniani Piemonte
Onlus in Turin. The inclusion criterion for patients was a clinical diagnosis of
Parkinson's Disease with motor symptoms. Table A.1 in the Appendix shows
the details of PD population, while Table 3.1 illustrates a general overview.

Table 3.1: PD patients' demographic and clinical characteristics.

Number of
patients

Mean age
(years ± SD)

Years
from PD diagnosis

Mean age at PD
diagnosis (years ± SD)

93 (70% male) 69 ± 10 9.0 ± 6,5 60.1 ± 10.9
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3.2 Available data from Control population

A total number of ten control people partecipated in this study. Most of
the data have been collected in May 2018 in the nursing home Orfanelle in
the city of Chieri, Turin. Table A.2 in the Appendix shows the demographic
details of the Control population.

3.3 Protocol

The subjects (PD patients and healthy people) were asked to sit in a straight-
backed chair and place the foot on the ground in a comfortable position.
Then, they had to perform the Leg Agility task from the MDS-UPDRS
Motor Section with each leg separately. A simple Velcro armband with a
smartphone inside (Samsung S5 mini) was placed around the patient's thigh,
trying to have the y-axis of the smartphone as parallel as possibile to the
femur direction. Figure 3.1 shows the position adopted for all the parteci-
pants.

Figure 3.1: Smartphone position adopted for the Leg Agility task.

As indicated in the UPDRS guidelines, the task was demonstrated to the
subjects by the expert neurologist before patients performed it. The rater
was asked to score each motor task according to the UPDRS scale in order
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to use these ratings as class labels for the supervised classi�cation algorithm.
Figure 3.2 shows the distribution of the UPDRS scores assigned by all the
expert neurologists.
Accelerometer and gyroscope data (sampling frequency: 200 Hz) have been
collected and then exported in CSV format. All the data was processed
o�ine using MATLAB software.

Figure 3.2: Distribution of the UPDRS scores assigned to the Leg Agility tasks.

3.4 Pre-processing

After the raw measurements were available in the desired format, some pre-
processing was needed. According to Salarian et al [7], frequencies of 4-8
Hz are common for tremor (not investigated in this work), while intentional
human movement seldom exceeds frequencies of 3.3 Hz. Therefore, a Cheby-
shev Type I lowpass �lter with a frequency of 3.5 Hz was used to �lter the
measurement data with help of Matlab's filtfilt function before features
were calculated. The stopband attenuation is of 20 dB at 4 Hz. The e�ect
of this �lter on the measurements is shown in Fig 3.3.

3.5 De�ned features

A number of features were chosen based on knowledge about motion move-
ments in Parkinson's disease and the experimental set-up, but also on insights
provided by the literature on other similar studies [2, 8, 9, 10, 11]. Table 3.2
shows a list of the considered features, while from subsection 3.5.1 to 3.5.11
a detailed description of each single feature is exposed.
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Figure 3.3: Raw and bandpass �ltered gyroscope measurements of the left leg of
patient 64.

Table 3.2: List of features used in this thesis work.

Feature Description

n.1 Number of movements
n.2 Mean time interval between movements
n.3 STD of the time intervals
n.4 Thigh inclination trend
n.5 Mean peak value
n.6 Max peak value
n.7 RMS of angular velocity signal
n.8 Range of angular velocity signal
n.9 Max angular velocity value
n.10 Entropy of angular velocity signal
n.11 Dominant frequency
n.12 Ratio of dominant frequency power to total
n.13 RMS of acceleration signal
n.14 Range of acceleration signal
n.15 Max acceleration value
n.16 Entropy of acceleration signal
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3.5.1 Number of movements

The number of leg movements, de�ned as peaks in the pitch signal, have
been counted for each LA trial and used as one of the features. Since the
MDS-UPDRS requests 10 repetitions, this feature can distinguish between
patients who can accomplish the goal and those who cannot reach it. When
extracting this feature, the MATLAB function findpeaks was used. Figure 3.4
shows the performance of the peak �nding algorithm when it is applied on
two patients a�ected by Parkinson's disease with UPDRS 0 (a) and 3 (b).

(a) (b)

Figure 3.4: Peaks found by ready-made function findpeaks. Example of UPDRS
0 (a) and UPDRS 3 (b)

3.5.2 Mean time interval between movements

The i-th time interval I(i) between consecutive thigh movements in de�ned
as:

I(i) = tP (i+ 1)− tP (i)

where tP (i+1) is the time associated with the peak of the (i+1)-th repetition
and tP (i) is the peak instant of the i-th repetition.
The feature used in this analysis is the mean time interval [dimension: (s)]:

Imean =

∑9
i=1 I(i)

9
. (3.1)

This feature is used since one of the common treats of bradykinesia is that a
patient a�ected by Parkinson's disease is expected to have a longer interval
between the movements, since it might be hard to initiate the movement, as
illustrated by Gri�ths et al. [4].
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3.5.3 Standard deviation of the time intervals

The following standard deviation of the previous feature is considered [di-
mension: (s)]:

ISD =

√∑9
i=1(I(i)− I)2

8
(3.2)

which quanti�es how much the time intervals di�er from their mean value.
This is considered an important variable because some patients can perform
very di�erent LA repetitions, in terms of time di�erence between consecutive
peaks, within the same task session.
A high value of ISD is a synonym for a large variability of the time interval
values, while a low value stands for a vector of time intervals very close to
each other. The latter case is expected for healty people, the former one for
PD patients.

3.5.4 Thigh inclination trend

Another feature that measures the endurance of the LA task is the evolution
of the peak amplitudes over time, i.e. the trend of the thigh inclination
from the beginning to the end of the LA session. In particular the feature
considered here is the percentage decrease of the peak amplitude from the �rst
�ve movements to the last �ve. This feature might be useful since healthy
subjects are expected to have a greater endurance and lesser decrease in
performing the task. A high value would be synonym for a severe fatigue
mantaining a constant maximum inclination. Fig. 3.5 shows an example of
a Leg Agility repetition of a patient which was not able to mantain wide
movements during the task.

Figure 3.5: Pitch signal from a patient showing a clear decrement in amplitude.

25



CHAPTER 3. METHODS

3.5.5 Mean and max value of thigh inclination

Considering the peaks in the pitch signals, their maximum and mean value
are calculated. These features are used since one of the common treats of
PD patients that show bradykinesia symptom is the inability to make wide
movements. It is expected the patients whose leg movements were rated as
0 by the expert neurologists show wider thigh movements (i.e. larger value
of the inclination signal) than those who are more a�ected by the symptom.

3.5.6 Maximum acceleration and angular velocity

Since the slowness of the execution of movements should be re�ected by
the measured angular velocities and accelerations, their maximum absolute
value is taken into account. Gri�th et al. [4] have shown in their work the
usefulness of the greatest acceleration as a predictor (feature). The value is
given by:

xmax = max (|x[n]|) (3.3)

where n = 1, 2, . . . , N is the sample index and x is the acceleration of the
movements or the angular velocity (for x-axis, y-axis and z-axis).

3.5.7 Range of acceleration and angular velocity

This feature might be of interest for the assessment of bradykinesia, since
theoretically the range should be smaller for patients su�ering from bradyki-
nesia due to smaller movements with respect to healthy subjects. The range
is de�ned as:

rx = max (x[n])−min(x[n]) (3.4)

where n = 1, 2, . . . , N is the sample index and x is the acceleration of the
movements or the angular velocity. In this work the z-axis acceleration and
the x-axis angular velocity are taken into account.

3.5.8 Root Mean Square value

The RMS have been also used for accelerometer signals by Cancela et al. [3]
and for gyroscope signals by Salarian et al. [7]. In statistics, the Root Mean
Square (RMS) value of a signal is given by:

xRMS =

√√√√ 1

N

N∑
n=1

x2[n] (3.5)
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where n = 1, 2, . . . , N is the sample index and x is the acceleration of the
movements or the angular velocity.

3.5.9 Signal Entropy

Signal entropy is a measure of the uncertainty associated with the signal.
This predictor was used for the quanti�cation of bradykinesia, dyskinesia
and tremor with help of accelerometer measurements by Patel et al [8]. It
also shows strong distinctions for dyskinetic movements [49]. Signal spectral
entropy (de�ned by Shannon) is calculated as:

H = −
N∑

m=1

P (m)log2P (m) (3.6)

where P (m) is the probability distribution.

3.5.10 Dominant Frequency Component

To extract features from the frequency domain some frequency analysis is
required. The aim is to present the signal in the frequency domain by esti-
mating its power spectral density (PSD). The PSD estimation can be based
on a Fourier transform or Wavelet transform or on parametric modeling of
the signal.

In this thesis, the Fourier-based approach has been used for analysis. The
Discrete Fourier Transform (DFT) of a discrete signal x is de�ned by:

X[k] =
N−1∑
n=0

x[n]e−j 2πkn
N . (3.7)

where N is the total number of samples of the signal. In this case x[n] is the
signal derived from both the accelerometer and the gyroscope.

There are di�erent PSD estimators available. In this thesis work, peri-
odograms (i.e. direct method for PSD estimation) have been used for anal-
ysis.

The variance of the periodogram estimation can be reduced by averaging
the periodograms over short signal epochs. Windowing (i.e. multiplying the
signal with a window function) is often used for decreasing the spectral leak-
age. In Welch's periodogram approach, discrete window function is applied
to each signal epoch and the sub-series are allowed to overlap (50% overlap-
ping has been used here). The built-in MATLAB function pwelch has been
used.
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The dominant frequency fdom is the frequency for which the PSD P (f)
is maximal. The dominant frequency component has been also used as a
predictor by Patel et al. [8] and Bonato et al. [2] for accelerometer measure-
ments.

3.5.11 Ratio of dominant frequency power to total
power

The ratio of the dominant frequency power to total power (computed con-
sidering the PSD) was used as a feature by Patel et. al. [8] when studying
classi�cation of di�erent motor symptoms based on accelerometer data. They
found that this kind of feature was one especially suitable to capture signal
characteristics from both tremor, dyskinesia and bradykinesia [8].
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3.6 Machine learning algorithms

Machine learning (ML) is an application of arti�cial intelligence (AI) that
automatically detects meaningful patterns in data and gives computers the
ability to "learn" and improve from experience [50]. Machine learning has
driven advances in many areas, from computer vision to automatic speech
recognition. Its ability to extract information from data makes research
in machine learning for medicine determining [51]. In fact, healthcare is a
natural arena for the application of machine learning, especially as sensors
provide large amounts of data to answer clinical questions.

Machine learning is capable of o�ering automatic learning techniques in
biomedical signal and image processing, disease diagnosis, brain-computer in-
terfaces, clinical interpretation and analysis, cardiovascular mechanics, drug
development and robotic surgery [52].

Two of the most widely adopted machine learning methods are:

• Supervised learning which is based on example input data that is
labeled. In other words, this kind of algorithm uses a ground truth (i.e.
there is a prior knowledge of what the output values should be). The
aim of supervised learning is to �nd a function which best approximates
the relationship between input and output. It is called supervised be-
cause the learning process can be thought of as a teacher supervising
the procedure [53].

• Unsupervised learning which provides the algorithm with no labeled
data in order to allow it to �nd patterns or inherent structure within
its input data. Unlike supervised learning, there are neither correct
answers nor a teacher [53].

In this work supervised learning method has been used. Data has been
labeled by the expert neurologists as UPDRS 0-1-2-3-4.

In the machine learning �eld, there is no algorithm that works best for
every problem, especially for supervised learning. There are many factors
at play (size of dataset, structure, number of features, etc). For example,
decision trees are robust to outliers, can learn non-linear relationships and
work for both categorical and continuous variables, but they are prone to
over�tting. Deep neural networks perform very well on audio, image and text
data, but often require a large amount of data and their training needs huge
computational complexity [54]. Support Vector Machines methods can model
non-linear decision boundaries and are robust against over�tting, but they
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Figure 3.6: Illustration of the procedure of cross-validation. For each iteration,
one fold is left out and used as a test set, while the other folds are
used combined as a training set.

are memory intensive. K-Nearest Neighbor algorithms are computationally
expensive and can be slow in the predicting phase [55].

3.6.1 Training and validation of methods

There are di�erent approaches used in machine learning to evaluate the
trained model and its performance. When a very large amount of obser-
vations are available, it may be feasible to divide the original data set into a
training set and a test set prior to model development. The model is initially
�t on a training set, that is a set of examples used to �t the parameters of
the model. Then, the obtained model can be used to predict the response of
each of the test set observations. However, since the dataset available in this
work is quite limited, a cross-validation approach is used.

The k-fold cross-validation approach is based on dividing the dataset
into k number of folds with roughly the same size. Then k − 1 folds are
used as a training set and the last fold is used as a test set. Figure 3.6
displays the procedure of cross-validation and how one fold is left out for
each iteration and used as a test set. The advantage of this method over
repeated random sub-sampling is that all observations are used for both
training and validation, and each observation is used for validation exactly
once. In particular, when k = n (with n being the number of observations),
the k-fold cross-validation is exactly the leave-one-out cross-validation. That
means that n separate times, the model is trained on all the data except for
one point and a prediction is made for that point (where, here, a point means
a Leg Agility repetition).
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3.6.2 k-Nearest Neighbor (kNN)

kNN is a very popular classi�cation technique due to its simple speci�cation.
It classi�es unlabeled examples based on their similarity to the instances of
the training set (or labeled vectors of features) [56]. It is a non parametric
learning algorithm that assumes that the available data is in the so-called
feature space, so that the data points have the notion of distance. It is a non
parametric algorithm since it does not make any assumptions on the data
distribution.

The kNN procedure for classifying a point (i.e. a measurement) to one of
n classes involves these steps:

• Determine the k nearest points of the training set to the new measure-
ment to be classi�ed, using an appropriate distance metric;

• Assigning the new measurement to the class with most representatives
within the k nearest neighbor.

In other words, the very intuitive idea of kNN is the following: if most
adjacent vectors of a test sample in a feature space belong to one certain
class, this sample most likely is part of this category [57].

This classi�cation algorithm is very simple since the only requirements
are the number of neighbors k, the distance metric and the training dataset.
Its limitations are the large storage requirements and the computational ex-
pensiveness [57].

If k = 1 the class is assigned to the test sample considering only its
nearest neighbor in the training set. As a general rule, a large value of k
extends the neighborhood to the domain of other categories, while a small
value can imply a sensitivity to noise. For this reason k is selected as a
trade-o� between them [56]

Fig 3.7 shows an intuitive example of kNN classi�cation technique. In
a 2-D plane, the green square is the sample to be classi�ed and the two
possibile classes are the red stars and the blue triangles. It is obvious that,
if the number k of neighbors is set to 5, the point is classi�ed to the blue
triangles. It is considered to be part of the red stars if the k is set to 10.

The model for kNN algorithm has been built in MATLAB using the funcion
fitcknn. The funcion predict has been implemented to test and predict
the UPDRS values.
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Figure 3.7: Basic principle of kNN classi�cation method. From [57]

3.6.3 Support Vector Machine (SVM)

Support Vector Machine is a supervised learning method and one of the
best techniques used in Machine Learning tasks. It was initially designed
for binary classi�cation (i.e. with the purpose of separating two classes),
but it can be used also for multiclass problems. The objective of the SVM
algorithm is to:

• Project via a certain kernel function the training samples (called input
space) in a higher-dimensional space (called feature space) where the
objects belonging to the two di�erent classes are linearly separable [58];

• Constructs a hyperplane that maximizes the separation between the
two classes of points, being the separation margin measured by l2-norm
[59].

In Fig 3.8 two linearly separable sets of data with a separating hyperplane
(the thick line) are depicted, as an example. The purpose of the hyperplane is
to leave the closest points (i.e. those which form the margin, called "support
vectors") at maximum distance [56].

The classical approach for multiclass classi�cation is to combine several
binary SVM classi�ers, each of which solves a sub-problem of the original
multi-class classi�cation problem. One of the implementation of multiclass
SVM classi�cation is the so-called one-vs-all method. It consists of n SVM
models where n is the number of classes. Each binary classi�er is responsible
for distinguishing one of the classes from all other classes [58]. The i-th model
considers all of the examples in the i-th class with positive labels, and all
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Figure 3.8: Two linearly separable datasets with the hyperplane which maximizes
the distance between the two groups of data. From [60]

the others with negative labels. In the validation process, the classi�er that
gives a positive output indicates the output class.

Another method is called one-against-one and constructs n(n− 1)/2 bi-
nary classi�ers with considered data from two classes, on which it is trained.
Each binary classi�er is responsible for distinguishing between a di�erent
pair of classes [58]. The learning phase is performed using as training data
only the original data set that contains samples of the two considered class
labels, whereas the other class istances are ignored [56]

The MATLAB functions templateSVM and ficecoc were used to get a SVM
learner template and build the model. The prediction was done using the
function predict.

3.6.4 Neural networks (NN)

An arti�cial Neural Network (NN) is a computational system inspired by
the way the human brain works. It consists of simple processing units, the
neurons, and weighted connections between them. Each neuron has weighted
inputs, an activation function and one output. The inputs are multiplied by
the weights, then they are summed and passed through the function which
produces the output for this neuron. Commonly used activation functions
are the sigmoid, the linear and the tanh functions [61].

The general structure of a NN is composed of an input layer, one or
some hidden layers and an output layer. Fig. 3.9 shows a Neural Network
architecture.

There are two main types of connections when describing an arti�cial
network:

Feedback architecture. The network has connections from the output
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Figure 3.9: Arti�cial Neural Network architecture. From [62]

layer to the input neurons. Such a NN can keep a memory of the
previous state so that the output in a state depends both on input
signals and the previous states of the network [62];

Feedforward architecture. It is characterized by the absence of a feed-
back connection in the network, so that it cannot keep a record of the
previous states (i.e. the previous output values).

One of the key elements of a NN is its ability to learn [61]: through the
adjusting of weights it can change its internal structure based on the �ow of
information. Neural Network can be described as complex adaptive systems
[63]. According to the back-propagation rule, the net is trained to map input
data by iteratively adjusting the connection weights. The optimization of
the weights is made by backward propagation of the error during training
or learning phase of the algorithm. The objective is to reduce the di�erence
between the output values and the target values.

While implementing a neural network, the input layer consists of a num-
ber of nodes equal to the number of features. The number of nodes to use
for the hidden layer might vary, but it is standard to a have a number be-
tween the number of nodes used in the output and the input layer [61]. The
MATLAB function feedforwardnet implements a feedforward neural network.
To initialize and train the network on a given training set, the function init

and train were used.
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3.6.5 Decision trees

The aim of the decision tree algorithm is to solve a classi�cation problem
using a tree representation. The tree is composed of internal nodes which
correspond to an attribute (feature) and leaf nodes which represent each
class label [64]. Fig. 3.10 illustrates this structure.

Figure 3.10: Decision tree classi�er architecture. From [65]

The prediction process starts from the root of the tree, where the value
of the root feature is compared with the vectors' feature. On the basis of
comparison, the branch corresponding to that value is followed in order to
jump to the next node. The comparison between the features values and
each internal node is computed until a leaf node is reached (and the class
value is predicted) [66].

The primary problem in the decision tree implementation is to identify
which feature must be considered as the root feature and each consequent
level. This process is knowns as the "attribute selection". One of the method
is the so-called Gini Index, a metric that measures how often a randomly
chosen element would be incorrectly identi�ed if it was randomly labeled
according to the distribution of labels [67].

The MATLAB function fitctree trains a binary classi�cation decision tree
for multiclass classi�cation.

3.6.6 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis is a dimensionality reduction and classi�cation
method originally developed in 1936 by R. A. Fisher. It is based upon the
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concept of �nding the way to maximize the class-separability [68]. LDA is
also closely related to Principal Component Analysis (PCA) because they
both look for linear combinations of variables which best explain the data.
However LDA explicitly attempts to model the di�erence between the classes
of the available data while PCA does not take into account any di�erence in
class [69].

3.7 Hypothesis for feature set

Before implementing the methods on the available data, some hypotheses
were made in order to determine if a certain kind of features or sensors
a�ected the performance more than others.

3.7.1 Hypothesis 1: All available features

The �rst hypothesis is to use all the available features, generated according to
the described procedure in Section 3.5. This means that features generated
from both the accelerometer and the gyroscope data were used.

3.7.2 Hypothesis 2: Features from accelerometer

To further explore the e�ect of the accelerometer data, the second hypothesis
uses the signals acquired from the accelerometer.

3.7.3 Hypothesis 3: Features from gyroscope

The last hypothesis uses all the features gathered from the gyroscope signals.

3.8 Statistical and performance descriptors

3.8.1 Boxplot

A boxplot (or a box and whisker diagram) is a standardized way of repre-
senting the distribution of data using �ve number summary: minumum, �rst
quartile, median value, third quartile, maximum. Fig. 3.11 represents the
structure of a boxplot.

The line splitting the box in half is the median of the values. Half of
the cases have a value greater than the median, and half have a value lower.
The median value is chosen since, unlike the mean value, is less in�enced by
extreme values.
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Figure 3.11: A boxplot with its termonology.

The bottom of the box represents the 1st quartile (or 25th percentile),
while the top of the box indicates the 3rd quartile (or 75th percentile). It
means that 25% of cases have values below the 1st quartile and 25% of them
have values above the 3rd quartile. This means that 50% of the case are
represented within the box, also known as the interquartile range, or IQR. A
large IQR indicates a large spread in values, while a smaller one shows that
most values fall near the median [70].

The T-bars out of the boxes are called inner fences or whiskers and
indicates the maximum and minimum values. Box plots optionally illustrate
outliers as points extending beyond the whiskers. Outliers are extreme values
(more than three times the height of the boxes).

3.8.2 Confusion Matrix

In predictive analytics, a confusion matrix is a table used as a descriptor of
the performance of a classi�cation model on a given test data for which the
true values are known. It is a square matrix in which the rows represents the
actual class and the columns the predicted one [71].

If we consider a simple binary classi�cation, the confusion matrix is a
table with two rows and two columns that reports the false positives, false
negatives, true positives, and true negatives. Fig. 3.12 shows an example
of a confusion matrix for a binary classi�cation problem, with the correct
terminology to be used when describing it.

Some rates are often computed from a confusion matrix for a binary
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Figure 3.12: A confusion matrix for a binary classi�er and its terminology.

classi�er:

• Accuracy = TP+TN

TP+TN+FP+FN

• Precision or Positive Predictive Value = TP

TP+FP

• Negative Predictive Value = TN

TN+FN

• Sensitivity or True Positive Rate = TP

TP+FN

• Speci�city or True Negative Rate = TN

TN+FP

Fig. 3.13 shows an example of confusion matrix for multiple classes. Each
column represents the results of prediction for the corresponding class, while
each row represents the actual class. The diagonal cells show the number (or
the percentage) of correct classi�cations by the trained classi�er, while the
o� diagonal cells represent the misclassi�ed predictions.

Figure 3.13: A confusion matrix for a multiclass classi�cation problem.

38



Chapter 4

Results

In this chapter the results obtained in this thesis work are presented. In
section 4.1 some plots showing angular velocity signals are described, while
in section 4.2 some accelerometer measurements are shown. Section 4.3 il-
lustrates some promising results in term of boxplots considering some of the
available features. From section 4.4 to 4.6 the results obtained from the clas-
si�cation models are shown using the confusion matrices. Finally, section 4.7
presents the results from the binary classi�cation, where UPDRS 0, 1 and 2
are grouped as a single class while UPDRS 3 and 4 form onother class, with
the aim of understanding if also a binary classi�cation between the "slight"
case and "severe" one is feasible.

4.1 Examples of angular velocity signals

The severity of the motor symptom (in this case, lower limb bradykinesia) is
re�ected on the angular velocity signal around the x-axis, i.e. the direction
perpendicular to the femur in the coronal plane. Figure 4.1 illustrates how
this signal changes from a normal condition (UPDRS 0 = no motor problems)
to a severe situation (UPDRS 4 = the patient can only barely perform the
task). It is clearly evident that both amplitude and regularity decrease along
with the severity of bradykinesia. All the plots have the same y-axis in order
to be able to visually compare the mentioned di�erences. It is also useful
to notice how the time interval needed to perform at least ten repetitions
increases from UPDRS 0 to UPDRS 4 (from about 6 s to more than 15 s).
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(a) UPDRS 0 (b) UPDRS 1

(c) UPDRS 2 (d) UPDRS 3

(e) UPDRS 4

Figure 4.1: Time trajectories of x-axis angular velocity from UPDRS 0 to 4.

4.2 Examples of accelerometer signals

The same trend can be seen considering the accelerometer signals, shown in
Fig 4.2. The amplitude decreases very much along with the severity of the
considered motor symptom. The peaks detection in the condition of UPDRS
4 can be barely performed.
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(a) UPDRS 0 (b) UPDRS 1

(c) UPDRS 2 (d) UPDRS 3

(e) UPDRS 4

Figure 4.2: Time trajectories of z-axis acceleration from UPDRS 0 to 4.

4.3 Boxplots

In this subsection some boxplots of the most relevant features are considered.
Fig. 4.3 shows the boxplots for two acceleration-based features: the max-

imum value and the range of the signal. Both of them present a clear de-
creasing trend along with the severity of the bradykinesia symptom.

Fig. 4.4 shows the boxplots of the same previous features for the gyro-
scope signal (x-axis angular velocity). Like the acceleration case, one can
notice a decreasing trend from UPDRS 0 (no problems) to UPDRS 4 (the
severe case).

Fig. 4.5a presents only UPDRS 0-3 due to the fact that the Leg Agility
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(a) (b)

Figure 4.3: Boxplot showing a trend of both the maximum accceleration value
(a) and the range of the signal values (b) along with the severity of
the symptom.

(a) (b)

Figure 4.4: Boxplot showing a trend of both the maximum angular velocity value
(a) and the range of the signal values (b) along with the severity of
the symptom.
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(a) (b)

Figure 4.5: Boxplot of the mean time interval between movements (a) and the
dominant frequency (b).

cases labeled as UPDRS 4 did not have real leg movements and, as a conse-
quence, the mean time interval between movements could not be calculated.

4.4 Hypothesis 1: All available features

For this hypotesis all the available features (i.e. from orientation sensor,
gyroscope and accelerometer) are considered. Table 4.1 illustrates the general
performance of each classi�cation models described in section 3.6, while the
confusion matrices are given in Fig. 4.6, 4.7, 4.8.

Table 4.1: Correct classi�cation percentage of the selected classi�cation methods
for each UPDRS class and overall performance. The best results come
from Neural Networks (gray line).

Method UPDRS 0 UPDRS 1 UPDRS 2 UPDRS 3 UPDRS 4 Overall

SVM linear 42.5 % 77.4 % 52.5 % 46.7 % 40 % 60.9 %
kNN (k=5) 40 % 79.8 % 50 % 46.7 % 40 % 60.9 %
kNN (k=10) 45 % 90.5 % 40 % 40 % 0 % 63 %

Neural Networks 75 % 81 % 65 % 86.7 % 60 % 76.1 %
L.D. Analysis 62.5 % 46.4 % 52.5 % 66.7 % 60 % 53.3 %
Decision Tree 37.5 % 75 % 37.5 % 60 % 0 % 55.4 %
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Figure 4.6: Confusion matrix based on the results from the Linear SVM classi�-
cation model. The blue cell in the bottom right displays the overall
correct classi�cation percentage and incorrect classi�cation percent-
age. The correctly classi�es case are positioned diagonally (green)
while the misclassi�es cases are places in the other cells (red).

By examining Fig. 4.6 some important considerations have to be made.
First of all, this SVM model classi�es incorrectly only by one step on the
UPDRS scale. One may also see that the main errors in classi�cation was
that true UPDRS 0 was incorrectly predicted as UPDRS 1 in 57.5 percent of
the available signals, and the best classi�cation was done for UPDRS 1, where
77.4 percent of the signals were correctly classi�ed. For the whole multiclass
classi�cation, the Linear SVM model correctly classi�es 60.9 percent of the
available test observations.

Fig. 4.7 shows two confusion matrices when using the k-Nearest Neighbor
classi�cation model with k = 5 and k = 10. The overall performance is very
similar to that of Linear SVM model (Figure 4.6) but in this case one UPDRS
4 has been classi�ed as UPDRS 2 (�gure (a)) and all the UPDRS 4 have been
misclassi�ed (�gure (b)).

The confusion matrix in Fig. 4.8 displays a total classi�cation percentage
of 53.3 percent correctly classi�ed observations. Although the lower total
performance percentage, one can notice that with Linear Discriminant Anal-
ysis a good performance is obtained with the classi�cation of UPDRS 0. In
fact 62.5 percent of UPDRS 0 has been correctly classi�ed, while the pre-
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(a) (b)

Figure 4.7: Confusion matrices based on the results from the kNN classi�cation
model.

Figure 4.8: Confusion matrix based on the results from the Linear Discriminant
Analysis (LDA) model.
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vious models (kNN and SVM) were not able to distinguish beetween these
two classes. The same observation can be made about the classi�cation of
UPDRS 4, where, alike the other classi�ers, 60 percent of the cases has been
correctly classi�ed.

Figure 4.9: Confusion matrix based on the results from the Decision Tree model.

By examining Fig. 4.9 it is evident that, when using the Decision Tree
method, the �ve cases labeled as UPDRS 4 have not been distinguished from
UPDRS 3. Also the correct classi�cation percentage of UPDRS 0 is very low.

The result of Neural Network is presented in Fig. 4.10. Here 76.1 percent
of the observations were correcly assigned to the right class and the perfor-
mance is very good for all the �ve classes. The best classi�cation cases, like
all the other previous methods, was for observations with true UPDRS 1 and
UPDRS 3. The errors are only by one step on the UPDRS scale. This model
has two inner layers of 16 neurons, and the hyperbolic tangent sigmoid as
transfer function (tansig).

4.5 Hypothesis 2: Features from accelerometer

In this section the results considering the use of only accelerometer-based
features are presented.
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Figure 4.10: Confusion matrix based on the results from the supervised Neural
Network model for Hypothesis 1.

(a) (b)

Figure 4.11: Confusion matrices based on the results from the SVM (a) and kNN
(b) classi�cation models for Hypothesis 2.
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(a) (b)

Figure 4.12: Confusion matrices based on the results from the Linear Discrim-
inant Analysis (a) and Decision Tree (b) classi�cation models for
Hypothesis 2.

Figure 4.13: Confusion matrix based on the results from the supervised Neural
Network model for Hypothesis 2.
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4.6 Hypothesis 3: Features from gyroscope

In this section the results considering the use of the gyroscope-based features
are presented.

(a) (b)

Figure 4.14: Confusion matrices based on the results from the SVM (a) and kNN
(b) classi�cation models for Hypothesis 3.
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(a) (b)

Figure 4.15: Confusion matrices based on the results from the Linear Discrim-
inant Analysis (a) and Decision Tree (b) classi�cation models for
Hypothesis 3.

Figure 4.16: Confusion matrix based on the results from the supervised Neural
Network model for Hypothesis 3.
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4.7 Binary classi�cation

It is also interesting to have a classi�cation model able to distinguish between
a slight and a severe motor condition. For this reason, in this section all the
data from UPDRS 0 and 1 are now considered as the "slight" group, while
the cases from UPDRS 2, 3 and 4 as the "severe" group. In the following
�gures some results from the main classi�cation models (kNN, SVM and
Neural Network) for the binary case are presented.

Figure 4.17: Confusion matrix based on the results from the supervised Neural
Network model.

For the binary classi�cation problem a great performance is achieved
by almost all the presented classi�cation methods. In particular, with the
Neural Network technique an overall percentage of correct classi�cation of
92.9 percent is reached.
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(a) (b)

Figure 4.18: Confusion matrices based on the results from the kNN (a) and SVM
(b) classi�cation models.

4.8 Control population results

Table 4.2: Classi�cation of control population signals.

Patient
UPDRS

Leg Agility RIGHT
UPDRS

Leg Agility LEFT

CTRL 1 1 1
CTRL 2 2 1
CTRL 3 1 1
CTRL 4 1 1
CTRL 5 1 1
CTRL 6 1 1
CTRL 7 1 1
CTRL 8 1 1
CTRL 9 1 1
CTRL 10 1 1
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Discussion

This work has investigated the capability of some machine learning algo-
rithms to quantify and classify signals acquired from Parkinson's disease
patients.

By looking at the boxplots presented in Chapter 4, it is important to
highlight the clear decreasing trend of some features along with the severity
of the motor symptom of bradykinesia. The maximum value and the range
of both the acceleration and gyroscope signals turned out to be signi�cant
features for the assessment of bradykinesia. The mean time interval between
consecutive movements (valid for UPDRS 0-1-2-3) shows an incresing be-
haviour from the case of UPDRS 0 to that of UPDRS 3. This was imaginable
since the neurologist rates the severity by looking at the leg movements: the
wider two consecutive movements are, the greater will be the UPDRS score.
The dominant frequency proved to be related to the severity of the motor
symptom: for UPDRS 0-1-2 it is greater because it is synonym for faster
movement, while it decrements for the more severe cases (UPDRS 3-4).

From the confusion matrices presented in Chapter 4, one may observe
that it is more common that the models classify incorrectly by one step on
the UPDRS scale, rather than, for example, assigning a case with UPDRS
0 to class 3. This is an excellent result because in the clinical practice the
neurologists can disagree about the score to be assigned, but usually by one
step value.

The better overall correct classi�cation percentages are reached by SVM
model (Fig. 4.6) with 60.9 percent and Neural Network model (Fig. 4.10)
with 76.1 percent. The most accurate classi�cation was achived for observa-
tions with true class 1 and 3. The kNN, Linear Discriminant Analysis and
Decision Tree (Fig. 4.7, Fig. 4.8 and Fig. 4.9) show their inability to rec-
ognize the cases of UPDRS 4. Maybe with some �ne-tuning and with more
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training examples the accuracy of assising to this class can be improved.

The use of only accelerometer-based or gyroscope-based features has turn
out to be not relevant. In a nutshell, the calssi�cation performence improves
when all the features are considered.

Concerning the binary classi�cation problem, where UPDRS 0-1 forms
one group and UPDRS 2-3-4 forms the other, has shown important results.
A classi�cation accuracy of up to 90 percent is reached with kNN, SVM and
Neural Network techniques. The errors made in this case are the same of the
multiclass classi�cation: the cases in which UPDRS 1 have been classi�ed as
UPDRS 2 and vice versa.

The signals gathered from Control population have been classi�ed as UP-
DRS 1 in almost all the cases. This means that a slight bradykinesia has
been found in this population, probably due to the age of the partecipants
(mean age: 87 years). Since the algorithm is not a Parkinson's disease di-
agnose system, it is obvious that some healthy people could be labeled as
UPDRS 1 or even 2.
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Conclusion

The purpose of this thesis work was to investigate the possibility of using
smartphone sensors for the acquisition of data and machine learning algo-
rithms for the classi�cation of the bradykinesia in Parkinson's disease. All
data was collected from both gyroscope and accelerometer sensors, during
a speci�c body movement in order to be able to classify the severity of the
considered motor symptom.

In particular, in this thesis the use of a common smartphone is presented.
It is a simple system that the patient can use in his/her domestic environment
without any trouble and in which the leg movement is not hindered.

It should also be concluded that more training data is desirable, since
the available dataset is not so large. In fact, the results for the classi�cation
between UPDRS 3 and 4 are not so accurate, but they are good enough to
motivate further investigation. More signal examples from UPDRS 3 and 4
should be acquired to be able to better train the model on these classes.

This work has shown promising results regarding the ability to diagnose
physical symptoms in Parkinson's disease patients using machine learning al-
gorithms. The validity of these results is limited to the considered motion and
to the quanti�cation of bradykinesia, but similar considerations for di�erent
movements including motions of other body parts may prove interesting as
well.

By having a patient with his/her smartphone located on the thigh, in the
future physicians can be allowed to get a clearer view on symptom �uctuation
during a patient's daily life. This continuous observation can help with the
adjustment of medicine if it is tracked that the symptoms get more severe
during certain times of the day. It would mean an increase in the quality of
life of both the patients and their caregivers.
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Parkinson's disease and Control

population details

Table A.1: Parkinson's disease population recruited in this thesis work.

Patient ID Age
Gender
(M/F)

UPDRS
Leg Agility RIGHT

UPDRS
Leg Agility LEFT

Years from
diagnosis

PD1 86 M 2 3 8
PD2 60 F 2 1 5
PD3 65 M 1 1 7
PD4 74 F 0 0 10
PD5 71 M 3 4 18
PD6 83 M 0 1 2
PD7 78 M 2 3 6
PD8 66 M 0 1 9
PD9 68 M 1 1 6
PD10 77 F 1 2 11
PD11 52 F 1 1 23
PD12 62 M 1 1 2
PD13 76 F 2 2 20
PD14 75 F 1 0 2
PD15 76 F 1 2 3
PD16 52 M 1 0 8
PD17 81 M 1 2 9
PD18 83 M 1 1 9
PD19 64 M 1 1 7
PD20 59 M 1 1 1
PD21 68 F 3 2 15
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POPULATION DETAILS

PD22 85 M 3 4 6
PD23 55 M 0 0 2
PD24 57 F 0 0 4
PD25 75 M 3 2 20
PD26 73 M 3 3 21
PD27 66 M 2 1 14
PD28 63 M 1 1 8
PD29 71 M 0 2 4
PD30 57 F 1 1 2
PD31 87 F 3 3 6
PD32 76 M 0 1 4
PD33 74 M 2 1 3
PD34 73 M 0 0 8
PD35 43 M 2 1 5
PD36 71 M 1 1 6
PD37 63 M 1 1 7
PD38 84 F 2 2 7
PD39 56 M 1 1 12
PD40 65 M 0 0 1
PD41 78 M 1 2 10
PD42 67 M 0 0 10
PD43 78 F 1 1 1
PD44 71 F 0 0 3
PD45 49 M 4 1 3
PD46 80 M 0 1 1
PD47 71 M 2 2 10
PD48 63 F 0 0 1
PD49 84 M 1 2 20
PD50 76 M 3 3 9
PD51 84 M 1 1 8
PD52 67 M 1 1 7
PD53 71 F 1 1 4
PD54 66 M 1 1 8
PD55 59 M 2 1 2
PD56 75 M 1 1 8
PD57 71 F 2 0 3
PD58 57 F 1 1 4
PD59 71 M 2 1 13
PD60 77 M 1 1 15
PD61 77 F 0 0 8
PD62 52 F 1 1 5
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PD63 59 F 0 0 10
PD64 64 F 0 0 15
PD65 70 F 0 0 10
PD66 69 F 1 1 3
PD67 64 M 1 0 5
PD68 81 F 3 2 8
PD69 80 M 2 2 -
PD70 69 M 1 1 3
PD71 44 F 2 2 8
PD72 58 M 2 1 5
PD73 65 M 1 1 20
PD74 77 F 4 4 12
PD75 75 M 3 - 7
PD76 52 F 0 0 4
PD77 63 M 1 2 9
PD78 69 M 1 1 6
PD79 64 F 2 1 15
PD80 72 F 1 1 23
PD81 73 F 3 2 23
PD82 46 F 1 1 -
PD83 61 M 1 2 28
PD84 74 M 2 2 21
PD85 75 M 0 1 12
PD86 78 F 1 2 12
PD87 75 M 1 - 11
PD88 77 F 0 1 5
PD89 59 M 0 0 2
PD90 77 F 2 2 10
PD91 72 F 2 2 18
PD92 63 F 1 1 23
PD93 78 M 0 1 20
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Table A.2: Control population recruited in this thesis work.

Patient ID Age Gender(M/F)

CTRL 1 88 F
CTRL 2 90 F
CTRL 3 98 M
CTRL 4 90 F
CTRL 5 86 F
CTRL 6 81 F
CTRL 7 88 F
CTRL 8 79 F
CTRL 9 88 M
CTRL 10 83 M

59



Bibliography

[1] La malattia di Parkinson. 2011. url: https://http://www.parkins
on-italia.it/parkinson/la-malattia.

[2] Paolo Bonato et al. �Data mining techniques to detect motor �uctua-
tions in Parkinson's disease�. In: Engineering in Medicine and Biology
Society, 2004. IEMBS'04. 26th Annual International Conference of the
IEEE. Vol. 2. IEEE. 2004, pp. 4766�4769.

[3] J Cancela et al. �A comprehensive motor symptom monitoring and
management system: The bradykinesia case�. In: Engineering in
Medicine and Biology Society (EMBC), 2010 Annual International
Conference of the IEEE. IEEE. 2010, pp. 1008�1011.

[4] Robert I. Gri�ths et al. �Automated assessment of bradykinesia and
dyskinesia in Parkinson's disease�. In: Journal of Parkinson's disease
2.1 (2012), pp. 47�55.

[5] Matteo Giuberti et al. �Assigning UPDRS scores in the leg agility task
of Parkinsonians: Can it be done through BSN-based kinematic vari-
ables?� In: IEEE Internet of Things Journal 2.1 (2015), pp. 41�51.

[6] Dustin A Heldman et al. �The modi�ed bradykinesia rating scale for
Parkinson's disease: reliability and comparison with kinematic mea-
sures�. In: Movement Disorders 26.10 (2011), pp. 1859�1863.

[7] Arash Salarian et al. �Quanti�cation of tremor and bradykinesia in
Parkinson's disease using a novel ambulatory monitoring system�. In:
IEEE Transactions on Biomedical Engineering 54.2 (2007), pp. 313�
322.

[8] Shyamal Patel et al. �Monitoring motor �uctuations in patients with
Parkinson's disease using wearable sensors�. In: IEEE transactions on
information technology in biomedicine 13.6 (2009), pp. 864�873.

60

https://http://www.parkinson-italia.it/parkinson/la-malattia
https://http://www.parkinson-italia.it/parkinson/la-malattia


BIBLIOGRAPHY

[9] Dustin A. Heldman et al. �Automated motion sensor quanti�cation of
gait and lower extremity bradykinesia�. In: Engineering in Medicine
and Biology Society (EMBC), 2012 Annual International Conference
of the IEEE. IEEE. 2012, pp. 1956�1959.

[10] Ji-Won Kim et al. �Analysis of lower limb bradykinesia in Parkin-
son's disease patients�. In: Geriatrics & gerontology international 12.2
(2012), pp. 257�264.

[11] Federico Parisi et al. �Body-sensor-network-based kinematic charac-
terization and comparative outlook of UPDRS scoring in leg agility,
sit-to-stand, and Gait tasks in Parkinson's disease�. In: IEEE journal
of biomedical and health informatics 19.6 (2015), pp. 1777�1793.

[12] Joseph Jankovic. �Parkinson's disease: clinical features and diagno-
sis�. In: Journal of neurology, neurosurgery & psychiatry 79.4 (2008),
pp. 368�376.

[13] James Parkinson. �An essay on the shaking palsy�. In: The Journal of
neuropsychiatry and clinical neurosciences 14.2 (2002), pp. 223�236.

[14] Karin Wirdefeldt et al. �Epidemiology and etiology of Parkinson's dis-
ease: a review of the evidence�. In: European journal of epidemiology
26.1 (2011), p. 1.

[15] Mark R. Cookson. �α-Synuclein and neuronal cell death�. In:Molecular
neurodegeneration 4.1 (2009), p. 9.

[16] Pesticides and Parkinson's disease. 2016. url: https://www.clinica
ladvisor.com/features/link-between-pesticides-and-parkins

ons-disease/article/492896/.

[17] Understanding Parkinson's disease. url: https://www.mountnittany
.org/articles/healthsheets/6889.

[18] Ahmed A Moustafa et al. �Motor symptoms in Parkinson's disease:
A uni�ed framework�. In: Neuroscience & Biobehavioral Reviews 68
(2016), pp. 727�740.

[19] Robert A. Hauser and Theresa A Zesiewicz. Parkinson's disease: Ques-
tions and Answers. Merit, 2006.

[20] Michelle E Fullard et al. �Olfactory impairment predicts cognitive de-
cline in early Parkinson's disease�. In: Parkinsonism & related disorders
25 (2016), pp. 45�51.

[21] Emilia Iannilli et al. �Olfactory impairment in Parkinson's disease is a
consequence of central nervous system decline�. In: Journal of neurology
264.6 (2017), pp. 1236�1246.

61

https://www.clinicaladvisor.com/features/link-between-pesticides-and-parkinsons-disease/article/492896/
https://www.clinicaladvisor.com/features/link-between-pesticides-and-parkinsons-disease/article/492896/
https://www.clinicaladvisor.com/features/link-between-pesticides-and-parkinsons-disease/article/492896/
https://www.mountnittany.org/articles/healthsheets/6889
https://www.mountnittany.org/articles/healthsheets/6889


BIBLIOGRAPHY

[22] Ronald F Pfei�er. �Non-motor symptoms in Parkinson's disease�. In:
Parkinsonism & related disorders 22 (2016), S119�S122.

[23] Qiu-Jin Yu et al. �Parkinson disease with constipation: clinical features
and relevant factors�. In: Scienti�c reports 8.1 (2018), p. 567.

[24] K Krogh et al. �Clinical aspects of bowel symptoms in Parkinson's
disease�. In: Acta Neurologica Scandinavica 117.1 (2008), pp. 60�64.

[25] Matthew Menza et al. �Sleep disturbances in Parkinson's disease�. In:
Movement Disorders 25.S1 (2010), S117�S122.

[26] Jyh-Gong Gabriel Hou and Eugene C Lai. �Non-motor symptoms
of Parkinson's disease�. In: International Journal of Gerontology 1.2
(2007), pp. 53�64.

[27] Alfredo Berardelli et al. �Pathophysiology of bradykinesia in Parkin-
son's disease�. In: Brain 124.11 (2001), pp. 2131�2146.

[28] Hiram Houston Merritt. Merritt's neurology. Lippincott Williams &
Wilkins, 2010.

[29] TC Booth et al. �The role of functional dopamine-transporter SPECT
imaging in parkinsonian syndromes, part 1�. In: American Journal of
Neuroradiology (2014).

[30] Kimberly D. Seifert and Jonathan I Wiener. �The impact of DaTscan on
the diagnosis and management of movement disorders: A retrospective
study�. In: American journal of neurodegenerative disease 2.1 (2013),
p. 29.

[31] Je�rey L. Cummings et al. �The role of dopaminergic imaging in pa-
tients with symptoms of dopaminergic system neurodegeneration�. In:
Brain 134.11 (2011), pp. 3146�3166.

[32] Barbara S. Connolly and Anthony E Lang. �Pharmacological treatment
of Parkinson disease: a review�. In: Jama 311.16 (2014), pp. 1670�1683.

[33] Robert A. Hauser. �How to dose carbidopa and levodopa extended-
release capsules (Rytary)�. In: Clinical Medicine 1.2 (2015), pp. 34�
37.

[34] Lauren C. Seeberger and Robert A Hauser. �Carbidopa levodopa en-
teral suspension�. In: Expert opinion on pharmacotherapy 16.18 (2015),
pp. 2807�2817.

[35] Thomas Müller. �Catechol-O-methyltransferase inhibitors in Parkin-
son's disease�. In: Drugs 75.2 (2015), pp. 157�174.

62



BIBLIOGRAPHY

[36] Rajesh Pahwa et al. �Amantadine extended release for levodopa-
induced dyskinesia in Parkinson's disease (EASED Study)�. In: Move-
ment Disorders 30.6 (2015), pp. 788�795.

[37] Janice M. Beitz. �Parkinson's disease: a review�. In: Front Biosci 6
(2014), pp. 65�74.

[38] Je� M. Bronstein et al. �Deep brain stimulation for Parkinson disease:
an expert consensus and review of key issues�. In: Archives of neurology
68.2 (2011), pp. 165�165.

[39] Christopher G. Goetz et al. �Movement Disorder Society-sponsored re-
vision of the Uni�ed Parkinson's Disease Rating Scale (MDS-UPDRS):
Scale presentation and clinimetric testing results�. In: Movement dis-
orders 23.15 (2008), pp. 2129�2170.

[40] Errol Ozdalga, Ark Ozdalga, and Neera Ahuja. �The smartphone in
medicine: a review of current and potential use among physicians and
students�. In: Journal of medical Internet research 14.5 (2012).

[41] Er Zainab Pirani et al. �Android based assistive toolkit for alzheimer�.
In: Procedia Computer Science 79 (2016), pp. 143�151.

[42] Hui Hsien Wu, Edward D Lemaire, and Natalie Baddour. �Change-
of-state determination to recognize mobility activities using a Black-
Berry smartphone�. In: Engineering in Medicine and Biology Society,
EMBC, 2011 Annual International Conference of the IEEE. IEEE.
2011, pp. 5252�5255.

[43] Beom-Chan Lee et al. �Cell phone based balance trainer�. In: Journal
of neuroengineering and rehabilitation 9.1 (2012), p. 10.

[44] Mohammad Ashfak Habib et al. �Smartphone-based solutions for fall
detection and prevention: challenges and open issues�. In: Sensors 14.4
(2014), pp. 7181�7208.

[45] Han Byul Kim et al. �Validation of freezing-of-gait monitoring using
smartphone�. In: Telemedicine and e-Health (2018).

[46] Gastone Ciuti et al. �MEMS sensor technologies for human centred
applications in healthcare, physical activities, safety and environmental
sensing: a review on research activities in Italy�. In: Sensors 15.3 (2015),
pp. 6441�6468.

[47] Michele Magno et al. �A low power wireless node for contact and con-
tactless heart monitoring�. In: Microelectronics Journal 45.12 (2014),
pp. 1656�1664.

63



BIBLIOGRAPHY

[48] Ming Liu. �A study of mobile sensing using smartphones�. In: Interna-
tional Journal of Distributed Sensor Networks 9.3 (2013), p. 272916.

[49] Markos G. Tsipouras et al. �An automated methodology for levodopa-
induced dyskinesia: assessment based on gyroscope and accelerometer
signals�. In: Arti�cial intelligence in medicine 55.2 (2012), pp. 127�135.

[50] Yves Kodrato�. Introduction to machine learning. Elsevier, 2014.

[51] Marzyeh Ghassemi et al. �Opportunities in Machine Learning for
Healthcare�. In: arXiv preprint arXiv:1806.00388 (2018).

[52] Hian Chye Koh, Gerald Tan, et al. �Data mining applications in health-
care�. In: Journal of healthcare information management 19.2 (2011),
p. 65.

[53] Jason Brownlee. �Supervised and unsupervised machine learning algo-
rithms�. In: Machine Learning Mastery 16.03 (2016).

[54] Ian Goodfellow et al. Deep learning. Vol. 1. MIT press Cambridge,
2016.

[55] Modern Machine Learning Algorithms: Strengths and Weaknesses. url:
https://elitedatascience.com/machine-learning-algorithms.

[56] Andrew R Webb. Statistical pattern recognition. John Wiley & Sons,
2003.

[57] Jian Wu et al. �Mixed pattern matching-based tra�c abnormal behav-
ior recognition�. In: The Scienti�c World Journal 2014 (2014).

[58] Mikel Galar et al. �An overview of ensemble methods for binary clas-
si�ers in multi-class problems: Experimental study on one-vs-one and
one-vs-all schemes�. In: Pattern Recognition 44.8 (2011), pp. 1761�1776.

[59] Bissan Ghaddar and Joe Naoum-Sawaya. �High dimensional data clas-
si�cation and feature selection using support vector machines�. In: Eu-
ropean Journal of Operational Research 265.3 (2018), pp. 993�1004.

[60] Support Vector Machines. url: https://amitranga.wordpress.com/
machine-learning/support-vector-machines/.

[61] John J Hop�eld. �Arti�cial neural networks�. In: IEEE Circuits and
Devices Magazine 4.5 (1988), pp. 3�10.

[62] S Agatonovic-Kustrin and R Beresford. �Basic concepts of arti�cial
neural network (ANN) modeling and its application in pharmaceutical
research�. In: Journal of pharmaceutical and biomedical analysis 22.5
(2000), pp. 717�727.

64

https://elitedatascience.com/machine-learning-algorithms
https://amitranga.wordpress.com/machine-learning/support-vector-machines/
https://amitranga.wordpress.com/machine-learning/support-vector-machines/


BIBLIOGRAPHY

[63] Daniel Shi�man. The Nature of Code: Simulating Natural Systems with
Processing. Daniel Shi�man, 2012.

[64] S Rasoul Safavian and David Landgrebe. �A survey of decision tree
classi�er methodology�. In: IEEE transactions on systems, man, and
cybernetics 21.3 (1991), pp. 660�674.

[65] Decision tree Intuition. 2010. url: https://medium.com/greyatom/
decision-tree-intuition-a38669005cb7.

[66] J. Ross Quinlan. �Induction of decision trees�. In: Machine learning 1.1
(1986), pp. 81�106.

[67] How Decision Tree algorithm works. 2017. url: http://dataaspiran
t.com/2017/01/30/how-decision-tree-algorithm-works/.

[68] Alan Julian Izenman. �Linear discriminant analysis�. In: Modern mul-
tivariate statistical techniques. Springer, 2013, pp. 237�280.

[69] Petros Xanthopoulos, Panos M Pardalos, and Theodore B Trafalis.
�Linear discriminant analysis�. In: Robust data mining. Springer, 2013,
pp. 27�33.

[70] Najla M Qarmalah, Jochen Einbeck, and Frank PA Coolen. �k-Boxplots
for mixture data�. In: Statistical papers 59.2 (2018), pp. 513�528.

[71] Olivier Caelen. �A Bayesian interpretation of the confusion matrix�.
In: Annals of Mathematics and Arti�cial Intelligence 81.3-4 (2017),
pp. 429�450.

65

https://medium.com/greyatom/decision-tree-intuition-a38669005cb7
https://medium.com/greyatom/decision-tree-intuition-a38669005cb7
http://dataaspirant.com/2017/01/30/how-decision-tree-algorithm-works/
http://dataaspirant.com/2017/01/30/how-decision-tree-algorithm-works/

	Abstract
	Acknowledgements
	Introduction
	Parkinson's Disease
	History and Epidemiology
	Pathophysiology and Risk Factors
	Symptoms and Causes
	A focus on bradykinesia
	Functional neuroimaging
	Pharmacological treatment
	Surgical treatment
	The Unified Parkinson’s Disease Rating Scale (UPDRS)
	Lower limbs motor evaluation: Leg Agility Task

	Smartphone inertial sensors
	Introduction
	MEMS Accelerometer
	MEMS Gyroscope
	Sensor Log App

	Methods
	Available data from PD population
	Available data from Control population
	Protocol
	Pre-processing
	Defined features
	Number of movements
	Mean time interval between movements
	Standard deviation of the time intervals
	Thigh inclination trend
	Mean and max value of thigh inclination
	Maximum acceleration and angular velocity
	Range of acceleration and angular velocity
	Root Mean Square value
	Signal Entropy
	Dominant Frequency Component
	Ratio of dominant frequency power to total power

	Machine learning algorithms
	Training and validation of methods
	k-Nearest Neighbor (kNN)
	Support Vector Machine (SVM)
	Neural networks (NN)
	Decision trees
	Linear Discriminant Analysis (LDA)

	Hypothesis for feature set
	Hypothesis 1: All available features
	Hypothesis 2: Features from accelerometer
	Hypothesis 3: Features from gyroscope

	Statistical and performance descriptors
	Boxplot
	Confusion Matrix


	Results
	Examples of angular velocity signals
	Examples of accelerometer signals
	Boxplots
	Hypothesis 1: All available features
	Hypothesis 2: Features from accelerometer
	Hypothesis 3: Features from gyroscope
	Binary classification
	Control population results

	Discussion
	Conclusion
	Parkinson's disease and Control population details
	Bibliography

		Politecnico di Torino
	2018-09-07T09:04:47+0000
	Politecnico di Torino
	Gabriella Olmo
	S




