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Abstract

We will discuss the statistics of work performed in a quench of the
quantum spherical model with a quartic interaction potential. The pre-
quench and post-quench hamiltonians are supposed time independent. The
moment generating function G(s) of the work can be mapped into that of an
effective gaussian model in which a parameter reff (t) turns out to be time
dependent. We will show that reff (t) does not modify the original time-
independence of the probability distribution and we will give an explicit
formula to compute G(s).
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Introduction

The quantum spherical model is a useful paradigm to study many quantum
non-equilibrium problems, from the equilibration after a quench of one or
more parameters of the hamiltonian, [1] to the dynamical phase transition
that may occur in the stationary state reached at t→ ∞ [2]. One of the main
open questions is, for instance, whether or not the final state approached
after the quench could be described by a generalized Gibbs ensable [1]. In
the following we will suppose the hamiltonian time independent. In addition
it will be shown that the spherical model is equivalent to an O(N) vector
model in the limit N → ∞. For N → ∞, the model is exaclty solvable
as it can be mapped into a gaussian one with a time-dependent effective
parameter reff (t) [3]. If on the one hand, this effective formulation makes
the solution of the model analytically and numerically feasible, on the other
it introduces an appearent time dependence in the problem which seemingly
implies a time-dependence of relevant quantities such as the work performed
upon quenching the system and its statistics. Indeed, the known form of
the work-generating function G(s) of a gaussian model includes reff (t) but
the starting hamiltonian is supposed time-independent and this property is
expected to be retained also in the statistics of the work. Consequently, we
will first illustrate how to prove that G(s) is time independent also in the
gaussian formulation of the problem and only then a form of G(s) will be
provided.

In the first chapter we will give a brief introduction to the thermodi-
namics of equilibrium and non-equilibrium transformations. In the second
chapter instead, we will define the model and summarize the main tools
needed in the third chapter where the solution of the issues outlined will be
provided.
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Chapter 1

Motivations

1.1 Definitions
When a physical system is composed of a large number of degrees of

freedom, the description of any relevant observable can be achieved only via
statistical measures. In what follows the word system, will designate a large
set of interacting degrees of freedom such as particles, fields etc., for which
the tools of statistical mechanics are meaningful and must be applied.

1.1.1 Equilibrium states and quasi-static processes

Generally speaking, a system can be found in an equilibrium state or
in a non-equilibrium state. In equilbrium, the observables, such as energy,
volume, number of particles, are time-independent. The existence of equi-
librium states is a postulate of thermodinamics, justified by the empirical
evidence that a system left unperturbed for a long time approaches a state
where the values of the observables do not change with time and are inde-
pendent from the history of the external actions exerted on the system [4].
In thermodynamics the concept of equilibrium state is particularly useful to
define a class of ideal processes called quasi-static which are, by definition,
made up by a sequence of equilibrium states. Once the value of few relevant
variables is given the knowledge of a system at equilibrium is complete. As
a consequence, when such relevent parameters are known for every step of a
quasi-static process one can predict, inter alia, the work and heat exchanged
in the transformation.

A real process is always a sequence of equilibrium and non-equilibrium
states and one defines the relaxation time as the time interval needed for
a system to reach equilibrium when it is carried out of equilibrium by an
external action. If a thermodynamical transformation is sufficiently slow,
such as the system can relax to equilibrium at each short time step, then
the process is quasi-static.
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From a statistical viewpoint, in an equilibrium state, the values of the
relevant physical variables are equal to an average done on a suitable prob-
abilty distribution, called statistical ensamble.

1.1.2 Work performed in a quasi static process

In order to compute the work done changing the state of the system let us
define a path γ(t) in the space Ω of the paramenters that can be controlled,
from an initial state A at time t = 0, to a final state B at time t = ∞. When
the system is in contact with an external enviroment we must consider also
the positions and coordinates of the particles of the thermal bath otherwise,
striclty speaking, an hamiltonian function can not be defined. Since the
energy of the system is known at each step, the work performed can be
evaluated integrating the differential energy along the path. The work W
done along γ(t) is [5]

W =

∫ ∞

0
dt
∂H(p, q, γ(t))

∂t
(1.1)

where, by definition, the energy H(p, q, γ(t)) of the system is istantaneously
equal to its ensable average. If the system is isolated, the quasi-static process
is called adiabatic with reference to the absence of heat exchanged during
the transformation.

Let us note that in a quasi-static process, the work done is not a stochastic
variable; it is merely equal to the free energy difference, ∆F = FB − FA

between the final and initial state, and is the least possible amount of work
needed to carry the system from the state A to the state B.

1.1.3 Non-equilibrium transformations and definition of a
Quench

When a control parameter is varied sufficiently fast the system is brought
out-of-equilibrium. If the properties of a system in equilibrium — and con-
sequently of a quasi-static transformation — depend only of a few internal
variables, on the contrary there are many ways to bring a system out of
equilibrium so that the protocol used must be carefully specified since it
determines the values of the relevant physical observables.

The most simple protocol is the quench of an external parameter r, i.e.,
an istantaneous variation from its initial value ri to the final value rf ; a global
quench means that this change is the same in every part of the system. For
an out of equilibrium transformation W becomes a random variable, with
an average ⟨W ⟩ always larger then ∆F , i.e.,

⟨W ⟩ ≥ ∆F, (1.2)
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Figure 1.1: Schematic representation of the initial and post-quench energy
levels

so that wondering about the form of the probability distribution as well as
whether exist some limit where the probability distribution becomes univer-
sal is a legitimate and compelling question of statistical mechanics.

1.1.4 Work and Heat produced quenching a quantum system

In the following we will deal with a thermally isolated system prepared in
the ground state |Ψri

0 ⟩ of the initial hamiltonianH(ri). In Fig. 1.1 the energy
levels of the pre-quench and post-quench hamiltonians are illustrated. The
heat produced in the quench is the macroscopic phenomenon of microscopic
transitions between different energy levels while the word work refers to the
reversible part of energy change due to the modification of the level structure
[6].

In a quasi-static process, the system stays in the ground state of the
istantaneous hamiltonian, the energy exchanged is denoted as work, and the
entropy does not change (in the simple case of the ground state it is always
equal to 0). This is coherent with a fundamental result of thermodynamics
according to which in an adiabatic process, the entropy does not vary [15].

On the other hand, an abrupt variation of one parameter r of the hamilto-
nian, ri → rf , such that [H(ri),H(rf )] ̸= 0 induces transitions, referred as
excitations, from the ground state |Ψri

0 ⟩ of H(ri), to any eigenstate of H(rf )
with a probabilty given by |⟨Ψri

0 |Ψ
rf
n ⟩|2. Practically speaking, this means

that if the system is initially prepared in |Ψri
0 ⟩, in a series of repeated meas-

urements of the post-quench energy, the empirical probability of the trans-
itions |Ψri

0 ⟩ → |Ψrf
n ⟩ tends to |

⟨
Ψ

rf
n |Ψri

0

⟩
|2 as the number of measurements
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grows.
Excitations can survive a lot after the quench as in the case of integrable

systems or decay soon after it as for non integrable ones. In both cases
they are the microscopic origin of the termodinamic irreversibilty described
through the concepts of irreversible heat and irreversible entropy.

1.1.5 Why quantum quenches?

In the past two decades the tecnique of optical lattices applied to cold
atoms has made it possible to investigate experimentally the picture we
have portrayed in Sec. 1.1.4. Optical traps can simulate with high precision
several theoretical models where the system is completely isolated from any
external disturbance. Prior to this, speaking about the unitary dynamics
after a quench of an isolated quantum system would have been self-referential
since the means to build up an experiment to observe the phenomenon where
absent.

Important experiments have been conducted to test whether thermaliz-
ation occurs in presence of integrability for a quasi-one dimensional bosonic
gas [7] and show the absence of dumping of the system taken out of equi-
librium. In other words in 1D no thermalization occurs in the time of the
experiment for a system brought out of equilibrium.

It became also possible to observe [8] a quantum phase trasition from
a superfluid phase to Mott insulator phase, i.e. a phase transition driven
only by quantum fluctuations where the relative strengths of kinetic and
interaction energies play a role analogous to those of internal energy and
entropy in a thermal phase transition.

Other recent experimental studies [9] investigated the phenomenon of
prethermalization, another interesting consequence of integrability in the
non-equilibrium dynamics of a complex system.

These are just few examples that bear witness to the growing interest
towards the field of non-equilibrium physics of interacting quantum systems.
The present simple work should be regared part of this wide landscape.

1.2 The spherical model

1.2.1 Introduciton: the Ising Model

One goal of statistical physics is explaining the phase diagram of a system
starting from the microscopic interactions between the elementary degrees
of freedom. The macroscopic properties of two phases such as the strength
of materials, their electrical conductivity, etc. differ deeply one from the
other but these differences, as well as the concept of phase itself, arise only
in the thermodynamical limit, as a result of a collective behaviour of the
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microscopic degrees of freedom when an external temperature-like parameter
is varied.

The Ising model has been studied for long time in order to understand
the macroscopic phenomenology of the phases, starting from a simple mi-
croscopic interaction. The degrees of freedom of the Ising model are scalar
spin variables σi located on a lattice; here i stands for the ith site and
σ = {−1, 1} is a binary random variable. Setting J as the strength of the
interaction between two nearby spins, the Boltzmann weight of a configur-
ation is computed with the hamiltonian

H = −J
∑
<ij>

σiσj (1.3)

where the sum runs over all the sites of the lattice, and < ij > stands for a
pair of nearest neighbour spins. A global configuration of the system can be
described by a super spin vector σ with a number of components m equal to
the number of sites. Geometrically speaking the tip of the super spin vector
lies on one of the 2m corners of an hypercube in an m-dimensional space,
the configuration space of the system. Figure 1.2 portrays with red dots all
the configurations for a system of two spins.

The fundamental quantity that connects the microscopical description of
a system to the thermodynamic variables is the partition function Z defined
as

Z =
∑
σ

e−βH(σ), (1.4)

where
∑

σ is a sum over all the different configuration of the system, and
β is an inverse temperature parameter. The free energy F of the system is
then computed as

F = − 1

β
logZ (1.5)

and all the other variables follow from the rules of thermodynamics. There-
fore solving a model means compute explicitly the partition function, and
for the Ising model this aim can be accoplished just for a set of spin placed
on a line, i.e. a dimension d = 1, or lying on a plane d = 2. Accordingly,
many approximations to the Ising model have been proposed in order to
understand the equilibrium theromdynamics of complex systems in d > 2 .

1.2.2 The strict spherical model

The spherical model is an approximation of the Ising model invented
and solved by Berlin and Kac in 1952. Its name comes from the geometrical
interpretation previously given to the Ising model: the tip of σ lies on the
surphace of the hypersphere that cricumscribes the ’Ising’ hypercube so that
each spin σi can vary over [−

√
m;

√
m] as can be seen from Fig. 1.2. The
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Figure 1.2: Configurations of a system of m = 2 spins for the spherical model
(blue) and the Ising model (red); the hypercube for m = 2 is a square.

model is soluble because now Z can be computed with a integral instead of
a discrete sum. Formally the hamiltonian of the spherical model is the same
as that of the Ising one, with the constrint∑

i

σ2i = m, (1.6)

so that

Hs = −J
∑
<ij>

σiσj · δ

(∑
i

σ2i −m

)
. (1.7)

In order to compute the partition function Zs it is convenient to use the
integral representation of the Dirac delta

δ

(
m−

∑
i

σ2i

)
=

1

2πi

∫ x+i∞

x−i∞
dz ez(

∑
i σ

2
i −m) (1.8)

consequently

Zs(m,J) =
1

2πi

∫ x+i∞

x−i∞
dz ezm

∫ +∞

−∞

∏
i

dσi e−z
∑

i σ
2
i +J

∑
< ij>σiσj (1.9)

and the gaussian integrals in σi on the right hand side can be explicitly cal-
culated. The partition function is finally evaluated computing the remaining
complex integral in z with the saddle point method [10].

1.2.3 The mean spherical model

The generalization to the quantum spherical model is simpler dealing
with the so called it mean spherical model [12]. Instead of using the strict
contraint of Eq. (1.6) one can impose the average of the super spin vector
to be equal to m ⟨∑

i

σ2i

⟩
= m. (1.10)

8



In this way both the σ =
∑
σ2i and the energy are treated in the canonical

ensable, while in Eqs. (1.7) and (1.9) σ was understood as a microcanoical
variable. In the hamiltonian of Eq. (1.7) we must add the dynamical variable∑

i σ
2
i together with its canonically conjugate parameter λ

Hs = −J
∑
<ij>

σiσj + λ
∑
i

σ2i , (1.11)

thus Zs becomes

Zs(λ, J) =

∫ +∞

−∞

∏
i

dσi e−λ
∑

i σ
2
i +J

∑
<ij> σiσj , (1.12)

and Eq. (1.10) is satisfied provided

− ∂Zs(λ, J)

∂λ
= m. (1.13)

The energetic term λ
∑

i σ
2
i in Eq. (1.11) is an harmonic confinement for

σi around the equilibrium value σi = 0 and curvature of the quadratic
binding potential, given by Eq. (1.13), enforces the condition of Eq. (1.10).
In conclusion the spins should be now better regarded as harmonic springs
rather then rigid rods.

The thermodynamical properties of the strict and mean spherical model
are the same, specifically the lower critical dimension dl is equal to 2 and
the upper critial one du is 4. For 2 < d < 4 the critical exponents are non
classical due to their dependence on the dimension d [10].

1.2.4 Physical meaning of the model

The global constraints shown in Eqs. (1.6) and (1.10) imply a long range
effective interaction among the spins, to which one can hardly assign a direct
physical meaning. However, in 1962 H. E. Stanley proved the equivalence
between the spherical model and a spin-vector model with nearest neighbour
interaction and O(N) symmetry when N → ∞ [11]. Precisely Eq. (1.7) was
found equivalent to the N → ∞ limit of the hamiltonian

H(N) = −J
∑
<ij>

σi · σj , (1.14)

where σi = {σ1(i), ..., σN (i)} and

N∑
k=1

σk(i)
2 = N for i = 1, 2, ...,m. (1.15)

Accordingly, a model with O(N = ∞) symmetry can be referred as
spherical model and vice-versa.
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1.2.5 An application of the spherical model in d < ∞

In the family of O(N) models many statistical observables are monotonic
functions of N [11]. The spherical model can thus be used to bound from
above or below the values of important physical quantities of more realistic
models like a vector model with two or three components.

Let us give an example of this approach in the case of the upper critical
dimensionality du of a model. The correlation length for the family of the
O(N) models turns out to be a decreasing function of N [10], in fact when
the number of components of a single spin increase the fluctuations are also
expected to grow promoting faster decorrelation between the spins. Above
the upper critical dimensionality fluctuations are negligible and the spherical
model can be used to bound du from above for all the O(N) models with
finite N . The upper critical diemensionality of the spherical model is four
so that for every N <∞, du ≤ 4.

1.2.6 The quantum spherical model

The quantum counterpart of the model can be obtained regarding σh(i)
as position operators and defining their conjugate momenta πk(j) in accord-
ance with the canonical commutation relations

[σh(i), πk(j)] = iδijδhk. (1.16)

The quantum hamiltonian includes a kinetic part Hkin that can be chosen in
more ways [12], [13]. Let us follow [12] and define Hkin

.
=
∑

i π
(N)
i ·π(N)

i /2.
Then, using Eq. (1.14) the total quantum hamiltonian HQs is

HQs =
∑
i

πi · πi

2
− J

∑
<ij>

σi · σj (1.17)

and each σi must satisfy the contraints given in Eq. (1.15). We could instead
fix the average value lenght of each spin and write down the hamiltonian

HQs =
∑
i

πi · πi

2
− J

∑
<ij>

σi · σj +
∑
i

λiσ
2
i , (1.18)

in the same fashion of what was done in Eq. (1.11). All the λi’s have the
same value since the model is supposed omogeneous and isotropic, therefore

HQs =
∑
i

πi · πi

2
− J

∑
<ij>

σi · σj + λ
∑
i

σ2
i . (1.19)

The σ operators at two different positions commute with each other therefore
when the lattice parameter ri+1 − ri go to zero (suppose for simplicity to
have a cubic lattice) we can rewrite Eq. (1.19) as [14]

H(r, u) =

∫
ddx

[
1

2
π2
x +

c

2
(∇σ)2 +

r

2
σ2

]
(1.20)
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Chapter 2

The Model

Let us consider a system that is described by the quantum O(N) hamilto-
nian in d spatial dimensions with a (ϕ2)2 interaction term

H(r, u) =

∫
ddx

[
1

2
Π2 +

1

2
(∇ϕ)2 +

r

2
ϕ2 +

u

4!N
(ϕ2)2

]
(2.1)

where ϕ = (ϕ1, ..., ϕN ) is a real bosonic field with N components, Π =
(Π1, ...,ΠN ) its conjugate momentum with [ϕi(x),Πj(x

′)] = iδ(d)(x−x′)δij
and

ϕ2 =

N∑
i=1

ϕ2i , (2.2)

Π2 =
N∑
i=1

(
∂ϕi
∂t

)2

, (2.3)

(∇ϕ)2 =

N∑
i=1

d∑
j=1

(
∂ϕi
∂xj

)2

, (2.4)

(ϕ2)2 =

(
N∑
i=1

ϕ2i

)2

. (2.5)

In addition, suppose that at t = 0 the system is prepared in the ground
state |Ψri

0 ⟩ of the pre-quench hamiltonian H(ri, u) with energy

Eri
0 = ⟨Ψri

0 |H(ri, u)|Ψri
0 ⟩, (2.6)

and the parameter r is instantaneously changed from ri to rf . As a result,
the hamiltoniansH(ri, u) andH(rf , u) do not commute and when the energy
of the final state is measured, the eigenvalue Erf

n relative to the eigenstate
|Ψrf

n ⟩ of the post-quench hamiltonian H(rf , u) occurs with a probability
P (En) given by

P (En) = |
⟨
Ψ

rf
n |Ψri

0

⟩
|2, (2.7)
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and the work Wn performed in a transition |Ψri
0 ⟩ → |Ψrf

n ⟩ is then

Wn = E
rf
n − Eri

0 . (2.8)

It is convenient to study the properties of a probability distribution via
its moment generating function. The latter is defined as

G(s)
.
=
⟨
e−sW

⟩
, (2.9)

Using G(s) paves the way for a fruitful mapping between G(s) and the
partition function Z(s) of a classical system in d + 1 dimensions. This
analogy is helpful because of the available literature about the behaviour of
a classical system.

2.1 Quantum-to-classical correspondence
It is then worth sheding some light on this quantum-to-classical mapping.

From Eqs. (2.7), (2.8) and the definition of G(s) given in Eq. (2.9) one
obtains,

G(s) =
∞∑
n=0

e−s(E
rf
n −E

ri
0 )|⟨Ψrf

n |Ψri
0 ⟩|

2

=

∞∑
n=0

⟨Ψri
0 |Ψ

rf
n ⟩e−s(E

rf
n −E

ri
0 )⟨Ψrf

n |Ψri
0 ⟩

= ⟨Ψri
0 |e

−s(H−E
ri
0 )|Ψri

0 ⟩.

(2.10)

If s is an integer, then ⟨Ψri
0 |e−sH |Ψri

0 ⟩ can be seen as a partition function Z(s)
of a statistical system confined between a slab with boundary states |Ψri

0 ⟩,
thickness s and transfer matrix e−H . Accordingly, the classical system has
an extra dimension with respect to the quantum one, namely the thickness
s of the slab. More generally, s can be a real number and, as long as it stays
positive, the same mapping holds [16]. In summary,

G(s) = ⟨Ψri
0 |e

−s(H−E
ri
0 )|Ψri

0 ⟩
.
= Z(s). (2.11)

Setting β = 1 we can now exploit the known structure of the classical free
energy of a slab,

F (s) = − logZ(s), (2.12)

to understand some features of the physics of the quantum counterpart.
F (s) consists of tree contributions

F
.
= sAfb + 2Afa +Afc(s), (2.13)
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where A is the area of one of the two surfaces and fb, fa are the bulk, surface
free energy densities and fc(s) includes the other decreasing powers of s.

The mapping shown in Eq. (2.11) is established as follows: when s→ ∞,
fc(s) → 0 the contributions to G(s) coming form transitions to excited states
can be neglected and — denoting with |Ψrf

0 ⟩ the ground state of the post
quench hamiltonian — we have

G(s→ ∞) = ⟨Ψri
0 |e

−s(H−Eri )|Ψri
0 ⟩ = e−s(E

rf
0 −E

ri
0 )|⟨Ψri

0 |Ψ
rf
0 ⟩|2, (2.14)

so that
F (s) = s(Eri

0 − E
rf
0 )− 2 log |⟨Ψri

0 |Ψ
rf
0 ⟩|. (2.15)

A comparison with Eq. (2.13) yields the rather transparent correspondence

fb =
Eri

0 − E
rf
0

A

fa = − log |⟨Ψri
0 |Ψ

rf
0 ⟩|

A
.

(2.16)

Finally — for an arbitrary positive value of s — fc(s) is derived from
Eq. (2.13) as

fc(s) =
− logG(s)

A
− sfb − 2fa. (2.17)

When rf vanishes the system becomes critical [6] and from the known scaling
behaviour of the classical free energy densities fs and fc it is possible to infer
some of the universal features of the quantum counterpart [19].

2.2 The limit N → ∞
Let us now focus on with the solution of Eq. (2.1). When the number of

components N goes to infinity, (Φ2)2 can be written as [20]

(ϕ2)2 = 2(N + 2)⟨ϕ2⟩ϕ2 −N(N + 2)⟨ϕ2⟩2, (2.18)

where ⟨ϕ2⟩ stands for

⟨ϕ2⟩ =
∫

ddx⟨Ψri
0 |ϕ

2(x, t)|Ψri
0 ⟩. (2.19)

Equation (2.18) can be obtained expanding exp
( u

24N
(ϕ2)2

)
in the partition

function of the O(N) quantum model. The linear term is proportional to
(ϕ2)2 which is, explicitly, a sum of ϕ2iϕ2j [see Eq. (2.2)]. In order to derive
Eq. (2.18) we need to contract two of the four fields and retain just the
leading order contributions in N . In Fig. 2.1 we illustrate the Feynman
diagrams of ϕ2iϕ2j and their contraction; they are in number of N(N − 1) · 2
if i ̸= j, where the factor 2 comes from the fact that the lines can be
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Figure 2.1: First order contractions of (ϕ2)2
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Figure 2.2: Second order contractions of (ϕ2)2

contracted from the left, i-side, or from the right, j-side. If i = j, Wick’s
theorem proves that the contractions are 3N ·2, so that we obtain an overall
contribution of

[2N(N − 1) + 6N ]⟨ϕ2⟩ϕ2 = 2(N + 2)⟨ϕ2⟩ϕ2. (2.20)

The constant in Eq. (2.18) is needed in order to reproduce correctly the
average of (ϕ2)2 since ⟨(ϕ2)2⟩ − ⟨2(N + 2)⟨ϕ2⟩ϕ2⟩ = −N(N + 2)⟨ϕ2⟩2.

For the higher-order terms, the number of bubble-like contractions is
subleading in N , and for N → ∞ their contribution vanishes. In Fig. 2.2
an example of the second order term is illustrated: the contractions of the
upper-right type are ∝ N4, while lower candy-like ones are ∝ N3.

Replacing the left-hand side of Eq. (2.18) in Eq. (2.1) and taking the
limit N → ∞, we obtain, at the leading order,

H(r, u) =

∫
ddx

[
1

2
Π2 +

1

2
(∇ϕ)2 +

r

2
ϕ2 +

u

12
⟨ϕ2⟩ϕ2

]
−N u

24
⟨ϕ2⟩2. (2.21)
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Setting then

reff (t)
.
= r +

u

6
⟨ϕ2⟩(t), (2.22)

Heff (t)
.
=

∫
ddx

[
1

2
Π2 +

1

2
(∇ϕ)2 +

reff (t)

2
ϕ2

]
, (2.23)

c(t)
.
= −N u

24
⟨ϕ2⟩2, (2.24)

the original hamltonian can be written as

H(r, u) = Heff (t) + c(t), (2.25)

and the dynamics of the field can be studied via the two coupled Eqs. (2.22)
and (2.23), where reff has to be determined self consistently at each time t
of the evolution.

2.3 Gaussian generating function
The effective hamiltonian in Eq. (2.23) is quadratic. It is then useful

to sum up the known results related to the work generating function of a
gaussian model with scalar field ϕ since they will be used in chapter 3.

A model is said to be gaussian if the hamiltonian H takes the quadratic
form

H =

∫
ddx

[
1

2
Π2 +

1

2
(∇ϕ)2 + r

2
ϕ2
]
. (2.26)

The quench involves a sudden change of r from ri to rf , the latter being
time independent. Under these conditions, the generating function can be
found passing in Fourier space, where Eq. (2.26) becomes

H =

∫
ddk

(2π)d

(
1

2
ΠkΠ−k +

ω2
k(r)

2
ϕkϕ−k

)
, (2.27)

and ωk(r) =
√

|k|2 + r. Introducing the ladder operators

ak =
ωkϕk + iΠk√

2ωk
,

a†k =
ωkϕk − iΠk√

2ωk
,

with [ak, a
†
k] = 1,

(2.28)

the hamiltonian in Eq. (2.27) takes the form of an integral sum of independ-
ent harmonic oscillators with frequencies ωk, i.e.,

H =

∫
ddk

(2π)d
ωk

(
a†kak +

1

2

)
.
=

∫
ddk

(2π)d
hk, (2.29)
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with
hk = ωk

(
a†kak +

1

2

)
. (2.30)

In the following
∫

ddk/(2π)d will be denoted simply by
∫
k. In addition, let us

denote the pre-quench and post-quench frequencies ωk(ri) and ωk(rf ) with
ωk,i and ωk,f respectively.

If the system is prepared in the ground state of H, which is a product
state of the form |Ψri

0 ⟩ =
∏

k |ψk0⟩ with |ψk0⟩ the ground state of hk, then the
generating function G(s) defined in Eq. (2.9) is the product of the generating
functions Gk(s) of all the normal modes

G(s) =
∏
k

Gk(s); (2.31)

and setting
λk =

ωk,i − ωk,f

ωk,i + ωk,f
, (2.32)

it can be shown that Gk(s) takes the form [21]

Gk(s) = e−s(ωk,i−ωk,f)/2

√
1− λ2k

1− λ2ke
−2sωk,f

, (2.33)

The quantum-mechanical expression of the free energy of Eq. (2.13) is
then

f(s) = − logG(s)

A
= s

∫
k

ωk,i − ωk,f

2
−
∫
k

1− λ2k
2

+

∫
k

1− λ2ke
−2sωk,f

2
;

(2.34)
in conclusion

fb(s) = s

∫
k

ωk,i − ωk,f

2
, (2.35)

fa = −
∫
k

1− λ2k
2

, (2.36)

fc(s) =

∫
k

1− λ2ke
−2sωk,f

2
. (2.37)

It has also been proved [22], that if one changes the parameter r continuously
as a function of time, keeping the same intitial and final conditions r(0) = ri
and r(+∞) = rf respectively, the moments will be also time-dependent and
the distribution must approach a delta peak when the time variation of the
transition is sufficiently slow.

In our case, reff (t) changes discontinuously at t = 0, from reff (0
−) to

reff (0
+) and then varies with time according to Eq. (2.22), but the time-

dependence of Heff (t) due to the variation of reff (t) is in apparent contrast
with Eq. (2.10) where no time-dependence appear. In order to solve this
paradox the time-dependent additive constant c(t), defined in Eq. (2.24),
must be included in the computations, as we shall see in the next chapter.
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Chapter 3

Results

3.1 Stationarity of the work probabilty distribu-
tion function

In addition to the remarks done at the end of chapter 2, also time-
translational invariance of the original hamiltonian of the model H(r, u)
defined in Eq. (2.1) can be invoked to conclude that ⟨W ⟩ must be time-
independent. Indeed, since external conditions after the quench are held
fixed, the average energy of the system can not vary. Neglecting c(t) [com-
pare Eq. (2.23) with Eq. (2.25)], breaks time-translational invariance, thus
we must take it into account in the computations in order to restore the time-
independence of the work probability distribution. In the following we will
show that the time derivative of c(t) compensates for that of ⟨Heff ⟩, [where
Heff is defined in Eq. (2.23)] and this, in turn, will be used to show that all
the central moments ⟨(Heff − ⟨Heff ⟩)n⟩ are actually time-independent, in
spite of the time dependence of Heff .

In order to simplify the notation, we will denote by Htot the hamiltonian
H(m,u) of Eq. (2.1), by Heff that in Eq. (2.23) and by ⟨·⟩ the average taken
with respect to an arbitrary initial pure state.

3.1.1 Stationarity of the average work

To begin with, let us use the Schrödinger picture to compute averages;
this choice is done to ease the computation of time derivatives. According
to this prescription, the fields are considered as fixed operators and the
time dependence of their moments and correlations follows from that of
the wave function; for instance denoting ϕS and ϕH the field operator in
the Schrödinger and Heisenberg picture, the following equivalence for the
two-point correlation function holds⟨

ΨH |ϕH(x, t)ϕH(x′, t′)|ΨH

⟩
=
⟨
ΨS(t)|ϕS(x)ϕS(x′)|ΨS(t

′)
⟩
. (3.1)
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From now on the Schrödinger picture will be used. The time-derivative of
the expectation value of a generic observable A(t) is [23]

d⟨A(t)⟩
dt

= dfracih̄⟨[Htot, A(t)]⟩+
⟨
∂A(t)

∂t

⟩
, (3.2)

where the partial derivative is justified since an observable can be a function
of time through scalar coefficients, even though the field and momentum
operators, ϕ and Π, are fixed. In our case reff (t) is at the origin of the time
dependence of Heff , thus Eq. (3.2), using Eq. (2.25), translates into

d⟨Htot⟩
dt

=

⟨
∂Htot

∂t

⟩
=

⟨
∂Heff

∂t

⟩
+

dc(t)

dt
. (3.3)

By definition d⟨Htot⟩/dt = 0, thus we expect⟨
∂Heff

∂t

⟩
= −dc(t)

dt
; (3.4)

but let us show this explicitly.
The only time-dependent part in Heff is reff (t) which, in turn, does not

depend on x and can be factored out from the integral

∂Heff

∂t
=

1

2

∫
ddx

[
∂
(
Π2 + (∇ϕ)2

)
∂t

+
∂
(
reffϕ

2
)

∂t

]

=
1

2

(∫
ddx ϕ2

)
dreff
dt

.

(3.5)

The time derivative of reff is, according to Eq. (2.22),

dreff
dt

=
u

6

d⟨ϕ2⟩
dt

. (3.6)

that, combined with Eq. (3.5), leads to⟨
∂Heff

∂t

⟩
=

u

12
⟨ϕ2⟩d⟨ϕ

2⟩
dt

. (3.7)

Putting together Eqs. (3.3), (3.7), and the definition of c(t) given in Eq.
(2.24), we find

d⟨Htot⟩
dt

=
u

12
⟨ϕ2⟩d⟨ϕ

2⟩
dt

− u

24

d(N⟨ϕ2⟩2)
dt

= 0, (3.8)

since N⟨ϕ2⟩ = ⟨ϕ2⟩.
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3.1.2 Stationarity of the central moments

The central moment of order n of a univariate real-valued random vari-
able X is defined as µcn

.
= ⟨(X − ⟨X⟩)n⟩ and, differently from the moment

about the origin, µn
.
= ⟨Xn⟩, measures the deviations of X with respect to

its mean ⟨X⟩; the variance, for instance, is the central moment of order 2.
The series expansion of G(s) in Eq. (2.10) shows that the nth-moment

about the origin of W is ⟨(H−Eri
0 )n⟩, which is clearly time-independent be-

cause it refers to the original time-independent hamiltonian. Here, instead,
we will study the central moments of Heff , that is ⟨(Heff − ⟨Heff ⟩)n⟩, and
we will show that, in spite of the fact that Heff depends on t via reff (t),
these moments are actually time-independent.

Let us set Eri
0 = 0, which simplifies the notation without changing the

essence of the proof. First of all, using Eq. (3.2), we can take the derivative
under the sign of average since Htot and Heff differ by an additive constant
c(t) [see Eq. (2.25)] which implies [Htot,Heff ] = 0.

Secondly since reff (t) ̸= reff (t
′) then [Heff (t),

dHeff (t)
dt ] ̸= 0 and when

one differentiates with respect to time the order of the operators must be
kept. Setting ∆Heff

.
= Heff − ⟨Heff ⟩ the time derivative of ⟨∆Heff ⟩ be-

comes

⟨
∂(∆Heff )

n

∂t

⟩
=

n−1∑
k=0

⟨
(∆Heff )

k ∂∆Heff

∂t
(∆Heff )

n−1−k

⟩
. (3.9)

In addition, Eq. (3.4) illustrates that −d⟨Heff ⟩
dt = dc(t)

dt , where the derivative
can be taken out of the average, for the same reason given for Eq. (3.9).
Then

∂∆Heff

∂t
=
∂(Heff − ⟨Heff ⟩)

∂t
=
∂Heff

∂t
+

dc(t)

dt
, (3.10)

but, according to Eq. (2.25), the left hand side is the time derivative of Htot,
which vanishes by hypothesis and therefore

∂∆Heff

∂t
= 0 =⇒

⟨
∂(∆Heff )

n

∂t

⟩
= 0. (3.11)

3.2 Moment generating function of the quantum
O(N) model

Let us fix t = 0 when the quench occurs and consider a system prepared
in the ground state |Ψri

0 ⟩ of Htot(0
−).

In Sec. 3.1 we have seen that the work probability distribution and its
moment generating function G(s) are time independent. As a consequence,
it is enough to compute G(s) for t = 0+ to know all the moments for every
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Energy

0

t = 0

Heff (reff (0
−)) Heff (reff (0

+))
reff (0

−) → reff (0
+)

c(t = 0−)

E
reff (0−)

0

h̄ω(reff (0
−))

2

c(t = 0+)

E
reff (0+)

0

E
reff (0+)

1

h̄ω(reff (0
+))

2

Figure 3.1: Schematic representation of the energy levels at t = 0− and
t = 0+. Notice that the additive constants c(0−) = c(0+) are equal as a
consequence of the continuity of the energy levels at t = 0.

future time. In order to do so, we can use the results illustrated in Sec 2.3
since for N → ∞ the theory is effectively gaussian. This is possible because
the continuity of the fields in t = 0 allows us to neglect the additive constant,
being c(0−) = c(0+), and to use Eq. (2.33).

Finally, it is important to note that in a gaussian theory the parameter
r shown in Eq. (2.26) must be positive otherwise the hamiltonian is not
bounded from below and the model become unstable, therefore one import-
ant requirement to fulfill in order to exploit Eq. (2.33) is reff (0+) ≥ 0.

Let us start now the derivation of what has been claimed. From Eq. (2.25)
we can keep just Heff which is a sum of N terms, one corresponding to each
component of the field ϕ. We will look at one of them in the momentum
representation

heff =

∫
k

(
1

2
ΠkΠ−k +

ω2
k(reff (t))

2
ϕkϕ−k

)
, (3.12)

where ωk(reff (t)) =
√
reff (t) + |k|2 is a time-dependent frequency to be

determined via Eq. (2.22). The equal-time two-point correlator ⟨ϕ2⟩ of the
field ϕ at the same spatial point, which appears on the right hand side, is
a function of the ωk’s and we will see that this dependence can be found
easily for a system prepared in the ground state at t = 0. To this end, it is
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convenient to write down the Fourier transform representation of ⟨ϕ2⟩, i.e.,

⟨ϕ2(t = 0−)⟩ =
∫
k
⟨Ψreff (0

−)
0 |ϕkϕ−k|Ψ

reff (0
−)

0 ⟩, (3.13)

which can be evaluated with the aid of the ladder operators of heff (0−). In
detail we have

ϕk =
ak + a†−k√

2ωk(reff (0−))
, (3.14)

which implies

ϕkϕ−k =
1 + a†kak + a†−ka−k + aka−k + a†−ka

†
k

2ωk(reff (0−))
. (3.15)

By hypotesis |Ψreff (0
−)

0 ⟩ is the ground state of heff (0−) so that

⟨Ψreff (0
−)

0 |ϕkϕ−k|Ψ
reff (0

−)
0 ⟩ = 1

2ωk(reff (0−))
(3.16)

and Eq. (3.13) becomes

⟨ϕ2(t = 0−)⟩ =
∫
k

1

2ωk(reff (0−))
. (3.17)

Accordingly, Eq. (2.22), referred to the initial state, can be written as

reff (0
−) = ri +

u

12

∫
k

1√
|k|2 + reff (0−)

, (3.18)

which determines the initial value reff (0−) of the effective parameter reff
as a function of ri. Upon doing the quench ri → rf at time t = 0, the fields
ϕ and Π vary continuously [25] and therefore

⟨ϕ2(t = 0+)⟩ = ⟨ϕ2(t = 0−)⟩. (3.19)

Correspondingly, by using Eq. (2.22) one concludes that

reff (0
+) = rf +

u

6
⟨ϕ2(t = 0−)⟩. (3.20)

This means that the post-quench effective parameter reff in t = 0+, is given
by

reff (0
+) = rf +

u

12

∫
k

1√
|k|2 + reff (0−)

, (3.21)

which differs from Eq. (3.18) just for the replacement of ri by rf . This also
implies that

reff (0
+)− reff (0

−) = rf − ri. (3.22)
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The moment generating function for reff (0+) ≥ 0 has thus the same form
as the gaussian one in Eq. (2.33), with

ωki
= ωk(reff (0

−)), (3.23)
ωkf

= ωk(reff (0
+)). (3.24)

Note that the value reff (0+) = 0 is reached for

rcf,0+ = − u

12

∫
k

1√
|k|2 + reff (0−)

= −u
6
⟨ϕ2(t = 0−)⟩. (3.25)
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Chapter 4

Conclusions

Summarizing, in the present work we have shown that it is possible to
solve the dynamics of the quantum O(N) model in the limit N → ∞ due to
its effective gaussian nature. However, when one studies the statistics of the
work performed in a quench, it is important to account for the additive con-
stant c(t) which appears in the mapping from the initial, quartic hamiltonian
to its gaussian counterpart [see Eq. (2.25)]. This constant makes sure that
the statistics of the work one derives on the basis of the effective hamilto-
nian is actually time-independent, in spite of the fact that Heff carries an
explicit dependence on time.

In chapter 3, the statistics of the work has been derived for rf ≥ rcf,0+
when it is possible to use the results concearning the work performed quench-
ing a pure gaussian model already known in the literature. If rf < rcf,0+ ,
reff (0

+) is negative and a new formula for G(s) — or an extension of the
one we provided in our work — should be found.

The numerical solution of the Eqs. (2.22) and (2.23) shows a damped
oscillation for reff (t) as a function of time and as t goes to infinity, reff (t)
approaches an asymptotic value reff (t = +∞), always bigger than, or equal
to zero. In Fig. 4.1 the time evolution of the effective parameter is illustrated.
Unlike the case of a pure gaussian model at equilibrium, reff (0+) can be
negative without implying an instability for the post quench hamiltonian
since the time evolution of Heff will make it grow, become positive and
eventually oscillate around its asymptotic value that is always positive or
zero. The value of reff (+∞) = 0 identifies the so-called dynamical critical
point and occurs at a value of the post quench parameter rf equal to rcf,∞.
It has been shown [2] that reff (+∞) vanishes for

rcf,∞ = − u

24

∫
k

2|k|2 + reff (0
−)

|k|2
√
|k|2 + reff (0−)

, (4.1)

moreover for rf ≤ rcf,∞, reff (+∞) is always equal to zero. Taking the
difference between rcf,0+ and rcf,∞ it is possible to see that the latter is
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Figure 4.1: Plot of reff (t)
.
= m2

eff (t) vs time for a sudden quench in d = 1+ϵ
as it appears in [1].

smaller than the former i.e. that

rcf,0+ − rcf,∞ =
u

24

∫
k

reff (0
−)

|k|2
√

|k|2 + reff (0−)
> 0, (4.2)

since reff (0−) must be positive to have a well defined effective hamiltonian
for t = 0−, [see Eq. (2.23)]. Consequently another important issue that needs
further investigation is the relation between rcf,0+ and rcf,∞, namely whether
it is possible to predict the dynamical critical point from the statistics of
the work.
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